SemaExpr.cpp revision bf2b09573dae03f9b03f389a030d7ce2aa7e7d18
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>()) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>();
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(Context,
62                                                    MD->getSelector(),
63                                                    MD->isInstanceMethod());
64          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
65        }
66      }
67    }
68
69    if (!isSilenced)
70      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
71  }
72
73  // See if this is a deleted function.
74  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
75    if (FD->isDeleted()) {
76      Diag(Loc, diag::err_deleted_function_use);
77      Diag(D->getLocation(), diag::note_unavailable_here) << true;
78      return true;
79    }
80  }
81
82  // See if the decl is unavailable
83  if (D->getAttr<UnavailableAttr>()) {
84    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
85    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
86  }
87
88  return false;
89}
90
91SourceRange Sema::getExprRange(ExprTy *E) const {
92  Expr *Ex = (Expr *)E;
93  return Ex? Ex->getSourceRange() : SourceRange();
94}
95
96//===----------------------------------------------------------------------===//
97//  Standard Promotions and Conversions
98//===----------------------------------------------------------------------===//
99
100/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
101void Sema::DefaultFunctionArrayConversion(Expr *&E) {
102  QualType Ty = E->getType();
103  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
104
105  if (Ty->isFunctionType())
106    ImpCastExprToType(E, Context.getPointerType(Ty));
107  else if (Ty->isArrayType()) {
108    // In C90 mode, arrays only promote to pointers if the array expression is
109    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
110    // type 'array of type' is converted to an expression that has type 'pointer
111    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
112    // that has type 'array of type' ...".  The relevant change is "an lvalue"
113    // (C90) to "an expression" (C99).
114    //
115    // C++ 4.2p1:
116    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
117    // T" can be converted to an rvalue of type "pointer to T".
118    //
119    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
120        E->isLvalue(Context) == Expr::LV_Valid)
121      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
122  }
123}
124
125/// UsualUnaryConversions - Performs various conversions that are common to most
126/// operators (C99 6.3). The conversions of array and function types are
127/// sometimes surpressed. For example, the array->pointer conversion doesn't
128/// apply if the array is an argument to the sizeof or address (&) operators.
129/// In these instances, this routine should *not* be called.
130Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
131  QualType Ty = Expr->getType();
132  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
133
134  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
135    ImpCastExprToType(Expr, Context.IntTy);
136  else
137    DefaultFunctionArrayConversion(Expr);
138
139  return Expr;
140}
141
142/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
143/// do not have a prototype. Arguments that have type float are promoted to
144/// double. All other argument types are converted by UsualUnaryConversions().
145void Sema::DefaultArgumentPromotion(Expr *&Expr) {
146  QualType Ty = Expr->getType();
147  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
148
149  // If this is a 'float' (CVR qualified or typedef) promote to double.
150  if (const BuiltinType *BT = Ty->getAsBuiltinType())
151    if (BT->getKind() == BuiltinType::Float)
152      return ImpCastExprToType(Expr, Context.DoubleTy);
153
154  UsualUnaryConversions(Expr);
155}
156
157/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
158/// will warn if the resulting type is not a POD type, and rejects ObjC
159/// interfaces passed by value.  This returns true if the argument type is
160/// completely illegal.
161bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
162  DefaultArgumentPromotion(Expr);
163
164  if (Expr->getType()->isObjCInterfaceType()) {
165    Diag(Expr->getLocStart(),
166         diag::err_cannot_pass_objc_interface_to_vararg)
167      << Expr->getType() << CT;
168    return true;
169  }
170
171  if (!Expr->getType()->isPODType())
172    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
173      << Expr->getType() << CT;
174
175  return false;
176}
177
178
179/// UsualArithmeticConversions - Performs various conversions that are common to
180/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
181/// routine returns the first non-arithmetic type found. The client is
182/// responsible for emitting appropriate error diagnostics.
183/// FIXME: verify the conversion rules for "complex int" are consistent with
184/// GCC.
185QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
186                                          bool isCompAssign) {
187  if (!isCompAssign)
188    UsualUnaryConversions(lhsExpr);
189
190  UsualUnaryConversions(rhsExpr);
191
192  // For conversion purposes, we ignore any qualifiers.
193  // For example, "const float" and "float" are equivalent.
194  QualType lhs =
195    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
196  QualType rhs =
197    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
198
199  // If both types are identical, no conversion is needed.
200  if (lhs == rhs)
201    return lhs;
202
203  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
204  // The caller can deal with this (e.g. pointer + int).
205  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
206    return lhs;
207
208  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
209  if (!isCompAssign)
210    ImpCastExprToType(lhsExpr, destType);
211  ImpCastExprToType(rhsExpr, destType);
212  return destType;
213}
214
215QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
216  // Perform the usual unary conversions. We do this early so that
217  // integral promotions to "int" can allow us to exit early, in the
218  // lhs == rhs check. Also, for conversion purposes, we ignore any
219  // qualifiers.  For example, "const float" and "float" are
220  // equivalent.
221  if (lhs->isPromotableIntegerType())
222    lhs = Context.IntTy;
223  else
224    lhs = lhs.getUnqualifiedType();
225  if (rhs->isPromotableIntegerType())
226    rhs = Context.IntTy;
227  else
228    rhs = rhs.getUnqualifiedType();
229
230  // If both types are identical, no conversion is needed.
231  if (lhs == rhs)
232    return lhs;
233
234  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
235  // The caller can deal with this (e.g. pointer + int).
236  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
237    return lhs;
238
239  // At this point, we have two different arithmetic types.
240
241  // Handle complex types first (C99 6.3.1.8p1).
242  if (lhs->isComplexType() || rhs->isComplexType()) {
243    // if we have an integer operand, the result is the complex type.
244    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
245      // convert the rhs to the lhs complex type.
246      return lhs;
247    }
248    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
249      // convert the lhs to the rhs complex type.
250      return rhs;
251    }
252    // This handles complex/complex, complex/float, or float/complex.
253    // When both operands are complex, the shorter operand is converted to the
254    // type of the longer, and that is the type of the result. This corresponds
255    // to what is done when combining two real floating-point operands.
256    // The fun begins when size promotion occur across type domains.
257    // From H&S 6.3.4: When one operand is complex and the other is a real
258    // floating-point type, the less precise type is converted, within it's
259    // real or complex domain, to the precision of the other type. For example,
260    // when combining a "long double" with a "double _Complex", the
261    // "double _Complex" is promoted to "long double _Complex".
262    int result = Context.getFloatingTypeOrder(lhs, rhs);
263
264    if (result > 0) { // The left side is bigger, convert rhs.
265      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
266    } else if (result < 0) { // The right side is bigger, convert lhs.
267      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
268    }
269    // At this point, lhs and rhs have the same rank/size. Now, make sure the
270    // domains match. This is a requirement for our implementation, C99
271    // does not require this promotion.
272    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
273      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
274        return rhs;
275      } else { // handle "_Complex double, double".
276        return lhs;
277      }
278    }
279    return lhs; // The domain/size match exactly.
280  }
281  // Now handle "real" floating types (i.e. float, double, long double).
282  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
283    // if we have an integer operand, the result is the real floating type.
284    if (rhs->isIntegerType()) {
285      // convert rhs to the lhs floating point type.
286      return lhs;
287    }
288    if (rhs->isComplexIntegerType()) {
289      // convert rhs to the complex floating point type.
290      return Context.getComplexType(lhs);
291    }
292    if (lhs->isIntegerType()) {
293      // convert lhs to the rhs floating point type.
294      return rhs;
295    }
296    if (lhs->isComplexIntegerType()) {
297      // convert lhs to the complex floating point type.
298      return Context.getComplexType(rhs);
299    }
300    // We have two real floating types, float/complex combos were handled above.
301    // Convert the smaller operand to the bigger result.
302    int result = Context.getFloatingTypeOrder(lhs, rhs);
303    if (result > 0) // convert the rhs
304      return lhs;
305    assert(result < 0 && "illegal float comparison");
306    return rhs;   // convert the lhs
307  }
308  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
309    // Handle GCC complex int extension.
310    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
311    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
312
313    if (lhsComplexInt && rhsComplexInt) {
314      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
315                                      rhsComplexInt->getElementType()) >= 0)
316        return lhs; // convert the rhs
317      return rhs;
318    } else if (lhsComplexInt && rhs->isIntegerType()) {
319      // convert the rhs to the lhs complex type.
320      return lhs;
321    } else if (rhsComplexInt && lhs->isIntegerType()) {
322      // convert the lhs to the rhs complex type.
323      return rhs;
324    }
325  }
326  // Finally, we have two differing integer types.
327  // The rules for this case are in C99 6.3.1.8
328  int compare = Context.getIntegerTypeOrder(lhs, rhs);
329  bool lhsSigned = lhs->isSignedIntegerType(),
330       rhsSigned = rhs->isSignedIntegerType();
331  QualType destType;
332  if (lhsSigned == rhsSigned) {
333    // Same signedness; use the higher-ranked type
334    destType = compare >= 0 ? lhs : rhs;
335  } else if (compare != (lhsSigned ? 1 : -1)) {
336    // The unsigned type has greater than or equal rank to the
337    // signed type, so use the unsigned type
338    destType = lhsSigned ? rhs : lhs;
339  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
340    // The two types are different widths; if we are here, that
341    // means the signed type is larger than the unsigned type, so
342    // use the signed type.
343    destType = lhsSigned ? lhs : rhs;
344  } else {
345    // The signed type is higher-ranked than the unsigned type,
346    // but isn't actually any bigger (like unsigned int and long
347    // on most 32-bit systems).  Use the unsigned type corresponding
348    // to the signed type.
349    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
350  }
351  return destType;
352}
353
354//===----------------------------------------------------------------------===//
355//  Semantic Analysis for various Expression Types
356//===----------------------------------------------------------------------===//
357
358
359/// ActOnStringLiteral - The specified tokens were lexed as pasted string
360/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
361/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
362/// multiple tokens.  However, the common case is that StringToks points to one
363/// string.
364///
365Action::OwningExprResult
366Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
367  assert(NumStringToks && "Must have at least one string!");
368
369  StringLiteralParser Literal(StringToks, NumStringToks, PP);
370  if (Literal.hadError)
371    return ExprError();
372
373  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
374  for (unsigned i = 0; i != NumStringToks; ++i)
375    StringTokLocs.push_back(StringToks[i].getLocation());
376
377  QualType StrTy = Context.CharTy;
378  if (Literal.AnyWide) StrTy = Context.getWCharType();
379  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
380
381  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
382  if (getLangOptions().CPlusPlus)
383    StrTy.addConst();
384
385  // Get an array type for the string, according to C99 6.4.5.  This includes
386  // the nul terminator character as well as the string length for pascal
387  // strings.
388  StrTy = Context.getConstantArrayType(StrTy,
389                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
390                                       ArrayType::Normal, 0);
391
392  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
393  return Owned(StringLiteral::Create(Context, Literal.GetString(),
394                                     Literal.GetStringLength(),
395                                     Literal.AnyWide, StrTy,
396                                     &StringTokLocs[0],
397                                     StringTokLocs.size()));
398}
399
400/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
401/// CurBlock to VD should cause it to be snapshotted (as we do for auto
402/// variables defined outside the block) or false if this is not needed (e.g.
403/// for values inside the block or for globals).
404///
405/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
406/// up-to-date.
407///
408static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
409                                              ValueDecl *VD) {
410  // If the value is defined inside the block, we couldn't snapshot it even if
411  // we wanted to.
412  if (CurBlock->TheDecl == VD->getDeclContext())
413    return false;
414
415  // If this is an enum constant or function, it is constant, don't snapshot.
416  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
417    return false;
418
419  // If this is a reference to an extern, static, or global variable, no need to
420  // snapshot it.
421  // FIXME: What about 'const' variables in C++?
422  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
423    if (!Var->hasLocalStorage())
424      return false;
425
426  // Blocks that have these can't be constant.
427  CurBlock->hasBlockDeclRefExprs = true;
428
429  // If we have nested blocks, the decl may be declared in an outer block (in
430  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
431  // be defined outside all of the current blocks (in which case the blocks do
432  // all get the bit).  Walk the nesting chain.
433  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
434       NextBlock = NextBlock->PrevBlockInfo) {
435    // If we found the defining block for the variable, don't mark the block as
436    // having a reference outside it.
437    if (NextBlock->TheDecl == VD->getDeclContext())
438      break;
439
440    // Otherwise, the DeclRef from the inner block causes the outer one to need
441    // a snapshot as well.
442    NextBlock->hasBlockDeclRefExprs = true;
443  }
444
445  return true;
446}
447
448
449
450/// ActOnIdentifierExpr - The parser read an identifier in expression context,
451/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
452/// identifier is used in a function call context.
453/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
454/// class or namespace that the identifier must be a member of.
455Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
456                                                 IdentifierInfo &II,
457                                                 bool HasTrailingLParen,
458                                                 const CXXScopeSpec *SS,
459                                                 bool isAddressOfOperand) {
460  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
461                                  isAddressOfOperand);
462}
463
464/// BuildDeclRefExpr - Build either a DeclRefExpr or a
465/// QualifiedDeclRefExpr based on whether or not SS is a
466/// nested-name-specifier.
467DeclRefExpr *
468Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
469                       bool TypeDependent, bool ValueDependent,
470                       const CXXScopeSpec *SS) {
471  if (SS && !SS->isEmpty()) {
472    return new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
473                                              ValueDependent, SS->getRange(),
474                  static_cast<NestedNameSpecifier *>(SS->getScopeRep()));
475  } else
476    return new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
477}
478
479/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
480/// variable corresponding to the anonymous union or struct whose type
481/// is Record.
482static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
483                                             RecordDecl *Record) {
484  assert(Record->isAnonymousStructOrUnion() &&
485         "Record must be an anonymous struct or union!");
486
487  // FIXME: Once Decls are directly linked together, this will
488  // be an O(1) operation rather than a slow walk through DeclContext's
489  // vector (which itself will be eliminated). DeclGroups might make
490  // this even better.
491  DeclContext *Ctx = Record->getDeclContext();
492  for (DeclContext::decl_iterator D = Ctx->decls_begin(Context),
493                               DEnd = Ctx->decls_end(Context);
494       D != DEnd; ++D) {
495    if (*D == Record) {
496      // The object for the anonymous struct/union directly
497      // follows its type in the list of declarations.
498      ++D;
499      assert(D != DEnd && "Missing object for anonymous record");
500      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
501      return *D;
502    }
503  }
504
505  assert(false && "Missing object for anonymous record");
506  return 0;
507}
508
509/// \brief Given a field that represents a member of an anonymous
510/// struct/union, build the path from that field's context to the
511/// actual member.
512///
513/// Construct the sequence of field member references we'll have to
514/// perform to get to the field in the anonymous union/struct. The
515/// list of members is built from the field outward, so traverse it
516/// backwards to go from an object in the current context to the field
517/// we found.
518///
519/// \returns The variable from which the field access should begin,
520/// for an anonymous struct/union that is not a member of another
521/// class. Otherwise, returns NULL.
522VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
523                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
524  assert(Field->getDeclContext()->isRecord() &&
525         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
526         && "Field must be stored inside an anonymous struct or union");
527
528  Path.push_back(Field);
529  VarDecl *BaseObject = 0;
530  DeclContext *Ctx = Field->getDeclContext();
531  do {
532    RecordDecl *Record = cast<RecordDecl>(Ctx);
533    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
534    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
535      Path.push_back(AnonField);
536    else {
537      BaseObject = cast<VarDecl>(AnonObject);
538      break;
539    }
540    Ctx = Ctx->getParent();
541  } while (Ctx->isRecord() &&
542           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
543
544  return BaseObject;
545}
546
547Sema::OwningExprResult
548Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
549                                               FieldDecl *Field,
550                                               Expr *BaseObjectExpr,
551                                               SourceLocation OpLoc) {
552  llvm::SmallVector<FieldDecl *, 4> AnonFields;
553  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
554                                                            AnonFields);
555
556  // Build the expression that refers to the base object, from
557  // which we will build a sequence of member references to each
558  // of the anonymous union objects and, eventually, the field we
559  // found via name lookup.
560  bool BaseObjectIsPointer = false;
561  unsigned ExtraQuals = 0;
562  if (BaseObject) {
563    // BaseObject is an anonymous struct/union variable (and is,
564    // therefore, not part of another non-anonymous record).
565    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
566    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
567                                               SourceLocation());
568    ExtraQuals
569      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
570  } else if (BaseObjectExpr) {
571    // The caller provided the base object expression. Determine
572    // whether its a pointer and whether it adds any qualifiers to the
573    // anonymous struct/union fields we're looking into.
574    QualType ObjectType = BaseObjectExpr->getType();
575    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
576      BaseObjectIsPointer = true;
577      ObjectType = ObjectPtr->getPointeeType();
578    }
579    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
580  } else {
581    // We've found a member of an anonymous struct/union that is
582    // inside a non-anonymous struct/union, so in a well-formed
583    // program our base object expression is "this".
584    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
585      if (!MD->isStatic()) {
586        QualType AnonFieldType
587          = Context.getTagDeclType(
588                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
589        QualType ThisType = Context.getTagDeclType(MD->getParent());
590        if ((Context.getCanonicalType(AnonFieldType)
591               == Context.getCanonicalType(ThisType)) ||
592            IsDerivedFrom(ThisType, AnonFieldType)) {
593          // Our base object expression is "this".
594          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
595                                                     MD->getThisType(Context));
596          BaseObjectIsPointer = true;
597        }
598      } else {
599        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
600          << Field->getDeclName());
601      }
602      ExtraQuals = MD->getTypeQualifiers();
603    }
604
605    if (!BaseObjectExpr)
606      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
607        << Field->getDeclName());
608  }
609
610  // Build the implicit member references to the field of the
611  // anonymous struct/union.
612  Expr *Result = BaseObjectExpr;
613  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
614         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
615       FI != FIEnd; ++FI) {
616    QualType MemberType = (*FI)->getType();
617    if (!(*FI)->isMutable()) {
618      unsigned combinedQualifiers
619        = MemberType.getCVRQualifiers() | ExtraQuals;
620      MemberType = MemberType.getQualifiedType(combinedQualifiers);
621    }
622    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
623                                      OpLoc, MemberType);
624    BaseObjectIsPointer = false;
625    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
626  }
627
628  return Owned(Result);
629}
630
631/// ActOnDeclarationNameExpr - The parser has read some kind of name
632/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
633/// performs lookup on that name and returns an expression that refers
634/// to that name. This routine isn't directly called from the parser,
635/// because the parser doesn't know about DeclarationName. Rather,
636/// this routine is called by ActOnIdentifierExpr,
637/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
638/// which form the DeclarationName from the corresponding syntactic
639/// forms.
640///
641/// HasTrailingLParen indicates whether this identifier is used in a
642/// function call context.  LookupCtx is only used for a C++
643/// qualified-id (foo::bar) to indicate the class or namespace that
644/// the identifier must be a member of.
645///
646/// isAddressOfOperand means that this expression is the direct operand
647/// of an address-of operator. This matters because this is the only
648/// situation where a qualified name referencing a non-static member may
649/// appear outside a member function of this class.
650Sema::OwningExprResult
651Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
652                               DeclarationName Name, bool HasTrailingLParen,
653                               const CXXScopeSpec *SS,
654                               bool isAddressOfOperand) {
655  // Could be enum-constant, value decl, instance variable, etc.
656  if (SS && SS->isInvalid())
657    return ExprError();
658
659  // C++ [temp.dep.expr]p3:
660  //   An id-expression is type-dependent if it contains:
661  //     -- a nested-name-specifier that contains a class-name that
662  //        names a dependent type.
663  if (SS && isDependentScopeSpecifier(*SS)) {
664    return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
665                                                     Loc, SS->getRange(),
666                static_cast<NestedNameSpecifier *>(SS->getScopeRep())));
667  }
668
669  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
670                                         false, true, Loc);
671
672  NamedDecl *D = 0;
673  if (Lookup.isAmbiguous()) {
674    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
675                            SS && SS->isSet() ? SS->getRange()
676                                              : SourceRange());
677    return ExprError();
678  } else
679    D = Lookup.getAsDecl();
680
681  // If this reference is in an Objective-C method, then ivar lookup happens as
682  // well.
683  IdentifierInfo *II = Name.getAsIdentifierInfo();
684  if (II && getCurMethodDecl()) {
685    // There are two cases to handle here.  1) scoped lookup could have failed,
686    // in which case we should look for an ivar.  2) scoped lookup could have
687    // found a decl, but that decl is outside the current instance method (i.e.
688    // a global variable).  In these two cases, we do a lookup for an ivar with
689    // this name, if the lookup sucedes, we replace it our current decl.
690    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
691      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
692      ObjCInterfaceDecl *ClassDeclared;
693      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
694                                                           ClassDeclared)) {
695        // Check if referencing a field with __attribute__((deprecated)).
696        if (DiagnoseUseOfDecl(IV, Loc))
697          return ExprError();
698        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
699        // If a class method attemps to use a free standing ivar, this is
700        // an error.
701        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
702           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
703                           << IV->getDeclName());
704        // If a class method uses a global variable, even if an ivar with
705        // same name exists, use the global.
706        if (!IsClsMethod) {
707          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
708              ClassDeclared != IFace)
709           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
710          // FIXME: This should use a new expr for a direct reference, don't turn
711          // this into Self->ivar, just return a BareIVarExpr or something.
712          IdentifierInfo &II = Context.Idents.get("self");
713          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
714          return Owned(new (Context)
715                       ObjCIvarRefExpr(IV, IV->getType(), Loc,
716                                       static_cast<Expr*>(SelfExpr.release()),
717                                       true, true));
718        }
719      }
720    }
721    else if (getCurMethodDecl()->isInstanceMethod()) {
722      // We should warn if a local variable hides an ivar.
723      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
724      ObjCInterfaceDecl *ClassDeclared;
725      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
726                                                           ClassDeclared)) {
727        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
728            IFace == ClassDeclared)
729          Diag(Loc, diag::warn_ivar_use_hidden)<<IV->getDeclName();
730      }
731    }
732    // Needed to implement property "super.method" notation.
733    if (D == 0 && II->isStr("super")) {
734      QualType T;
735
736      if (getCurMethodDecl()->isInstanceMethod())
737        T = Context.getPointerType(Context.getObjCInterfaceType(
738                                   getCurMethodDecl()->getClassInterface()));
739      else
740        T = Context.getObjCClassType();
741      return Owned(new (Context) ObjCSuperExpr(Loc, T));
742    }
743  }
744
745  // Determine whether this name might be a candidate for
746  // argument-dependent lookup.
747  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
748             HasTrailingLParen;
749
750  if (ADL && D == 0) {
751    // We've seen something of the form
752    //
753    //   identifier(
754    //
755    // and we did not find any entity by the name
756    // "identifier". However, this identifier is still subject to
757    // argument-dependent lookup, so keep track of the name.
758    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
759                                                          Context.OverloadTy,
760                                                          Loc));
761  }
762
763  if (D == 0) {
764    // Otherwise, this could be an implicitly declared function reference (legal
765    // in C90, extension in C99).
766    if (HasTrailingLParen && II &&
767        !getLangOptions().CPlusPlus) // Not in C++.
768      D = ImplicitlyDefineFunction(Loc, *II, S);
769    else {
770      // If this name wasn't predeclared and if this is not a function call,
771      // diagnose the problem.
772      if (SS && !SS->isEmpty())
773        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
774          << Name << SS->getRange());
775      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
776               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
777        return ExprError(Diag(Loc, diag::err_undeclared_use)
778          << Name.getAsString());
779      else
780        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
781    }
782  }
783
784  // If this is an expression of the form &Class::member, don't build an
785  // implicit member ref, because we want a pointer to the member in general,
786  // not any specific instance's member.
787  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
788    DeclContext *DC = computeDeclContext(*SS);
789    if (D && isa<CXXRecordDecl>(DC)) {
790      QualType DType;
791      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
792        DType = FD->getType().getNonReferenceType();
793      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
794        DType = Method->getType();
795      } else if (isa<OverloadedFunctionDecl>(D)) {
796        DType = Context.OverloadTy;
797      }
798      // Could be an inner type. That's diagnosed below, so ignore it here.
799      if (!DType.isNull()) {
800        // The pointer is type- and value-dependent if it points into something
801        // dependent.
802        bool Dependent = false;
803        for (; DC; DC = DC->getParent()) {
804          // FIXME: could stop early at namespace scope.
805          if (DC->isRecord()) {
806            CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
807            if (Context.getTypeDeclType(Record)->isDependentType()) {
808              Dependent = true;
809              break;
810            }
811          }
812        }
813        return Owned(BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS));
814      }
815    }
816  }
817
818  // We may have found a field within an anonymous union or struct
819  // (C++ [class.union]).
820  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
821    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
822      return BuildAnonymousStructUnionMemberReference(Loc, FD);
823
824  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
825    if (!MD->isStatic()) {
826      // C++ [class.mfct.nonstatic]p2:
827      //   [...] if name lookup (3.4.1) resolves the name in the
828      //   id-expression to a nonstatic nontype member of class X or of
829      //   a base class of X, the id-expression is transformed into a
830      //   class member access expression (5.2.5) using (*this) (9.3.2)
831      //   as the postfix-expression to the left of the '.' operator.
832      DeclContext *Ctx = 0;
833      QualType MemberType;
834      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
835        Ctx = FD->getDeclContext();
836        MemberType = FD->getType();
837
838        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
839          MemberType = RefType->getPointeeType();
840        else if (!FD->isMutable()) {
841          unsigned combinedQualifiers
842            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
843          MemberType = MemberType.getQualifiedType(combinedQualifiers);
844        }
845      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
846        if (!Method->isStatic()) {
847          Ctx = Method->getParent();
848          MemberType = Method->getType();
849        }
850      } else if (OverloadedFunctionDecl *Ovl
851                   = dyn_cast<OverloadedFunctionDecl>(D)) {
852        for (OverloadedFunctionDecl::function_iterator
853               Func = Ovl->function_begin(),
854               FuncEnd = Ovl->function_end();
855             Func != FuncEnd; ++Func) {
856          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
857            if (!DMethod->isStatic()) {
858              Ctx = Ovl->getDeclContext();
859              MemberType = Context.OverloadTy;
860              break;
861            }
862        }
863      }
864
865      if (Ctx && Ctx->isRecord()) {
866        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
867        QualType ThisType = Context.getTagDeclType(MD->getParent());
868        if ((Context.getCanonicalType(CtxType)
869               == Context.getCanonicalType(ThisType)) ||
870            IsDerivedFrom(ThisType, CtxType)) {
871          // Build the implicit member access expression.
872          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
873                                                 MD->getThisType(Context));
874          return Owned(new (Context) MemberExpr(This, true, D,
875                                                SourceLocation(), MemberType));
876        }
877      }
878    }
879  }
880
881  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
882    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
883      if (MD->isStatic())
884        // "invalid use of member 'x' in static member function"
885        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
886          << FD->getDeclName());
887    }
888
889    // Any other ways we could have found the field in a well-formed
890    // program would have been turned into implicit member expressions
891    // above.
892    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
893      << FD->getDeclName());
894  }
895
896  if (isa<TypedefDecl>(D))
897    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
898  if (isa<ObjCInterfaceDecl>(D))
899    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
900  if (isa<NamespaceDecl>(D))
901    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
902
903  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
904  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
905    return Owned(BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
906                                  false, false, SS));
907  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
908    return Owned(BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
909                                  false, false, SS));
910  ValueDecl *VD = cast<ValueDecl>(D);
911
912  // Check whether this declaration can be used. Note that we suppress
913  // this check when we're going to perform argument-dependent lookup
914  // on this function name, because this might not be the function
915  // that overload resolution actually selects.
916  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
917    return ExprError();
918
919  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
920    // Warn about constructs like:
921    //   if (void *X = foo()) { ... } else { X }.
922    // In the else block, the pointer is always false.
923    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
924      Scope *CheckS = S;
925      while (CheckS) {
926        if (CheckS->isWithinElse() &&
927            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
928          if (Var->getType()->isBooleanType())
929            ExprError(Diag(Loc, diag::warn_value_always_false)
930              << Var->getDeclName());
931          else
932            ExprError(Diag(Loc, diag::warn_value_always_zero)
933              << Var->getDeclName());
934          break;
935        }
936
937        // Move up one more control parent to check again.
938        CheckS = CheckS->getControlParent();
939        if (CheckS)
940          CheckS = CheckS->getParent();
941      }
942    }
943  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(VD)) {
944    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
945      // C99 DR 316 says that, if a function type comes from a
946      // function definition (without a prototype), that type is only
947      // used for checking compatibility. Therefore, when referencing
948      // the function, we pretend that we don't have the full function
949      // type.
950      QualType T = Func->getType();
951      QualType NoProtoType = T;
952      if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
953        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
954      return Owned(BuildDeclRefExpr(VD, NoProtoType, Loc, false, false, SS));
955    }
956  }
957
958  // Only create DeclRefExpr's for valid Decl's.
959  if (VD->isInvalidDecl())
960    return ExprError();
961
962  // If the identifier reference is inside a block, and it refers to a value
963  // that is outside the block, create a BlockDeclRefExpr instead of a
964  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
965  // the block is formed.
966  //
967  // We do not do this for things like enum constants, global variables, etc,
968  // as they do not get snapshotted.
969  //
970  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
971    QualType ExprTy = VD->getType().getNonReferenceType();
972    // The BlocksAttr indicates the variable is bound by-reference.
973    if (VD->getAttr<BlocksAttr>())
974      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
975
976    // Variable will be bound by-copy, make it const within the closure.
977    ExprTy.addConst();
978    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false));
979  }
980  // If this reference is not in a block or if the referenced variable is
981  // within the block, create a normal DeclRefExpr.
982
983  bool TypeDependent = false;
984  bool ValueDependent = false;
985  if (getLangOptions().CPlusPlus) {
986    // C++ [temp.dep.expr]p3:
987    //   An id-expression is type-dependent if it contains:
988    //     - an identifier that was declared with a dependent type,
989    if (VD->getType()->isDependentType())
990      TypeDependent = true;
991    //     - FIXME: a template-id that is dependent,
992    //     - a conversion-function-id that specifies a dependent type,
993    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
994             Name.getCXXNameType()->isDependentType())
995      TypeDependent = true;
996    //     - a nested-name-specifier that contains a class-name that
997    //       names a dependent type.
998    else if (SS && !SS->isEmpty()) {
999      for (DeclContext *DC = computeDeclContext(*SS);
1000           DC; DC = DC->getParent()) {
1001        // FIXME: could stop early at namespace scope.
1002        if (DC->isRecord()) {
1003          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1004          if (Context.getTypeDeclType(Record)->isDependentType()) {
1005            TypeDependent = true;
1006            break;
1007          }
1008        }
1009      }
1010    }
1011
1012    // C++ [temp.dep.constexpr]p2:
1013    //
1014    //   An identifier is value-dependent if it is:
1015    //     - a name declared with a dependent type,
1016    if (TypeDependent)
1017      ValueDependent = true;
1018    //     - the name of a non-type template parameter,
1019    else if (isa<NonTypeTemplateParmDecl>(VD))
1020      ValueDependent = true;
1021    //    - a constant with integral or enumeration type and is
1022    //      initialized with an expression that is value-dependent
1023    //      (FIXME!).
1024  }
1025
1026  return Owned(BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
1027                                TypeDependent, ValueDependent, SS));
1028}
1029
1030Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1031                                                 tok::TokenKind Kind) {
1032  PredefinedExpr::IdentType IT;
1033
1034  switch (Kind) {
1035  default: assert(0 && "Unknown simple primary expr!");
1036  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1037  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1038  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1039  }
1040
1041  // Pre-defined identifiers are of type char[x], where x is the length of the
1042  // string.
1043  unsigned Length;
1044  if (FunctionDecl *FD = getCurFunctionDecl())
1045    Length = FD->getIdentifier()->getLength();
1046  else if (ObjCMethodDecl *MD = getCurMethodDecl())
1047    Length = MD->getSynthesizedMethodSize();
1048  else {
1049    Diag(Loc, diag::ext_predef_outside_function);
1050    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
1051    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
1052  }
1053
1054
1055  llvm::APInt LengthI(32, Length + 1);
1056  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
1057  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1058  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1059}
1060
1061Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1062  llvm::SmallString<16> CharBuffer;
1063  CharBuffer.resize(Tok.getLength());
1064  const char *ThisTokBegin = &CharBuffer[0];
1065  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1066
1067  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1068                            Tok.getLocation(), PP);
1069  if (Literal.hadError())
1070    return ExprError();
1071
1072  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1073
1074  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1075                                              Literal.isWide(),
1076                                              type, Tok.getLocation()));
1077}
1078
1079Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1080  // Fast path for a single digit (which is quite common).  A single digit
1081  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1082  if (Tok.getLength() == 1) {
1083    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1084    unsigned IntSize = Context.Target.getIntWidth();
1085    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1086                    Context.IntTy, Tok.getLocation()));
1087  }
1088
1089  llvm::SmallString<512> IntegerBuffer;
1090  // Add padding so that NumericLiteralParser can overread by one character.
1091  IntegerBuffer.resize(Tok.getLength()+1);
1092  const char *ThisTokBegin = &IntegerBuffer[0];
1093
1094  // Get the spelling of the token, which eliminates trigraphs, etc.
1095  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1096
1097  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1098                               Tok.getLocation(), PP);
1099  if (Literal.hadError)
1100    return ExprError();
1101
1102  Expr *Res;
1103
1104  if (Literal.isFloatingLiteral()) {
1105    QualType Ty;
1106    if (Literal.isFloat)
1107      Ty = Context.FloatTy;
1108    else if (!Literal.isLong)
1109      Ty = Context.DoubleTy;
1110    else
1111      Ty = Context.LongDoubleTy;
1112
1113    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1114
1115    // isExact will be set by GetFloatValue().
1116    bool isExact = false;
1117    Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
1118                                        &isExact, Ty, Tok.getLocation());
1119
1120  } else if (!Literal.isIntegerLiteral()) {
1121    return ExprError();
1122  } else {
1123    QualType Ty;
1124
1125    // long long is a C99 feature.
1126    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1127        Literal.isLongLong)
1128      Diag(Tok.getLocation(), diag::ext_longlong);
1129
1130    // Get the value in the widest-possible width.
1131    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1132
1133    if (Literal.GetIntegerValue(ResultVal)) {
1134      // If this value didn't fit into uintmax_t, warn and force to ull.
1135      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1136      Ty = Context.UnsignedLongLongTy;
1137      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1138             "long long is not intmax_t?");
1139    } else {
1140      // If this value fits into a ULL, try to figure out what else it fits into
1141      // according to the rules of C99 6.4.4.1p5.
1142
1143      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1144      // be an unsigned int.
1145      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1146
1147      // Check from smallest to largest, picking the smallest type we can.
1148      unsigned Width = 0;
1149      if (!Literal.isLong && !Literal.isLongLong) {
1150        // Are int/unsigned possibilities?
1151        unsigned IntSize = Context.Target.getIntWidth();
1152
1153        // Does it fit in a unsigned int?
1154        if (ResultVal.isIntN(IntSize)) {
1155          // Does it fit in a signed int?
1156          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1157            Ty = Context.IntTy;
1158          else if (AllowUnsigned)
1159            Ty = Context.UnsignedIntTy;
1160          Width = IntSize;
1161        }
1162      }
1163
1164      // Are long/unsigned long possibilities?
1165      if (Ty.isNull() && !Literal.isLongLong) {
1166        unsigned LongSize = Context.Target.getLongWidth();
1167
1168        // Does it fit in a unsigned long?
1169        if (ResultVal.isIntN(LongSize)) {
1170          // Does it fit in a signed long?
1171          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1172            Ty = Context.LongTy;
1173          else if (AllowUnsigned)
1174            Ty = Context.UnsignedLongTy;
1175          Width = LongSize;
1176        }
1177      }
1178
1179      // Finally, check long long if needed.
1180      if (Ty.isNull()) {
1181        unsigned LongLongSize = Context.Target.getLongLongWidth();
1182
1183        // Does it fit in a unsigned long long?
1184        if (ResultVal.isIntN(LongLongSize)) {
1185          // Does it fit in a signed long long?
1186          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1187            Ty = Context.LongLongTy;
1188          else if (AllowUnsigned)
1189            Ty = Context.UnsignedLongLongTy;
1190          Width = LongLongSize;
1191        }
1192      }
1193
1194      // If we still couldn't decide a type, we probably have something that
1195      // does not fit in a signed long long, but has no U suffix.
1196      if (Ty.isNull()) {
1197        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1198        Ty = Context.UnsignedLongLongTy;
1199        Width = Context.Target.getLongLongWidth();
1200      }
1201
1202      if (ResultVal.getBitWidth() != Width)
1203        ResultVal.trunc(Width);
1204    }
1205    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1206  }
1207
1208  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1209  if (Literal.isImaginary)
1210    Res = new (Context) ImaginaryLiteral(Res,
1211                                        Context.getComplexType(Res->getType()));
1212
1213  return Owned(Res);
1214}
1215
1216Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1217                                              SourceLocation R, ExprArg Val) {
1218  Expr *E = (Expr *)Val.release();
1219  assert((E != 0) && "ActOnParenExpr() missing expr");
1220  return Owned(new (Context) ParenExpr(L, R, E));
1221}
1222
1223/// The UsualUnaryConversions() function is *not* called by this routine.
1224/// See C99 6.3.2.1p[2-4] for more details.
1225bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1226                                     SourceLocation OpLoc,
1227                                     const SourceRange &ExprRange,
1228                                     bool isSizeof) {
1229  if (exprType->isDependentType())
1230    return false;
1231
1232  // C99 6.5.3.4p1:
1233  if (isa<FunctionType>(exprType)) {
1234    // alignof(function) is allowed as an extension.
1235    if (isSizeof)
1236      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1237    return false;
1238  }
1239
1240  // Allow sizeof(void)/alignof(void) as an extension.
1241  if (exprType->isVoidType()) {
1242    Diag(OpLoc, diag::ext_sizeof_void_type)
1243      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1244    return false;
1245  }
1246
1247  if (RequireCompleteType(OpLoc, exprType,
1248                          isSizeof ? diag::err_sizeof_incomplete_type :
1249                          diag::err_alignof_incomplete_type,
1250                          ExprRange))
1251    return true;
1252
1253  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1254  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1255    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1256      << exprType << isSizeof;
1257    return false;
1258  }
1259
1260  return false;
1261}
1262
1263bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1264                            const SourceRange &ExprRange) {
1265  E = E->IgnoreParens();
1266
1267  // alignof decl is always ok.
1268  if (isa<DeclRefExpr>(E))
1269    return false;
1270
1271  // Cannot know anything else if the expression is dependent.
1272  if (E->isTypeDependent())
1273    return false;
1274
1275  if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1276    if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
1277      if (FD->isBitField()) {
1278        Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1279        return true;
1280      }
1281      // Other fields are ok.
1282      return false;
1283    }
1284  }
1285  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1286}
1287
1288/// \brief Build a sizeof or alignof expression given a type operand.
1289Action::OwningExprResult
1290Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
1291                              bool isSizeOf, SourceRange R) {
1292  if (T.isNull())
1293    return ExprError();
1294
1295  if (!T->isDependentType() &&
1296      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1297    return ExprError();
1298
1299  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1300  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
1301                                               Context.getSizeType(), OpLoc,
1302                                               R.getEnd()));
1303}
1304
1305/// \brief Build a sizeof or alignof expression given an expression
1306/// operand.
1307Action::OwningExprResult
1308Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1309                              bool isSizeOf, SourceRange R) {
1310  // Verify that the operand is valid.
1311  bool isInvalid = false;
1312  if (E->isTypeDependent()) {
1313    // Delay type-checking for type-dependent expressions.
1314  } else if (!isSizeOf) {
1315    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1316  } else if (E->isBitField()) {  // C99 6.5.3.4p1.
1317    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1318    isInvalid = true;
1319  } else {
1320    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1321  }
1322
1323  if (isInvalid)
1324    return ExprError();
1325
1326  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1327  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1328                                               Context.getSizeType(), OpLoc,
1329                                               R.getEnd()));
1330}
1331
1332/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1333/// the same for @c alignof and @c __alignof
1334/// Note that the ArgRange is invalid if isType is false.
1335Action::OwningExprResult
1336Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1337                             void *TyOrEx, const SourceRange &ArgRange) {
1338  // If error parsing type, ignore.
1339  if (TyOrEx == 0) return ExprError();
1340
1341  if (isType) {
1342    QualType ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1343    return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
1344  }
1345
1346  // Get the end location.
1347  Expr *ArgEx = (Expr *)TyOrEx;
1348  Action::OwningExprResult Result
1349    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1350
1351  if (Result.isInvalid())
1352    DeleteExpr(ArgEx);
1353
1354  return move(Result);
1355}
1356
1357QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1358  if (V->isTypeDependent())
1359    return Context.DependentTy;
1360
1361  // These operators return the element type of a complex type.
1362  if (const ComplexType *CT = V->getType()->getAsComplexType())
1363    return CT->getElementType();
1364
1365  // Otherwise they pass through real integer and floating point types here.
1366  if (V->getType()->isArithmeticType())
1367    return V->getType();
1368
1369  // Reject anything else.
1370  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1371    << (isReal ? "__real" : "__imag");
1372  return QualType();
1373}
1374
1375
1376
1377Action::OwningExprResult
1378Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1379                          tok::TokenKind Kind, ExprArg Input) {
1380  Expr *Arg = (Expr *)Input.get();
1381
1382  UnaryOperator::Opcode Opc;
1383  switch (Kind) {
1384  default: assert(0 && "Unknown unary op!");
1385  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1386  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1387  }
1388
1389  if (getLangOptions().CPlusPlus &&
1390      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1391    // Which overloaded operator?
1392    OverloadedOperatorKind OverOp =
1393      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1394
1395    // C++ [over.inc]p1:
1396    //
1397    //     [...] If the function is a member function with one
1398    //     parameter (which shall be of type int) or a non-member
1399    //     function with two parameters (the second of which shall be
1400    //     of type int), it defines the postfix increment operator ++
1401    //     for objects of that type. When the postfix increment is
1402    //     called as a result of using the ++ operator, the int
1403    //     argument will have value zero.
1404    Expr *Args[2] = {
1405      Arg,
1406      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1407                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1408    };
1409
1410    // Build the candidate set for overloading
1411    OverloadCandidateSet CandidateSet;
1412    AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
1413
1414    // Perform overload resolution.
1415    OverloadCandidateSet::iterator Best;
1416    switch (BestViableFunction(CandidateSet, Best)) {
1417    case OR_Success: {
1418      // We found a built-in operator or an overloaded operator.
1419      FunctionDecl *FnDecl = Best->Function;
1420
1421      if (FnDecl) {
1422        // We matched an overloaded operator. Build a call to that
1423        // operator.
1424
1425        // Convert the arguments.
1426        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1427          if (PerformObjectArgumentInitialization(Arg, Method))
1428            return ExprError();
1429        } else {
1430          // Convert the arguments.
1431          if (PerformCopyInitialization(Arg,
1432                                        FnDecl->getParamDecl(0)->getType(),
1433                                        "passing"))
1434            return ExprError();
1435        }
1436
1437        // Determine the result type
1438        QualType ResultTy
1439          = FnDecl->getType()->getAsFunctionType()->getResultType();
1440        ResultTy = ResultTy.getNonReferenceType();
1441
1442        // Build the actual expression node.
1443        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1444                                                 SourceLocation());
1445        UsualUnaryConversions(FnExpr);
1446
1447        Input.release();
1448        return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
1449                                                       Args, 2, ResultTy,
1450                                                       OpLoc));
1451      } else {
1452        // We matched a built-in operator. Convert the arguments, then
1453        // break out so that we will build the appropriate built-in
1454        // operator node.
1455        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1456                                      "passing"))
1457          return ExprError();
1458
1459        break;
1460      }
1461    }
1462
1463    case OR_No_Viable_Function:
1464      // No viable function; fall through to handling this as a
1465      // built-in operator, which will produce an error message for us.
1466      break;
1467
1468    case OR_Ambiguous:
1469      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1470          << UnaryOperator::getOpcodeStr(Opc)
1471          << Arg->getSourceRange();
1472      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1473      return ExprError();
1474
1475    case OR_Deleted:
1476      Diag(OpLoc, diag::err_ovl_deleted_oper)
1477        << Best->Function->isDeleted()
1478        << UnaryOperator::getOpcodeStr(Opc)
1479        << Arg->getSourceRange();
1480      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1481      return ExprError();
1482    }
1483
1484    // Either we found no viable overloaded operator or we matched a
1485    // built-in operator. In either case, fall through to trying to
1486    // build a built-in operation.
1487  }
1488
1489  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1490                                                 Opc == UnaryOperator::PostInc);
1491  if (result.isNull())
1492    return ExprError();
1493  Input.release();
1494  return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
1495}
1496
1497Action::OwningExprResult
1498Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1499                              ExprArg Idx, SourceLocation RLoc) {
1500  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1501       *RHSExp = static_cast<Expr*>(Idx.get());
1502
1503  if (getLangOptions().CPlusPlus &&
1504      (LHSExp->getType()->isRecordType() ||
1505       LHSExp->getType()->isEnumeralType() ||
1506       RHSExp->getType()->isRecordType() ||
1507       RHSExp->getType()->isEnumeralType())) {
1508    // Add the appropriate overloaded operators (C++ [over.match.oper])
1509    // to the candidate set.
1510    OverloadCandidateSet CandidateSet;
1511    Expr *Args[2] = { LHSExp, RHSExp };
1512    AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1513                          SourceRange(LLoc, RLoc));
1514
1515    // Perform overload resolution.
1516    OverloadCandidateSet::iterator Best;
1517    switch (BestViableFunction(CandidateSet, Best)) {
1518    case OR_Success: {
1519      // We found a built-in operator or an overloaded operator.
1520      FunctionDecl *FnDecl = Best->Function;
1521
1522      if (FnDecl) {
1523        // We matched an overloaded operator. Build a call to that
1524        // operator.
1525
1526        // Convert the arguments.
1527        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1528          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1529              PerformCopyInitialization(RHSExp,
1530                                        FnDecl->getParamDecl(0)->getType(),
1531                                        "passing"))
1532            return ExprError();
1533        } else {
1534          // Convert the arguments.
1535          if (PerformCopyInitialization(LHSExp,
1536                                        FnDecl->getParamDecl(0)->getType(),
1537                                        "passing") ||
1538              PerformCopyInitialization(RHSExp,
1539                                        FnDecl->getParamDecl(1)->getType(),
1540                                        "passing"))
1541            return ExprError();
1542        }
1543
1544        // Determine the result type
1545        QualType ResultTy
1546          = FnDecl->getType()->getAsFunctionType()->getResultType();
1547        ResultTy = ResultTy.getNonReferenceType();
1548
1549        // Build the actual expression node.
1550        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1551                                                 SourceLocation());
1552        UsualUnaryConversions(FnExpr);
1553
1554        Base.release();
1555        Idx.release();
1556        return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
1557                                                       FnExpr, Args, 2,
1558                                                       ResultTy, LLoc));
1559      } else {
1560        // We matched a built-in operator. Convert the arguments, then
1561        // break out so that we will build the appropriate built-in
1562        // operator node.
1563        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1564                                      "passing") ||
1565            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1566                                      "passing"))
1567          return ExprError();
1568
1569        break;
1570      }
1571    }
1572
1573    case OR_No_Viable_Function:
1574      // No viable function; fall through to handling this as a
1575      // built-in operator, which will produce an error message for us.
1576      break;
1577
1578    case OR_Ambiguous:
1579      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1580          << "[]"
1581          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1582      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1583      return ExprError();
1584
1585    case OR_Deleted:
1586      Diag(LLoc, diag::err_ovl_deleted_oper)
1587        << Best->Function->isDeleted()
1588        << "[]"
1589        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1590      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1591      return ExprError();
1592    }
1593
1594    // Either we found no viable overloaded operator or we matched a
1595    // built-in operator. In either case, fall through to trying to
1596    // build a built-in operation.
1597  }
1598
1599  // Perform default conversions.
1600  DefaultFunctionArrayConversion(LHSExp);
1601  DefaultFunctionArrayConversion(RHSExp);
1602
1603  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1604
1605  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1606  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1607  // in the subscript position. As a result, we need to derive the array base
1608  // and index from the expression types.
1609  Expr *BaseExpr, *IndexExpr;
1610  QualType ResultType;
1611  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1612    BaseExpr = LHSExp;
1613    IndexExpr = RHSExp;
1614    ResultType = Context.DependentTy;
1615  } else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1616    BaseExpr = LHSExp;
1617    IndexExpr = RHSExp;
1618    // FIXME: need to deal with const...
1619    ResultType = PTy->getPointeeType();
1620  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1621     // Handle the uncommon case of "123[Ptr]".
1622    BaseExpr = RHSExp;
1623    IndexExpr = LHSExp;
1624    // FIXME: need to deal with const...
1625    ResultType = PTy->getPointeeType();
1626  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1627    BaseExpr = LHSExp;    // vectors: V[123]
1628    IndexExpr = RHSExp;
1629
1630    // FIXME: need to deal with const...
1631    ResultType = VTy->getElementType();
1632  } else {
1633    return ExprError(Diag(LHSExp->getLocStart(),
1634      diag::err_typecheck_subscript_value) << RHSExp->getSourceRange());
1635  }
1636  // C99 6.5.2.1p1
1637  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
1638    return ExprError(Diag(IndexExpr->getLocStart(),
1639      diag::err_typecheck_subscript) << IndexExpr->getSourceRange());
1640
1641  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1642  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1643  // type. Note that Functions are not objects, and that (in C99 parlance)
1644  // incomplete types are not object types.
1645  if (ResultType->isFunctionType()) {
1646    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1647      << ResultType << BaseExpr->getSourceRange();
1648    return ExprError();
1649  }
1650
1651  if (!ResultType->isDependentType() &&
1652      RequireCompleteType(LLoc, ResultType, diag::err_subscript_incomplete_type,
1653                          BaseExpr->getSourceRange()))
1654    return ExprError();
1655
1656  // Diagnose bad cases where we step over interface counts.
1657  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
1658    Diag(LLoc, diag::err_subscript_nonfragile_interface)
1659      << ResultType << BaseExpr->getSourceRange();
1660    return ExprError();
1661  }
1662
1663  Base.release();
1664  Idx.release();
1665  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1666                                                ResultType, RLoc));
1667}
1668
1669QualType Sema::
1670CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1671                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1672  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1673
1674  // The vector accessor can't exceed the number of elements.
1675  const char *compStr = CompName.getName();
1676
1677  // This flag determines whether or not the component is one of the four
1678  // special names that indicate a subset of exactly half the elements are
1679  // to be selected.
1680  bool HalvingSwizzle = false;
1681
1682  // This flag determines whether or not CompName has an 's' char prefix,
1683  // indicating that it is a string of hex values to be used as vector indices.
1684  bool HexSwizzle = *compStr == 's';
1685
1686  // Check that we've found one of the special components, or that the component
1687  // names must come from the same set.
1688  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1689      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1690    HalvingSwizzle = true;
1691  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1692    do
1693      compStr++;
1694    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1695  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1696    do
1697      compStr++;
1698    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1699  }
1700
1701  if (!HalvingSwizzle && *compStr) {
1702    // We didn't get to the end of the string. This means the component names
1703    // didn't come from the same set *or* we encountered an illegal name.
1704    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1705      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1706    return QualType();
1707  }
1708
1709  // Ensure no component accessor exceeds the width of the vector type it
1710  // operates on.
1711  if (!HalvingSwizzle) {
1712    compStr = CompName.getName();
1713
1714    if (HexSwizzle)
1715      compStr++;
1716
1717    while (*compStr) {
1718      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1719        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1720          << baseType << SourceRange(CompLoc);
1721        return QualType();
1722      }
1723    }
1724  }
1725
1726  // If this is a halving swizzle, verify that the base type has an even
1727  // number of elements.
1728  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1729    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1730      << baseType << SourceRange(CompLoc);
1731    return QualType();
1732  }
1733
1734  // The component accessor looks fine - now we need to compute the actual type.
1735  // The vector type is implied by the component accessor. For example,
1736  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1737  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1738  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1739  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1740                                     : CompName.getLength();
1741  if (HexSwizzle)
1742    CompSize--;
1743
1744  if (CompSize == 1)
1745    return vecType->getElementType();
1746
1747  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1748  // Now look up the TypeDefDecl from the vector type. Without this,
1749  // diagostics look bad. We want extended vector types to appear built-in.
1750  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1751    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1752      return Context.getTypedefType(ExtVectorDecls[i]);
1753  }
1754  return VT; // should never get here (a typedef type should always be found).
1755}
1756
1757static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
1758                                                IdentifierInfo &Member,
1759                                                const Selector &Sel,
1760                                                ASTContext &Context) {
1761
1762  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Context, &Member))
1763    return PD;
1764  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Context, Sel))
1765    return OMD;
1766
1767  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
1768       E = PDecl->protocol_end(); I != E; ++I) {
1769    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
1770                                                     Context))
1771      return D;
1772  }
1773  return 0;
1774}
1775
1776static Decl *FindGetterNameDecl(const ObjCQualifiedIdType *QIdTy,
1777                                IdentifierInfo &Member,
1778                                const Selector &Sel,
1779                                ASTContext &Context) {
1780  // Check protocols on qualified interfaces.
1781  Decl *GDecl = 0;
1782  for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1783       E = QIdTy->qual_end(); I != E; ++I) {
1784    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context, &Member)) {
1785      GDecl = PD;
1786      break;
1787    }
1788    // Also must look for a getter name which uses property syntax.
1789    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Context, Sel)) {
1790      GDecl = OMD;
1791      break;
1792    }
1793  }
1794  if (!GDecl) {
1795    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1796         E = QIdTy->qual_end(); I != E; ++I) {
1797      // Search in the protocol-qualifier list of current protocol.
1798      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
1799      if (GDecl)
1800        return GDecl;
1801    }
1802  }
1803  return GDecl;
1804}
1805
1806/// FindMethodInNestedImplementations - Look up a method in current and
1807/// all base class implementations.
1808///
1809ObjCMethodDecl *Sema::FindMethodInNestedImplementations(
1810                                              const ObjCInterfaceDecl *IFace,
1811                                              const Selector &Sel) {
1812  ObjCMethodDecl *Method = 0;
1813  if (ObjCImplementationDecl *ImpDecl
1814        = LookupObjCImplementation(IFace->getIdentifier()))
1815    Method = ImpDecl->getInstanceMethod(Context, Sel);
1816
1817  if (!Method && IFace->getSuperClass())
1818    return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel);
1819  return Method;
1820}
1821
1822Action::OwningExprResult
1823Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
1824                               tok::TokenKind OpKind, SourceLocation MemberLoc,
1825                               IdentifierInfo &Member,
1826                               DeclPtrTy ObjCImpDecl) {
1827  Expr *BaseExpr = static_cast<Expr *>(Base.release());
1828  assert(BaseExpr && "no record expression");
1829
1830  // Perform default conversions.
1831  DefaultFunctionArrayConversion(BaseExpr);
1832
1833  QualType BaseType = BaseExpr->getType();
1834  assert(!BaseType.isNull() && "no type for member expression");
1835
1836  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1837  // must have pointer type, and the accessed type is the pointee.
1838  if (OpKind == tok::arrow) {
1839    if (const PointerType *PT = BaseType->getAsPointerType())
1840      BaseType = PT->getPointeeType();
1841    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
1842      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
1843                                            MemberLoc, Member));
1844    else
1845      return ExprError(Diag(MemberLoc,
1846                            diag::err_typecheck_member_reference_arrow)
1847        << BaseType << BaseExpr->getSourceRange());
1848  }
1849
1850  // Handle field access to simple records.  This also handles access to fields
1851  // of the ObjC 'id' struct.
1852  if (const RecordType *RTy = BaseType->getAsRecordType()) {
1853    RecordDecl *RDecl = RTy->getDecl();
1854    if (RequireCompleteType(OpLoc, BaseType,
1855                               diag::err_typecheck_incomplete_tag,
1856                               BaseExpr->getSourceRange()))
1857      return ExprError();
1858
1859    // The record definition is complete, now make sure the member is valid.
1860    // FIXME: Qualified name lookup for C++ is a bit more complicated
1861    // than this.
1862    LookupResult Result
1863      = LookupQualifiedName(RDecl, DeclarationName(&Member),
1864                            LookupMemberName, false);
1865
1866    if (!Result)
1867      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
1868               << &Member << BaseExpr->getSourceRange());
1869    if (Result.isAmbiguous()) {
1870      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
1871                              MemberLoc, BaseExpr->getSourceRange());
1872      return ExprError();
1873    }
1874
1875    NamedDecl *MemberDecl = Result;
1876
1877    // If the decl being referenced had an error, return an error for this
1878    // sub-expr without emitting another error, in order to avoid cascading
1879    // error cases.
1880    if (MemberDecl->isInvalidDecl())
1881      return ExprError();
1882
1883    // Check the use of this field
1884    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1885      return ExprError();
1886
1887    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
1888      // We may have found a field within an anonymous union or struct
1889      // (C++ [class.union]).
1890      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1891        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
1892                                                        BaseExpr, OpLoc);
1893
1894      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1895      // FIXME: Handle address space modifiers
1896      QualType MemberType = FD->getType();
1897      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
1898        MemberType = Ref->getPointeeType();
1899      else {
1900        unsigned combinedQualifiers =
1901          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
1902        if (FD->isMutable())
1903          combinedQualifiers &= ~QualType::Const;
1904        MemberType = MemberType.getQualifiedType(combinedQualifiers);
1905      }
1906
1907      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
1908                                            MemberLoc, MemberType));
1909    }
1910
1911    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl))
1912      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1913                                            Var, MemberLoc,
1914                                         Var->getType().getNonReferenceType()));
1915    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
1916      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1917                                            MemberFn, MemberLoc,
1918                                            MemberFn->getType()));
1919    if (OverloadedFunctionDecl *Ovl
1920          = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
1921      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
1922                                            MemberLoc, Context.OverloadTy));
1923    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
1924      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1925                                            Enum, MemberLoc, Enum->getType()));
1926    if (isa<TypeDecl>(MemberDecl))
1927      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
1928        << DeclarationName(&Member) << int(OpKind == tok::arrow));
1929
1930    // We found a declaration kind that we didn't expect. This is a
1931    // generic error message that tells the user that she can't refer
1932    // to this member with '.' or '->'.
1933    return ExprError(Diag(MemberLoc,
1934                          diag::err_typecheck_member_reference_unknown)
1935      << DeclarationName(&Member) << int(OpKind == tok::arrow));
1936  }
1937
1938  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
1939  // (*Obj).ivar.
1940  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
1941    ObjCInterfaceDecl *ClassDeclared;
1942    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(Context,
1943                                                                   &Member,
1944                                                             ClassDeclared)) {
1945      // If the decl being referenced had an error, return an error for this
1946      // sub-expr without emitting another error, in order to avoid cascading
1947      // error cases.
1948      if (IV->isInvalidDecl())
1949        return ExprError();
1950
1951      // Check whether we can reference this field.
1952      if (DiagnoseUseOfDecl(IV, MemberLoc))
1953        return ExprError();
1954      if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1955          IV->getAccessControl() != ObjCIvarDecl::Package) {
1956        ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1957        if (ObjCMethodDecl *MD = getCurMethodDecl())
1958          ClassOfMethodDecl =  MD->getClassInterface();
1959        else if (ObjCImpDecl && getCurFunctionDecl()) {
1960          // Case of a c-function declared inside an objc implementation.
1961          // FIXME: For a c-style function nested inside an objc implementation
1962          // class, there is no implementation context available, so we pass down
1963          // the context as argument to this routine. Ideally, this context need
1964          // be passed down in the AST node and somehow calculated from the AST
1965          // for a function decl.
1966          Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
1967          if (ObjCImplementationDecl *IMPD =
1968              dyn_cast<ObjCImplementationDecl>(ImplDecl))
1969            ClassOfMethodDecl = IMPD->getClassInterface();
1970          else if (ObjCCategoryImplDecl* CatImplClass =
1971                      dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
1972            ClassOfMethodDecl = CatImplClass->getClassInterface();
1973        }
1974
1975        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1976          if (ClassDeclared != IFTy->getDecl() ||
1977              ClassOfMethodDecl != ClassDeclared)
1978            Diag(MemberLoc, diag::error_private_ivar_access) << IV->getDeclName();
1979        }
1980        // @protected
1981        else if (!IFTy->getDecl()->isSuperClassOf(ClassOfMethodDecl))
1982          Diag(MemberLoc, diag::error_protected_ivar_access) << IV->getDeclName();
1983      }
1984
1985      return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1986                                                 MemberLoc, BaseExpr,
1987                                                 OpKind == tok::arrow));
1988    }
1989    return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1990                       << IFTy->getDecl()->getDeclName() << &Member
1991                       << BaseExpr->getSourceRange());
1992  }
1993
1994  // Handle Objective-C property access, which is "Obj.property" where Obj is a
1995  // pointer to a (potentially qualified) interface type.
1996  const PointerType *PTy;
1997  const ObjCInterfaceType *IFTy;
1998  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
1999      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
2000    ObjCInterfaceDecl *IFace = IFTy->getDecl();
2001
2002    // Search for a declared property first.
2003    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Context,
2004                                                              &Member)) {
2005      // Check whether we can reference this property.
2006      if (DiagnoseUseOfDecl(PD, MemberLoc))
2007        return ExprError();
2008
2009      return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2010                                                     MemberLoc, BaseExpr));
2011    }
2012
2013    // Check protocols on qualified interfaces.
2014    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
2015         E = IFTy->qual_end(); I != E; ++I)
2016      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context,
2017                                                               &Member)) {
2018        // Check whether we can reference this property.
2019        if (DiagnoseUseOfDecl(PD, MemberLoc))
2020          return ExprError();
2021
2022        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2023                                                       MemberLoc, BaseExpr));
2024      }
2025
2026    // If that failed, look for an "implicit" property by seeing if the nullary
2027    // selector is implemented.
2028
2029    // FIXME: The logic for looking up nullary and unary selectors should be
2030    // shared with the code in ActOnInstanceMessage.
2031
2032    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2033    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel);
2034
2035    // If this reference is in an @implementation, check for 'private' methods.
2036    if (!Getter)
2037      Getter = FindMethodInNestedImplementations(IFace, Sel);
2038
2039    // Look through local category implementations associated with the class.
2040    if (!Getter) {
2041      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
2042        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2043          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Context, Sel);
2044      }
2045    }
2046    if (Getter) {
2047      // Check if we can reference this property.
2048      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2049        return ExprError();
2050    }
2051    // If we found a getter then this may be a valid dot-reference, we
2052    // will look for the matching setter, in case it is needed.
2053    Selector SetterSel =
2054      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2055                                         PP.getSelectorTable(), &Member);
2056    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(Context, SetterSel);
2057    if (!Setter) {
2058      // If this reference is in an @implementation, also check for 'private'
2059      // methods.
2060      Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2061    }
2062    // Look through local category implementations associated with the class.
2063    if (!Setter) {
2064      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2065        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2066          Setter = ObjCCategoryImpls[i]->getInstanceMethod(Context, SetterSel);
2067      }
2068    }
2069
2070    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2071      return ExprError();
2072
2073    if (Getter || Setter) {
2074      QualType PType;
2075
2076      if (Getter)
2077        PType = Getter->getResultType();
2078      else {
2079        for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2080             E = Setter->param_end(); PI != E; ++PI)
2081          PType = (*PI)->getType();
2082      }
2083      // FIXME: we must check that the setter has property type.
2084      return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2085                                      Setter, MemberLoc, BaseExpr));
2086    }
2087    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2088      << &Member << BaseType);
2089  }
2090  // Handle properties on qualified "id" protocols.
2091  const ObjCQualifiedIdType *QIdTy;
2092  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
2093    // Check protocols on qualified interfaces.
2094    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2095    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2096      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2097        // Check the use of this declaration
2098        if (DiagnoseUseOfDecl(PD, MemberLoc))
2099          return ExprError();
2100
2101        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2102                                                       MemberLoc, BaseExpr));
2103      }
2104      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2105        // Check the use of this method.
2106        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2107          return ExprError();
2108
2109        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2110                                                   OMD->getResultType(),
2111                                                   OMD, OpLoc, MemberLoc,
2112                                                   NULL, 0));
2113      }
2114    }
2115
2116    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2117                       << &Member << BaseType);
2118  }
2119  // Handle properties on ObjC 'Class' types.
2120  if (OpKind == tok::period && (BaseType == Context.getObjCClassType())) {
2121    // Also must look for a getter name which uses property syntax.
2122    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2123    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2124      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2125      ObjCMethodDecl *Getter;
2126      // FIXME: need to also look locally in the implementation.
2127      if ((Getter = IFace->lookupClassMethod(Context, Sel))) {
2128        // Check the use of this method.
2129        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2130          return ExprError();
2131      }
2132      // If we found a getter then this may be a valid dot-reference, we
2133      // will look for the matching setter, in case it is needed.
2134      Selector SetterSel =
2135        SelectorTable::constructSetterName(PP.getIdentifierTable(),
2136                                           PP.getSelectorTable(), &Member);
2137      ObjCMethodDecl *Setter = IFace->lookupClassMethod(Context, SetterSel);
2138      if (!Setter) {
2139        // If this reference is in an @implementation, also check for 'private'
2140        // methods.
2141        Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2142      }
2143      // Look through local category implementations associated with the class.
2144      if (!Setter) {
2145        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2146          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2147            Setter = ObjCCategoryImpls[i]->getClassMethod(Context, SetterSel);
2148        }
2149      }
2150
2151      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2152        return ExprError();
2153
2154      if (Getter || Setter) {
2155        QualType PType;
2156
2157        if (Getter)
2158          PType = Getter->getResultType();
2159        else {
2160          for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2161               E = Setter->param_end(); PI != E; ++PI)
2162            PType = (*PI)->getType();
2163        }
2164        // FIXME: we must check that the setter has property type.
2165        return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2166                                        Setter, MemberLoc, BaseExpr));
2167      }
2168      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2169        << &Member << BaseType);
2170    }
2171  }
2172
2173  // Handle 'field access' to vectors, such as 'V.xx'.
2174  if (BaseType->isExtVectorType()) {
2175    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2176    if (ret.isNull())
2177      return ExprError();
2178    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
2179                                                    MemberLoc));
2180  }
2181
2182  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2183    << BaseType << BaseExpr->getSourceRange();
2184
2185  // If the user is trying to apply -> or . to a function or function
2186  // pointer, it's probably because they forgot parentheses to call
2187  // the function. Suggest the addition of those parentheses.
2188  if (BaseType == Context.OverloadTy ||
2189      BaseType->isFunctionType() ||
2190      (BaseType->isPointerType() &&
2191       BaseType->getAsPointerType()->isFunctionType())) {
2192    SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2193    Diag(Loc, diag::note_member_reference_needs_call)
2194      << CodeModificationHint::CreateInsertion(Loc, "()");
2195  }
2196
2197  return ExprError();
2198}
2199
2200/// ConvertArgumentsForCall - Converts the arguments specified in
2201/// Args/NumArgs to the parameter types of the function FDecl with
2202/// function prototype Proto. Call is the call expression itself, and
2203/// Fn is the function expression. For a C++ member function, this
2204/// routine does not attempt to convert the object argument. Returns
2205/// true if the call is ill-formed.
2206bool
2207Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2208                              FunctionDecl *FDecl,
2209                              const FunctionProtoType *Proto,
2210                              Expr **Args, unsigned NumArgs,
2211                              SourceLocation RParenLoc) {
2212  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2213  // assignment, to the types of the corresponding parameter, ...
2214  unsigned NumArgsInProto = Proto->getNumArgs();
2215  unsigned NumArgsToCheck = NumArgs;
2216  bool Invalid = false;
2217
2218  // If too few arguments are available (and we don't have default
2219  // arguments for the remaining parameters), don't make the call.
2220  if (NumArgs < NumArgsInProto) {
2221    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2222      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2223        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2224    // Use default arguments for missing arguments
2225    NumArgsToCheck = NumArgsInProto;
2226    Call->setNumArgs(Context, NumArgsInProto);
2227  }
2228
2229  // If too many are passed and not variadic, error on the extras and drop
2230  // them.
2231  if (NumArgs > NumArgsInProto) {
2232    if (!Proto->isVariadic()) {
2233      Diag(Args[NumArgsInProto]->getLocStart(),
2234           diag::err_typecheck_call_too_many_args)
2235        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2236        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2237                       Args[NumArgs-1]->getLocEnd());
2238      // This deletes the extra arguments.
2239      Call->setNumArgs(Context, NumArgsInProto);
2240      Invalid = true;
2241    }
2242    NumArgsToCheck = NumArgsInProto;
2243  }
2244
2245  // Continue to check argument types (even if we have too few/many args).
2246  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2247    QualType ProtoArgType = Proto->getArgType(i);
2248
2249    Expr *Arg;
2250    if (i < NumArgs) {
2251      Arg = Args[i];
2252
2253      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2254                              ProtoArgType,
2255                              diag::err_call_incomplete_argument,
2256                              Arg->getSourceRange()))
2257        return true;
2258
2259      // Pass the argument.
2260      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2261        return true;
2262    } else
2263      // We already type-checked the argument, so we know it works.
2264      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
2265    QualType ArgType = Arg->getType();
2266
2267    Call->setArg(i, Arg);
2268  }
2269
2270  // If this is a variadic call, handle args passed through "...".
2271  if (Proto->isVariadic()) {
2272    VariadicCallType CallType = VariadicFunction;
2273    if (Fn->getType()->isBlockPointerType())
2274      CallType = VariadicBlock; // Block
2275    else if (isa<MemberExpr>(Fn))
2276      CallType = VariadicMethod;
2277
2278    // Promote the arguments (C99 6.5.2.2p7).
2279    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2280      Expr *Arg = Args[i];
2281      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2282      Call->setArg(i, Arg);
2283    }
2284  }
2285
2286  return Invalid;
2287}
2288
2289/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2290/// This provides the location of the left/right parens and a list of comma
2291/// locations.
2292Action::OwningExprResult
2293Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2294                    MultiExprArg args,
2295                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2296  unsigned NumArgs = args.size();
2297  Expr *Fn = static_cast<Expr *>(fn.release());
2298  Expr **Args = reinterpret_cast<Expr**>(args.release());
2299  assert(Fn && "no function call expression");
2300  FunctionDecl *FDecl = NULL;
2301  DeclarationName UnqualifiedName;
2302
2303  if (getLangOptions().CPlusPlus) {
2304    // Determine whether this is a dependent call inside a C++ template,
2305    // in which case we won't do any semantic analysis now.
2306    // FIXME: Will need to cache the results of name lookup (including ADL) in Fn.
2307    bool Dependent = false;
2308    if (Fn->isTypeDependent())
2309      Dependent = true;
2310    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2311      Dependent = true;
2312
2313    if (Dependent)
2314      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2315                                          Context.DependentTy, RParenLoc));
2316
2317    // Determine whether this is a call to an object (C++ [over.call.object]).
2318    if (Fn->getType()->isRecordType())
2319      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2320                                                CommaLocs, RParenLoc));
2321
2322    // Determine whether this is a call to a member function.
2323    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
2324      if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
2325          isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
2326        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2327                                               CommaLocs, RParenLoc));
2328  }
2329
2330  // If we're directly calling a function, get the appropriate declaration.
2331  DeclRefExpr *DRExpr = NULL;
2332  Expr *FnExpr = Fn;
2333  bool ADL = true;
2334  while (true) {
2335    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2336      FnExpr = IcExpr->getSubExpr();
2337    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2338      // Parentheses around a function disable ADL
2339      // (C++0x [basic.lookup.argdep]p1).
2340      ADL = false;
2341      FnExpr = PExpr->getSubExpr();
2342    } else if (isa<UnaryOperator>(FnExpr) &&
2343               cast<UnaryOperator>(FnExpr)->getOpcode()
2344                 == UnaryOperator::AddrOf) {
2345      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2346    } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) {
2347      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2348      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2349      break;
2350    } else if (UnresolvedFunctionNameExpr *DepName
2351                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2352      UnqualifiedName = DepName->getName();
2353      break;
2354    } else {
2355      // Any kind of name that does not refer to a declaration (or
2356      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2357      ADL = false;
2358      break;
2359    }
2360  }
2361
2362  OverloadedFunctionDecl *Ovl = 0;
2363  if (DRExpr) {
2364    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
2365    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
2366  }
2367
2368  if (Ovl || (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2369    // We don't perform ADL for implicit declarations of builtins.
2370    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2371      ADL = false;
2372
2373    // We don't perform ADL in C.
2374    if (!getLangOptions().CPlusPlus)
2375      ADL = false;
2376
2377    if (Ovl || ADL) {
2378      FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0,
2379                                      UnqualifiedName, LParenLoc, Args,
2380                                      NumArgs, CommaLocs, RParenLoc, ADL);
2381      if (!FDecl)
2382        return ExprError();
2383
2384      // Update Fn to refer to the actual function selected.
2385      Expr *NewFn = 0;
2386      if (QualifiedDeclRefExpr *QDRExpr
2387            = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr))
2388        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
2389                                                   QDRExpr->getLocation(),
2390                                                   false, false,
2391                                                 QDRExpr->getQualifierRange(),
2392                                                   QDRExpr->getQualifier());
2393      else
2394        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2395                                          Fn->getSourceRange().getBegin());
2396      Fn->Destroy(Context);
2397      Fn = NewFn;
2398    }
2399  }
2400
2401  // Promote the function operand.
2402  UsualUnaryConversions(Fn);
2403
2404  // Make the call expr early, before semantic checks.  This guarantees cleanup
2405  // of arguments and function on error.
2406  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2407                                                               Args, NumArgs,
2408                                                               Context.BoolTy,
2409                                                               RParenLoc));
2410
2411  const FunctionType *FuncT;
2412  if (!Fn->getType()->isBlockPointerType()) {
2413    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2414    // have type pointer to function".
2415    const PointerType *PT = Fn->getType()->getAsPointerType();
2416    if (PT == 0)
2417      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2418        << Fn->getType() << Fn->getSourceRange());
2419    FuncT = PT->getPointeeType()->getAsFunctionType();
2420  } else { // This is a block call.
2421    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
2422                getAsFunctionType();
2423  }
2424  if (FuncT == 0)
2425    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2426      << Fn->getType() << Fn->getSourceRange());
2427
2428  // Check for a valid return type
2429  if (!FuncT->getResultType()->isVoidType() &&
2430      RequireCompleteType(Fn->getSourceRange().getBegin(),
2431                          FuncT->getResultType(),
2432                          diag::err_call_incomplete_return,
2433                          TheCall->getSourceRange()))
2434    return ExprError();
2435
2436  // We know the result type of the call, set it.
2437  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2438
2439  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2440    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2441                                RParenLoc))
2442      return ExprError();
2443  } else {
2444    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2445
2446    if (FDecl) {
2447      // Check if we have too few/too many template arguments, based
2448      // on our knowledge of the function definition.
2449      const FunctionDecl *Def = 0;
2450      if (FDecl->getBody(Context, Def) && NumArgs != Def->param_size())
2451        Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2452          << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2453    }
2454
2455    // Promote the arguments (C99 6.5.2.2p6).
2456    for (unsigned i = 0; i != NumArgs; i++) {
2457      Expr *Arg = Args[i];
2458      DefaultArgumentPromotion(Arg);
2459      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2460                              Arg->getType(),
2461                              diag::err_call_incomplete_argument,
2462                              Arg->getSourceRange()))
2463        return ExprError();
2464      TheCall->setArg(i, Arg);
2465    }
2466  }
2467
2468  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2469    if (!Method->isStatic())
2470      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2471        << Fn->getSourceRange());
2472
2473  // Do special checking on direct calls to functions.
2474  if (FDecl)
2475    return CheckFunctionCall(FDecl, TheCall.take());
2476
2477  return Owned(TheCall.take());
2478}
2479
2480Action::OwningExprResult
2481Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2482                           SourceLocation RParenLoc, ExprArg InitExpr) {
2483  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2484  QualType literalType = QualType::getFromOpaquePtr(Ty);
2485  // FIXME: put back this assert when initializers are worked out.
2486  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2487  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2488
2489  if (literalType->isArrayType()) {
2490    if (literalType->isVariableArrayType())
2491      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2492        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2493  } else if (RequireCompleteType(LParenLoc, literalType,
2494                                    diag::err_typecheck_decl_incomplete_type,
2495                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2496    return ExprError();
2497
2498  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2499                            DeclarationName(), /*FIXME:DirectInit=*/false))
2500    return ExprError();
2501
2502  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2503  if (isFileScope) { // 6.5.2.5p3
2504    if (CheckForConstantInitializer(literalExpr, literalType))
2505      return ExprError();
2506  }
2507  InitExpr.release();
2508  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2509                                                 literalExpr, isFileScope));
2510}
2511
2512Action::OwningExprResult
2513Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2514                    SourceLocation RBraceLoc) {
2515  unsigned NumInit = initlist.size();
2516  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2517
2518  // Semantic analysis for initializers is done by ActOnDeclarator() and
2519  // CheckInitializer() - it requires knowledge of the object being intialized.
2520
2521  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2522                                               RBraceLoc);
2523  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2524  return Owned(E);
2525}
2526
2527/// CheckCastTypes - Check type constraints for casting between types.
2528bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
2529  UsualUnaryConversions(castExpr);
2530
2531  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2532  // type needs to be scalar.
2533  if (castType->isVoidType()) {
2534    // Cast to void allows any expr type.
2535  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
2536    // We can't check any more until template instantiation time.
2537  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2538    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2539        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2540        (castType->isStructureType() || castType->isUnionType())) {
2541      // GCC struct/union extension: allow cast to self.
2542      // FIXME: Check that the cast destination type is complete.
2543      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2544        << castType << castExpr->getSourceRange();
2545    } else if (castType->isUnionType()) {
2546      // GCC cast to union extension
2547      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2548      RecordDecl::field_iterator Field, FieldEnd;
2549      for (Field = RD->field_begin(Context), FieldEnd = RD->field_end(Context);
2550           Field != FieldEnd; ++Field) {
2551        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2552            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2553          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2554            << castExpr->getSourceRange();
2555          break;
2556        }
2557      }
2558      if (Field == FieldEnd)
2559        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2560          << castExpr->getType() << castExpr->getSourceRange();
2561    } else {
2562      // Reject any other conversions to non-scalar types.
2563      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2564        << castType << castExpr->getSourceRange();
2565    }
2566  } else if (!castExpr->getType()->isScalarType() &&
2567             !castExpr->getType()->isVectorType()) {
2568    return Diag(castExpr->getLocStart(),
2569                diag::err_typecheck_expect_scalar_operand)
2570      << castExpr->getType() << castExpr->getSourceRange();
2571  } else if (castExpr->getType()->isVectorType()) {
2572    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2573      return true;
2574  } else if (castType->isVectorType()) {
2575    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2576      return true;
2577  } else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
2578    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
2579  }
2580  return false;
2581}
2582
2583bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
2584  assert(VectorTy->isVectorType() && "Not a vector type!");
2585
2586  if (Ty->isVectorType() || Ty->isIntegerType()) {
2587    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
2588      return Diag(R.getBegin(),
2589                  Ty->isVectorType() ?
2590                  diag::err_invalid_conversion_between_vectors :
2591                  diag::err_invalid_conversion_between_vector_and_integer)
2592        << VectorTy << Ty << R;
2593  } else
2594    return Diag(R.getBegin(),
2595                diag::err_invalid_conversion_between_vector_and_scalar)
2596      << VectorTy << Ty << R;
2597
2598  return false;
2599}
2600
2601Action::OwningExprResult
2602Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
2603                    SourceLocation RParenLoc, ExprArg Op) {
2604  assert((Ty != 0) && (Op.get() != 0) &&
2605         "ActOnCastExpr(): missing type or expr");
2606
2607  Expr *castExpr = static_cast<Expr*>(Op.release());
2608  QualType castType = QualType::getFromOpaquePtr(Ty);
2609
2610  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2611    return ExprError();
2612  return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
2613                                            LParenLoc, RParenLoc));
2614}
2615
2616/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
2617/// In that case, lhs = cond.
2618/// C99 6.5.15
2619QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2620                                        SourceLocation QuestionLoc) {
2621  // C++ is sufficiently different to merit its own checker.
2622  if (getLangOptions().CPlusPlus)
2623    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
2624
2625  UsualUnaryConversions(Cond);
2626  UsualUnaryConversions(LHS);
2627  UsualUnaryConversions(RHS);
2628  QualType CondTy = Cond->getType();
2629  QualType LHSTy = LHS->getType();
2630  QualType RHSTy = RHS->getType();
2631
2632  // first, check the condition.
2633  if (!CondTy->isScalarType()) { // C99 6.5.15p2
2634    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
2635      << CondTy;
2636    return QualType();
2637  }
2638
2639  // Now check the two expressions.
2640
2641  // If both operands have arithmetic type, do the usual arithmetic conversions
2642  // to find a common type: C99 6.5.15p3,5.
2643  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
2644    UsualArithmeticConversions(LHS, RHS);
2645    return LHS->getType();
2646  }
2647
2648  // If both operands are the same structure or union type, the result is that
2649  // type.
2650  if (const RecordType *LHSRT = LHSTy->getAsRecordType()) {    // C99 6.5.15p3
2651    if (const RecordType *RHSRT = RHSTy->getAsRecordType())
2652      if (LHSRT->getDecl() == RHSRT->getDecl())
2653        // "If both the operands have structure or union type, the result has
2654        // that type."  This implies that CV qualifiers are dropped.
2655        return LHSTy.getUnqualifiedType();
2656    // FIXME: Type of conditional expression must be complete in C mode.
2657  }
2658
2659  // C99 6.5.15p5: "If both operands have void type, the result has void type."
2660  // The following || allows only one side to be void (a GCC-ism).
2661  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
2662    if (!LHSTy->isVoidType())
2663      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2664        << RHS->getSourceRange();
2665    if (!RHSTy->isVoidType())
2666      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2667        << LHS->getSourceRange();
2668    ImpCastExprToType(LHS, Context.VoidTy);
2669    ImpCastExprToType(RHS, Context.VoidTy);
2670    return Context.VoidTy;
2671  }
2672  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
2673  // the type of the other operand."
2674  if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() ||
2675       Context.isObjCObjectPointerType(LHSTy)) &&
2676      RHS->isNullPointerConstant(Context)) {
2677    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
2678    return LHSTy;
2679  }
2680  if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() ||
2681       Context.isObjCObjectPointerType(RHSTy)) &&
2682      LHS->isNullPointerConstant(Context)) {
2683    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
2684    return RHSTy;
2685  }
2686
2687  // Handle the case where both operands are pointers before we handle null
2688  // pointer constants in case both operands are null pointer constants.
2689  if (const PointerType *LHSPT = LHSTy->getAsPointerType()) { // C99 6.5.15p3,6
2690    if (const PointerType *RHSPT = RHSTy->getAsPointerType()) {
2691      // get the "pointed to" types
2692      QualType lhptee = LHSPT->getPointeeType();
2693      QualType rhptee = RHSPT->getPointeeType();
2694
2695      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
2696      if (lhptee->isVoidType() &&
2697          rhptee->isIncompleteOrObjectType()) {
2698        // Figure out necessary qualifiers (C99 6.5.15p6)
2699        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
2700        QualType destType = Context.getPointerType(destPointee);
2701        ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2702        ImpCastExprToType(RHS, destType); // promote to void*
2703        return destType;
2704      }
2705      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
2706        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
2707        QualType destType = Context.getPointerType(destPointee);
2708        ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2709        ImpCastExprToType(RHS, destType); // promote to void*
2710        return destType;
2711      }
2712
2713      if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
2714        // Two identical pointer types are always compatible.
2715        return LHSTy;
2716      }
2717
2718      QualType compositeType = LHSTy;
2719
2720      // If either type is an Objective-C object type then check
2721      // compatibility according to Objective-C.
2722      if (Context.isObjCObjectPointerType(LHSTy) ||
2723          Context.isObjCObjectPointerType(RHSTy)) {
2724        // If both operands are interfaces and either operand can be
2725        // assigned to the other, use that type as the composite
2726        // type. This allows
2727        //   xxx ? (A*) a : (B*) b
2728        // where B is a subclass of A.
2729        //
2730        // Additionally, as for assignment, if either type is 'id'
2731        // allow silent coercion. Finally, if the types are
2732        // incompatible then make sure to use 'id' as the composite
2733        // type so the result is acceptable for sending messages to.
2734
2735        // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
2736        // It could return the composite type.
2737        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2738        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2739        if (LHSIface && RHSIface &&
2740            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
2741          compositeType = LHSTy;
2742        } else if (LHSIface && RHSIface &&
2743                   Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
2744          compositeType = RHSTy;
2745        } else if (Context.isObjCIdStructType(lhptee) ||
2746                   Context.isObjCIdStructType(rhptee)) {
2747          compositeType = Context.getObjCIdType();
2748        } else {
2749          Diag(QuestionLoc, diag::ext_typecheck_comparison_of_distinct_pointers)
2750               << LHSTy << RHSTy
2751               << LHS->getSourceRange() << RHS->getSourceRange();
2752          QualType incompatTy = Context.getObjCIdType();
2753          ImpCastExprToType(LHS, incompatTy);
2754          ImpCastExprToType(RHS, incompatTy);
2755          return incompatTy;
2756        }
2757      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2758                                             rhptee.getUnqualifiedType())) {
2759        Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
2760          << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2761        // In this situation, we assume void* type. No especially good
2762        // reason, but this is what gcc does, and we do have to pick
2763        // to get a consistent AST.
2764        QualType incompatTy = Context.getPointerType(Context.VoidTy);
2765        ImpCastExprToType(LHS, incompatTy);
2766        ImpCastExprToType(RHS, incompatTy);
2767        return incompatTy;
2768      }
2769      // The pointer types are compatible.
2770      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
2771      // differently qualified versions of compatible types, the result type is
2772      // a pointer to an appropriately qualified version of the *composite*
2773      // type.
2774      // FIXME: Need to calculate the composite type.
2775      // FIXME: Need to add qualifiers
2776      ImpCastExprToType(LHS, compositeType);
2777      ImpCastExprToType(RHS, compositeType);
2778      return compositeType;
2779    }
2780  }
2781
2782  // GCC compatibility: soften pointer/integer mismatch.
2783  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
2784    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
2785      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2786    ImpCastExprToType(LHS, RHSTy); // promote the integer to a pointer.
2787    return RHSTy;
2788  }
2789  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
2790    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
2791      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2792    ImpCastExprToType(RHS, LHSTy); // promote the integer to a pointer.
2793    return LHSTy;
2794  }
2795
2796  // Selection between block pointer types is ok as long as they are the same.
2797  if (LHSTy->isBlockPointerType() && RHSTy->isBlockPointerType() &&
2798      Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy))
2799    return LHSTy;
2800
2801  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
2802  // evaluates to "struct objc_object *" (and is handled above when comparing
2803  // id with statically typed objects).
2804  if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
2805    // GCC allows qualified id and any Objective-C type to devolve to
2806    // id. Currently localizing to here until clear this should be
2807    // part of ObjCQualifiedIdTypesAreCompatible.
2808    if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
2809        (LHSTy->isObjCQualifiedIdType() &&
2810         Context.isObjCObjectPointerType(RHSTy)) ||
2811        (RHSTy->isObjCQualifiedIdType() &&
2812         Context.isObjCObjectPointerType(LHSTy))) {
2813      // FIXME: This is not the correct composite type. This only
2814      // happens to work because id can more or less be used anywhere,
2815      // however this may change the type of method sends.
2816      // FIXME: gcc adds some type-checking of the arguments and emits
2817      // (confusing) incompatible comparison warnings in some
2818      // cases. Investigate.
2819      QualType compositeType = Context.getObjCIdType();
2820      ImpCastExprToType(LHS, compositeType);
2821      ImpCastExprToType(RHS, compositeType);
2822      return compositeType;
2823    }
2824  }
2825
2826  // Otherwise, the operands are not compatible.
2827  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2828    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2829  return QualType();
2830}
2831
2832/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
2833/// in the case of a the GNU conditional expr extension.
2834Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
2835                                                  SourceLocation ColonLoc,
2836                                                  ExprArg Cond, ExprArg LHS,
2837                                                  ExprArg RHS) {
2838  Expr *CondExpr = (Expr *) Cond.get();
2839  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
2840
2841  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
2842  // was the condition.
2843  bool isLHSNull = LHSExpr == 0;
2844  if (isLHSNull)
2845    LHSExpr = CondExpr;
2846
2847  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
2848                                             RHSExpr, QuestionLoc);
2849  if (result.isNull())
2850    return ExprError();
2851
2852  Cond.release();
2853  LHS.release();
2854  RHS.release();
2855  return Owned(new (Context) ConditionalOperator(CondExpr,
2856                                                 isLHSNull ? 0 : LHSExpr,
2857                                                 RHSExpr, result));
2858}
2859
2860
2861// CheckPointerTypesForAssignment - This is a very tricky routine (despite
2862// being closely modeled after the C99 spec:-). The odd characteristic of this
2863// routine is it effectively iqnores the qualifiers on the top level pointee.
2864// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
2865// FIXME: add a couple examples in this comment.
2866Sema::AssignConvertType
2867Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
2868  QualType lhptee, rhptee;
2869
2870  // get the "pointed to" type (ignoring qualifiers at the top level)
2871  lhptee = lhsType->getAsPointerType()->getPointeeType();
2872  rhptee = rhsType->getAsPointerType()->getPointeeType();
2873
2874  // make sure we operate on the canonical type
2875  lhptee = Context.getCanonicalType(lhptee);
2876  rhptee = Context.getCanonicalType(rhptee);
2877
2878  AssignConvertType ConvTy = Compatible;
2879
2880  // C99 6.5.16.1p1: This following citation is common to constraints
2881  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
2882  // qualifiers of the type *pointed to* by the right;
2883  // FIXME: Handle ExtQualType
2884  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
2885    ConvTy = CompatiblePointerDiscardsQualifiers;
2886
2887  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
2888  // incomplete type and the other is a pointer to a qualified or unqualified
2889  // version of void...
2890  if (lhptee->isVoidType()) {
2891    if (rhptee->isIncompleteOrObjectType())
2892      return ConvTy;
2893
2894    // As an extension, we allow cast to/from void* to function pointer.
2895    assert(rhptee->isFunctionType());
2896    return FunctionVoidPointer;
2897  }
2898
2899  if (rhptee->isVoidType()) {
2900    if (lhptee->isIncompleteOrObjectType())
2901      return ConvTy;
2902
2903    // As an extension, we allow cast to/from void* to function pointer.
2904    assert(lhptee->isFunctionType());
2905    return FunctionVoidPointer;
2906  }
2907  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
2908  // unqualified versions of compatible types, ...
2909  lhptee = lhptee.getUnqualifiedType();
2910  rhptee = rhptee.getUnqualifiedType();
2911  if (!Context.typesAreCompatible(lhptee, rhptee)) {
2912    // Check if the pointee types are compatible ignoring the sign.
2913    // We explicitly check for char so that we catch "char" vs
2914    // "unsigned char" on systems where "char" is unsigned.
2915    if (lhptee->isCharType()) {
2916      lhptee = Context.UnsignedCharTy;
2917    } else if (lhptee->isSignedIntegerType()) {
2918      lhptee = Context.getCorrespondingUnsignedType(lhptee);
2919    }
2920    if (rhptee->isCharType()) {
2921      rhptee = Context.UnsignedCharTy;
2922    } else if (rhptee->isSignedIntegerType()) {
2923      rhptee = Context.getCorrespondingUnsignedType(rhptee);
2924    }
2925    if (lhptee == rhptee) {
2926      // Types are compatible ignoring the sign. Qualifier incompatibility
2927      // takes priority over sign incompatibility because the sign
2928      // warning can be disabled.
2929      if (ConvTy != Compatible)
2930        return ConvTy;
2931      return IncompatiblePointerSign;
2932    }
2933    // General pointer incompatibility takes priority over qualifiers.
2934    return IncompatiblePointer;
2935  }
2936  return ConvTy;
2937}
2938
2939/// CheckBlockPointerTypesForAssignment - This routine determines whether two
2940/// block pointer types are compatible or whether a block and normal pointer
2941/// are compatible. It is more restrict than comparing two function pointer
2942// types.
2943Sema::AssignConvertType
2944Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
2945                                          QualType rhsType) {
2946  QualType lhptee, rhptee;
2947
2948  // get the "pointed to" type (ignoring qualifiers at the top level)
2949  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
2950  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
2951
2952  // make sure we operate on the canonical type
2953  lhptee = Context.getCanonicalType(lhptee);
2954  rhptee = Context.getCanonicalType(rhptee);
2955
2956  AssignConvertType ConvTy = Compatible;
2957
2958  // For blocks we enforce that qualifiers are identical.
2959  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
2960    ConvTy = CompatiblePointerDiscardsQualifiers;
2961
2962  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
2963    return IncompatibleBlockPointer;
2964  return ConvTy;
2965}
2966
2967/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
2968/// has code to accommodate several GCC extensions when type checking
2969/// pointers. Here are some objectionable examples that GCC considers warnings:
2970///
2971///  int a, *pint;
2972///  short *pshort;
2973///  struct foo *pfoo;
2974///
2975///  pint = pshort; // warning: assignment from incompatible pointer type
2976///  a = pint; // warning: assignment makes integer from pointer without a cast
2977///  pint = a; // warning: assignment makes pointer from integer without a cast
2978///  pint = pfoo; // warning: assignment from incompatible pointer type
2979///
2980/// As a result, the code for dealing with pointers is more complex than the
2981/// C99 spec dictates.
2982///
2983Sema::AssignConvertType
2984Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
2985  // Get canonical types.  We're not formatting these types, just comparing
2986  // them.
2987  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
2988  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
2989
2990  if (lhsType == rhsType)
2991    return Compatible; // Common case: fast path an exact match.
2992
2993  // If the left-hand side is a reference type, then we are in a
2994  // (rare!) case where we've allowed the use of references in C,
2995  // e.g., as a parameter type in a built-in function. In this case,
2996  // just make sure that the type referenced is compatible with the
2997  // right-hand side type. The caller is responsible for adjusting
2998  // lhsType so that the resulting expression does not have reference
2999  // type.
3000  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
3001    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
3002      return Compatible;
3003    return Incompatible;
3004  }
3005
3006  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
3007    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
3008      return Compatible;
3009    // Relax integer conversions like we do for pointers below.
3010    if (rhsType->isIntegerType())
3011      return IntToPointer;
3012    if (lhsType->isIntegerType())
3013      return PointerToInt;
3014    return IncompatibleObjCQualifiedId;
3015  }
3016
3017  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3018    // For ExtVector, allow vector splats; float -> <n x float>
3019    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
3020      if (LV->getElementType() == rhsType)
3021        return Compatible;
3022
3023    // If we are allowing lax vector conversions, and LHS and RHS are both
3024    // vectors, the total size only needs to be the same. This is a bitcast;
3025    // no bits are changed but the result type is different.
3026    if (getLangOptions().LaxVectorConversions &&
3027        lhsType->isVectorType() && rhsType->isVectorType()) {
3028      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3029        return IncompatibleVectors;
3030    }
3031    return Incompatible;
3032  }
3033
3034  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3035    return Compatible;
3036
3037  if (isa<PointerType>(lhsType)) {
3038    if (rhsType->isIntegerType())
3039      return IntToPointer;
3040
3041    if (isa<PointerType>(rhsType))
3042      return CheckPointerTypesForAssignment(lhsType, rhsType);
3043
3044    if (rhsType->getAsBlockPointerType()) {
3045      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
3046        return Compatible;
3047
3048      // Treat block pointers as objects.
3049      if (getLangOptions().ObjC1 &&
3050          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
3051        return Compatible;
3052    }
3053    return Incompatible;
3054  }
3055
3056  if (isa<BlockPointerType>(lhsType)) {
3057    if (rhsType->isIntegerType())
3058      return IntToBlockPointer;
3059
3060    // Treat block pointers as objects.
3061    if (getLangOptions().ObjC1 &&
3062        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
3063      return Compatible;
3064
3065    if (rhsType->isBlockPointerType())
3066      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3067
3068    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
3069      if (RHSPT->getPointeeType()->isVoidType())
3070        return Compatible;
3071    }
3072    return Incompatible;
3073  }
3074
3075  if (isa<PointerType>(rhsType)) {
3076    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3077    if (lhsType == Context.BoolTy)
3078      return Compatible;
3079
3080    if (lhsType->isIntegerType())
3081      return PointerToInt;
3082
3083    if (isa<PointerType>(lhsType))
3084      return CheckPointerTypesForAssignment(lhsType, rhsType);
3085
3086    if (isa<BlockPointerType>(lhsType) &&
3087        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
3088      return Compatible;
3089    return Incompatible;
3090  }
3091
3092  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3093    if (Context.typesAreCompatible(lhsType, rhsType))
3094      return Compatible;
3095  }
3096  return Incompatible;
3097}
3098
3099Sema::AssignConvertType
3100Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
3101  if (getLangOptions().CPlusPlus) {
3102    if (!lhsType->isRecordType()) {
3103      // C++ 5.17p3: If the left operand is not of class type, the
3104      // expression is implicitly converted (C++ 4) to the
3105      // cv-unqualified type of the left operand.
3106      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
3107                                    "assigning"))
3108        return Incompatible;
3109      return Compatible;
3110    }
3111
3112    // FIXME: Currently, we fall through and treat C++ classes like C
3113    // structures.
3114  }
3115
3116  // C99 6.5.16.1p1: the left operand is a pointer and the right is
3117  // a null pointer constant.
3118  if ((lhsType->isPointerType() ||
3119       lhsType->isObjCQualifiedIdType() ||
3120       lhsType->isBlockPointerType())
3121      && rExpr->isNullPointerConstant(Context)) {
3122    ImpCastExprToType(rExpr, lhsType);
3123    return Compatible;
3124  }
3125
3126  // This check seems unnatural, however it is necessary to ensure the proper
3127  // conversion of functions/arrays. If the conversion were done for all
3128  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
3129  // expressions that surpress this implicit conversion (&, sizeof).
3130  //
3131  // Suppress this for references: C++ 8.5.3p5.
3132  if (!lhsType->isReferenceType())
3133    DefaultFunctionArrayConversion(rExpr);
3134
3135  Sema::AssignConvertType result =
3136    CheckAssignmentConstraints(lhsType, rExpr->getType());
3137
3138  // C99 6.5.16.1p2: The value of the right operand is converted to the
3139  // type of the assignment expression.
3140  // CheckAssignmentConstraints allows the left-hand side to be a reference,
3141  // so that we can use references in built-in functions even in C.
3142  // The getNonReferenceType() call makes sure that the resulting expression
3143  // does not have reference type.
3144  if (rExpr->getType() != lhsType)
3145    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
3146  return result;
3147}
3148
3149Sema::AssignConvertType
3150Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
3151  return CheckAssignmentConstraints(lhsType, rhsType);
3152}
3153
3154QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
3155  Diag(Loc, diag::err_typecheck_invalid_operands)
3156    << lex->getType() << rex->getType()
3157    << lex->getSourceRange() << rex->getSourceRange();
3158  return QualType();
3159}
3160
3161inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
3162                                                              Expr *&rex) {
3163  // For conversion purposes, we ignore any qualifiers.
3164  // For example, "const float" and "float" are equivalent.
3165  QualType lhsType =
3166    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
3167  QualType rhsType =
3168    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
3169
3170  // If the vector types are identical, return.
3171  if (lhsType == rhsType)
3172    return lhsType;
3173
3174  // Handle the case of a vector & extvector type of the same size and element
3175  // type.  It would be nice if we only had one vector type someday.
3176  if (getLangOptions().LaxVectorConversions) {
3177    // FIXME: Should we warn here?
3178    if (const VectorType *LV = lhsType->getAsVectorType()) {
3179      if (const VectorType *RV = rhsType->getAsVectorType())
3180        if (LV->getElementType() == RV->getElementType() &&
3181            LV->getNumElements() == RV->getNumElements()) {
3182          return lhsType->isExtVectorType() ? lhsType : rhsType;
3183        }
3184    }
3185  }
3186
3187  // If the lhs is an extended vector and the rhs is a scalar of the same type
3188  // or a literal, promote the rhs to the vector type.
3189  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
3190    QualType eltType = V->getElementType();
3191
3192    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
3193        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
3194        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
3195      ImpCastExprToType(rex, lhsType);
3196      return lhsType;
3197    }
3198  }
3199
3200  // If the rhs is an extended vector and the lhs is a scalar of the same type,
3201  // promote the lhs to the vector type.
3202  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
3203    QualType eltType = V->getElementType();
3204
3205    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
3206        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
3207        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
3208      ImpCastExprToType(lex, rhsType);
3209      return rhsType;
3210    }
3211  }
3212
3213  // You cannot convert between vector values of different size.
3214  Diag(Loc, diag::err_typecheck_vector_not_convertable)
3215    << lex->getType() << rex->getType()
3216    << lex->getSourceRange() << rex->getSourceRange();
3217  return QualType();
3218}
3219
3220inline QualType Sema::CheckMultiplyDivideOperands(
3221  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3222{
3223  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3224    return CheckVectorOperands(Loc, lex, rex);
3225
3226  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3227
3228  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3229    return compType;
3230  return InvalidOperands(Loc, lex, rex);
3231}
3232
3233inline QualType Sema::CheckRemainderOperands(
3234  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3235{
3236  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3237    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3238      return CheckVectorOperands(Loc, lex, rex);
3239    return InvalidOperands(Loc, lex, rex);
3240  }
3241
3242  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3243
3244  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3245    return compType;
3246  return InvalidOperands(Loc, lex, rex);
3247}
3248
3249inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
3250  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy)
3251{
3252  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3253    QualType compType = CheckVectorOperands(Loc, lex, rex);
3254    if (CompLHSTy) *CompLHSTy = compType;
3255    return compType;
3256  }
3257
3258  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3259
3260  // handle the common case first (both operands are arithmetic).
3261  if (lex->getType()->isArithmeticType() &&
3262      rex->getType()->isArithmeticType()) {
3263    if (CompLHSTy) *CompLHSTy = compType;
3264    return compType;
3265  }
3266
3267  // Put any potential pointer into PExp
3268  Expr* PExp = lex, *IExp = rex;
3269  if (IExp->getType()->isPointerType())
3270    std::swap(PExp, IExp);
3271
3272  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
3273    if (IExp->getType()->isIntegerType()) {
3274      // Check for arithmetic on pointers to incomplete types
3275      if (PTy->getPointeeType()->isVoidType()) {
3276        if (getLangOptions().CPlusPlus) {
3277          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3278            << lex->getSourceRange() << rex->getSourceRange();
3279          return QualType();
3280        }
3281
3282        // GNU extension: arithmetic on pointer to void
3283        Diag(Loc, diag::ext_gnu_void_ptr)
3284          << lex->getSourceRange() << rex->getSourceRange();
3285      } else if (PTy->getPointeeType()->isFunctionType()) {
3286        if (getLangOptions().CPlusPlus) {
3287          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3288            << lex->getType() << lex->getSourceRange();
3289          return QualType();
3290        }
3291
3292        // GNU extension: arithmetic on pointer to function
3293        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3294          << lex->getType() << lex->getSourceRange();
3295      } else if (!PTy->isDependentType() &&
3296                 RequireCompleteType(Loc, PTy->getPointeeType(),
3297                                diag::err_typecheck_arithmetic_incomplete_type,
3298                                     lex->getSourceRange(), SourceRange(),
3299                                     lex->getType()))
3300        return QualType();
3301
3302      if (CompLHSTy) {
3303        QualType LHSTy = lex->getType();
3304        if (LHSTy->isPromotableIntegerType())
3305          LHSTy = Context.IntTy;
3306        *CompLHSTy = LHSTy;
3307      }
3308      return PExp->getType();
3309    }
3310  }
3311
3312  return InvalidOperands(Loc, lex, rex);
3313}
3314
3315// C99 6.5.6
3316QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
3317                                        SourceLocation Loc, QualType* CompLHSTy) {
3318  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3319    QualType compType = CheckVectorOperands(Loc, lex, rex);
3320    if (CompLHSTy) *CompLHSTy = compType;
3321    return compType;
3322  }
3323
3324  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3325
3326  // Enforce type constraints: C99 6.5.6p3.
3327
3328  // Handle the common case first (both operands are arithmetic).
3329  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) {
3330    if (CompLHSTy) *CompLHSTy = compType;
3331    return compType;
3332  }
3333
3334  // Either ptr - int   or   ptr - ptr.
3335  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
3336    QualType lpointee = LHSPTy->getPointeeType();
3337
3338    // The LHS must be an completely-defined object type.
3339
3340    bool ComplainAboutVoid = false;
3341    Expr *ComplainAboutFunc = 0;
3342    if (lpointee->isVoidType()) {
3343      if (getLangOptions().CPlusPlus) {
3344        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3345          << lex->getSourceRange() << rex->getSourceRange();
3346        return QualType();
3347      }
3348
3349      // GNU C extension: arithmetic on pointer to void
3350      ComplainAboutVoid = true;
3351    } else if (lpointee->isFunctionType()) {
3352      if (getLangOptions().CPlusPlus) {
3353        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3354          << lex->getType() << lex->getSourceRange();
3355        return QualType();
3356      }
3357
3358      // GNU C extension: arithmetic on pointer to function
3359      ComplainAboutFunc = lex;
3360    } else if (!lpointee->isDependentType() &&
3361               RequireCompleteType(Loc, lpointee,
3362                                   diag::err_typecheck_sub_ptr_object,
3363                                   lex->getSourceRange(),
3364                                   SourceRange(),
3365                                   lex->getType()))
3366      return QualType();
3367
3368    // The result type of a pointer-int computation is the pointer type.
3369    if (rex->getType()->isIntegerType()) {
3370      if (ComplainAboutVoid)
3371        Diag(Loc, diag::ext_gnu_void_ptr)
3372          << lex->getSourceRange() << rex->getSourceRange();
3373      if (ComplainAboutFunc)
3374        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3375          << ComplainAboutFunc->getType()
3376          << ComplainAboutFunc->getSourceRange();
3377
3378      if (CompLHSTy) *CompLHSTy = lex->getType();
3379      return lex->getType();
3380    }
3381
3382    // Handle pointer-pointer subtractions.
3383    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
3384      QualType rpointee = RHSPTy->getPointeeType();
3385
3386      // RHS must be a completely-type object type.
3387      // Handle the GNU void* extension.
3388      if (rpointee->isVoidType()) {
3389        if (getLangOptions().CPlusPlus) {
3390          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3391            << lex->getSourceRange() << rex->getSourceRange();
3392          return QualType();
3393        }
3394
3395        ComplainAboutVoid = true;
3396      } else if (rpointee->isFunctionType()) {
3397        if (getLangOptions().CPlusPlus) {
3398          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3399            << rex->getType() << rex->getSourceRange();
3400          return QualType();
3401        }
3402
3403        // GNU extension: arithmetic on pointer to function
3404        if (!ComplainAboutFunc)
3405          ComplainAboutFunc = rex;
3406      } else if (!rpointee->isDependentType() &&
3407                 RequireCompleteType(Loc, rpointee,
3408                                     diag::err_typecheck_sub_ptr_object,
3409                                     rex->getSourceRange(),
3410                                     SourceRange(),
3411                                     rex->getType()))
3412        return QualType();
3413
3414      // Pointee types must be compatible.
3415      if (!Context.typesAreCompatible(
3416              Context.getCanonicalType(lpointee).getUnqualifiedType(),
3417              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
3418        Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3419          << lex->getType() << rex->getType()
3420          << lex->getSourceRange() << rex->getSourceRange();
3421        return QualType();
3422      }
3423
3424      if (ComplainAboutVoid)
3425        Diag(Loc, diag::ext_gnu_void_ptr)
3426          << lex->getSourceRange() << rex->getSourceRange();
3427      if (ComplainAboutFunc)
3428        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3429          << ComplainAboutFunc->getType()
3430          << ComplainAboutFunc->getSourceRange();
3431
3432      if (CompLHSTy) *CompLHSTy = lex->getType();
3433      return Context.getPointerDiffType();
3434    }
3435  }
3436
3437  return InvalidOperands(Loc, lex, rex);
3438}
3439
3440// C99 6.5.7
3441QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3442                                  bool isCompAssign) {
3443  // C99 6.5.7p2: Each of the operands shall have integer type.
3444  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
3445    return InvalidOperands(Loc, lex, rex);
3446
3447  // Shifts don't perform usual arithmetic conversions, they just do integer
3448  // promotions on each operand. C99 6.5.7p3
3449  QualType LHSTy;
3450  if (lex->getType()->isPromotableIntegerType())
3451    LHSTy = Context.IntTy;
3452  else
3453    LHSTy = lex->getType();
3454  if (!isCompAssign)
3455    ImpCastExprToType(lex, LHSTy);
3456
3457  UsualUnaryConversions(rex);
3458
3459  // "The type of the result is that of the promoted left operand."
3460  return LHSTy;
3461}
3462
3463// C99 6.5.8
3464QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3465                                    unsigned OpaqueOpc, bool isRelational) {
3466  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
3467
3468  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3469    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
3470
3471  // C99 6.5.8p3 / C99 6.5.9p4
3472  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3473    UsualArithmeticConversions(lex, rex);
3474  else {
3475    UsualUnaryConversions(lex);
3476    UsualUnaryConversions(rex);
3477  }
3478  QualType lType = lex->getType();
3479  QualType rType = rex->getType();
3480
3481  if (!lType->isFloatingType()) {
3482    // For non-floating point types, check for self-comparisons of the form
3483    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3484    // often indicate logic errors in the program.
3485    // NOTE: Don't warn about comparisons of enum constants. These can arise
3486    //  from macro expansions, and are usually quite deliberate.
3487    Expr *LHSStripped = lex->IgnoreParens();
3488    Expr *RHSStripped = rex->IgnoreParens();
3489    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
3490      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
3491        if (DRL->getDecl() == DRR->getDecl() &&
3492            !isa<EnumConstantDecl>(DRL->getDecl()))
3493          Diag(Loc, diag::warn_selfcomparison);
3494
3495    if (isa<CastExpr>(LHSStripped))
3496      LHSStripped = LHSStripped->IgnoreParenCasts();
3497    if (isa<CastExpr>(RHSStripped))
3498      RHSStripped = RHSStripped->IgnoreParenCasts();
3499
3500    // Warn about comparisons against a string constant (unless the other
3501    // operand is null), the user probably wants strcmp.
3502    Expr *literalString = 0;
3503    Expr *literalStringStripped = 0;
3504    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
3505        !RHSStripped->isNullPointerConstant(Context)) {
3506      literalString = lex;
3507      literalStringStripped = LHSStripped;
3508    }
3509    else if ((isa<StringLiteral>(RHSStripped) ||
3510              isa<ObjCEncodeExpr>(RHSStripped)) &&
3511             !LHSStripped->isNullPointerConstant(Context)) {
3512      literalString = rex;
3513      literalStringStripped = RHSStripped;
3514    }
3515
3516    if (literalString) {
3517      std::string resultComparison;
3518      switch (Opc) {
3519      case BinaryOperator::LT: resultComparison = ") < 0"; break;
3520      case BinaryOperator::GT: resultComparison = ") > 0"; break;
3521      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
3522      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
3523      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
3524      case BinaryOperator::NE: resultComparison = ") != 0"; break;
3525      default: assert(false && "Invalid comparison operator");
3526      }
3527      Diag(Loc, diag::warn_stringcompare)
3528        << isa<ObjCEncodeExpr>(literalStringStripped)
3529        << literalString->getSourceRange()
3530        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
3531        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
3532                                                 "strcmp(")
3533        << CodeModificationHint::CreateInsertion(
3534                                       PP.getLocForEndOfToken(rex->getLocEnd()),
3535                                       resultComparison);
3536    }
3537  }
3538
3539  // The result of comparisons is 'bool' in C++, 'int' in C.
3540  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
3541
3542  if (isRelational) {
3543    if (lType->isRealType() && rType->isRealType())
3544      return ResultTy;
3545  } else {
3546    // Check for comparisons of floating point operands using != and ==.
3547    if (lType->isFloatingType()) {
3548      assert(rType->isFloatingType());
3549      CheckFloatComparison(Loc,lex,rex);
3550    }
3551
3552    if (lType->isArithmeticType() && rType->isArithmeticType())
3553      return ResultTy;
3554  }
3555
3556  bool LHSIsNull = lex->isNullPointerConstant(Context);
3557  bool RHSIsNull = rex->isNullPointerConstant(Context);
3558
3559  // All of the following pointer related warnings are GCC extensions, except
3560  // when handling null pointer constants. One day, we can consider making them
3561  // errors (when -pedantic-errors is enabled).
3562  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
3563    QualType LCanPointeeTy =
3564      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
3565    QualType RCanPointeeTy =
3566      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
3567
3568    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
3569        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
3570        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
3571                                    RCanPointeeTy.getUnqualifiedType()) &&
3572        !Context.areComparableObjCPointerTypes(lType, rType)) {
3573      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3574        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3575    }
3576    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3577    return ResultTy;
3578  }
3579  // Handle block pointer types.
3580  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
3581    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
3582    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
3583
3584    if (!LHSIsNull && !RHSIsNull &&
3585        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
3586      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3587        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3588    }
3589    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3590    return ResultTy;
3591  }
3592  // Allow block pointers to be compared with null pointer constants.
3593  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
3594      (lType->isPointerType() && rType->isBlockPointerType())) {
3595    if (!LHSIsNull && !RHSIsNull) {
3596      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3597        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3598    }
3599    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3600    return ResultTy;
3601  }
3602
3603  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
3604    if (lType->isPointerType() || rType->isPointerType()) {
3605      const PointerType *LPT = lType->getAsPointerType();
3606      const PointerType *RPT = rType->getAsPointerType();
3607      bool LPtrToVoid = LPT ?
3608        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
3609      bool RPtrToVoid = RPT ?
3610        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
3611
3612      if (!LPtrToVoid && !RPtrToVoid &&
3613          !Context.typesAreCompatible(lType, rType)) {
3614        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3615          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3616        ImpCastExprToType(rex, lType);
3617        return ResultTy;
3618      }
3619      ImpCastExprToType(rex, lType);
3620      return ResultTy;
3621    }
3622    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
3623      ImpCastExprToType(rex, lType);
3624      return ResultTy;
3625    } else {
3626      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
3627        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
3628          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3629        ImpCastExprToType(rex, lType);
3630        return ResultTy;
3631      }
3632    }
3633  }
3634  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
3635       rType->isIntegerType()) {
3636    if (!RHSIsNull)
3637      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3638        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3639    ImpCastExprToType(rex, lType); // promote the integer to pointer
3640    return ResultTy;
3641  }
3642  if (lType->isIntegerType() &&
3643      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
3644    if (!LHSIsNull)
3645      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3646        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3647    ImpCastExprToType(lex, rType); // promote the integer to pointer
3648    return ResultTy;
3649  }
3650  // Handle block pointers.
3651  if (lType->isBlockPointerType() && rType->isIntegerType()) {
3652    if (!RHSIsNull)
3653      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3654        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3655    ImpCastExprToType(rex, lType); // promote the integer to pointer
3656    return ResultTy;
3657  }
3658  if (lType->isIntegerType() && rType->isBlockPointerType()) {
3659    if (!LHSIsNull)
3660      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3661        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3662    ImpCastExprToType(lex, rType); // promote the integer to pointer
3663    return ResultTy;
3664  }
3665  return InvalidOperands(Loc, lex, rex);
3666}
3667
3668/// CheckVectorCompareOperands - vector comparisons are a clang extension that
3669/// operates on extended vector types.  Instead of producing an IntTy result,
3670/// like a scalar comparison, a vector comparison produces a vector of integer
3671/// types.
3672QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
3673                                          SourceLocation Loc,
3674                                          bool isRelational) {
3675  // Check to make sure we're operating on vectors of the same type and width,
3676  // Allowing one side to be a scalar of element type.
3677  QualType vType = CheckVectorOperands(Loc, lex, rex);
3678  if (vType.isNull())
3679    return vType;
3680
3681  QualType lType = lex->getType();
3682  QualType rType = rex->getType();
3683
3684  // For non-floating point types, check for self-comparisons of the form
3685  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3686  // often indicate logic errors in the program.
3687  if (!lType->isFloatingType()) {
3688    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
3689      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
3690        if (DRL->getDecl() == DRR->getDecl())
3691          Diag(Loc, diag::warn_selfcomparison);
3692  }
3693
3694  // Check for comparisons of floating point operands using != and ==.
3695  if (!isRelational && lType->isFloatingType()) {
3696    assert (rType->isFloatingType());
3697    CheckFloatComparison(Loc,lex,rex);
3698  }
3699
3700  // FIXME: Vector compare support in the LLVM backend is not fully reliable,
3701  // just reject all vector comparisons for now.
3702  if (1) {
3703    Diag(Loc, diag::err_typecheck_vector_comparison)
3704      << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3705    return QualType();
3706  }
3707
3708  // Return the type for the comparison, which is the same as vector type for
3709  // integer vectors, or an integer type of identical size and number of
3710  // elements for floating point vectors.
3711  if (lType->isIntegerType())
3712    return lType;
3713
3714  const VectorType *VTy = lType->getAsVectorType();
3715  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
3716  if (TypeSize == Context.getTypeSize(Context.IntTy))
3717    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
3718  if (TypeSize == Context.getTypeSize(Context.LongTy))
3719    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
3720
3721  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
3722         "Unhandled vector element size in vector compare");
3723  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
3724}
3725
3726inline QualType Sema::CheckBitwiseOperands(
3727  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3728{
3729  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3730    return CheckVectorOperands(Loc, lex, rex);
3731
3732  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3733
3734  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3735    return compType;
3736  return InvalidOperands(Loc, lex, rex);
3737}
3738
3739inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
3740  Expr *&lex, Expr *&rex, SourceLocation Loc)
3741{
3742  UsualUnaryConversions(lex);
3743  UsualUnaryConversions(rex);
3744
3745  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
3746    return Context.IntTy;
3747  return InvalidOperands(Loc, lex, rex);
3748}
3749
3750/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
3751/// is a read-only property; return true if so. A readonly property expression
3752/// depends on various declarations and thus must be treated specially.
3753///
3754static bool IsReadonlyProperty(Expr *E, Sema &S)
3755{
3756  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
3757    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
3758    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
3759      QualType BaseType = PropExpr->getBase()->getType();
3760      if (const PointerType *PTy = BaseType->getAsPointerType())
3761        if (const ObjCInterfaceType *IFTy =
3762            PTy->getPointeeType()->getAsObjCInterfaceType())
3763          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
3764            if (S.isPropertyReadonly(PDecl, IFace))
3765              return true;
3766    }
3767  }
3768  return false;
3769}
3770
3771/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
3772/// emit an error and return true.  If so, return false.
3773static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
3774  SourceLocation OrigLoc = Loc;
3775  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
3776                                                              &Loc);
3777  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
3778    IsLV = Expr::MLV_ReadonlyProperty;
3779  if (IsLV == Expr::MLV_Valid)
3780    return false;
3781
3782  unsigned Diag = 0;
3783  bool NeedType = false;
3784  switch (IsLV) { // C99 6.5.16p2
3785  default: assert(0 && "Unknown result from isModifiableLvalue!");
3786  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
3787  case Expr::MLV_ArrayType:
3788    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
3789    NeedType = true;
3790    break;
3791  case Expr::MLV_NotObjectType:
3792    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
3793    NeedType = true;
3794    break;
3795  case Expr::MLV_LValueCast:
3796    Diag = diag::err_typecheck_lvalue_casts_not_supported;
3797    break;
3798  case Expr::MLV_InvalidExpression:
3799    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
3800    break;
3801  case Expr::MLV_IncompleteType:
3802  case Expr::MLV_IncompleteVoidType:
3803    return S.RequireCompleteType(Loc, E->getType(),
3804                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
3805                                    E->getSourceRange());
3806  case Expr::MLV_DuplicateVectorComponents:
3807    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
3808    break;
3809  case Expr::MLV_NotBlockQualified:
3810    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
3811    break;
3812  case Expr::MLV_ReadonlyProperty:
3813    Diag = diag::error_readonly_property_assignment;
3814    break;
3815  case Expr::MLV_NoSetterProperty:
3816    Diag = diag::error_nosetter_property_assignment;
3817    break;
3818  }
3819
3820  SourceRange Assign;
3821  if (Loc != OrigLoc)
3822    Assign = SourceRange(OrigLoc, OrigLoc);
3823  if (NeedType)
3824    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
3825  else
3826    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
3827  return true;
3828}
3829
3830
3831
3832// C99 6.5.16.1
3833QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
3834                                       SourceLocation Loc,
3835                                       QualType CompoundType) {
3836  // Verify that LHS is a modifiable lvalue, and emit error if not.
3837  if (CheckForModifiableLvalue(LHS, Loc, *this))
3838    return QualType();
3839
3840  QualType LHSType = LHS->getType();
3841  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
3842
3843  AssignConvertType ConvTy;
3844  if (CompoundType.isNull()) {
3845    // Simple assignment "x = y".
3846    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
3847    // Special case of NSObject attributes on c-style pointer types.
3848    if (ConvTy == IncompatiblePointer &&
3849        ((Context.isObjCNSObjectType(LHSType) &&
3850          Context.isObjCObjectPointerType(RHSType)) ||
3851         (Context.isObjCNSObjectType(RHSType) &&
3852          Context.isObjCObjectPointerType(LHSType))))
3853      ConvTy = Compatible;
3854
3855    // If the RHS is a unary plus or minus, check to see if they = and + are
3856    // right next to each other.  If so, the user may have typo'd "x =+ 4"
3857    // instead of "x += 4".
3858    Expr *RHSCheck = RHS;
3859    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
3860      RHSCheck = ICE->getSubExpr();
3861    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
3862      if ((UO->getOpcode() == UnaryOperator::Plus ||
3863           UO->getOpcode() == UnaryOperator::Minus) &&
3864          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
3865          // Only if the two operators are exactly adjacent.
3866          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
3867          // And there is a space or other character before the subexpr of the
3868          // unary +/-.  We don't want to warn on "x=-1".
3869          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
3870          UO->getSubExpr()->getLocStart().isFileID()) {
3871        Diag(Loc, diag::warn_not_compound_assign)
3872          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
3873          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
3874      }
3875    }
3876  } else {
3877    // Compound assignment "x += y"
3878    ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
3879  }
3880
3881  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
3882                               RHS, "assigning"))
3883    return QualType();
3884
3885  // C99 6.5.16p3: The type of an assignment expression is the type of the
3886  // left operand unless the left operand has qualified type, in which case
3887  // it is the unqualified version of the type of the left operand.
3888  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
3889  // is converted to the type of the assignment expression (above).
3890  // C++ 5.17p1: the type of the assignment expression is that of its left
3891  // oprdu.
3892  return LHSType.getUnqualifiedType();
3893}
3894
3895// C99 6.5.17
3896QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
3897  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
3898  DefaultFunctionArrayConversion(RHS);
3899
3900  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
3901  // incomplete in C++).
3902
3903  return RHS->getType();
3904}
3905
3906/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
3907/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
3908QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
3909                                              bool isInc) {
3910  if (Op->isTypeDependent())
3911    return Context.DependentTy;
3912
3913  QualType ResType = Op->getType();
3914  assert(!ResType.isNull() && "no type for increment/decrement expression");
3915
3916  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
3917    // Decrement of bool is not allowed.
3918    if (!isInc) {
3919      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
3920      return QualType();
3921    }
3922    // Increment of bool sets it to true, but is deprecated.
3923    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
3924  } else if (ResType->isRealType()) {
3925    // OK!
3926  } else if (const PointerType *PT = ResType->getAsPointerType()) {
3927    // C99 6.5.2.4p2, 6.5.6p2
3928    if (PT->getPointeeType()->isVoidType()) {
3929      if (getLangOptions().CPlusPlus) {
3930        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
3931          << Op->getSourceRange();
3932        return QualType();
3933      }
3934
3935      // Pointer to void is a GNU extension in C.
3936      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
3937    } else if (PT->getPointeeType()->isFunctionType()) {
3938      if (getLangOptions().CPlusPlus) {
3939        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
3940          << Op->getType() << Op->getSourceRange();
3941        return QualType();
3942      }
3943
3944      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
3945        << ResType << Op->getSourceRange();
3946    } else if (RequireCompleteType(OpLoc, PT->getPointeeType(),
3947                               diag::err_typecheck_arithmetic_incomplete_type,
3948                                   Op->getSourceRange(), SourceRange(),
3949                                   ResType))
3950      return QualType();
3951  } else if (ResType->isComplexType()) {
3952    // C99 does not support ++/-- on complex types, we allow as an extension.
3953    Diag(OpLoc, diag::ext_integer_increment_complex)
3954      << ResType << Op->getSourceRange();
3955  } else {
3956    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
3957      << ResType << Op->getSourceRange();
3958    return QualType();
3959  }
3960  // At this point, we know we have a real, complex or pointer type.
3961  // Now make sure the operand is a modifiable lvalue.
3962  if (CheckForModifiableLvalue(Op, OpLoc, *this))
3963    return QualType();
3964  return ResType;
3965}
3966
3967/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
3968/// This routine allows us to typecheck complex/recursive expressions
3969/// where the declaration is needed for type checking. We only need to
3970/// handle cases when the expression references a function designator
3971/// or is an lvalue. Here are some examples:
3972///  - &(x) => x
3973///  - &*****f => f for f a function designator.
3974///  - &s.xx => s
3975///  - &s.zz[1].yy -> s, if zz is an array
3976///  - *(x + 1) -> x, if x is an array
3977///  - &"123"[2] -> 0
3978///  - & __real__ x -> x
3979static NamedDecl *getPrimaryDecl(Expr *E) {
3980  switch (E->getStmtClass()) {
3981  case Stmt::DeclRefExprClass:
3982  case Stmt::QualifiedDeclRefExprClass:
3983    return cast<DeclRefExpr>(E)->getDecl();
3984  case Stmt::MemberExprClass:
3985    // If this is an arrow operator, the address is an offset from
3986    // the base's value, so the object the base refers to is
3987    // irrelevant.
3988    if (cast<MemberExpr>(E)->isArrow())
3989      return 0;
3990    // Otherwise, the expression refers to a part of the base
3991    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
3992  case Stmt::ArraySubscriptExprClass: {
3993    // FIXME: This code shouldn't be necessary!  We should catch the
3994    // implicit promotion of register arrays earlier.
3995    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
3996    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
3997      if (ICE->getSubExpr()->getType()->isArrayType())
3998        return getPrimaryDecl(ICE->getSubExpr());
3999    }
4000    return 0;
4001  }
4002  case Stmt::UnaryOperatorClass: {
4003    UnaryOperator *UO = cast<UnaryOperator>(E);
4004
4005    switch(UO->getOpcode()) {
4006    case UnaryOperator::Real:
4007    case UnaryOperator::Imag:
4008    case UnaryOperator::Extension:
4009      return getPrimaryDecl(UO->getSubExpr());
4010    default:
4011      return 0;
4012    }
4013  }
4014  case Stmt::ParenExprClass:
4015    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
4016  case Stmt::ImplicitCastExprClass:
4017    // If the result of an implicit cast is an l-value, we care about
4018    // the sub-expression; otherwise, the result here doesn't matter.
4019    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
4020  default:
4021    return 0;
4022  }
4023}
4024
4025/// CheckAddressOfOperand - The operand of & must be either a function
4026/// designator or an lvalue designating an object. If it is an lvalue, the
4027/// object cannot be declared with storage class register or be a bit field.
4028/// Note: The usual conversions are *not* applied to the operand of the &
4029/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
4030/// In C++, the operand might be an overloaded function name, in which case
4031/// we allow the '&' but retain the overloaded-function type.
4032QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
4033  // Make sure to ignore parentheses in subsequent checks
4034  op = op->IgnoreParens();
4035
4036  if (op->isTypeDependent())
4037    return Context.DependentTy;
4038
4039  if (getLangOptions().C99) {
4040    // Implement C99-only parts of addressof rules.
4041    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
4042      if (uOp->getOpcode() == UnaryOperator::Deref)
4043        // Per C99 6.5.3.2, the address of a deref always returns a valid result
4044        // (assuming the deref expression is valid).
4045        return uOp->getSubExpr()->getType();
4046    }
4047    // Technically, there should be a check for array subscript
4048    // expressions here, but the result of one is always an lvalue anyway.
4049  }
4050  NamedDecl *dcl = getPrimaryDecl(op);
4051  Expr::isLvalueResult lval = op->isLvalue(Context);
4052
4053  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
4054    // The operand must be either an l-value or a function designator
4055    if (!dcl || !isa<FunctionDecl>(dcl)) {
4056      // FIXME: emit more specific diag...
4057      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
4058        << op->getSourceRange();
4059      return QualType();
4060    }
4061  } else if (op->isBitField()) { // C99 6.5.3.2p1
4062    // The operand cannot be a bit-field
4063    Diag(OpLoc, diag::err_typecheck_address_of)
4064      << "bit-field" << op->getSourceRange();
4065        return QualType();
4066  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
4067           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
4068    // The operand cannot be an element of a vector
4069    Diag(OpLoc, diag::err_typecheck_address_of)
4070      << "vector element" << op->getSourceRange();
4071    return QualType();
4072  } else if (dcl) { // C99 6.5.3.2p1
4073    // We have an lvalue with a decl. Make sure the decl is not declared
4074    // with the register storage-class specifier.
4075    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
4076      if (vd->getStorageClass() == VarDecl::Register) {
4077        Diag(OpLoc, diag::err_typecheck_address_of)
4078          << "register variable" << op->getSourceRange();
4079        return QualType();
4080      }
4081    } else if (isa<OverloadedFunctionDecl>(dcl)) {
4082      return Context.OverloadTy;
4083    } else if (isa<FieldDecl>(dcl)) {
4084      // Okay: we can take the address of a field.
4085      // Could be a pointer to member, though, if there is an explicit
4086      // scope qualifier for the class.
4087      if (isa<QualifiedDeclRefExpr>(op)) {
4088        DeclContext *Ctx = dcl->getDeclContext();
4089        if (Ctx && Ctx->isRecord())
4090          return Context.getMemberPointerType(op->getType(),
4091                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
4092      }
4093    } else if (isa<FunctionDecl>(dcl)) {
4094      // Okay: we can take the address of a function.
4095      // As above.
4096      if (isa<QualifiedDeclRefExpr>(op)) {
4097        DeclContext *Ctx = dcl->getDeclContext();
4098        if (Ctx && Ctx->isRecord())
4099          return Context.getMemberPointerType(op->getType(),
4100                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
4101      }
4102    }
4103    else
4104      assert(0 && "Unknown/unexpected decl type");
4105  }
4106
4107  // If the operand has type "type", the result has type "pointer to type".
4108  return Context.getPointerType(op->getType());
4109}
4110
4111QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
4112  if (Op->isTypeDependent())
4113    return Context.DependentTy;
4114
4115  UsualUnaryConversions(Op);
4116  QualType Ty = Op->getType();
4117
4118  // Note that per both C89 and C99, this is always legal, even if ptype is an
4119  // incomplete type or void.  It would be possible to warn about dereferencing
4120  // a void pointer, but it's completely well-defined, and such a warning is
4121  // unlikely to catch any mistakes.
4122  if (const PointerType *PT = Ty->getAsPointerType())
4123    return PT->getPointeeType();
4124
4125  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
4126    << Ty << Op->getSourceRange();
4127  return QualType();
4128}
4129
4130static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
4131  tok::TokenKind Kind) {
4132  BinaryOperator::Opcode Opc;
4133  switch (Kind) {
4134  default: assert(0 && "Unknown binop!");
4135  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
4136  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
4137  case tok::star:                 Opc = BinaryOperator::Mul; break;
4138  case tok::slash:                Opc = BinaryOperator::Div; break;
4139  case tok::percent:              Opc = BinaryOperator::Rem; break;
4140  case tok::plus:                 Opc = BinaryOperator::Add; break;
4141  case tok::minus:                Opc = BinaryOperator::Sub; break;
4142  case tok::lessless:             Opc = BinaryOperator::Shl; break;
4143  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
4144  case tok::lessequal:            Opc = BinaryOperator::LE; break;
4145  case tok::less:                 Opc = BinaryOperator::LT; break;
4146  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
4147  case tok::greater:              Opc = BinaryOperator::GT; break;
4148  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
4149  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
4150  case tok::amp:                  Opc = BinaryOperator::And; break;
4151  case tok::caret:                Opc = BinaryOperator::Xor; break;
4152  case tok::pipe:                 Opc = BinaryOperator::Or; break;
4153  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
4154  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
4155  case tok::equal:                Opc = BinaryOperator::Assign; break;
4156  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
4157  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
4158  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
4159  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
4160  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
4161  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
4162  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
4163  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
4164  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
4165  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
4166  case tok::comma:                Opc = BinaryOperator::Comma; break;
4167  }
4168  return Opc;
4169}
4170
4171static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
4172  tok::TokenKind Kind) {
4173  UnaryOperator::Opcode Opc;
4174  switch (Kind) {
4175  default: assert(0 && "Unknown unary op!");
4176  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
4177  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
4178  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
4179  case tok::star:         Opc = UnaryOperator::Deref; break;
4180  case tok::plus:         Opc = UnaryOperator::Plus; break;
4181  case tok::minus:        Opc = UnaryOperator::Minus; break;
4182  case tok::tilde:        Opc = UnaryOperator::Not; break;
4183  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
4184  case tok::kw___real:    Opc = UnaryOperator::Real; break;
4185  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
4186  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
4187  }
4188  return Opc;
4189}
4190
4191/// CreateBuiltinBinOp - Creates a new built-in binary operation with
4192/// operator @p Opc at location @c TokLoc. This routine only supports
4193/// built-in operations; ActOnBinOp handles overloaded operators.
4194Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
4195                                                  unsigned Op,
4196                                                  Expr *lhs, Expr *rhs) {
4197  QualType ResultTy;     // Result type of the binary operator.
4198  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
4199  // The following two variables are used for compound assignment operators
4200  QualType CompLHSTy;    // Type of LHS after promotions for computation
4201  QualType CompResultTy; // Type of computation result
4202
4203  switch (Opc) {
4204  case BinaryOperator::Assign:
4205    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
4206    break;
4207  case BinaryOperator::PtrMemD:
4208  case BinaryOperator::PtrMemI:
4209    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
4210                                            Opc == BinaryOperator::PtrMemI);
4211    break;
4212  case BinaryOperator::Mul:
4213  case BinaryOperator::Div:
4214    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
4215    break;
4216  case BinaryOperator::Rem:
4217    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
4218    break;
4219  case BinaryOperator::Add:
4220    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
4221    break;
4222  case BinaryOperator::Sub:
4223    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
4224    break;
4225  case BinaryOperator::Shl:
4226  case BinaryOperator::Shr:
4227    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
4228    break;
4229  case BinaryOperator::LE:
4230  case BinaryOperator::LT:
4231  case BinaryOperator::GE:
4232  case BinaryOperator::GT:
4233    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
4234    break;
4235  case BinaryOperator::EQ:
4236  case BinaryOperator::NE:
4237    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
4238    break;
4239  case BinaryOperator::And:
4240  case BinaryOperator::Xor:
4241  case BinaryOperator::Or:
4242    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
4243    break;
4244  case BinaryOperator::LAnd:
4245  case BinaryOperator::LOr:
4246    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
4247    break;
4248  case BinaryOperator::MulAssign:
4249  case BinaryOperator::DivAssign:
4250    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
4251    CompLHSTy = CompResultTy;
4252    if (!CompResultTy.isNull())
4253      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4254    break;
4255  case BinaryOperator::RemAssign:
4256    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
4257    CompLHSTy = CompResultTy;
4258    if (!CompResultTy.isNull())
4259      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4260    break;
4261  case BinaryOperator::AddAssign:
4262    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4263    if (!CompResultTy.isNull())
4264      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4265    break;
4266  case BinaryOperator::SubAssign:
4267    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4268    if (!CompResultTy.isNull())
4269      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4270    break;
4271  case BinaryOperator::ShlAssign:
4272  case BinaryOperator::ShrAssign:
4273    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
4274    CompLHSTy = CompResultTy;
4275    if (!CompResultTy.isNull())
4276      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4277    break;
4278  case BinaryOperator::AndAssign:
4279  case BinaryOperator::XorAssign:
4280  case BinaryOperator::OrAssign:
4281    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
4282    CompLHSTy = CompResultTy;
4283    if (!CompResultTy.isNull())
4284      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4285    break;
4286  case BinaryOperator::Comma:
4287    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
4288    break;
4289  }
4290  if (ResultTy.isNull())
4291    return ExprError();
4292  if (CompResultTy.isNull())
4293    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
4294  else
4295    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
4296                                                      CompLHSTy, CompResultTy,
4297                                                      OpLoc));
4298}
4299
4300// Binary Operators.  'Tok' is the token for the operator.
4301Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
4302                                          tok::TokenKind Kind,
4303                                          ExprArg LHS, ExprArg RHS) {
4304  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
4305  Expr *lhs = (Expr *)LHS.release(), *rhs = (Expr*)RHS.release();
4306
4307  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
4308  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
4309
4310  if (getLangOptions().CPlusPlus &&
4311      (lhs->getType()->isOverloadableType() ||
4312       rhs->getType()->isOverloadableType())) {
4313    // Find all of the overloaded operators visible from this
4314    // point. We perform both an operator-name lookup from the local
4315    // scope and an argument-dependent lookup based on the types of
4316    // the arguments.
4317    FunctionSet Functions;
4318    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
4319    if (OverOp != OO_None) {
4320      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
4321                                   Functions);
4322      Expr *Args[2] = { lhs, rhs };
4323      DeclarationName OpName
4324        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4325      ArgumentDependentLookup(OpName, Args, 2, Functions);
4326    }
4327
4328    // Build the (potentially-overloaded, potentially-dependent)
4329    // binary operation.
4330    return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
4331  }
4332
4333  // Build a built-in binary operation.
4334  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
4335}
4336
4337Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
4338                                                    unsigned OpcIn,
4339                                                    ExprArg InputArg) {
4340  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4341
4342  // FIXME: Input is modified below, but InputArg is not updated
4343  // appropriately.
4344  Expr *Input = (Expr *)InputArg.get();
4345  QualType resultType;
4346  switch (Opc) {
4347  case UnaryOperator::PostInc:
4348  case UnaryOperator::PostDec:
4349  case UnaryOperator::OffsetOf:
4350    assert(false && "Invalid unary operator");
4351    break;
4352
4353  case UnaryOperator::PreInc:
4354  case UnaryOperator::PreDec:
4355    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
4356                                                Opc == UnaryOperator::PreInc);
4357    break;
4358  case UnaryOperator::AddrOf:
4359    resultType = CheckAddressOfOperand(Input, OpLoc);
4360    break;
4361  case UnaryOperator::Deref:
4362    DefaultFunctionArrayConversion(Input);
4363    resultType = CheckIndirectionOperand(Input, OpLoc);
4364    break;
4365  case UnaryOperator::Plus:
4366  case UnaryOperator::Minus:
4367    UsualUnaryConversions(Input);
4368    resultType = Input->getType();
4369    if (resultType->isDependentType())
4370      break;
4371    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
4372      break;
4373    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
4374             resultType->isEnumeralType())
4375      break;
4376    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
4377             Opc == UnaryOperator::Plus &&
4378             resultType->isPointerType())
4379      break;
4380
4381    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4382      << resultType << Input->getSourceRange());
4383  case UnaryOperator::Not: // bitwise complement
4384    UsualUnaryConversions(Input);
4385    resultType = Input->getType();
4386    if (resultType->isDependentType())
4387      break;
4388    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
4389    if (resultType->isComplexType() || resultType->isComplexIntegerType())
4390      // C99 does not support '~' for complex conjugation.
4391      Diag(OpLoc, diag::ext_integer_complement_complex)
4392        << resultType << Input->getSourceRange();
4393    else if (!resultType->isIntegerType())
4394      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4395        << resultType << Input->getSourceRange());
4396    break;
4397  case UnaryOperator::LNot: // logical negation
4398    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
4399    DefaultFunctionArrayConversion(Input);
4400    resultType = Input->getType();
4401    if (resultType->isDependentType())
4402      break;
4403    if (!resultType->isScalarType()) // C99 6.5.3.3p1
4404      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4405        << resultType << Input->getSourceRange());
4406    // LNot always has type int. C99 6.5.3.3p5.
4407    // In C++, it's bool. C++ 5.3.1p8
4408    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
4409    break;
4410  case UnaryOperator::Real:
4411  case UnaryOperator::Imag:
4412    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
4413    break;
4414  case UnaryOperator::Extension:
4415    resultType = Input->getType();
4416    break;
4417  }
4418  if (resultType.isNull())
4419    return ExprError();
4420
4421  InputArg.release();
4422  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
4423}
4424
4425// Unary Operators.  'Tok' is the token for the operator.
4426Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
4427                                            tok::TokenKind Op, ExprArg input) {
4428  Expr *Input = (Expr*)input.get();
4429  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
4430
4431  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
4432    // Find all of the overloaded operators visible from this
4433    // point. We perform both an operator-name lookup from the local
4434    // scope and an argument-dependent lookup based on the types of
4435    // the arguments.
4436    FunctionSet Functions;
4437    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
4438    if (OverOp != OO_None) {
4439      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
4440                                   Functions);
4441      DeclarationName OpName
4442        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4443      ArgumentDependentLookup(OpName, &Input, 1, Functions);
4444    }
4445
4446    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
4447  }
4448
4449  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
4450}
4451
4452/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
4453Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
4454                                            SourceLocation LabLoc,
4455                                            IdentifierInfo *LabelII) {
4456  // Look up the record for this label identifier.
4457  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
4458
4459  // If we haven't seen this label yet, create a forward reference. It
4460  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
4461  if (LabelDecl == 0)
4462    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
4463
4464  // Create the AST node.  The address of a label always has type 'void*'.
4465  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
4466                                       Context.getPointerType(Context.VoidTy)));
4467}
4468
4469Sema::OwningExprResult
4470Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
4471                    SourceLocation RPLoc) { // "({..})"
4472  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
4473  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
4474  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
4475
4476  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4477  if (isFileScope) {
4478    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
4479  }
4480
4481  // FIXME: there are a variety of strange constraints to enforce here, for
4482  // example, it is not possible to goto into a stmt expression apparently.
4483  // More semantic analysis is needed.
4484
4485  // FIXME: the last statement in the compount stmt has its value used.  We
4486  // should not warn about it being unused.
4487
4488  // If there are sub stmts in the compound stmt, take the type of the last one
4489  // as the type of the stmtexpr.
4490  QualType Ty = Context.VoidTy;
4491
4492  if (!Compound->body_empty()) {
4493    Stmt *LastStmt = Compound->body_back();
4494    // If LastStmt is a label, skip down through into the body.
4495    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
4496      LastStmt = Label->getSubStmt();
4497
4498    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
4499      Ty = LastExpr->getType();
4500  }
4501
4502  // FIXME: Check that expression type is complete/non-abstract; statement
4503  // expressions are not lvalues.
4504
4505  substmt.release();
4506  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
4507}
4508
4509Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
4510                                                  SourceLocation BuiltinLoc,
4511                                                  SourceLocation TypeLoc,
4512                                                  TypeTy *argty,
4513                                                  OffsetOfComponent *CompPtr,
4514                                                  unsigned NumComponents,
4515                                                  SourceLocation RPLoc) {
4516  // FIXME: This function leaks all expressions in the offset components on
4517  // error.
4518  QualType ArgTy = QualType::getFromOpaquePtr(argty);
4519  assert(!ArgTy.isNull() && "Missing type argument!");
4520
4521  bool Dependent = ArgTy->isDependentType();
4522
4523  // We must have at least one component that refers to the type, and the first
4524  // one is known to be a field designator.  Verify that the ArgTy represents
4525  // a struct/union/class.
4526  if (!Dependent && !ArgTy->isRecordType())
4527    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
4528
4529  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
4530  // with an incomplete type would be illegal.
4531
4532  // Otherwise, create a null pointer as the base, and iteratively process
4533  // the offsetof designators.
4534  QualType ArgTyPtr = Context.getPointerType(ArgTy);
4535  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
4536  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
4537                                    ArgTy, SourceLocation());
4538
4539  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
4540  // GCC extension, diagnose them.
4541  // FIXME: This diagnostic isn't actually visible because the location is in
4542  // a system header!
4543  if (NumComponents != 1)
4544    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
4545      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
4546
4547  if (!Dependent) {
4548    // FIXME: Dependent case loses a lot of information here. And probably
4549    // leaks like a sieve.
4550    for (unsigned i = 0; i != NumComponents; ++i) {
4551      const OffsetOfComponent &OC = CompPtr[i];
4552      if (OC.isBrackets) {
4553        // Offset of an array sub-field.  TODO: Should we allow vector elements?
4554        const ArrayType *AT = Context.getAsArrayType(Res->getType());
4555        if (!AT) {
4556          Res->Destroy(Context);
4557          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
4558            << Res->getType());
4559        }
4560
4561        // FIXME: C++: Verify that operator[] isn't overloaded.
4562
4563        // Promote the array so it looks more like a normal array subscript
4564        // expression.
4565        DefaultFunctionArrayConversion(Res);
4566
4567        // C99 6.5.2.1p1
4568        Expr *Idx = static_cast<Expr*>(OC.U.E);
4569        // FIXME: Leaks Res
4570        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
4571          return ExprError(Diag(Idx->getLocStart(),
4572                                diag::err_typecheck_subscript)
4573            << Idx->getSourceRange());
4574
4575        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
4576                                               OC.LocEnd);
4577        continue;
4578      }
4579
4580      const RecordType *RC = Res->getType()->getAsRecordType();
4581      if (!RC) {
4582        Res->Destroy(Context);
4583        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
4584          << Res->getType());
4585      }
4586
4587      // Get the decl corresponding to this.
4588      RecordDecl *RD = RC->getDecl();
4589      FieldDecl *MemberDecl
4590        = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
4591                                                          LookupMemberName)
4592                                        .getAsDecl());
4593      // FIXME: Leaks Res
4594      if (!MemberDecl)
4595        return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member)
4596         << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd));
4597
4598      // FIXME: C++: Verify that MemberDecl isn't a static field.
4599      // FIXME: Verify that MemberDecl isn't a bitfield.
4600      // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
4601      // matter here.
4602      Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
4603                                   MemberDecl->getType().getNonReferenceType());
4604    }
4605  }
4606
4607  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
4608                                           Context.getSizeType(), BuiltinLoc));
4609}
4610
4611
4612Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
4613                                                      TypeTy *arg1,TypeTy *arg2,
4614                                                      SourceLocation RPLoc) {
4615  QualType argT1 = QualType::getFromOpaquePtr(arg1);
4616  QualType argT2 = QualType::getFromOpaquePtr(arg2);
4617
4618  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
4619
4620  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
4621                                                 argT1, argT2, RPLoc));
4622}
4623
4624Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
4625                                             ExprArg cond,
4626                                             ExprArg expr1, ExprArg expr2,
4627                                             SourceLocation RPLoc) {
4628  Expr *CondExpr = static_cast<Expr*>(cond.get());
4629  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
4630  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
4631
4632  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
4633
4634  QualType resType;
4635  if (CondExpr->isValueDependent()) {
4636    resType = Context.DependentTy;
4637  } else {
4638    // The conditional expression is required to be a constant expression.
4639    llvm::APSInt condEval(32);
4640    SourceLocation ExpLoc;
4641    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
4642      return ExprError(Diag(ExpLoc,
4643                       diag::err_typecheck_choose_expr_requires_constant)
4644        << CondExpr->getSourceRange());
4645
4646    // If the condition is > zero, then the AST type is the same as the LSHExpr.
4647    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
4648  }
4649
4650  cond.release(); expr1.release(); expr2.release();
4651  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
4652                                        resType, RPLoc));
4653}
4654
4655//===----------------------------------------------------------------------===//
4656// Clang Extensions.
4657//===----------------------------------------------------------------------===//
4658
4659/// ActOnBlockStart - This callback is invoked when a block literal is started.
4660void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
4661  // Analyze block parameters.
4662  BlockSemaInfo *BSI = new BlockSemaInfo();
4663
4664  // Add BSI to CurBlock.
4665  BSI->PrevBlockInfo = CurBlock;
4666  CurBlock = BSI;
4667
4668  BSI->ReturnType = 0;
4669  BSI->TheScope = BlockScope;
4670  BSI->hasBlockDeclRefExprs = false;
4671  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
4672  CurFunctionNeedsScopeChecking = false;
4673
4674  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
4675  PushDeclContext(BlockScope, BSI->TheDecl);
4676}
4677
4678void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
4679  assert(ParamInfo.getIdentifier() == 0 && "block-id should have no identifier!");
4680
4681  if (ParamInfo.getNumTypeObjects() == 0
4682      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
4683    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
4684
4685    // The type is entirely optional as well, if none, use DependentTy.
4686    if (T.isNull())
4687      T = Context.DependentTy;
4688
4689    // The parameter list is optional, if there was none, assume ().
4690    if (!T->isFunctionType())
4691      T = Context.getFunctionType(T, NULL, 0, 0, 0);
4692
4693    CurBlock->hasPrototype = true;
4694    CurBlock->isVariadic = false;
4695
4696    QualType RetTy = T.getTypePtr()->getAsFunctionType()->getResultType();
4697
4698    // Do not allow returning a objc interface by-value.
4699    if (RetTy->isObjCInterfaceType()) {
4700      Diag(ParamInfo.getSourceRange().getBegin(),
4701           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
4702      return;
4703    }
4704
4705    if (!RetTy->isDependentType())
4706      CurBlock->ReturnType = RetTy.getTypePtr();
4707    return;
4708  }
4709
4710  // Analyze arguments to block.
4711  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4712         "Not a function declarator!");
4713  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
4714
4715  CurBlock->hasPrototype = FTI.hasPrototype;
4716  CurBlock->isVariadic = true;
4717
4718  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
4719  // no arguments, not a function that takes a single void argument.
4720  if (FTI.hasPrototype &&
4721      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4722     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
4723        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
4724    // empty arg list, don't push any params.
4725    CurBlock->isVariadic = false;
4726  } else if (FTI.hasPrototype) {
4727    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
4728      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
4729    CurBlock->isVariadic = FTI.isVariadic;
4730  }
4731  CurBlock->TheDecl->setParams(Context, &CurBlock->Params[0],
4732                               CurBlock->Params.size());
4733
4734  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
4735       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
4736    // If this has an identifier, add it to the scope stack.
4737    if ((*AI)->getIdentifier())
4738      PushOnScopeChains(*AI, CurBlock->TheScope);
4739
4740  // Analyze the return type.
4741  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
4742  QualType RetTy = T->getAsFunctionType()->getResultType();
4743
4744  // Do not allow returning a objc interface by-value.
4745  if (RetTy->isObjCInterfaceType()) {
4746    Diag(ParamInfo.getSourceRange().getBegin(),
4747         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
4748  } else if (!RetTy->isDependentType())
4749    CurBlock->ReturnType = RetTy.getTypePtr();
4750}
4751
4752/// ActOnBlockError - If there is an error parsing a block, this callback
4753/// is invoked to pop the information about the block from the action impl.
4754void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
4755  // Ensure that CurBlock is deleted.
4756  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
4757
4758  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
4759
4760  // Pop off CurBlock, handle nested blocks.
4761  PopDeclContext();
4762  CurBlock = CurBlock->PrevBlockInfo;
4763  // FIXME: Delete the ParmVarDecl objects as well???
4764}
4765
4766/// ActOnBlockStmtExpr - This is called when the body of a block statement
4767/// literal was successfully completed.  ^(int x){...}
4768Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
4769                                                StmtArg body, Scope *CurScope) {
4770  // If blocks are disabled, emit an error.
4771  if (!LangOpts.Blocks)
4772    Diag(CaretLoc, diag::err_blocks_disable);
4773
4774  // Ensure that CurBlock is deleted.
4775  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
4776
4777  PopDeclContext();
4778
4779  // Pop off CurBlock, handle nested blocks.
4780  CurBlock = CurBlock->PrevBlockInfo;
4781
4782  QualType RetTy = Context.VoidTy;
4783  if (BSI->ReturnType)
4784    RetTy = QualType(BSI->ReturnType, 0);
4785
4786  llvm::SmallVector<QualType, 8> ArgTypes;
4787  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
4788    ArgTypes.push_back(BSI->Params[i]->getType());
4789
4790  QualType BlockTy;
4791  if (!BSI->hasPrototype)
4792    BlockTy = Context.getFunctionNoProtoType(RetTy);
4793  else
4794    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
4795                                      BSI->isVariadic, 0);
4796
4797  // FIXME: Check that return/parameter types are complete/non-abstract
4798
4799  BlockTy = Context.getBlockPointerType(BlockTy);
4800
4801  // If needed, diagnose invalid gotos and switches in the block.
4802  if (CurFunctionNeedsScopeChecking)
4803    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
4804  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
4805
4806  BSI->TheDecl->setBody(static_cast<CompoundStmt*>(body.release()));
4807  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
4808                                       BSI->hasBlockDeclRefExprs));
4809}
4810
4811Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
4812                                        ExprArg expr, TypeTy *type,
4813                                        SourceLocation RPLoc) {
4814  QualType T = QualType::getFromOpaquePtr(type);
4815  Expr *E = static_cast<Expr*>(expr.get());
4816  Expr *OrigExpr = E;
4817
4818  InitBuiltinVaListType();
4819
4820  // Get the va_list type
4821  QualType VaListType = Context.getBuiltinVaListType();
4822  // Deal with implicit array decay; for example, on x86-64,
4823  // va_list is an array, but it's supposed to decay to
4824  // a pointer for va_arg.
4825  if (VaListType->isArrayType())
4826    VaListType = Context.getArrayDecayedType(VaListType);
4827  // Make sure the input expression also decays appropriately.
4828  UsualUnaryConversions(E);
4829
4830  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible) {
4831    return ExprError(Diag(E->getLocStart(),
4832                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
4833      << OrigExpr->getType() << E->getSourceRange());
4834  }
4835
4836  // FIXME: Check that type is complete/non-abstract
4837  // FIXME: Warn if a non-POD type is passed in.
4838
4839  expr.release();
4840  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
4841                                       RPLoc));
4842}
4843
4844Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
4845  // The type of __null will be int or long, depending on the size of
4846  // pointers on the target.
4847  QualType Ty;
4848  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
4849    Ty = Context.IntTy;
4850  else
4851    Ty = Context.LongTy;
4852
4853  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
4854}
4855
4856bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
4857                                    SourceLocation Loc,
4858                                    QualType DstType, QualType SrcType,
4859                                    Expr *SrcExpr, const char *Flavor) {
4860  // Decode the result (notice that AST's are still created for extensions).
4861  bool isInvalid = false;
4862  unsigned DiagKind;
4863  switch (ConvTy) {
4864  default: assert(0 && "Unknown conversion type");
4865  case Compatible: return false;
4866  case PointerToInt:
4867    DiagKind = diag::ext_typecheck_convert_pointer_int;
4868    break;
4869  case IntToPointer:
4870    DiagKind = diag::ext_typecheck_convert_int_pointer;
4871    break;
4872  case IncompatiblePointer:
4873    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
4874    break;
4875  case IncompatiblePointerSign:
4876    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
4877    break;
4878  case FunctionVoidPointer:
4879    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
4880    break;
4881  case CompatiblePointerDiscardsQualifiers:
4882    // If the qualifiers lost were because we were applying the
4883    // (deprecated) C++ conversion from a string literal to a char*
4884    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
4885    // Ideally, this check would be performed in
4886    // CheckPointerTypesForAssignment. However, that would require a
4887    // bit of refactoring (so that the second argument is an
4888    // expression, rather than a type), which should be done as part
4889    // of a larger effort to fix CheckPointerTypesForAssignment for
4890    // C++ semantics.
4891    if (getLangOptions().CPlusPlus &&
4892        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
4893      return false;
4894    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
4895    break;
4896  case IntToBlockPointer:
4897    DiagKind = diag::err_int_to_block_pointer;
4898    break;
4899  case IncompatibleBlockPointer:
4900    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
4901    break;
4902  case IncompatibleObjCQualifiedId:
4903    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
4904    // it can give a more specific diagnostic.
4905    DiagKind = diag::warn_incompatible_qualified_id;
4906    break;
4907  case IncompatibleVectors:
4908    DiagKind = diag::warn_incompatible_vectors;
4909    break;
4910  case Incompatible:
4911    DiagKind = diag::err_typecheck_convert_incompatible;
4912    isInvalid = true;
4913    break;
4914  }
4915
4916  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
4917    << SrcExpr->getSourceRange();
4918  return isInvalid;
4919}
4920
4921bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result)
4922{
4923  Expr::EvalResult EvalResult;
4924
4925  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
4926      EvalResult.HasSideEffects) {
4927    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
4928
4929    if (EvalResult.Diag) {
4930      // We only show the note if it's not the usual "invalid subexpression"
4931      // or if it's actually in a subexpression.
4932      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
4933          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
4934        Diag(EvalResult.DiagLoc, EvalResult.Diag);
4935    }
4936
4937    return true;
4938  }
4939
4940  if (EvalResult.Diag) {
4941    Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
4942      E->getSourceRange();
4943
4944    // Print the reason it's not a constant.
4945    if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
4946      Diag(EvalResult.DiagLoc, EvalResult.Diag);
4947  }
4948
4949  if (Result)
4950    *Result = EvalResult.Val.getInt();
4951  return false;
4952}
4953