SemaExpr.cpp revision bfa7aed080e2f6125ed2e30c6d2b300ddbad7005
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Lex/LiteralSupport.h"
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Designator.h"
28#include "clang/Parse/Scope.h"
29#include "clang/Parse/Template.h"
30using namespace clang;
31
32
33/// \brief Determine whether the use of this declaration is valid, and
34/// emit any corresponding diagnostics.
35///
36/// This routine diagnoses various problems with referencing
37/// declarations that can occur when using a declaration. For example,
38/// it might warn if a deprecated or unavailable declaration is being
39/// used, or produce an error (and return true) if a C++0x deleted
40/// function is being used.
41///
42/// If IgnoreDeprecated is set to true, this should not want about deprecated
43/// decls.
44///
45/// \returns true if there was an error (this declaration cannot be
46/// referenced), false otherwise.
47///
48bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
49  // See if the decl is deprecated.
50  if (D->getAttr<DeprecatedAttr>()) {
51    EmitDeprecationWarning(D, Loc);
52  }
53
54  // See if the decl is unavailable
55  if (D->getAttr<UnavailableAttr>()) {
56    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
57    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
58  }
59
60  // See if this is a deleted function.
61  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
62    if (FD->isDeleted()) {
63      Diag(Loc, diag::err_deleted_function_use);
64      Diag(D->getLocation(), diag::note_unavailable_here) << true;
65      return true;
66    }
67  }
68
69  return false;
70}
71
72/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
73/// (and other functions in future), which have been declared with sentinel
74/// attribute. It warns if call does not have the sentinel argument.
75///
76void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
77                                 Expr **Args, unsigned NumArgs) {
78  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
79  if (!attr)
80    return;
81  int sentinelPos = attr->getSentinel();
82  int nullPos = attr->getNullPos();
83
84  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
85  // base class. Then we won't be needing two versions of the same code.
86  unsigned int i = 0;
87  bool warnNotEnoughArgs = false;
88  int isMethod = 0;
89  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
90    // skip over named parameters.
91    ObjCMethodDecl::param_iterator P, E = MD->param_end();
92    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
93      if (nullPos)
94        --nullPos;
95      else
96        ++i;
97    }
98    warnNotEnoughArgs = (P != E || i >= NumArgs);
99    isMethod = 1;
100  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
101    // skip over named parameters.
102    ObjCMethodDecl::param_iterator P, E = FD->param_end();
103    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
104      if (nullPos)
105        --nullPos;
106      else
107        ++i;
108    }
109    warnNotEnoughArgs = (P != E || i >= NumArgs);
110  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
111    // block or function pointer call.
112    QualType Ty = V->getType();
113    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
114      const FunctionType *FT = Ty->isFunctionPointerType()
115      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
116      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
117      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
118        unsigned NumArgsInProto = Proto->getNumArgs();
119        unsigned k;
120        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
121          if (nullPos)
122            --nullPos;
123          else
124            ++i;
125        }
126        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
127      }
128      if (Ty->isBlockPointerType())
129        isMethod = 2;
130    } else
131      return;
132  } else
133    return;
134
135  if (warnNotEnoughArgs) {
136    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
137    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
138    return;
139  }
140  int sentinel = i;
141  while (sentinelPos > 0 && i < NumArgs-1) {
142    --sentinelPos;
143    ++i;
144  }
145  if (sentinelPos > 0) {
146    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
147    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
148    return;
149  }
150  while (i < NumArgs-1) {
151    ++i;
152    ++sentinel;
153  }
154  Expr *sentinelExpr = Args[sentinel];
155  if (sentinelExpr && (!isa<GNUNullExpr>(sentinelExpr) &&
156                       (!sentinelExpr->getType()->isPointerType() ||
157                        !sentinelExpr->isNullPointerConstant(Context,
158                                            Expr::NPC_ValueDependentIsNull)))) {
159    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
160    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
161  }
162  return;
163}
164
165SourceRange Sema::getExprRange(ExprTy *E) const {
166  Expr *Ex = (Expr *)E;
167  return Ex? Ex->getSourceRange() : SourceRange();
168}
169
170//===----------------------------------------------------------------------===//
171//  Standard Promotions and Conversions
172//===----------------------------------------------------------------------===//
173
174/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
175void Sema::DefaultFunctionArrayConversion(Expr *&E) {
176  QualType Ty = E->getType();
177  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
178
179  if (Ty->isFunctionType())
180    ImpCastExprToType(E, Context.getPointerType(Ty),
181                      CastExpr::CK_FunctionToPointerDecay);
182  else if (Ty->isArrayType()) {
183    // In C90 mode, arrays only promote to pointers if the array expression is
184    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
185    // type 'array of type' is converted to an expression that has type 'pointer
186    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
187    // that has type 'array of type' ...".  The relevant change is "an lvalue"
188    // (C90) to "an expression" (C99).
189    //
190    // C++ 4.2p1:
191    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
192    // T" can be converted to an rvalue of type "pointer to T".
193    //
194    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
195        E->isLvalue(Context) == Expr::LV_Valid)
196      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
197                        CastExpr::CK_ArrayToPointerDecay);
198  }
199}
200
201/// UsualUnaryConversions - Performs various conversions that are common to most
202/// operators (C99 6.3). The conversions of array and function types are
203/// sometimes surpressed. For example, the array->pointer conversion doesn't
204/// apply if the array is an argument to the sizeof or address (&) operators.
205/// In these instances, this routine should *not* be called.
206Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
207  QualType Ty = Expr->getType();
208  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
209
210  // C99 6.3.1.1p2:
211  //
212  //   The following may be used in an expression wherever an int or
213  //   unsigned int may be used:
214  //     - an object or expression with an integer type whose integer
215  //       conversion rank is less than or equal to the rank of int
216  //       and unsigned int.
217  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
218  //
219  //   If an int can represent all values of the original type, the
220  //   value is converted to an int; otherwise, it is converted to an
221  //   unsigned int. These are called the integer promotions. All
222  //   other types are unchanged by the integer promotions.
223  QualType PTy = Context.isPromotableBitField(Expr);
224  if (!PTy.isNull()) {
225    ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
226    return Expr;
227  }
228  if (Ty->isPromotableIntegerType()) {
229    QualType PT = Context.getPromotedIntegerType(Ty);
230    ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
231    return Expr;
232  }
233
234  DefaultFunctionArrayConversion(Expr);
235  return Expr;
236}
237
238/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
239/// do not have a prototype. Arguments that have type float are promoted to
240/// double. All other argument types are converted by UsualUnaryConversions().
241void Sema::DefaultArgumentPromotion(Expr *&Expr) {
242  QualType Ty = Expr->getType();
243  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
244
245  // If this is a 'float' (CVR qualified or typedef) promote to double.
246  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
247    if (BT->getKind() == BuiltinType::Float)
248      return ImpCastExprToType(Expr, Context.DoubleTy,
249                               CastExpr::CK_FloatingCast);
250
251  UsualUnaryConversions(Expr);
252}
253
254/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
255/// will warn if the resulting type is not a POD type, and rejects ObjC
256/// interfaces passed by value.  This returns true if the argument type is
257/// completely illegal.
258bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
259  DefaultArgumentPromotion(Expr);
260
261  if (Expr->getType()->isObjCInterfaceType()) {
262    Diag(Expr->getLocStart(),
263         diag::err_cannot_pass_objc_interface_to_vararg)
264      << Expr->getType() << CT;
265    return true;
266  }
267
268  if (!Expr->getType()->isPODType())
269    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
270      << Expr->getType() << CT;
271
272  return false;
273}
274
275
276/// UsualArithmeticConversions - Performs various conversions that are common to
277/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
278/// routine returns the first non-arithmetic type found. The client is
279/// responsible for emitting appropriate error diagnostics.
280/// FIXME: verify the conversion rules for "complex int" are consistent with
281/// GCC.
282QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
283                                          bool isCompAssign) {
284  if (!isCompAssign)
285    UsualUnaryConversions(lhsExpr);
286
287  UsualUnaryConversions(rhsExpr);
288
289  // For conversion purposes, we ignore any qualifiers.
290  // For example, "const float" and "float" are equivalent.
291  QualType lhs =
292    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
293  QualType rhs =
294    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
295
296  // If both types are identical, no conversion is needed.
297  if (lhs == rhs)
298    return lhs;
299
300  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
301  // The caller can deal with this (e.g. pointer + int).
302  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
303    return lhs;
304
305  // Perform bitfield promotions.
306  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
307  if (!LHSBitfieldPromoteTy.isNull())
308    lhs = LHSBitfieldPromoteTy;
309  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
310  if (!RHSBitfieldPromoteTy.isNull())
311    rhs = RHSBitfieldPromoteTy;
312
313  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
314  if (!isCompAssign)
315    ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
316  ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
317  return destType;
318}
319
320//===----------------------------------------------------------------------===//
321//  Semantic Analysis for various Expression Types
322//===----------------------------------------------------------------------===//
323
324
325/// ActOnStringLiteral - The specified tokens were lexed as pasted string
326/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
327/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
328/// multiple tokens.  However, the common case is that StringToks points to one
329/// string.
330///
331Action::OwningExprResult
332Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
333  assert(NumStringToks && "Must have at least one string!");
334
335  StringLiteralParser Literal(StringToks, NumStringToks, PP);
336  if (Literal.hadError)
337    return ExprError();
338
339  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
340  for (unsigned i = 0; i != NumStringToks; ++i)
341    StringTokLocs.push_back(StringToks[i].getLocation());
342
343  QualType StrTy = Context.CharTy;
344  if (Literal.AnyWide) StrTy = Context.getWCharType();
345  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
346
347  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
348  if (getLangOptions().CPlusPlus)
349    StrTy.addConst();
350
351  // Get an array type for the string, according to C99 6.4.5.  This includes
352  // the nul terminator character as well as the string length for pascal
353  // strings.
354  StrTy = Context.getConstantArrayType(StrTy,
355                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
356                                       ArrayType::Normal, 0);
357
358  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
359  return Owned(StringLiteral::Create(Context, Literal.GetString(),
360                                     Literal.GetStringLength(),
361                                     Literal.AnyWide, StrTy,
362                                     &StringTokLocs[0],
363                                     StringTokLocs.size()));
364}
365
366/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
367/// CurBlock to VD should cause it to be snapshotted (as we do for auto
368/// variables defined outside the block) or false if this is not needed (e.g.
369/// for values inside the block or for globals).
370///
371/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
372/// up-to-date.
373///
374static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
375                                              ValueDecl *VD) {
376  // If the value is defined inside the block, we couldn't snapshot it even if
377  // we wanted to.
378  if (CurBlock->TheDecl == VD->getDeclContext())
379    return false;
380
381  // If this is an enum constant or function, it is constant, don't snapshot.
382  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
383    return false;
384
385  // If this is a reference to an extern, static, or global variable, no need to
386  // snapshot it.
387  // FIXME: What about 'const' variables in C++?
388  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
389    if (!Var->hasLocalStorage())
390      return false;
391
392  // Blocks that have these can't be constant.
393  CurBlock->hasBlockDeclRefExprs = true;
394
395  // If we have nested blocks, the decl may be declared in an outer block (in
396  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
397  // be defined outside all of the current blocks (in which case the blocks do
398  // all get the bit).  Walk the nesting chain.
399  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
400       NextBlock = NextBlock->PrevBlockInfo) {
401    // If we found the defining block for the variable, don't mark the block as
402    // having a reference outside it.
403    if (NextBlock->TheDecl == VD->getDeclContext())
404      break;
405
406    // Otherwise, the DeclRef from the inner block causes the outer one to need
407    // a snapshot as well.
408    NextBlock->hasBlockDeclRefExprs = true;
409  }
410
411  return true;
412}
413
414
415
416/// BuildDeclRefExpr - Build a DeclRefExpr.
417Sema::OwningExprResult
418Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
419                       const CXXScopeSpec *SS) {
420  assert(!isa<OverloadedFunctionDecl>(D));
421
422  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
423    Diag(Loc,
424         diag::err_auto_variable_cannot_appear_in_own_initializer)
425      << D->getDeclName();
426    return ExprError();
427  }
428
429  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
430    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
431      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
432        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
433          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
434            << D->getIdentifier() << FD->getDeclName();
435          Diag(D->getLocation(), diag::note_local_variable_declared_here)
436            << D->getIdentifier();
437          return ExprError();
438        }
439      }
440    }
441  }
442
443  MarkDeclarationReferenced(Loc, D);
444
445  return Owned(DeclRefExpr::Create(Context,
446                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
447                                   SS? SS->getRange() : SourceRange(),
448                                   D, Loc, Ty));
449}
450
451/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
452/// variable corresponding to the anonymous union or struct whose type
453/// is Record.
454static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
455                                             RecordDecl *Record) {
456  assert(Record->isAnonymousStructOrUnion() &&
457         "Record must be an anonymous struct or union!");
458
459  // FIXME: Once Decls are directly linked together, this will be an O(1)
460  // operation rather than a slow walk through DeclContext's vector (which
461  // itself will be eliminated). DeclGroups might make this even better.
462  DeclContext *Ctx = Record->getDeclContext();
463  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
464                               DEnd = Ctx->decls_end();
465       D != DEnd; ++D) {
466    if (*D == Record) {
467      // The object for the anonymous struct/union directly
468      // follows its type in the list of declarations.
469      ++D;
470      assert(D != DEnd && "Missing object for anonymous record");
471      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
472      return *D;
473    }
474  }
475
476  assert(false && "Missing object for anonymous record");
477  return 0;
478}
479
480/// \brief Given a field that represents a member of an anonymous
481/// struct/union, build the path from that field's context to the
482/// actual member.
483///
484/// Construct the sequence of field member references we'll have to
485/// perform to get to the field in the anonymous union/struct. The
486/// list of members is built from the field outward, so traverse it
487/// backwards to go from an object in the current context to the field
488/// we found.
489///
490/// \returns The variable from which the field access should begin,
491/// for an anonymous struct/union that is not a member of another
492/// class. Otherwise, returns NULL.
493VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
494                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
495  assert(Field->getDeclContext()->isRecord() &&
496         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
497         && "Field must be stored inside an anonymous struct or union");
498
499  Path.push_back(Field);
500  VarDecl *BaseObject = 0;
501  DeclContext *Ctx = Field->getDeclContext();
502  do {
503    RecordDecl *Record = cast<RecordDecl>(Ctx);
504    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
505    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
506      Path.push_back(AnonField);
507    else {
508      BaseObject = cast<VarDecl>(AnonObject);
509      break;
510    }
511    Ctx = Ctx->getParent();
512  } while (Ctx->isRecord() &&
513           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
514
515  return BaseObject;
516}
517
518Sema::OwningExprResult
519Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
520                                               FieldDecl *Field,
521                                               Expr *BaseObjectExpr,
522                                               SourceLocation OpLoc) {
523  llvm::SmallVector<FieldDecl *, 4> AnonFields;
524  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
525                                                            AnonFields);
526
527  // Build the expression that refers to the base object, from
528  // which we will build a sequence of member references to each
529  // of the anonymous union objects and, eventually, the field we
530  // found via name lookup.
531  bool BaseObjectIsPointer = false;
532  Qualifiers BaseQuals;
533  if (BaseObject) {
534    // BaseObject is an anonymous struct/union variable (and is,
535    // therefore, not part of another non-anonymous record).
536    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
537    MarkDeclarationReferenced(Loc, BaseObject);
538    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
539                                               SourceLocation());
540    BaseQuals
541      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
542  } else if (BaseObjectExpr) {
543    // The caller provided the base object expression. Determine
544    // whether its a pointer and whether it adds any qualifiers to the
545    // anonymous struct/union fields we're looking into.
546    QualType ObjectType = BaseObjectExpr->getType();
547    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
548      BaseObjectIsPointer = true;
549      ObjectType = ObjectPtr->getPointeeType();
550    }
551    BaseQuals
552      = Context.getCanonicalType(ObjectType).getQualifiers();
553  } else {
554    // We've found a member of an anonymous struct/union that is
555    // inside a non-anonymous struct/union, so in a well-formed
556    // program our base object expression is "this".
557    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
558      if (!MD->isStatic()) {
559        QualType AnonFieldType
560          = Context.getTagDeclType(
561                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
562        QualType ThisType = Context.getTagDeclType(MD->getParent());
563        if ((Context.getCanonicalType(AnonFieldType)
564               == Context.getCanonicalType(ThisType)) ||
565            IsDerivedFrom(ThisType, AnonFieldType)) {
566          // Our base object expression is "this".
567          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
568                                                     MD->getThisType(Context));
569          BaseObjectIsPointer = true;
570        }
571      } else {
572        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
573          << Field->getDeclName());
574      }
575      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
576    }
577
578    if (!BaseObjectExpr)
579      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
580        << Field->getDeclName());
581  }
582
583  // Build the implicit member references to the field of the
584  // anonymous struct/union.
585  Expr *Result = BaseObjectExpr;
586  Qualifiers ResultQuals = BaseQuals;
587  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
588         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
589       FI != FIEnd; ++FI) {
590    QualType MemberType = (*FI)->getType();
591    Qualifiers MemberTypeQuals =
592      Context.getCanonicalType(MemberType).getQualifiers();
593
594    // CVR attributes from the base are picked up by members,
595    // except that 'mutable' members don't pick up 'const'.
596    if ((*FI)->isMutable())
597      ResultQuals.removeConst();
598
599    // GC attributes are never picked up by members.
600    ResultQuals.removeObjCGCAttr();
601
602    // TR 18037 does not allow fields to be declared with address spaces.
603    assert(!MemberTypeQuals.hasAddressSpace());
604
605    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
606    if (NewQuals != MemberTypeQuals)
607      MemberType = Context.getQualifiedType(MemberType, NewQuals);
608
609    MarkDeclarationReferenced(Loc, *FI);
610    // FIXME: Might this end up being a qualified name?
611    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
612                                      OpLoc, MemberType);
613    BaseObjectIsPointer = false;
614    ResultQuals = NewQuals;
615  }
616
617  return Owned(Result);
618}
619
620static void DecomposeTemplateName(LookupResult &R, TemplateName TName) {
621  if (TemplateDecl *TD = TName.getAsTemplateDecl())
622    R.addDecl(TD);
623  else if (OverloadedFunctionDecl *OD
624             = TName.getAsOverloadedFunctionDecl())
625    for (OverloadIterator I(OD), E; I != E; ++I)
626      R.addDecl(*I);
627
628  R.resolveKind();
629}
630
631Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
632                                               const CXXScopeSpec &SS,
633                                               UnqualifiedId &Id,
634                                               bool HasTrailingLParen,
635                                               bool isAddressOfOperand) {
636  assert(!(isAddressOfOperand && HasTrailingLParen) &&
637         "cannot be direct & operand and have a trailing lparen");
638
639  if (SS.isInvalid())
640    return ExprError();
641
642  TemplateArgumentListInfo ExplicitTemplateArgs;
643
644  // Decompose the UnqualifiedId into the following data.
645  DeclarationName Name;
646  SourceLocation NameLoc;
647  const TemplateArgumentListInfo *TemplateArgs;
648  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
649    ExplicitTemplateArgs.setLAngleLoc(Id.TemplateId->LAngleLoc);
650    ExplicitTemplateArgs.setRAngleLoc(Id.TemplateId->RAngleLoc);
651
652    ASTTemplateArgsPtr TemplateArgsPtr(*this,
653                                       Id.TemplateId->getTemplateArgs(),
654                                       Id.TemplateId->NumArgs);
655    translateTemplateArguments(TemplateArgsPtr, ExplicitTemplateArgs);
656    TemplateArgsPtr.release();
657
658    TemplateName TName =
659      TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
660
661    Name = Context.getNameForTemplate(TName);
662    NameLoc = Id.TemplateId->TemplateNameLoc;
663    TemplateArgs = &ExplicitTemplateArgs;
664  } else {
665    Name = GetNameFromUnqualifiedId(Id);
666    NameLoc = Id.StartLocation;
667    TemplateArgs = 0;
668  }
669
670  IdentifierInfo *II = Name.getAsIdentifierInfo();
671
672  // C++ [temp.dep.expr]p3:
673  //   An id-expression is type-dependent if it contains:
674  //     -- a nested-name-specifier that contains a class-name that
675  //        names a dependent type.
676  // Determine whether this is a member of an unknown specialization;
677  // we need to handle these differently.
678  if (SS.isSet() && !computeDeclContext(SS, false)) {
679    bool CheckForImplicitMember = !isAddressOfOperand;
680
681    return ActOnDependentIdExpression(SS, Name, NameLoc,
682                                      CheckForImplicitMember,
683                                      TemplateArgs);
684  }
685
686  // Perform the required lookup.
687  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
688  if (TemplateArgs) {
689    TemplateName TName =
690      TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
691
692    // Just re-use the lookup done by isTemplateName.
693    DecomposeTemplateName(R, TName);
694  } else {
695    LookupParsedName(R, S, &SS, true);
696
697    // If this reference is in an Objective-C method, then we need to do
698    // some special Objective-C lookup, too.
699    if (!SS.isSet() && II && getCurMethodDecl()) {
700      OwningExprResult E(LookupInObjCMethod(R, S, II));
701      if (E.isInvalid())
702        return ExprError();
703
704      Expr *Ex = E.takeAs<Expr>();
705      if (Ex) return Owned(Ex);
706    }
707  }
708
709  if (R.isAmbiguous())
710    return ExprError();
711
712  // Determine whether this name might be a candidate for
713  // argument-dependent lookup.
714  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
715
716  if (R.empty() && !ADL) {
717    // Otherwise, this could be an implicitly declared function reference (legal
718    // in C90, extension in C99, forbidden in C++).
719    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
720      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
721      if (D) R.addDecl(D);
722    }
723
724    // If this name wasn't predeclared and if this is not a function
725    // call, diagnose the problem.
726    if (R.empty()) {
727      if (!SS.isEmpty())
728        return ExprError(Diag(NameLoc, diag::err_no_member)
729                           << Name << computeDeclContext(SS, false)
730                           << SS.getRange());
731      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
732               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
733        return ExprError(Diag(NameLoc, diag::err_undeclared_use)
734                           << Name);
735      else
736        return ExprError(Diag(NameLoc, diag::err_undeclared_var_use) << Name);
737    }
738  }
739
740  // This is guaranteed from this point on.
741  assert(!R.empty() || ADL);
742
743  if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
744    // Warn about constructs like:
745    //   if (void *X = foo()) { ... } else { X }.
746    // In the else block, the pointer is always false.
747
748    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
749      Scope *CheckS = S;
750      while (CheckS && CheckS->getControlParent()) {
751        if (CheckS->isWithinElse() &&
752            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
753          ExprError(Diag(NameLoc, diag::warn_value_always_zero)
754            << Var->getDeclName()
755            << (Var->getType()->isPointerType()? 2 :
756                Var->getType()->isBooleanType()? 1 : 0));
757          break;
758        }
759
760        // Move to the parent of this scope.
761        CheckS = CheckS->getParent();
762      }
763    }
764  } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
765    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
766      // C99 DR 316 says that, if a function type comes from a
767      // function definition (without a prototype), that type is only
768      // used for checking compatibility. Therefore, when referencing
769      // the function, we pretend that we don't have the full function
770      // type.
771      if (DiagnoseUseOfDecl(Func, NameLoc))
772        return ExprError();
773
774      QualType T = Func->getType();
775      QualType NoProtoType = T;
776      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
777        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
778      return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
779    }
780  }
781
782  // &SomeClass::foo is an abstract member reference, regardless of
783  // the nature of foo, but &SomeClass::foo(...) is not.  If this is
784  // *not* an abstract member reference, and any of the results is a
785  // class member (which necessarily means they're all class members),
786  // then we make an implicit member reference instead.
787  //
788  // This check considers all the same information as the "needs ADL"
789  // check, but there's no simple logical relationship other than the
790  // fact that they can never be simultaneously true.  We could
791  // calculate them both in one pass if that proves important for
792  // performance.
793  if (!ADL) {
794    bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty());
795
796    if (!isAbstractMemberPointer && !R.empty() &&
797        isa<CXXRecordDecl>((*R.begin())->getDeclContext())) {
798      return BuildImplicitMemberReferenceExpr(SS, R, TemplateArgs);
799    }
800  }
801
802  if (TemplateArgs)
803    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
804
805  return BuildDeclarationNameExpr(SS, R, ADL);
806}
807
808/// ActOnDeclarationNameExpr - Build a C++ qualified declaration name,
809/// generally during template instantiation.  There's a large number
810/// of things which don't need to be done along this path.
811Sema::OwningExprResult
812Sema::BuildQualifiedDeclarationNameExpr(const CXXScopeSpec &SS,
813                                        DeclarationName Name,
814                                        SourceLocation NameLoc) {
815  DeclContext *DC;
816  if (!(DC = computeDeclContext(SS, false)) ||
817      DC->isDependentContext() ||
818      RequireCompleteDeclContext(SS))
819    return BuildDependentDeclRefExpr(SS, Name, NameLoc, 0);
820
821  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
822  LookupQualifiedName(R, DC);
823
824  if (R.isAmbiguous())
825    return ExprError();
826
827  if (R.empty()) {
828    Diag(NameLoc, diag::err_no_member) << Name << DC << SS.getRange();
829    return ExprError();
830  }
831
832  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
833}
834
835/// LookupInObjCMethod - The parser has read a name in, and Sema has
836/// detected that we're currently inside an ObjC method.  Perform some
837/// additional lookup.
838///
839/// Ideally, most of this would be done by lookup, but there's
840/// actually quite a lot of extra work involved.
841///
842/// Returns a null sentinel to indicate trivial success.
843Sema::OwningExprResult
844Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
845                         IdentifierInfo *II) {
846  SourceLocation Loc = Lookup.getNameLoc();
847
848  // There are two cases to handle here.  1) scoped lookup could have failed,
849  // in which case we should look for an ivar.  2) scoped lookup could have
850  // found a decl, but that decl is outside the current instance method (i.e.
851  // a global variable).  In these two cases, we do a lookup for an ivar with
852  // this name, if the lookup sucedes, we replace it our current decl.
853
854  // If we're in a class method, we don't normally want to look for
855  // ivars.  But if we don't find anything else, and there's an
856  // ivar, that's an error.
857  bool IsClassMethod = getCurMethodDecl()->isClassMethod();
858
859  bool LookForIvars;
860  if (Lookup.empty())
861    LookForIvars = true;
862  else if (IsClassMethod)
863    LookForIvars = false;
864  else
865    LookForIvars = (Lookup.isSingleResult() &&
866                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
867
868  if (LookForIvars) {
869    ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
870    ObjCInterfaceDecl *ClassDeclared;
871    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
872      // Diagnose using an ivar in a class method.
873      if (IsClassMethod)
874        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
875                         << IV->getDeclName());
876
877      // If we're referencing an invalid decl, just return this as a silent
878      // error node.  The error diagnostic was already emitted on the decl.
879      if (IV->isInvalidDecl())
880        return ExprError();
881
882      // Check if referencing a field with __attribute__((deprecated)).
883      if (DiagnoseUseOfDecl(IV, Loc))
884        return ExprError();
885
886      // Diagnose the use of an ivar outside of the declaring class.
887      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
888          ClassDeclared != IFace)
889        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
890
891      // FIXME: This should use a new expr for a direct reference, don't
892      // turn this into Self->ivar, just return a BareIVarExpr or something.
893      IdentifierInfo &II = Context.Idents.get("self");
894      UnqualifiedId SelfName;
895      SelfName.setIdentifier(&II, SourceLocation());
896      CXXScopeSpec SelfScopeSpec;
897      OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
898                                                    SelfName, false, false);
899      MarkDeclarationReferenced(Loc, IV);
900      return Owned(new (Context)
901                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
902                                   SelfExpr.takeAs<Expr>(), true, true));
903    }
904  } else if (getCurMethodDecl()->isInstanceMethod()) {
905    // We should warn if a local variable hides an ivar.
906    ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
907    ObjCInterfaceDecl *ClassDeclared;
908    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
909      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
910          IFace == ClassDeclared)
911        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
912    }
913  }
914
915  // Needed to implement property "super.method" notation.
916  if (Lookup.empty() && II->isStr("super")) {
917    QualType T;
918
919    if (getCurMethodDecl()->isInstanceMethod())
920      T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
921                                    getCurMethodDecl()->getClassInterface()));
922    else
923      T = Context.getObjCClassType();
924    return Owned(new (Context) ObjCSuperExpr(Loc, T));
925  }
926
927  // Sentinel value saying that we didn't do anything special.
928  return Owned((Expr*) 0);
929}
930
931/// \brief Cast member's object to its own class if necessary.
932bool
933Sema::PerformObjectMemberConversion(Expr *&From, NamedDecl *Member) {
934  if (FieldDecl *FD = dyn_cast<FieldDecl>(Member))
935    if (CXXRecordDecl *RD =
936        dyn_cast<CXXRecordDecl>(FD->getDeclContext())) {
937      QualType DestType =
938        Context.getCanonicalType(Context.getTypeDeclType(RD));
939      if (DestType->isDependentType() || From->getType()->isDependentType())
940        return false;
941      QualType FromRecordType = From->getType();
942      QualType DestRecordType = DestType;
943      if (FromRecordType->getAs<PointerType>()) {
944        DestType = Context.getPointerType(DestType);
945        FromRecordType = FromRecordType->getPointeeType();
946      }
947      if (!Context.hasSameUnqualifiedType(FromRecordType, DestRecordType) &&
948          CheckDerivedToBaseConversion(FromRecordType,
949                                       DestRecordType,
950                                       From->getSourceRange().getBegin(),
951                                       From->getSourceRange()))
952        return true;
953      ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
954                        /*isLvalue=*/true);
955    }
956  return false;
957}
958
959/// \brief Build a MemberExpr AST node.
960static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
961                                   const CXXScopeSpec *SS, NamedDecl *Member,
962                                   SourceLocation Loc, QualType Ty,
963                          const TemplateArgumentListInfo *TemplateArgs = 0) {
964  NestedNameSpecifier *Qualifier = 0;
965  SourceRange QualifierRange;
966  if (SS && SS->isSet()) {
967    Qualifier = (NestedNameSpecifier *) SS->getScopeRep();
968    QualifierRange = SS->getRange();
969  }
970
971  return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
972                            Member, Loc, TemplateArgs, Ty);
973}
974
975/// Builds an implicit member access expression from the given
976/// unqualified lookup set, which is known to contain only class
977/// members.
978Sema::OwningExprResult
979Sema::BuildImplicitMemberReferenceExpr(const CXXScopeSpec &SS,
980                                       LookupResult &R,
981                              const TemplateArgumentListInfo *TemplateArgs) {
982  assert(!R.empty() && !R.isAmbiguous());
983
984  NamedDecl *D = R.getAsSingleDecl(Context);
985  SourceLocation Loc = R.getNameLoc();
986
987  // We may have found a field within an anonymous union or struct
988  // (C++ [class.union]).
989  // FIXME: This needs to happen post-isImplicitMemberReference?
990  // FIXME: template-ids inside anonymous structs?
991  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
992    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
993      return BuildAnonymousStructUnionMemberReference(Loc, FD);
994
995  QualType ThisType;
996  QualType MemberType;
997  if (isImplicitMemberReference(SS, D, Loc, ThisType, MemberType)) {
998    Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType);
999    MarkDeclarationReferenced(Loc, D);
1000    if (PerformObjectMemberConversion(This, D))
1001      return ExprError();
1002
1003    bool ShouldCheckUse = true;
1004    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1005      // Don't diagnose the use of a virtual member function unless it's
1006      // explicitly qualified.
1007      if (MD->isVirtual() && !SS.isSet())
1008        ShouldCheckUse = false;
1009    }
1010
1011    if (ShouldCheckUse && DiagnoseUseOfDecl(D, Loc))
1012      return ExprError();
1013    return Owned(BuildMemberExpr(Context, This, true, &SS, D, Loc, MemberType,
1014                                 TemplateArgs));
1015  }
1016
1017  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1018    if (!Method->isStatic())
1019      return ExprError(Diag(Loc, diag::err_member_call_without_object));
1020  }
1021
1022  if (isa<FieldDecl>(D)) {
1023    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1024      if (MD->isStatic()) {
1025        // "invalid use of member 'x' in static member function"
1026        Diag(Loc, diag::err_invalid_member_use_in_static_method)
1027          << D->getDeclName();
1028        return ExprError();
1029      }
1030    }
1031
1032    // Any other ways we could have found the field in a well-formed
1033    // program would have been turned into implicit member expressions
1034    // above.
1035    Diag(Loc, diag::err_invalid_non_static_member_use)
1036      << D->getDeclName();
1037    return ExprError();
1038  }
1039
1040  // We're not in an implicit member-reference context, but the lookup
1041  // results might not require an instance.  Try to build a non-member
1042  // decl reference.
1043  if (TemplateArgs)
1044    return BuildTemplateIdExpr(SS, R, /* ADL */ false, *TemplateArgs);
1045
1046  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1047}
1048
1049bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
1050                                      const LookupResult &R,
1051                                      bool HasTrailingLParen) {
1052  // Only when used directly as the postfix-expression of a call.
1053  if (!HasTrailingLParen)
1054    return false;
1055
1056  // Never if a scope specifier was provided.
1057  if (SS.isSet())
1058    return false;
1059
1060  // Only in C++ or ObjC++.
1061  if (!getLangOptions().CPlusPlus)
1062    return false;
1063
1064  // Turn off ADL when we find certain kinds of declarations during
1065  // normal lookup:
1066  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1067    NamedDecl *D = *I;
1068
1069    // C++0x [basic.lookup.argdep]p3:
1070    //     -- a declaration of a class member
1071    // Since using decls preserve this property, we check this on the
1072    // original decl.
1073    if (D->getDeclContext()->isRecord())
1074      return false;
1075
1076    // C++0x [basic.lookup.argdep]p3:
1077    //     -- a block-scope function declaration that is not a
1078    //        using-declaration
1079    // NOTE: we also trigger this for function templates (in fact, we
1080    // don't check the decl type at all, since all other decl types
1081    // turn off ADL anyway).
1082    if (isa<UsingShadowDecl>(D))
1083      D = cast<UsingShadowDecl>(D)->getTargetDecl();
1084    else if (D->getDeclContext()->isFunctionOrMethod())
1085      return false;
1086
1087    // C++0x [basic.lookup.argdep]p3:
1088    //     -- a declaration that is neither a function or a function
1089    //        template
1090    // And also for builtin functions.
1091    if (isa<FunctionDecl>(D)) {
1092      FunctionDecl *FDecl = cast<FunctionDecl>(D);
1093
1094      // But also builtin functions.
1095      if (FDecl->getBuiltinID() && FDecl->isImplicit())
1096        return false;
1097    } else if (!isa<FunctionTemplateDecl>(D))
1098      return false;
1099  }
1100
1101  return true;
1102}
1103
1104
1105/// Diagnoses obvious problems with the use of the given declaration
1106/// as an expression.  This is only actually called for lookups that
1107/// were not overloaded, and it doesn't promise that the declaration
1108/// will in fact be used.
1109static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
1110  if (isa<TypedefDecl>(D)) {
1111    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
1112    return true;
1113  }
1114
1115  if (isa<ObjCInterfaceDecl>(D)) {
1116    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
1117    return true;
1118  }
1119
1120  if (isa<NamespaceDecl>(D)) {
1121    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
1122    return true;
1123  }
1124
1125  return false;
1126}
1127
1128Sema::OwningExprResult
1129Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1130                               LookupResult &R,
1131                               bool NeedsADL) {
1132  assert(R.getResultKind() != LookupResult::FoundUnresolvedValue);
1133
1134  // If this isn't an overloaded result and we don't need ADL, just
1135  // build an ordinary singleton decl ref.
1136  if (!NeedsADL && !R.isOverloadedResult())
1137    return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl());
1138
1139  // We only need to check the declaration if there's exactly one
1140  // result, because in the overloaded case the results can only be
1141  // functions and function templates.
1142  if (R.isSingleResult() &&
1143      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
1144    return ExprError();
1145
1146  bool Dependent
1147    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
1148  UnresolvedLookupExpr *ULE
1149    = UnresolvedLookupExpr::Create(Context, Dependent,
1150                                   (NestedNameSpecifier*) SS.getScopeRep(),
1151                                   SS.getRange(),
1152                                   R.getLookupName(), R.getNameLoc(),
1153                                   NeedsADL, R.isOverloadedResult());
1154  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1155    ULE->addDecl(*I);
1156
1157  return Owned(ULE);
1158}
1159
1160
1161/// \brief Complete semantic analysis for a reference to the given declaration.
1162Sema::OwningExprResult
1163Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1164                               SourceLocation Loc, NamedDecl *D) {
1165  assert(D && "Cannot refer to a NULL declaration");
1166  assert(!isa<FunctionTemplateDecl>(D) &&
1167         "Cannot refer unambiguously to a function template");
1168  DeclarationName Name = D->getDeclName();
1169
1170  if (CheckDeclInExpr(*this, Loc, D))
1171    return ExprError();
1172
1173  ValueDecl *VD = cast<ValueDecl>(D);
1174
1175  // Check whether this declaration can be used. Note that we suppress
1176  // this check when we're going to perform argument-dependent lookup
1177  // on this function name, because this might not be the function
1178  // that overload resolution actually selects.
1179  if (DiagnoseUseOfDecl(VD, Loc))
1180    return ExprError();
1181
1182  // Only create DeclRefExpr's for valid Decl's.
1183  if (VD->isInvalidDecl())
1184    return ExprError();
1185
1186  // If the identifier reference is inside a block, and it refers to a value
1187  // that is outside the block, create a BlockDeclRefExpr instead of a
1188  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1189  // the block is formed.
1190  //
1191  // We do not do this for things like enum constants, global variables, etc,
1192  // as they do not get snapshotted.
1193  //
1194  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1195    MarkDeclarationReferenced(Loc, VD);
1196    QualType ExprTy = VD->getType().getNonReferenceType();
1197    // The BlocksAttr indicates the variable is bound by-reference.
1198    if (VD->getAttr<BlocksAttr>())
1199      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1200    // This is to record that a 'const' was actually synthesize and added.
1201    bool constAdded = !ExprTy.isConstQualified();
1202    // Variable will be bound by-copy, make it const within the closure.
1203
1204    ExprTy.addConst();
1205    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1206                                                constAdded));
1207  }
1208  // If this reference is not in a block or if the referenced variable is
1209  // within the block, create a normal DeclRefExpr.
1210
1211  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, &SS);
1212}
1213
1214Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1215                                                 tok::TokenKind Kind) {
1216  PredefinedExpr::IdentType IT;
1217
1218  switch (Kind) {
1219  default: assert(0 && "Unknown simple primary expr!");
1220  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1221  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1222  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1223  }
1224
1225  // Pre-defined identifiers are of type char[x], where x is the length of the
1226  // string.
1227
1228  Decl *currentDecl = getCurFunctionOrMethodDecl();
1229  if (!currentDecl) {
1230    Diag(Loc, diag::ext_predef_outside_function);
1231    currentDecl = Context.getTranslationUnitDecl();
1232  }
1233
1234  QualType ResTy;
1235  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1236    ResTy = Context.DependentTy;
1237  } else {
1238    unsigned Length =
1239      PredefinedExpr::ComputeName(Context, IT, currentDecl).length();
1240
1241    llvm::APInt LengthI(32, Length + 1);
1242    ResTy = Context.CharTy.withConst();
1243    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1244  }
1245  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1246}
1247
1248Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1249  llvm::SmallString<16> CharBuffer;
1250  CharBuffer.resize(Tok.getLength());
1251  const char *ThisTokBegin = &CharBuffer[0];
1252  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1253
1254  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1255                            Tok.getLocation(), PP);
1256  if (Literal.hadError())
1257    return ExprError();
1258
1259  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1260
1261  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1262                                              Literal.isWide(),
1263                                              type, Tok.getLocation()));
1264}
1265
1266Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1267  // Fast path for a single digit (which is quite common).  A single digit
1268  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1269  if (Tok.getLength() == 1) {
1270    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1271    unsigned IntSize = Context.Target.getIntWidth();
1272    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1273                    Context.IntTy, Tok.getLocation()));
1274  }
1275
1276  llvm::SmallString<512> IntegerBuffer;
1277  // Add padding so that NumericLiteralParser can overread by one character.
1278  IntegerBuffer.resize(Tok.getLength()+1);
1279  const char *ThisTokBegin = &IntegerBuffer[0];
1280
1281  // Get the spelling of the token, which eliminates trigraphs, etc.
1282  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1283
1284  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1285                               Tok.getLocation(), PP);
1286  if (Literal.hadError)
1287    return ExprError();
1288
1289  Expr *Res;
1290
1291  if (Literal.isFloatingLiteral()) {
1292    QualType Ty;
1293    if (Literal.isFloat)
1294      Ty = Context.FloatTy;
1295    else if (!Literal.isLong)
1296      Ty = Context.DoubleTy;
1297    else
1298      Ty = Context.LongDoubleTy;
1299
1300    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1301
1302    // isExact will be set by GetFloatValue().
1303    bool isExact = false;
1304    llvm::APFloat Val = Literal.GetFloatValue(Format, &isExact);
1305    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1306
1307  } else if (!Literal.isIntegerLiteral()) {
1308    return ExprError();
1309  } else {
1310    QualType Ty;
1311
1312    // long long is a C99 feature.
1313    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1314        Literal.isLongLong)
1315      Diag(Tok.getLocation(), diag::ext_longlong);
1316
1317    // Get the value in the widest-possible width.
1318    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1319
1320    if (Literal.GetIntegerValue(ResultVal)) {
1321      // If this value didn't fit into uintmax_t, warn and force to ull.
1322      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1323      Ty = Context.UnsignedLongLongTy;
1324      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1325             "long long is not intmax_t?");
1326    } else {
1327      // If this value fits into a ULL, try to figure out what else it fits into
1328      // according to the rules of C99 6.4.4.1p5.
1329
1330      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1331      // be an unsigned int.
1332      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1333
1334      // Check from smallest to largest, picking the smallest type we can.
1335      unsigned Width = 0;
1336      if (!Literal.isLong && !Literal.isLongLong) {
1337        // Are int/unsigned possibilities?
1338        unsigned IntSize = Context.Target.getIntWidth();
1339
1340        // Does it fit in a unsigned int?
1341        if (ResultVal.isIntN(IntSize)) {
1342          // Does it fit in a signed int?
1343          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1344            Ty = Context.IntTy;
1345          else if (AllowUnsigned)
1346            Ty = Context.UnsignedIntTy;
1347          Width = IntSize;
1348        }
1349      }
1350
1351      // Are long/unsigned long possibilities?
1352      if (Ty.isNull() && !Literal.isLongLong) {
1353        unsigned LongSize = Context.Target.getLongWidth();
1354
1355        // Does it fit in a unsigned long?
1356        if (ResultVal.isIntN(LongSize)) {
1357          // Does it fit in a signed long?
1358          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1359            Ty = Context.LongTy;
1360          else if (AllowUnsigned)
1361            Ty = Context.UnsignedLongTy;
1362          Width = LongSize;
1363        }
1364      }
1365
1366      // Finally, check long long if needed.
1367      if (Ty.isNull()) {
1368        unsigned LongLongSize = Context.Target.getLongLongWidth();
1369
1370        // Does it fit in a unsigned long long?
1371        if (ResultVal.isIntN(LongLongSize)) {
1372          // Does it fit in a signed long long?
1373          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1374            Ty = Context.LongLongTy;
1375          else if (AllowUnsigned)
1376            Ty = Context.UnsignedLongLongTy;
1377          Width = LongLongSize;
1378        }
1379      }
1380
1381      // If we still couldn't decide a type, we probably have something that
1382      // does not fit in a signed long long, but has no U suffix.
1383      if (Ty.isNull()) {
1384        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1385        Ty = Context.UnsignedLongLongTy;
1386        Width = Context.Target.getLongLongWidth();
1387      }
1388
1389      if (ResultVal.getBitWidth() != Width)
1390        ResultVal.trunc(Width);
1391    }
1392    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1393  }
1394
1395  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1396  if (Literal.isImaginary)
1397    Res = new (Context) ImaginaryLiteral(Res,
1398                                        Context.getComplexType(Res->getType()));
1399
1400  return Owned(Res);
1401}
1402
1403Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1404                                              SourceLocation R, ExprArg Val) {
1405  Expr *E = Val.takeAs<Expr>();
1406  assert((E != 0) && "ActOnParenExpr() missing expr");
1407  return Owned(new (Context) ParenExpr(L, R, E));
1408}
1409
1410/// The UsualUnaryConversions() function is *not* called by this routine.
1411/// See C99 6.3.2.1p[2-4] for more details.
1412bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1413                                     SourceLocation OpLoc,
1414                                     const SourceRange &ExprRange,
1415                                     bool isSizeof) {
1416  if (exprType->isDependentType())
1417    return false;
1418
1419  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1420  //   the result is the size of the referenced type."
1421  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
1422  //   result shall be the alignment of the referenced type."
1423  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
1424    exprType = Ref->getPointeeType();
1425
1426  // C99 6.5.3.4p1:
1427  if (exprType->isFunctionType()) {
1428    // alignof(function) is allowed as an extension.
1429    if (isSizeof)
1430      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1431    return false;
1432  }
1433
1434  // Allow sizeof(void)/alignof(void) as an extension.
1435  if (exprType->isVoidType()) {
1436    Diag(OpLoc, diag::ext_sizeof_void_type)
1437      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1438    return false;
1439  }
1440
1441  if (RequireCompleteType(OpLoc, exprType,
1442                          isSizeof ? diag::err_sizeof_incomplete_type :
1443                          PDiag(diag::err_alignof_incomplete_type)
1444                            << ExprRange))
1445    return true;
1446
1447  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1448  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1449    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1450      << exprType << isSizeof << ExprRange;
1451    return true;
1452  }
1453
1454  return false;
1455}
1456
1457bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1458                            const SourceRange &ExprRange) {
1459  E = E->IgnoreParens();
1460
1461  // alignof decl is always ok.
1462  if (isa<DeclRefExpr>(E))
1463    return false;
1464
1465  // Cannot know anything else if the expression is dependent.
1466  if (E->isTypeDependent())
1467    return false;
1468
1469  if (E->getBitField()) {
1470    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1471    return true;
1472  }
1473
1474  // Alignment of a field access is always okay, so long as it isn't a
1475  // bit-field.
1476  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1477    if (isa<FieldDecl>(ME->getMemberDecl()))
1478      return false;
1479
1480  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1481}
1482
1483/// \brief Build a sizeof or alignof expression given a type operand.
1484Action::OwningExprResult
1485Sema::CreateSizeOfAlignOfExpr(DeclaratorInfo *DInfo,
1486                              SourceLocation OpLoc,
1487                              bool isSizeOf, SourceRange R) {
1488  if (!DInfo)
1489    return ExprError();
1490
1491  QualType T = DInfo->getType();
1492
1493  if (!T->isDependentType() &&
1494      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1495    return ExprError();
1496
1497  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1498  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, DInfo,
1499                                               Context.getSizeType(), OpLoc,
1500                                               R.getEnd()));
1501}
1502
1503/// \brief Build a sizeof or alignof expression given an expression
1504/// operand.
1505Action::OwningExprResult
1506Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1507                              bool isSizeOf, SourceRange R) {
1508  // Verify that the operand is valid.
1509  bool isInvalid = false;
1510  if (E->isTypeDependent()) {
1511    // Delay type-checking for type-dependent expressions.
1512  } else if (!isSizeOf) {
1513    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1514  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1515    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1516    isInvalid = true;
1517  } else {
1518    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1519  }
1520
1521  if (isInvalid)
1522    return ExprError();
1523
1524  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1525  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1526                                               Context.getSizeType(), OpLoc,
1527                                               R.getEnd()));
1528}
1529
1530/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1531/// the same for @c alignof and @c __alignof
1532/// Note that the ArgRange is invalid if isType is false.
1533Action::OwningExprResult
1534Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1535                             void *TyOrEx, const SourceRange &ArgRange) {
1536  // If error parsing type, ignore.
1537  if (TyOrEx == 0) return ExprError();
1538
1539  if (isType) {
1540    DeclaratorInfo *DInfo;
1541    (void) GetTypeFromParser(TyOrEx, &DInfo);
1542    return CreateSizeOfAlignOfExpr(DInfo, OpLoc, isSizeof, ArgRange);
1543  }
1544
1545  Expr *ArgEx = (Expr *)TyOrEx;
1546  Action::OwningExprResult Result
1547    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1548
1549  if (Result.isInvalid())
1550    DeleteExpr(ArgEx);
1551
1552  return move(Result);
1553}
1554
1555QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1556  if (V->isTypeDependent())
1557    return Context.DependentTy;
1558
1559  // These operators return the element type of a complex type.
1560  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
1561    return CT->getElementType();
1562
1563  // Otherwise they pass through real integer and floating point types here.
1564  if (V->getType()->isArithmeticType())
1565    return V->getType();
1566
1567  // Reject anything else.
1568  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1569    << (isReal ? "__real" : "__imag");
1570  return QualType();
1571}
1572
1573
1574
1575Action::OwningExprResult
1576Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1577                          tok::TokenKind Kind, ExprArg Input) {
1578  UnaryOperator::Opcode Opc;
1579  switch (Kind) {
1580  default: assert(0 && "Unknown unary op!");
1581  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1582  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1583  }
1584
1585  return BuildUnaryOp(S, OpLoc, Opc, move(Input));
1586}
1587
1588Action::OwningExprResult
1589Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1590                              ExprArg Idx, SourceLocation RLoc) {
1591  // Since this might be a postfix expression, get rid of ParenListExprs.
1592  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
1593
1594  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1595       *RHSExp = static_cast<Expr*>(Idx.get());
1596
1597  if (getLangOptions().CPlusPlus &&
1598      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
1599    Base.release();
1600    Idx.release();
1601    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1602                                                  Context.DependentTy, RLoc));
1603  }
1604
1605  if (getLangOptions().CPlusPlus &&
1606      (LHSExp->getType()->isRecordType() ||
1607       LHSExp->getType()->isEnumeralType() ||
1608       RHSExp->getType()->isRecordType() ||
1609       RHSExp->getType()->isEnumeralType())) {
1610    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
1611  }
1612
1613  return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
1614}
1615
1616
1617Action::OwningExprResult
1618Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
1619                                     ExprArg Idx, SourceLocation RLoc) {
1620  Expr *LHSExp = static_cast<Expr*>(Base.get());
1621  Expr *RHSExp = static_cast<Expr*>(Idx.get());
1622
1623  // Perform default conversions.
1624  DefaultFunctionArrayConversion(LHSExp);
1625  DefaultFunctionArrayConversion(RHSExp);
1626
1627  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1628
1629  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1630  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1631  // in the subscript position. As a result, we need to derive the array base
1632  // and index from the expression types.
1633  Expr *BaseExpr, *IndexExpr;
1634  QualType ResultType;
1635  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1636    BaseExpr = LHSExp;
1637    IndexExpr = RHSExp;
1638    ResultType = Context.DependentTy;
1639  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
1640    BaseExpr = LHSExp;
1641    IndexExpr = RHSExp;
1642    ResultType = PTy->getPointeeType();
1643  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
1644     // Handle the uncommon case of "123[Ptr]".
1645    BaseExpr = RHSExp;
1646    IndexExpr = LHSExp;
1647    ResultType = PTy->getPointeeType();
1648  } else if (const ObjCObjectPointerType *PTy =
1649               LHSTy->getAs<ObjCObjectPointerType>()) {
1650    BaseExpr = LHSExp;
1651    IndexExpr = RHSExp;
1652    ResultType = PTy->getPointeeType();
1653  } else if (const ObjCObjectPointerType *PTy =
1654               RHSTy->getAs<ObjCObjectPointerType>()) {
1655     // Handle the uncommon case of "123[Ptr]".
1656    BaseExpr = RHSExp;
1657    IndexExpr = LHSExp;
1658    ResultType = PTy->getPointeeType();
1659  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
1660    BaseExpr = LHSExp;    // vectors: V[123]
1661    IndexExpr = RHSExp;
1662
1663    // FIXME: need to deal with const...
1664    ResultType = VTy->getElementType();
1665  } else if (LHSTy->isArrayType()) {
1666    // If we see an array that wasn't promoted by
1667    // DefaultFunctionArrayConversion, it must be an array that
1668    // wasn't promoted because of the C90 rule that doesn't
1669    // allow promoting non-lvalue arrays.  Warn, then
1670    // force the promotion here.
1671    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1672        LHSExp->getSourceRange();
1673    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
1674                      CastExpr::CK_ArrayToPointerDecay);
1675    LHSTy = LHSExp->getType();
1676
1677    BaseExpr = LHSExp;
1678    IndexExpr = RHSExp;
1679    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
1680  } else if (RHSTy->isArrayType()) {
1681    // Same as previous, except for 123[f().a] case
1682    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1683        RHSExp->getSourceRange();
1684    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
1685                      CastExpr::CK_ArrayToPointerDecay);
1686    RHSTy = RHSExp->getType();
1687
1688    BaseExpr = RHSExp;
1689    IndexExpr = LHSExp;
1690    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
1691  } else {
1692    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
1693       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
1694  }
1695  // C99 6.5.2.1p1
1696  if (!(IndexExpr->getType()->isIntegerType() &&
1697        IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
1698    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
1699                     << IndexExpr->getSourceRange());
1700
1701  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
1702       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
1703         && !IndexExpr->isTypeDependent())
1704    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
1705
1706  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1707  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1708  // type. Note that Functions are not objects, and that (in C99 parlance)
1709  // incomplete types are not object types.
1710  if (ResultType->isFunctionType()) {
1711    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1712      << ResultType << BaseExpr->getSourceRange();
1713    return ExprError();
1714  }
1715
1716  if (!ResultType->isDependentType() &&
1717      RequireCompleteType(LLoc, ResultType,
1718                          PDiag(diag::err_subscript_incomplete_type)
1719                            << BaseExpr->getSourceRange()))
1720    return ExprError();
1721
1722  // Diagnose bad cases where we step over interface counts.
1723  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
1724    Diag(LLoc, diag::err_subscript_nonfragile_interface)
1725      << ResultType << BaseExpr->getSourceRange();
1726    return ExprError();
1727  }
1728
1729  Base.release();
1730  Idx.release();
1731  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1732                                                ResultType, RLoc));
1733}
1734
1735QualType Sema::
1736CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1737                        const IdentifierInfo *CompName,
1738                        SourceLocation CompLoc) {
1739  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
1740  // see FIXME there.
1741  //
1742  // FIXME: This logic can be greatly simplified by splitting it along
1743  // halving/not halving and reworking the component checking.
1744  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
1745
1746  // The vector accessor can't exceed the number of elements.
1747  const char *compStr = CompName->getNameStart();
1748
1749  // This flag determines whether or not the component is one of the four
1750  // special names that indicate a subset of exactly half the elements are
1751  // to be selected.
1752  bool HalvingSwizzle = false;
1753
1754  // This flag determines whether or not CompName has an 's' char prefix,
1755  // indicating that it is a string of hex values to be used as vector indices.
1756  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
1757
1758  // Check that we've found one of the special components, or that the component
1759  // names must come from the same set.
1760  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1761      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1762    HalvingSwizzle = true;
1763  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1764    do
1765      compStr++;
1766    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1767  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1768    do
1769      compStr++;
1770    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1771  }
1772
1773  if (!HalvingSwizzle && *compStr) {
1774    // We didn't get to the end of the string. This means the component names
1775    // didn't come from the same set *or* we encountered an illegal name.
1776    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1777      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1778    return QualType();
1779  }
1780
1781  // Ensure no component accessor exceeds the width of the vector type it
1782  // operates on.
1783  if (!HalvingSwizzle) {
1784    compStr = CompName->getNameStart();
1785
1786    if (HexSwizzle)
1787      compStr++;
1788
1789    while (*compStr) {
1790      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1791        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1792          << baseType << SourceRange(CompLoc);
1793        return QualType();
1794      }
1795    }
1796  }
1797
1798  // If this is a halving swizzle, verify that the base type has an even
1799  // number of elements.
1800  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1801    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1802      << baseType << SourceRange(CompLoc);
1803    return QualType();
1804  }
1805
1806  // The component accessor looks fine - now we need to compute the actual type.
1807  // The vector type is implied by the component accessor. For example,
1808  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1809  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1810  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1811  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1812                                     : CompName->getLength();
1813  if (HexSwizzle)
1814    CompSize--;
1815
1816  if (CompSize == 1)
1817    return vecType->getElementType();
1818
1819  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1820  // Now look up the TypeDefDecl from the vector type. Without this,
1821  // diagostics look bad. We want extended vector types to appear built-in.
1822  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1823    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1824      return Context.getTypedefType(ExtVectorDecls[i]);
1825  }
1826  return VT; // should never get here (a typedef type should always be found).
1827}
1828
1829static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
1830                                                IdentifierInfo *Member,
1831                                                const Selector &Sel,
1832                                                ASTContext &Context) {
1833
1834  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
1835    return PD;
1836  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
1837    return OMD;
1838
1839  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
1840       E = PDecl->protocol_end(); I != E; ++I) {
1841    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
1842                                                     Context))
1843      return D;
1844  }
1845  return 0;
1846}
1847
1848static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
1849                                IdentifierInfo *Member,
1850                                const Selector &Sel,
1851                                ASTContext &Context) {
1852  // Check protocols on qualified interfaces.
1853  Decl *GDecl = 0;
1854  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
1855       E = QIdTy->qual_end(); I != E; ++I) {
1856    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
1857      GDecl = PD;
1858      break;
1859    }
1860    // Also must look for a getter name which uses property syntax.
1861    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1862      GDecl = OMD;
1863      break;
1864    }
1865  }
1866  if (!GDecl) {
1867    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
1868         E = QIdTy->qual_end(); I != E; ++I) {
1869      // Search in the protocol-qualifier list of current protocol.
1870      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
1871      if (GDecl)
1872        return GDecl;
1873    }
1874  }
1875  return GDecl;
1876}
1877
1878Action::OwningExprResult
1879Sema::BuildMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
1880                               tok::TokenKind OpKind, SourceLocation MemberLoc,
1881                               DeclarationName MemberName,
1882                          const TemplateArgumentListInfo *ExplicitTemplateArgs,
1883                               DeclPtrTy ObjCImpDecl, const CXXScopeSpec *SS,
1884                               NamedDecl *FirstQualifierInScope) {
1885  if (SS && SS->isInvalid())
1886    return ExprError();
1887
1888  // Since this might be a postfix expression, get rid of ParenListExprs.
1889  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
1890
1891  Expr *BaseExpr = Base.takeAs<Expr>();
1892  assert(BaseExpr && "no base expression");
1893
1894  // Perform default conversions.
1895  DefaultFunctionArrayConversion(BaseExpr);
1896
1897  QualType BaseType = BaseExpr->getType();
1898
1899  // If the user is trying to apply -> or . to a function pointer
1900  // type, it's probably because the forgot parentheses to call that
1901  // function. Suggest the addition of those parentheses, build the
1902  // call, and continue on.
1903  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1904    if (const FunctionProtoType *Fun
1905          = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
1906      QualType ResultTy = Fun->getResultType();
1907      if (Fun->getNumArgs() == 0 &&
1908          ((OpKind == tok::period && ResultTy->isRecordType()) ||
1909           (OpKind == tok::arrow && ResultTy->isPointerType() &&
1910            ResultTy->getAs<PointerType>()->getPointeeType()
1911                                                          ->isRecordType()))) {
1912        SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
1913        Diag(Loc, diag::err_member_reference_needs_call)
1914          << QualType(Fun, 0)
1915          << CodeModificationHint::CreateInsertion(Loc, "()");
1916
1917        OwningExprResult NewBase
1918          = ActOnCallExpr(S, ExprArg(*this, BaseExpr), Loc,
1919                          MultiExprArg(*this, 0, 0), 0, Loc);
1920        if (NewBase.isInvalid())
1921          return move(NewBase);
1922
1923        BaseExpr = NewBase.takeAs<Expr>();
1924        DefaultFunctionArrayConversion(BaseExpr);
1925        BaseType = BaseExpr->getType();
1926      }
1927    }
1928  }
1929
1930  // If this is an Objective-C pseudo-builtin and a definition is provided then
1931  // use that.
1932  if (BaseType->isObjCIdType()) {
1933    // We have an 'id' type. Rather than fall through, we check if this
1934    // is a reference to 'isa'.
1935    if (BaseType != Context.ObjCIdRedefinitionType) {
1936      BaseType = Context.ObjCIdRedefinitionType;
1937      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
1938    }
1939  }
1940  assert(!BaseType.isNull() && "no type for member expression");
1941
1942  // Handle properties on ObjC 'Class' types.
1943  if (OpKind == tok::period && BaseType->isObjCClassType()) {
1944    // Also must look for a getter name which uses property syntax.
1945    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1946    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1947    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1948      ObjCInterfaceDecl *IFace = MD->getClassInterface();
1949      ObjCMethodDecl *Getter;
1950      // FIXME: need to also look locally in the implementation.
1951      if ((Getter = IFace->lookupClassMethod(Sel))) {
1952        // Check the use of this method.
1953        if (DiagnoseUseOfDecl(Getter, MemberLoc))
1954          return ExprError();
1955      }
1956      // If we found a getter then this may be a valid dot-reference, we
1957      // will look for the matching setter, in case it is needed.
1958      Selector SetterSel =
1959      SelectorTable::constructSetterName(PP.getIdentifierTable(),
1960                                         PP.getSelectorTable(), Member);
1961      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1962      if (!Setter) {
1963        // If this reference is in an @implementation, also check for 'private'
1964        // methods.
1965        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
1966      }
1967      // Look through local category implementations associated with the class.
1968      if (!Setter)
1969        Setter = IFace->getCategoryClassMethod(SetterSel);
1970
1971      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1972        return ExprError();
1973
1974      if (Getter || Setter) {
1975        QualType PType;
1976
1977        if (Getter)
1978          PType = Getter->getResultType();
1979        else
1980          // Get the expression type from Setter's incoming parameter.
1981          PType = (*(Setter->param_end() -1))->getType();
1982        // FIXME: we must check that the setter has property type.
1983        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
1984                                                  PType,
1985                                                  Setter, MemberLoc, BaseExpr));
1986      }
1987      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1988                       << MemberName << BaseType);
1989    }
1990  }
1991
1992  if (BaseType->isObjCClassType() &&
1993      BaseType != Context.ObjCClassRedefinitionType) {
1994    BaseType = Context.ObjCClassRedefinitionType;
1995    ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
1996  }
1997
1998  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1999  // must have pointer type, and the accessed type is the pointee.
2000  if (OpKind == tok::arrow) {
2001    if (BaseType->isDependentType()) {
2002      NestedNameSpecifier *Qualifier = 0;
2003      if (SS) {
2004        Qualifier = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
2005        if (!FirstQualifierInScope)
2006          FirstQualifierInScope = FindFirstQualifierInScope(S, Qualifier);
2007      }
2008
2009      return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, true,
2010                                                   OpLoc, Qualifier,
2011                                            SS? SS->getRange() : SourceRange(),
2012                                                   FirstQualifierInScope,
2013                                                   MemberName,
2014                                                   MemberLoc,
2015                                                   ExplicitTemplateArgs));
2016    }
2017    else if (const PointerType *PT = BaseType->getAs<PointerType>())
2018      BaseType = PT->getPointeeType();
2019    else if (BaseType->isObjCObjectPointerType())
2020      ;
2021    else
2022      return ExprError(Diag(MemberLoc,
2023                            diag::err_typecheck_member_reference_arrow)
2024        << BaseType << BaseExpr->getSourceRange());
2025  } else if (BaseType->isDependentType()) {
2026      // Require that the base type isn't a pointer type
2027      // (so we'll report an error for)
2028      // T* t;
2029      // t.f;
2030      //
2031      // In Obj-C++, however, the above expression is valid, since it could be
2032      // accessing the 'f' property if T is an Obj-C interface. The extra check
2033      // allows this, while still reporting an error if T is a struct pointer.
2034      const PointerType *PT = BaseType->getAs<PointerType>();
2035
2036      if (!PT || (getLangOptions().ObjC1 &&
2037                  !PT->getPointeeType()->isRecordType())) {
2038        NestedNameSpecifier *Qualifier = 0;
2039        if (SS) {
2040          Qualifier = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
2041          if (!FirstQualifierInScope)
2042            FirstQualifierInScope = FindFirstQualifierInScope(S, Qualifier);
2043        }
2044
2045        return Owned(CXXDependentScopeMemberExpr::Create(Context,
2046                                                     BaseExpr, false,
2047                                                     OpLoc,
2048                                                     Qualifier,
2049                                            SS? SS->getRange() : SourceRange(),
2050                                                     FirstQualifierInScope,
2051                                                     MemberName,
2052                                                     MemberLoc,
2053                                                     ExplicitTemplateArgs));
2054      }
2055    }
2056
2057  // Handle field access to simple records.  This also handles access to fields
2058  // of the ObjC 'id' struct.
2059  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
2060    RecordDecl *RDecl = RTy->getDecl();
2061    if (RequireCompleteType(OpLoc, BaseType,
2062                            PDiag(diag::err_typecheck_incomplete_tag)
2063                              << BaseExpr->getSourceRange()))
2064      return ExprError();
2065
2066    DeclContext *DC = RDecl;
2067    if (SS && SS->isSet()) {
2068      // If the member name was a qualified-id, look into the
2069      // nested-name-specifier.
2070      DC = computeDeclContext(*SS, false);
2071
2072      if (!isa<TypeDecl>(DC)) {
2073        Diag(MemberLoc, diag::err_qualified_member_nonclass)
2074          << DC << SS->getRange();
2075        return ExprError();
2076      }
2077
2078      // FIXME: If DC is not computable, we should build a
2079      // CXXDependentScopeMemberExpr.
2080      assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2081    }
2082
2083    // The record definition is complete, now make sure the member is valid.
2084    LookupResult Result(*this, MemberName, MemberLoc, LookupMemberName);
2085    LookupQualifiedName(Result, DC);
2086
2087    if (Result.empty())
2088      return ExprError(Diag(MemberLoc, diag::err_no_member)
2089               << MemberName << DC << BaseExpr->getSourceRange());
2090    if (Result.isAmbiguous())
2091      return ExprError();
2092
2093    NamedDecl *MemberDecl = Result.getAsSingleDecl(Context);
2094
2095    if (SS && SS->isSet()) {
2096      TypeDecl* TyD = cast<TypeDecl>(MemberDecl->getDeclContext());
2097      QualType BaseTypeCanon
2098        = Context.getCanonicalType(BaseType).getUnqualifiedType();
2099      QualType MemberTypeCanon
2100        = Context.getCanonicalType(Context.getTypeDeclType(TyD));
2101
2102      if (BaseTypeCanon != MemberTypeCanon &&
2103          !IsDerivedFrom(BaseTypeCanon, MemberTypeCanon))
2104        return ExprError(Diag(SS->getBeginLoc(),
2105                              diag::err_not_direct_base_or_virtual)
2106                         << MemberTypeCanon << BaseTypeCanon);
2107    }
2108
2109    // If the decl being referenced had an error, return an error for this
2110    // sub-expr without emitting another error, in order to avoid cascading
2111    // error cases.
2112    if (MemberDecl->isInvalidDecl())
2113      return ExprError();
2114
2115    bool ShouldCheckUse = true;
2116    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2117      // Don't diagnose the use of a virtual member function unless it's
2118      // explicitly qualified.
2119      if (MD->isVirtual() && (!SS || !SS->isSet()))
2120        ShouldCheckUse = false;
2121    }
2122
2123    // Check the use of this field
2124    if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc))
2125      return ExprError();
2126
2127    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2128      // We may have found a field within an anonymous union or struct
2129      // (C++ [class.union]).
2130      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
2131        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2132                                                        BaseExpr, OpLoc);
2133
2134      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2135      QualType MemberType = FD->getType();
2136      if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2137        MemberType = Ref->getPointeeType();
2138      else {
2139        Qualifiers BaseQuals = BaseType.getQualifiers();
2140        BaseQuals.removeObjCGCAttr();
2141        if (FD->isMutable()) BaseQuals.removeConst();
2142
2143        Qualifiers MemberQuals
2144          = Context.getCanonicalType(MemberType).getQualifiers();
2145
2146        Qualifiers Combined = BaseQuals + MemberQuals;
2147        if (Combined != MemberQuals)
2148          MemberType = Context.getQualifiedType(MemberType, Combined);
2149      }
2150
2151      MarkDeclarationReferenced(MemberLoc, FD);
2152      if (PerformObjectMemberConversion(BaseExpr, FD))
2153        return ExprError();
2154      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2155                                   FD, MemberLoc, MemberType));
2156    }
2157
2158    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2159      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2160      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2161                                   Var, MemberLoc,
2162                                   Var->getType().getNonReferenceType()));
2163    }
2164    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2165      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2166      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2167                                   MemberFn, MemberLoc,
2168                                   MemberFn->getType()));
2169    }
2170    if (FunctionTemplateDecl *FunTmpl
2171          = dyn_cast<FunctionTemplateDecl>(MemberDecl)) {
2172      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2173
2174      if (ExplicitTemplateArgs)
2175        return Owned(MemberExpr::Create(Context, BaseExpr, OpKind == tok::arrow,
2176                             (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0),
2177                                       SS? SS->getRange() : SourceRange(),
2178                                        FunTmpl, MemberLoc,
2179                                        ExplicitTemplateArgs,
2180                                        Context.OverloadTy));
2181
2182      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2183                                   FunTmpl, MemberLoc,
2184                                   Context.OverloadTy));
2185    }
2186    if (OverloadedFunctionDecl *Ovl
2187          = dyn_cast<OverloadedFunctionDecl>(MemberDecl)) {
2188      if (ExplicitTemplateArgs)
2189        return Owned(MemberExpr::Create(Context, BaseExpr, OpKind == tok::arrow,
2190                             (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0),
2191                                        SS? SS->getRange() : SourceRange(),
2192                                        Ovl, MemberLoc, ExplicitTemplateArgs,
2193                                        Context.OverloadTy));
2194
2195      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2196                                   Ovl, MemberLoc, Context.OverloadTy));
2197    }
2198    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2199      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2200      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2201                                   Enum, MemberLoc, Enum->getType()));
2202    }
2203    if (isa<TypeDecl>(MemberDecl))
2204      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2205        << MemberName << int(OpKind == tok::arrow));
2206
2207    // We found a declaration kind that we didn't expect. This is a
2208    // generic error message that tells the user that she can't refer
2209    // to this member with '.' or '->'.
2210    return ExprError(Diag(MemberLoc,
2211                          diag::err_typecheck_member_reference_unknown)
2212      << MemberName << int(OpKind == tok::arrow));
2213  }
2214
2215  // Handle pseudo-destructors (C++ [expr.pseudo]). Since anything referring
2216  // into a record type was handled above, any destructor we see here is a
2217  // pseudo-destructor.
2218  if (MemberName.getNameKind() == DeclarationName::CXXDestructorName) {
2219    // C++ [expr.pseudo]p2:
2220    //   The left hand side of the dot operator shall be of scalar type. The
2221    //   left hand side of the arrow operator shall be of pointer to scalar
2222    //   type.
2223    if (!BaseType->isScalarType())
2224      return Owned(Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
2225                     << BaseType << BaseExpr->getSourceRange());
2226
2227    //   [...] The type designated by the pseudo-destructor-name shall be the
2228    //   same as the object type.
2229    if (!MemberName.getCXXNameType()->isDependentType() &&
2230        !Context.hasSameUnqualifiedType(BaseType, MemberName.getCXXNameType()))
2231      return Owned(Diag(OpLoc, diag::err_pseudo_dtor_type_mismatch)
2232                     << BaseType << MemberName.getCXXNameType()
2233                     << BaseExpr->getSourceRange() << SourceRange(MemberLoc));
2234
2235    //   [...] Furthermore, the two type-names in a pseudo-destructor-name of
2236    //   the form
2237    //
2238    //       ::[opt] nested-name-specifier[opt] type-name ::  ̃ type-name
2239    //
2240    //   shall designate the same scalar type.
2241    //
2242    // FIXME: DPG can't see any way to trigger this particular clause, so it
2243    // isn't checked here.
2244
2245    // FIXME: We've lost the precise spelling of the type by going through
2246    // DeclarationName. Can we do better?
2247    return Owned(new (Context) CXXPseudoDestructorExpr(Context, BaseExpr,
2248                                                       OpKind == tok::arrow,
2249                                                       OpLoc,
2250                            (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0),
2251                                            SS? SS->getRange() : SourceRange(),
2252                                                   MemberName.getCXXNameType(),
2253                                                       MemberLoc));
2254  }
2255
2256  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2257  // (*Obj).ivar.
2258  if ((OpKind == tok::arrow && BaseType->isObjCObjectPointerType()) ||
2259      (OpKind == tok::period && BaseType->isObjCInterfaceType())) {
2260    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
2261    const ObjCInterfaceType *IFaceT =
2262      OPT ? OPT->getInterfaceType() : BaseType->getAs<ObjCInterfaceType>();
2263    if (IFaceT) {
2264      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2265
2266      ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
2267      ObjCInterfaceDecl *ClassDeclared;
2268      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
2269
2270      if (IV) {
2271        // If the decl being referenced had an error, return an error for this
2272        // sub-expr without emitting another error, in order to avoid cascading
2273        // error cases.
2274        if (IV->isInvalidDecl())
2275          return ExprError();
2276
2277        // Check whether we can reference this field.
2278        if (DiagnoseUseOfDecl(IV, MemberLoc))
2279          return ExprError();
2280        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2281            IV->getAccessControl() != ObjCIvarDecl::Package) {
2282          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2283          if (ObjCMethodDecl *MD = getCurMethodDecl())
2284            ClassOfMethodDecl =  MD->getClassInterface();
2285          else if (ObjCImpDecl && getCurFunctionDecl()) {
2286            // Case of a c-function declared inside an objc implementation.
2287            // FIXME: For a c-style function nested inside an objc implementation
2288            // class, there is no implementation context available, so we pass
2289            // down the context as argument to this routine. Ideally, this context
2290            // need be passed down in the AST node and somehow calculated from the
2291            // AST for a function decl.
2292            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2293            if (ObjCImplementationDecl *IMPD =
2294                dyn_cast<ObjCImplementationDecl>(ImplDecl))
2295              ClassOfMethodDecl = IMPD->getClassInterface();
2296            else if (ObjCCategoryImplDecl* CatImplClass =
2297                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2298              ClassOfMethodDecl = CatImplClass->getClassInterface();
2299          }
2300
2301          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2302            if (ClassDeclared != IDecl ||
2303                ClassOfMethodDecl != ClassDeclared)
2304              Diag(MemberLoc, diag::error_private_ivar_access)
2305                << IV->getDeclName();
2306          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
2307            // @protected
2308            Diag(MemberLoc, diag::error_protected_ivar_access)
2309              << IV->getDeclName();
2310        }
2311
2312        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2313                                                   MemberLoc, BaseExpr,
2314                                                   OpKind == tok::arrow));
2315      }
2316      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
2317                         << IDecl->getDeclName() << MemberName
2318                         << BaseExpr->getSourceRange());
2319    }
2320  }
2321  // Handle properties on 'id' and qualified "id".
2322  if (OpKind == tok::period && (BaseType->isObjCIdType() ||
2323                                BaseType->isObjCQualifiedIdType())) {
2324    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
2325    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2326
2327    // Check protocols on qualified interfaces.
2328    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2329    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2330      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2331        // Check the use of this declaration
2332        if (DiagnoseUseOfDecl(PD, MemberLoc))
2333          return ExprError();
2334
2335        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2336                                                       MemberLoc, BaseExpr));
2337      }
2338      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2339        // Check the use of this method.
2340        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2341          return ExprError();
2342
2343        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2344                                                   OMD->getResultType(),
2345                                                   OMD, OpLoc, MemberLoc,
2346                                                   NULL, 0));
2347      }
2348    }
2349
2350    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2351                       << MemberName << BaseType);
2352  }
2353  // Handle Objective-C property access, which is "Obj.property" where Obj is a
2354  // pointer to a (potentially qualified) interface type.
2355  const ObjCObjectPointerType *OPT;
2356  if (OpKind == tok::period &&
2357      (OPT = BaseType->getAsObjCInterfacePointerType())) {
2358    const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
2359    ObjCInterfaceDecl *IFace = IFaceT->getDecl();
2360    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2361
2362    // Search for a declared property first.
2363    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
2364      // Check whether we can reference this property.
2365      if (DiagnoseUseOfDecl(PD, MemberLoc))
2366        return ExprError();
2367      QualType ResTy = PD->getType();
2368      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2369      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2370      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
2371        ResTy = Getter->getResultType();
2372      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
2373                                                     MemberLoc, BaseExpr));
2374    }
2375    // Check protocols on qualified interfaces.
2376    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2377         E = OPT->qual_end(); I != E; ++I)
2378      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2379        // Check whether we can reference this property.
2380        if (DiagnoseUseOfDecl(PD, MemberLoc))
2381          return ExprError();
2382
2383        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2384                                                       MemberLoc, BaseExpr));
2385      }
2386    // If that failed, look for an "implicit" property by seeing if the nullary
2387    // selector is implemented.
2388
2389    // FIXME: The logic for looking up nullary and unary selectors should be
2390    // shared with the code in ActOnInstanceMessage.
2391
2392    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2393    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2394
2395    // If this reference is in an @implementation, check for 'private' methods.
2396    if (!Getter)
2397      Getter = IFace->lookupPrivateInstanceMethod(Sel);
2398
2399    // Look through local category implementations associated with the class.
2400    if (!Getter)
2401      Getter = IFace->getCategoryInstanceMethod(Sel);
2402    if (Getter) {
2403      // Check if we can reference this property.
2404      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2405        return ExprError();
2406    }
2407    // If we found a getter then this may be a valid dot-reference, we
2408    // will look for the matching setter, in case it is needed.
2409    Selector SetterSel =
2410      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2411                                         PP.getSelectorTable(), Member);
2412    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
2413    if (!Setter) {
2414      // If this reference is in an @implementation, also check for 'private'
2415      // methods.
2416      Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
2417    }
2418    // Look through local category implementations associated with the class.
2419    if (!Setter)
2420      Setter = IFace->getCategoryInstanceMethod(SetterSel);
2421
2422    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2423      return ExprError();
2424
2425    if (Getter || Setter) {
2426      QualType PType;
2427
2428      if (Getter)
2429        PType = Getter->getResultType();
2430      else
2431        // Get the expression type from Setter's incoming parameter.
2432        PType = (*(Setter->param_end() -1))->getType();
2433      // FIXME: we must check that the setter has property type.
2434      return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType,
2435                                      Setter, MemberLoc, BaseExpr));
2436    }
2437    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2438      << MemberName << BaseType);
2439  }
2440
2441  // Handle the following exceptional case (*Obj).isa.
2442  if (OpKind == tok::period &&
2443      BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2444      MemberName.getAsIdentifierInfo()->isStr("isa"))
2445    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
2446                                           Context.getObjCIdType()));
2447
2448  // Handle 'field access' to vectors, such as 'V.xx'.
2449  if (BaseType->isExtVectorType()) {
2450    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2451    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2452    if (ret.isNull())
2453      return ExprError();
2454    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
2455                                                    MemberLoc));
2456  }
2457
2458  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2459    << BaseType << BaseExpr->getSourceRange();
2460
2461  return ExprError();
2462}
2463
2464Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg Base,
2465                                                   SourceLocation OpLoc,
2466                                                   tok::TokenKind OpKind,
2467                                                   const CXXScopeSpec &SS,
2468                                                   UnqualifiedId &Member,
2469                                                   DeclPtrTy ObjCImpDecl,
2470                                                   bool HasTrailingLParen) {
2471  if (Member.getKind() == UnqualifiedId::IK_TemplateId) {
2472    TemplateName Template
2473      = TemplateName::getFromVoidPointer(Member.TemplateId->Template);
2474
2475    // FIXME: We're going to end up looking up the template based on its name,
2476    // twice!
2477    DeclarationName Name;
2478    if (TemplateDecl *ActualTemplate = Template.getAsTemplateDecl())
2479      Name = ActualTemplate->getDeclName();
2480    else if (OverloadedFunctionDecl *Ovl = Template.getAsOverloadedFunctionDecl())
2481      Name = Ovl->getDeclName();
2482    else {
2483      DependentTemplateName *DTN = Template.getAsDependentTemplateName();
2484      if (DTN->isIdentifier())
2485        Name = DTN->getIdentifier();
2486      else
2487        Name = Context.DeclarationNames.getCXXOperatorName(DTN->getOperator());
2488    }
2489
2490    // Translate the parser's template argument list in our AST format.
2491    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2492                                       Member.TemplateId->getTemplateArgs(),
2493                                       Member.TemplateId->NumArgs);
2494
2495    TemplateArgumentListInfo TemplateArgs;
2496    TemplateArgs.setLAngleLoc(Member.TemplateId->LAngleLoc);
2497    TemplateArgs.setRAngleLoc(Member.TemplateId->RAngleLoc);
2498    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
2499    TemplateArgsPtr.release();
2500
2501    // Do we have the save the actual template name? We might need it...
2502    return BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind,
2503                                    Member.TemplateId->TemplateNameLoc,
2504                                    Name, &TemplateArgs, DeclPtrTy(),
2505                                    &SS);
2506  }
2507
2508  // FIXME: We lose a lot of source information by mapping directly to the
2509  // DeclarationName.
2510  OwningExprResult Result
2511    = BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind,
2512                               Member.getSourceRange().getBegin(),
2513                               GetNameFromUnqualifiedId(Member),
2514                               ObjCImpDecl, &SS);
2515
2516  if (Result.isInvalid() || HasTrailingLParen ||
2517      Member.getKind() != UnqualifiedId::IK_DestructorName)
2518    return move(Result);
2519
2520  // The only way a reference to a destructor can be used is to
2521  // immediately call them. Since the next token is not a '(', produce a
2522  // diagnostic and build the call now.
2523  Expr *E = (Expr *)Result.get();
2524  SourceLocation ExpectedLParenLoc
2525    = PP.getLocForEndOfToken(Member.getSourceRange().getEnd());
2526  Diag(E->getLocStart(), diag::err_dtor_expr_without_call)
2527    << isa<CXXPseudoDestructorExpr>(E)
2528    << CodeModificationHint::CreateInsertion(ExpectedLParenLoc, "()");
2529
2530  return ActOnCallExpr(0, move(Result), ExpectedLParenLoc,
2531                       MultiExprArg(*this, 0, 0), 0, ExpectedLParenLoc);
2532}
2533
2534Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
2535                                                    FunctionDecl *FD,
2536                                                    ParmVarDecl *Param) {
2537  if (Param->hasUnparsedDefaultArg()) {
2538    Diag (CallLoc,
2539          diag::err_use_of_default_argument_to_function_declared_later) <<
2540      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
2541    Diag(UnparsedDefaultArgLocs[Param],
2542          diag::note_default_argument_declared_here);
2543  } else {
2544    if (Param->hasUninstantiatedDefaultArg()) {
2545      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
2546
2547      // Instantiate the expression.
2548      MultiLevelTemplateArgumentList ArgList = getTemplateInstantiationArgs(FD);
2549
2550      InstantiatingTemplate Inst(*this, CallLoc, Param,
2551                                 ArgList.getInnermost().getFlatArgumentList(),
2552                                 ArgList.getInnermost().flat_size());
2553
2554      OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
2555      if (Result.isInvalid())
2556        return ExprError();
2557
2558      if (SetParamDefaultArgument(Param, move(Result),
2559                                  /*FIXME:EqualLoc*/
2560                                  UninstExpr->getSourceRange().getBegin()))
2561        return ExprError();
2562    }
2563
2564    Expr *DefaultExpr = Param->getDefaultArg();
2565
2566    // If the default expression creates temporaries, we need to
2567    // push them to the current stack of expression temporaries so they'll
2568    // be properly destroyed.
2569    if (CXXExprWithTemporaries *E
2570          = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2571      assert(!E->shouldDestroyTemporaries() &&
2572             "Can't destroy temporaries in a default argument expr!");
2573      for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2574        ExprTemporaries.push_back(E->getTemporary(I));
2575    }
2576  }
2577
2578  // We already type-checked the argument, so we know it works.
2579  return Owned(CXXDefaultArgExpr::Create(Context, Param));
2580}
2581
2582/// ConvertArgumentsForCall - Converts the arguments specified in
2583/// Args/NumArgs to the parameter types of the function FDecl with
2584/// function prototype Proto. Call is the call expression itself, and
2585/// Fn is the function expression. For a C++ member function, this
2586/// routine does not attempt to convert the object argument. Returns
2587/// true if the call is ill-formed.
2588bool
2589Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2590                              FunctionDecl *FDecl,
2591                              const FunctionProtoType *Proto,
2592                              Expr **Args, unsigned NumArgs,
2593                              SourceLocation RParenLoc) {
2594  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2595  // assignment, to the types of the corresponding parameter, ...
2596  unsigned NumArgsInProto = Proto->getNumArgs();
2597  bool Invalid = false;
2598
2599  // If too few arguments are available (and we don't have default
2600  // arguments for the remaining parameters), don't make the call.
2601  if (NumArgs < NumArgsInProto) {
2602    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2603      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2604        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2605    Call->setNumArgs(Context, NumArgsInProto);
2606  }
2607
2608  // If too many are passed and not variadic, error on the extras and drop
2609  // them.
2610  if (NumArgs > NumArgsInProto) {
2611    if (!Proto->isVariadic()) {
2612      Diag(Args[NumArgsInProto]->getLocStart(),
2613           diag::err_typecheck_call_too_many_args)
2614        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2615        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2616                       Args[NumArgs-1]->getLocEnd());
2617      // This deletes the extra arguments.
2618      Call->setNumArgs(Context, NumArgsInProto);
2619      return true;
2620    }
2621  }
2622  llvm::SmallVector<Expr *, 8> AllArgs;
2623  VariadicCallType CallType =
2624    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
2625  if (Fn->getType()->isBlockPointerType())
2626    CallType = VariadicBlock; // Block
2627  else if (isa<MemberExpr>(Fn))
2628    CallType = VariadicMethod;
2629  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
2630                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
2631  if (Invalid)
2632    return true;
2633  unsigned TotalNumArgs = AllArgs.size();
2634  for (unsigned i = 0; i < TotalNumArgs; ++i)
2635    Call->setArg(i, AllArgs[i]);
2636
2637  return false;
2638}
2639
2640bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
2641                                  FunctionDecl *FDecl,
2642                                  const FunctionProtoType *Proto,
2643                                  unsigned FirstProtoArg,
2644                                  Expr **Args, unsigned NumArgs,
2645                                  llvm::SmallVector<Expr *, 8> &AllArgs,
2646                                  VariadicCallType CallType) {
2647  unsigned NumArgsInProto = Proto->getNumArgs();
2648  unsigned NumArgsToCheck = NumArgs;
2649  bool Invalid = false;
2650  if (NumArgs != NumArgsInProto)
2651    // Use default arguments for missing arguments
2652    NumArgsToCheck = NumArgsInProto;
2653  unsigned ArgIx = 0;
2654  // Continue to check argument types (even if we have too few/many args).
2655  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
2656    QualType ProtoArgType = Proto->getArgType(i);
2657
2658    Expr *Arg;
2659    if (ArgIx < NumArgs) {
2660      Arg = Args[ArgIx++];
2661
2662      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2663                              ProtoArgType,
2664                              PDiag(diag::err_call_incomplete_argument)
2665                              << Arg->getSourceRange()))
2666        return true;
2667
2668      // Pass the argument.
2669      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2670        return true;
2671
2672      if (!ProtoArgType->isReferenceType())
2673        Arg = MaybeBindToTemporary(Arg).takeAs<Expr>();
2674    } else {
2675      ParmVarDecl *Param = FDecl->getParamDecl(i);
2676
2677      OwningExprResult ArgExpr =
2678        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
2679      if (ArgExpr.isInvalid())
2680        return true;
2681
2682      Arg = ArgExpr.takeAs<Expr>();
2683    }
2684    AllArgs.push_back(Arg);
2685  }
2686
2687  // If this is a variadic call, handle args passed through "...".
2688  if (CallType != VariadicDoesNotApply) {
2689    // Promote the arguments (C99 6.5.2.2p7).
2690    for (unsigned i = ArgIx; i < NumArgs; i++) {
2691      Expr *Arg = Args[i];
2692      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2693      AllArgs.push_back(Arg);
2694    }
2695  }
2696  return Invalid;
2697}
2698
2699/// \brief "Deconstruct" the function argument of a call expression to find
2700/// the underlying declaration (if any), the name of the called function,
2701/// whether argument-dependent lookup is available, whether it has explicit
2702/// template arguments, etc.
2703void Sema::DeconstructCallFunction(Expr *FnExpr,
2704                                   llvm::SmallVectorImpl<NamedDecl*> &Fns,
2705                                   DeclarationName &Name,
2706                                   NestedNameSpecifier *&Qualifier,
2707                                   SourceRange &QualifierRange,
2708                                   bool &ArgumentDependentLookup,
2709                                   bool &Overloaded,
2710                                   bool &HasExplicitTemplateArguments,
2711                           TemplateArgumentListInfo &ExplicitTemplateArgs) {
2712  // Set defaults for all of the output parameters.
2713  Name = DeclarationName();
2714  Qualifier = 0;
2715  QualifierRange = SourceRange();
2716  ArgumentDependentLookup = false;
2717  Overloaded = false;
2718  HasExplicitTemplateArguments = false;
2719
2720  // If we're directly calling a function, get the appropriate declaration.
2721  // Also, in C++, keep track of whether we should perform argument-dependent
2722  // lookup and whether there were any explicitly-specified template arguments.
2723  while (true) {
2724    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2725      FnExpr = IcExpr->getSubExpr();
2726    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2727      FnExpr = PExpr->getSubExpr();
2728    } else if (isa<UnaryOperator>(FnExpr) &&
2729               cast<UnaryOperator>(FnExpr)->getOpcode()
2730               == UnaryOperator::AddrOf) {
2731      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2732    } else if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(FnExpr)) {
2733      Fns.push_back(cast<NamedDecl>(DRExpr->getDecl()));
2734      ArgumentDependentLookup = false;
2735      if ((Qualifier = DRExpr->getQualifier()))
2736        QualifierRange = DRExpr->getQualifierRange();
2737      break;
2738    } else if (UnresolvedLookupExpr *UnresLookup
2739               = dyn_cast<UnresolvedLookupExpr>(FnExpr)) {
2740      Name = UnresLookup->getName();
2741      Fns.append(UnresLookup->decls_begin(), UnresLookup->decls_end());
2742      ArgumentDependentLookup = UnresLookup->requiresADL();
2743      Overloaded = UnresLookup->isOverloaded();
2744      if ((Qualifier = UnresLookup->getQualifier()))
2745        QualifierRange = UnresLookup->getQualifierRange();
2746      if (UnresLookup->hasExplicitTemplateArgs()) {
2747        HasExplicitTemplateArguments = true;
2748        UnresLookup->copyTemplateArgumentsInto(ExplicitTemplateArgs);
2749      }
2750      break;
2751    } else {
2752      break;
2753    }
2754  }
2755}
2756
2757/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2758/// This provides the location of the left/right parens and a list of comma
2759/// locations.
2760Action::OwningExprResult
2761Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2762                    MultiExprArg args,
2763                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2764  unsigned NumArgs = args.size();
2765
2766  // Since this might be a postfix expression, get rid of ParenListExprs.
2767  fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
2768
2769  Expr *Fn = fn.takeAs<Expr>();
2770  Expr **Args = reinterpret_cast<Expr**>(args.release());
2771  assert(Fn && "no function call expression");
2772
2773  if (getLangOptions().CPlusPlus) {
2774    // If this is a pseudo-destructor expression, build the call immediately.
2775    if (isa<CXXPseudoDestructorExpr>(Fn)) {
2776      if (NumArgs > 0) {
2777        // Pseudo-destructor calls should not have any arguments.
2778        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
2779          << CodeModificationHint::CreateRemoval(
2780                                    SourceRange(Args[0]->getLocStart(),
2781                                                Args[NumArgs-1]->getLocEnd()));
2782
2783        for (unsigned I = 0; I != NumArgs; ++I)
2784          Args[I]->Destroy(Context);
2785
2786        NumArgs = 0;
2787      }
2788
2789      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
2790                                          RParenLoc));
2791    }
2792
2793    // Determine whether this is a dependent call inside a C++ template,
2794    // in which case we won't do any semantic analysis now.
2795    // FIXME: Will need to cache the results of name lookup (including ADL) in
2796    // Fn.
2797    bool Dependent = false;
2798    if (Fn->isTypeDependent())
2799      Dependent = true;
2800    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2801      Dependent = true;
2802
2803    if (Dependent)
2804      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2805                                          Context.DependentTy, RParenLoc));
2806
2807    // Determine whether this is a call to an object (C++ [over.call.object]).
2808    if (Fn->getType()->isRecordType())
2809      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2810                                                CommaLocs, RParenLoc));
2811
2812    // Determine whether this is a call to a member function.
2813    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens())) {
2814      NamedDecl *MemDecl = MemExpr->getMemberDecl();
2815      if (isa<OverloadedFunctionDecl>(MemDecl) ||
2816          isa<CXXMethodDecl>(MemDecl) ||
2817          (isa<FunctionTemplateDecl>(MemDecl) &&
2818           isa<CXXMethodDecl>(
2819                cast<FunctionTemplateDecl>(MemDecl)->getTemplatedDecl())))
2820        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2821                                               CommaLocs, RParenLoc));
2822    }
2823
2824    // Determine whether this is a call to a pointer-to-member function.
2825    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Fn->IgnoreParens())) {
2826      if (BO->getOpcode() == BinaryOperator::PtrMemD ||
2827          BO->getOpcode() == BinaryOperator::PtrMemI) {
2828        if (const FunctionProtoType *FPT =
2829              dyn_cast<FunctionProtoType>(BO->getType())) {
2830          QualType ResultTy = FPT->getResultType().getNonReferenceType();
2831
2832          ExprOwningPtr<CXXMemberCallExpr>
2833            TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
2834                                                          NumArgs, ResultTy,
2835                                                          RParenLoc));
2836
2837          if (CheckCallReturnType(FPT->getResultType(),
2838                                  BO->getRHS()->getSourceRange().getBegin(),
2839                                  TheCall.get(), 0))
2840            return ExprError();
2841
2842          if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
2843                                      RParenLoc))
2844            return ExprError();
2845
2846          return Owned(MaybeBindToTemporary(TheCall.release()).release());
2847        }
2848        return ExprError(Diag(Fn->getLocStart(),
2849                              diag::err_typecheck_call_not_function)
2850                              << Fn->getType() << Fn->getSourceRange());
2851      }
2852    }
2853  }
2854
2855  // If we're directly calling a function, get the appropriate declaration.
2856  // Also, in C++, keep track of whether we should perform argument-dependent
2857  // lookup and whether there were any explicitly-specified template arguments.
2858  llvm::SmallVector<NamedDecl*,8> Fns;
2859  DeclarationName UnqualifiedName;
2860  bool Overloaded;
2861  bool ADL;
2862  bool HasExplicitTemplateArgs = 0;
2863  TemplateArgumentListInfo ExplicitTemplateArgs;
2864  NestedNameSpecifier *Qualifier = 0;
2865  SourceRange QualifierRange;
2866  DeconstructCallFunction(Fn, Fns, UnqualifiedName, Qualifier, QualifierRange,
2867                          ADL, Overloaded, HasExplicitTemplateArgs,
2868                          ExplicitTemplateArgs);
2869
2870  NamedDecl *NDecl;    // the specific declaration we're calling, if applicable
2871  FunctionDecl *FDecl; // same, if it's known to be a function
2872
2873  if (Overloaded || ADL) {
2874#ifndef NDEBUG
2875    if (ADL) {
2876      // To do ADL, we must have found an unqualified name.
2877      assert(UnqualifiedName && "found no unqualified name for ADL");
2878
2879      // We don't perform ADL for implicit declarations of builtins.
2880      // Verify that this was correctly set up.
2881      if (Fns.size() == 1 && (FDecl = dyn_cast<FunctionDecl>(Fns[0])) &&
2882          FDecl->getBuiltinID() && FDecl->isImplicit())
2883        assert(0 && "performing ADL for builtin");
2884
2885      // We don't perform ADL in C.
2886      assert(getLangOptions().CPlusPlus && "ADL enabled in C");
2887    }
2888
2889    if (Overloaded) {
2890      // To be overloaded, we must either have multiple functions or
2891      // at least one function template (which is effectively an
2892      // infinite set of functions).
2893      assert((Fns.size() > 1 ||
2894              (Fns.size() == 1 &&
2895               isa<FunctionTemplateDecl>(Fns[0]->getUnderlyingDecl())))
2896             && "unrecognized overload situation");
2897    }
2898#endif
2899
2900    FDecl = ResolveOverloadedCallFn(Fn, Fns, UnqualifiedName,
2901                       (HasExplicitTemplateArgs ? &ExplicitTemplateArgs : 0),
2902                                    LParenLoc, Args, NumArgs, CommaLocs,
2903                                    RParenLoc, ADL);
2904    if (!FDecl)
2905      return ExprError();
2906
2907    Fn = FixOverloadedFunctionReference(Fn, FDecl);
2908
2909    NDecl = FDecl;
2910  } else {
2911    assert(Fns.size() <= 1 && "overloaded without Overloaded flag");
2912    if (Fns.empty())
2913      NDecl = FDecl = 0;
2914    else {
2915      NDecl = Fns[0];
2916      FDecl = dyn_cast<FunctionDecl>(NDecl);
2917    }
2918  }
2919
2920  // Promote the function operand.
2921  UsualUnaryConversions(Fn);
2922
2923  // Make the call expr early, before semantic checks.  This guarantees cleanup
2924  // of arguments and function on error.
2925  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2926                                                               Args, NumArgs,
2927                                                               Context.BoolTy,
2928                                                               RParenLoc));
2929
2930  const FunctionType *FuncT;
2931  if (!Fn->getType()->isBlockPointerType()) {
2932    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2933    // have type pointer to function".
2934    const PointerType *PT = Fn->getType()->getAs<PointerType>();
2935    if (PT == 0)
2936      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2937        << Fn->getType() << Fn->getSourceRange());
2938    FuncT = PT->getPointeeType()->getAs<FunctionType>();
2939  } else { // This is a block call.
2940    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
2941                getAs<FunctionType>();
2942  }
2943  if (FuncT == 0)
2944    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2945      << Fn->getType() << Fn->getSourceRange());
2946
2947  // Check for a valid return type
2948  if (CheckCallReturnType(FuncT->getResultType(),
2949                          Fn->getSourceRange().getBegin(), TheCall.get(),
2950                          FDecl))
2951    return ExprError();
2952
2953  // We know the result type of the call, set it.
2954  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2955
2956  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2957    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2958                                RParenLoc))
2959      return ExprError();
2960  } else {
2961    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2962
2963    if (FDecl) {
2964      // Check if we have too few/too many template arguments, based
2965      // on our knowledge of the function definition.
2966      const FunctionDecl *Def = 0;
2967      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
2968        const FunctionProtoType *Proto =
2969            Def->getType()->getAs<FunctionProtoType>();
2970        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
2971          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2972            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2973        }
2974      }
2975    }
2976
2977    // Promote the arguments (C99 6.5.2.2p6).
2978    for (unsigned i = 0; i != NumArgs; i++) {
2979      Expr *Arg = Args[i];
2980      DefaultArgumentPromotion(Arg);
2981      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2982                              Arg->getType(),
2983                              PDiag(diag::err_call_incomplete_argument)
2984                                << Arg->getSourceRange()))
2985        return ExprError();
2986      TheCall->setArg(i, Arg);
2987    }
2988  }
2989
2990  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2991    if (!Method->isStatic())
2992      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2993        << Fn->getSourceRange());
2994
2995  // Check for sentinels
2996  if (NDecl)
2997    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
2998
2999  // Do special checking on direct calls to functions.
3000  if (FDecl) {
3001    if (CheckFunctionCall(FDecl, TheCall.get()))
3002      return ExprError();
3003
3004    if (unsigned BuiltinID = FDecl->getBuiltinID())
3005      return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
3006  } else if (NDecl) {
3007    if (CheckBlockCall(NDecl, TheCall.get()))
3008      return ExprError();
3009  }
3010
3011  return MaybeBindToTemporary(TheCall.take());
3012}
3013
3014Action::OwningExprResult
3015Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
3016                           SourceLocation RParenLoc, ExprArg InitExpr) {
3017  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3018  //FIXME: Preserve type source info.
3019  QualType literalType = GetTypeFromParser(Ty);
3020  // FIXME: put back this assert when initializers are worked out.
3021  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3022  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
3023
3024  if (literalType->isArrayType()) {
3025    if (literalType->isVariableArrayType())
3026      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3027        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3028  } else if (!literalType->isDependentType() &&
3029             RequireCompleteType(LParenLoc, literalType,
3030                      PDiag(diag::err_typecheck_decl_incomplete_type)
3031                        << SourceRange(LParenLoc,
3032                                       literalExpr->getSourceRange().getEnd())))
3033    return ExprError();
3034
3035  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
3036                            DeclarationName(), /*FIXME:DirectInit=*/false))
3037    return ExprError();
3038
3039  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3040  if (isFileScope) { // 6.5.2.5p3
3041    if (CheckForConstantInitializer(literalExpr, literalType))
3042      return ExprError();
3043  }
3044  InitExpr.release();
3045  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
3046                                                 literalExpr, isFileScope));
3047}
3048
3049Action::OwningExprResult
3050Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3051                    SourceLocation RBraceLoc) {
3052  unsigned NumInit = initlist.size();
3053  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
3054
3055  // Semantic analysis for initializers is done by ActOnDeclarator() and
3056  // CheckInitializer() - it requires knowledge of the object being intialized.
3057
3058  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
3059                                               RBraceLoc);
3060  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3061  return Owned(E);
3062}
3063
3064static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
3065                                            QualType SrcTy, QualType DestTy) {
3066  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
3067    return CastExpr::CK_NoOp;
3068
3069  if (SrcTy->hasPointerRepresentation()) {
3070    if (DestTy->hasPointerRepresentation())
3071      return CastExpr::CK_BitCast;
3072    if (DestTy->isIntegerType())
3073      return CastExpr::CK_PointerToIntegral;
3074  }
3075
3076  if (SrcTy->isIntegerType()) {
3077    if (DestTy->isIntegerType())
3078      return CastExpr::CK_IntegralCast;
3079    if (DestTy->hasPointerRepresentation())
3080      return CastExpr::CK_IntegralToPointer;
3081    if (DestTy->isRealFloatingType())
3082      return CastExpr::CK_IntegralToFloating;
3083  }
3084
3085  if (SrcTy->isRealFloatingType()) {
3086    if (DestTy->isRealFloatingType())
3087      return CastExpr::CK_FloatingCast;
3088    if (DestTy->isIntegerType())
3089      return CastExpr::CK_FloatingToIntegral;
3090  }
3091
3092  // FIXME: Assert here.
3093  // assert(false && "Unhandled cast combination!");
3094  return CastExpr::CK_Unknown;
3095}
3096
3097/// CheckCastTypes - Check type constraints for casting between types.
3098bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3099                          CastExpr::CastKind& Kind,
3100                          CXXMethodDecl *& ConversionDecl,
3101                          bool FunctionalStyle) {
3102  if (getLangOptions().CPlusPlus)
3103    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, FunctionalStyle,
3104                              ConversionDecl);
3105
3106  DefaultFunctionArrayConversion(castExpr);
3107
3108  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3109  // type needs to be scalar.
3110  if (castType->isVoidType()) {
3111    // Cast to void allows any expr type.
3112    Kind = CastExpr::CK_ToVoid;
3113    return false;
3114  }
3115
3116  if (!castType->isScalarType() && !castType->isVectorType()) {
3117    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
3118        (castType->isStructureType() || castType->isUnionType())) {
3119      // GCC struct/union extension: allow cast to self.
3120      // FIXME: Check that the cast destination type is complete.
3121      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3122        << castType << castExpr->getSourceRange();
3123      Kind = CastExpr::CK_NoOp;
3124      return false;
3125    }
3126
3127    if (castType->isUnionType()) {
3128      // GCC cast to union extension
3129      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3130      RecordDecl::field_iterator Field, FieldEnd;
3131      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3132           Field != FieldEnd; ++Field) {
3133        if (Context.hasSameUnqualifiedType(Field->getType(),
3134                                           castExpr->getType())) {
3135          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3136            << castExpr->getSourceRange();
3137          break;
3138        }
3139      }
3140      if (Field == FieldEnd)
3141        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3142          << castExpr->getType() << castExpr->getSourceRange();
3143      Kind = CastExpr::CK_ToUnion;
3144      return false;
3145    }
3146
3147    // Reject any other conversions to non-scalar types.
3148    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3149      << castType << castExpr->getSourceRange();
3150  }
3151
3152  if (!castExpr->getType()->isScalarType() &&
3153      !castExpr->getType()->isVectorType()) {
3154    return Diag(castExpr->getLocStart(),
3155                diag::err_typecheck_expect_scalar_operand)
3156      << castExpr->getType() << castExpr->getSourceRange();
3157  }
3158
3159  if (castType->isExtVectorType())
3160    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
3161
3162  if (castType->isVectorType())
3163    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
3164  if (castExpr->getType()->isVectorType())
3165    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
3166
3167  if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr))
3168    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
3169
3170  if (isa<ObjCSelectorExpr>(castExpr))
3171    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3172
3173  if (!castType->isArithmeticType()) {
3174    QualType castExprType = castExpr->getType();
3175    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
3176      return Diag(castExpr->getLocStart(),
3177                  diag::err_cast_pointer_from_non_pointer_int)
3178        << castExprType << castExpr->getSourceRange();
3179  } else if (!castExpr->getType()->isArithmeticType()) {
3180    if (!castType->isIntegralType() && castType->isArithmeticType())
3181      return Diag(castExpr->getLocStart(),
3182                  diag::err_cast_pointer_to_non_pointer_int)
3183        << castType << castExpr->getSourceRange();
3184  }
3185
3186  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
3187  return false;
3188}
3189
3190bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
3191                           CastExpr::CastKind &Kind) {
3192  assert(VectorTy->isVectorType() && "Not a vector type!");
3193
3194  if (Ty->isVectorType() || Ty->isIntegerType()) {
3195    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
3196      return Diag(R.getBegin(),
3197                  Ty->isVectorType() ?
3198                  diag::err_invalid_conversion_between_vectors :
3199                  diag::err_invalid_conversion_between_vector_and_integer)
3200        << VectorTy << Ty << R;
3201  } else
3202    return Diag(R.getBegin(),
3203                diag::err_invalid_conversion_between_vector_and_scalar)
3204      << VectorTy << Ty << R;
3205
3206  Kind = CastExpr::CK_BitCast;
3207  return false;
3208}
3209
3210bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
3211                              CastExpr::CastKind &Kind) {
3212  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
3213
3214  QualType SrcTy = CastExpr->getType();
3215
3216  // If SrcTy is a VectorType, the total size must match to explicitly cast to
3217  // an ExtVectorType.
3218  if (SrcTy->isVectorType()) {
3219    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
3220      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
3221        << DestTy << SrcTy << R;
3222    Kind = CastExpr::CK_BitCast;
3223    return false;
3224  }
3225
3226  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
3227  // conversion will take place first from scalar to elt type, and then
3228  // splat from elt type to vector.
3229  if (SrcTy->isPointerType())
3230    return Diag(R.getBegin(),
3231                diag::err_invalid_conversion_between_vector_and_scalar)
3232      << DestTy << SrcTy << R;
3233
3234  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
3235  ImpCastExprToType(CastExpr, DestElemTy,
3236                    getScalarCastKind(Context, SrcTy, DestElemTy));
3237
3238  Kind = CastExpr::CK_VectorSplat;
3239  return false;
3240}
3241
3242Action::OwningExprResult
3243Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
3244                    SourceLocation RParenLoc, ExprArg Op) {
3245  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
3246
3247  assert((Ty != 0) && (Op.get() != 0) &&
3248         "ActOnCastExpr(): missing type or expr");
3249
3250  Expr *castExpr = (Expr *)Op.get();
3251  //FIXME: Preserve type source info.
3252  QualType castType = GetTypeFromParser(Ty);
3253
3254  // If the Expr being casted is a ParenListExpr, handle it specially.
3255  if (isa<ParenListExpr>(castExpr))
3256    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),castType);
3257  CXXMethodDecl *Method = 0;
3258  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr,
3259                     Kind, Method))
3260    return ExprError();
3261
3262  if (Method) {
3263    OwningExprResult CastArg = BuildCXXCastArgument(LParenLoc, castType, Kind,
3264                                                    Method, move(Op));
3265
3266    if (CastArg.isInvalid())
3267      return ExprError();
3268
3269    castExpr = CastArg.takeAs<Expr>();
3270  } else {
3271    Op.release();
3272  }
3273
3274  return Owned(new (Context) CStyleCastExpr(castType.getNonReferenceType(),
3275                                            Kind, castExpr, castType,
3276                                            LParenLoc, RParenLoc));
3277}
3278
3279/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
3280/// of comma binary operators.
3281Action::OwningExprResult
3282Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
3283  Expr *expr = EA.takeAs<Expr>();
3284  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
3285  if (!E)
3286    return Owned(expr);
3287
3288  OwningExprResult Result(*this, E->getExpr(0));
3289
3290  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
3291    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
3292                        Owned(E->getExpr(i)));
3293
3294  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
3295}
3296
3297Action::OwningExprResult
3298Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
3299                               SourceLocation RParenLoc, ExprArg Op,
3300                               QualType Ty) {
3301  ParenListExpr *PE = (ParenListExpr *)Op.get();
3302
3303  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
3304  // then handle it as such.
3305  if (getLangOptions().AltiVec && Ty->isVectorType()) {
3306    if (PE->getNumExprs() == 0) {
3307      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
3308      return ExprError();
3309    }
3310
3311    llvm::SmallVector<Expr *, 8> initExprs;
3312    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
3313      initExprs.push_back(PE->getExpr(i));
3314
3315    // FIXME: This means that pretty-printing the final AST will produce curly
3316    // braces instead of the original commas.
3317    Op.release();
3318    InitListExpr *E = new (Context) InitListExpr(LParenLoc, &initExprs[0],
3319                                                 initExprs.size(), RParenLoc);
3320    E->setType(Ty);
3321    return ActOnCompoundLiteral(LParenLoc, Ty.getAsOpaquePtr(), RParenLoc,
3322                                Owned(E));
3323  } else {
3324    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
3325    // sequence of BinOp comma operators.
3326    Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
3327    return ActOnCastExpr(S, LParenLoc, Ty.getAsOpaquePtr(), RParenLoc,move(Op));
3328  }
3329}
3330
3331Action::OwningExprResult Sema::ActOnParenListExpr(SourceLocation L,
3332                                                  SourceLocation R,
3333                                                  MultiExprArg Val) {
3334  unsigned nexprs = Val.size();
3335  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
3336  assert((exprs != 0) && "ActOnParenListExpr() missing expr list");
3337  Expr *expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
3338  return Owned(expr);
3339}
3340
3341/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
3342/// In that case, lhs = cond.
3343/// C99 6.5.15
3344QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
3345                                        SourceLocation QuestionLoc) {
3346  // C++ is sufficiently different to merit its own checker.
3347  if (getLangOptions().CPlusPlus)
3348    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
3349
3350  CheckSignCompare(LHS, RHS, QuestionLoc, diag::warn_mixed_sign_conditional);
3351
3352  UsualUnaryConversions(Cond);
3353  UsualUnaryConversions(LHS);
3354  UsualUnaryConversions(RHS);
3355  QualType CondTy = Cond->getType();
3356  QualType LHSTy = LHS->getType();
3357  QualType RHSTy = RHS->getType();
3358
3359  // first, check the condition.
3360  if (!CondTy->isScalarType()) { // C99 6.5.15p2
3361    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
3362      << CondTy;
3363    return QualType();
3364  }
3365
3366  // Now check the two expressions.
3367  if (LHSTy->isVectorType() || RHSTy->isVectorType())
3368    return CheckVectorOperands(QuestionLoc, LHS, RHS);
3369
3370  // If both operands have arithmetic type, do the usual arithmetic conversions
3371  // to find a common type: C99 6.5.15p3,5.
3372  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
3373    UsualArithmeticConversions(LHS, RHS);
3374    return LHS->getType();
3375  }
3376
3377  // If both operands are the same structure or union type, the result is that
3378  // type.
3379  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
3380    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
3381      if (LHSRT->getDecl() == RHSRT->getDecl())
3382        // "If both the operands have structure or union type, the result has
3383        // that type."  This implies that CV qualifiers are dropped.
3384        return LHSTy.getUnqualifiedType();
3385    // FIXME: Type of conditional expression must be complete in C mode.
3386  }
3387
3388  // C99 6.5.15p5: "If both operands have void type, the result has void type."
3389  // The following || allows only one side to be void (a GCC-ism).
3390  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
3391    if (!LHSTy->isVoidType())
3392      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3393        << RHS->getSourceRange();
3394    if (!RHSTy->isVoidType())
3395      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3396        << LHS->getSourceRange();
3397    ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
3398    ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
3399    return Context.VoidTy;
3400  }
3401  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
3402  // the type of the other operand."
3403  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
3404      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3405    // promote the null to a pointer.
3406    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
3407    return LHSTy;
3408  }
3409  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
3410      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3411    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
3412    return RHSTy;
3413  }
3414  // Handle things like Class and struct objc_class*.  Here we case the result
3415  // to the pseudo-builtin, because that will be implicitly cast back to the
3416  // redefinition type if an attempt is made to access its fields.
3417  if (LHSTy->isObjCClassType() &&
3418      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
3419    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3420    return LHSTy;
3421  }
3422  if (RHSTy->isObjCClassType() &&
3423      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
3424    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
3425    return RHSTy;
3426  }
3427  // And the same for struct objc_object* / id
3428  if (LHSTy->isObjCIdType() &&
3429      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
3430    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3431    return LHSTy;
3432  }
3433  if (RHSTy->isObjCIdType() &&
3434      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
3435    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
3436    return RHSTy;
3437  }
3438  // Handle block pointer types.
3439  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
3440    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
3441      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
3442        QualType destType = Context.getPointerType(Context.VoidTy);
3443        ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
3444        ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3445        return destType;
3446      }
3447      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3448            << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3449      return QualType();
3450    }
3451    // We have 2 block pointer types.
3452    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3453      // Two identical block pointer types are always compatible.
3454      return LHSTy;
3455    }
3456    // The block pointer types aren't identical, continue checking.
3457    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
3458    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
3459
3460    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3461                                    rhptee.getUnqualifiedType())) {
3462      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3463        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3464      // In this situation, we assume void* type. No especially good
3465      // reason, but this is what gcc does, and we do have to pick
3466      // to get a consistent AST.
3467      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3468      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
3469      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
3470      return incompatTy;
3471    }
3472    // The block pointer types are compatible.
3473    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
3474    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3475    return LHSTy;
3476  }
3477  // Check constraints for Objective-C object pointers types.
3478  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
3479
3480    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3481      // Two identical object pointer types are always compatible.
3482      return LHSTy;
3483    }
3484    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
3485    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
3486    QualType compositeType = LHSTy;
3487
3488    // If both operands are interfaces and either operand can be
3489    // assigned to the other, use that type as the composite
3490    // type. This allows
3491    //   xxx ? (A*) a : (B*) b
3492    // where B is a subclass of A.
3493    //
3494    // Additionally, as for assignment, if either type is 'id'
3495    // allow silent coercion. Finally, if the types are
3496    // incompatible then make sure to use 'id' as the composite
3497    // type so the result is acceptable for sending messages to.
3498
3499    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
3500    // It could return the composite type.
3501    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
3502      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
3503    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
3504      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
3505    } else if ((LHSTy->isObjCQualifiedIdType() ||
3506                RHSTy->isObjCQualifiedIdType()) &&
3507                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
3508      // Need to handle "id<xx>" explicitly.
3509      // GCC allows qualified id and any Objective-C type to devolve to
3510      // id. Currently localizing to here until clear this should be
3511      // part of ObjCQualifiedIdTypesAreCompatible.
3512      compositeType = Context.getObjCIdType();
3513    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
3514      compositeType = Context.getObjCIdType();
3515    } else if (!(compositeType =
3516                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
3517      ;
3518    else {
3519      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
3520        << LHSTy << RHSTy
3521        << LHS->getSourceRange() << RHS->getSourceRange();
3522      QualType incompatTy = Context.getObjCIdType();
3523      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
3524      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
3525      return incompatTy;
3526    }
3527    // The object pointer types are compatible.
3528    ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
3529    ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
3530    return compositeType;
3531  }
3532  // Check Objective-C object pointer types and 'void *'
3533  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
3534    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
3535    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
3536    QualType destPointee
3537      = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
3538    QualType destType = Context.getPointerType(destPointee);
3539    // Add qualifiers if necessary.
3540    ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
3541    // Promote to void*.
3542    ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3543    return destType;
3544  }
3545  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
3546    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
3547    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
3548    QualType destPointee
3549      = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
3550    QualType destType = Context.getPointerType(destPointee);
3551    // Add qualifiers if necessary.
3552    ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
3553    // Promote to void*.
3554    ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
3555    return destType;
3556  }
3557  // Check constraints for C object pointers types (C99 6.5.15p3,6).
3558  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
3559    // get the "pointed to" types
3560    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
3561    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
3562
3563    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
3564    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
3565      // Figure out necessary qualifiers (C99 6.5.15p6)
3566      QualType destPointee
3567        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
3568      QualType destType = Context.getPointerType(destPointee);
3569      // Add qualifiers if necessary.
3570      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
3571      // Promote to void*.
3572      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3573      return destType;
3574    }
3575    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
3576      QualType destPointee
3577        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
3578      QualType destType = Context.getPointerType(destPointee);
3579      // Add qualifiers if necessary.
3580      ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
3581      // Promote to void*.
3582      ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
3583      return destType;
3584    }
3585
3586    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3587      // Two identical pointer types are always compatible.
3588      return LHSTy;
3589    }
3590    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3591                                    rhptee.getUnqualifiedType())) {
3592      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3593        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3594      // In this situation, we assume void* type. No especially good
3595      // reason, but this is what gcc does, and we do have to pick
3596      // to get a consistent AST.
3597      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3598      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
3599      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
3600      return incompatTy;
3601    }
3602    // The pointer types are compatible.
3603    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
3604    // differently qualified versions of compatible types, the result type is
3605    // a pointer to an appropriately qualified version of the *composite*
3606    // type.
3607    // FIXME: Need to calculate the composite type.
3608    // FIXME: Need to add qualifiers
3609    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
3610    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3611    return LHSTy;
3612  }
3613
3614  // GCC compatibility: soften pointer/integer mismatch.
3615  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
3616    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3617      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3618    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
3619    return RHSTy;
3620  }
3621  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
3622    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3623      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3624    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
3625    return LHSTy;
3626  }
3627
3628  // Otherwise, the operands are not compatible.
3629  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3630    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3631  return QualType();
3632}
3633
3634/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
3635/// in the case of a the GNU conditional expr extension.
3636Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
3637                                                  SourceLocation ColonLoc,
3638                                                  ExprArg Cond, ExprArg LHS,
3639                                                  ExprArg RHS) {
3640  Expr *CondExpr = (Expr *) Cond.get();
3641  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
3642
3643  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
3644  // was the condition.
3645  bool isLHSNull = LHSExpr == 0;
3646  if (isLHSNull)
3647    LHSExpr = CondExpr;
3648
3649  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
3650                                             RHSExpr, QuestionLoc);
3651  if (result.isNull())
3652    return ExprError();
3653
3654  Cond.release();
3655  LHS.release();
3656  RHS.release();
3657  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
3658                                                 isLHSNull ? 0 : LHSExpr,
3659                                                 ColonLoc, RHSExpr, result));
3660}
3661
3662// CheckPointerTypesForAssignment - This is a very tricky routine (despite
3663// being closely modeled after the C99 spec:-). The odd characteristic of this
3664// routine is it effectively iqnores the qualifiers on the top level pointee.
3665// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
3666// FIXME: add a couple examples in this comment.
3667Sema::AssignConvertType
3668Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
3669  QualType lhptee, rhptee;
3670
3671  if ((lhsType->isObjCClassType() &&
3672       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
3673     (rhsType->isObjCClassType() &&
3674       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
3675      return Compatible;
3676  }
3677
3678  // get the "pointed to" type (ignoring qualifiers at the top level)
3679  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
3680  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
3681
3682  // make sure we operate on the canonical type
3683  lhptee = Context.getCanonicalType(lhptee);
3684  rhptee = Context.getCanonicalType(rhptee);
3685
3686  AssignConvertType ConvTy = Compatible;
3687
3688  // C99 6.5.16.1p1: This following citation is common to constraints
3689  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
3690  // qualifiers of the type *pointed to* by the right;
3691  // FIXME: Handle ExtQualType
3692  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
3693    ConvTy = CompatiblePointerDiscardsQualifiers;
3694
3695  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
3696  // incomplete type and the other is a pointer to a qualified or unqualified
3697  // version of void...
3698  if (lhptee->isVoidType()) {
3699    if (rhptee->isIncompleteOrObjectType())
3700      return ConvTy;
3701
3702    // As an extension, we allow cast to/from void* to function pointer.
3703    assert(rhptee->isFunctionType());
3704    return FunctionVoidPointer;
3705  }
3706
3707  if (rhptee->isVoidType()) {
3708    if (lhptee->isIncompleteOrObjectType())
3709      return ConvTy;
3710
3711    // As an extension, we allow cast to/from void* to function pointer.
3712    assert(lhptee->isFunctionType());
3713    return FunctionVoidPointer;
3714  }
3715  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
3716  // unqualified versions of compatible types, ...
3717  lhptee = lhptee.getUnqualifiedType();
3718  rhptee = rhptee.getUnqualifiedType();
3719  if (!Context.typesAreCompatible(lhptee, rhptee)) {
3720    // Check if the pointee types are compatible ignoring the sign.
3721    // We explicitly check for char so that we catch "char" vs
3722    // "unsigned char" on systems where "char" is unsigned.
3723    if (lhptee->isCharType())
3724      lhptee = Context.UnsignedCharTy;
3725    else if (lhptee->isSignedIntegerType())
3726      lhptee = Context.getCorrespondingUnsignedType(lhptee);
3727
3728    if (rhptee->isCharType())
3729      rhptee = Context.UnsignedCharTy;
3730    else if (rhptee->isSignedIntegerType())
3731      rhptee = Context.getCorrespondingUnsignedType(rhptee);
3732
3733    if (lhptee == rhptee) {
3734      // Types are compatible ignoring the sign. Qualifier incompatibility
3735      // takes priority over sign incompatibility because the sign
3736      // warning can be disabled.
3737      if (ConvTy != Compatible)
3738        return ConvTy;
3739      return IncompatiblePointerSign;
3740    }
3741
3742    // If we are a multi-level pointer, it's possible that our issue is simply
3743    // one of qualification - e.g. char ** -> const char ** is not allowed. If
3744    // the eventual target type is the same and the pointers have the same
3745    // level of indirection, this must be the issue.
3746    if (lhptee->isPointerType() && rhptee->isPointerType()) {
3747      do {
3748        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
3749        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
3750
3751        lhptee = Context.getCanonicalType(lhptee);
3752        rhptee = Context.getCanonicalType(rhptee);
3753      } while (lhptee->isPointerType() && rhptee->isPointerType());
3754
3755      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
3756        return IncompatibleNestedPointerQualifiers;
3757    }
3758
3759    // General pointer incompatibility takes priority over qualifiers.
3760    return IncompatiblePointer;
3761  }
3762  return ConvTy;
3763}
3764
3765/// CheckBlockPointerTypesForAssignment - This routine determines whether two
3766/// block pointer types are compatible or whether a block and normal pointer
3767/// are compatible. It is more restrict than comparing two function pointer
3768// types.
3769Sema::AssignConvertType
3770Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
3771                                          QualType rhsType) {
3772  QualType lhptee, rhptee;
3773
3774  // get the "pointed to" type (ignoring qualifiers at the top level)
3775  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
3776  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
3777
3778  // make sure we operate on the canonical type
3779  lhptee = Context.getCanonicalType(lhptee);
3780  rhptee = Context.getCanonicalType(rhptee);
3781
3782  AssignConvertType ConvTy = Compatible;
3783
3784  // For blocks we enforce that qualifiers are identical.
3785  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
3786    ConvTy = CompatiblePointerDiscardsQualifiers;
3787
3788  if (!Context.typesAreCompatible(lhptee, rhptee))
3789    return IncompatibleBlockPointer;
3790  return ConvTy;
3791}
3792
3793/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
3794/// has code to accommodate several GCC extensions when type checking
3795/// pointers. Here are some objectionable examples that GCC considers warnings:
3796///
3797///  int a, *pint;
3798///  short *pshort;
3799///  struct foo *pfoo;
3800///
3801///  pint = pshort; // warning: assignment from incompatible pointer type
3802///  a = pint; // warning: assignment makes integer from pointer without a cast
3803///  pint = a; // warning: assignment makes pointer from integer without a cast
3804///  pint = pfoo; // warning: assignment from incompatible pointer type
3805///
3806/// As a result, the code for dealing with pointers is more complex than the
3807/// C99 spec dictates.
3808///
3809Sema::AssignConvertType
3810Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
3811  // Get canonical types.  We're not formatting these types, just comparing
3812  // them.
3813  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
3814  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
3815
3816  if (lhsType == rhsType)
3817    return Compatible; // Common case: fast path an exact match.
3818
3819  if ((lhsType->isObjCClassType() &&
3820       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
3821     (rhsType->isObjCClassType() &&
3822       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
3823      return Compatible;
3824  }
3825
3826  // If the left-hand side is a reference type, then we are in a
3827  // (rare!) case where we've allowed the use of references in C,
3828  // e.g., as a parameter type in a built-in function. In this case,
3829  // just make sure that the type referenced is compatible with the
3830  // right-hand side type. The caller is responsible for adjusting
3831  // lhsType so that the resulting expression does not have reference
3832  // type.
3833  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
3834    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
3835      return Compatible;
3836    return Incompatible;
3837  }
3838  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
3839  // to the same ExtVector type.
3840  if (lhsType->isExtVectorType()) {
3841    if (rhsType->isExtVectorType())
3842      return lhsType == rhsType ? Compatible : Incompatible;
3843    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
3844      return Compatible;
3845  }
3846
3847  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3848    // If we are allowing lax vector conversions, and LHS and RHS are both
3849    // vectors, the total size only needs to be the same. This is a bitcast;
3850    // no bits are changed but the result type is different.
3851    if (getLangOptions().LaxVectorConversions &&
3852        lhsType->isVectorType() && rhsType->isVectorType()) {
3853      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3854        return IncompatibleVectors;
3855    }
3856    return Incompatible;
3857  }
3858
3859  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3860    return Compatible;
3861
3862  if (isa<PointerType>(lhsType)) {
3863    if (rhsType->isIntegerType())
3864      return IntToPointer;
3865
3866    if (isa<PointerType>(rhsType))
3867      return CheckPointerTypesForAssignment(lhsType, rhsType);
3868
3869    // In general, C pointers are not compatible with ObjC object pointers.
3870    if (isa<ObjCObjectPointerType>(rhsType)) {
3871      if (lhsType->isVoidPointerType()) // an exception to the rule.
3872        return Compatible;
3873      return IncompatiblePointer;
3874    }
3875    if (rhsType->getAs<BlockPointerType>()) {
3876      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3877        return Compatible;
3878
3879      // Treat block pointers as objects.
3880      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
3881        return Compatible;
3882    }
3883    return Incompatible;
3884  }
3885
3886  if (isa<BlockPointerType>(lhsType)) {
3887    if (rhsType->isIntegerType())
3888      return IntToBlockPointer;
3889
3890    // Treat block pointers as objects.
3891    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
3892      return Compatible;
3893
3894    if (rhsType->isBlockPointerType())
3895      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3896
3897    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
3898      if (RHSPT->getPointeeType()->isVoidType())
3899        return Compatible;
3900    }
3901    return Incompatible;
3902  }
3903
3904  if (isa<ObjCObjectPointerType>(lhsType)) {
3905    if (rhsType->isIntegerType())
3906      return IntToPointer;
3907
3908    // In general, C pointers are not compatible with ObjC object pointers.
3909    if (isa<PointerType>(rhsType)) {
3910      if (rhsType->isVoidPointerType()) // an exception to the rule.
3911        return Compatible;
3912      return IncompatiblePointer;
3913    }
3914    if (rhsType->isObjCObjectPointerType()) {
3915      if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType())
3916        return Compatible;
3917      if (Context.typesAreCompatible(lhsType, rhsType))
3918        return Compatible;
3919      if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
3920        return IncompatibleObjCQualifiedId;
3921      return IncompatiblePointer;
3922    }
3923    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
3924      if (RHSPT->getPointeeType()->isVoidType())
3925        return Compatible;
3926    }
3927    // Treat block pointers as objects.
3928    if (rhsType->isBlockPointerType())
3929      return Compatible;
3930    return Incompatible;
3931  }
3932  if (isa<PointerType>(rhsType)) {
3933    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3934    if (lhsType == Context.BoolTy)
3935      return Compatible;
3936
3937    if (lhsType->isIntegerType())
3938      return PointerToInt;
3939
3940    if (isa<PointerType>(lhsType))
3941      return CheckPointerTypesForAssignment(lhsType, rhsType);
3942
3943    if (isa<BlockPointerType>(lhsType) &&
3944        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3945      return Compatible;
3946    return Incompatible;
3947  }
3948  if (isa<ObjCObjectPointerType>(rhsType)) {
3949    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3950    if (lhsType == Context.BoolTy)
3951      return Compatible;
3952
3953    if (lhsType->isIntegerType())
3954      return PointerToInt;
3955
3956    // In general, C pointers are not compatible with ObjC object pointers.
3957    if (isa<PointerType>(lhsType)) {
3958      if (lhsType->isVoidPointerType()) // an exception to the rule.
3959        return Compatible;
3960      return IncompatiblePointer;
3961    }
3962    if (isa<BlockPointerType>(lhsType) &&
3963        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3964      return Compatible;
3965    return Incompatible;
3966  }
3967
3968  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3969    if (Context.typesAreCompatible(lhsType, rhsType))
3970      return Compatible;
3971  }
3972  return Incompatible;
3973}
3974
3975/// \brief Constructs a transparent union from an expression that is
3976/// used to initialize the transparent union.
3977static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
3978                                      QualType UnionType, FieldDecl *Field) {
3979  // Build an initializer list that designates the appropriate member
3980  // of the transparent union.
3981  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
3982                                                   &E, 1,
3983                                                   SourceLocation());
3984  Initializer->setType(UnionType);
3985  Initializer->setInitializedFieldInUnion(Field);
3986
3987  // Build a compound literal constructing a value of the transparent
3988  // union type from this initializer list.
3989  E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
3990                                  false);
3991}
3992
3993Sema::AssignConvertType
3994Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
3995  QualType FromType = rExpr->getType();
3996
3997  // If the ArgType is a Union type, we want to handle a potential
3998  // transparent_union GCC extension.
3999  const RecordType *UT = ArgType->getAsUnionType();
4000  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
4001    return Incompatible;
4002
4003  // The field to initialize within the transparent union.
4004  RecordDecl *UD = UT->getDecl();
4005  FieldDecl *InitField = 0;
4006  // It's compatible if the expression matches any of the fields.
4007  for (RecordDecl::field_iterator it = UD->field_begin(),
4008         itend = UD->field_end();
4009       it != itend; ++it) {
4010    if (it->getType()->isPointerType()) {
4011      // If the transparent union contains a pointer type, we allow:
4012      // 1) void pointer
4013      // 2) null pointer constant
4014      if (FromType->isPointerType())
4015        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
4016          ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
4017          InitField = *it;
4018          break;
4019        }
4020
4021      if (rExpr->isNullPointerConstant(Context,
4022                                       Expr::NPC_ValueDependentIsNull)) {
4023        ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
4024        InitField = *it;
4025        break;
4026      }
4027    }
4028
4029    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
4030          == Compatible) {
4031      InitField = *it;
4032      break;
4033    }
4034  }
4035
4036  if (!InitField)
4037    return Incompatible;
4038
4039  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
4040  return Compatible;
4041}
4042
4043Sema::AssignConvertType
4044Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
4045  if (getLangOptions().CPlusPlus) {
4046    if (!lhsType->isRecordType()) {
4047      // C++ 5.17p3: If the left operand is not of class type, the
4048      // expression is implicitly converted (C++ 4) to the
4049      // cv-unqualified type of the left operand.
4050      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
4051                                    "assigning"))
4052        return Incompatible;
4053      return Compatible;
4054    }
4055
4056    // FIXME: Currently, we fall through and treat C++ classes like C
4057    // structures.
4058  }
4059
4060  // C99 6.5.16.1p1: the left operand is a pointer and the right is
4061  // a null pointer constant.
4062  if ((lhsType->isPointerType() ||
4063       lhsType->isObjCObjectPointerType() ||
4064       lhsType->isBlockPointerType())
4065      && rExpr->isNullPointerConstant(Context,
4066                                      Expr::NPC_ValueDependentIsNull)) {
4067    ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
4068    return Compatible;
4069  }
4070
4071  // This check seems unnatural, however it is necessary to ensure the proper
4072  // conversion of functions/arrays. If the conversion were done for all
4073  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
4074  // expressions that surpress this implicit conversion (&, sizeof).
4075  //
4076  // Suppress this for references: C++ 8.5.3p5.
4077  if (!lhsType->isReferenceType())
4078    DefaultFunctionArrayConversion(rExpr);
4079
4080  Sema::AssignConvertType result =
4081    CheckAssignmentConstraints(lhsType, rExpr->getType());
4082
4083  // C99 6.5.16.1p2: The value of the right operand is converted to the
4084  // type of the assignment expression.
4085  // CheckAssignmentConstraints allows the left-hand side to be a reference,
4086  // so that we can use references in built-in functions even in C.
4087  // The getNonReferenceType() call makes sure that the resulting expression
4088  // does not have reference type.
4089  if (result != Incompatible && rExpr->getType() != lhsType)
4090    ImpCastExprToType(rExpr, lhsType.getNonReferenceType(),
4091                      CastExpr::CK_Unknown);
4092  return result;
4093}
4094
4095QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4096  Diag(Loc, diag::err_typecheck_invalid_operands)
4097    << lex->getType() << rex->getType()
4098    << lex->getSourceRange() << rex->getSourceRange();
4099  return QualType();
4100}
4101
4102inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
4103                                                              Expr *&rex) {
4104  // For conversion purposes, we ignore any qualifiers.
4105  // For example, "const float" and "float" are equivalent.
4106  QualType lhsType =
4107    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
4108  QualType rhsType =
4109    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
4110
4111  // If the vector types are identical, return.
4112  if (lhsType == rhsType)
4113    return lhsType;
4114
4115  // Handle the case of a vector & extvector type of the same size and element
4116  // type.  It would be nice if we only had one vector type someday.
4117  if (getLangOptions().LaxVectorConversions) {
4118    // FIXME: Should we warn here?
4119    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
4120      if (const VectorType *RV = rhsType->getAs<VectorType>())
4121        if (LV->getElementType() == RV->getElementType() &&
4122            LV->getNumElements() == RV->getNumElements()) {
4123          return lhsType->isExtVectorType() ? lhsType : rhsType;
4124        }
4125    }
4126  }
4127
4128  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
4129  // swap back (so that we don't reverse the inputs to a subtract, for instance.
4130  bool swapped = false;
4131  if (rhsType->isExtVectorType()) {
4132    swapped = true;
4133    std::swap(rex, lex);
4134    std::swap(rhsType, lhsType);
4135  }
4136
4137  // Handle the case of an ext vector and scalar.
4138  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
4139    QualType EltTy = LV->getElementType();
4140    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
4141      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
4142        ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
4143        if (swapped) std::swap(rex, lex);
4144        return lhsType;
4145      }
4146    }
4147    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
4148        rhsType->isRealFloatingType()) {
4149      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
4150        ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
4151        if (swapped) std::swap(rex, lex);
4152        return lhsType;
4153      }
4154    }
4155  }
4156
4157  // Vectors of different size or scalar and non-ext-vector are errors.
4158  Diag(Loc, diag::err_typecheck_vector_not_convertable)
4159    << lex->getType() << rex->getType()
4160    << lex->getSourceRange() << rex->getSourceRange();
4161  return QualType();
4162}
4163
4164inline QualType Sema::CheckMultiplyDivideOperands(
4165  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4166  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4167    return CheckVectorOperands(Loc, lex, rex);
4168
4169  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4170
4171  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
4172    return compType;
4173  return InvalidOperands(Loc, lex, rex);
4174}
4175
4176inline QualType Sema::CheckRemainderOperands(
4177  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4178  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4179    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4180      return CheckVectorOperands(Loc, lex, rex);
4181    return InvalidOperands(Loc, lex, rex);
4182  }
4183
4184  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4185
4186  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4187    return compType;
4188  return InvalidOperands(Loc, lex, rex);
4189}
4190
4191inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
4192  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
4193  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4194    QualType compType = CheckVectorOperands(Loc, lex, rex);
4195    if (CompLHSTy) *CompLHSTy = compType;
4196    return compType;
4197  }
4198
4199  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
4200
4201  // handle the common case first (both operands are arithmetic).
4202  if (lex->getType()->isArithmeticType() &&
4203      rex->getType()->isArithmeticType()) {
4204    if (CompLHSTy) *CompLHSTy = compType;
4205    return compType;
4206  }
4207
4208  // Put any potential pointer into PExp
4209  Expr* PExp = lex, *IExp = rex;
4210  if (IExp->getType()->isAnyPointerType())
4211    std::swap(PExp, IExp);
4212
4213  if (PExp->getType()->isAnyPointerType()) {
4214
4215    if (IExp->getType()->isIntegerType()) {
4216      QualType PointeeTy = PExp->getType()->getPointeeType();
4217
4218      // Check for arithmetic on pointers to incomplete types.
4219      if (PointeeTy->isVoidType()) {
4220        if (getLangOptions().CPlusPlus) {
4221          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4222            << lex->getSourceRange() << rex->getSourceRange();
4223          return QualType();
4224        }
4225
4226        // GNU extension: arithmetic on pointer to void
4227        Diag(Loc, diag::ext_gnu_void_ptr)
4228          << lex->getSourceRange() << rex->getSourceRange();
4229      } else if (PointeeTy->isFunctionType()) {
4230        if (getLangOptions().CPlusPlus) {
4231          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4232            << lex->getType() << lex->getSourceRange();
4233          return QualType();
4234        }
4235
4236        // GNU extension: arithmetic on pointer to function
4237        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4238          << lex->getType() << lex->getSourceRange();
4239      } else {
4240        // Check if we require a complete type.
4241        if (((PExp->getType()->isPointerType() &&
4242              !PExp->getType()->isDependentType()) ||
4243              PExp->getType()->isObjCObjectPointerType()) &&
4244             RequireCompleteType(Loc, PointeeTy,
4245                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
4246                             << PExp->getSourceRange()
4247                             << PExp->getType()))
4248          return QualType();
4249      }
4250      // Diagnose bad cases where we step over interface counts.
4251      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4252        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
4253          << PointeeTy << PExp->getSourceRange();
4254        return QualType();
4255      }
4256
4257      if (CompLHSTy) {
4258        QualType LHSTy = Context.isPromotableBitField(lex);
4259        if (LHSTy.isNull()) {
4260          LHSTy = lex->getType();
4261          if (LHSTy->isPromotableIntegerType())
4262            LHSTy = Context.getPromotedIntegerType(LHSTy);
4263        }
4264        *CompLHSTy = LHSTy;
4265      }
4266      return PExp->getType();
4267    }
4268  }
4269
4270  return InvalidOperands(Loc, lex, rex);
4271}
4272
4273// C99 6.5.6
4274QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
4275                                        SourceLocation Loc, QualType* CompLHSTy) {
4276  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4277    QualType compType = CheckVectorOperands(Loc, lex, rex);
4278    if (CompLHSTy) *CompLHSTy = compType;
4279    return compType;
4280  }
4281
4282  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
4283
4284  // Enforce type constraints: C99 6.5.6p3.
4285
4286  // Handle the common case first (both operands are arithmetic).
4287  if (lex->getType()->isArithmeticType()
4288      && rex->getType()->isArithmeticType()) {
4289    if (CompLHSTy) *CompLHSTy = compType;
4290    return compType;
4291  }
4292
4293  // Either ptr - int   or   ptr - ptr.
4294  if (lex->getType()->isAnyPointerType()) {
4295    QualType lpointee = lex->getType()->getPointeeType();
4296
4297    // The LHS must be an completely-defined object type.
4298
4299    bool ComplainAboutVoid = false;
4300    Expr *ComplainAboutFunc = 0;
4301    if (lpointee->isVoidType()) {
4302      if (getLangOptions().CPlusPlus) {
4303        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4304          << lex->getSourceRange() << rex->getSourceRange();
4305        return QualType();
4306      }
4307
4308      // GNU C extension: arithmetic on pointer to void
4309      ComplainAboutVoid = true;
4310    } else if (lpointee->isFunctionType()) {
4311      if (getLangOptions().CPlusPlus) {
4312        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4313          << lex->getType() << lex->getSourceRange();
4314        return QualType();
4315      }
4316
4317      // GNU C extension: arithmetic on pointer to function
4318      ComplainAboutFunc = lex;
4319    } else if (!lpointee->isDependentType() &&
4320               RequireCompleteType(Loc, lpointee,
4321                                   PDiag(diag::err_typecheck_sub_ptr_object)
4322                                     << lex->getSourceRange()
4323                                     << lex->getType()))
4324      return QualType();
4325
4326    // Diagnose bad cases where we step over interface counts.
4327    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4328      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
4329        << lpointee << lex->getSourceRange();
4330      return QualType();
4331    }
4332
4333    // The result type of a pointer-int computation is the pointer type.
4334    if (rex->getType()->isIntegerType()) {
4335      if (ComplainAboutVoid)
4336        Diag(Loc, diag::ext_gnu_void_ptr)
4337          << lex->getSourceRange() << rex->getSourceRange();
4338      if (ComplainAboutFunc)
4339        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4340          << ComplainAboutFunc->getType()
4341          << ComplainAboutFunc->getSourceRange();
4342
4343      if (CompLHSTy) *CompLHSTy = lex->getType();
4344      return lex->getType();
4345    }
4346
4347    // Handle pointer-pointer subtractions.
4348    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
4349      QualType rpointee = RHSPTy->getPointeeType();
4350
4351      // RHS must be a completely-type object type.
4352      // Handle the GNU void* extension.
4353      if (rpointee->isVoidType()) {
4354        if (getLangOptions().CPlusPlus) {
4355          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4356            << lex->getSourceRange() << rex->getSourceRange();
4357          return QualType();
4358        }
4359
4360        ComplainAboutVoid = true;
4361      } else if (rpointee->isFunctionType()) {
4362        if (getLangOptions().CPlusPlus) {
4363          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4364            << rex->getType() << rex->getSourceRange();
4365          return QualType();
4366        }
4367
4368        // GNU extension: arithmetic on pointer to function
4369        if (!ComplainAboutFunc)
4370          ComplainAboutFunc = rex;
4371      } else if (!rpointee->isDependentType() &&
4372                 RequireCompleteType(Loc, rpointee,
4373                                     PDiag(diag::err_typecheck_sub_ptr_object)
4374                                       << rex->getSourceRange()
4375                                       << rex->getType()))
4376        return QualType();
4377
4378      if (getLangOptions().CPlusPlus) {
4379        // Pointee types must be the same: C++ [expr.add]
4380        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
4381          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4382            << lex->getType() << rex->getType()
4383            << lex->getSourceRange() << rex->getSourceRange();
4384          return QualType();
4385        }
4386      } else {
4387        // Pointee types must be compatible C99 6.5.6p3
4388        if (!Context.typesAreCompatible(
4389                Context.getCanonicalType(lpointee).getUnqualifiedType(),
4390                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
4391          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4392            << lex->getType() << rex->getType()
4393            << lex->getSourceRange() << rex->getSourceRange();
4394          return QualType();
4395        }
4396      }
4397
4398      if (ComplainAboutVoid)
4399        Diag(Loc, diag::ext_gnu_void_ptr)
4400          << lex->getSourceRange() << rex->getSourceRange();
4401      if (ComplainAboutFunc)
4402        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4403          << ComplainAboutFunc->getType()
4404          << ComplainAboutFunc->getSourceRange();
4405
4406      if (CompLHSTy) *CompLHSTy = lex->getType();
4407      return Context.getPointerDiffType();
4408    }
4409  }
4410
4411  return InvalidOperands(Loc, lex, rex);
4412}
4413
4414// C99 6.5.7
4415QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4416                                  bool isCompAssign) {
4417  // C99 6.5.7p2: Each of the operands shall have integer type.
4418  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
4419    return InvalidOperands(Loc, lex, rex);
4420
4421  // Vector shifts promote their scalar inputs to vector type.
4422  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4423    return CheckVectorOperands(Loc, lex, rex);
4424
4425  // Shifts don't perform usual arithmetic conversions, they just do integer
4426  // promotions on each operand. C99 6.5.7p3
4427  QualType LHSTy = Context.isPromotableBitField(lex);
4428  if (LHSTy.isNull()) {
4429    LHSTy = lex->getType();
4430    if (LHSTy->isPromotableIntegerType())
4431      LHSTy = Context.getPromotedIntegerType(LHSTy);
4432  }
4433  if (!isCompAssign)
4434    ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
4435
4436  UsualUnaryConversions(rex);
4437
4438  // Sanity-check shift operands
4439  llvm::APSInt Right;
4440  // Check right/shifter operand
4441  if (!rex->isValueDependent() &&
4442      rex->isIntegerConstantExpr(Right, Context)) {
4443    if (Right.isNegative())
4444      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
4445    else {
4446      llvm::APInt LeftBits(Right.getBitWidth(),
4447                          Context.getTypeSize(lex->getType()));
4448      if (Right.uge(LeftBits))
4449        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
4450    }
4451  }
4452
4453  // "The type of the result is that of the promoted left operand."
4454  return LHSTy;
4455}
4456
4457/// \brief Implements -Wsign-compare.
4458///
4459/// \param lex the left-hand expression
4460/// \param rex the right-hand expression
4461/// \param OpLoc the location of the joining operator
4462/// \param Equality whether this is an "equality-like" join, which
4463///   suppresses the warning in some cases
4464void Sema::CheckSignCompare(Expr *lex, Expr *rex, SourceLocation OpLoc,
4465                            const PartialDiagnostic &PD, bool Equality) {
4466  // Don't warn if we're in an unevaluated context.
4467  if (ExprEvalContext == Unevaluated)
4468    return;
4469
4470  QualType lt = lex->getType(), rt = rex->getType();
4471
4472  // Only warn if both operands are integral.
4473  if (!lt->isIntegerType() || !rt->isIntegerType())
4474    return;
4475
4476  // If either expression is value-dependent, don't warn. We'll get another
4477  // chance at instantiation time.
4478  if (lex->isValueDependent() || rex->isValueDependent())
4479    return;
4480
4481  // The rule is that the signed operand becomes unsigned, so isolate the
4482  // signed operand.
4483  Expr *signedOperand, *unsignedOperand;
4484  if (lt->isSignedIntegerType()) {
4485    if (rt->isSignedIntegerType()) return;
4486    signedOperand = lex;
4487    unsignedOperand = rex;
4488  } else {
4489    if (!rt->isSignedIntegerType()) return;
4490    signedOperand = rex;
4491    unsignedOperand = lex;
4492  }
4493
4494  // If the unsigned type is strictly smaller than the signed type,
4495  // then (1) the result type will be signed and (2) the unsigned
4496  // value will fit fully within the signed type, and thus the result
4497  // of the comparison will be exact.
4498  if (Context.getIntWidth(signedOperand->getType()) >
4499      Context.getIntWidth(unsignedOperand->getType()))
4500    return;
4501
4502  // If the value is a non-negative integer constant, then the
4503  // signed->unsigned conversion won't change it.
4504  llvm::APSInt value;
4505  if (signedOperand->isIntegerConstantExpr(value, Context)) {
4506    assert(value.isSigned() && "result of signed expression not signed");
4507
4508    if (value.isNonNegative())
4509      return;
4510  }
4511
4512  if (Equality) {
4513    // For (in)equality comparisons, if the unsigned operand is a
4514    // constant which cannot collide with a overflowed signed operand,
4515    // then reinterpreting the signed operand as unsigned will not
4516    // change the result of the comparison.
4517    if (unsignedOperand->isIntegerConstantExpr(value, Context)) {
4518      assert(!value.isSigned() && "result of unsigned expression is signed");
4519
4520      // 2's complement:  test the top bit.
4521      if (value.isNonNegative())
4522        return;
4523    }
4524  }
4525
4526  Diag(OpLoc, PD)
4527    << lex->getType() << rex->getType()
4528    << lex->getSourceRange() << rex->getSourceRange();
4529}
4530
4531// C99 6.5.8, C++ [expr.rel]
4532QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4533                                    unsigned OpaqueOpc, bool isRelational) {
4534  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
4535
4536  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4537    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
4538
4539  CheckSignCompare(lex, rex, Loc, diag::warn_mixed_sign_comparison,
4540                   (Opc == BinaryOperator::EQ || Opc == BinaryOperator::NE));
4541
4542  // C99 6.5.8p3 / C99 6.5.9p4
4543  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
4544    UsualArithmeticConversions(lex, rex);
4545  else {
4546    UsualUnaryConversions(lex);
4547    UsualUnaryConversions(rex);
4548  }
4549  QualType lType = lex->getType();
4550  QualType rType = rex->getType();
4551
4552  if (!lType->isFloatingType()
4553      && !(lType->isBlockPointerType() && isRelational)) {
4554    // For non-floating point types, check for self-comparisons of the form
4555    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4556    // often indicate logic errors in the program.
4557    // NOTE: Don't warn about comparisons of enum constants. These can arise
4558    //  from macro expansions, and are usually quite deliberate.
4559    Expr *LHSStripped = lex->IgnoreParens();
4560    Expr *RHSStripped = rex->IgnoreParens();
4561    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
4562      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
4563        if (DRL->getDecl() == DRR->getDecl() &&
4564            !isa<EnumConstantDecl>(DRL->getDecl()))
4565          Diag(Loc, diag::warn_selfcomparison);
4566
4567    if (isa<CastExpr>(LHSStripped))
4568      LHSStripped = LHSStripped->IgnoreParenCasts();
4569    if (isa<CastExpr>(RHSStripped))
4570      RHSStripped = RHSStripped->IgnoreParenCasts();
4571
4572    // Warn about comparisons against a string constant (unless the other
4573    // operand is null), the user probably wants strcmp.
4574    Expr *literalString = 0;
4575    Expr *literalStringStripped = 0;
4576    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
4577        !RHSStripped->isNullPointerConstant(Context,
4578                                            Expr::NPC_ValueDependentIsNull)) {
4579      literalString = lex;
4580      literalStringStripped = LHSStripped;
4581    } else if ((isa<StringLiteral>(RHSStripped) ||
4582                isa<ObjCEncodeExpr>(RHSStripped)) &&
4583               !LHSStripped->isNullPointerConstant(Context,
4584                                            Expr::NPC_ValueDependentIsNull)) {
4585      literalString = rex;
4586      literalStringStripped = RHSStripped;
4587    }
4588
4589    if (literalString) {
4590      std::string resultComparison;
4591      switch (Opc) {
4592      case BinaryOperator::LT: resultComparison = ") < 0"; break;
4593      case BinaryOperator::GT: resultComparison = ") > 0"; break;
4594      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
4595      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
4596      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
4597      case BinaryOperator::NE: resultComparison = ") != 0"; break;
4598      default: assert(false && "Invalid comparison operator");
4599      }
4600      Diag(Loc, diag::warn_stringcompare)
4601        << isa<ObjCEncodeExpr>(literalStringStripped)
4602        << literalString->getSourceRange()
4603        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
4604        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
4605                                                 "strcmp(")
4606        << CodeModificationHint::CreateInsertion(
4607                                       PP.getLocForEndOfToken(rex->getLocEnd()),
4608                                       resultComparison);
4609    }
4610  }
4611
4612  // The result of comparisons is 'bool' in C++, 'int' in C.
4613  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
4614
4615  if (isRelational) {
4616    if (lType->isRealType() && rType->isRealType())
4617      return ResultTy;
4618  } else {
4619    // Check for comparisons of floating point operands using != and ==.
4620    if (lType->isFloatingType()) {
4621      assert(rType->isFloatingType());
4622      CheckFloatComparison(Loc,lex,rex);
4623    }
4624
4625    if (lType->isArithmeticType() && rType->isArithmeticType())
4626      return ResultTy;
4627  }
4628
4629  bool LHSIsNull = lex->isNullPointerConstant(Context,
4630                                              Expr::NPC_ValueDependentIsNull);
4631  bool RHSIsNull = rex->isNullPointerConstant(Context,
4632                                              Expr::NPC_ValueDependentIsNull);
4633
4634  // All of the following pointer related warnings are GCC extensions, except
4635  // when handling null pointer constants. One day, we can consider making them
4636  // errors (when -pedantic-errors is enabled).
4637  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
4638    QualType LCanPointeeTy =
4639      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
4640    QualType RCanPointeeTy =
4641      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
4642
4643    if (getLangOptions().CPlusPlus) {
4644      if (LCanPointeeTy == RCanPointeeTy)
4645        return ResultTy;
4646
4647      // C++ [expr.rel]p2:
4648      //   [...] Pointer conversions (4.10) and qualification
4649      //   conversions (4.4) are performed on pointer operands (or on
4650      //   a pointer operand and a null pointer constant) to bring
4651      //   them to their composite pointer type. [...]
4652      //
4653      // C++ [expr.eq]p1 uses the same notion for (in)equality
4654      // comparisons of pointers.
4655      QualType T = FindCompositePointerType(lex, rex);
4656      if (T.isNull()) {
4657        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4658          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4659        return QualType();
4660      }
4661
4662      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
4663      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
4664      return ResultTy;
4665    }
4666    // C99 6.5.9p2 and C99 6.5.8p2
4667    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
4668                                   RCanPointeeTy.getUnqualifiedType())) {
4669      // Valid unless a relational comparison of function pointers
4670      if (isRelational && LCanPointeeTy->isFunctionType()) {
4671        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
4672          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4673      }
4674    } else if (!isRelational &&
4675               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
4676      // Valid unless comparison between non-null pointer and function pointer
4677      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
4678          && !LHSIsNull && !RHSIsNull) {
4679        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
4680          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4681      }
4682    } else {
4683      // Invalid
4684      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4685        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4686    }
4687    if (LCanPointeeTy != RCanPointeeTy)
4688      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4689    return ResultTy;
4690  }
4691
4692  if (getLangOptions().CPlusPlus) {
4693    // Comparison of pointers with null pointer constants and equality
4694    // comparisons of member pointers to null pointer constants.
4695    if (RHSIsNull &&
4696        (lType->isPointerType() ||
4697         (!isRelational && lType->isMemberPointerType()))) {
4698      ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
4699      return ResultTy;
4700    }
4701    if (LHSIsNull &&
4702        (rType->isPointerType() ||
4703         (!isRelational && rType->isMemberPointerType()))) {
4704      ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
4705      return ResultTy;
4706    }
4707
4708    // Comparison of member pointers.
4709    if (!isRelational &&
4710        lType->isMemberPointerType() && rType->isMemberPointerType()) {
4711      // C++ [expr.eq]p2:
4712      //   In addition, pointers to members can be compared, or a pointer to
4713      //   member and a null pointer constant. Pointer to member conversions
4714      //   (4.11) and qualification conversions (4.4) are performed to bring
4715      //   them to a common type. If one operand is a null pointer constant,
4716      //   the common type is the type of the other operand. Otherwise, the
4717      //   common type is a pointer to member type similar (4.4) to the type
4718      //   of one of the operands, with a cv-qualification signature (4.4)
4719      //   that is the union of the cv-qualification signatures of the operand
4720      //   types.
4721      QualType T = FindCompositePointerType(lex, rex);
4722      if (T.isNull()) {
4723        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4724        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4725        return QualType();
4726      }
4727
4728      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
4729      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
4730      return ResultTy;
4731    }
4732
4733    // Comparison of nullptr_t with itself.
4734    if (lType->isNullPtrType() && rType->isNullPtrType())
4735      return ResultTy;
4736  }
4737
4738  // Handle block pointer types.
4739  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
4740    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
4741    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
4742
4743    if (!LHSIsNull && !RHSIsNull &&
4744        !Context.typesAreCompatible(lpointee, rpointee)) {
4745      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4746        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4747    }
4748    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4749    return ResultTy;
4750  }
4751  // Allow block pointers to be compared with null pointer constants.
4752  if (!isRelational
4753      && ((lType->isBlockPointerType() && rType->isPointerType())
4754          || (lType->isPointerType() && rType->isBlockPointerType()))) {
4755    if (!LHSIsNull && !RHSIsNull) {
4756      if (!((rType->isPointerType() && rType->getAs<PointerType>()
4757             ->getPointeeType()->isVoidType())
4758            || (lType->isPointerType() && lType->getAs<PointerType>()
4759                ->getPointeeType()->isVoidType())))
4760        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4761          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4762    }
4763    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4764    return ResultTy;
4765  }
4766
4767  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
4768    if (lType->isPointerType() || rType->isPointerType()) {
4769      const PointerType *LPT = lType->getAs<PointerType>();
4770      const PointerType *RPT = rType->getAs<PointerType>();
4771      bool LPtrToVoid = LPT ?
4772        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
4773      bool RPtrToVoid = RPT ?
4774        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
4775
4776      if (!LPtrToVoid && !RPtrToVoid &&
4777          !Context.typesAreCompatible(lType, rType)) {
4778        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4779          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4780      }
4781      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4782      return ResultTy;
4783    }
4784    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
4785      if (!Context.areComparableObjCPointerTypes(lType, rType))
4786        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4787          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4788      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4789      return ResultTy;
4790    }
4791  }
4792  if (lType->isAnyPointerType() && rType->isIntegerType()) {
4793    unsigned DiagID = 0;
4794    if (RHSIsNull) {
4795      if (isRelational)
4796        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
4797    } else if (isRelational)
4798      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
4799    else
4800      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
4801
4802    if (DiagID) {
4803      Diag(Loc, DiagID)
4804        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4805    }
4806    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
4807    return ResultTy;
4808  }
4809  if (lType->isIntegerType() && rType->isAnyPointerType()) {
4810    unsigned DiagID = 0;
4811    if (LHSIsNull) {
4812      if (isRelational)
4813        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
4814    } else if (isRelational)
4815      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
4816    else
4817      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
4818
4819    if (DiagID) {
4820      Diag(Loc, DiagID)
4821        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4822    }
4823    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
4824    return ResultTy;
4825  }
4826  // Handle block pointers.
4827  if (!isRelational && RHSIsNull
4828      && lType->isBlockPointerType() && rType->isIntegerType()) {
4829    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
4830    return ResultTy;
4831  }
4832  if (!isRelational && LHSIsNull
4833      && lType->isIntegerType() && rType->isBlockPointerType()) {
4834    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
4835    return ResultTy;
4836  }
4837  return InvalidOperands(Loc, lex, rex);
4838}
4839
4840/// CheckVectorCompareOperands - vector comparisons are a clang extension that
4841/// operates on extended vector types.  Instead of producing an IntTy result,
4842/// like a scalar comparison, a vector comparison produces a vector of integer
4843/// types.
4844QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
4845                                          SourceLocation Loc,
4846                                          bool isRelational) {
4847  // Check to make sure we're operating on vectors of the same type and width,
4848  // Allowing one side to be a scalar of element type.
4849  QualType vType = CheckVectorOperands(Loc, lex, rex);
4850  if (vType.isNull())
4851    return vType;
4852
4853  QualType lType = lex->getType();
4854  QualType rType = rex->getType();
4855
4856  // For non-floating point types, check for self-comparisons of the form
4857  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4858  // often indicate logic errors in the program.
4859  if (!lType->isFloatingType()) {
4860    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
4861      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
4862        if (DRL->getDecl() == DRR->getDecl())
4863          Diag(Loc, diag::warn_selfcomparison);
4864  }
4865
4866  // Check for comparisons of floating point operands using != and ==.
4867  if (!isRelational && lType->isFloatingType()) {
4868    assert (rType->isFloatingType());
4869    CheckFloatComparison(Loc,lex,rex);
4870  }
4871
4872  // Return the type for the comparison, which is the same as vector type for
4873  // integer vectors, or an integer type of identical size and number of
4874  // elements for floating point vectors.
4875  if (lType->isIntegerType())
4876    return lType;
4877
4878  const VectorType *VTy = lType->getAs<VectorType>();
4879  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
4880  if (TypeSize == Context.getTypeSize(Context.IntTy))
4881    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
4882  if (TypeSize == Context.getTypeSize(Context.LongTy))
4883    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
4884
4885  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
4886         "Unhandled vector element size in vector compare");
4887  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
4888}
4889
4890inline QualType Sema::CheckBitwiseOperands(
4891  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4892  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4893    return CheckVectorOperands(Loc, lex, rex);
4894
4895  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4896
4897  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4898    return compType;
4899  return InvalidOperands(Loc, lex, rex);
4900}
4901
4902inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
4903  Expr *&lex, Expr *&rex, SourceLocation Loc) {
4904  if (!Context.getLangOptions().CPlusPlus) {
4905    UsualUnaryConversions(lex);
4906    UsualUnaryConversions(rex);
4907
4908    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
4909      return InvalidOperands(Loc, lex, rex);
4910
4911    return Context.IntTy;
4912  }
4913
4914  // C++ [expr.log.and]p1
4915  // C++ [expr.log.or]p1
4916  // The operands are both implicitly converted to type bool (clause 4).
4917  StandardConversionSequence LHS;
4918  if (!IsStandardConversion(lex, Context.BoolTy,
4919                            /*InOverloadResolution=*/false, LHS))
4920    return InvalidOperands(Loc, lex, rex);
4921
4922  if (PerformImplicitConversion(lex, Context.BoolTy, LHS,
4923                                "passing", /*IgnoreBaseAccess=*/false))
4924    return InvalidOperands(Loc, lex, rex);
4925
4926  StandardConversionSequence RHS;
4927  if (!IsStandardConversion(rex, Context.BoolTy,
4928                            /*InOverloadResolution=*/false, RHS))
4929    return InvalidOperands(Loc, lex, rex);
4930
4931  if (PerformImplicitConversion(rex, Context.BoolTy, RHS,
4932                                "passing", /*IgnoreBaseAccess=*/false))
4933    return InvalidOperands(Loc, lex, rex);
4934
4935  // C++ [expr.log.and]p2
4936  // C++ [expr.log.or]p2
4937  // The result is a bool.
4938  return Context.BoolTy;
4939}
4940
4941/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
4942/// is a read-only property; return true if so. A readonly property expression
4943/// depends on various declarations and thus must be treated specially.
4944///
4945static bool IsReadonlyProperty(Expr *E, Sema &S) {
4946  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
4947    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
4948    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
4949      QualType BaseType = PropExpr->getBase()->getType();
4950      if (const ObjCObjectPointerType *OPT =
4951            BaseType->getAsObjCInterfacePointerType())
4952        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
4953          if (S.isPropertyReadonly(PDecl, IFace))
4954            return true;
4955    }
4956  }
4957  return false;
4958}
4959
4960/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
4961/// emit an error and return true.  If so, return false.
4962static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
4963  SourceLocation OrigLoc = Loc;
4964  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
4965                                                              &Loc);
4966  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
4967    IsLV = Expr::MLV_ReadonlyProperty;
4968  if (IsLV == Expr::MLV_Valid)
4969    return false;
4970
4971  unsigned Diag = 0;
4972  bool NeedType = false;
4973  switch (IsLV) { // C99 6.5.16p2
4974  default: assert(0 && "Unknown result from isModifiableLvalue!");
4975  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
4976  case Expr::MLV_ArrayType:
4977    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
4978    NeedType = true;
4979    break;
4980  case Expr::MLV_NotObjectType:
4981    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
4982    NeedType = true;
4983    break;
4984  case Expr::MLV_LValueCast:
4985    Diag = diag::err_typecheck_lvalue_casts_not_supported;
4986    break;
4987  case Expr::MLV_InvalidExpression:
4988    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
4989    break;
4990  case Expr::MLV_IncompleteType:
4991  case Expr::MLV_IncompleteVoidType:
4992    return S.RequireCompleteType(Loc, E->getType(),
4993                PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
4994                  << E->getSourceRange());
4995  case Expr::MLV_DuplicateVectorComponents:
4996    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
4997    break;
4998  case Expr::MLV_NotBlockQualified:
4999    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
5000    break;
5001  case Expr::MLV_ReadonlyProperty:
5002    Diag = diag::error_readonly_property_assignment;
5003    break;
5004  case Expr::MLV_NoSetterProperty:
5005    Diag = diag::error_nosetter_property_assignment;
5006    break;
5007  }
5008
5009  SourceRange Assign;
5010  if (Loc != OrigLoc)
5011    Assign = SourceRange(OrigLoc, OrigLoc);
5012  if (NeedType)
5013    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
5014  else
5015    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
5016  return true;
5017}
5018
5019
5020
5021// C99 6.5.16.1
5022QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
5023                                       SourceLocation Loc,
5024                                       QualType CompoundType) {
5025  // Verify that LHS is a modifiable lvalue, and emit error if not.
5026  if (CheckForModifiableLvalue(LHS, Loc, *this))
5027    return QualType();
5028
5029  QualType LHSType = LHS->getType();
5030  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
5031
5032  AssignConvertType ConvTy;
5033  if (CompoundType.isNull()) {
5034    // Simple assignment "x = y".
5035    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
5036    // Special case of NSObject attributes on c-style pointer types.
5037    if (ConvTy == IncompatiblePointer &&
5038        ((Context.isObjCNSObjectType(LHSType) &&
5039          RHSType->isObjCObjectPointerType()) ||
5040         (Context.isObjCNSObjectType(RHSType) &&
5041          LHSType->isObjCObjectPointerType())))
5042      ConvTy = Compatible;
5043
5044    // If the RHS is a unary plus or minus, check to see if they = and + are
5045    // right next to each other.  If so, the user may have typo'd "x =+ 4"
5046    // instead of "x += 4".
5047    Expr *RHSCheck = RHS;
5048    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
5049      RHSCheck = ICE->getSubExpr();
5050    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
5051      if ((UO->getOpcode() == UnaryOperator::Plus ||
5052           UO->getOpcode() == UnaryOperator::Minus) &&
5053          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
5054          // Only if the two operators are exactly adjacent.
5055          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
5056          // And there is a space or other character before the subexpr of the
5057          // unary +/-.  We don't want to warn on "x=-1".
5058          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
5059          UO->getSubExpr()->getLocStart().isFileID()) {
5060        Diag(Loc, diag::warn_not_compound_assign)
5061          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
5062          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
5063      }
5064    }
5065  } else {
5066    // Compound assignment "x += y"
5067    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
5068  }
5069
5070  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
5071                               RHS, "assigning"))
5072    return QualType();
5073
5074  // C99 6.5.16p3: The type of an assignment expression is the type of the
5075  // left operand unless the left operand has qualified type, in which case
5076  // it is the unqualified version of the type of the left operand.
5077  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
5078  // is converted to the type of the assignment expression (above).
5079  // C++ 5.17p1: the type of the assignment expression is that of its left
5080  // operand.
5081  return LHSType.getUnqualifiedType();
5082}
5083
5084// C99 6.5.17
5085QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
5086  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
5087  DefaultFunctionArrayConversion(RHS);
5088
5089  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
5090  // incomplete in C++).
5091
5092  return RHS->getType();
5093}
5094
5095/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
5096/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
5097QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
5098                                              bool isInc) {
5099  if (Op->isTypeDependent())
5100    return Context.DependentTy;
5101
5102  QualType ResType = Op->getType();
5103  assert(!ResType.isNull() && "no type for increment/decrement expression");
5104
5105  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
5106    // Decrement of bool is not allowed.
5107    if (!isInc) {
5108      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
5109      return QualType();
5110    }
5111    // Increment of bool sets it to true, but is deprecated.
5112    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
5113  } else if (ResType->isRealType()) {
5114    // OK!
5115  } else if (ResType->isAnyPointerType()) {
5116    QualType PointeeTy = ResType->getPointeeType();
5117
5118    // C99 6.5.2.4p2, 6.5.6p2
5119    if (PointeeTy->isVoidType()) {
5120      if (getLangOptions().CPlusPlus) {
5121        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
5122          << Op->getSourceRange();
5123        return QualType();
5124      }
5125
5126      // Pointer to void is a GNU extension in C.
5127      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
5128    } else if (PointeeTy->isFunctionType()) {
5129      if (getLangOptions().CPlusPlus) {
5130        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
5131          << Op->getType() << Op->getSourceRange();
5132        return QualType();
5133      }
5134
5135      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
5136        << ResType << Op->getSourceRange();
5137    } else if (RequireCompleteType(OpLoc, PointeeTy,
5138                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5139                             << Op->getSourceRange()
5140                             << ResType))
5141      return QualType();
5142    // Diagnose bad cases where we step over interface counts.
5143    else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5144      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
5145        << PointeeTy << Op->getSourceRange();
5146      return QualType();
5147    }
5148  } else if (ResType->isComplexType()) {
5149    // C99 does not support ++/-- on complex types, we allow as an extension.
5150    Diag(OpLoc, diag::ext_integer_increment_complex)
5151      << ResType << Op->getSourceRange();
5152  } else {
5153    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
5154      << ResType << Op->getSourceRange();
5155    return QualType();
5156  }
5157  // At this point, we know we have a real, complex or pointer type.
5158  // Now make sure the operand is a modifiable lvalue.
5159  if (CheckForModifiableLvalue(Op, OpLoc, *this))
5160    return QualType();
5161  return ResType;
5162}
5163
5164/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
5165/// This routine allows us to typecheck complex/recursive expressions
5166/// where the declaration is needed for type checking. We only need to
5167/// handle cases when the expression references a function designator
5168/// or is an lvalue. Here are some examples:
5169///  - &(x) => x
5170///  - &*****f => f for f a function designator.
5171///  - &s.xx => s
5172///  - &s.zz[1].yy -> s, if zz is an array
5173///  - *(x + 1) -> x, if x is an array
5174///  - &"123"[2] -> 0
5175///  - & __real__ x -> x
5176static NamedDecl *getPrimaryDecl(Expr *E) {
5177  switch (E->getStmtClass()) {
5178  case Stmt::DeclRefExprClass:
5179    return cast<DeclRefExpr>(E)->getDecl();
5180  case Stmt::MemberExprClass:
5181    // If this is an arrow operator, the address is an offset from
5182    // the base's value, so the object the base refers to is
5183    // irrelevant.
5184    if (cast<MemberExpr>(E)->isArrow())
5185      return 0;
5186    // Otherwise, the expression refers to a part of the base
5187    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
5188  case Stmt::ArraySubscriptExprClass: {
5189    // FIXME: This code shouldn't be necessary!  We should catch the implicit
5190    // promotion of register arrays earlier.
5191    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
5192    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
5193      if (ICE->getSubExpr()->getType()->isArrayType())
5194        return getPrimaryDecl(ICE->getSubExpr());
5195    }
5196    return 0;
5197  }
5198  case Stmt::UnaryOperatorClass: {
5199    UnaryOperator *UO = cast<UnaryOperator>(E);
5200
5201    switch(UO->getOpcode()) {
5202    case UnaryOperator::Real:
5203    case UnaryOperator::Imag:
5204    case UnaryOperator::Extension:
5205      return getPrimaryDecl(UO->getSubExpr());
5206    default:
5207      return 0;
5208    }
5209  }
5210  case Stmt::ParenExprClass:
5211    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
5212  case Stmt::ImplicitCastExprClass:
5213    // If the result of an implicit cast is an l-value, we care about
5214    // the sub-expression; otherwise, the result here doesn't matter.
5215    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
5216  default:
5217    return 0;
5218  }
5219}
5220
5221/// CheckAddressOfOperand - The operand of & must be either a function
5222/// designator or an lvalue designating an object. If it is an lvalue, the
5223/// object cannot be declared with storage class register or be a bit field.
5224/// Note: The usual conversions are *not* applied to the operand of the &
5225/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
5226/// In C++, the operand might be an overloaded function name, in which case
5227/// we allow the '&' but retain the overloaded-function type.
5228QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
5229  // Make sure to ignore parentheses in subsequent checks
5230  op = op->IgnoreParens();
5231
5232  if (op->isTypeDependent())
5233    return Context.DependentTy;
5234
5235  if (getLangOptions().C99) {
5236    // Implement C99-only parts of addressof rules.
5237    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
5238      if (uOp->getOpcode() == UnaryOperator::Deref)
5239        // Per C99 6.5.3.2, the address of a deref always returns a valid result
5240        // (assuming the deref expression is valid).
5241        return uOp->getSubExpr()->getType();
5242    }
5243    // Technically, there should be a check for array subscript
5244    // expressions here, but the result of one is always an lvalue anyway.
5245  }
5246  NamedDecl *dcl = getPrimaryDecl(op);
5247  Expr::isLvalueResult lval = op->isLvalue(Context);
5248
5249  if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
5250    // C99 6.5.3.2p1
5251    // The operand must be either an l-value or a function designator
5252    if (!op->getType()->isFunctionType()) {
5253      // FIXME: emit more specific diag...
5254      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
5255        << op->getSourceRange();
5256      return QualType();
5257    }
5258  } else if (op->getBitField()) { // C99 6.5.3.2p1
5259    // The operand cannot be a bit-field
5260    Diag(OpLoc, diag::err_typecheck_address_of)
5261      << "bit-field" << op->getSourceRange();
5262        return QualType();
5263  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
5264           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
5265    // The operand cannot be an element of a vector
5266    Diag(OpLoc, diag::err_typecheck_address_of)
5267      << "vector element" << op->getSourceRange();
5268    return QualType();
5269  } else if (isa<ObjCPropertyRefExpr>(op)) {
5270    // cannot take address of a property expression.
5271    Diag(OpLoc, diag::err_typecheck_address_of)
5272      << "property expression" << op->getSourceRange();
5273    return QualType();
5274  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
5275    // FIXME: Can LHS ever be null here?
5276    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
5277      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
5278  } else if (isa<UnresolvedLookupExpr>(op)) {
5279    return Context.OverloadTy;
5280  } else if (dcl) { // C99 6.5.3.2p1
5281    // We have an lvalue with a decl. Make sure the decl is not declared
5282    // with the register storage-class specifier.
5283    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
5284      if (vd->getStorageClass() == VarDecl::Register) {
5285        Diag(OpLoc, diag::err_typecheck_address_of)
5286          << "register variable" << op->getSourceRange();
5287        return QualType();
5288      }
5289    } else if (isa<FunctionTemplateDecl>(dcl)) {
5290      return Context.OverloadTy;
5291    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
5292      // Okay: we can take the address of a field.
5293      // Could be a pointer to member, though, if there is an explicit
5294      // scope qualifier for the class.
5295      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
5296        DeclContext *Ctx = dcl->getDeclContext();
5297        if (Ctx && Ctx->isRecord()) {
5298          if (FD->getType()->isReferenceType()) {
5299            Diag(OpLoc,
5300                 diag::err_cannot_form_pointer_to_member_of_reference_type)
5301              << FD->getDeclName() << FD->getType();
5302            return QualType();
5303          }
5304
5305          return Context.getMemberPointerType(op->getType(),
5306                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
5307        }
5308      }
5309    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
5310      // Okay: we can take the address of a function.
5311      // As above.
5312      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
5313          MD->isInstance())
5314        return Context.getMemberPointerType(op->getType(),
5315              Context.getTypeDeclType(MD->getParent()).getTypePtr());
5316    } else if (!isa<FunctionDecl>(dcl))
5317      assert(0 && "Unknown/unexpected decl type");
5318  }
5319
5320  if (lval == Expr::LV_IncompleteVoidType) {
5321    // Taking the address of a void variable is technically illegal, but we
5322    // allow it in cases which are otherwise valid.
5323    // Example: "extern void x; void* y = &x;".
5324    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
5325  }
5326
5327  // If the operand has type "type", the result has type "pointer to type".
5328  return Context.getPointerType(op->getType());
5329}
5330
5331QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
5332  if (Op->isTypeDependent())
5333    return Context.DependentTy;
5334
5335  UsualUnaryConversions(Op);
5336  QualType Ty = Op->getType();
5337
5338  // Note that per both C89 and C99, this is always legal, even if ptype is an
5339  // incomplete type or void.  It would be possible to warn about dereferencing
5340  // a void pointer, but it's completely well-defined, and such a warning is
5341  // unlikely to catch any mistakes.
5342  if (const PointerType *PT = Ty->getAs<PointerType>())
5343    return PT->getPointeeType();
5344
5345  if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>())
5346    return OPT->getPointeeType();
5347
5348  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
5349    << Ty << Op->getSourceRange();
5350  return QualType();
5351}
5352
5353static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
5354  tok::TokenKind Kind) {
5355  BinaryOperator::Opcode Opc;
5356  switch (Kind) {
5357  default: assert(0 && "Unknown binop!");
5358  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
5359  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
5360  case tok::star:                 Opc = BinaryOperator::Mul; break;
5361  case tok::slash:                Opc = BinaryOperator::Div; break;
5362  case tok::percent:              Opc = BinaryOperator::Rem; break;
5363  case tok::plus:                 Opc = BinaryOperator::Add; break;
5364  case tok::minus:                Opc = BinaryOperator::Sub; break;
5365  case tok::lessless:             Opc = BinaryOperator::Shl; break;
5366  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
5367  case tok::lessequal:            Opc = BinaryOperator::LE; break;
5368  case tok::less:                 Opc = BinaryOperator::LT; break;
5369  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
5370  case tok::greater:              Opc = BinaryOperator::GT; break;
5371  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
5372  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
5373  case tok::amp:                  Opc = BinaryOperator::And; break;
5374  case tok::caret:                Opc = BinaryOperator::Xor; break;
5375  case tok::pipe:                 Opc = BinaryOperator::Or; break;
5376  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
5377  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
5378  case tok::equal:                Opc = BinaryOperator::Assign; break;
5379  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
5380  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
5381  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
5382  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
5383  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
5384  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
5385  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
5386  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
5387  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
5388  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
5389  case tok::comma:                Opc = BinaryOperator::Comma; break;
5390  }
5391  return Opc;
5392}
5393
5394static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
5395  tok::TokenKind Kind) {
5396  UnaryOperator::Opcode Opc;
5397  switch (Kind) {
5398  default: assert(0 && "Unknown unary op!");
5399  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
5400  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
5401  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
5402  case tok::star:         Opc = UnaryOperator::Deref; break;
5403  case tok::plus:         Opc = UnaryOperator::Plus; break;
5404  case tok::minus:        Opc = UnaryOperator::Minus; break;
5405  case tok::tilde:        Opc = UnaryOperator::Not; break;
5406  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
5407  case tok::kw___real:    Opc = UnaryOperator::Real; break;
5408  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
5409  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
5410  }
5411  return Opc;
5412}
5413
5414/// CreateBuiltinBinOp - Creates a new built-in binary operation with
5415/// operator @p Opc at location @c TokLoc. This routine only supports
5416/// built-in operations; ActOnBinOp handles overloaded operators.
5417Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
5418                                                  unsigned Op,
5419                                                  Expr *lhs, Expr *rhs) {
5420  QualType ResultTy;     // Result type of the binary operator.
5421  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
5422  // The following two variables are used for compound assignment operators
5423  QualType CompLHSTy;    // Type of LHS after promotions for computation
5424  QualType CompResultTy; // Type of computation result
5425
5426  switch (Opc) {
5427  case BinaryOperator::Assign:
5428    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
5429    break;
5430  case BinaryOperator::PtrMemD:
5431  case BinaryOperator::PtrMemI:
5432    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
5433                                            Opc == BinaryOperator::PtrMemI);
5434    break;
5435  case BinaryOperator::Mul:
5436  case BinaryOperator::Div:
5437    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
5438    break;
5439  case BinaryOperator::Rem:
5440    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
5441    break;
5442  case BinaryOperator::Add:
5443    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
5444    break;
5445  case BinaryOperator::Sub:
5446    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
5447    break;
5448  case BinaryOperator::Shl:
5449  case BinaryOperator::Shr:
5450    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
5451    break;
5452  case BinaryOperator::LE:
5453  case BinaryOperator::LT:
5454  case BinaryOperator::GE:
5455  case BinaryOperator::GT:
5456    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
5457    break;
5458  case BinaryOperator::EQ:
5459  case BinaryOperator::NE:
5460    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
5461    break;
5462  case BinaryOperator::And:
5463  case BinaryOperator::Xor:
5464  case BinaryOperator::Or:
5465    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
5466    break;
5467  case BinaryOperator::LAnd:
5468  case BinaryOperator::LOr:
5469    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
5470    break;
5471  case BinaryOperator::MulAssign:
5472  case BinaryOperator::DivAssign:
5473    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
5474    CompLHSTy = CompResultTy;
5475    if (!CompResultTy.isNull())
5476      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5477    break;
5478  case BinaryOperator::RemAssign:
5479    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
5480    CompLHSTy = CompResultTy;
5481    if (!CompResultTy.isNull())
5482      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5483    break;
5484  case BinaryOperator::AddAssign:
5485    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
5486    if (!CompResultTy.isNull())
5487      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5488    break;
5489  case BinaryOperator::SubAssign:
5490    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
5491    if (!CompResultTy.isNull())
5492      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5493    break;
5494  case BinaryOperator::ShlAssign:
5495  case BinaryOperator::ShrAssign:
5496    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
5497    CompLHSTy = CompResultTy;
5498    if (!CompResultTy.isNull())
5499      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5500    break;
5501  case BinaryOperator::AndAssign:
5502  case BinaryOperator::XorAssign:
5503  case BinaryOperator::OrAssign:
5504    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
5505    CompLHSTy = CompResultTy;
5506    if (!CompResultTy.isNull())
5507      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5508    break;
5509  case BinaryOperator::Comma:
5510    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
5511    break;
5512  }
5513  if (ResultTy.isNull())
5514    return ExprError();
5515  if (CompResultTy.isNull())
5516    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
5517  else
5518    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
5519                                                      CompLHSTy, CompResultTy,
5520                                                      OpLoc));
5521}
5522
5523/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
5524/// ParenRange in parentheses.
5525static void SuggestParentheses(Sema &Self, SourceLocation Loc,
5526                               const PartialDiagnostic &PD,
5527                               SourceRange ParenRange)
5528{
5529  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
5530  if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
5531    // We can't display the parentheses, so just dig the
5532    // warning/error and return.
5533    Self.Diag(Loc, PD);
5534    return;
5535  }
5536
5537  Self.Diag(Loc, PD)
5538    << CodeModificationHint::CreateInsertion(ParenRange.getBegin(), "(")
5539    << CodeModificationHint::CreateInsertion(EndLoc, ")");
5540}
5541
5542/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
5543/// operators are mixed in a way that suggests that the programmer forgot that
5544/// comparison operators have higher precedence. The most typical example of
5545/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
5546static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
5547                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
5548  typedef BinaryOperator BinOp;
5549  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
5550                rhsopc = static_cast<BinOp::Opcode>(-1);
5551  if (BinOp *BO = dyn_cast<BinOp>(lhs))
5552    lhsopc = BO->getOpcode();
5553  if (BinOp *BO = dyn_cast<BinOp>(rhs))
5554    rhsopc = BO->getOpcode();
5555
5556  // Subs are not binary operators.
5557  if (lhsopc == -1 && rhsopc == -1)
5558    return;
5559
5560  // Bitwise operations are sometimes used as eager logical ops.
5561  // Don't diagnose this.
5562  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
5563      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
5564    return;
5565
5566  if (BinOp::isComparisonOp(lhsopc))
5567    SuggestParentheses(Self, OpLoc,
5568      PDiag(diag::warn_precedence_bitwise_rel)
5569          << SourceRange(lhs->getLocStart(), OpLoc)
5570          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
5571      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
5572  else if (BinOp::isComparisonOp(rhsopc))
5573    SuggestParentheses(Self, OpLoc,
5574      PDiag(diag::warn_precedence_bitwise_rel)
5575          << SourceRange(OpLoc, rhs->getLocEnd())
5576          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
5577      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()));
5578}
5579
5580/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
5581/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
5582/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
5583static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
5584                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
5585  if (BinaryOperator::isBitwiseOp(Opc))
5586    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
5587}
5588
5589// Binary Operators.  'Tok' is the token for the operator.
5590Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
5591                                          tok::TokenKind Kind,
5592                                          ExprArg LHS, ExprArg RHS) {
5593  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
5594  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
5595
5596  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
5597  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
5598
5599  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
5600  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
5601
5602  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
5603}
5604
5605Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
5606                                          BinaryOperator::Opcode Opc,
5607                                          Expr *lhs, Expr *rhs) {
5608  if (getLangOptions().CPlusPlus &&
5609      (lhs->getType()->isOverloadableType() ||
5610       rhs->getType()->isOverloadableType())) {
5611    // Find all of the overloaded operators visible from this
5612    // point. We perform both an operator-name lookup from the local
5613    // scope and an argument-dependent lookup based on the types of
5614    // the arguments.
5615    FunctionSet Functions;
5616    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
5617    if (OverOp != OO_None) {
5618      if (S)
5619        LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
5620                                     Functions);
5621      Expr *Args[2] = { lhs, rhs };
5622      DeclarationName OpName
5623        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5624      ArgumentDependentLookup(OpName, /*Operator*/true, Args, 2, Functions);
5625    }
5626
5627    // Build the (potentially-overloaded, potentially-dependent)
5628    // binary operation.
5629    return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
5630  }
5631
5632  // Build a built-in binary operation.
5633  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
5634}
5635
5636Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
5637                                                    unsigned OpcIn,
5638                                                    ExprArg InputArg) {
5639  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5640
5641  // FIXME: Input is modified below, but InputArg is not updated appropriately.
5642  Expr *Input = (Expr *)InputArg.get();
5643  QualType resultType;
5644  switch (Opc) {
5645  case UnaryOperator::OffsetOf:
5646    assert(false && "Invalid unary operator");
5647    break;
5648
5649  case UnaryOperator::PreInc:
5650  case UnaryOperator::PreDec:
5651  case UnaryOperator::PostInc:
5652  case UnaryOperator::PostDec:
5653    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
5654                                                Opc == UnaryOperator::PreInc ||
5655                                                Opc == UnaryOperator::PostInc);
5656    break;
5657  case UnaryOperator::AddrOf:
5658    resultType = CheckAddressOfOperand(Input, OpLoc);
5659    break;
5660  case UnaryOperator::Deref:
5661    DefaultFunctionArrayConversion(Input);
5662    resultType = CheckIndirectionOperand(Input, OpLoc);
5663    break;
5664  case UnaryOperator::Plus:
5665  case UnaryOperator::Minus:
5666    UsualUnaryConversions(Input);
5667    resultType = Input->getType();
5668    if (resultType->isDependentType())
5669      break;
5670    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
5671      break;
5672    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
5673             resultType->isEnumeralType())
5674      break;
5675    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
5676             Opc == UnaryOperator::Plus &&
5677             resultType->isPointerType())
5678      break;
5679
5680    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5681      << resultType << Input->getSourceRange());
5682  case UnaryOperator::Not: // bitwise complement
5683    UsualUnaryConversions(Input);
5684    resultType = Input->getType();
5685    if (resultType->isDependentType())
5686      break;
5687    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
5688    if (resultType->isComplexType() || resultType->isComplexIntegerType())
5689      // C99 does not support '~' for complex conjugation.
5690      Diag(OpLoc, diag::ext_integer_complement_complex)
5691        << resultType << Input->getSourceRange();
5692    else if (!resultType->isIntegerType())
5693      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5694        << resultType << Input->getSourceRange());
5695    break;
5696  case UnaryOperator::LNot: // logical negation
5697    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
5698    DefaultFunctionArrayConversion(Input);
5699    resultType = Input->getType();
5700    if (resultType->isDependentType())
5701      break;
5702    if (!resultType->isScalarType()) // C99 6.5.3.3p1
5703      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5704        << resultType << Input->getSourceRange());
5705    // LNot always has type int. C99 6.5.3.3p5.
5706    // In C++, it's bool. C++ 5.3.1p8
5707    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
5708    break;
5709  case UnaryOperator::Real:
5710  case UnaryOperator::Imag:
5711    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
5712    break;
5713  case UnaryOperator::Extension:
5714    resultType = Input->getType();
5715    break;
5716  }
5717  if (resultType.isNull())
5718    return ExprError();
5719
5720  InputArg.release();
5721  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
5722}
5723
5724Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
5725                                            UnaryOperator::Opcode Opc,
5726                                            ExprArg input) {
5727  Expr *Input = (Expr*)input.get();
5728  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
5729      Opc != UnaryOperator::Extension) {
5730    // Find all of the overloaded operators visible from this
5731    // point. We perform both an operator-name lookup from the local
5732    // scope and an argument-dependent lookup based on the types of
5733    // the arguments.
5734    FunctionSet Functions;
5735    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
5736    if (OverOp != OO_None) {
5737      if (S)
5738        LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
5739                                     Functions);
5740      DeclarationName OpName
5741        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5742      ArgumentDependentLookup(OpName, /*Operator*/true, &Input, 1, Functions);
5743    }
5744
5745    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
5746  }
5747
5748  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
5749}
5750
5751// Unary Operators.  'Tok' is the token for the operator.
5752Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
5753                                            tok::TokenKind Op, ExprArg input) {
5754  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input));
5755}
5756
5757/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
5758Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
5759                                            SourceLocation LabLoc,
5760                                            IdentifierInfo *LabelII) {
5761  // Look up the record for this label identifier.
5762  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
5763
5764  // If we haven't seen this label yet, create a forward reference. It
5765  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
5766  if (LabelDecl == 0)
5767    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
5768
5769  // Create the AST node.  The address of a label always has type 'void*'.
5770  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
5771                                       Context.getPointerType(Context.VoidTy)));
5772}
5773
5774Sema::OwningExprResult
5775Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
5776                    SourceLocation RPLoc) { // "({..})"
5777  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
5778  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
5779  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
5780
5781  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
5782  if (isFileScope)
5783    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
5784
5785  // FIXME: there are a variety of strange constraints to enforce here, for
5786  // example, it is not possible to goto into a stmt expression apparently.
5787  // More semantic analysis is needed.
5788
5789  // If there are sub stmts in the compound stmt, take the type of the last one
5790  // as the type of the stmtexpr.
5791  QualType Ty = Context.VoidTy;
5792
5793  if (!Compound->body_empty()) {
5794    Stmt *LastStmt = Compound->body_back();
5795    // If LastStmt is a label, skip down through into the body.
5796    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
5797      LastStmt = Label->getSubStmt();
5798
5799    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
5800      Ty = LastExpr->getType();
5801  }
5802
5803  // FIXME: Check that expression type is complete/non-abstract; statement
5804  // expressions are not lvalues.
5805
5806  substmt.release();
5807  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
5808}
5809
5810Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
5811                                                  SourceLocation BuiltinLoc,
5812                                                  SourceLocation TypeLoc,
5813                                                  TypeTy *argty,
5814                                                  OffsetOfComponent *CompPtr,
5815                                                  unsigned NumComponents,
5816                                                  SourceLocation RPLoc) {
5817  // FIXME: This function leaks all expressions in the offset components on
5818  // error.
5819  // FIXME: Preserve type source info.
5820  QualType ArgTy = GetTypeFromParser(argty);
5821  assert(!ArgTy.isNull() && "Missing type argument!");
5822
5823  bool Dependent = ArgTy->isDependentType();
5824
5825  // We must have at least one component that refers to the type, and the first
5826  // one is known to be a field designator.  Verify that the ArgTy represents
5827  // a struct/union/class.
5828  if (!Dependent && !ArgTy->isRecordType())
5829    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
5830
5831  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
5832  // with an incomplete type would be illegal.
5833
5834  // Otherwise, create a null pointer as the base, and iteratively process
5835  // the offsetof designators.
5836  QualType ArgTyPtr = Context.getPointerType(ArgTy);
5837  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
5838  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
5839                                    ArgTy, SourceLocation());
5840
5841  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
5842  // GCC extension, diagnose them.
5843  // FIXME: This diagnostic isn't actually visible because the location is in
5844  // a system header!
5845  if (NumComponents != 1)
5846    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
5847      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
5848
5849  if (!Dependent) {
5850    bool DidWarnAboutNonPOD = false;
5851
5852    if (RequireCompleteType(TypeLoc, Res->getType(),
5853                            diag::err_offsetof_incomplete_type))
5854      return ExprError();
5855
5856    // FIXME: Dependent case loses a lot of information here. And probably
5857    // leaks like a sieve.
5858    for (unsigned i = 0; i != NumComponents; ++i) {
5859      const OffsetOfComponent &OC = CompPtr[i];
5860      if (OC.isBrackets) {
5861        // Offset of an array sub-field.  TODO: Should we allow vector elements?
5862        const ArrayType *AT = Context.getAsArrayType(Res->getType());
5863        if (!AT) {
5864          Res->Destroy(Context);
5865          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
5866            << Res->getType());
5867        }
5868
5869        // FIXME: C++: Verify that operator[] isn't overloaded.
5870
5871        // Promote the array so it looks more like a normal array subscript
5872        // expression.
5873        DefaultFunctionArrayConversion(Res);
5874
5875        // C99 6.5.2.1p1
5876        Expr *Idx = static_cast<Expr*>(OC.U.E);
5877        // FIXME: Leaks Res
5878        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
5879          return ExprError(Diag(Idx->getLocStart(),
5880                                diag::err_typecheck_subscript_not_integer)
5881            << Idx->getSourceRange());
5882
5883        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
5884                                               OC.LocEnd);
5885        continue;
5886      }
5887
5888      const RecordType *RC = Res->getType()->getAs<RecordType>();
5889      if (!RC) {
5890        Res->Destroy(Context);
5891        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
5892          << Res->getType());
5893      }
5894
5895      // Get the decl corresponding to this.
5896      RecordDecl *RD = RC->getDecl();
5897      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5898        if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
5899          ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
5900            << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
5901            << Res->getType());
5902          DidWarnAboutNonPOD = true;
5903        }
5904      }
5905
5906      LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
5907      LookupQualifiedName(R, RD);
5908
5909      FieldDecl *MemberDecl
5910        = dyn_cast_or_null<FieldDecl>(R.getAsSingleDecl(Context));
5911      // FIXME: Leaks Res
5912      if (!MemberDecl)
5913        return ExprError(Diag(BuiltinLoc, diag::err_no_member)
5914         << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
5915
5916      // FIXME: C++: Verify that MemberDecl isn't a static field.
5917      // FIXME: Verify that MemberDecl isn't a bitfield.
5918      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
5919        Res = BuildAnonymousStructUnionMemberReference(
5920            OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>();
5921      } else {
5922        // MemberDecl->getType() doesn't get the right qualifiers, but it
5923        // doesn't matter here.
5924        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
5925                MemberDecl->getType().getNonReferenceType());
5926      }
5927    }
5928  }
5929
5930  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
5931                                           Context.getSizeType(), BuiltinLoc));
5932}
5933
5934
5935Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
5936                                                      TypeTy *arg1,TypeTy *arg2,
5937                                                      SourceLocation RPLoc) {
5938  // FIXME: Preserve type source info.
5939  QualType argT1 = GetTypeFromParser(arg1);
5940  QualType argT2 = GetTypeFromParser(arg2);
5941
5942  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
5943
5944  if (getLangOptions().CPlusPlus) {
5945    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
5946      << SourceRange(BuiltinLoc, RPLoc);
5947    return ExprError();
5948  }
5949
5950  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
5951                                                 argT1, argT2, RPLoc));
5952}
5953
5954Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
5955                                             ExprArg cond,
5956                                             ExprArg expr1, ExprArg expr2,
5957                                             SourceLocation RPLoc) {
5958  Expr *CondExpr = static_cast<Expr*>(cond.get());
5959  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
5960  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
5961
5962  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
5963
5964  QualType resType;
5965  bool ValueDependent = false;
5966  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
5967    resType = Context.DependentTy;
5968    ValueDependent = true;
5969  } else {
5970    // The conditional expression is required to be a constant expression.
5971    llvm::APSInt condEval(32);
5972    SourceLocation ExpLoc;
5973    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
5974      return ExprError(Diag(ExpLoc,
5975                       diag::err_typecheck_choose_expr_requires_constant)
5976        << CondExpr->getSourceRange());
5977
5978    // If the condition is > zero, then the AST type is the same as the LSHExpr.
5979    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
5980    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
5981                                             : RHSExpr->isValueDependent();
5982  }
5983
5984  cond.release(); expr1.release(); expr2.release();
5985  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
5986                                        resType, RPLoc,
5987                                        resType->isDependentType(),
5988                                        ValueDependent));
5989}
5990
5991//===----------------------------------------------------------------------===//
5992// Clang Extensions.
5993//===----------------------------------------------------------------------===//
5994
5995/// ActOnBlockStart - This callback is invoked when a block literal is started.
5996void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
5997  // Analyze block parameters.
5998  BlockSemaInfo *BSI = new BlockSemaInfo();
5999
6000  // Add BSI to CurBlock.
6001  BSI->PrevBlockInfo = CurBlock;
6002  CurBlock = BSI;
6003
6004  BSI->ReturnType = QualType();
6005  BSI->TheScope = BlockScope;
6006  BSI->hasBlockDeclRefExprs = false;
6007  BSI->hasPrototype = false;
6008  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
6009  CurFunctionNeedsScopeChecking = false;
6010
6011  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
6012  PushDeclContext(BlockScope, BSI->TheDecl);
6013}
6014
6015void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
6016  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
6017
6018  if (ParamInfo.getNumTypeObjects() == 0
6019      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
6020    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
6021    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
6022
6023    if (T->isArrayType()) {
6024      Diag(ParamInfo.getSourceRange().getBegin(),
6025           diag::err_block_returns_array);
6026      return;
6027    }
6028
6029    // The parameter list is optional, if there was none, assume ().
6030    if (!T->isFunctionType())
6031      T = Context.getFunctionType(T, NULL, 0, 0, 0);
6032
6033    CurBlock->hasPrototype = true;
6034    CurBlock->isVariadic = false;
6035    // Check for a valid sentinel attribute on this block.
6036    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
6037      Diag(ParamInfo.getAttributes()->getLoc(),
6038           diag::warn_attribute_sentinel_not_variadic) << 1;
6039      // FIXME: remove the attribute.
6040    }
6041    QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType();
6042
6043    // Do not allow returning a objc interface by-value.
6044    if (RetTy->isObjCInterfaceType()) {
6045      Diag(ParamInfo.getSourceRange().getBegin(),
6046           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
6047      return;
6048    }
6049    return;
6050  }
6051
6052  // Analyze arguments to block.
6053  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
6054         "Not a function declarator!");
6055  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
6056
6057  CurBlock->hasPrototype = FTI.hasPrototype;
6058  CurBlock->isVariadic = true;
6059
6060  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
6061  // no arguments, not a function that takes a single void argument.
6062  if (FTI.hasPrototype &&
6063      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6064     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
6065        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
6066    // empty arg list, don't push any params.
6067    CurBlock->isVariadic = false;
6068  } else if (FTI.hasPrototype) {
6069    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
6070      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
6071    CurBlock->isVariadic = FTI.isVariadic;
6072  }
6073  CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
6074                               CurBlock->Params.size());
6075  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
6076  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
6077  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
6078       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
6079    // If this has an identifier, add it to the scope stack.
6080    if ((*AI)->getIdentifier())
6081      PushOnScopeChains(*AI, CurBlock->TheScope);
6082
6083  // Check for a valid sentinel attribute on this block.
6084  if (!CurBlock->isVariadic &&
6085      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
6086    Diag(ParamInfo.getAttributes()->getLoc(),
6087         diag::warn_attribute_sentinel_not_variadic) << 1;
6088    // FIXME: remove the attribute.
6089  }
6090
6091  // Analyze the return type.
6092  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
6093  QualType RetTy = T->getAs<FunctionType>()->getResultType();
6094
6095  // Do not allow returning a objc interface by-value.
6096  if (RetTy->isObjCInterfaceType()) {
6097    Diag(ParamInfo.getSourceRange().getBegin(),
6098         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
6099  } else if (!RetTy->isDependentType())
6100    CurBlock->ReturnType = RetTy;
6101}
6102
6103/// ActOnBlockError - If there is an error parsing a block, this callback
6104/// is invoked to pop the information about the block from the action impl.
6105void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
6106  // Ensure that CurBlock is deleted.
6107  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
6108
6109  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
6110
6111  // Pop off CurBlock, handle nested blocks.
6112  PopDeclContext();
6113  CurBlock = CurBlock->PrevBlockInfo;
6114  // FIXME: Delete the ParmVarDecl objects as well???
6115}
6116
6117/// ActOnBlockStmtExpr - This is called when the body of a block statement
6118/// literal was successfully completed.  ^(int x){...}
6119Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
6120                                                StmtArg body, Scope *CurScope) {
6121  // If blocks are disabled, emit an error.
6122  if (!LangOpts.Blocks)
6123    Diag(CaretLoc, diag::err_blocks_disable);
6124
6125  // Ensure that CurBlock is deleted.
6126  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
6127
6128  PopDeclContext();
6129
6130  // Pop off CurBlock, handle nested blocks.
6131  CurBlock = CurBlock->PrevBlockInfo;
6132
6133  QualType RetTy = Context.VoidTy;
6134  if (!BSI->ReturnType.isNull())
6135    RetTy = BSI->ReturnType;
6136
6137  llvm::SmallVector<QualType, 8> ArgTypes;
6138  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
6139    ArgTypes.push_back(BSI->Params[i]->getType());
6140
6141  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
6142  QualType BlockTy;
6143  if (!BSI->hasPrototype)
6144    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
6145                                      NoReturn);
6146  else
6147    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
6148                                      BSI->isVariadic, 0, false, false, 0, 0,
6149                                      NoReturn);
6150
6151  // FIXME: Check that return/parameter types are complete/non-abstract
6152  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
6153  BlockTy = Context.getBlockPointerType(BlockTy);
6154
6155  // If needed, diagnose invalid gotos and switches in the block.
6156  if (CurFunctionNeedsScopeChecking)
6157    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
6158  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
6159
6160  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
6161  CheckFallThroughForBlock(BlockTy, BSI->TheDecl->getBody());
6162  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
6163                                       BSI->hasBlockDeclRefExprs));
6164}
6165
6166Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
6167                                        ExprArg expr, TypeTy *type,
6168                                        SourceLocation RPLoc) {
6169  QualType T = GetTypeFromParser(type);
6170  Expr *E = static_cast<Expr*>(expr.get());
6171  Expr *OrigExpr = E;
6172
6173  InitBuiltinVaListType();
6174
6175  // Get the va_list type
6176  QualType VaListType = Context.getBuiltinVaListType();
6177  if (VaListType->isArrayType()) {
6178    // Deal with implicit array decay; for example, on x86-64,
6179    // va_list is an array, but it's supposed to decay to
6180    // a pointer for va_arg.
6181    VaListType = Context.getArrayDecayedType(VaListType);
6182    // Make sure the input expression also decays appropriately.
6183    UsualUnaryConversions(E);
6184  } else {
6185    // Otherwise, the va_list argument must be an l-value because
6186    // it is modified by va_arg.
6187    if (!E->isTypeDependent() &&
6188        CheckForModifiableLvalue(E, BuiltinLoc, *this))
6189      return ExprError();
6190  }
6191
6192  if (!E->isTypeDependent() &&
6193      !Context.hasSameType(VaListType, E->getType())) {
6194    return ExprError(Diag(E->getLocStart(),
6195                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
6196      << OrigExpr->getType() << E->getSourceRange());
6197  }
6198
6199  // FIXME: Check that type is complete/non-abstract
6200  // FIXME: Warn if a non-POD type is passed in.
6201
6202  expr.release();
6203  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
6204                                       RPLoc));
6205}
6206
6207Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
6208  // The type of __null will be int or long, depending on the size of
6209  // pointers on the target.
6210  QualType Ty;
6211  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
6212    Ty = Context.IntTy;
6213  else
6214    Ty = Context.LongTy;
6215
6216  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
6217}
6218
6219static void
6220MakeObjCStringLiteralCodeModificationHint(Sema& SemaRef,
6221                                          QualType DstType,
6222                                          Expr *SrcExpr,
6223                                          CodeModificationHint &Hint) {
6224  if (!SemaRef.getLangOptions().ObjC1)
6225    return;
6226
6227  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
6228  if (!PT)
6229    return;
6230
6231  // Check if the destination is of type 'id'.
6232  if (!PT->isObjCIdType()) {
6233    // Check if the destination is the 'NSString' interface.
6234    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
6235    if (!ID || !ID->getIdentifier()->isStr("NSString"))
6236      return;
6237  }
6238
6239  // Strip off any parens and casts.
6240  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
6241  if (!SL || SL->isWide())
6242    return;
6243
6244  Hint = CodeModificationHint::CreateInsertion(SL->getLocStart(), "@");
6245}
6246
6247bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
6248                                    SourceLocation Loc,
6249                                    QualType DstType, QualType SrcType,
6250                                    Expr *SrcExpr, const char *Flavor) {
6251  // Decode the result (notice that AST's are still created for extensions).
6252  bool isInvalid = false;
6253  unsigned DiagKind;
6254  CodeModificationHint Hint;
6255
6256  switch (ConvTy) {
6257  default: assert(0 && "Unknown conversion type");
6258  case Compatible: return false;
6259  case PointerToInt:
6260    DiagKind = diag::ext_typecheck_convert_pointer_int;
6261    break;
6262  case IntToPointer:
6263    DiagKind = diag::ext_typecheck_convert_int_pointer;
6264    break;
6265  case IncompatiblePointer:
6266    MakeObjCStringLiteralCodeModificationHint(*this, DstType, SrcExpr, Hint);
6267    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
6268    break;
6269  case IncompatiblePointerSign:
6270    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
6271    break;
6272  case FunctionVoidPointer:
6273    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
6274    break;
6275  case CompatiblePointerDiscardsQualifiers:
6276    // If the qualifiers lost were because we were applying the
6277    // (deprecated) C++ conversion from a string literal to a char*
6278    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
6279    // Ideally, this check would be performed in
6280    // CheckPointerTypesForAssignment. However, that would require a
6281    // bit of refactoring (so that the second argument is an
6282    // expression, rather than a type), which should be done as part
6283    // of a larger effort to fix CheckPointerTypesForAssignment for
6284    // C++ semantics.
6285    if (getLangOptions().CPlusPlus &&
6286        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
6287      return false;
6288    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
6289    break;
6290  case IncompatibleNestedPointerQualifiers:
6291    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
6292    break;
6293  case IntToBlockPointer:
6294    DiagKind = diag::err_int_to_block_pointer;
6295    break;
6296  case IncompatibleBlockPointer:
6297    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
6298    break;
6299  case IncompatibleObjCQualifiedId:
6300    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
6301    // it can give a more specific diagnostic.
6302    DiagKind = diag::warn_incompatible_qualified_id;
6303    break;
6304  case IncompatibleVectors:
6305    DiagKind = diag::warn_incompatible_vectors;
6306    break;
6307  case Incompatible:
6308    DiagKind = diag::err_typecheck_convert_incompatible;
6309    isInvalid = true;
6310    break;
6311  }
6312
6313  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
6314    << SrcExpr->getSourceRange() << Hint;
6315  return isInvalid;
6316}
6317
6318bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
6319  llvm::APSInt ICEResult;
6320  if (E->isIntegerConstantExpr(ICEResult, Context)) {
6321    if (Result)
6322      *Result = ICEResult;
6323    return false;
6324  }
6325
6326  Expr::EvalResult EvalResult;
6327
6328  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
6329      EvalResult.HasSideEffects) {
6330    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
6331
6332    if (EvalResult.Diag) {
6333      // We only show the note if it's not the usual "invalid subexpression"
6334      // or if it's actually in a subexpression.
6335      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
6336          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
6337        Diag(EvalResult.DiagLoc, EvalResult.Diag);
6338    }
6339
6340    return true;
6341  }
6342
6343  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
6344    E->getSourceRange();
6345
6346  if (EvalResult.Diag &&
6347      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
6348    Diag(EvalResult.DiagLoc, EvalResult.Diag);
6349
6350  if (Result)
6351    *Result = EvalResult.Val.getInt();
6352  return false;
6353}
6354
6355Sema::ExpressionEvaluationContext
6356Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
6357  // Introduce a new set of potentially referenced declarations to the stack.
6358  if (NewContext == PotentiallyPotentiallyEvaluated)
6359    PotentiallyReferencedDeclStack.push_back(PotentiallyReferencedDecls());
6360
6361  std::swap(ExprEvalContext, NewContext);
6362  return NewContext;
6363}
6364
6365void
6366Sema::PopExpressionEvaluationContext(ExpressionEvaluationContext OldContext,
6367                                     ExpressionEvaluationContext NewContext) {
6368  ExprEvalContext = NewContext;
6369
6370  if (OldContext == PotentiallyPotentiallyEvaluated) {
6371    // Mark any remaining declarations in the current position of the stack
6372    // as "referenced". If they were not meant to be referenced, semantic
6373    // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
6374    PotentiallyReferencedDecls RemainingDecls;
6375    RemainingDecls.swap(PotentiallyReferencedDeclStack.back());
6376    PotentiallyReferencedDeclStack.pop_back();
6377
6378    for (PotentiallyReferencedDecls::iterator I = RemainingDecls.begin(),
6379                                           IEnd = RemainingDecls.end();
6380         I != IEnd; ++I)
6381      MarkDeclarationReferenced(I->first, I->second);
6382  }
6383}
6384
6385/// \brief Note that the given declaration was referenced in the source code.
6386///
6387/// This routine should be invoke whenever a given declaration is referenced
6388/// in the source code, and where that reference occurred. If this declaration
6389/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
6390/// C99 6.9p3), then the declaration will be marked as used.
6391///
6392/// \param Loc the location where the declaration was referenced.
6393///
6394/// \param D the declaration that has been referenced by the source code.
6395void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
6396  assert(D && "No declaration?");
6397
6398  if (D->isUsed())
6399    return;
6400
6401  // Mark a parameter or variable declaration "used", regardless of whether we're in a
6402  // template or not. The reason for this is that unevaluated expressions
6403  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
6404  // -Wunused-parameters)
6405  if (isa<ParmVarDecl>(D) ||
6406      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod()))
6407    D->setUsed(true);
6408
6409  // Do not mark anything as "used" within a dependent context; wait for
6410  // an instantiation.
6411  if (CurContext->isDependentContext())
6412    return;
6413
6414  switch (ExprEvalContext) {
6415    case Unevaluated:
6416      // We are in an expression that is not potentially evaluated; do nothing.
6417      return;
6418
6419    case PotentiallyEvaluated:
6420      // We are in a potentially-evaluated expression, so this declaration is
6421      // "used"; handle this below.
6422      break;
6423
6424    case PotentiallyPotentiallyEvaluated:
6425      // We are in an expression that may be potentially evaluated; queue this
6426      // declaration reference until we know whether the expression is
6427      // potentially evaluated.
6428      PotentiallyReferencedDeclStack.back().push_back(std::make_pair(Loc, D));
6429      return;
6430  }
6431
6432  // Note that this declaration has been used.
6433  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
6434    unsigned TypeQuals;
6435    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
6436        if (!Constructor->isUsed())
6437          DefineImplicitDefaultConstructor(Loc, Constructor);
6438    } else if (Constructor->isImplicit() &&
6439               Constructor->isCopyConstructor(Context, TypeQuals)) {
6440      if (!Constructor->isUsed())
6441        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
6442    }
6443  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
6444    if (Destructor->isImplicit() && !Destructor->isUsed())
6445      DefineImplicitDestructor(Loc, Destructor);
6446
6447  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
6448    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
6449        MethodDecl->getOverloadedOperator() == OO_Equal) {
6450      if (!MethodDecl->isUsed())
6451        DefineImplicitOverloadedAssign(Loc, MethodDecl);
6452    }
6453  }
6454  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
6455    // Implicit instantiation of function templates and member functions of
6456    // class templates.
6457    if (!Function->getBody() && Function->isImplicitlyInstantiable()) {
6458      bool AlreadyInstantiated = false;
6459      if (FunctionTemplateSpecializationInfo *SpecInfo
6460                                = Function->getTemplateSpecializationInfo()) {
6461        if (SpecInfo->getPointOfInstantiation().isInvalid())
6462          SpecInfo->setPointOfInstantiation(Loc);
6463        else if (SpecInfo->getTemplateSpecializationKind()
6464                   == TSK_ImplicitInstantiation)
6465          AlreadyInstantiated = true;
6466      } else if (MemberSpecializationInfo *MSInfo
6467                                  = Function->getMemberSpecializationInfo()) {
6468        if (MSInfo->getPointOfInstantiation().isInvalid())
6469          MSInfo->setPointOfInstantiation(Loc);
6470        else if (MSInfo->getTemplateSpecializationKind()
6471                   == TSK_ImplicitInstantiation)
6472          AlreadyInstantiated = true;
6473      }
6474
6475      if (!AlreadyInstantiated)
6476        PendingImplicitInstantiations.push_back(std::make_pair(Function, Loc));
6477    }
6478
6479    // FIXME: keep track of references to static functions
6480    Function->setUsed(true);
6481    return;
6482  }
6483
6484  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
6485    // Implicit instantiation of static data members of class templates.
6486    if (Var->isStaticDataMember() &&
6487        Var->getInstantiatedFromStaticDataMember()) {
6488      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
6489      assert(MSInfo && "Missing member specialization information?");
6490      if (MSInfo->getPointOfInstantiation().isInvalid() &&
6491          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
6492        MSInfo->setPointOfInstantiation(Loc);
6493        PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
6494      }
6495    }
6496
6497    // FIXME: keep track of references to static data?
6498
6499    D->setUsed(true);
6500    return;
6501  }
6502}
6503
6504bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
6505                               CallExpr *CE, FunctionDecl *FD) {
6506  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
6507    return false;
6508
6509  PartialDiagnostic Note =
6510    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
6511    << FD->getDeclName() : PDiag();
6512  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
6513
6514  if (RequireCompleteType(Loc, ReturnType,
6515                          FD ?
6516                          PDiag(diag::err_call_function_incomplete_return)
6517                            << CE->getSourceRange() << FD->getDeclName() :
6518                          PDiag(diag::err_call_incomplete_return)
6519                            << CE->getSourceRange(),
6520                          std::make_pair(NoteLoc, Note)))
6521    return true;
6522
6523  return false;
6524}
6525
6526// Diagnose the common s/=/==/ typo.  Note that adding parentheses
6527// will prevent this condition from triggering, which is what we want.
6528void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
6529  SourceLocation Loc;
6530
6531  unsigned diagnostic = diag::warn_condition_is_assignment;
6532
6533  if (isa<BinaryOperator>(E)) {
6534    BinaryOperator *Op = cast<BinaryOperator>(E);
6535    if (Op->getOpcode() != BinaryOperator::Assign)
6536      return;
6537
6538    // Greylist some idioms by putting them into a warning subcategory.
6539    if (ObjCMessageExpr *ME
6540          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
6541      Selector Sel = ME->getSelector();
6542
6543      // self = [<foo> init...]
6544      if (isSelfExpr(Op->getLHS())
6545          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
6546        diagnostic = diag::warn_condition_is_idiomatic_assignment;
6547
6548      // <foo> = [<bar> nextObject]
6549      else if (Sel.isUnarySelector() &&
6550               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
6551        diagnostic = diag::warn_condition_is_idiomatic_assignment;
6552    }
6553
6554    Loc = Op->getOperatorLoc();
6555  } else if (isa<CXXOperatorCallExpr>(E)) {
6556    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
6557    if (Op->getOperator() != OO_Equal)
6558      return;
6559
6560    Loc = Op->getOperatorLoc();
6561  } else {
6562    // Not an assignment.
6563    return;
6564  }
6565
6566  SourceLocation Open = E->getSourceRange().getBegin();
6567  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
6568
6569  Diag(Loc, diagnostic)
6570    << E->getSourceRange()
6571    << CodeModificationHint::CreateInsertion(Open, "(")
6572    << CodeModificationHint::CreateInsertion(Close, ")");
6573}
6574
6575bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
6576  DiagnoseAssignmentAsCondition(E);
6577
6578  if (!E->isTypeDependent()) {
6579    DefaultFunctionArrayConversion(E);
6580
6581    QualType T = E->getType();
6582
6583    if (getLangOptions().CPlusPlus) {
6584      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
6585        return true;
6586    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
6587      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
6588        << T << E->getSourceRange();
6589      return true;
6590    }
6591  }
6592
6593  return false;
6594}
6595