SemaExpr.cpp revision b2f81ac583b519aa09c10e63d84e10abd13bfed7
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>()) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>();
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(Context,
62                                                    MD->getSelector(),
63                                                    MD->isInstanceMethod());
64          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
65        }
66      }
67    }
68
69    if (!isSilenced)
70      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
71  }
72
73  // See if this is a deleted function.
74  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
75    if (FD->isDeleted()) {
76      Diag(Loc, diag::err_deleted_function_use);
77      Diag(D->getLocation(), diag::note_unavailable_here) << true;
78      return true;
79    }
80  }
81
82  // See if the decl is unavailable
83  if (D->getAttr<UnavailableAttr>()) {
84    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
85    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
86  }
87
88  return false;
89}
90
91/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
92/// (and other functions in future), which have been declared with sentinel
93/// attribute. It warns if call does not have the sentinel argument.
94///
95void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
96                                 Expr **Args, unsigned NumArgs)
97{
98  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
99  if (!attr)
100    return;
101  int sentinelPos = attr->getSentinel();
102  int nullPos = attr->getNullPos();
103
104  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
105  // base class. Then we won't be needing two versions of the same code.
106  unsigned int i = 0;
107  bool warnNotEnoughArgs = false;
108  int isMethod = 0;
109  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
110    // skip over named parameters.
111    ObjCMethodDecl::param_iterator P, E = MD->param_end();
112    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
113      if (nullPos)
114        --nullPos;
115      else
116        ++i;
117    }
118    warnNotEnoughArgs = (P != E || i >= NumArgs);
119    isMethod = 1;
120  }
121  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
122    // skip over named parameters.
123    ObjCMethodDecl::param_iterator P, E = FD->param_end();
124    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
125      if (nullPos)
126        --nullPos;
127      else
128        ++i;
129    }
130    warnNotEnoughArgs = (P != E || i >= NumArgs);
131  }
132  else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
133    // block or function pointer call.
134    QualType Ty = V->getType();
135    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
136      const FunctionType *FT = Ty->isFunctionPointerType()
137      ? Ty->getAsPointerType()->getPointeeType()->getAsFunctionType()
138      : Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType();
139      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
140        unsigned NumArgsInProto = Proto->getNumArgs();
141        unsigned k;
142        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
143          if (nullPos)
144            --nullPos;
145          else
146            ++i;
147        }
148        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
149      }
150      if (Ty->isBlockPointerType())
151        isMethod = 2;
152    }
153    else
154      return;
155  }
156  else
157    return;
158
159  if (warnNotEnoughArgs) {
160    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
161    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
162    return;
163  }
164  int sentinel = i;
165  while (sentinelPos > 0 && i < NumArgs-1) {
166    --sentinelPos;
167    ++i;
168  }
169  if (sentinelPos > 0) {
170    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
171    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
172    return;
173  }
174  while (i < NumArgs-1) {
175    ++i;
176    ++sentinel;
177  }
178  Expr *sentinelExpr = Args[sentinel];
179  if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() ||
180                       !sentinelExpr->isNullPointerConstant(Context))) {
181    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
182    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
183  }
184  return;
185}
186
187SourceRange Sema::getExprRange(ExprTy *E) const {
188  Expr *Ex = (Expr *)E;
189  return Ex? Ex->getSourceRange() : SourceRange();
190}
191
192//===----------------------------------------------------------------------===//
193//  Standard Promotions and Conversions
194//===----------------------------------------------------------------------===//
195
196/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
197void Sema::DefaultFunctionArrayConversion(Expr *&E) {
198  QualType Ty = E->getType();
199  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
200
201  if (Ty->isFunctionType())
202    ImpCastExprToType(E, Context.getPointerType(Ty));
203  else if (Ty->isArrayType()) {
204    // In C90 mode, arrays only promote to pointers if the array expression is
205    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
206    // type 'array of type' is converted to an expression that has type 'pointer
207    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
208    // that has type 'array of type' ...".  The relevant change is "an lvalue"
209    // (C90) to "an expression" (C99).
210    //
211    // C++ 4.2p1:
212    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
213    // T" can be converted to an rvalue of type "pointer to T".
214    //
215    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
216        E->isLvalue(Context) == Expr::LV_Valid)
217      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
218  }
219}
220
221/// \brief Whether this is a promotable bitfield reference according
222/// to C99 6.3.1.1p2, bullet 2.
223///
224/// \returns the type this bit-field will promote to, or NULL if no
225/// promotion occurs.
226static QualType isPromotableBitField(Expr *E, ASTContext &Context) {
227  FieldDecl *Field = E->getBitField();
228  if (!Field)
229    return QualType();
230
231  const BuiltinType *BT = Field->getType()->getAsBuiltinType();
232  if (!BT)
233    return QualType();
234
235  if (BT->getKind() != BuiltinType::Bool &&
236      BT->getKind() != BuiltinType::Int &&
237      BT->getKind() != BuiltinType::UInt)
238    return QualType();
239
240  llvm::APSInt BitWidthAP;
241  if (!Field->getBitWidth()->isIntegerConstantExpr(BitWidthAP, Context))
242    return QualType();
243
244  uint64_t BitWidth = BitWidthAP.getZExtValue();
245  uint64_t IntSize = Context.getTypeSize(Context.IntTy);
246  if (BitWidth < IntSize ||
247      (Field->getType()->isSignedIntegerType() && BitWidth == IntSize))
248    return Context.IntTy;
249
250  if (BitWidth == IntSize && Field->getType()->isUnsignedIntegerType())
251    return Context.UnsignedIntTy;
252
253  return QualType();
254}
255
256/// UsualUnaryConversions - Performs various conversions that are common to most
257/// operators (C99 6.3). The conversions of array and function types are
258/// sometimes surpressed. For example, the array->pointer conversion doesn't
259/// apply if the array is an argument to the sizeof or address (&) operators.
260/// In these instances, this routine should *not* be called.
261Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
262  QualType Ty = Expr->getType();
263  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
264
265  // C99 6.3.1.1p2:
266  //
267  //   The following may be used in an expression wherever an int or
268  //   unsigned int may be used:
269  //     - an object or expression with an integer type whose integer
270  //       conversion rank is less than or equal to the rank of int
271  //       and unsigned int.
272  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
273  //
274  //   If an int can represent all values of the original type, the
275  //   value is converted to an int; otherwise, it is converted to an
276  //   unsigned int. These are called the integer promotions. All
277  //   other types are unchanged by the integer promotions.
278  if (Ty->isPromotableIntegerType()) {
279    ImpCastExprToType(Expr, Context.IntTy);
280    return Expr;
281  } else {
282    QualType T = isPromotableBitField(Expr, Context);
283    if (!T.isNull()) {
284      ImpCastExprToType(Expr, T);
285      return Expr;
286    }
287  }
288
289  DefaultFunctionArrayConversion(Expr);
290  return Expr;
291}
292
293/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
294/// do not have a prototype. Arguments that have type float are promoted to
295/// double. All other argument types are converted by UsualUnaryConversions().
296void Sema::DefaultArgumentPromotion(Expr *&Expr) {
297  QualType Ty = Expr->getType();
298  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
299
300  // If this is a 'float' (CVR qualified or typedef) promote to double.
301  if (const BuiltinType *BT = Ty->getAsBuiltinType())
302    if (BT->getKind() == BuiltinType::Float)
303      return ImpCastExprToType(Expr, Context.DoubleTy);
304
305  UsualUnaryConversions(Expr);
306}
307
308/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
309/// will warn if the resulting type is not a POD type, and rejects ObjC
310/// interfaces passed by value.  This returns true if the argument type is
311/// completely illegal.
312bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
313  DefaultArgumentPromotion(Expr);
314
315  if (Expr->getType()->isObjCInterfaceType()) {
316    Diag(Expr->getLocStart(),
317         diag::err_cannot_pass_objc_interface_to_vararg)
318      << Expr->getType() << CT;
319    return true;
320  }
321
322  if (!Expr->getType()->isPODType())
323    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
324      << Expr->getType() << CT;
325
326  return false;
327}
328
329
330/// UsualArithmeticConversions - Performs various conversions that are common to
331/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
332/// routine returns the first non-arithmetic type found. The client is
333/// responsible for emitting appropriate error diagnostics.
334/// FIXME: verify the conversion rules for "complex int" are consistent with
335/// GCC.
336QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
337                                          bool isCompAssign) {
338  if (!isCompAssign)
339    UsualUnaryConversions(lhsExpr);
340
341  UsualUnaryConversions(rhsExpr);
342
343  // For conversion purposes, we ignore any qualifiers.
344  // For example, "const float" and "float" are equivalent.
345  QualType lhs =
346    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
347  QualType rhs =
348    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
349
350  // If both types are identical, no conversion is needed.
351  if (lhs == rhs)
352    return lhs;
353
354  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
355  // The caller can deal with this (e.g. pointer + int).
356  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
357    return lhs;
358
359  // Perform bitfield promotions.
360  QualType LHSBitfieldPromoteTy = isPromotableBitField(lhsExpr, Context);
361  if (!LHSBitfieldPromoteTy.isNull())
362    lhs = LHSBitfieldPromoteTy;
363  QualType RHSBitfieldPromoteTy = isPromotableBitField(rhsExpr, Context);
364  if (!RHSBitfieldPromoteTy.isNull())
365    rhs = RHSBitfieldPromoteTy;
366
367  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
368  if (!isCompAssign)
369    ImpCastExprToType(lhsExpr, destType);
370  ImpCastExprToType(rhsExpr, destType);
371  return destType;
372}
373
374QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
375  // Perform the usual unary conversions. We do this early so that
376  // integral promotions to "int" can allow us to exit early, in the
377  // lhs == rhs check. Also, for conversion purposes, we ignore any
378  // qualifiers.  For example, "const float" and "float" are
379  // equivalent.
380  if (lhs->isPromotableIntegerType())
381    lhs = Context.IntTy;
382  else
383    lhs = lhs.getUnqualifiedType();
384  if (rhs->isPromotableIntegerType())
385    rhs = Context.IntTy;
386  else
387    rhs = rhs.getUnqualifiedType();
388
389  // If both types are identical, no conversion is needed.
390  if (lhs == rhs)
391    return lhs;
392
393  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
394  // The caller can deal with this (e.g. pointer + int).
395  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
396    return lhs;
397
398  // At this point, we have two different arithmetic types.
399
400  // Handle complex types first (C99 6.3.1.8p1).
401  if (lhs->isComplexType() || rhs->isComplexType()) {
402    // if we have an integer operand, the result is the complex type.
403    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
404      // convert the rhs to the lhs complex type.
405      return lhs;
406    }
407    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
408      // convert the lhs to the rhs complex type.
409      return rhs;
410    }
411    // This handles complex/complex, complex/float, or float/complex.
412    // When both operands are complex, the shorter operand is converted to the
413    // type of the longer, and that is the type of the result. This corresponds
414    // to what is done when combining two real floating-point operands.
415    // The fun begins when size promotion occur across type domains.
416    // From H&S 6.3.4: When one operand is complex and the other is a real
417    // floating-point type, the less precise type is converted, within it's
418    // real or complex domain, to the precision of the other type. For example,
419    // when combining a "long double" with a "double _Complex", the
420    // "double _Complex" is promoted to "long double _Complex".
421    int result = Context.getFloatingTypeOrder(lhs, rhs);
422
423    if (result > 0) { // The left side is bigger, convert rhs.
424      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
425    } else if (result < 0) { // The right side is bigger, convert lhs.
426      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
427    }
428    // At this point, lhs and rhs have the same rank/size. Now, make sure the
429    // domains match. This is a requirement for our implementation, C99
430    // does not require this promotion.
431    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
432      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
433        return rhs;
434      } else { // handle "_Complex double, double".
435        return lhs;
436      }
437    }
438    return lhs; // The domain/size match exactly.
439  }
440  // Now handle "real" floating types (i.e. float, double, long double).
441  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
442    // if we have an integer operand, the result is the real floating type.
443    if (rhs->isIntegerType()) {
444      // convert rhs to the lhs floating point type.
445      return lhs;
446    }
447    if (rhs->isComplexIntegerType()) {
448      // convert rhs to the complex floating point type.
449      return Context.getComplexType(lhs);
450    }
451    if (lhs->isIntegerType()) {
452      // convert lhs to the rhs floating point type.
453      return rhs;
454    }
455    if (lhs->isComplexIntegerType()) {
456      // convert lhs to the complex floating point type.
457      return Context.getComplexType(rhs);
458    }
459    // We have two real floating types, float/complex combos were handled above.
460    // Convert the smaller operand to the bigger result.
461    int result = Context.getFloatingTypeOrder(lhs, rhs);
462    if (result > 0) // convert the rhs
463      return lhs;
464    assert(result < 0 && "illegal float comparison");
465    return rhs;   // convert the lhs
466  }
467  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
468    // Handle GCC complex int extension.
469    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
470    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
471
472    if (lhsComplexInt && rhsComplexInt) {
473      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
474                                      rhsComplexInt->getElementType()) >= 0)
475        return lhs; // convert the rhs
476      return rhs;
477    } else if (lhsComplexInt && rhs->isIntegerType()) {
478      // convert the rhs to the lhs complex type.
479      return lhs;
480    } else if (rhsComplexInt && lhs->isIntegerType()) {
481      // convert the lhs to the rhs complex type.
482      return rhs;
483    }
484  }
485  // Finally, we have two differing integer types.
486  // The rules for this case are in C99 6.3.1.8
487  int compare = Context.getIntegerTypeOrder(lhs, rhs);
488  bool lhsSigned = lhs->isSignedIntegerType(),
489       rhsSigned = rhs->isSignedIntegerType();
490  QualType destType;
491  if (lhsSigned == rhsSigned) {
492    // Same signedness; use the higher-ranked type
493    destType = compare >= 0 ? lhs : rhs;
494  } else if (compare != (lhsSigned ? 1 : -1)) {
495    // The unsigned type has greater than or equal rank to the
496    // signed type, so use the unsigned type
497    destType = lhsSigned ? rhs : lhs;
498  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
499    // The two types are different widths; if we are here, that
500    // means the signed type is larger than the unsigned type, so
501    // use the signed type.
502    destType = lhsSigned ? lhs : rhs;
503  } else {
504    // The signed type is higher-ranked than the unsigned type,
505    // but isn't actually any bigger (like unsigned int and long
506    // on most 32-bit systems).  Use the unsigned type corresponding
507    // to the signed type.
508    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
509  }
510  return destType;
511}
512
513//===----------------------------------------------------------------------===//
514//  Semantic Analysis for various Expression Types
515//===----------------------------------------------------------------------===//
516
517
518/// ActOnStringLiteral - The specified tokens were lexed as pasted string
519/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
520/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
521/// multiple tokens.  However, the common case is that StringToks points to one
522/// string.
523///
524Action::OwningExprResult
525Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
526  assert(NumStringToks && "Must have at least one string!");
527
528  StringLiteralParser Literal(StringToks, NumStringToks, PP);
529  if (Literal.hadError)
530    return ExprError();
531
532  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
533  for (unsigned i = 0; i != NumStringToks; ++i)
534    StringTokLocs.push_back(StringToks[i].getLocation());
535
536  QualType StrTy = Context.CharTy;
537  if (Literal.AnyWide) StrTy = Context.getWCharType();
538  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
539
540  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
541  if (getLangOptions().CPlusPlus)
542    StrTy.addConst();
543
544  // Get an array type for the string, according to C99 6.4.5.  This includes
545  // the nul terminator character as well as the string length for pascal
546  // strings.
547  StrTy = Context.getConstantArrayType(StrTy,
548                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
549                                       ArrayType::Normal, 0);
550
551  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
552  return Owned(StringLiteral::Create(Context, Literal.GetString(),
553                                     Literal.GetStringLength(),
554                                     Literal.AnyWide, StrTy,
555                                     &StringTokLocs[0],
556                                     StringTokLocs.size()));
557}
558
559/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
560/// CurBlock to VD should cause it to be snapshotted (as we do for auto
561/// variables defined outside the block) or false if this is not needed (e.g.
562/// for values inside the block or for globals).
563///
564/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
565/// up-to-date.
566///
567static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
568                                              ValueDecl *VD) {
569  // If the value is defined inside the block, we couldn't snapshot it even if
570  // we wanted to.
571  if (CurBlock->TheDecl == VD->getDeclContext())
572    return false;
573
574  // If this is an enum constant or function, it is constant, don't snapshot.
575  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
576    return false;
577
578  // If this is a reference to an extern, static, or global variable, no need to
579  // snapshot it.
580  // FIXME: What about 'const' variables in C++?
581  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
582    if (!Var->hasLocalStorage())
583      return false;
584
585  // Blocks that have these can't be constant.
586  CurBlock->hasBlockDeclRefExprs = true;
587
588  // If we have nested blocks, the decl may be declared in an outer block (in
589  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
590  // be defined outside all of the current blocks (in which case the blocks do
591  // all get the bit).  Walk the nesting chain.
592  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
593       NextBlock = NextBlock->PrevBlockInfo) {
594    // If we found the defining block for the variable, don't mark the block as
595    // having a reference outside it.
596    if (NextBlock->TheDecl == VD->getDeclContext())
597      break;
598
599    // Otherwise, the DeclRef from the inner block causes the outer one to need
600    // a snapshot as well.
601    NextBlock->hasBlockDeclRefExprs = true;
602  }
603
604  return true;
605}
606
607
608
609/// ActOnIdentifierExpr - The parser read an identifier in expression context,
610/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
611/// identifier is used in a function call context.
612/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
613/// class or namespace that the identifier must be a member of.
614Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
615                                                 IdentifierInfo &II,
616                                                 bool HasTrailingLParen,
617                                                 const CXXScopeSpec *SS,
618                                                 bool isAddressOfOperand) {
619  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
620                                  isAddressOfOperand);
621}
622
623/// BuildDeclRefExpr - Build either a DeclRefExpr or a
624/// QualifiedDeclRefExpr based on whether or not SS is a
625/// nested-name-specifier.
626DeclRefExpr *
627Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
628                       bool TypeDependent, bool ValueDependent,
629                       const CXXScopeSpec *SS) {
630  if (SS && !SS->isEmpty()) {
631    return new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
632                                              ValueDependent, SS->getRange(),
633                  static_cast<NestedNameSpecifier *>(SS->getScopeRep()));
634  } else
635    return new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
636}
637
638/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
639/// variable corresponding to the anonymous union or struct whose type
640/// is Record.
641static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
642                                             RecordDecl *Record) {
643  assert(Record->isAnonymousStructOrUnion() &&
644         "Record must be an anonymous struct or union!");
645
646  // FIXME: Once Decls are directly linked together, this will be an O(1)
647  // operation rather than a slow walk through DeclContext's vector (which
648  // itself will be eliminated). DeclGroups might make this even better.
649  DeclContext *Ctx = Record->getDeclContext();
650  for (DeclContext::decl_iterator D = Ctx->decls_begin(Context),
651                               DEnd = Ctx->decls_end(Context);
652       D != DEnd; ++D) {
653    if (*D == Record) {
654      // The object for the anonymous struct/union directly
655      // follows its type in the list of declarations.
656      ++D;
657      assert(D != DEnd && "Missing object for anonymous record");
658      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
659      return *D;
660    }
661  }
662
663  assert(false && "Missing object for anonymous record");
664  return 0;
665}
666
667/// \brief Given a field that represents a member of an anonymous
668/// struct/union, build the path from that field's context to the
669/// actual member.
670///
671/// Construct the sequence of field member references we'll have to
672/// perform to get to the field in the anonymous union/struct. The
673/// list of members is built from the field outward, so traverse it
674/// backwards to go from an object in the current context to the field
675/// we found.
676///
677/// \returns The variable from which the field access should begin,
678/// for an anonymous struct/union that is not a member of another
679/// class. Otherwise, returns NULL.
680VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
681                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
682  assert(Field->getDeclContext()->isRecord() &&
683         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
684         && "Field must be stored inside an anonymous struct or union");
685
686  Path.push_back(Field);
687  VarDecl *BaseObject = 0;
688  DeclContext *Ctx = Field->getDeclContext();
689  do {
690    RecordDecl *Record = cast<RecordDecl>(Ctx);
691    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
692    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
693      Path.push_back(AnonField);
694    else {
695      BaseObject = cast<VarDecl>(AnonObject);
696      break;
697    }
698    Ctx = Ctx->getParent();
699  } while (Ctx->isRecord() &&
700           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
701
702  return BaseObject;
703}
704
705Sema::OwningExprResult
706Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
707                                               FieldDecl *Field,
708                                               Expr *BaseObjectExpr,
709                                               SourceLocation OpLoc) {
710  llvm::SmallVector<FieldDecl *, 4> AnonFields;
711  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
712                                                            AnonFields);
713
714  // Build the expression that refers to the base object, from
715  // which we will build a sequence of member references to each
716  // of the anonymous union objects and, eventually, the field we
717  // found via name lookup.
718  bool BaseObjectIsPointer = false;
719  unsigned ExtraQuals = 0;
720  if (BaseObject) {
721    // BaseObject is an anonymous struct/union variable (and is,
722    // therefore, not part of another non-anonymous record).
723    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
724    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
725                                               SourceLocation());
726    ExtraQuals
727      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
728  } else if (BaseObjectExpr) {
729    // The caller provided the base object expression. Determine
730    // whether its a pointer and whether it adds any qualifiers to the
731    // anonymous struct/union fields we're looking into.
732    QualType ObjectType = BaseObjectExpr->getType();
733    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
734      BaseObjectIsPointer = true;
735      ObjectType = ObjectPtr->getPointeeType();
736    }
737    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
738  } else {
739    // We've found a member of an anonymous struct/union that is
740    // inside a non-anonymous struct/union, so in a well-formed
741    // program our base object expression is "this".
742    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
743      if (!MD->isStatic()) {
744        QualType AnonFieldType
745          = Context.getTagDeclType(
746                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
747        QualType ThisType = Context.getTagDeclType(MD->getParent());
748        if ((Context.getCanonicalType(AnonFieldType)
749               == Context.getCanonicalType(ThisType)) ||
750            IsDerivedFrom(ThisType, AnonFieldType)) {
751          // Our base object expression is "this".
752          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
753                                                     MD->getThisType(Context));
754          BaseObjectIsPointer = true;
755        }
756      } else {
757        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
758          << Field->getDeclName());
759      }
760      ExtraQuals = MD->getTypeQualifiers();
761    }
762
763    if (!BaseObjectExpr)
764      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
765        << Field->getDeclName());
766  }
767
768  // Build the implicit member references to the field of the
769  // anonymous struct/union.
770  Expr *Result = BaseObjectExpr;
771  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
772         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
773       FI != FIEnd; ++FI) {
774    QualType MemberType = (*FI)->getType();
775    if (!(*FI)->isMutable()) {
776      unsigned combinedQualifiers
777        = MemberType.getCVRQualifiers() | ExtraQuals;
778      MemberType = MemberType.getQualifiedType(combinedQualifiers);
779    }
780    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
781                                      OpLoc, MemberType);
782    BaseObjectIsPointer = false;
783    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
784  }
785
786  return Owned(Result);
787}
788
789/// ActOnDeclarationNameExpr - The parser has read some kind of name
790/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
791/// performs lookup on that name and returns an expression that refers
792/// to that name. This routine isn't directly called from the parser,
793/// because the parser doesn't know about DeclarationName. Rather,
794/// this routine is called by ActOnIdentifierExpr,
795/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
796/// which form the DeclarationName from the corresponding syntactic
797/// forms.
798///
799/// HasTrailingLParen indicates whether this identifier is used in a
800/// function call context.  LookupCtx is only used for a C++
801/// qualified-id (foo::bar) to indicate the class or namespace that
802/// the identifier must be a member of.
803///
804/// isAddressOfOperand means that this expression is the direct operand
805/// of an address-of operator. This matters because this is the only
806/// situation where a qualified name referencing a non-static member may
807/// appear outside a member function of this class.
808Sema::OwningExprResult
809Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
810                               DeclarationName Name, bool HasTrailingLParen,
811                               const CXXScopeSpec *SS,
812                               bool isAddressOfOperand) {
813  // Could be enum-constant, value decl, instance variable, etc.
814  if (SS && SS->isInvalid())
815    return ExprError();
816
817  // C++ [temp.dep.expr]p3:
818  //   An id-expression is type-dependent if it contains:
819  //     -- a nested-name-specifier that contains a class-name that
820  //        names a dependent type.
821  if (SS && isDependentScopeSpecifier(*SS)) {
822    return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
823                                                     Loc, SS->getRange(),
824                static_cast<NestedNameSpecifier *>(SS->getScopeRep())));
825  }
826
827  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
828                                         false, true, Loc);
829
830  if (Lookup.isAmbiguous()) {
831    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
832                            SS && SS->isSet() ? SS->getRange()
833                                              : SourceRange());
834    return ExprError();
835  }
836
837  NamedDecl *D = Lookup.getAsDecl();
838
839  // If this reference is in an Objective-C method, then ivar lookup happens as
840  // well.
841  IdentifierInfo *II = Name.getAsIdentifierInfo();
842  if (II && getCurMethodDecl()) {
843    // There are two cases to handle here.  1) scoped lookup could have failed,
844    // in which case we should look for an ivar.  2) scoped lookup could have
845    // found a decl, but that decl is outside the current instance method (i.e.
846    // a global variable).  In these two cases, we do a lookup for an ivar with
847    // this name, if the lookup sucedes, we replace it our current decl.
848    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
849      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
850      ObjCInterfaceDecl *ClassDeclared;
851      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
852                                                           ClassDeclared)) {
853        // Check if referencing a field with __attribute__((deprecated)).
854        if (DiagnoseUseOfDecl(IV, Loc))
855          return ExprError();
856
857        // If we're referencing an invalid decl, just return this as a silent
858        // error node.  The error diagnostic was already emitted on the decl.
859        if (IV->isInvalidDecl())
860          return ExprError();
861
862        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
863        // If a class method attemps to use a free standing ivar, this is
864        // an error.
865        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
866           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
867                           << IV->getDeclName());
868        // If a class method uses a global variable, even if an ivar with
869        // same name exists, use the global.
870        if (!IsClsMethod) {
871          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
872              ClassDeclared != IFace)
873           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
874          // FIXME: This should use a new expr for a direct reference, don't
875          // turn this into Self->ivar, just return a BareIVarExpr or something.
876          IdentifierInfo &II = Context.Idents.get("self");
877          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
878          return Owned(new (Context)
879                       ObjCIvarRefExpr(IV, IV->getType(), Loc,
880                                       SelfExpr.takeAs<Expr>(), true, true));
881        }
882      }
883    }
884    else if (getCurMethodDecl()->isInstanceMethod()) {
885      // We should warn if a local variable hides an ivar.
886      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
887      ObjCInterfaceDecl *ClassDeclared;
888      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
889                                                           ClassDeclared)) {
890        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
891            IFace == ClassDeclared)
892          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
893      }
894    }
895    // Needed to implement property "super.method" notation.
896    if (D == 0 && II->isStr("super")) {
897      QualType T;
898
899      if (getCurMethodDecl()->isInstanceMethod())
900        T = Context.getPointerType(Context.getObjCInterfaceType(
901                                   getCurMethodDecl()->getClassInterface()));
902      else
903        T = Context.getObjCClassType();
904      return Owned(new (Context) ObjCSuperExpr(Loc, T));
905    }
906  }
907
908  // Determine whether this name might be a candidate for
909  // argument-dependent lookup.
910  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
911             HasTrailingLParen;
912
913  if (ADL && D == 0) {
914    // We've seen something of the form
915    //
916    //   identifier(
917    //
918    // and we did not find any entity by the name
919    // "identifier". However, this identifier is still subject to
920    // argument-dependent lookup, so keep track of the name.
921    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
922                                                          Context.OverloadTy,
923                                                          Loc));
924  }
925
926  if (D == 0) {
927    // Otherwise, this could be an implicitly declared function reference (legal
928    // in C90, extension in C99).
929    if (HasTrailingLParen && II &&
930        !getLangOptions().CPlusPlus) // Not in C++.
931      D = ImplicitlyDefineFunction(Loc, *II, S);
932    else {
933      // If this name wasn't predeclared and if this is not a function call,
934      // diagnose the problem.
935      if (SS && !SS->isEmpty())
936        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
937          << Name << SS->getRange());
938      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
939               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
940        return ExprError(Diag(Loc, diag::err_undeclared_use)
941          << Name.getAsString());
942      else
943        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
944    }
945  }
946
947  // If this is an expression of the form &Class::member, don't build an
948  // implicit member ref, because we want a pointer to the member in general,
949  // not any specific instance's member.
950  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
951    DeclContext *DC = computeDeclContext(*SS);
952    if (D && isa<CXXRecordDecl>(DC)) {
953      QualType DType;
954      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
955        DType = FD->getType().getNonReferenceType();
956      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
957        DType = Method->getType();
958      } else if (isa<OverloadedFunctionDecl>(D)) {
959        DType = Context.OverloadTy;
960      }
961      // Could be an inner type. That's diagnosed below, so ignore it here.
962      if (!DType.isNull()) {
963        // The pointer is type- and value-dependent if it points into something
964        // dependent.
965        bool Dependent = false;
966        for (; DC; DC = DC->getParent()) {
967          // FIXME: could stop early at namespace scope.
968          if (DC->isRecord()) {
969            CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
970            if (Context.getTypeDeclType(Record)->isDependentType()) {
971              Dependent = true;
972              break;
973            }
974          }
975        }
976        return Owned(BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS));
977      }
978    }
979  }
980
981  // We may have found a field within an anonymous union or struct
982  // (C++ [class.union]).
983  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
984    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
985      return BuildAnonymousStructUnionMemberReference(Loc, FD);
986
987  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
988    if (!MD->isStatic()) {
989      // C++ [class.mfct.nonstatic]p2:
990      //   [...] if name lookup (3.4.1) resolves the name in the
991      //   id-expression to a nonstatic nontype member of class X or of
992      //   a base class of X, the id-expression is transformed into a
993      //   class member access expression (5.2.5) using (*this) (9.3.2)
994      //   as the postfix-expression to the left of the '.' operator.
995      DeclContext *Ctx = 0;
996      QualType MemberType;
997      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
998        Ctx = FD->getDeclContext();
999        MemberType = FD->getType();
1000
1001        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
1002          MemberType = RefType->getPointeeType();
1003        else if (!FD->isMutable()) {
1004          unsigned combinedQualifiers
1005            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
1006          MemberType = MemberType.getQualifiedType(combinedQualifiers);
1007        }
1008      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1009        if (!Method->isStatic()) {
1010          Ctx = Method->getParent();
1011          MemberType = Method->getType();
1012        }
1013      } else if (OverloadedFunctionDecl *Ovl
1014                   = dyn_cast<OverloadedFunctionDecl>(D)) {
1015        for (OverloadedFunctionDecl::function_iterator
1016               Func = Ovl->function_begin(),
1017               FuncEnd = Ovl->function_end();
1018             Func != FuncEnd; ++Func) {
1019          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
1020            if (!DMethod->isStatic()) {
1021              Ctx = Ovl->getDeclContext();
1022              MemberType = Context.OverloadTy;
1023              break;
1024            }
1025        }
1026      }
1027
1028      if (Ctx && Ctx->isRecord()) {
1029        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
1030        QualType ThisType = Context.getTagDeclType(MD->getParent());
1031        if ((Context.getCanonicalType(CtxType)
1032               == Context.getCanonicalType(ThisType)) ||
1033            IsDerivedFrom(ThisType, CtxType)) {
1034          // Build the implicit member access expression.
1035          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
1036                                                 MD->getThisType(Context));
1037          return Owned(new (Context) MemberExpr(This, true, D,
1038                                                Loc, MemberType));
1039        }
1040      }
1041    }
1042  }
1043
1044  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1045    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1046      if (MD->isStatic())
1047        // "invalid use of member 'x' in static member function"
1048        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
1049          << FD->getDeclName());
1050    }
1051
1052    // Any other ways we could have found the field in a well-formed
1053    // program would have been turned into implicit member expressions
1054    // above.
1055    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
1056      << FD->getDeclName());
1057  }
1058
1059  if (isa<TypedefDecl>(D))
1060    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
1061  if (isa<ObjCInterfaceDecl>(D))
1062    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
1063  if (isa<NamespaceDecl>(D))
1064    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
1065
1066  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
1067  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
1068    return Owned(BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
1069                                  false, false, SS));
1070  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
1071    return Owned(BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
1072                                  false, false, SS));
1073  ValueDecl *VD = cast<ValueDecl>(D);
1074
1075  // Check whether this declaration can be used. Note that we suppress
1076  // this check when we're going to perform argument-dependent lookup
1077  // on this function name, because this might not be the function
1078  // that overload resolution actually selects.
1079  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
1080    return ExprError();
1081
1082  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
1083    // Warn about constructs like:
1084    //   if (void *X = foo()) { ... } else { X }.
1085    // In the else block, the pointer is always false.
1086    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
1087      Scope *CheckS = S;
1088      while (CheckS) {
1089        if (CheckS->isWithinElse() &&
1090            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
1091          if (Var->getType()->isBooleanType())
1092            ExprError(Diag(Loc, diag::warn_value_always_false)
1093              << Var->getDeclName());
1094          else
1095            ExprError(Diag(Loc, diag::warn_value_always_zero)
1096              << Var->getDeclName());
1097          break;
1098        }
1099
1100        // Move up one more control parent to check again.
1101        CheckS = CheckS->getControlParent();
1102        if (CheckS)
1103          CheckS = CheckS->getParent();
1104      }
1105    }
1106  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(VD)) {
1107    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1108      // C99 DR 316 says that, if a function type comes from a
1109      // function definition (without a prototype), that type is only
1110      // used for checking compatibility. Therefore, when referencing
1111      // the function, we pretend that we don't have the full function
1112      // type.
1113      QualType T = Func->getType();
1114      QualType NoProtoType = T;
1115      if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
1116        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
1117      return Owned(BuildDeclRefExpr(VD, NoProtoType, Loc, false, false, SS));
1118    }
1119  }
1120
1121  // Only create DeclRefExpr's for valid Decl's.
1122  if (VD->isInvalidDecl())
1123    return ExprError();
1124
1125  // If the identifier reference is inside a block, and it refers to a value
1126  // that is outside the block, create a BlockDeclRefExpr instead of a
1127  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1128  // the block is formed.
1129  //
1130  // We do not do this for things like enum constants, global variables, etc,
1131  // as they do not get snapshotted.
1132  //
1133  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1134    QualType ExprTy = VD->getType().getNonReferenceType();
1135    // The BlocksAttr indicates the variable is bound by-reference.
1136    if (VD->getAttr<BlocksAttr>())
1137      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1138
1139    // Variable will be bound by-copy, make it const within the closure.
1140    ExprTy.addConst();
1141    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false));
1142  }
1143  // If this reference is not in a block or if the referenced variable is
1144  // within the block, create a normal DeclRefExpr.
1145
1146  bool TypeDependent = false;
1147  bool ValueDependent = false;
1148  if (getLangOptions().CPlusPlus) {
1149    // C++ [temp.dep.expr]p3:
1150    //   An id-expression is type-dependent if it contains:
1151    //     - an identifier that was declared with a dependent type,
1152    if (VD->getType()->isDependentType())
1153      TypeDependent = true;
1154    //     - FIXME: a template-id that is dependent,
1155    //     - a conversion-function-id that specifies a dependent type,
1156    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1157             Name.getCXXNameType()->isDependentType())
1158      TypeDependent = true;
1159    //     - a nested-name-specifier that contains a class-name that
1160    //       names a dependent type.
1161    else if (SS && !SS->isEmpty()) {
1162      for (DeclContext *DC = computeDeclContext(*SS);
1163           DC; DC = DC->getParent()) {
1164        // FIXME: could stop early at namespace scope.
1165        if (DC->isRecord()) {
1166          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1167          if (Context.getTypeDeclType(Record)->isDependentType()) {
1168            TypeDependent = true;
1169            break;
1170          }
1171        }
1172      }
1173    }
1174
1175    // C++ [temp.dep.constexpr]p2:
1176    //
1177    //   An identifier is value-dependent if it is:
1178    //     - a name declared with a dependent type,
1179    if (TypeDependent)
1180      ValueDependent = true;
1181    //     - the name of a non-type template parameter,
1182    else if (isa<NonTypeTemplateParmDecl>(VD))
1183      ValueDependent = true;
1184    //    - a constant with integral or enumeration type and is
1185    //      initialized with an expression that is value-dependent
1186    //      (FIXME!).
1187  }
1188
1189  return Owned(BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
1190                                TypeDependent, ValueDependent, SS));
1191}
1192
1193Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1194                                                 tok::TokenKind Kind) {
1195  PredefinedExpr::IdentType IT;
1196
1197  switch (Kind) {
1198  default: assert(0 && "Unknown simple primary expr!");
1199  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1200  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1201  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1202  }
1203
1204  // Pre-defined identifiers are of type char[x], where x is the length of the
1205  // string.
1206  unsigned Length;
1207  if (FunctionDecl *FD = getCurFunctionDecl())
1208    Length = FD->getIdentifier()->getLength();
1209  else if (ObjCMethodDecl *MD = getCurMethodDecl())
1210    Length = MD->getSynthesizedMethodSize();
1211  else {
1212    Diag(Loc, diag::ext_predef_outside_function);
1213    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
1214    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
1215  }
1216
1217
1218  llvm::APInt LengthI(32, Length + 1);
1219  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
1220  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1221  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1222}
1223
1224Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1225  llvm::SmallString<16> CharBuffer;
1226  CharBuffer.resize(Tok.getLength());
1227  const char *ThisTokBegin = &CharBuffer[0];
1228  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1229
1230  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1231                            Tok.getLocation(), PP);
1232  if (Literal.hadError())
1233    return ExprError();
1234
1235  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1236
1237  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1238                                              Literal.isWide(),
1239                                              type, Tok.getLocation()));
1240}
1241
1242Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1243  // Fast path for a single digit (which is quite common).  A single digit
1244  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1245  if (Tok.getLength() == 1) {
1246    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1247    unsigned IntSize = Context.Target.getIntWidth();
1248    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1249                    Context.IntTy, Tok.getLocation()));
1250  }
1251
1252  llvm::SmallString<512> IntegerBuffer;
1253  // Add padding so that NumericLiteralParser can overread by one character.
1254  IntegerBuffer.resize(Tok.getLength()+1);
1255  const char *ThisTokBegin = &IntegerBuffer[0];
1256
1257  // Get the spelling of the token, which eliminates trigraphs, etc.
1258  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1259
1260  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1261                               Tok.getLocation(), PP);
1262  if (Literal.hadError)
1263    return ExprError();
1264
1265  Expr *Res;
1266
1267  if (Literal.isFloatingLiteral()) {
1268    QualType Ty;
1269    if (Literal.isFloat)
1270      Ty = Context.FloatTy;
1271    else if (!Literal.isLong)
1272      Ty = Context.DoubleTy;
1273    else
1274      Ty = Context.LongDoubleTy;
1275
1276    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1277
1278    // isExact will be set by GetFloatValue().
1279    bool isExact = false;
1280    Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
1281                                        &isExact, Ty, Tok.getLocation());
1282
1283  } else if (!Literal.isIntegerLiteral()) {
1284    return ExprError();
1285  } else {
1286    QualType Ty;
1287
1288    // long long is a C99 feature.
1289    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1290        Literal.isLongLong)
1291      Diag(Tok.getLocation(), diag::ext_longlong);
1292
1293    // Get the value in the widest-possible width.
1294    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1295
1296    if (Literal.GetIntegerValue(ResultVal)) {
1297      // If this value didn't fit into uintmax_t, warn and force to ull.
1298      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1299      Ty = Context.UnsignedLongLongTy;
1300      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1301             "long long is not intmax_t?");
1302    } else {
1303      // If this value fits into a ULL, try to figure out what else it fits into
1304      // according to the rules of C99 6.4.4.1p5.
1305
1306      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1307      // be an unsigned int.
1308      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1309
1310      // Check from smallest to largest, picking the smallest type we can.
1311      unsigned Width = 0;
1312      if (!Literal.isLong && !Literal.isLongLong) {
1313        // Are int/unsigned possibilities?
1314        unsigned IntSize = Context.Target.getIntWidth();
1315
1316        // Does it fit in a unsigned int?
1317        if (ResultVal.isIntN(IntSize)) {
1318          // Does it fit in a signed int?
1319          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1320            Ty = Context.IntTy;
1321          else if (AllowUnsigned)
1322            Ty = Context.UnsignedIntTy;
1323          Width = IntSize;
1324        }
1325      }
1326
1327      // Are long/unsigned long possibilities?
1328      if (Ty.isNull() && !Literal.isLongLong) {
1329        unsigned LongSize = Context.Target.getLongWidth();
1330
1331        // Does it fit in a unsigned long?
1332        if (ResultVal.isIntN(LongSize)) {
1333          // Does it fit in a signed long?
1334          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1335            Ty = Context.LongTy;
1336          else if (AllowUnsigned)
1337            Ty = Context.UnsignedLongTy;
1338          Width = LongSize;
1339        }
1340      }
1341
1342      // Finally, check long long if needed.
1343      if (Ty.isNull()) {
1344        unsigned LongLongSize = Context.Target.getLongLongWidth();
1345
1346        // Does it fit in a unsigned long long?
1347        if (ResultVal.isIntN(LongLongSize)) {
1348          // Does it fit in a signed long long?
1349          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1350            Ty = Context.LongLongTy;
1351          else if (AllowUnsigned)
1352            Ty = Context.UnsignedLongLongTy;
1353          Width = LongLongSize;
1354        }
1355      }
1356
1357      // If we still couldn't decide a type, we probably have something that
1358      // does not fit in a signed long long, but has no U suffix.
1359      if (Ty.isNull()) {
1360        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1361        Ty = Context.UnsignedLongLongTy;
1362        Width = Context.Target.getLongLongWidth();
1363      }
1364
1365      if (ResultVal.getBitWidth() != Width)
1366        ResultVal.trunc(Width);
1367    }
1368    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1369  }
1370
1371  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1372  if (Literal.isImaginary)
1373    Res = new (Context) ImaginaryLiteral(Res,
1374                                        Context.getComplexType(Res->getType()));
1375
1376  return Owned(Res);
1377}
1378
1379Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1380                                              SourceLocation R, ExprArg Val) {
1381  Expr *E = Val.takeAs<Expr>();
1382  assert((E != 0) && "ActOnParenExpr() missing expr");
1383  return Owned(new (Context) ParenExpr(L, R, E));
1384}
1385
1386/// The UsualUnaryConversions() function is *not* called by this routine.
1387/// See C99 6.3.2.1p[2-4] for more details.
1388bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1389                                     SourceLocation OpLoc,
1390                                     const SourceRange &ExprRange,
1391                                     bool isSizeof) {
1392  if (exprType->isDependentType())
1393    return false;
1394
1395  // C99 6.5.3.4p1:
1396  if (isa<FunctionType>(exprType)) {
1397    // alignof(function) is allowed as an extension.
1398    if (isSizeof)
1399      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1400    return false;
1401  }
1402
1403  // Allow sizeof(void)/alignof(void) as an extension.
1404  if (exprType->isVoidType()) {
1405    Diag(OpLoc, diag::ext_sizeof_void_type)
1406      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1407    return false;
1408  }
1409
1410  if (RequireCompleteType(OpLoc, exprType,
1411                          isSizeof ? diag::err_sizeof_incomplete_type :
1412                          diag::err_alignof_incomplete_type,
1413                          ExprRange))
1414    return true;
1415
1416  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1417  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1418    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1419      << exprType << isSizeof << ExprRange;
1420    return true;
1421  }
1422
1423  return false;
1424}
1425
1426bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1427                            const SourceRange &ExprRange) {
1428  E = E->IgnoreParens();
1429
1430  // alignof decl is always ok.
1431  if (isa<DeclRefExpr>(E))
1432    return false;
1433
1434  // Cannot know anything else if the expression is dependent.
1435  if (E->isTypeDependent())
1436    return false;
1437
1438  if (E->getBitField()) {
1439    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1440    return true;
1441  }
1442
1443  // Alignment of a field access is always okay, so long as it isn't a
1444  // bit-field.
1445  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1446    if (dyn_cast<FieldDecl>(ME->getMemberDecl()))
1447      return false;
1448
1449  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1450}
1451
1452/// \brief Build a sizeof or alignof expression given a type operand.
1453Action::OwningExprResult
1454Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
1455                              bool isSizeOf, SourceRange R) {
1456  if (T.isNull())
1457    return ExprError();
1458
1459  if (!T->isDependentType() &&
1460      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1461    return ExprError();
1462
1463  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1464  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
1465                                               Context.getSizeType(), OpLoc,
1466                                               R.getEnd()));
1467}
1468
1469/// \brief Build a sizeof or alignof expression given an expression
1470/// operand.
1471Action::OwningExprResult
1472Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1473                              bool isSizeOf, SourceRange R) {
1474  // Verify that the operand is valid.
1475  bool isInvalid = false;
1476  if (E->isTypeDependent()) {
1477    // Delay type-checking for type-dependent expressions.
1478  } else if (!isSizeOf) {
1479    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1480  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1481    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1482    isInvalid = true;
1483  } else {
1484    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1485  }
1486
1487  if (isInvalid)
1488    return ExprError();
1489
1490  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1491  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1492                                               Context.getSizeType(), OpLoc,
1493                                               R.getEnd()));
1494}
1495
1496/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1497/// the same for @c alignof and @c __alignof
1498/// Note that the ArgRange is invalid if isType is false.
1499Action::OwningExprResult
1500Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1501                             void *TyOrEx, const SourceRange &ArgRange) {
1502  // If error parsing type, ignore.
1503  if (TyOrEx == 0) return ExprError();
1504
1505  if (isType) {
1506    QualType ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1507    return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
1508  }
1509
1510  // Get the end location.
1511  Expr *ArgEx = (Expr *)TyOrEx;
1512  Action::OwningExprResult Result
1513    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1514
1515  if (Result.isInvalid())
1516    DeleteExpr(ArgEx);
1517
1518  return move(Result);
1519}
1520
1521QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1522  if (V->isTypeDependent())
1523    return Context.DependentTy;
1524
1525  // These operators return the element type of a complex type.
1526  if (const ComplexType *CT = V->getType()->getAsComplexType())
1527    return CT->getElementType();
1528
1529  // Otherwise they pass through real integer and floating point types here.
1530  if (V->getType()->isArithmeticType())
1531    return V->getType();
1532
1533  // Reject anything else.
1534  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1535    << (isReal ? "__real" : "__imag");
1536  return QualType();
1537}
1538
1539
1540
1541Action::OwningExprResult
1542Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1543                          tok::TokenKind Kind, ExprArg Input) {
1544  Expr *Arg = (Expr *)Input.get();
1545
1546  UnaryOperator::Opcode Opc;
1547  switch (Kind) {
1548  default: assert(0 && "Unknown unary op!");
1549  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1550  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1551  }
1552
1553  if (getLangOptions().CPlusPlus &&
1554      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1555    // Which overloaded operator?
1556    OverloadedOperatorKind OverOp =
1557      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1558
1559    // C++ [over.inc]p1:
1560    //
1561    //     [...] If the function is a member function with one
1562    //     parameter (which shall be of type int) or a non-member
1563    //     function with two parameters (the second of which shall be
1564    //     of type int), it defines the postfix increment operator ++
1565    //     for objects of that type. When the postfix increment is
1566    //     called as a result of using the ++ operator, the int
1567    //     argument will have value zero.
1568    Expr *Args[2] = {
1569      Arg,
1570      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1571                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1572    };
1573
1574    // Build the candidate set for overloading
1575    OverloadCandidateSet CandidateSet;
1576    AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
1577
1578    // Perform overload resolution.
1579    OverloadCandidateSet::iterator Best;
1580    switch (BestViableFunction(CandidateSet, Best)) {
1581    case OR_Success: {
1582      // We found a built-in operator or an overloaded operator.
1583      FunctionDecl *FnDecl = Best->Function;
1584
1585      if (FnDecl) {
1586        // We matched an overloaded operator. Build a call to that
1587        // operator.
1588
1589        // Convert the arguments.
1590        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1591          if (PerformObjectArgumentInitialization(Arg, Method))
1592            return ExprError();
1593        } else {
1594          // Convert the arguments.
1595          if (PerformCopyInitialization(Arg,
1596                                        FnDecl->getParamDecl(0)->getType(),
1597                                        "passing"))
1598            return ExprError();
1599        }
1600
1601        // Determine the result type
1602        QualType ResultTy
1603          = FnDecl->getType()->getAsFunctionType()->getResultType();
1604        ResultTy = ResultTy.getNonReferenceType();
1605
1606        // Build the actual expression node.
1607        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1608                                                 SourceLocation());
1609        UsualUnaryConversions(FnExpr);
1610
1611        Input.release();
1612        Args[0] = Arg;
1613        return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
1614                                                       Args, 2, ResultTy,
1615                                                       OpLoc));
1616      } else {
1617        // We matched a built-in operator. Convert the arguments, then
1618        // break out so that we will build the appropriate built-in
1619        // operator node.
1620        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1621                                      "passing"))
1622          return ExprError();
1623
1624        break;
1625      }
1626    }
1627
1628    case OR_No_Viable_Function:
1629      // No viable function; fall through to handling this as a
1630      // built-in operator, which will produce an error message for us.
1631      break;
1632
1633    case OR_Ambiguous:
1634      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1635          << UnaryOperator::getOpcodeStr(Opc)
1636          << Arg->getSourceRange();
1637      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1638      return ExprError();
1639
1640    case OR_Deleted:
1641      Diag(OpLoc, diag::err_ovl_deleted_oper)
1642        << Best->Function->isDeleted()
1643        << UnaryOperator::getOpcodeStr(Opc)
1644        << Arg->getSourceRange();
1645      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1646      return ExprError();
1647    }
1648
1649    // Either we found no viable overloaded operator or we matched a
1650    // built-in operator. In either case, fall through to trying to
1651    // build a built-in operation.
1652  }
1653
1654  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1655                                                 Opc == UnaryOperator::PostInc);
1656  if (result.isNull())
1657    return ExprError();
1658  Input.release();
1659  return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
1660}
1661
1662Action::OwningExprResult
1663Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1664                              ExprArg Idx, SourceLocation RLoc) {
1665  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1666       *RHSExp = static_cast<Expr*>(Idx.get());
1667
1668  if (getLangOptions().CPlusPlus &&
1669      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
1670    Base.release();
1671    Idx.release();
1672    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1673                                                  Context.DependentTy, RLoc));
1674  }
1675
1676  if (getLangOptions().CPlusPlus &&
1677      (LHSExp->getType()->isRecordType() ||
1678       LHSExp->getType()->isEnumeralType() ||
1679       RHSExp->getType()->isRecordType() ||
1680       RHSExp->getType()->isEnumeralType())) {
1681    // Add the appropriate overloaded operators (C++ [over.match.oper])
1682    // to the candidate set.
1683    OverloadCandidateSet CandidateSet;
1684    Expr *Args[2] = { LHSExp, RHSExp };
1685    AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1686                          SourceRange(LLoc, RLoc));
1687
1688    // Perform overload resolution.
1689    OverloadCandidateSet::iterator Best;
1690    switch (BestViableFunction(CandidateSet, Best)) {
1691    case OR_Success: {
1692      // We found a built-in operator or an overloaded operator.
1693      FunctionDecl *FnDecl = Best->Function;
1694
1695      if (FnDecl) {
1696        // We matched an overloaded operator. Build a call to that
1697        // operator.
1698
1699        // Convert the arguments.
1700        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1701          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1702              PerformCopyInitialization(RHSExp,
1703                                        FnDecl->getParamDecl(0)->getType(),
1704                                        "passing"))
1705            return ExprError();
1706        } else {
1707          // Convert the arguments.
1708          if (PerformCopyInitialization(LHSExp,
1709                                        FnDecl->getParamDecl(0)->getType(),
1710                                        "passing") ||
1711              PerformCopyInitialization(RHSExp,
1712                                        FnDecl->getParamDecl(1)->getType(),
1713                                        "passing"))
1714            return ExprError();
1715        }
1716
1717        // Determine the result type
1718        QualType ResultTy
1719          = FnDecl->getType()->getAsFunctionType()->getResultType();
1720        ResultTy = ResultTy.getNonReferenceType();
1721
1722        // Build the actual expression node.
1723        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1724                                                 SourceLocation());
1725        UsualUnaryConversions(FnExpr);
1726
1727        Base.release();
1728        Idx.release();
1729        Args[0] = LHSExp;
1730        Args[1] = RHSExp;
1731        return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
1732                                                       FnExpr, Args, 2,
1733                                                       ResultTy, LLoc));
1734      } else {
1735        // We matched a built-in operator. Convert the arguments, then
1736        // break out so that we will build the appropriate built-in
1737        // operator node.
1738        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1739                                      "passing") ||
1740            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1741                                      "passing"))
1742          return ExprError();
1743
1744        break;
1745      }
1746    }
1747
1748    case OR_No_Viable_Function:
1749      // No viable function; fall through to handling this as a
1750      // built-in operator, which will produce an error message for us.
1751      break;
1752
1753    case OR_Ambiguous:
1754      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1755          << "[]"
1756          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1757      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1758      return ExprError();
1759
1760    case OR_Deleted:
1761      Diag(LLoc, diag::err_ovl_deleted_oper)
1762        << Best->Function->isDeleted()
1763        << "[]"
1764        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1765      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1766      return ExprError();
1767    }
1768
1769    // Either we found no viable overloaded operator or we matched a
1770    // built-in operator. In either case, fall through to trying to
1771    // build a built-in operation.
1772  }
1773
1774  // Perform default conversions.
1775  DefaultFunctionArrayConversion(LHSExp);
1776  DefaultFunctionArrayConversion(RHSExp);
1777
1778  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1779
1780  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1781  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1782  // in the subscript position. As a result, we need to derive the array base
1783  // and index from the expression types.
1784  Expr *BaseExpr, *IndexExpr;
1785  QualType ResultType;
1786  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1787    BaseExpr = LHSExp;
1788    IndexExpr = RHSExp;
1789    ResultType = Context.DependentTy;
1790  } else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1791    BaseExpr = LHSExp;
1792    IndexExpr = RHSExp;
1793    ResultType = PTy->getPointeeType();
1794  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1795     // Handle the uncommon case of "123[Ptr]".
1796    BaseExpr = RHSExp;
1797    IndexExpr = LHSExp;
1798    ResultType = PTy->getPointeeType();
1799  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1800    BaseExpr = LHSExp;    // vectors: V[123]
1801    IndexExpr = RHSExp;
1802
1803    // FIXME: need to deal with const...
1804    ResultType = VTy->getElementType();
1805  } else if (LHSTy->isArrayType()) {
1806    // If we see an array that wasn't promoted by
1807    // DefaultFunctionArrayConversion, it must be an array that
1808    // wasn't promoted because of the C90 rule that doesn't
1809    // allow promoting non-lvalue arrays.  Warn, then
1810    // force the promotion here.
1811    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1812        LHSExp->getSourceRange();
1813    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy));
1814    LHSTy = LHSExp->getType();
1815
1816    BaseExpr = LHSExp;
1817    IndexExpr = RHSExp;
1818    ResultType = LHSTy->getAsPointerType()->getPointeeType();
1819  } else if (RHSTy->isArrayType()) {
1820    // Same as previous, except for 123[f().a] case
1821    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1822        RHSExp->getSourceRange();
1823    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy));
1824    RHSTy = RHSExp->getType();
1825
1826    BaseExpr = RHSExp;
1827    IndexExpr = LHSExp;
1828    ResultType = RHSTy->getAsPointerType()->getPointeeType();
1829  } else {
1830    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
1831       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
1832  }
1833  // C99 6.5.2.1p1
1834  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
1835    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
1836                     << IndexExpr->getSourceRange());
1837
1838  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1839  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1840  // type. Note that Functions are not objects, and that (in C99 parlance)
1841  // incomplete types are not object types.
1842  if (ResultType->isFunctionType()) {
1843    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1844      << ResultType << BaseExpr->getSourceRange();
1845    return ExprError();
1846  }
1847
1848  if (!ResultType->isDependentType() &&
1849      RequireCompleteType(LLoc, ResultType, diag::err_subscript_incomplete_type,
1850                          BaseExpr->getSourceRange()))
1851    return ExprError();
1852
1853  // Diagnose bad cases where we step over interface counts.
1854  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
1855    Diag(LLoc, diag::err_subscript_nonfragile_interface)
1856      << ResultType << BaseExpr->getSourceRange();
1857    return ExprError();
1858  }
1859
1860  Base.release();
1861  Idx.release();
1862  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1863                                                ResultType, RLoc));
1864}
1865
1866QualType Sema::
1867CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1868                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1869  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1870
1871  // The vector accessor can't exceed the number of elements.
1872  const char *compStr = CompName.getName();
1873
1874  // This flag determines whether or not the component is one of the four
1875  // special names that indicate a subset of exactly half the elements are
1876  // to be selected.
1877  bool HalvingSwizzle = false;
1878
1879  // This flag determines whether or not CompName has an 's' char prefix,
1880  // indicating that it is a string of hex values to be used as vector indices.
1881  bool HexSwizzle = *compStr == 's';
1882
1883  // Check that we've found one of the special components, or that the component
1884  // names must come from the same set.
1885  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1886      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1887    HalvingSwizzle = true;
1888  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1889    do
1890      compStr++;
1891    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1892  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1893    do
1894      compStr++;
1895    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1896  }
1897
1898  if (!HalvingSwizzle && *compStr) {
1899    // We didn't get to the end of the string. This means the component names
1900    // didn't come from the same set *or* we encountered an illegal name.
1901    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1902      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1903    return QualType();
1904  }
1905
1906  // Ensure no component accessor exceeds the width of the vector type it
1907  // operates on.
1908  if (!HalvingSwizzle) {
1909    compStr = CompName.getName();
1910
1911    if (HexSwizzle)
1912      compStr++;
1913
1914    while (*compStr) {
1915      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1916        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1917          << baseType << SourceRange(CompLoc);
1918        return QualType();
1919      }
1920    }
1921  }
1922
1923  // If this is a halving swizzle, verify that the base type has an even
1924  // number of elements.
1925  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1926    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1927      << baseType << SourceRange(CompLoc);
1928    return QualType();
1929  }
1930
1931  // The component accessor looks fine - now we need to compute the actual type.
1932  // The vector type is implied by the component accessor. For example,
1933  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1934  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1935  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1936  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1937                                     : CompName.getLength();
1938  if (HexSwizzle)
1939    CompSize--;
1940
1941  if (CompSize == 1)
1942    return vecType->getElementType();
1943
1944  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1945  // Now look up the TypeDefDecl from the vector type. Without this,
1946  // diagostics look bad. We want extended vector types to appear built-in.
1947  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1948    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1949      return Context.getTypedefType(ExtVectorDecls[i]);
1950  }
1951  return VT; // should never get here (a typedef type should always be found).
1952}
1953
1954static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
1955                                                IdentifierInfo &Member,
1956                                                const Selector &Sel,
1957                                                ASTContext &Context) {
1958
1959  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Context, &Member))
1960    return PD;
1961  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Context, Sel))
1962    return OMD;
1963
1964  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
1965       E = PDecl->protocol_end(); I != E; ++I) {
1966    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
1967                                                     Context))
1968      return D;
1969  }
1970  return 0;
1971}
1972
1973static Decl *FindGetterNameDecl(const ObjCQualifiedIdType *QIdTy,
1974                                IdentifierInfo &Member,
1975                                const Selector &Sel,
1976                                ASTContext &Context) {
1977  // Check protocols on qualified interfaces.
1978  Decl *GDecl = 0;
1979  for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1980       E = QIdTy->qual_end(); I != E; ++I) {
1981    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context, &Member)) {
1982      GDecl = PD;
1983      break;
1984    }
1985    // Also must look for a getter name which uses property syntax.
1986    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Context, Sel)) {
1987      GDecl = OMD;
1988      break;
1989    }
1990  }
1991  if (!GDecl) {
1992    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1993         E = QIdTy->qual_end(); I != E; ++I) {
1994      // Search in the protocol-qualifier list of current protocol.
1995      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
1996      if (GDecl)
1997        return GDecl;
1998    }
1999  }
2000  return GDecl;
2001}
2002
2003/// FindMethodInNestedImplementations - Look up a method in current and
2004/// all base class implementations.
2005///
2006ObjCMethodDecl *Sema::FindMethodInNestedImplementations(
2007                                              const ObjCInterfaceDecl *IFace,
2008                                              const Selector &Sel) {
2009  ObjCMethodDecl *Method = 0;
2010  if (ObjCImplementationDecl *ImpDecl
2011        = LookupObjCImplementation(IFace->getIdentifier()))
2012    Method = ImpDecl->getInstanceMethod(Context, Sel);
2013
2014  if (!Method && IFace->getSuperClass())
2015    return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel);
2016  return Method;
2017}
2018
2019Action::OwningExprResult
2020Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
2021                               tok::TokenKind OpKind, SourceLocation MemberLoc,
2022                               IdentifierInfo &Member,
2023                               DeclPtrTy ObjCImpDecl) {
2024  Expr *BaseExpr = Base.takeAs<Expr>();
2025  assert(BaseExpr && "no record expression");
2026
2027  // Perform default conversions.
2028  DefaultFunctionArrayConversion(BaseExpr);
2029
2030  QualType BaseType = BaseExpr->getType();
2031  assert(!BaseType.isNull() && "no type for member expression");
2032
2033  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2034  // must have pointer type, and the accessed type is the pointee.
2035  if (OpKind == tok::arrow) {
2036    if (BaseType->isDependentType())
2037      return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2038                                                         BaseExpr, true,
2039                                                         OpLoc,
2040                                                     DeclarationName(&Member),
2041                                                         MemberLoc));
2042    else if (const PointerType *PT = BaseType->getAsPointerType())
2043      BaseType = PT->getPointeeType();
2044    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
2045      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
2046                                            MemberLoc, Member));
2047    else
2048      return ExprError(Diag(MemberLoc,
2049                            diag::err_typecheck_member_reference_arrow)
2050        << BaseType << BaseExpr->getSourceRange());
2051  } else {
2052    if (BaseType->isDependentType()) {
2053      // Require that the base type isn't a pointer type
2054      // (so we'll report an error for)
2055      // T* t;
2056      // t.f;
2057      //
2058      // In Obj-C++, however, the above expression is valid, since it could be
2059      // accessing the 'f' property if T is an Obj-C interface. The extra check
2060      // allows this, while still reporting an error if T is a struct pointer.
2061      const PointerType *PT = BaseType->getAsPointerType();
2062
2063      if (!PT || (getLangOptions().ObjC1 &&
2064                  !PT->getPointeeType()->isRecordType()))
2065        return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2066                                                           BaseExpr, false,
2067                                                           OpLoc,
2068                                                     DeclarationName(&Member),
2069                                                           MemberLoc));
2070    }
2071  }
2072
2073  // Handle field access to simple records.  This also handles access to fields
2074  // of the ObjC 'id' struct.
2075  if (const RecordType *RTy = BaseType->getAsRecordType()) {
2076    RecordDecl *RDecl = RTy->getDecl();
2077    if (RequireCompleteType(OpLoc, BaseType,
2078                               diag::err_typecheck_incomplete_tag,
2079                               BaseExpr->getSourceRange()))
2080      return ExprError();
2081
2082    // The record definition is complete, now make sure the member is valid.
2083    // FIXME: Qualified name lookup for C++ is a bit more complicated than this.
2084    LookupResult Result
2085      = LookupQualifiedName(RDecl, DeclarationName(&Member),
2086                            LookupMemberName, false);
2087
2088    if (!Result)
2089      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
2090               << &Member << BaseExpr->getSourceRange());
2091    if (Result.isAmbiguous()) {
2092      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
2093                              MemberLoc, BaseExpr->getSourceRange());
2094      return ExprError();
2095    }
2096
2097    NamedDecl *MemberDecl = Result;
2098
2099    // If the decl being referenced had an error, return an error for this
2100    // sub-expr without emitting another error, in order to avoid cascading
2101    // error cases.
2102    if (MemberDecl->isInvalidDecl())
2103      return ExprError();
2104
2105    // Check the use of this field
2106    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
2107      return ExprError();
2108
2109    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2110      // We may have found a field within an anonymous union or struct
2111      // (C++ [class.union]).
2112      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
2113        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2114                                                        BaseExpr, OpLoc);
2115
2116      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2117      // FIXME: Handle address space modifiers
2118      QualType MemberType = FD->getType();
2119      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
2120        MemberType = Ref->getPointeeType();
2121      else {
2122        unsigned combinedQualifiers =
2123          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
2124        if (FD->isMutable())
2125          combinedQualifiers &= ~QualType::Const;
2126        MemberType = MemberType.getQualifiedType(combinedQualifiers);
2127      }
2128
2129      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
2130                                            MemberLoc, MemberType));
2131    }
2132
2133    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl))
2134      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2135                                            Var, MemberLoc,
2136                                         Var->getType().getNonReferenceType()));
2137    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
2138      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2139                                            MemberFn, MemberLoc,
2140                                            MemberFn->getType()));
2141    if (OverloadedFunctionDecl *Ovl
2142          = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
2143      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
2144                                            MemberLoc, Context.OverloadTy));
2145    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
2146      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2147                                            Enum, MemberLoc, Enum->getType()));
2148    if (isa<TypeDecl>(MemberDecl))
2149      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2150        << DeclarationName(&Member) << int(OpKind == tok::arrow));
2151
2152    // We found a declaration kind that we didn't expect. This is a
2153    // generic error message that tells the user that she can't refer
2154    // to this member with '.' or '->'.
2155    return ExprError(Diag(MemberLoc,
2156                          diag::err_typecheck_member_reference_unknown)
2157      << DeclarationName(&Member) << int(OpKind == tok::arrow));
2158  }
2159
2160  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2161  // (*Obj).ivar.
2162  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
2163    ObjCInterfaceDecl *ClassDeclared;
2164    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(Context,
2165                                                                   &Member,
2166                                                             ClassDeclared)) {
2167      // If the decl being referenced had an error, return an error for this
2168      // sub-expr without emitting another error, in order to avoid cascading
2169      // error cases.
2170      if (IV->isInvalidDecl())
2171        return ExprError();
2172
2173      // Check whether we can reference this field.
2174      if (DiagnoseUseOfDecl(IV, MemberLoc))
2175        return ExprError();
2176      if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2177          IV->getAccessControl() != ObjCIvarDecl::Package) {
2178        ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2179        if (ObjCMethodDecl *MD = getCurMethodDecl())
2180          ClassOfMethodDecl =  MD->getClassInterface();
2181        else if (ObjCImpDecl && getCurFunctionDecl()) {
2182          // Case of a c-function declared inside an objc implementation.
2183          // FIXME: For a c-style function nested inside an objc implementation
2184          // class, there is no implementation context available, so we pass
2185          // down the context as argument to this routine. Ideally, this context
2186          // need be passed down in the AST node and somehow calculated from the
2187          // AST for a function decl.
2188          Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2189          if (ObjCImplementationDecl *IMPD =
2190              dyn_cast<ObjCImplementationDecl>(ImplDecl))
2191            ClassOfMethodDecl = IMPD->getClassInterface();
2192          else if (ObjCCategoryImplDecl* CatImplClass =
2193                      dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2194            ClassOfMethodDecl = CatImplClass->getClassInterface();
2195        }
2196
2197        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2198          if (ClassDeclared != IFTy->getDecl() ||
2199              ClassOfMethodDecl != ClassDeclared)
2200            Diag(MemberLoc, diag::error_private_ivar_access) << IV->getDeclName();
2201        }
2202        // @protected
2203        else if (!IFTy->getDecl()->isSuperClassOf(ClassOfMethodDecl))
2204          Diag(MemberLoc, diag::error_protected_ivar_access) << IV->getDeclName();
2205      }
2206
2207      return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2208                                                 MemberLoc, BaseExpr,
2209                                                 OpKind == tok::arrow));
2210    }
2211    return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
2212                       << IFTy->getDecl()->getDeclName() << &Member
2213                       << BaseExpr->getSourceRange());
2214  }
2215
2216  // Handle Objective-C property access, which is "Obj.property" where Obj is a
2217  // pointer to a (potentially qualified) interface type.
2218  const PointerType *PTy;
2219  const ObjCInterfaceType *IFTy;
2220  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
2221      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
2222    ObjCInterfaceDecl *IFace = IFTy->getDecl();
2223
2224    // Search for a declared property first.
2225    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Context,
2226                                                              &Member)) {
2227      // Check whether we can reference this property.
2228      if (DiagnoseUseOfDecl(PD, MemberLoc))
2229        return ExprError();
2230      QualType ResTy = PD->getType();
2231      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2232      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel);
2233      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
2234        ResTy = Getter->getResultType();
2235      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
2236                                                     MemberLoc, BaseExpr));
2237    }
2238
2239    // Check protocols on qualified interfaces.
2240    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
2241         E = IFTy->qual_end(); I != E; ++I)
2242      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context,
2243                                                               &Member)) {
2244        // Check whether we can reference this property.
2245        if (DiagnoseUseOfDecl(PD, MemberLoc))
2246          return ExprError();
2247
2248        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2249                                                       MemberLoc, BaseExpr));
2250      }
2251
2252    // If that failed, look for an "implicit" property by seeing if the nullary
2253    // selector is implemented.
2254
2255    // FIXME: The logic for looking up nullary and unary selectors should be
2256    // shared with the code in ActOnInstanceMessage.
2257
2258    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2259    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel);
2260
2261    // If this reference is in an @implementation, check for 'private' methods.
2262    if (!Getter)
2263      Getter = FindMethodInNestedImplementations(IFace, Sel);
2264
2265    // Look through local category implementations associated with the class.
2266    if (!Getter) {
2267      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
2268        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2269          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Context, Sel);
2270      }
2271    }
2272    if (Getter) {
2273      // Check if we can reference this property.
2274      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2275        return ExprError();
2276    }
2277    // If we found a getter then this may be a valid dot-reference, we
2278    // will look for the matching setter, in case it is needed.
2279    Selector SetterSel =
2280      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2281                                         PP.getSelectorTable(), &Member);
2282    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(Context, SetterSel);
2283    if (!Setter) {
2284      // If this reference is in an @implementation, also check for 'private'
2285      // methods.
2286      Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2287    }
2288    // Look through local category implementations associated with the class.
2289    if (!Setter) {
2290      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2291        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2292          Setter = ObjCCategoryImpls[i]->getInstanceMethod(Context, SetterSel);
2293      }
2294    }
2295
2296    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2297      return ExprError();
2298
2299    if (Getter || Setter) {
2300      QualType PType;
2301
2302      if (Getter)
2303        PType = Getter->getResultType();
2304      else {
2305        for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2306             E = Setter->param_end(); PI != E; ++PI)
2307          PType = (*PI)->getType();
2308      }
2309      // FIXME: we must check that the setter has property type.
2310      return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2311                                      Setter, MemberLoc, BaseExpr));
2312    }
2313    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2314      << &Member << BaseType);
2315  }
2316  // Handle properties on qualified "id" protocols.
2317  const ObjCQualifiedIdType *QIdTy;
2318  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
2319    // Check protocols on qualified interfaces.
2320    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2321    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2322      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2323        // Check the use of this declaration
2324        if (DiagnoseUseOfDecl(PD, MemberLoc))
2325          return ExprError();
2326
2327        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2328                                                       MemberLoc, BaseExpr));
2329      }
2330      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2331        // Check the use of this method.
2332        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2333          return ExprError();
2334
2335        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2336                                                   OMD->getResultType(),
2337                                                   OMD, OpLoc, MemberLoc,
2338                                                   NULL, 0));
2339      }
2340    }
2341
2342    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2343                       << &Member << BaseType);
2344  }
2345  // Handle properties on ObjC 'Class' types.
2346  if (OpKind == tok::period && (BaseType == Context.getObjCClassType())) {
2347    // Also must look for a getter name which uses property syntax.
2348    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2349    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2350      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2351      ObjCMethodDecl *Getter;
2352      // FIXME: need to also look locally in the implementation.
2353      if ((Getter = IFace->lookupClassMethod(Context, Sel))) {
2354        // Check the use of this method.
2355        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2356          return ExprError();
2357      }
2358      // If we found a getter then this may be a valid dot-reference, we
2359      // will look for the matching setter, in case it is needed.
2360      Selector SetterSel =
2361        SelectorTable::constructSetterName(PP.getIdentifierTable(),
2362                                           PP.getSelectorTable(), &Member);
2363      ObjCMethodDecl *Setter = IFace->lookupClassMethod(Context, SetterSel);
2364      if (!Setter) {
2365        // If this reference is in an @implementation, also check for 'private'
2366        // methods.
2367        Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2368      }
2369      // Look through local category implementations associated with the class.
2370      if (!Setter) {
2371        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2372          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2373            Setter = ObjCCategoryImpls[i]->getClassMethod(Context, SetterSel);
2374        }
2375      }
2376
2377      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2378        return ExprError();
2379
2380      if (Getter || Setter) {
2381        QualType PType;
2382
2383        if (Getter)
2384          PType = Getter->getResultType();
2385        else {
2386          for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2387               E = Setter->param_end(); PI != E; ++PI)
2388            PType = (*PI)->getType();
2389        }
2390        // FIXME: we must check that the setter has property type.
2391        return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2392                                        Setter, MemberLoc, BaseExpr));
2393      }
2394      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2395        << &Member << BaseType);
2396    }
2397  }
2398
2399  // Handle 'field access' to vectors, such as 'V.xx'.
2400  if (BaseType->isExtVectorType()) {
2401    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2402    if (ret.isNull())
2403      return ExprError();
2404    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
2405                                                    MemberLoc));
2406  }
2407
2408  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2409    << BaseType << BaseExpr->getSourceRange();
2410
2411  // If the user is trying to apply -> or . to a function or function
2412  // pointer, it's probably because they forgot parentheses to call
2413  // the function. Suggest the addition of those parentheses.
2414  if (BaseType == Context.OverloadTy ||
2415      BaseType->isFunctionType() ||
2416      (BaseType->isPointerType() &&
2417       BaseType->getAsPointerType()->isFunctionType())) {
2418    SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2419    Diag(Loc, diag::note_member_reference_needs_call)
2420      << CodeModificationHint::CreateInsertion(Loc, "()");
2421  }
2422
2423  return ExprError();
2424}
2425
2426/// ConvertArgumentsForCall - Converts the arguments specified in
2427/// Args/NumArgs to the parameter types of the function FDecl with
2428/// function prototype Proto. Call is the call expression itself, and
2429/// Fn is the function expression. For a C++ member function, this
2430/// routine does not attempt to convert the object argument. Returns
2431/// true if the call is ill-formed.
2432bool
2433Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2434                              FunctionDecl *FDecl,
2435                              const FunctionProtoType *Proto,
2436                              Expr **Args, unsigned NumArgs,
2437                              SourceLocation RParenLoc) {
2438  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2439  // assignment, to the types of the corresponding parameter, ...
2440  unsigned NumArgsInProto = Proto->getNumArgs();
2441  unsigned NumArgsToCheck = NumArgs;
2442  bool Invalid = false;
2443
2444  // If too few arguments are available (and we don't have default
2445  // arguments for the remaining parameters), don't make the call.
2446  if (NumArgs < NumArgsInProto) {
2447    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2448      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2449        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2450    // Use default arguments for missing arguments
2451    NumArgsToCheck = NumArgsInProto;
2452    Call->setNumArgs(Context, NumArgsInProto);
2453  }
2454
2455  // If too many are passed and not variadic, error on the extras and drop
2456  // them.
2457  if (NumArgs > NumArgsInProto) {
2458    if (!Proto->isVariadic()) {
2459      Diag(Args[NumArgsInProto]->getLocStart(),
2460           diag::err_typecheck_call_too_many_args)
2461        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2462        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2463                       Args[NumArgs-1]->getLocEnd());
2464      // This deletes the extra arguments.
2465      Call->setNumArgs(Context, NumArgsInProto);
2466      Invalid = true;
2467    }
2468    NumArgsToCheck = NumArgsInProto;
2469  }
2470
2471  // Continue to check argument types (even if we have too few/many args).
2472  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2473    QualType ProtoArgType = Proto->getArgType(i);
2474
2475    Expr *Arg;
2476    if (i < NumArgs) {
2477      Arg = Args[i];
2478
2479      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2480                              ProtoArgType,
2481                              diag::err_call_incomplete_argument,
2482                              Arg->getSourceRange()))
2483        return true;
2484
2485      // Pass the argument.
2486      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2487        return true;
2488    } else
2489      // We already type-checked the argument, so we know it works.
2490      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
2491    QualType ArgType = Arg->getType();
2492
2493    Call->setArg(i, Arg);
2494  }
2495
2496  // If this is a variadic call, handle args passed through "...".
2497  if (Proto->isVariadic()) {
2498    VariadicCallType CallType = VariadicFunction;
2499    if (Fn->getType()->isBlockPointerType())
2500      CallType = VariadicBlock; // Block
2501    else if (isa<MemberExpr>(Fn))
2502      CallType = VariadicMethod;
2503
2504    // Promote the arguments (C99 6.5.2.2p7).
2505    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2506      Expr *Arg = Args[i];
2507      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2508      Call->setArg(i, Arg);
2509    }
2510  }
2511
2512  return Invalid;
2513}
2514
2515/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2516/// This provides the location of the left/right parens and a list of comma
2517/// locations.
2518Action::OwningExprResult
2519Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2520                    MultiExprArg args,
2521                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2522  unsigned NumArgs = args.size();
2523  Expr *Fn = fn.takeAs<Expr>();
2524  Expr **Args = reinterpret_cast<Expr**>(args.release());
2525  assert(Fn && "no function call expression");
2526  FunctionDecl *FDecl = NULL;
2527  NamedDecl *NDecl = NULL;
2528  DeclarationName UnqualifiedName;
2529
2530  if (getLangOptions().CPlusPlus) {
2531    // Determine whether this is a dependent call inside a C++ template,
2532    // in which case we won't do any semantic analysis now.
2533    // FIXME: Will need to cache the results of name lookup (including ADL) in
2534    // Fn.
2535    bool Dependent = false;
2536    if (Fn->isTypeDependent())
2537      Dependent = true;
2538    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2539      Dependent = true;
2540
2541    if (Dependent)
2542      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2543                                          Context.DependentTy, RParenLoc));
2544
2545    // Determine whether this is a call to an object (C++ [over.call.object]).
2546    if (Fn->getType()->isRecordType())
2547      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2548                                                CommaLocs, RParenLoc));
2549
2550    // Determine whether this is a call to a member function.
2551    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
2552      if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
2553          isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
2554        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2555                                               CommaLocs, RParenLoc));
2556  }
2557
2558  // If we're directly calling a function, get the appropriate declaration.
2559  DeclRefExpr *DRExpr = NULL;
2560  Expr *FnExpr = Fn;
2561  bool ADL = true;
2562  while (true) {
2563    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2564      FnExpr = IcExpr->getSubExpr();
2565    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2566      // Parentheses around a function disable ADL
2567      // (C++0x [basic.lookup.argdep]p1).
2568      ADL = false;
2569      FnExpr = PExpr->getSubExpr();
2570    } else if (isa<UnaryOperator>(FnExpr) &&
2571               cast<UnaryOperator>(FnExpr)->getOpcode()
2572                 == UnaryOperator::AddrOf) {
2573      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2574    } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) {
2575      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2576      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2577      break;
2578    } else if (UnresolvedFunctionNameExpr *DepName
2579                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2580      UnqualifiedName = DepName->getName();
2581      break;
2582    } else {
2583      // Any kind of name that does not refer to a declaration (or
2584      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2585      ADL = false;
2586      break;
2587    }
2588  }
2589
2590  OverloadedFunctionDecl *Ovl = 0;
2591  if (DRExpr) {
2592    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
2593    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
2594    NDecl = dyn_cast<NamedDecl>(DRExpr->getDecl());
2595  }
2596
2597  if (Ovl || (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2598    // We don't perform ADL for implicit declarations of builtins.
2599    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2600      ADL = false;
2601
2602    // We don't perform ADL in C.
2603    if (!getLangOptions().CPlusPlus)
2604      ADL = false;
2605
2606    if (Ovl || ADL) {
2607      FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0,
2608                                      UnqualifiedName, LParenLoc, Args,
2609                                      NumArgs, CommaLocs, RParenLoc, ADL);
2610      if (!FDecl)
2611        return ExprError();
2612
2613      // Update Fn to refer to the actual function selected.
2614      Expr *NewFn = 0;
2615      if (QualifiedDeclRefExpr *QDRExpr
2616            = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr))
2617        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
2618                                                   QDRExpr->getLocation(),
2619                                                   false, false,
2620                                                 QDRExpr->getQualifierRange(),
2621                                                   QDRExpr->getQualifier());
2622      else
2623        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2624                                          Fn->getSourceRange().getBegin());
2625      Fn->Destroy(Context);
2626      Fn = NewFn;
2627    }
2628  }
2629
2630  // Promote the function operand.
2631  UsualUnaryConversions(Fn);
2632
2633  // Make the call expr early, before semantic checks.  This guarantees cleanup
2634  // of arguments and function on error.
2635  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2636                                                               Args, NumArgs,
2637                                                               Context.BoolTy,
2638                                                               RParenLoc));
2639
2640  const FunctionType *FuncT;
2641  if (!Fn->getType()->isBlockPointerType()) {
2642    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2643    // have type pointer to function".
2644    const PointerType *PT = Fn->getType()->getAsPointerType();
2645    if (PT == 0)
2646      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2647        << Fn->getType() << Fn->getSourceRange());
2648    FuncT = PT->getPointeeType()->getAsFunctionType();
2649  } else { // This is a block call.
2650    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
2651                getAsFunctionType();
2652  }
2653  if (FuncT == 0)
2654    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2655      << Fn->getType() << Fn->getSourceRange());
2656
2657  // Check for a valid return type
2658  if (!FuncT->getResultType()->isVoidType() &&
2659      RequireCompleteType(Fn->getSourceRange().getBegin(),
2660                          FuncT->getResultType(),
2661                          diag::err_call_incomplete_return,
2662                          TheCall->getSourceRange()))
2663    return ExprError();
2664
2665  // We know the result type of the call, set it.
2666  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2667
2668  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2669    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2670                                RParenLoc))
2671      return ExprError();
2672  } else {
2673    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2674
2675    if (FDecl) {
2676      // Check if we have too few/too many template arguments, based
2677      // on our knowledge of the function definition.
2678      const FunctionDecl *Def = 0;
2679      if (FDecl->getBody(Context, Def) && NumArgs != Def->param_size())
2680        Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2681          << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2682    }
2683
2684    // Promote the arguments (C99 6.5.2.2p6).
2685    for (unsigned i = 0; i != NumArgs; i++) {
2686      Expr *Arg = Args[i];
2687      DefaultArgumentPromotion(Arg);
2688      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2689                              Arg->getType(),
2690                              diag::err_call_incomplete_argument,
2691                              Arg->getSourceRange()))
2692        return ExprError();
2693      TheCall->setArg(i, Arg);
2694    }
2695  }
2696
2697  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2698    if (!Method->isStatic())
2699      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2700        << Fn->getSourceRange());
2701
2702  // Check for sentinels
2703  if (NDecl)
2704    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
2705  // Do special checking on direct calls to functions.
2706  if (FDecl)
2707    return CheckFunctionCall(FDecl, TheCall.take());
2708  if (NDecl)
2709    return CheckBlockCall(NDecl, TheCall.take());
2710
2711  return Owned(TheCall.take());
2712}
2713
2714Action::OwningExprResult
2715Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2716                           SourceLocation RParenLoc, ExprArg InitExpr) {
2717  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2718  QualType literalType = QualType::getFromOpaquePtr(Ty);
2719  // FIXME: put back this assert when initializers are worked out.
2720  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2721  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2722
2723  if (literalType->isArrayType()) {
2724    if (literalType->isVariableArrayType())
2725      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2726        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2727  } else if (!literalType->isDependentType() &&
2728             RequireCompleteType(LParenLoc, literalType,
2729                                 diag::err_typecheck_decl_incomplete_type,
2730                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2731    return ExprError();
2732
2733  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2734                            DeclarationName(), /*FIXME:DirectInit=*/false))
2735    return ExprError();
2736
2737  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2738  if (isFileScope) { // 6.5.2.5p3
2739    if (CheckForConstantInitializer(literalExpr, literalType))
2740      return ExprError();
2741  }
2742  InitExpr.release();
2743  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2744                                                 literalExpr, isFileScope));
2745}
2746
2747Action::OwningExprResult
2748Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2749                    SourceLocation RBraceLoc) {
2750  unsigned NumInit = initlist.size();
2751  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2752
2753  // Semantic analysis for initializers is done by ActOnDeclarator() and
2754  // CheckInitializer() - it requires knowledge of the object being intialized.
2755
2756  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2757                                               RBraceLoc);
2758  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2759  return Owned(E);
2760}
2761
2762/// CheckCastTypes - Check type constraints for casting between types.
2763bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
2764  UsualUnaryConversions(castExpr);
2765
2766  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2767  // type needs to be scalar.
2768  if (castType->isVoidType()) {
2769    // Cast to void allows any expr type.
2770  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
2771    // We can't check any more until template instantiation time.
2772  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2773    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2774        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2775        (castType->isStructureType() || castType->isUnionType())) {
2776      // GCC struct/union extension: allow cast to self.
2777      // FIXME: Check that the cast destination type is complete.
2778      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2779        << castType << castExpr->getSourceRange();
2780    } else if (castType->isUnionType()) {
2781      // GCC cast to union extension
2782      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2783      RecordDecl::field_iterator Field, FieldEnd;
2784      for (Field = RD->field_begin(Context), FieldEnd = RD->field_end(Context);
2785           Field != FieldEnd; ++Field) {
2786        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2787            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2788          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2789            << castExpr->getSourceRange();
2790          break;
2791        }
2792      }
2793      if (Field == FieldEnd)
2794        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2795          << castExpr->getType() << castExpr->getSourceRange();
2796    } else {
2797      // Reject any other conversions to non-scalar types.
2798      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2799        << castType << castExpr->getSourceRange();
2800    }
2801  } else if (!castExpr->getType()->isScalarType() &&
2802             !castExpr->getType()->isVectorType()) {
2803    return Diag(castExpr->getLocStart(),
2804                diag::err_typecheck_expect_scalar_operand)
2805      << castExpr->getType() << castExpr->getSourceRange();
2806  } else if (castExpr->getType()->isVectorType()) {
2807    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2808      return true;
2809  } else if (castType->isVectorType()) {
2810    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2811      return true;
2812  } else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
2813    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
2814  } else if (!castType->isArithmeticType()) {
2815    QualType castExprType = castExpr->getType();
2816    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
2817      return Diag(castExpr->getLocStart(),
2818                  diag::err_cast_pointer_from_non_pointer_int)
2819        << castExprType << castExpr->getSourceRange();
2820  } else if (!castExpr->getType()->isArithmeticType()) {
2821    if (!castType->isIntegralType() && castType->isArithmeticType())
2822      return Diag(castExpr->getLocStart(),
2823                  diag::err_cast_pointer_to_non_pointer_int)
2824        << castType << castExpr->getSourceRange();
2825  }
2826  if (isa<ObjCSelectorExpr>(castExpr))
2827    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
2828  return false;
2829}
2830
2831bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
2832  assert(VectorTy->isVectorType() && "Not a vector type!");
2833
2834  if (Ty->isVectorType() || Ty->isIntegerType()) {
2835    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
2836      return Diag(R.getBegin(),
2837                  Ty->isVectorType() ?
2838                  diag::err_invalid_conversion_between_vectors :
2839                  diag::err_invalid_conversion_between_vector_and_integer)
2840        << VectorTy << Ty << R;
2841  } else
2842    return Diag(R.getBegin(),
2843                diag::err_invalid_conversion_between_vector_and_scalar)
2844      << VectorTy << Ty << R;
2845
2846  return false;
2847}
2848
2849Action::OwningExprResult
2850Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
2851                    SourceLocation RParenLoc, ExprArg Op) {
2852  assert((Ty != 0) && (Op.get() != 0) &&
2853         "ActOnCastExpr(): missing type or expr");
2854
2855  Expr *castExpr = Op.takeAs<Expr>();
2856  QualType castType = QualType::getFromOpaquePtr(Ty);
2857
2858  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2859    return ExprError();
2860  return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
2861                                            LParenLoc, RParenLoc));
2862}
2863
2864/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
2865/// In that case, lhs = cond.
2866/// C99 6.5.15
2867QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2868                                        SourceLocation QuestionLoc) {
2869  // C++ is sufficiently different to merit its own checker.
2870  if (getLangOptions().CPlusPlus)
2871    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
2872
2873  UsualUnaryConversions(Cond);
2874  UsualUnaryConversions(LHS);
2875  UsualUnaryConversions(RHS);
2876  QualType CondTy = Cond->getType();
2877  QualType LHSTy = LHS->getType();
2878  QualType RHSTy = RHS->getType();
2879
2880  // first, check the condition.
2881  if (!CondTy->isScalarType()) { // C99 6.5.15p2
2882    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
2883      << CondTy;
2884    return QualType();
2885  }
2886
2887  // Now check the two expressions.
2888
2889  // If both operands have arithmetic type, do the usual arithmetic conversions
2890  // to find a common type: C99 6.5.15p3,5.
2891  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
2892    UsualArithmeticConversions(LHS, RHS);
2893    return LHS->getType();
2894  }
2895
2896  // If both operands are the same structure or union type, the result is that
2897  // type.
2898  if (const RecordType *LHSRT = LHSTy->getAsRecordType()) {    // C99 6.5.15p3
2899    if (const RecordType *RHSRT = RHSTy->getAsRecordType())
2900      if (LHSRT->getDecl() == RHSRT->getDecl())
2901        // "If both the operands have structure or union type, the result has
2902        // that type."  This implies that CV qualifiers are dropped.
2903        return LHSTy.getUnqualifiedType();
2904    // FIXME: Type of conditional expression must be complete in C mode.
2905  }
2906
2907  // C99 6.5.15p5: "If both operands have void type, the result has void type."
2908  // The following || allows only one side to be void (a GCC-ism).
2909  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
2910    if (!LHSTy->isVoidType())
2911      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2912        << RHS->getSourceRange();
2913    if (!RHSTy->isVoidType())
2914      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2915        << LHS->getSourceRange();
2916    ImpCastExprToType(LHS, Context.VoidTy);
2917    ImpCastExprToType(RHS, Context.VoidTy);
2918    return Context.VoidTy;
2919  }
2920  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
2921  // the type of the other operand."
2922  if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() ||
2923       Context.isObjCObjectPointerType(LHSTy)) &&
2924      RHS->isNullPointerConstant(Context)) {
2925    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
2926    return LHSTy;
2927  }
2928  if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() ||
2929       Context.isObjCObjectPointerType(RHSTy)) &&
2930      LHS->isNullPointerConstant(Context)) {
2931    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
2932    return RHSTy;
2933  }
2934
2935  const PointerType *LHSPT = LHSTy->getAsPointerType();
2936  const PointerType *RHSPT = RHSTy->getAsPointerType();
2937  const BlockPointerType *LHSBPT = LHSTy->getAsBlockPointerType();
2938  const BlockPointerType *RHSBPT = RHSTy->getAsBlockPointerType();
2939
2940  // Handle the case where both operands are pointers before we handle null
2941  // pointer constants in case both operands are null pointer constants.
2942  if ((LHSPT || LHSBPT) && (RHSPT || RHSBPT)) { // C99 6.5.15p3,6
2943    // get the "pointed to" types
2944    QualType lhptee = (LHSPT ? LHSPT->getPointeeType()
2945                       : LHSBPT->getPointeeType());
2946      QualType rhptee = (RHSPT ? RHSPT->getPointeeType()
2947                         : RHSBPT->getPointeeType());
2948
2949    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
2950    if (lhptee->isVoidType()
2951        && (RHSBPT || rhptee->isIncompleteOrObjectType())) {
2952      // Figure out necessary qualifiers (C99 6.5.15p6)
2953      QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
2954      QualType destType = Context.getPointerType(destPointee);
2955      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2956      ImpCastExprToType(RHS, destType); // promote to void*
2957      return destType;
2958    }
2959    if (rhptee->isVoidType()
2960        && (LHSBPT || lhptee->isIncompleteOrObjectType())) {
2961      QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
2962      QualType destType = Context.getPointerType(destPointee);
2963      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2964      ImpCastExprToType(RHS, destType); // promote to void*
2965      return destType;
2966    }
2967
2968    bool sameKind = (LHSPT && RHSPT) || (LHSBPT && RHSBPT);
2969    if (sameKind
2970        && Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
2971      // Two identical pointer types are always compatible.
2972      return LHSTy;
2973    }
2974
2975    QualType compositeType = LHSTy;
2976
2977    // If either type is an Objective-C object type then check
2978    // compatibility according to Objective-C.
2979    if (Context.isObjCObjectPointerType(LHSTy) ||
2980        Context.isObjCObjectPointerType(RHSTy)) {
2981      // If both operands are interfaces and either operand can be
2982      // assigned to the other, use that type as the composite
2983      // type. This allows
2984      //   xxx ? (A*) a : (B*) b
2985      // where B is a subclass of A.
2986      //
2987      // Additionally, as for assignment, if either type is 'id'
2988      // allow silent coercion. Finally, if the types are
2989      // incompatible then make sure to use 'id' as the composite
2990      // type so the result is acceptable for sending messages to.
2991
2992      // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
2993      // It could return the composite type.
2994      const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2995      const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2996      if (LHSIface && RHSIface &&
2997          Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
2998        compositeType = LHSTy;
2999      } else if (LHSIface && RHSIface &&
3000                 Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
3001        compositeType = RHSTy;
3002      } else if (Context.isObjCIdStructType(lhptee) ||
3003                 Context.isObjCIdStructType(rhptee)) {
3004        compositeType = Context.getObjCIdType();
3005      } else if (LHSBPT || RHSBPT) {
3006        if (!sameKind
3007            || !Context.typesAreBlockCompatible(lhptee.getUnqualifiedType(),
3008                                                rhptee.getUnqualifiedType()))
3009          Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3010            << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3011        return QualType();
3012      } else {
3013        Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
3014          << LHSTy << RHSTy
3015          << LHS->getSourceRange() << RHS->getSourceRange();
3016        QualType incompatTy = Context.getObjCIdType();
3017        ImpCastExprToType(LHS, incompatTy);
3018        ImpCastExprToType(RHS, incompatTy);
3019        return incompatTy;
3020      }
3021    } else if (!sameKind
3022               || !Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3023                                              rhptee.getUnqualifiedType())) {
3024      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3025        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3026      // In this situation, we assume void* type. No especially good
3027      // reason, but this is what gcc does, and we do have to pick
3028      // to get a consistent AST.
3029      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3030      ImpCastExprToType(LHS, incompatTy);
3031      ImpCastExprToType(RHS, incompatTy);
3032      return incompatTy;
3033    }
3034    // The pointer types are compatible.
3035    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
3036    // differently qualified versions of compatible types, the result type is
3037    // a pointer to an appropriately qualified version of the *composite*
3038    // type.
3039    // FIXME: Need to calculate the composite type.
3040    // FIXME: Need to add qualifiers
3041    ImpCastExprToType(LHS, compositeType);
3042    ImpCastExprToType(RHS, compositeType);
3043    return compositeType;
3044  }
3045
3046  // GCC compatibility: soften pointer/integer mismatch.
3047  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
3048    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3049      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3050    ImpCastExprToType(LHS, RHSTy); // promote the integer to a pointer.
3051    return RHSTy;
3052  }
3053  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
3054    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3055      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3056    ImpCastExprToType(RHS, LHSTy); // promote the integer to a pointer.
3057    return LHSTy;
3058  }
3059
3060  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
3061  // evaluates to "struct objc_object *" (and is handled above when comparing
3062  // id with statically typed objects).
3063  if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
3064    // GCC allows qualified id and any Objective-C type to devolve to
3065    // id. Currently localizing to here until clear this should be
3066    // part of ObjCQualifiedIdTypesAreCompatible.
3067    if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
3068        (LHSTy->isObjCQualifiedIdType() &&
3069         Context.isObjCObjectPointerType(RHSTy)) ||
3070        (RHSTy->isObjCQualifiedIdType() &&
3071         Context.isObjCObjectPointerType(LHSTy))) {
3072      // FIXME: This is not the correct composite type. This only happens to
3073      // work because id can more or less be used anywhere, however this may
3074      // change the type of method sends.
3075
3076      // FIXME: gcc adds some type-checking of the arguments and emits
3077      // (confusing) incompatible comparison warnings in some
3078      // cases. Investigate.
3079      QualType compositeType = Context.getObjCIdType();
3080      ImpCastExprToType(LHS, compositeType);
3081      ImpCastExprToType(RHS, compositeType);
3082      return compositeType;
3083    }
3084  }
3085
3086  // Otherwise, the operands are not compatible.
3087  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3088    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3089  return QualType();
3090}
3091
3092/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
3093/// in the case of a the GNU conditional expr extension.
3094Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
3095                                                  SourceLocation ColonLoc,
3096                                                  ExprArg Cond, ExprArg LHS,
3097                                                  ExprArg RHS) {
3098  Expr *CondExpr = (Expr *) Cond.get();
3099  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
3100
3101  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
3102  // was the condition.
3103  bool isLHSNull = LHSExpr == 0;
3104  if (isLHSNull)
3105    LHSExpr = CondExpr;
3106
3107  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
3108                                             RHSExpr, QuestionLoc);
3109  if (result.isNull())
3110    return ExprError();
3111
3112  Cond.release();
3113  LHS.release();
3114  RHS.release();
3115  return Owned(new (Context) ConditionalOperator(CondExpr,
3116                                                 isLHSNull ? 0 : LHSExpr,
3117                                                 RHSExpr, result));
3118}
3119
3120
3121// CheckPointerTypesForAssignment - This is a very tricky routine (despite
3122// being closely modeled after the C99 spec:-). The odd characteristic of this
3123// routine is it effectively iqnores the qualifiers on the top level pointee.
3124// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
3125// FIXME: add a couple examples in this comment.
3126Sema::AssignConvertType
3127Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
3128  QualType lhptee, rhptee;
3129
3130  // get the "pointed to" type (ignoring qualifiers at the top level)
3131  lhptee = lhsType->getAsPointerType()->getPointeeType();
3132  rhptee = rhsType->getAsPointerType()->getPointeeType();
3133
3134  // make sure we operate on the canonical type
3135  lhptee = Context.getCanonicalType(lhptee);
3136  rhptee = Context.getCanonicalType(rhptee);
3137
3138  AssignConvertType ConvTy = Compatible;
3139
3140  // C99 6.5.16.1p1: This following citation is common to constraints
3141  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
3142  // qualifiers of the type *pointed to* by the right;
3143  // FIXME: Handle ExtQualType
3144  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
3145    ConvTy = CompatiblePointerDiscardsQualifiers;
3146
3147  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
3148  // incomplete type and the other is a pointer to a qualified or unqualified
3149  // version of void...
3150  if (lhptee->isVoidType()) {
3151    if (rhptee->isIncompleteOrObjectType())
3152      return ConvTy;
3153
3154    // As an extension, we allow cast to/from void* to function pointer.
3155    assert(rhptee->isFunctionType());
3156    return FunctionVoidPointer;
3157  }
3158
3159  if (rhptee->isVoidType()) {
3160    if (lhptee->isIncompleteOrObjectType())
3161      return ConvTy;
3162
3163    // As an extension, we allow cast to/from void* to function pointer.
3164    assert(lhptee->isFunctionType());
3165    return FunctionVoidPointer;
3166  }
3167  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
3168  // unqualified versions of compatible types, ...
3169  lhptee = lhptee.getUnqualifiedType();
3170  rhptee = rhptee.getUnqualifiedType();
3171  if (!Context.typesAreCompatible(lhptee, rhptee)) {
3172    // Check if the pointee types are compatible ignoring the sign.
3173    // We explicitly check for char so that we catch "char" vs
3174    // "unsigned char" on systems where "char" is unsigned.
3175    if (lhptee->isCharType()) {
3176      lhptee = Context.UnsignedCharTy;
3177    } else if (lhptee->isSignedIntegerType()) {
3178      lhptee = Context.getCorrespondingUnsignedType(lhptee);
3179    }
3180    if (rhptee->isCharType()) {
3181      rhptee = Context.UnsignedCharTy;
3182    } else if (rhptee->isSignedIntegerType()) {
3183      rhptee = Context.getCorrespondingUnsignedType(rhptee);
3184    }
3185    if (lhptee == rhptee) {
3186      // Types are compatible ignoring the sign. Qualifier incompatibility
3187      // takes priority over sign incompatibility because the sign
3188      // warning can be disabled.
3189      if (ConvTy != Compatible)
3190        return ConvTy;
3191      return IncompatiblePointerSign;
3192    }
3193    // General pointer incompatibility takes priority over qualifiers.
3194    return IncompatiblePointer;
3195  }
3196  return ConvTy;
3197}
3198
3199/// CheckBlockPointerTypesForAssignment - This routine determines whether two
3200/// block pointer types are compatible or whether a block and normal pointer
3201/// are compatible. It is more restrict than comparing two function pointer
3202// types.
3203Sema::AssignConvertType
3204Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
3205                                          QualType rhsType) {
3206  QualType lhptee, rhptee;
3207
3208  // get the "pointed to" type (ignoring qualifiers at the top level)
3209  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
3210  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
3211
3212  // make sure we operate on the canonical type
3213  lhptee = Context.getCanonicalType(lhptee);
3214  rhptee = Context.getCanonicalType(rhptee);
3215
3216  AssignConvertType ConvTy = Compatible;
3217
3218  // For blocks we enforce that qualifiers are identical.
3219  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
3220    ConvTy = CompatiblePointerDiscardsQualifiers;
3221
3222  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
3223    return IncompatibleBlockPointer;
3224  return ConvTy;
3225}
3226
3227/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
3228/// has code to accommodate several GCC extensions when type checking
3229/// pointers. Here are some objectionable examples that GCC considers warnings:
3230///
3231///  int a, *pint;
3232///  short *pshort;
3233///  struct foo *pfoo;
3234///
3235///  pint = pshort; // warning: assignment from incompatible pointer type
3236///  a = pint; // warning: assignment makes integer from pointer without a cast
3237///  pint = a; // warning: assignment makes pointer from integer without a cast
3238///  pint = pfoo; // warning: assignment from incompatible pointer type
3239///
3240/// As a result, the code for dealing with pointers is more complex than the
3241/// C99 spec dictates.
3242///
3243Sema::AssignConvertType
3244Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
3245  // Get canonical types.  We're not formatting these types, just comparing
3246  // them.
3247  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
3248  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
3249
3250  if (lhsType == rhsType)
3251    return Compatible; // Common case: fast path an exact match.
3252
3253  // If the left-hand side is a reference type, then we are in a
3254  // (rare!) case where we've allowed the use of references in C,
3255  // e.g., as a parameter type in a built-in function. In this case,
3256  // just make sure that the type referenced is compatible with the
3257  // right-hand side type. The caller is responsible for adjusting
3258  // lhsType so that the resulting expression does not have reference
3259  // type.
3260  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
3261    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
3262      return Compatible;
3263    return Incompatible;
3264  }
3265
3266  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
3267    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
3268      return Compatible;
3269    // Relax integer conversions like we do for pointers below.
3270    if (rhsType->isIntegerType())
3271      return IntToPointer;
3272    if (lhsType->isIntegerType())
3273      return PointerToInt;
3274    return IncompatibleObjCQualifiedId;
3275  }
3276
3277  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3278    // For ExtVector, allow vector splats; float -> <n x float>
3279    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
3280      if (LV->getElementType() == rhsType)
3281        return Compatible;
3282
3283    // If we are allowing lax vector conversions, and LHS and RHS are both
3284    // vectors, the total size only needs to be the same. This is a bitcast;
3285    // no bits are changed but the result type is different.
3286    if (getLangOptions().LaxVectorConversions &&
3287        lhsType->isVectorType() && rhsType->isVectorType()) {
3288      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3289        return IncompatibleVectors;
3290    }
3291    return Incompatible;
3292  }
3293
3294  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3295    return Compatible;
3296
3297  if (isa<PointerType>(lhsType)) {
3298    if (rhsType->isIntegerType())
3299      return IntToPointer;
3300
3301    if (isa<PointerType>(rhsType))
3302      return CheckPointerTypesForAssignment(lhsType, rhsType);
3303
3304    if (rhsType->getAsBlockPointerType()) {
3305      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
3306        return Compatible;
3307
3308      // Treat block pointers as objects.
3309      if (getLangOptions().ObjC1 &&
3310          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
3311        return Compatible;
3312    }
3313    return Incompatible;
3314  }
3315
3316  if (isa<BlockPointerType>(lhsType)) {
3317    if (rhsType->isIntegerType())
3318      return IntToBlockPointer;
3319
3320    // Treat block pointers as objects.
3321    if (getLangOptions().ObjC1 &&
3322        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
3323      return Compatible;
3324
3325    if (rhsType->isBlockPointerType())
3326      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3327
3328    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
3329      if (RHSPT->getPointeeType()->isVoidType())
3330        return Compatible;
3331    }
3332    return Incompatible;
3333  }
3334
3335  if (isa<PointerType>(rhsType)) {
3336    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3337    if (lhsType == Context.BoolTy)
3338      return Compatible;
3339
3340    if (lhsType->isIntegerType())
3341      return PointerToInt;
3342
3343    if (isa<PointerType>(lhsType))
3344      return CheckPointerTypesForAssignment(lhsType, rhsType);
3345
3346    if (isa<BlockPointerType>(lhsType) &&
3347        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
3348      return Compatible;
3349    return Incompatible;
3350  }
3351
3352  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3353    if (Context.typesAreCompatible(lhsType, rhsType))
3354      return Compatible;
3355  }
3356  return Incompatible;
3357}
3358
3359/// \brief Constructs a transparent union from an expression that is
3360/// used to initialize the transparent union.
3361static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
3362                                      QualType UnionType, FieldDecl *Field) {
3363  // Build an initializer list that designates the appropriate member
3364  // of the transparent union.
3365  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
3366                                                   &E, 1,
3367                                                   SourceLocation());
3368  Initializer->setType(UnionType);
3369  Initializer->setInitializedFieldInUnion(Field);
3370
3371  // Build a compound literal constructing a value of the transparent
3372  // union type from this initializer list.
3373  E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
3374                                  false);
3375}
3376
3377Sema::AssignConvertType
3378Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
3379  QualType FromType = rExpr->getType();
3380
3381  // If the ArgType is a Union type, we want to handle a potential
3382  // transparent_union GCC extension.
3383  const RecordType *UT = ArgType->getAsUnionType();
3384  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
3385    return Incompatible;
3386
3387  // The field to initialize within the transparent union.
3388  RecordDecl *UD = UT->getDecl();
3389  FieldDecl *InitField = 0;
3390  // It's compatible if the expression matches any of the fields.
3391  for (RecordDecl::field_iterator it = UD->field_begin(Context),
3392         itend = UD->field_end(Context);
3393       it != itend; ++it) {
3394    if (it->getType()->isPointerType()) {
3395      // If the transparent union contains a pointer type, we allow:
3396      // 1) void pointer
3397      // 2) null pointer constant
3398      if (FromType->isPointerType())
3399        if (FromType->getAsPointerType()->getPointeeType()->isVoidType()) {
3400          ImpCastExprToType(rExpr, it->getType());
3401          InitField = *it;
3402          break;
3403        }
3404
3405      if (rExpr->isNullPointerConstant(Context)) {
3406        ImpCastExprToType(rExpr, it->getType());
3407        InitField = *it;
3408        break;
3409      }
3410    }
3411
3412    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
3413          == Compatible) {
3414      InitField = *it;
3415      break;
3416    }
3417  }
3418
3419  if (!InitField)
3420    return Incompatible;
3421
3422  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
3423  return Compatible;
3424}
3425
3426Sema::AssignConvertType
3427Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
3428  if (getLangOptions().CPlusPlus) {
3429    if (!lhsType->isRecordType()) {
3430      // C++ 5.17p3: If the left operand is not of class type, the
3431      // expression is implicitly converted (C++ 4) to the
3432      // cv-unqualified type of the left operand.
3433      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
3434                                    "assigning"))
3435        return Incompatible;
3436      return Compatible;
3437    }
3438
3439    // FIXME: Currently, we fall through and treat C++ classes like C
3440    // structures.
3441  }
3442
3443  // C99 6.5.16.1p1: the left operand is a pointer and the right is
3444  // a null pointer constant.
3445  if ((lhsType->isPointerType() ||
3446       lhsType->isObjCQualifiedIdType() ||
3447       lhsType->isBlockPointerType())
3448      && rExpr->isNullPointerConstant(Context)) {
3449    ImpCastExprToType(rExpr, lhsType);
3450    return Compatible;
3451  }
3452
3453  // This check seems unnatural, however it is necessary to ensure the proper
3454  // conversion of functions/arrays. If the conversion were done for all
3455  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
3456  // expressions that surpress this implicit conversion (&, sizeof).
3457  //
3458  // Suppress this for references: C++ 8.5.3p5.
3459  if (!lhsType->isReferenceType())
3460    DefaultFunctionArrayConversion(rExpr);
3461
3462  Sema::AssignConvertType result =
3463    CheckAssignmentConstraints(lhsType, rExpr->getType());
3464
3465  // C99 6.5.16.1p2: The value of the right operand is converted to the
3466  // type of the assignment expression.
3467  // CheckAssignmentConstraints allows the left-hand side to be a reference,
3468  // so that we can use references in built-in functions even in C.
3469  // The getNonReferenceType() call makes sure that the resulting expression
3470  // does not have reference type.
3471  if (result != Incompatible && rExpr->getType() != lhsType)
3472    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
3473  return result;
3474}
3475
3476QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
3477  Diag(Loc, diag::err_typecheck_invalid_operands)
3478    << lex->getType() << rex->getType()
3479    << lex->getSourceRange() << rex->getSourceRange();
3480  return QualType();
3481}
3482
3483inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
3484                                                              Expr *&rex) {
3485  // For conversion purposes, we ignore any qualifiers.
3486  // For example, "const float" and "float" are equivalent.
3487  QualType lhsType =
3488    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
3489  QualType rhsType =
3490    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
3491
3492  // If the vector types are identical, return.
3493  if (lhsType == rhsType)
3494    return lhsType;
3495
3496  // Handle the case of a vector & extvector type of the same size and element
3497  // type.  It would be nice if we only had one vector type someday.
3498  if (getLangOptions().LaxVectorConversions) {
3499    // FIXME: Should we warn here?
3500    if (const VectorType *LV = lhsType->getAsVectorType()) {
3501      if (const VectorType *RV = rhsType->getAsVectorType())
3502        if (LV->getElementType() == RV->getElementType() &&
3503            LV->getNumElements() == RV->getNumElements()) {
3504          return lhsType->isExtVectorType() ? lhsType : rhsType;
3505        }
3506    }
3507  }
3508
3509  // If the lhs is an extended vector and the rhs is a scalar of the same type
3510  // or a literal, promote the rhs to the vector type.
3511  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
3512    QualType eltType = V->getElementType();
3513
3514    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
3515        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
3516        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
3517      ImpCastExprToType(rex, lhsType);
3518      return lhsType;
3519    }
3520  }
3521
3522  // If the rhs is an extended vector and the lhs is a scalar of the same type,
3523  // promote the lhs to the vector type.
3524  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
3525    QualType eltType = V->getElementType();
3526
3527    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
3528        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
3529        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
3530      ImpCastExprToType(lex, rhsType);
3531      return rhsType;
3532    }
3533  }
3534
3535  // You cannot convert between vector values of different size.
3536  Diag(Loc, diag::err_typecheck_vector_not_convertable)
3537    << lex->getType() << rex->getType()
3538    << lex->getSourceRange() << rex->getSourceRange();
3539  return QualType();
3540}
3541
3542inline QualType Sema::CheckMultiplyDivideOperands(
3543  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3544{
3545  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3546    return CheckVectorOperands(Loc, lex, rex);
3547
3548  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3549
3550  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3551    return compType;
3552  return InvalidOperands(Loc, lex, rex);
3553}
3554
3555inline QualType Sema::CheckRemainderOperands(
3556  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3557{
3558  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3559    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3560      return CheckVectorOperands(Loc, lex, rex);
3561    return InvalidOperands(Loc, lex, rex);
3562  }
3563
3564  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3565
3566  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3567    return compType;
3568  return InvalidOperands(Loc, lex, rex);
3569}
3570
3571inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
3572  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy)
3573{
3574  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3575    QualType compType = CheckVectorOperands(Loc, lex, rex);
3576    if (CompLHSTy) *CompLHSTy = compType;
3577    return compType;
3578  }
3579
3580  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3581
3582  // handle the common case first (both operands are arithmetic).
3583  if (lex->getType()->isArithmeticType() &&
3584      rex->getType()->isArithmeticType()) {
3585    if (CompLHSTy) *CompLHSTy = compType;
3586    return compType;
3587  }
3588
3589  // Put any potential pointer into PExp
3590  Expr* PExp = lex, *IExp = rex;
3591  if (IExp->getType()->isPointerType())
3592    std::swap(PExp, IExp);
3593
3594  if (const PointerType *PTy = PExp->getType()->getAsPointerType()) {
3595    if (IExp->getType()->isIntegerType()) {
3596      QualType PointeeTy = PTy->getPointeeType();
3597      // Check for arithmetic on pointers to incomplete types.
3598      if (PointeeTy->isVoidType()) {
3599        if (getLangOptions().CPlusPlus) {
3600          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3601            << lex->getSourceRange() << rex->getSourceRange();
3602          return QualType();
3603        }
3604
3605        // GNU extension: arithmetic on pointer to void
3606        Diag(Loc, diag::ext_gnu_void_ptr)
3607          << lex->getSourceRange() << rex->getSourceRange();
3608      } else if (PointeeTy->isFunctionType()) {
3609        if (getLangOptions().CPlusPlus) {
3610          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3611            << lex->getType() << lex->getSourceRange();
3612          return QualType();
3613        }
3614
3615        // GNU extension: arithmetic on pointer to function
3616        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3617          << lex->getType() << lex->getSourceRange();
3618      } else if (!PTy->isDependentType() &&
3619                 RequireCompleteType(Loc, PointeeTy,
3620                                diag::err_typecheck_arithmetic_incomplete_type,
3621                                     PExp->getSourceRange(), SourceRange(),
3622                                     PExp->getType()))
3623        return QualType();
3624
3625      // Diagnose bad cases where we step over interface counts.
3626      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3627        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3628          << PointeeTy << PExp->getSourceRange();
3629        return QualType();
3630      }
3631
3632      if (CompLHSTy) {
3633        QualType LHSTy = lex->getType();
3634        if (LHSTy->isPromotableIntegerType())
3635          LHSTy = Context.IntTy;
3636        else {
3637          QualType T = isPromotableBitField(lex, Context);
3638          if (!T.isNull())
3639            LHSTy = T;
3640        }
3641
3642        *CompLHSTy = LHSTy;
3643      }
3644      return PExp->getType();
3645    }
3646  }
3647
3648  return InvalidOperands(Loc, lex, rex);
3649}
3650
3651// C99 6.5.6
3652QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
3653                                        SourceLocation Loc, QualType* CompLHSTy) {
3654  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3655    QualType compType = CheckVectorOperands(Loc, lex, rex);
3656    if (CompLHSTy) *CompLHSTy = compType;
3657    return compType;
3658  }
3659
3660  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3661
3662  // Enforce type constraints: C99 6.5.6p3.
3663
3664  // Handle the common case first (both operands are arithmetic).
3665  if (lex->getType()->isArithmeticType()
3666      && rex->getType()->isArithmeticType()) {
3667    if (CompLHSTy) *CompLHSTy = compType;
3668    return compType;
3669  }
3670
3671  // Either ptr - int   or   ptr - ptr.
3672  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
3673    QualType lpointee = LHSPTy->getPointeeType();
3674
3675    // The LHS must be an completely-defined object type.
3676
3677    bool ComplainAboutVoid = false;
3678    Expr *ComplainAboutFunc = 0;
3679    if (lpointee->isVoidType()) {
3680      if (getLangOptions().CPlusPlus) {
3681        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3682          << lex->getSourceRange() << rex->getSourceRange();
3683        return QualType();
3684      }
3685
3686      // GNU C extension: arithmetic on pointer to void
3687      ComplainAboutVoid = true;
3688    } else if (lpointee->isFunctionType()) {
3689      if (getLangOptions().CPlusPlus) {
3690        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3691          << lex->getType() << lex->getSourceRange();
3692        return QualType();
3693      }
3694
3695      // GNU C extension: arithmetic on pointer to function
3696      ComplainAboutFunc = lex;
3697    } else if (!lpointee->isDependentType() &&
3698               RequireCompleteType(Loc, lpointee,
3699                                   diag::err_typecheck_sub_ptr_object,
3700                                   lex->getSourceRange(),
3701                                   SourceRange(),
3702                                   lex->getType()))
3703      return QualType();
3704
3705    // Diagnose bad cases where we step over interface counts.
3706    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3707      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3708        << lpointee << lex->getSourceRange();
3709      return QualType();
3710    }
3711
3712    // The result type of a pointer-int computation is the pointer type.
3713    if (rex->getType()->isIntegerType()) {
3714      if (ComplainAboutVoid)
3715        Diag(Loc, diag::ext_gnu_void_ptr)
3716          << lex->getSourceRange() << rex->getSourceRange();
3717      if (ComplainAboutFunc)
3718        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3719          << ComplainAboutFunc->getType()
3720          << ComplainAboutFunc->getSourceRange();
3721
3722      if (CompLHSTy) *CompLHSTy = lex->getType();
3723      return lex->getType();
3724    }
3725
3726    // Handle pointer-pointer subtractions.
3727    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
3728      QualType rpointee = RHSPTy->getPointeeType();
3729
3730      // RHS must be a completely-type object type.
3731      // Handle the GNU void* extension.
3732      if (rpointee->isVoidType()) {
3733        if (getLangOptions().CPlusPlus) {
3734          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3735            << lex->getSourceRange() << rex->getSourceRange();
3736          return QualType();
3737        }
3738
3739        ComplainAboutVoid = true;
3740      } else if (rpointee->isFunctionType()) {
3741        if (getLangOptions().CPlusPlus) {
3742          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3743            << rex->getType() << rex->getSourceRange();
3744          return QualType();
3745        }
3746
3747        // GNU extension: arithmetic on pointer to function
3748        if (!ComplainAboutFunc)
3749          ComplainAboutFunc = rex;
3750      } else if (!rpointee->isDependentType() &&
3751                 RequireCompleteType(Loc, rpointee,
3752                                     diag::err_typecheck_sub_ptr_object,
3753                                     rex->getSourceRange(),
3754                                     SourceRange(),
3755                                     rex->getType()))
3756        return QualType();
3757
3758      if (getLangOptions().CPlusPlus) {
3759        // Pointee types must be the same: C++ [expr.add]
3760        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
3761          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3762            << lex->getType() << rex->getType()
3763            << lex->getSourceRange() << rex->getSourceRange();
3764          return QualType();
3765        }
3766      } else {
3767        // Pointee types must be compatible C99 6.5.6p3
3768        if (!Context.typesAreCompatible(
3769                Context.getCanonicalType(lpointee).getUnqualifiedType(),
3770                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
3771          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3772            << lex->getType() << rex->getType()
3773            << lex->getSourceRange() << rex->getSourceRange();
3774          return QualType();
3775        }
3776      }
3777
3778      if (ComplainAboutVoid)
3779        Diag(Loc, diag::ext_gnu_void_ptr)
3780          << lex->getSourceRange() << rex->getSourceRange();
3781      if (ComplainAboutFunc)
3782        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3783          << ComplainAboutFunc->getType()
3784          << ComplainAboutFunc->getSourceRange();
3785
3786      if (CompLHSTy) *CompLHSTy = lex->getType();
3787      return Context.getPointerDiffType();
3788    }
3789  }
3790
3791  return InvalidOperands(Loc, lex, rex);
3792}
3793
3794// C99 6.5.7
3795QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3796                                  bool isCompAssign) {
3797  // C99 6.5.7p2: Each of the operands shall have integer type.
3798  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
3799    return InvalidOperands(Loc, lex, rex);
3800
3801  // Shifts don't perform usual arithmetic conversions, they just do integer
3802  // promotions on each operand. C99 6.5.7p3
3803  QualType LHSTy;
3804  if (lex->getType()->isPromotableIntegerType())
3805    LHSTy = Context.IntTy;
3806  else {
3807    LHSTy = isPromotableBitField(lex, Context);
3808    if (LHSTy.isNull())
3809      LHSTy = lex->getType();
3810  }
3811  if (!isCompAssign)
3812    ImpCastExprToType(lex, LHSTy);
3813
3814  UsualUnaryConversions(rex);
3815
3816  // "The type of the result is that of the promoted left operand."
3817  return LHSTy;
3818}
3819
3820// C99 6.5.8, C++ [expr.rel]
3821QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3822                                    unsigned OpaqueOpc, bool isRelational) {
3823  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
3824
3825  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3826    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
3827
3828  // C99 6.5.8p3 / C99 6.5.9p4
3829  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3830    UsualArithmeticConversions(lex, rex);
3831  else {
3832    UsualUnaryConversions(lex);
3833    UsualUnaryConversions(rex);
3834  }
3835  QualType lType = lex->getType();
3836  QualType rType = rex->getType();
3837
3838  if (!lType->isFloatingType()
3839      && !(lType->isBlockPointerType() && isRelational)) {
3840    // For non-floating point types, check for self-comparisons of the form
3841    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3842    // often indicate logic errors in the program.
3843    // NOTE: Don't warn about comparisons of enum constants. These can arise
3844    //  from macro expansions, and are usually quite deliberate.
3845    Expr *LHSStripped = lex->IgnoreParens();
3846    Expr *RHSStripped = rex->IgnoreParens();
3847    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
3848      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
3849        if (DRL->getDecl() == DRR->getDecl() &&
3850            !isa<EnumConstantDecl>(DRL->getDecl()))
3851          Diag(Loc, diag::warn_selfcomparison);
3852
3853    if (isa<CastExpr>(LHSStripped))
3854      LHSStripped = LHSStripped->IgnoreParenCasts();
3855    if (isa<CastExpr>(RHSStripped))
3856      RHSStripped = RHSStripped->IgnoreParenCasts();
3857
3858    // Warn about comparisons against a string constant (unless the other
3859    // operand is null), the user probably wants strcmp.
3860    Expr *literalString = 0;
3861    Expr *literalStringStripped = 0;
3862    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
3863        !RHSStripped->isNullPointerConstant(Context)) {
3864      literalString = lex;
3865      literalStringStripped = LHSStripped;
3866    }
3867    else if ((isa<StringLiteral>(RHSStripped) ||
3868              isa<ObjCEncodeExpr>(RHSStripped)) &&
3869             !LHSStripped->isNullPointerConstant(Context)) {
3870      literalString = rex;
3871      literalStringStripped = RHSStripped;
3872    }
3873
3874    if (literalString) {
3875      std::string resultComparison;
3876      switch (Opc) {
3877      case BinaryOperator::LT: resultComparison = ") < 0"; break;
3878      case BinaryOperator::GT: resultComparison = ") > 0"; break;
3879      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
3880      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
3881      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
3882      case BinaryOperator::NE: resultComparison = ") != 0"; break;
3883      default: assert(false && "Invalid comparison operator");
3884      }
3885      Diag(Loc, diag::warn_stringcompare)
3886        << isa<ObjCEncodeExpr>(literalStringStripped)
3887        << literalString->getSourceRange()
3888        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
3889        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
3890                                                 "strcmp(")
3891        << CodeModificationHint::CreateInsertion(
3892                                       PP.getLocForEndOfToken(rex->getLocEnd()),
3893                                       resultComparison);
3894    }
3895  }
3896
3897  // The result of comparisons is 'bool' in C++, 'int' in C.
3898  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
3899
3900  if (isRelational) {
3901    if (lType->isRealType() && rType->isRealType())
3902      return ResultTy;
3903  } else {
3904    // Check for comparisons of floating point operands using != and ==.
3905    if (lType->isFloatingType()) {
3906      assert(rType->isFloatingType());
3907      CheckFloatComparison(Loc,lex,rex);
3908    }
3909
3910    if (lType->isArithmeticType() && rType->isArithmeticType())
3911      return ResultTy;
3912  }
3913
3914  bool LHSIsNull = lex->isNullPointerConstant(Context);
3915  bool RHSIsNull = rex->isNullPointerConstant(Context);
3916
3917  // All of the following pointer related warnings are GCC extensions, except
3918  // when handling null pointer constants. One day, we can consider making them
3919  // errors (when -pedantic-errors is enabled).
3920  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
3921    QualType LCanPointeeTy =
3922      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
3923    QualType RCanPointeeTy =
3924      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
3925
3926    // Simple check: if the pointee types are identical, we're done.
3927    if (LCanPointeeTy == RCanPointeeTy)
3928      return ResultTy;
3929
3930    if (getLangOptions().CPlusPlus) {
3931      // C++ [expr.rel]p2:
3932      //   [...] Pointer conversions (4.10) and qualification
3933      //   conversions (4.4) are performed on pointer operands (or on
3934      //   a pointer operand and a null pointer constant) to bring
3935      //   them to their composite pointer type. [...]
3936      //
3937      // C++ [expr.eq]p2 uses the same notion for (in)equality
3938      // comparisons of pointers.
3939      QualType T = FindCompositePointerType(lex, rex);
3940      if (T.isNull()) {
3941        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
3942          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3943        return QualType();
3944      }
3945
3946      ImpCastExprToType(lex, T);
3947      ImpCastExprToType(rex, T);
3948      return ResultTy;
3949    }
3950
3951    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
3952        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
3953        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
3954                                    RCanPointeeTy.getUnqualifiedType()) &&
3955        !Context.areComparableObjCPointerTypes(lType, rType)) {
3956      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3957        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3958    }
3959    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3960    return ResultTy;
3961  }
3962  // C++ allows comparison of pointers with null pointer constants.
3963  if (getLangOptions().CPlusPlus) {
3964    if (lType->isPointerType() && RHSIsNull) {
3965      ImpCastExprToType(rex, lType);
3966      return ResultTy;
3967    }
3968    if (rType->isPointerType() && LHSIsNull) {
3969      ImpCastExprToType(lex, rType);
3970      return ResultTy;
3971    }
3972    // And comparison of nullptr_t with itself.
3973    if (lType->isNullPtrType() && rType->isNullPtrType())
3974      return ResultTy;
3975  }
3976  // Handle block pointer types.
3977  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
3978    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
3979    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
3980
3981    if (!LHSIsNull && !RHSIsNull &&
3982        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
3983      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3984        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3985    }
3986    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3987    return ResultTy;
3988  }
3989  // Allow block pointers to be compared with null pointer constants.
3990  if (!isRelational
3991      && ((lType->isBlockPointerType() && rType->isPointerType())
3992          || (lType->isPointerType() && rType->isBlockPointerType()))) {
3993    if (!LHSIsNull && !RHSIsNull) {
3994      if (!((rType->isPointerType() && rType->getAsPointerType()
3995             ->getPointeeType()->isVoidType())
3996            || (lType->isPointerType() && lType->getAsPointerType()
3997                ->getPointeeType()->isVoidType())))
3998        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3999          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4000    }
4001    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4002    return ResultTy;
4003  }
4004
4005  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
4006    if (lType->isPointerType() || rType->isPointerType()) {
4007      const PointerType *LPT = lType->getAsPointerType();
4008      const PointerType *RPT = rType->getAsPointerType();
4009      bool LPtrToVoid = LPT ?
4010        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
4011      bool RPtrToVoid = RPT ?
4012        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
4013
4014      if (!LPtrToVoid && !RPtrToVoid &&
4015          !Context.typesAreCompatible(lType, rType)) {
4016        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4017          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4018        ImpCastExprToType(rex, lType);
4019        return ResultTy;
4020      }
4021      ImpCastExprToType(rex, lType);
4022      return ResultTy;
4023    }
4024    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
4025      ImpCastExprToType(rex, lType);
4026      return ResultTy;
4027    } else {
4028      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
4029        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
4030          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4031        ImpCastExprToType(rex, lType);
4032        return ResultTy;
4033      }
4034    }
4035  }
4036  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
4037       rType->isIntegerType()) {
4038    if (!RHSIsNull)
4039      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4040        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4041    ImpCastExprToType(rex, lType); // promote the integer to pointer
4042    return ResultTy;
4043  }
4044  if (lType->isIntegerType() &&
4045      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
4046    if (!LHSIsNull)
4047      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4048        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4049    ImpCastExprToType(lex, rType); // promote the integer to pointer
4050    return ResultTy;
4051  }
4052  // Handle block pointers.
4053  if (!isRelational && RHSIsNull
4054      && lType->isBlockPointerType() && rType->isIntegerType()) {
4055    ImpCastExprToType(rex, lType); // promote the integer to pointer
4056    return ResultTy;
4057  }
4058  if (!isRelational && LHSIsNull
4059      && lType->isIntegerType() && rType->isBlockPointerType()) {
4060    ImpCastExprToType(lex, rType); // promote the integer to pointer
4061    return ResultTy;
4062  }
4063  return InvalidOperands(Loc, lex, rex);
4064}
4065
4066/// CheckVectorCompareOperands - vector comparisons are a clang extension that
4067/// operates on extended vector types.  Instead of producing an IntTy result,
4068/// like a scalar comparison, a vector comparison produces a vector of integer
4069/// types.
4070QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
4071                                          SourceLocation Loc,
4072                                          bool isRelational) {
4073  // Check to make sure we're operating on vectors of the same type and width,
4074  // Allowing one side to be a scalar of element type.
4075  QualType vType = CheckVectorOperands(Loc, lex, rex);
4076  if (vType.isNull())
4077    return vType;
4078
4079  QualType lType = lex->getType();
4080  QualType rType = rex->getType();
4081
4082  // For non-floating point types, check for self-comparisons of the form
4083  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4084  // often indicate logic errors in the program.
4085  if (!lType->isFloatingType()) {
4086    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
4087      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
4088        if (DRL->getDecl() == DRR->getDecl())
4089          Diag(Loc, diag::warn_selfcomparison);
4090  }
4091
4092  // Check for comparisons of floating point operands using != and ==.
4093  if (!isRelational && lType->isFloatingType()) {
4094    assert (rType->isFloatingType());
4095    CheckFloatComparison(Loc,lex,rex);
4096  }
4097
4098  // FIXME: Vector compare support in the LLVM backend is not fully reliable,
4099  // just reject all vector comparisons for now.
4100  if (1) {
4101    Diag(Loc, diag::err_typecheck_vector_comparison)
4102      << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4103    return QualType();
4104  }
4105
4106  // Return the type for the comparison, which is the same as vector type for
4107  // integer vectors, or an integer type of identical size and number of
4108  // elements for floating point vectors.
4109  if (lType->isIntegerType())
4110    return lType;
4111
4112  const VectorType *VTy = lType->getAsVectorType();
4113  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
4114  if (TypeSize == Context.getTypeSize(Context.IntTy))
4115    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
4116  if (TypeSize == Context.getTypeSize(Context.LongTy))
4117    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
4118
4119  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
4120         "Unhandled vector element size in vector compare");
4121  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
4122}
4123
4124inline QualType Sema::CheckBitwiseOperands(
4125  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
4126{
4127  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4128    return CheckVectorOperands(Loc, lex, rex);
4129
4130  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4131
4132  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4133    return compType;
4134  return InvalidOperands(Loc, lex, rex);
4135}
4136
4137inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
4138  Expr *&lex, Expr *&rex, SourceLocation Loc)
4139{
4140  UsualUnaryConversions(lex);
4141  UsualUnaryConversions(rex);
4142
4143  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
4144    return Context.IntTy;
4145  return InvalidOperands(Loc, lex, rex);
4146}
4147
4148/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
4149/// is a read-only property; return true if so. A readonly property expression
4150/// depends on various declarations and thus must be treated specially.
4151///
4152static bool IsReadonlyProperty(Expr *E, Sema &S)
4153{
4154  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
4155    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
4156    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
4157      QualType BaseType = PropExpr->getBase()->getType();
4158      if (const PointerType *PTy = BaseType->getAsPointerType())
4159        if (const ObjCInterfaceType *IFTy =
4160            PTy->getPointeeType()->getAsObjCInterfaceType())
4161          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
4162            if (S.isPropertyReadonly(PDecl, IFace))
4163              return true;
4164    }
4165  }
4166  return false;
4167}
4168
4169/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
4170/// emit an error and return true.  If so, return false.
4171static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
4172  SourceLocation OrigLoc = Loc;
4173  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
4174                                                              &Loc);
4175  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
4176    IsLV = Expr::MLV_ReadonlyProperty;
4177  if (IsLV == Expr::MLV_Valid)
4178    return false;
4179
4180  unsigned Diag = 0;
4181  bool NeedType = false;
4182  switch (IsLV) { // C99 6.5.16p2
4183  default: assert(0 && "Unknown result from isModifiableLvalue!");
4184  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
4185  case Expr::MLV_ArrayType:
4186    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
4187    NeedType = true;
4188    break;
4189  case Expr::MLV_NotObjectType:
4190    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
4191    NeedType = true;
4192    break;
4193  case Expr::MLV_LValueCast:
4194    Diag = diag::err_typecheck_lvalue_casts_not_supported;
4195    break;
4196  case Expr::MLV_InvalidExpression:
4197    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
4198    break;
4199  case Expr::MLV_IncompleteType:
4200  case Expr::MLV_IncompleteVoidType:
4201    return S.RequireCompleteType(Loc, E->getType(),
4202                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
4203                                    E->getSourceRange());
4204  case Expr::MLV_DuplicateVectorComponents:
4205    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
4206    break;
4207  case Expr::MLV_NotBlockQualified:
4208    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
4209    break;
4210  case Expr::MLV_ReadonlyProperty:
4211    Diag = diag::error_readonly_property_assignment;
4212    break;
4213  case Expr::MLV_NoSetterProperty:
4214    Diag = diag::error_nosetter_property_assignment;
4215    break;
4216  }
4217
4218  SourceRange Assign;
4219  if (Loc != OrigLoc)
4220    Assign = SourceRange(OrigLoc, OrigLoc);
4221  if (NeedType)
4222    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
4223  else
4224    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
4225  return true;
4226}
4227
4228
4229
4230// C99 6.5.16.1
4231QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
4232                                       SourceLocation Loc,
4233                                       QualType CompoundType) {
4234  // Verify that LHS is a modifiable lvalue, and emit error if not.
4235  if (CheckForModifiableLvalue(LHS, Loc, *this))
4236    return QualType();
4237
4238  QualType LHSType = LHS->getType();
4239  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
4240
4241  AssignConvertType ConvTy;
4242  if (CompoundType.isNull()) {
4243    // Simple assignment "x = y".
4244    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
4245    // Special case of NSObject attributes on c-style pointer types.
4246    if (ConvTy == IncompatiblePointer &&
4247        ((Context.isObjCNSObjectType(LHSType) &&
4248          Context.isObjCObjectPointerType(RHSType)) ||
4249         (Context.isObjCNSObjectType(RHSType) &&
4250          Context.isObjCObjectPointerType(LHSType))))
4251      ConvTy = Compatible;
4252
4253    // If the RHS is a unary plus or minus, check to see if they = and + are
4254    // right next to each other.  If so, the user may have typo'd "x =+ 4"
4255    // instead of "x += 4".
4256    Expr *RHSCheck = RHS;
4257    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
4258      RHSCheck = ICE->getSubExpr();
4259    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
4260      if ((UO->getOpcode() == UnaryOperator::Plus ||
4261           UO->getOpcode() == UnaryOperator::Minus) &&
4262          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
4263          // Only if the two operators are exactly adjacent.
4264          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
4265          // And there is a space or other character before the subexpr of the
4266          // unary +/-.  We don't want to warn on "x=-1".
4267          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
4268          UO->getSubExpr()->getLocStart().isFileID()) {
4269        Diag(Loc, diag::warn_not_compound_assign)
4270          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
4271          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
4272      }
4273    }
4274  } else {
4275    // Compound assignment "x += y"
4276    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
4277  }
4278
4279  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
4280                               RHS, "assigning"))
4281    return QualType();
4282
4283  // C99 6.5.16p3: The type of an assignment expression is the type of the
4284  // left operand unless the left operand has qualified type, in which case
4285  // it is the unqualified version of the type of the left operand.
4286  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
4287  // is converted to the type of the assignment expression (above).
4288  // C++ 5.17p1: the type of the assignment expression is that of its left
4289  // operand.
4290  return LHSType.getUnqualifiedType();
4291}
4292
4293// C99 6.5.17
4294QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
4295  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
4296  DefaultFunctionArrayConversion(RHS);
4297
4298  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
4299  // incomplete in C++).
4300
4301  return RHS->getType();
4302}
4303
4304/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
4305/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
4306QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
4307                                              bool isInc) {
4308  if (Op->isTypeDependent())
4309    return Context.DependentTy;
4310
4311  QualType ResType = Op->getType();
4312  assert(!ResType.isNull() && "no type for increment/decrement expression");
4313
4314  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
4315    // Decrement of bool is not allowed.
4316    if (!isInc) {
4317      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
4318      return QualType();
4319    }
4320    // Increment of bool sets it to true, but is deprecated.
4321    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
4322  } else if (ResType->isRealType()) {
4323    // OK!
4324  } else if (const PointerType *PT = ResType->getAsPointerType()) {
4325    // C99 6.5.2.4p2, 6.5.6p2
4326    if (PT->getPointeeType()->isVoidType()) {
4327      if (getLangOptions().CPlusPlus) {
4328        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
4329          << Op->getSourceRange();
4330        return QualType();
4331      }
4332
4333      // Pointer to void is a GNU extension in C.
4334      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
4335    } else if (PT->getPointeeType()->isFunctionType()) {
4336      if (getLangOptions().CPlusPlus) {
4337        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
4338          << Op->getType() << Op->getSourceRange();
4339        return QualType();
4340      }
4341
4342      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
4343        << ResType << Op->getSourceRange();
4344    } else if (RequireCompleteType(OpLoc, PT->getPointeeType(),
4345                               diag::err_typecheck_arithmetic_incomplete_type,
4346                                   Op->getSourceRange(), SourceRange(),
4347                                   ResType))
4348      return QualType();
4349  } else if (ResType->isComplexType()) {
4350    // C99 does not support ++/-- on complex types, we allow as an extension.
4351    Diag(OpLoc, diag::ext_integer_increment_complex)
4352      << ResType << Op->getSourceRange();
4353  } else {
4354    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
4355      << ResType << Op->getSourceRange();
4356    return QualType();
4357  }
4358  // At this point, we know we have a real, complex or pointer type.
4359  // Now make sure the operand is a modifiable lvalue.
4360  if (CheckForModifiableLvalue(Op, OpLoc, *this))
4361    return QualType();
4362  return ResType;
4363}
4364
4365/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
4366/// This routine allows us to typecheck complex/recursive expressions
4367/// where the declaration is needed for type checking. We only need to
4368/// handle cases when the expression references a function designator
4369/// or is an lvalue. Here are some examples:
4370///  - &(x) => x
4371///  - &*****f => f for f a function designator.
4372///  - &s.xx => s
4373///  - &s.zz[1].yy -> s, if zz is an array
4374///  - *(x + 1) -> x, if x is an array
4375///  - &"123"[2] -> 0
4376///  - & __real__ x -> x
4377static NamedDecl *getPrimaryDecl(Expr *E) {
4378  switch (E->getStmtClass()) {
4379  case Stmt::DeclRefExprClass:
4380  case Stmt::QualifiedDeclRefExprClass:
4381    return cast<DeclRefExpr>(E)->getDecl();
4382  case Stmt::MemberExprClass:
4383    // If this is an arrow operator, the address is an offset from
4384    // the base's value, so the object the base refers to is
4385    // irrelevant.
4386    if (cast<MemberExpr>(E)->isArrow())
4387      return 0;
4388    // Otherwise, the expression refers to a part of the base
4389    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
4390  case Stmt::ArraySubscriptExprClass: {
4391    // FIXME: This code shouldn't be necessary!  We should catch the implicit
4392    // promotion of register arrays earlier.
4393    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
4394    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
4395      if (ICE->getSubExpr()->getType()->isArrayType())
4396        return getPrimaryDecl(ICE->getSubExpr());
4397    }
4398    return 0;
4399  }
4400  case Stmt::UnaryOperatorClass: {
4401    UnaryOperator *UO = cast<UnaryOperator>(E);
4402
4403    switch(UO->getOpcode()) {
4404    case UnaryOperator::Real:
4405    case UnaryOperator::Imag:
4406    case UnaryOperator::Extension:
4407      return getPrimaryDecl(UO->getSubExpr());
4408    default:
4409      return 0;
4410    }
4411  }
4412  case Stmt::ParenExprClass:
4413    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
4414  case Stmt::ImplicitCastExprClass:
4415    // If the result of an implicit cast is an l-value, we care about
4416    // the sub-expression; otherwise, the result here doesn't matter.
4417    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
4418  default:
4419    return 0;
4420  }
4421}
4422
4423/// CheckAddressOfOperand - The operand of & must be either a function
4424/// designator or an lvalue designating an object. If it is an lvalue, the
4425/// object cannot be declared with storage class register or be a bit field.
4426/// Note: The usual conversions are *not* applied to the operand of the &
4427/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
4428/// In C++, the operand might be an overloaded function name, in which case
4429/// we allow the '&' but retain the overloaded-function type.
4430QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
4431  // Make sure to ignore parentheses in subsequent checks
4432  op = op->IgnoreParens();
4433
4434  if (op->isTypeDependent())
4435    return Context.DependentTy;
4436
4437  if (getLangOptions().C99) {
4438    // Implement C99-only parts of addressof rules.
4439    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
4440      if (uOp->getOpcode() == UnaryOperator::Deref)
4441        // Per C99 6.5.3.2, the address of a deref always returns a valid result
4442        // (assuming the deref expression is valid).
4443        return uOp->getSubExpr()->getType();
4444    }
4445    // Technically, there should be a check for array subscript
4446    // expressions here, but the result of one is always an lvalue anyway.
4447  }
4448  NamedDecl *dcl = getPrimaryDecl(op);
4449  Expr::isLvalueResult lval = op->isLvalue(Context);
4450
4451  if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
4452    // C99 6.5.3.2p1
4453    // The operand must be either an l-value or a function designator
4454    if (!op->getType()->isFunctionType()) {
4455      // FIXME: emit more specific diag...
4456      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
4457        << op->getSourceRange();
4458      return QualType();
4459    }
4460  } else if (op->getBitField()) { // C99 6.5.3.2p1
4461    // The operand cannot be a bit-field
4462    Diag(OpLoc, diag::err_typecheck_address_of)
4463      << "bit-field" << op->getSourceRange();
4464        return QualType();
4465  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
4466           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
4467    // The operand cannot be an element of a vector
4468    Diag(OpLoc, diag::err_typecheck_address_of)
4469      << "vector element" << op->getSourceRange();
4470    return QualType();
4471  } else if (dcl) { // C99 6.5.3.2p1
4472    // We have an lvalue with a decl. Make sure the decl is not declared
4473    // with the register storage-class specifier.
4474    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
4475      if (vd->getStorageClass() == VarDecl::Register) {
4476        Diag(OpLoc, diag::err_typecheck_address_of)
4477          << "register variable" << op->getSourceRange();
4478        return QualType();
4479      }
4480    } else if (isa<OverloadedFunctionDecl>(dcl)) {
4481      return Context.OverloadTy;
4482    } else if (isa<FieldDecl>(dcl)) {
4483      // Okay: we can take the address of a field.
4484      // Could be a pointer to member, though, if there is an explicit
4485      // scope qualifier for the class.
4486      if (isa<QualifiedDeclRefExpr>(op)) {
4487        DeclContext *Ctx = dcl->getDeclContext();
4488        if (Ctx && Ctx->isRecord())
4489          return Context.getMemberPointerType(op->getType(),
4490                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
4491      }
4492    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
4493      // Okay: we can take the address of a function.
4494      // As above.
4495      if (isa<QualifiedDeclRefExpr>(op) && MD->isInstance())
4496        return Context.getMemberPointerType(op->getType(),
4497              Context.getTypeDeclType(MD->getParent()).getTypePtr());
4498    } else if (!isa<FunctionDecl>(dcl))
4499      assert(0 && "Unknown/unexpected decl type");
4500  }
4501
4502  if (lval == Expr::LV_IncompleteVoidType) {
4503    // Taking the address of a void variable is technically illegal, but we
4504    // allow it in cases which are otherwise valid.
4505    // Example: "extern void x; void* y = &x;".
4506    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
4507  }
4508
4509  // If the operand has type "type", the result has type "pointer to type".
4510  return Context.getPointerType(op->getType());
4511}
4512
4513QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
4514  if (Op->isTypeDependent())
4515    return Context.DependentTy;
4516
4517  UsualUnaryConversions(Op);
4518  QualType Ty = Op->getType();
4519
4520  // Note that per both C89 and C99, this is always legal, even if ptype is an
4521  // incomplete type or void.  It would be possible to warn about dereferencing
4522  // a void pointer, but it's completely well-defined, and such a warning is
4523  // unlikely to catch any mistakes.
4524  if (const PointerType *PT = Ty->getAsPointerType())
4525    return PT->getPointeeType();
4526
4527  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
4528    << Ty << Op->getSourceRange();
4529  return QualType();
4530}
4531
4532static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
4533  tok::TokenKind Kind) {
4534  BinaryOperator::Opcode Opc;
4535  switch (Kind) {
4536  default: assert(0 && "Unknown binop!");
4537  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
4538  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
4539  case tok::star:                 Opc = BinaryOperator::Mul; break;
4540  case tok::slash:                Opc = BinaryOperator::Div; break;
4541  case tok::percent:              Opc = BinaryOperator::Rem; break;
4542  case tok::plus:                 Opc = BinaryOperator::Add; break;
4543  case tok::minus:                Opc = BinaryOperator::Sub; break;
4544  case tok::lessless:             Opc = BinaryOperator::Shl; break;
4545  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
4546  case tok::lessequal:            Opc = BinaryOperator::LE; break;
4547  case tok::less:                 Opc = BinaryOperator::LT; break;
4548  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
4549  case tok::greater:              Opc = BinaryOperator::GT; break;
4550  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
4551  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
4552  case tok::amp:                  Opc = BinaryOperator::And; break;
4553  case tok::caret:                Opc = BinaryOperator::Xor; break;
4554  case tok::pipe:                 Opc = BinaryOperator::Or; break;
4555  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
4556  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
4557  case tok::equal:                Opc = BinaryOperator::Assign; break;
4558  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
4559  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
4560  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
4561  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
4562  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
4563  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
4564  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
4565  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
4566  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
4567  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
4568  case tok::comma:                Opc = BinaryOperator::Comma; break;
4569  }
4570  return Opc;
4571}
4572
4573static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
4574  tok::TokenKind Kind) {
4575  UnaryOperator::Opcode Opc;
4576  switch (Kind) {
4577  default: assert(0 && "Unknown unary op!");
4578  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
4579  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
4580  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
4581  case tok::star:         Opc = UnaryOperator::Deref; break;
4582  case tok::plus:         Opc = UnaryOperator::Plus; break;
4583  case tok::minus:        Opc = UnaryOperator::Minus; break;
4584  case tok::tilde:        Opc = UnaryOperator::Not; break;
4585  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
4586  case tok::kw___real:    Opc = UnaryOperator::Real; break;
4587  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
4588  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
4589  }
4590  return Opc;
4591}
4592
4593/// CreateBuiltinBinOp - Creates a new built-in binary operation with
4594/// operator @p Opc at location @c TokLoc. This routine only supports
4595/// built-in operations; ActOnBinOp handles overloaded operators.
4596Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
4597                                                  unsigned Op,
4598                                                  Expr *lhs, Expr *rhs) {
4599  QualType ResultTy;     // Result type of the binary operator.
4600  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
4601  // The following two variables are used for compound assignment operators
4602  QualType CompLHSTy;    // Type of LHS after promotions for computation
4603  QualType CompResultTy; // Type of computation result
4604
4605  switch (Opc) {
4606  case BinaryOperator::Assign:
4607    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
4608    break;
4609  case BinaryOperator::PtrMemD:
4610  case BinaryOperator::PtrMemI:
4611    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
4612                                            Opc == BinaryOperator::PtrMemI);
4613    break;
4614  case BinaryOperator::Mul:
4615  case BinaryOperator::Div:
4616    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
4617    break;
4618  case BinaryOperator::Rem:
4619    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
4620    break;
4621  case BinaryOperator::Add:
4622    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
4623    break;
4624  case BinaryOperator::Sub:
4625    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
4626    break;
4627  case BinaryOperator::Shl:
4628  case BinaryOperator::Shr:
4629    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
4630    break;
4631  case BinaryOperator::LE:
4632  case BinaryOperator::LT:
4633  case BinaryOperator::GE:
4634  case BinaryOperator::GT:
4635    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
4636    break;
4637  case BinaryOperator::EQ:
4638  case BinaryOperator::NE:
4639    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
4640    break;
4641  case BinaryOperator::And:
4642  case BinaryOperator::Xor:
4643  case BinaryOperator::Or:
4644    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
4645    break;
4646  case BinaryOperator::LAnd:
4647  case BinaryOperator::LOr:
4648    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
4649    break;
4650  case BinaryOperator::MulAssign:
4651  case BinaryOperator::DivAssign:
4652    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
4653    CompLHSTy = CompResultTy;
4654    if (!CompResultTy.isNull())
4655      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4656    break;
4657  case BinaryOperator::RemAssign:
4658    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
4659    CompLHSTy = CompResultTy;
4660    if (!CompResultTy.isNull())
4661      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4662    break;
4663  case BinaryOperator::AddAssign:
4664    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4665    if (!CompResultTy.isNull())
4666      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4667    break;
4668  case BinaryOperator::SubAssign:
4669    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4670    if (!CompResultTy.isNull())
4671      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4672    break;
4673  case BinaryOperator::ShlAssign:
4674  case BinaryOperator::ShrAssign:
4675    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
4676    CompLHSTy = CompResultTy;
4677    if (!CompResultTy.isNull())
4678      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4679    break;
4680  case BinaryOperator::AndAssign:
4681  case BinaryOperator::XorAssign:
4682  case BinaryOperator::OrAssign:
4683    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
4684    CompLHSTy = CompResultTy;
4685    if (!CompResultTy.isNull())
4686      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4687    break;
4688  case BinaryOperator::Comma:
4689    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
4690    break;
4691  }
4692  if (ResultTy.isNull())
4693    return ExprError();
4694  if (CompResultTy.isNull())
4695    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
4696  else
4697    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
4698                                                      CompLHSTy, CompResultTy,
4699                                                      OpLoc));
4700}
4701
4702// Binary Operators.  'Tok' is the token for the operator.
4703Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
4704                                          tok::TokenKind Kind,
4705                                          ExprArg LHS, ExprArg RHS) {
4706  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
4707  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
4708
4709  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
4710  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
4711
4712  if (getLangOptions().CPlusPlus &&
4713      (lhs->getType()->isOverloadableType() ||
4714       rhs->getType()->isOverloadableType())) {
4715    // Find all of the overloaded operators visible from this
4716    // point. We perform both an operator-name lookup from the local
4717    // scope and an argument-dependent lookup based on the types of
4718    // the arguments.
4719    FunctionSet Functions;
4720    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
4721    if (OverOp != OO_None) {
4722      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
4723                                   Functions);
4724      Expr *Args[2] = { lhs, rhs };
4725      DeclarationName OpName
4726        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4727      ArgumentDependentLookup(OpName, Args, 2, Functions);
4728    }
4729
4730    // Build the (potentially-overloaded, potentially-dependent)
4731    // binary operation.
4732    return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
4733  }
4734
4735  // Build a built-in binary operation.
4736  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
4737}
4738
4739Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
4740                                                    unsigned OpcIn,
4741                                                    ExprArg InputArg) {
4742  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4743
4744  // FIXME: Input is modified below, but InputArg is not updated appropriately.
4745  Expr *Input = (Expr *)InputArg.get();
4746  QualType resultType;
4747  switch (Opc) {
4748  case UnaryOperator::PostInc:
4749  case UnaryOperator::PostDec:
4750  case UnaryOperator::OffsetOf:
4751    assert(false && "Invalid unary operator");
4752    break;
4753
4754  case UnaryOperator::PreInc:
4755  case UnaryOperator::PreDec:
4756    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
4757                                                Opc == UnaryOperator::PreInc);
4758    break;
4759  case UnaryOperator::AddrOf:
4760    resultType = CheckAddressOfOperand(Input, OpLoc);
4761    break;
4762  case UnaryOperator::Deref:
4763    DefaultFunctionArrayConversion(Input);
4764    resultType = CheckIndirectionOperand(Input, OpLoc);
4765    break;
4766  case UnaryOperator::Plus:
4767  case UnaryOperator::Minus:
4768    UsualUnaryConversions(Input);
4769    resultType = Input->getType();
4770    if (resultType->isDependentType())
4771      break;
4772    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
4773      break;
4774    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
4775             resultType->isEnumeralType())
4776      break;
4777    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
4778             Opc == UnaryOperator::Plus &&
4779             resultType->isPointerType())
4780      break;
4781
4782    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4783      << resultType << Input->getSourceRange());
4784  case UnaryOperator::Not: // bitwise complement
4785    UsualUnaryConversions(Input);
4786    resultType = Input->getType();
4787    if (resultType->isDependentType())
4788      break;
4789    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
4790    if (resultType->isComplexType() || resultType->isComplexIntegerType())
4791      // C99 does not support '~' for complex conjugation.
4792      Diag(OpLoc, diag::ext_integer_complement_complex)
4793        << resultType << Input->getSourceRange();
4794    else if (!resultType->isIntegerType())
4795      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4796        << resultType << Input->getSourceRange());
4797    break;
4798  case UnaryOperator::LNot: // logical negation
4799    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
4800    DefaultFunctionArrayConversion(Input);
4801    resultType = Input->getType();
4802    if (resultType->isDependentType())
4803      break;
4804    if (!resultType->isScalarType()) // C99 6.5.3.3p1
4805      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4806        << resultType << Input->getSourceRange());
4807    // LNot always has type int. C99 6.5.3.3p5.
4808    // In C++, it's bool. C++ 5.3.1p8
4809    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
4810    break;
4811  case UnaryOperator::Real:
4812  case UnaryOperator::Imag:
4813    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
4814    break;
4815  case UnaryOperator::Extension:
4816    resultType = Input->getType();
4817    break;
4818  }
4819  if (resultType.isNull())
4820    return ExprError();
4821
4822  InputArg.release();
4823  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
4824}
4825
4826// Unary Operators.  'Tok' is the token for the operator.
4827Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
4828                                            tok::TokenKind Op, ExprArg input) {
4829  Expr *Input = (Expr*)input.get();
4830  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
4831
4832  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
4833    // Find all of the overloaded operators visible from this
4834    // point. We perform both an operator-name lookup from the local
4835    // scope and an argument-dependent lookup based on the types of
4836    // the arguments.
4837    FunctionSet Functions;
4838    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
4839    if (OverOp != OO_None) {
4840      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
4841                                   Functions);
4842      DeclarationName OpName
4843        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4844      ArgumentDependentLookup(OpName, &Input, 1, Functions);
4845    }
4846
4847    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
4848  }
4849
4850  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
4851}
4852
4853/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
4854Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
4855                                            SourceLocation LabLoc,
4856                                            IdentifierInfo *LabelII) {
4857  // Look up the record for this label identifier.
4858  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
4859
4860  // If we haven't seen this label yet, create a forward reference. It
4861  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
4862  if (LabelDecl == 0)
4863    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
4864
4865  // Create the AST node.  The address of a label always has type 'void*'.
4866  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
4867                                       Context.getPointerType(Context.VoidTy)));
4868}
4869
4870Sema::OwningExprResult
4871Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
4872                    SourceLocation RPLoc) { // "({..})"
4873  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
4874  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
4875  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
4876
4877  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4878  if (isFileScope)
4879    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
4880
4881  // FIXME: there are a variety of strange constraints to enforce here, for
4882  // example, it is not possible to goto into a stmt expression apparently.
4883  // More semantic analysis is needed.
4884
4885  // If there are sub stmts in the compound stmt, take the type of the last one
4886  // as the type of the stmtexpr.
4887  QualType Ty = Context.VoidTy;
4888
4889  if (!Compound->body_empty()) {
4890    Stmt *LastStmt = Compound->body_back();
4891    // If LastStmt is a label, skip down through into the body.
4892    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
4893      LastStmt = Label->getSubStmt();
4894
4895    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
4896      Ty = LastExpr->getType();
4897  }
4898
4899  // FIXME: Check that expression type is complete/non-abstract; statement
4900  // expressions are not lvalues.
4901
4902  substmt.release();
4903  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
4904}
4905
4906Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
4907                                                  SourceLocation BuiltinLoc,
4908                                                  SourceLocation TypeLoc,
4909                                                  TypeTy *argty,
4910                                                  OffsetOfComponent *CompPtr,
4911                                                  unsigned NumComponents,
4912                                                  SourceLocation RPLoc) {
4913  // FIXME: This function leaks all expressions in the offset components on
4914  // error.
4915  QualType ArgTy = QualType::getFromOpaquePtr(argty);
4916  assert(!ArgTy.isNull() && "Missing type argument!");
4917
4918  bool Dependent = ArgTy->isDependentType();
4919
4920  // We must have at least one component that refers to the type, and the first
4921  // one is known to be a field designator.  Verify that the ArgTy represents
4922  // a struct/union/class.
4923  if (!Dependent && !ArgTy->isRecordType())
4924    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
4925
4926  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
4927  // with an incomplete type would be illegal.
4928
4929  // Otherwise, create a null pointer as the base, and iteratively process
4930  // the offsetof designators.
4931  QualType ArgTyPtr = Context.getPointerType(ArgTy);
4932  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
4933  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
4934                                    ArgTy, SourceLocation());
4935
4936  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
4937  // GCC extension, diagnose them.
4938  // FIXME: This diagnostic isn't actually visible because the location is in
4939  // a system header!
4940  if (NumComponents != 1)
4941    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
4942      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
4943
4944  if (!Dependent) {
4945    bool DidWarnAboutNonPOD = false;
4946
4947    // FIXME: Dependent case loses a lot of information here. And probably
4948    // leaks like a sieve.
4949    for (unsigned i = 0; i != NumComponents; ++i) {
4950      const OffsetOfComponent &OC = CompPtr[i];
4951      if (OC.isBrackets) {
4952        // Offset of an array sub-field.  TODO: Should we allow vector elements?
4953        const ArrayType *AT = Context.getAsArrayType(Res->getType());
4954        if (!AT) {
4955          Res->Destroy(Context);
4956          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
4957            << Res->getType());
4958        }
4959
4960        // FIXME: C++: Verify that operator[] isn't overloaded.
4961
4962        // Promote the array so it looks more like a normal array subscript
4963        // expression.
4964        DefaultFunctionArrayConversion(Res);
4965
4966        // C99 6.5.2.1p1
4967        Expr *Idx = static_cast<Expr*>(OC.U.E);
4968        // FIXME: Leaks Res
4969        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
4970          return ExprError(Diag(Idx->getLocStart(),
4971                                diag::err_typecheck_subscript_not_integer)
4972            << Idx->getSourceRange());
4973
4974        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
4975                                               OC.LocEnd);
4976        continue;
4977      }
4978
4979      const RecordType *RC = Res->getType()->getAsRecordType();
4980      if (!RC) {
4981        Res->Destroy(Context);
4982        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
4983          << Res->getType());
4984      }
4985
4986      // Get the decl corresponding to this.
4987      RecordDecl *RD = RC->getDecl();
4988      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
4989        if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
4990          ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
4991            << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
4992            << Res->getType());
4993          DidWarnAboutNonPOD = true;
4994        }
4995      }
4996
4997      FieldDecl *MemberDecl
4998        = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
4999                                                          LookupMemberName)
5000                                        .getAsDecl());
5001      // FIXME: Leaks Res
5002      if (!MemberDecl)
5003        return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member)
5004         << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd));
5005
5006      // FIXME: C++: Verify that MemberDecl isn't a static field.
5007      // FIXME: Verify that MemberDecl isn't a bitfield.
5008      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
5009        Res = BuildAnonymousStructUnionMemberReference(
5010            SourceLocation(), MemberDecl, Res, SourceLocation()).takeAs<Expr>();
5011      } else {
5012        // MemberDecl->getType() doesn't get the right qualifiers, but it
5013        // doesn't matter here.
5014        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
5015                MemberDecl->getType().getNonReferenceType());
5016      }
5017    }
5018  }
5019
5020  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
5021                                           Context.getSizeType(), BuiltinLoc));
5022}
5023
5024
5025Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
5026                                                      TypeTy *arg1,TypeTy *arg2,
5027                                                      SourceLocation RPLoc) {
5028  QualType argT1 = QualType::getFromOpaquePtr(arg1);
5029  QualType argT2 = QualType::getFromOpaquePtr(arg2);
5030
5031  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
5032
5033  if (getLangOptions().CPlusPlus) {
5034    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
5035      << SourceRange(BuiltinLoc, RPLoc);
5036    return ExprError();
5037  }
5038
5039  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
5040                                                 argT1, argT2, RPLoc));
5041}
5042
5043Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
5044                                             ExprArg cond,
5045                                             ExprArg expr1, ExprArg expr2,
5046                                             SourceLocation RPLoc) {
5047  Expr *CondExpr = static_cast<Expr*>(cond.get());
5048  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
5049  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
5050
5051  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
5052
5053  QualType resType;
5054  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
5055    resType = Context.DependentTy;
5056  } else {
5057    // The conditional expression is required to be a constant expression.
5058    llvm::APSInt condEval(32);
5059    SourceLocation ExpLoc;
5060    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
5061      return ExprError(Diag(ExpLoc,
5062                       diag::err_typecheck_choose_expr_requires_constant)
5063        << CondExpr->getSourceRange());
5064
5065    // If the condition is > zero, then the AST type is the same as the LSHExpr.
5066    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
5067  }
5068
5069  cond.release(); expr1.release(); expr2.release();
5070  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
5071                                        resType, RPLoc));
5072}
5073
5074//===----------------------------------------------------------------------===//
5075// Clang Extensions.
5076//===----------------------------------------------------------------------===//
5077
5078/// ActOnBlockStart - This callback is invoked when a block literal is started.
5079void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
5080  // Analyze block parameters.
5081  BlockSemaInfo *BSI = new BlockSemaInfo();
5082
5083  // Add BSI to CurBlock.
5084  BSI->PrevBlockInfo = CurBlock;
5085  CurBlock = BSI;
5086
5087  BSI->ReturnType = 0;
5088  BSI->TheScope = BlockScope;
5089  BSI->hasBlockDeclRefExprs = false;
5090  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
5091  CurFunctionNeedsScopeChecking = false;
5092
5093  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
5094  PushDeclContext(BlockScope, BSI->TheDecl);
5095}
5096
5097void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
5098  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
5099
5100  if (ParamInfo.getNumTypeObjects() == 0
5101      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
5102    ProcessDeclAttributes(CurBlock->TheDecl, ParamInfo);
5103    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5104
5105    if (T->isArrayType()) {
5106      Diag(ParamInfo.getSourceRange().getBegin(),
5107           diag::err_block_returns_array);
5108      return;
5109    }
5110
5111    // The parameter list is optional, if there was none, assume ().
5112    if (!T->isFunctionType())
5113      T = Context.getFunctionType(T, NULL, 0, 0, 0);
5114
5115    CurBlock->hasPrototype = true;
5116    CurBlock->isVariadic = false;
5117    // Check for a valid sentinel attribute on this block.
5118    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5119      Diag(ParamInfo.getAttributes()->getLoc(),
5120           diag::warn_attribute_sentinel_not_variadic) << 1;
5121      // FIXME: remove the attribute.
5122    }
5123    QualType RetTy = T.getTypePtr()->getAsFunctionType()->getResultType();
5124
5125    // Do not allow returning a objc interface by-value.
5126    if (RetTy->isObjCInterfaceType()) {
5127      Diag(ParamInfo.getSourceRange().getBegin(),
5128           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5129      return;
5130    }
5131    return;
5132  }
5133
5134  // Analyze arguments to block.
5135  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
5136         "Not a function declarator!");
5137  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
5138
5139  CurBlock->hasPrototype = FTI.hasPrototype;
5140  CurBlock->isVariadic = true;
5141
5142  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
5143  // no arguments, not a function that takes a single void argument.
5144  if (FTI.hasPrototype &&
5145      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5146     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
5147        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
5148    // empty arg list, don't push any params.
5149    CurBlock->isVariadic = false;
5150  } else if (FTI.hasPrototype) {
5151    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
5152      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
5153    CurBlock->isVariadic = FTI.isVariadic;
5154  }
5155  CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
5156                               CurBlock->Params.size());
5157  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
5158  ProcessDeclAttributes(CurBlock->TheDecl, ParamInfo);
5159  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
5160       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
5161    // If this has an identifier, add it to the scope stack.
5162    if ((*AI)->getIdentifier())
5163      PushOnScopeChains(*AI, CurBlock->TheScope);
5164
5165  // Check for a valid sentinel attribute on this block.
5166  if (!CurBlock->isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5167    Diag(ParamInfo.getAttributes()->getLoc(),
5168         diag::warn_attribute_sentinel_not_variadic) << 1;
5169    // FIXME: remove the attribute.
5170  }
5171
5172  // Analyze the return type.
5173  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5174  QualType RetTy = T->getAsFunctionType()->getResultType();
5175
5176  // Do not allow returning a objc interface by-value.
5177  if (RetTy->isObjCInterfaceType()) {
5178    Diag(ParamInfo.getSourceRange().getBegin(),
5179         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5180  } else if (!RetTy->isDependentType())
5181    CurBlock->ReturnType = RetTy.getTypePtr();
5182}
5183
5184/// ActOnBlockError - If there is an error parsing a block, this callback
5185/// is invoked to pop the information about the block from the action impl.
5186void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
5187  // Ensure that CurBlock is deleted.
5188  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
5189
5190  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
5191
5192  // Pop off CurBlock, handle nested blocks.
5193  PopDeclContext();
5194  CurBlock = CurBlock->PrevBlockInfo;
5195  // FIXME: Delete the ParmVarDecl objects as well???
5196}
5197
5198/// ActOnBlockStmtExpr - This is called when the body of a block statement
5199/// literal was successfully completed.  ^(int x){...}
5200Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
5201                                                StmtArg body, Scope *CurScope) {
5202  // If blocks are disabled, emit an error.
5203  if (!LangOpts.Blocks)
5204    Diag(CaretLoc, diag::err_blocks_disable);
5205
5206  // Ensure that CurBlock is deleted.
5207  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
5208
5209  PopDeclContext();
5210
5211  // Pop off CurBlock, handle nested blocks.
5212  CurBlock = CurBlock->PrevBlockInfo;
5213
5214  QualType RetTy = Context.VoidTy;
5215  if (BSI->ReturnType)
5216    RetTy = QualType(BSI->ReturnType, 0);
5217
5218  llvm::SmallVector<QualType, 8> ArgTypes;
5219  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
5220    ArgTypes.push_back(BSI->Params[i]->getType());
5221
5222  QualType BlockTy;
5223  if (!BSI->hasPrototype)
5224    BlockTy = Context.getFunctionNoProtoType(RetTy);
5225  else
5226    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
5227                                      BSI->isVariadic, 0);
5228
5229  // FIXME: Check that return/parameter types are complete/non-abstract
5230
5231  BlockTy = Context.getBlockPointerType(BlockTy);
5232
5233  // If needed, diagnose invalid gotos and switches in the block.
5234  if (CurFunctionNeedsScopeChecking)
5235    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
5236  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
5237
5238  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
5239  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
5240                                       BSI->hasBlockDeclRefExprs));
5241}
5242
5243Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
5244                                        ExprArg expr, TypeTy *type,
5245                                        SourceLocation RPLoc) {
5246  QualType T = QualType::getFromOpaquePtr(type);
5247  Expr *E = static_cast<Expr*>(expr.get());
5248  Expr *OrigExpr = E;
5249
5250  InitBuiltinVaListType();
5251
5252  // Get the va_list type
5253  QualType VaListType = Context.getBuiltinVaListType();
5254  if (VaListType->isArrayType()) {
5255    // Deal with implicit array decay; for example, on x86-64,
5256    // va_list is an array, but it's supposed to decay to
5257    // a pointer for va_arg.
5258    VaListType = Context.getArrayDecayedType(VaListType);
5259    // Make sure the input expression also decays appropriately.
5260    UsualUnaryConversions(E);
5261  } else {
5262    // Otherwise, the va_list argument must be an l-value because
5263    // it is modified by va_arg.
5264    if (!E->isTypeDependent() &&
5265        CheckForModifiableLvalue(E, BuiltinLoc, *this))
5266      return ExprError();
5267  }
5268
5269  if (!E->isTypeDependent() &&
5270      !Context.hasSameType(VaListType, E->getType())) {
5271    return ExprError(Diag(E->getLocStart(),
5272                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
5273      << OrigExpr->getType() << E->getSourceRange());
5274  }
5275
5276  // FIXME: Check that type is complete/non-abstract
5277  // FIXME: Warn if a non-POD type is passed in.
5278
5279  expr.release();
5280  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
5281                                       RPLoc));
5282}
5283
5284Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
5285  // The type of __null will be int or long, depending on the size of
5286  // pointers on the target.
5287  QualType Ty;
5288  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
5289    Ty = Context.IntTy;
5290  else
5291    Ty = Context.LongTy;
5292
5293  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
5294}
5295
5296bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
5297                                    SourceLocation Loc,
5298                                    QualType DstType, QualType SrcType,
5299                                    Expr *SrcExpr, const char *Flavor) {
5300  // Decode the result (notice that AST's are still created for extensions).
5301  bool isInvalid = false;
5302  unsigned DiagKind;
5303  switch (ConvTy) {
5304  default: assert(0 && "Unknown conversion type");
5305  case Compatible: return false;
5306  case PointerToInt:
5307    DiagKind = diag::ext_typecheck_convert_pointer_int;
5308    break;
5309  case IntToPointer:
5310    DiagKind = diag::ext_typecheck_convert_int_pointer;
5311    break;
5312  case IncompatiblePointer:
5313    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
5314    break;
5315  case IncompatiblePointerSign:
5316    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
5317    break;
5318  case FunctionVoidPointer:
5319    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
5320    break;
5321  case CompatiblePointerDiscardsQualifiers:
5322    // If the qualifiers lost were because we were applying the
5323    // (deprecated) C++ conversion from a string literal to a char*
5324    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
5325    // Ideally, this check would be performed in
5326    // CheckPointerTypesForAssignment. However, that would require a
5327    // bit of refactoring (so that the second argument is an
5328    // expression, rather than a type), which should be done as part
5329    // of a larger effort to fix CheckPointerTypesForAssignment for
5330    // C++ semantics.
5331    if (getLangOptions().CPlusPlus &&
5332        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
5333      return false;
5334    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
5335    break;
5336  case IntToBlockPointer:
5337    DiagKind = diag::err_int_to_block_pointer;
5338    break;
5339  case IncompatibleBlockPointer:
5340    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
5341    break;
5342  case IncompatibleObjCQualifiedId:
5343    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
5344    // it can give a more specific diagnostic.
5345    DiagKind = diag::warn_incompatible_qualified_id;
5346    break;
5347  case IncompatibleVectors:
5348    DiagKind = diag::warn_incompatible_vectors;
5349    break;
5350  case Incompatible:
5351    DiagKind = diag::err_typecheck_convert_incompatible;
5352    isInvalid = true;
5353    break;
5354  }
5355
5356  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
5357    << SrcExpr->getSourceRange();
5358  return isInvalid;
5359}
5360
5361bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
5362  llvm::APSInt ICEResult;
5363  if (E->isIntegerConstantExpr(ICEResult, Context)) {
5364    if (Result)
5365      *Result = ICEResult;
5366    return false;
5367  }
5368
5369  Expr::EvalResult EvalResult;
5370
5371  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
5372      EvalResult.HasSideEffects) {
5373    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
5374
5375    if (EvalResult.Diag) {
5376      // We only show the note if it's not the usual "invalid subexpression"
5377      // or if it's actually in a subexpression.
5378      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
5379          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
5380        Diag(EvalResult.DiagLoc, EvalResult.Diag);
5381    }
5382
5383    return true;
5384  }
5385
5386  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
5387    E->getSourceRange();
5388
5389  if (EvalResult.Diag &&
5390      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
5391    Diag(EvalResult.DiagLoc, EvalResult.Diag);
5392
5393  if (Result)
5394    *Result = EvalResult.Val.getInt();
5395  return false;
5396}
5397