SemaExpr.cpp revision c374f8b15500a5de12c68b8c2a339154b1efff97
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30//  Standard Promotions and Conversions
31//===----------------------------------------------------------------------===//
32
33/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
34void Sema::DefaultFunctionArrayConversion(Expr *&E) {
35  QualType Ty = E->getType();
36  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
37
38  if (Ty->isFunctionType())
39    ImpCastExprToType(E, Context.getPointerType(Ty));
40  else if (Ty->isArrayType()) {
41    // In C90 mode, arrays only promote to pointers if the array expression is
42    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
43    // type 'array of type' is converted to an expression that has type 'pointer
44    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
45    // that has type 'array of type' ...".  The relevant change is "an lvalue"
46    // (C90) to "an expression" (C99).
47    //
48    // C++ 4.2p1:
49    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
50    // T" can be converted to an rvalue of type "pointer to T".
51    //
52    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
53        E->isLvalue(Context) == Expr::LV_Valid)
54      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
55  }
56}
57
58/// UsualUnaryConversions - Performs various conversions that are common to most
59/// operators (C99 6.3). The conversions of array and function types are
60/// sometimes surpressed. For example, the array->pointer conversion doesn't
61/// apply if the array is an argument to the sizeof or address (&) operators.
62/// In these instances, this routine should *not* be called.
63Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
64  QualType Ty = Expr->getType();
65  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
66
67  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
68    ImpCastExprToType(Expr, Context.IntTy);
69  else
70    DefaultFunctionArrayConversion(Expr);
71
72  return Expr;
73}
74
75/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
76/// do not have a prototype. Arguments that have type float are promoted to
77/// double. All other argument types are converted by UsualUnaryConversions().
78void Sema::DefaultArgumentPromotion(Expr *&Expr) {
79  QualType Ty = Expr->getType();
80  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
81
82  // If this is a 'float' (CVR qualified or typedef) promote to double.
83  if (const BuiltinType *BT = Ty->getAsBuiltinType())
84    if (BT->getKind() == BuiltinType::Float)
85      return ImpCastExprToType(Expr, Context.DoubleTy);
86
87  UsualUnaryConversions(Expr);
88}
89
90// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
91// will warn if the resulting type is not a POD type.
92void Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT)
93
94{
95  DefaultArgumentPromotion(Expr);
96
97  if (!Expr->getType()->isPODType()) {
98    Diag(Expr->getLocStart(),
99         diag::warn_cannot_pass_non_pod_arg_to_vararg) <<
100    Expr->getType() << CT;
101  }
102}
103
104
105/// UsualArithmeticConversions - Performs various conversions that are common to
106/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
107/// routine returns the first non-arithmetic type found. The client is
108/// responsible for emitting appropriate error diagnostics.
109/// FIXME: verify the conversion rules for "complex int" are consistent with
110/// GCC.
111QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
112                                          bool isCompAssign) {
113  if (!isCompAssign) {
114    UsualUnaryConversions(lhsExpr);
115    UsualUnaryConversions(rhsExpr);
116  }
117
118  // For conversion purposes, we ignore any qualifiers.
119  // For example, "const float" and "float" are equivalent.
120  QualType lhs =
121    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
122  QualType rhs =
123    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
124
125  // If both types are identical, no conversion is needed.
126  if (lhs == rhs)
127    return lhs;
128
129  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
130  // The caller can deal with this (e.g. pointer + int).
131  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
132    return lhs;
133
134  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
135  if (!isCompAssign) {
136    ImpCastExprToType(lhsExpr, destType);
137    ImpCastExprToType(rhsExpr, destType);
138  }
139  return destType;
140}
141
142QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
143  // Perform the usual unary conversions. We do this early so that
144  // integral promotions to "int" can allow us to exit early, in the
145  // lhs == rhs check. Also, for conversion purposes, we ignore any
146  // qualifiers.  For example, "const float" and "float" are
147  // equivalent.
148  if (lhs->isPromotableIntegerType()) lhs = Context.IntTy;
149  else                                lhs = lhs.getUnqualifiedType();
150  if (rhs->isPromotableIntegerType()) rhs = Context.IntTy;
151  else                                rhs = rhs.getUnqualifiedType();
152
153  // If both types are identical, no conversion is needed.
154  if (lhs == rhs)
155    return lhs;
156
157  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
158  // The caller can deal with this (e.g. pointer + int).
159  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
160    return lhs;
161
162  // At this point, we have two different arithmetic types.
163
164  // Handle complex types first (C99 6.3.1.8p1).
165  if (lhs->isComplexType() || rhs->isComplexType()) {
166    // if we have an integer operand, the result is the complex type.
167    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
168      // convert the rhs to the lhs complex type.
169      return lhs;
170    }
171    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
172      // convert the lhs to the rhs complex type.
173      return rhs;
174    }
175    // This handles complex/complex, complex/float, or float/complex.
176    // When both operands are complex, the shorter operand is converted to the
177    // type of the longer, and that is the type of the result. This corresponds
178    // to what is done when combining two real floating-point operands.
179    // The fun begins when size promotion occur across type domains.
180    // From H&S 6.3.4: When one operand is complex and the other is a real
181    // floating-point type, the less precise type is converted, within it's
182    // real or complex domain, to the precision of the other type. For example,
183    // when combining a "long double" with a "double _Complex", the
184    // "double _Complex" is promoted to "long double _Complex".
185    int result = Context.getFloatingTypeOrder(lhs, rhs);
186
187    if (result > 0) { // The left side is bigger, convert rhs.
188      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
189    } else if (result < 0) { // The right side is bigger, convert lhs.
190      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
191    }
192    // At this point, lhs and rhs have the same rank/size. Now, make sure the
193    // domains match. This is a requirement for our implementation, C99
194    // does not require this promotion.
195    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
196      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
197        return rhs;
198      } else { // handle "_Complex double, double".
199        return lhs;
200      }
201    }
202    return lhs; // The domain/size match exactly.
203  }
204  // Now handle "real" floating types (i.e. float, double, long double).
205  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
206    // if we have an integer operand, the result is the real floating type.
207    if (rhs->isIntegerType()) {
208      // convert rhs to the lhs floating point type.
209      return lhs;
210    }
211    if (rhs->isComplexIntegerType()) {
212      // convert rhs to the complex floating point type.
213      return Context.getComplexType(lhs);
214    }
215    if (lhs->isIntegerType()) {
216      // convert lhs to the rhs floating point type.
217      return rhs;
218    }
219    if (lhs->isComplexIntegerType()) {
220      // convert lhs to the complex floating point type.
221      return Context.getComplexType(rhs);
222    }
223    // We have two real floating types, float/complex combos were handled above.
224    // Convert the smaller operand to the bigger result.
225    int result = Context.getFloatingTypeOrder(lhs, rhs);
226
227    if (result > 0) { // convert the rhs
228      return lhs;
229    }
230    if (result < 0) { // convert the lhs
231      return rhs;
232    }
233    assert(0 && "Sema::UsualArithmeticConversionsType(): illegal float comparison");
234  }
235  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
236    // Handle GCC complex int extension.
237    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
238    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
239
240    if (lhsComplexInt && rhsComplexInt) {
241      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
242                                      rhsComplexInt->getElementType()) >= 0) {
243        // convert the rhs
244        return lhs;
245      }
246      return rhs;
247    } else if (lhsComplexInt && rhs->isIntegerType()) {
248      // convert the rhs to the lhs complex type.
249      return lhs;
250    } else if (rhsComplexInt && lhs->isIntegerType()) {
251      // convert the lhs to the rhs complex type.
252      return rhs;
253    }
254  }
255  // Finally, we have two differing integer types.
256  // The rules for this case are in C99 6.3.1.8
257  int compare = Context.getIntegerTypeOrder(lhs, rhs);
258  bool lhsSigned = lhs->isSignedIntegerType(),
259       rhsSigned = rhs->isSignedIntegerType();
260  QualType destType;
261  if (lhsSigned == rhsSigned) {
262    // Same signedness; use the higher-ranked type
263    destType = compare >= 0 ? lhs : rhs;
264  } else if (compare != (lhsSigned ? 1 : -1)) {
265    // The unsigned type has greater than or equal rank to the
266    // signed type, so use the unsigned type
267    destType = lhsSigned ? rhs : lhs;
268  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
269    // The two types are different widths; if we are here, that
270    // means the signed type is larger than the unsigned type, so
271    // use the signed type.
272    destType = lhsSigned ? lhs : rhs;
273  } else {
274    // The signed type is higher-ranked than the unsigned type,
275    // but isn't actually any bigger (like unsigned int and long
276    // on most 32-bit systems).  Use the unsigned type corresponding
277    // to the signed type.
278    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
279  }
280  return destType;
281}
282
283//===----------------------------------------------------------------------===//
284//  Semantic Analysis for various Expression Types
285//===----------------------------------------------------------------------===//
286
287
288/// ActOnStringLiteral - The specified tokens were lexed as pasted string
289/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
290/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
291/// multiple tokens.  However, the common case is that StringToks points to one
292/// string.
293///
294Action::OwningExprResult
295Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
296  assert(NumStringToks && "Must have at least one string!");
297
298  StringLiteralParser Literal(StringToks, NumStringToks, PP);
299  if (Literal.hadError)
300    return ExprError();
301
302  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
303  for (unsigned i = 0; i != NumStringToks; ++i)
304    StringTokLocs.push_back(StringToks[i].getLocation());
305
306  QualType StrTy = Context.CharTy;
307  if (Literal.AnyWide) StrTy = Context.getWCharType();
308  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
309
310  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
311  if (getLangOptions().CPlusPlus)
312    StrTy.addConst();
313
314  // Get an array type for the string, according to C99 6.4.5.  This includes
315  // the nul terminator character as well as the string length for pascal
316  // strings.
317  StrTy = Context.getConstantArrayType(StrTy,
318                                   llvm::APInt(32, Literal.GetStringLength()+1),
319                                       ArrayType::Normal, 0);
320
321  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
322  return Owned(new (Context) StringLiteral(Literal.GetString(),
323                                 Literal.GetStringLength(),
324                                 Literal.AnyWide, StrTy,
325                                 StringToks[0].getLocation(),
326                                 StringToks[NumStringToks-1].getLocation()));
327}
328
329/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
330/// CurBlock to VD should cause it to be snapshotted (as we do for auto
331/// variables defined outside the block) or false if this is not needed (e.g.
332/// for values inside the block or for globals).
333///
334/// FIXME: This will create BlockDeclRefExprs for global variables,
335/// function references, etc which is suboptimal :) and breaks
336/// things like "integer constant expression" tests.
337static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
338                                              ValueDecl *VD) {
339  // If the value is defined inside the block, we couldn't snapshot it even if
340  // we wanted to.
341  if (CurBlock->TheDecl == VD->getDeclContext())
342    return false;
343
344  // If this is an enum constant or function, it is constant, don't snapshot.
345  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
346    return false;
347
348  // If this is a reference to an extern, static, or global variable, no need to
349  // snapshot it.
350  // FIXME: What about 'const' variables in C++?
351  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
352    return Var->hasLocalStorage();
353
354  return true;
355}
356
357
358
359/// ActOnIdentifierExpr - The parser read an identifier in expression context,
360/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
361/// identifier is used in a function call context.
362/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
363/// class or namespace that the identifier must be a member of.
364Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
365                                                 IdentifierInfo &II,
366                                                 bool HasTrailingLParen,
367                                                 const CXXScopeSpec *SS) {
368  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS);
369}
370
371/// BuildDeclRefExpr - Build either a DeclRefExpr or a
372/// QualifiedDeclRefExpr based on whether or not SS is a
373/// nested-name-specifier.
374DeclRefExpr *Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
375                                    bool TypeDependent, bool ValueDependent,
376                                    const CXXScopeSpec *SS) {
377  if (SS && !SS->isEmpty())
378    return new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
379                       ValueDependent, SS->getRange().getBegin());
380  else
381    return new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
382}
383
384/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
385/// variable corresponding to the anonymous union or struct whose type
386/// is Record.
387static Decl *getObjectForAnonymousRecordDecl(RecordDecl *Record) {
388  assert(Record->isAnonymousStructOrUnion() &&
389         "Record must be an anonymous struct or union!");
390
391  // FIXME: Once Decls are directly linked together, this will
392  // be an O(1) operation rather than a slow walk through DeclContext's
393  // vector (which itself will be eliminated). DeclGroups might make
394  // this even better.
395  DeclContext *Ctx = Record->getDeclContext();
396  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
397                               DEnd = Ctx->decls_end();
398       D != DEnd; ++D) {
399    if (*D == Record) {
400      // The object for the anonymous struct/union directly
401      // follows its type in the list of declarations.
402      ++D;
403      assert(D != DEnd && "Missing object for anonymous record");
404      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
405      return *D;
406    }
407  }
408
409  assert(false && "Missing object for anonymous record");
410  return 0;
411}
412
413Sema::OwningExprResult
414Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
415                                               FieldDecl *Field,
416                                               Expr *BaseObjectExpr,
417                                               SourceLocation OpLoc) {
418  assert(Field->getDeclContext()->isRecord() &&
419         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
420         && "Field must be stored inside an anonymous struct or union");
421
422  // Construct the sequence of field member references
423  // we'll have to perform to get to the field in the anonymous
424  // union/struct. The list of members is built from the field
425  // outward, so traverse it backwards to go from an object in
426  // the current context to the field we found.
427  llvm::SmallVector<FieldDecl *, 4> AnonFields;
428  AnonFields.push_back(Field);
429  VarDecl *BaseObject = 0;
430  DeclContext *Ctx = Field->getDeclContext();
431  do {
432    RecordDecl *Record = cast<RecordDecl>(Ctx);
433    Decl *AnonObject = getObjectForAnonymousRecordDecl(Record);
434    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
435      AnonFields.push_back(AnonField);
436    else {
437      BaseObject = cast<VarDecl>(AnonObject);
438      break;
439    }
440    Ctx = Ctx->getParent();
441  } while (Ctx->isRecord() &&
442           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
443
444  // Build the expression that refers to the base object, from
445  // which we will build a sequence of member references to each
446  // of the anonymous union objects and, eventually, the field we
447  // found via name lookup.
448  bool BaseObjectIsPointer = false;
449  unsigned ExtraQuals = 0;
450  if (BaseObject) {
451    // BaseObject is an anonymous struct/union variable (and is,
452    // therefore, not part of another non-anonymous record).
453    delete BaseObjectExpr;
454
455    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
456                                     SourceLocation());
457    ExtraQuals
458      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
459  } else if (BaseObjectExpr) {
460    // The caller provided the base object expression. Determine
461    // whether its a pointer and whether it adds any qualifiers to the
462    // anonymous struct/union fields we're looking into.
463    QualType ObjectType = BaseObjectExpr->getType();
464    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
465      BaseObjectIsPointer = true;
466      ObjectType = ObjectPtr->getPointeeType();
467    }
468    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
469  } else {
470    // We've found a member of an anonymous struct/union that is
471    // inside a non-anonymous struct/union, so in a well-formed
472    // program our base object expression is "this".
473    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
474      if (!MD->isStatic()) {
475        QualType AnonFieldType
476          = Context.getTagDeclType(
477                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
478        QualType ThisType = Context.getTagDeclType(MD->getParent());
479        if ((Context.getCanonicalType(AnonFieldType)
480               == Context.getCanonicalType(ThisType)) ||
481            IsDerivedFrom(ThisType, AnonFieldType)) {
482          // Our base object expression is "this".
483          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
484                                           MD->getThisType(Context));
485          BaseObjectIsPointer = true;
486        }
487      } else {
488        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
489          << Field->getDeclName());
490      }
491      ExtraQuals = MD->getTypeQualifiers();
492    }
493
494    if (!BaseObjectExpr)
495      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
496        << Field->getDeclName());
497  }
498
499  // Build the implicit member references to the field of the
500  // anonymous struct/union.
501  Expr *Result = BaseObjectExpr;
502  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
503         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
504       FI != FIEnd; ++FI) {
505    QualType MemberType = (*FI)->getType();
506    if (!(*FI)->isMutable()) {
507      unsigned combinedQualifiers
508        = MemberType.getCVRQualifiers() | ExtraQuals;
509      MemberType = MemberType.getQualifiedType(combinedQualifiers);
510    }
511    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
512                                      OpLoc, MemberType);
513    BaseObjectIsPointer = false;
514    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
515    OpLoc = SourceLocation();
516  }
517
518  return Owned(Result);
519}
520
521/// ActOnDeclarationNameExpr - The parser has read some kind of name
522/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
523/// performs lookup on that name and returns an expression that refers
524/// to that name. This routine isn't directly called from the parser,
525/// because the parser doesn't know about DeclarationName. Rather,
526/// this routine is called by ActOnIdentifierExpr,
527/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
528/// which form the DeclarationName from the corresponding syntactic
529/// forms.
530///
531/// HasTrailingLParen indicates whether this identifier is used in a
532/// function call context.  LookupCtx is only used for a C++
533/// qualified-id (foo::bar) to indicate the class or namespace that
534/// the identifier must be a member of.
535///
536/// If ForceResolution is true, then we will attempt to resolve the
537/// name even if it looks like a dependent name. This option is off by
538/// default.
539Sema::OwningExprResult
540Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
541                               DeclarationName Name, bool HasTrailingLParen,
542                               const CXXScopeSpec *SS, bool ForceResolution) {
543  if (S->getTemplateParamParent() && Name.getAsIdentifierInfo() &&
544      HasTrailingLParen && !SS && !ForceResolution) {
545    // We've seen something of the form
546    //   identifier(
547    // and we are in a template, so it is likely that 's' is a
548    // dependent name. However, we won't know until we've parsed all
549    // of the call arguments. So, build a CXXDependentNameExpr node
550    // to represent this name. Then, if it turns out that none of the
551    // arguments are type-dependent, we'll force the resolution of the
552    // dependent name at that point.
553    return Owned(new (Context) CXXDependentNameExpr(Name.getAsIdentifierInfo(),
554                                                    Context.DependentTy, Loc));
555  }
556
557  // Could be enum-constant, value decl, instance variable, etc.
558  Decl *D = 0;
559  LookupResult Lookup;
560  if (SS && !SS->isEmpty()) {
561    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
562    if (DC == 0)
563      return ExprError();
564    Lookup = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
565  } else
566    Lookup = LookupDecl(Name, Decl::IDNS_Ordinary, S);
567
568  if (Lookup.isAmbiguous()) {
569    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
570                            SS && SS->isSet() ? SS->getRange()
571                                              : SourceRange());
572    return ExprError();
573  } else
574    D = Lookup.getAsDecl();
575
576  // If this reference is in an Objective-C method, then ivar lookup happens as
577  // well.
578  IdentifierInfo *II = Name.getAsIdentifierInfo();
579  if (II && getCurMethodDecl()) {
580    // There are two cases to handle here.  1) scoped lookup could have failed,
581    // in which case we should look for an ivar.  2) scoped lookup could have
582    // found a decl, but that decl is outside the current method (i.e. a global
583    // variable).  In these two cases, we do a lookup for an ivar with this
584    // name, if the lookup suceeds, we replace it our current decl.
585    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
586      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
587      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II)) {
588        // FIXME: This should use a new expr for a direct reference, don't turn
589        // this into Self->ivar, just return a BareIVarExpr or something.
590        IdentifierInfo &II = Context.Idents.get("self");
591        OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
592        ObjCIvarRefExpr *MRef = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
593                                  Loc, static_cast<Expr*>(SelfExpr.release()),
594                                  true, true);
595        Context.setFieldDecl(IFace, IV, MRef);
596        return Owned(MRef);
597      }
598    }
599    // Needed to implement property "super.method" notation.
600    if (D == 0 && II->isStr("super")) {
601      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
602                     getCurMethodDecl()->getClassInterface()));
603      return Owned(new (Context) ObjCSuperExpr(Loc, T));
604    }
605  }
606  if (D == 0) {
607    // Otherwise, this could be an implicitly declared function reference (legal
608    // in C90, extension in C99).
609    if (HasTrailingLParen && II &&
610        !getLangOptions().CPlusPlus) // Not in C++.
611      D = ImplicitlyDefineFunction(Loc, *II, S);
612    else {
613      // If this name wasn't predeclared and if this is not a function call,
614      // diagnose the problem.
615      if (SS && !SS->isEmpty())
616        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
617          << Name << SS->getRange());
618      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
619               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
620        return ExprError(Diag(Loc, diag::err_undeclared_use)
621          << Name.getAsString());
622      else
623        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
624    }
625  }
626
627  // We may have found a field within an anonymous union or struct
628  // (C++ [class.union]).
629  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
630    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
631      return BuildAnonymousStructUnionMemberReference(Loc, FD);
632
633  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
634    if (!MD->isStatic()) {
635      // C++ [class.mfct.nonstatic]p2:
636      //   [...] if name lookup (3.4.1) resolves the name in the
637      //   id-expression to a nonstatic nontype member of class X or of
638      //   a base class of X, the id-expression is transformed into a
639      //   class member access expression (5.2.5) using (*this) (9.3.2)
640      //   as the postfix-expression to the left of the '.' operator.
641      DeclContext *Ctx = 0;
642      QualType MemberType;
643      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
644        Ctx = FD->getDeclContext();
645        MemberType = FD->getType();
646
647        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
648          MemberType = RefType->getPointeeType();
649        else if (!FD->isMutable()) {
650          unsigned combinedQualifiers
651            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
652          MemberType = MemberType.getQualifiedType(combinedQualifiers);
653        }
654      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
655        if (!Method->isStatic()) {
656          Ctx = Method->getParent();
657          MemberType = Method->getType();
658        }
659      } else if (OverloadedFunctionDecl *Ovl
660                   = dyn_cast<OverloadedFunctionDecl>(D)) {
661        for (OverloadedFunctionDecl::function_iterator
662               Func = Ovl->function_begin(),
663               FuncEnd = Ovl->function_end();
664             Func != FuncEnd; ++Func) {
665          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
666            if (!DMethod->isStatic()) {
667              Ctx = Ovl->getDeclContext();
668              MemberType = Context.OverloadTy;
669              break;
670            }
671        }
672      }
673
674      if (Ctx && Ctx->isRecord()) {
675        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
676        QualType ThisType = Context.getTagDeclType(MD->getParent());
677        if ((Context.getCanonicalType(CtxType)
678               == Context.getCanonicalType(ThisType)) ||
679            IsDerivedFrom(ThisType, CtxType)) {
680          // Build the implicit member access expression.
681          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
682                                       MD->getThisType(Context));
683          return Owned(new (Context) MemberExpr(This, true, cast<NamedDecl>(D),
684                                      SourceLocation(), MemberType));
685        }
686      }
687    }
688  }
689
690  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
691    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
692      if (MD->isStatic())
693        // "invalid use of member 'x' in static member function"
694        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
695          << FD->getDeclName());
696    }
697
698    // Any other ways we could have found the field in a well-formed
699    // program would have been turned into implicit member expressions
700    // above.
701    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
702      << FD->getDeclName());
703  }
704
705  if (isa<TypedefDecl>(D))
706    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
707  if (isa<ObjCInterfaceDecl>(D))
708    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
709  if (isa<NamespaceDecl>(D))
710    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
711
712  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
713  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
714    return Owned(BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
715                                  false, false, SS));
716
717  ValueDecl *VD = cast<ValueDecl>(D);
718
719  // check if referencing an identifier with __attribute__((deprecated)).
720  if (VD->getAttr<DeprecatedAttr>())
721    ExprError(Diag(Loc, diag::warn_deprecated) << VD->getDeclName());
722
723  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
724    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
725      Scope *CheckS = S;
726      while (CheckS) {
727        if (CheckS->isWithinElse() &&
728            CheckS->getControlParent()->isDeclScope(Var)) {
729          if (Var->getType()->isBooleanType())
730            ExprError(Diag(Loc, diag::warn_value_always_false)
731              << Var->getDeclName());
732          else
733            ExprError(Diag(Loc, diag::warn_value_always_zero)
734              << Var->getDeclName());
735          break;
736        }
737
738        // Move up one more control parent to check again.
739        CheckS = CheckS->getControlParent();
740        if (CheckS)
741          CheckS = CheckS->getParent();
742      }
743    }
744  }
745
746  // Only create DeclRefExpr's for valid Decl's.
747  if (VD->isInvalidDecl())
748    return ExprError();
749
750  // If the identifier reference is inside a block, and it refers to a value
751  // that is outside the block, create a BlockDeclRefExpr instead of a
752  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
753  // the block is formed.
754  //
755  // We do not do this for things like enum constants, global variables, etc,
756  // as they do not get snapshotted.
757  //
758  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
759    // The BlocksAttr indicates the variable is bound by-reference.
760    if (VD->getAttr<BlocksAttr>())
761      return Owned(new (Context) BlockDeclRefExpr(VD,
762                               VD->getType().getNonReferenceType(), Loc, true));
763
764    // Variable will be bound by-copy, make it const within the closure.
765    VD->getType().addConst();
766    return Owned(new (Context) BlockDeclRefExpr(VD,
767                             VD->getType().getNonReferenceType(), Loc, false));
768  }
769  // If this reference is not in a block or if the referenced variable is
770  // within the block, create a normal DeclRefExpr.
771
772  bool TypeDependent = false;
773  bool ValueDependent = false;
774  if (getLangOptions().CPlusPlus) {
775    // C++ [temp.dep.expr]p3:
776    //   An id-expression is type-dependent if it contains:
777    //     - an identifier that was declared with a dependent type,
778    if (VD->getType()->isDependentType())
779      TypeDependent = true;
780    //     - FIXME: a template-id that is dependent,
781    //     - a conversion-function-id that specifies a dependent type,
782    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
783             Name.getCXXNameType()->isDependentType())
784      TypeDependent = true;
785    //     - a nested-name-specifier that contains a class-name that
786    //       names a dependent type.
787    else if (SS && !SS->isEmpty()) {
788      for (DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
789           DC; DC = DC->getParent()) {
790        // FIXME: could stop early at namespace scope.
791        if (DC->isRecord()) {
792          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
793          if (Context.getTypeDeclType(Record)->isDependentType()) {
794            TypeDependent = true;
795            break;
796          }
797        }
798      }
799    }
800
801    // C++ [temp.dep.constexpr]p2:
802    //
803    //   An identifier is value-dependent if it is:
804    //     - a name declared with a dependent type,
805    if (TypeDependent)
806      ValueDependent = true;
807    //     - the name of a non-type template parameter,
808    else if (isa<NonTypeTemplateParmDecl>(VD))
809      ValueDependent = true;
810    //    - a constant with integral or enumeration type and is
811    //      initialized with an expression that is value-dependent
812    //      (FIXME!).
813  }
814
815  return Owned(BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
816                                TypeDependent, ValueDependent, SS));
817}
818
819Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
820                                                 tok::TokenKind Kind) {
821  PredefinedExpr::IdentType IT;
822
823  switch (Kind) {
824  default: assert(0 && "Unknown simple primary expr!");
825  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
826  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
827  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
828  }
829
830  // Pre-defined identifiers are of type char[x], where x is the length of the
831  // string.
832  unsigned Length;
833  if (FunctionDecl *FD = getCurFunctionDecl())
834    Length = FD->getIdentifier()->getLength();
835  else if (ObjCMethodDecl *MD = getCurMethodDecl())
836    Length = MD->getSynthesizedMethodSize();
837  else {
838    Diag(Loc, diag::ext_predef_outside_function);
839    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
840    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
841  }
842
843
844  llvm::APInt LengthI(32, Length + 1);
845  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
846  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
847  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
848}
849
850Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
851  llvm::SmallString<16> CharBuffer;
852  CharBuffer.resize(Tok.getLength());
853  const char *ThisTokBegin = &CharBuffer[0];
854  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
855
856  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
857                            Tok.getLocation(), PP);
858  if (Literal.hadError())
859    return ExprError();
860
861  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
862
863  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
864                                              Literal.isWide(),
865                                              type, Tok.getLocation()));
866}
867
868Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
869  // Fast path for a single digit (which is quite common).  A single digit
870  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
871  if (Tok.getLength() == 1) {
872    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
873    unsigned IntSize = Context.Target.getIntWidth();
874    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
875                    Context.IntTy, Tok.getLocation()));
876  }
877
878  llvm::SmallString<512> IntegerBuffer;
879  // Add padding so that NumericLiteralParser can overread by one character.
880  IntegerBuffer.resize(Tok.getLength()+1);
881  const char *ThisTokBegin = &IntegerBuffer[0];
882
883  // Get the spelling of the token, which eliminates trigraphs, etc.
884  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
885
886  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
887                               Tok.getLocation(), PP);
888  if (Literal.hadError)
889    return ExprError();
890
891  Expr *Res;
892
893  if (Literal.isFloatingLiteral()) {
894    QualType Ty;
895    if (Literal.isFloat)
896      Ty = Context.FloatTy;
897    else if (!Literal.isLong)
898      Ty = Context.DoubleTy;
899    else
900      Ty = Context.LongDoubleTy;
901
902    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
903
904    // isExact will be set by GetFloatValue().
905    bool isExact = false;
906    Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
907                                        &isExact, Ty, Tok.getLocation());
908
909  } else if (!Literal.isIntegerLiteral()) {
910    return ExprError();
911  } else {
912    QualType Ty;
913
914    // long long is a C99 feature.
915    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
916        Literal.isLongLong)
917      Diag(Tok.getLocation(), diag::ext_longlong);
918
919    // Get the value in the widest-possible width.
920    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
921
922    if (Literal.GetIntegerValue(ResultVal)) {
923      // If this value didn't fit into uintmax_t, warn and force to ull.
924      Diag(Tok.getLocation(), diag::warn_integer_too_large);
925      Ty = Context.UnsignedLongLongTy;
926      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
927             "long long is not intmax_t?");
928    } else {
929      // If this value fits into a ULL, try to figure out what else it fits into
930      // according to the rules of C99 6.4.4.1p5.
931
932      // Octal, Hexadecimal, and integers with a U suffix are allowed to
933      // be an unsigned int.
934      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
935
936      // Check from smallest to largest, picking the smallest type we can.
937      unsigned Width = 0;
938      if (!Literal.isLong && !Literal.isLongLong) {
939        // Are int/unsigned possibilities?
940        unsigned IntSize = Context.Target.getIntWidth();
941
942        // Does it fit in a unsigned int?
943        if (ResultVal.isIntN(IntSize)) {
944          // Does it fit in a signed int?
945          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
946            Ty = Context.IntTy;
947          else if (AllowUnsigned)
948            Ty = Context.UnsignedIntTy;
949          Width = IntSize;
950        }
951      }
952
953      // Are long/unsigned long possibilities?
954      if (Ty.isNull() && !Literal.isLongLong) {
955        unsigned LongSize = Context.Target.getLongWidth();
956
957        // Does it fit in a unsigned long?
958        if (ResultVal.isIntN(LongSize)) {
959          // Does it fit in a signed long?
960          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
961            Ty = Context.LongTy;
962          else if (AllowUnsigned)
963            Ty = Context.UnsignedLongTy;
964          Width = LongSize;
965        }
966      }
967
968      // Finally, check long long if needed.
969      if (Ty.isNull()) {
970        unsigned LongLongSize = Context.Target.getLongLongWidth();
971
972        // Does it fit in a unsigned long long?
973        if (ResultVal.isIntN(LongLongSize)) {
974          // Does it fit in a signed long long?
975          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
976            Ty = Context.LongLongTy;
977          else if (AllowUnsigned)
978            Ty = Context.UnsignedLongLongTy;
979          Width = LongLongSize;
980        }
981      }
982
983      // If we still couldn't decide a type, we probably have something that
984      // does not fit in a signed long long, but has no U suffix.
985      if (Ty.isNull()) {
986        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
987        Ty = Context.UnsignedLongLongTy;
988        Width = Context.Target.getLongLongWidth();
989      }
990
991      if (ResultVal.getBitWidth() != Width)
992        ResultVal.trunc(Width);
993    }
994    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
995  }
996
997  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
998  if (Literal.isImaginary)
999    Res = new (Context) ImaginaryLiteral(Res,
1000                                        Context.getComplexType(Res->getType()));
1001
1002  return Owned(Res);
1003}
1004
1005Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1006                                              SourceLocation R, ExprArg Val) {
1007  Expr *E = (Expr *)Val.release();
1008  assert((E != 0) && "ActOnParenExpr() missing expr");
1009  return Owned(new (Context) ParenExpr(L, R, E));
1010}
1011
1012/// The UsualUnaryConversions() function is *not* called by this routine.
1013/// See C99 6.3.2.1p[2-4] for more details.
1014bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1015                                     SourceLocation OpLoc,
1016                                     const SourceRange &ExprRange,
1017                                     bool isSizeof) {
1018  // C99 6.5.3.4p1:
1019  if (isa<FunctionType>(exprType)) {
1020    // alignof(function) is allowed.
1021    if (isSizeof)
1022      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1023    return false;
1024  }
1025
1026  if (exprType->isVoidType()) {
1027    Diag(OpLoc, diag::ext_sizeof_void_type)
1028      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1029    return false;
1030  }
1031
1032  return DiagnoseIncompleteType(OpLoc, exprType,
1033                                isSizeof ? diag::err_sizeof_incomplete_type :
1034                                           diag::err_alignof_incomplete_type,
1035                                ExprRange);
1036}
1037
1038bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1039                            const SourceRange &ExprRange) {
1040  E = E->IgnoreParens();
1041
1042  // alignof decl is always ok.
1043  if (isa<DeclRefExpr>(E))
1044    return false;
1045
1046  if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1047    if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
1048      if (FD->isBitField()) {
1049        Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1050        return true;
1051      }
1052      // Other fields are ok.
1053      return false;
1054    }
1055  }
1056  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1057}
1058
1059/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1060/// the same for @c alignof and @c __alignof
1061/// Note that the ArgRange is invalid if isType is false.
1062Action::OwningExprResult
1063Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1064                             void *TyOrEx, const SourceRange &ArgRange) {
1065  // If error parsing type, ignore.
1066  if (TyOrEx == 0) return ExprError();
1067
1068  QualType ArgTy;
1069  SourceRange Range;
1070  if (isType) {
1071    ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1072    Range = ArgRange;
1073
1074    // Verify that the operand is valid.
1075    if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof))
1076      return ExprError();
1077  } else {
1078    // Get the end location.
1079    Expr *ArgEx = (Expr *)TyOrEx;
1080    Range = ArgEx->getSourceRange();
1081    ArgTy = ArgEx->getType();
1082
1083    // Verify that the operand is valid.
1084    bool isInvalid;
1085    if (!isSizeof) {
1086      isInvalid = CheckAlignOfExpr(ArgEx, OpLoc, Range);
1087    } else if (ArgEx->isBitField()) {  // C99 6.5.3.4p1.
1088      Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1089      isInvalid = true;
1090    } else {
1091      isInvalid = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, true);
1092    }
1093
1094    if (isInvalid) {
1095      DeleteExpr(ArgEx);
1096      return ExprError();
1097    }
1098  }
1099
1100  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1101  return Owned(new (Context) SizeOfAlignOfExpr(isSizeof, isType, TyOrEx,
1102                                               Context.getSizeType(), OpLoc,
1103                                               Range.getEnd()));
1104}
1105
1106QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
1107  DefaultFunctionArrayConversion(V);
1108
1109  // These operators return the element type of a complex type.
1110  if (const ComplexType *CT = V->getType()->getAsComplexType())
1111    return CT->getElementType();
1112
1113  // Otherwise they pass through real integer and floating point types here.
1114  if (V->getType()->isArithmeticType())
1115    return V->getType();
1116
1117  // Reject anything else.
1118  Diag(Loc, diag::err_realimag_invalid_type) << V->getType();
1119  return QualType();
1120}
1121
1122
1123
1124Action::OwningExprResult
1125Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1126                          tok::TokenKind Kind, ExprArg Input) {
1127  Expr *Arg = (Expr *)Input.get();
1128
1129  UnaryOperator::Opcode Opc;
1130  switch (Kind) {
1131  default: assert(0 && "Unknown unary op!");
1132  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1133  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1134  }
1135
1136  if (getLangOptions().CPlusPlus &&
1137      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1138    // Which overloaded operator?
1139    OverloadedOperatorKind OverOp =
1140      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1141
1142    // C++ [over.inc]p1:
1143    //
1144    //     [...] If the function is a member function with one
1145    //     parameter (which shall be of type int) or a non-member
1146    //     function with two parameters (the second of which shall be
1147    //     of type int), it defines the postfix increment operator ++
1148    //     for objects of that type. When the postfix increment is
1149    //     called as a result of using the ++ operator, the int
1150    //     argument will have value zero.
1151    Expr *Args[2] = {
1152      Arg,
1153      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1154                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1155    };
1156
1157    // Build the candidate set for overloading
1158    OverloadCandidateSet CandidateSet;
1159    AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
1160
1161    // Perform overload resolution.
1162    OverloadCandidateSet::iterator Best;
1163    switch (BestViableFunction(CandidateSet, Best)) {
1164    case OR_Success: {
1165      // We found a built-in operator or an overloaded operator.
1166      FunctionDecl *FnDecl = Best->Function;
1167
1168      if (FnDecl) {
1169        // We matched an overloaded operator. Build a call to that
1170        // operator.
1171
1172        // Convert the arguments.
1173        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1174          if (PerformObjectArgumentInitialization(Arg, Method))
1175            return ExprError();
1176        } else {
1177          // Convert the arguments.
1178          if (PerformCopyInitialization(Arg,
1179                                        FnDecl->getParamDecl(0)->getType(),
1180                                        "passing"))
1181            return ExprError();
1182        }
1183
1184        // Determine the result type
1185        QualType ResultTy
1186          = FnDecl->getType()->getAsFunctionType()->getResultType();
1187        ResultTy = ResultTy.getNonReferenceType();
1188
1189        // Build the actual expression node.
1190        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1191                                       SourceLocation());
1192        UsualUnaryConversions(FnExpr);
1193
1194        Input.release();
1195        return Owned(new (Context)CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy,
1196                                                   OpLoc));
1197      } else {
1198        // We matched a built-in operator. Convert the arguments, then
1199        // break out so that we will build the appropriate built-in
1200        // operator node.
1201        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1202                                      "passing"))
1203          return ExprError();
1204
1205        break;
1206      }
1207    }
1208
1209    case OR_No_Viable_Function:
1210      // No viable function; fall through to handling this as a
1211      // built-in operator, which will produce an error message for us.
1212      break;
1213
1214    case OR_Ambiguous:
1215      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1216          << UnaryOperator::getOpcodeStr(Opc)
1217          << Arg->getSourceRange();
1218      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1219      return ExprError();
1220    }
1221
1222    // Either we found no viable overloaded operator or we matched a
1223    // built-in operator. In either case, fall through to trying to
1224    // build a built-in operation.
1225  }
1226
1227  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1228                                                 Opc == UnaryOperator::PostInc);
1229  if (result.isNull())
1230    return ExprError();
1231  Input.release();
1232  return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
1233}
1234
1235Action::OwningExprResult
1236Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1237                              ExprArg Idx, SourceLocation RLoc) {
1238  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1239       *RHSExp = static_cast<Expr*>(Idx.get());
1240
1241  if (getLangOptions().CPlusPlus &&
1242      (LHSExp->getType()->isRecordType() ||
1243       LHSExp->getType()->isEnumeralType() ||
1244       RHSExp->getType()->isRecordType() ||
1245       RHSExp->getType()->isEnumeralType())) {
1246    // Add the appropriate overloaded operators (C++ [over.match.oper])
1247    // to the candidate set.
1248    OverloadCandidateSet CandidateSet;
1249    Expr *Args[2] = { LHSExp, RHSExp };
1250    AddOperatorCandidates(OO_Subscript, S, Args, 2, CandidateSet);
1251
1252    // Perform overload resolution.
1253    OverloadCandidateSet::iterator Best;
1254    switch (BestViableFunction(CandidateSet, Best)) {
1255    case OR_Success: {
1256      // We found a built-in operator or an overloaded operator.
1257      FunctionDecl *FnDecl = Best->Function;
1258
1259      if (FnDecl) {
1260        // We matched an overloaded operator. Build a call to that
1261        // operator.
1262
1263        // Convert the arguments.
1264        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1265          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1266              PerformCopyInitialization(RHSExp,
1267                                        FnDecl->getParamDecl(0)->getType(),
1268                                        "passing"))
1269            return ExprError();
1270        } else {
1271          // Convert the arguments.
1272          if (PerformCopyInitialization(LHSExp,
1273                                        FnDecl->getParamDecl(0)->getType(),
1274                                        "passing") ||
1275              PerformCopyInitialization(RHSExp,
1276                                        FnDecl->getParamDecl(1)->getType(),
1277                                        "passing"))
1278            return ExprError();
1279        }
1280
1281        // Determine the result type
1282        QualType ResultTy
1283          = FnDecl->getType()->getAsFunctionType()->getResultType();
1284        ResultTy = ResultTy.getNonReferenceType();
1285
1286        // Build the actual expression node.
1287        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1288                                       SourceLocation());
1289        UsualUnaryConversions(FnExpr);
1290
1291        Base.release();
1292        Idx.release();
1293        return Owned(new (Context) CXXOperatorCallExpr(FnExpr, Args, 2,
1294                                                       ResultTy, LLoc));
1295      } else {
1296        // We matched a built-in operator. Convert the arguments, then
1297        // break out so that we will build the appropriate built-in
1298        // operator node.
1299        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1300                                      "passing") ||
1301            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1302                                      "passing"))
1303          return ExprError();
1304
1305        break;
1306      }
1307    }
1308
1309    case OR_No_Viable_Function:
1310      // No viable function; fall through to handling this as a
1311      // built-in operator, which will produce an error message for us.
1312      break;
1313
1314    case OR_Ambiguous:
1315      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1316          << "[]"
1317          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1318      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1319      return ExprError();
1320    }
1321
1322    // Either we found no viable overloaded operator or we matched a
1323    // built-in operator. In either case, fall through to trying to
1324    // build a built-in operation.
1325  }
1326
1327  // Perform default conversions.
1328  DefaultFunctionArrayConversion(LHSExp);
1329  DefaultFunctionArrayConversion(RHSExp);
1330
1331  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1332
1333  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1334  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1335  // in the subscript position. As a result, we need to derive the array base
1336  // and index from the expression types.
1337  Expr *BaseExpr, *IndexExpr;
1338  QualType ResultType;
1339  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1340    BaseExpr = LHSExp;
1341    IndexExpr = RHSExp;
1342    // FIXME: need to deal with const...
1343    ResultType = PTy->getPointeeType();
1344  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1345     // Handle the uncommon case of "123[Ptr]".
1346    BaseExpr = RHSExp;
1347    IndexExpr = LHSExp;
1348    // FIXME: need to deal with const...
1349    ResultType = PTy->getPointeeType();
1350  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1351    BaseExpr = LHSExp;    // vectors: V[123]
1352    IndexExpr = RHSExp;
1353
1354    // FIXME: need to deal with const...
1355    ResultType = VTy->getElementType();
1356  } else {
1357    return ExprError(Diag(LHSExp->getLocStart(),
1358      diag::err_typecheck_subscript_value) << RHSExp->getSourceRange());
1359  }
1360  // C99 6.5.2.1p1
1361  if (!IndexExpr->getType()->isIntegerType())
1362    return ExprError(Diag(IndexExpr->getLocStart(),
1363      diag::err_typecheck_subscript) << IndexExpr->getSourceRange());
1364
1365  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
1366  // the following check catches trying to index a pointer to a function (e.g.
1367  // void (*)(int)) and pointers to incomplete types.  Functions are not
1368  // objects in C99.
1369  if (!ResultType->isObjectType())
1370    return ExprError(Diag(BaseExpr->getLocStart(),
1371                diag::err_typecheck_subscript_not_object)
1372      << BaseExpr->getType() << BaseExpr->getSourceRange());
1373
1374  Base.release();
1375  Idx.release();
1376  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1377                                                ResultType, RLoc));
1378}
1379
1380QualType Sema::
1381CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1382                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1383  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1384
1385  // The vector accessor can't exceed the number of elements.
1386  const char *compStr = CompName.getName();
1387
1388  // This flag determines whether or not the component is one of the four
1389  // special names that indicate a subset of exactly half the elements are
1390  // to be selected.
1391  bool HalvingSwizzle = false;
1392
1393  // This flag determines whether or not CompName has an 's' char prefix,
1394  // indicating that it is a string of hex values to be used as vector indices.
1395  bool HexSwizzle = *compStr == 's';
1396
1397  // Check that we've found one of the special components, or that the component
1398  // names must come from the same set.
1399  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1400      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1401    HalvingSwizzle = true;
1402  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1403    do
1404      compStr++;
1405    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1406  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1407    do
1408      compStr++;
1409    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1410  }
1411
1412  if (!HalvingSwizzle && *compStr) {
1413    // We didn't get to the end of the string. This means the component names
1414    // didn't come from the same set *or* we encountered an illegal name.
1415    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1416      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1417    return QualType();
1418  }
1419
1420  // Ensure no component accessor exceeds the width of the vector type it
1421  // operates on.
1422  if (!HalvingSwizzle) {
1423    compStr = CompName.getName();
1424
1425    if (HexSwizzle)
1426      compStr++;
1427
1428    while (*compStr) {
1429      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1430        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1431          << baseType << SourceRange(CompLoc);
1432        return QualType();
1433      }
1434    }
1435  }
1436
1437  // If this is a halving swizzle, verify that the base type has an even
1438  // number of elements.
1439  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1440    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1441      << baseType << SourceRange(CompLoc);
1442    return QualType();
1443  }
1444
1445  // The component accessor looks fine - now we need to compute the actual type.
1446  // The vector type is implied by the component accessor. For example,
1447  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1448  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1449  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1450  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1451                                     : CompName.getLength();
1452  if (HexSwizzle)
1453    CompSize--;
1454
1455  if (CompSize == 1)
1456    return vecType->getElementType();
1457
1458  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1459  // Now look up the TypeDefDecl from the vector type. Without this,
1460  // diagostics look bad. We want extended vector types to appear built-in.
1461  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1462    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1463      return Context.getTypedefType(ExtVectorDecls[i]);
1464  }
1465  return VT; // should never get here (a typedef type should always be found).
1466}
1467
1468/// constructSetterName - Return the setter name for the given
1469/// identifier, i.e. "set" + Name where the initial character of Name
1470/// has been capitalized.
1471// FIXME: Merge with same routine in Parser. But where should this
1472// live?
1473static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
1474                                           const IdentifierInfo *Name) {
1475  llvm::SmallString<100> SelectorName;
1476  SelectorName = "set";
1477  SelectorName.append(Name->getName(), Name->getName()+Name->getLength());
1478  SelectorName[3] = toupper(SelectorName[3]);
1479  return &Idents.get(&SelectorName[0], &SelectorName[SelectorName.size()]);
1480}
1481
1482Action::OwningExprResult
1483Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
1484                               tok::TokenKind OpKind, SourceLocation MemberLoc,
1485                               IdentifierInfo &Member) {
1486  Expr *BaseExpr = static_cast<Expr *>(Base.release());
1487  assert(BaseExpr && "no record expression");
1488
1489  // Perform default conversions.
1490  DefaultFunctionArrayConversion(BaseExpr);
1491
1492  QualType BaseType = BaseExpr->getType();
1493  assert(!BaseType.isNull() && "no type for member expression");
1494
1495  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1496  // must have pointer type, and the accessed type is the pointee.
1497  if (OpKind == tok::arrow) {
1498    if (const PointerType *PT = BaseType->getAsPointerType())
1499      BaseType = PT->getPointeeType();
1500    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
1501      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
1502                                            MemberLoc, Member));
1503    else
1504      return ExprError(Diag(MemberLoc,
1505                            diag::err_typecheck_member_reference_arrow)
1506        << BaseType << BaseExpr->getSourceRange());
1507  }
1508
1509  // Handle field access to simple records.  This also handles access to fields
1510  // of the ObjC 'id' struct.
1511  if (const RecordType *RTy = BaseType->getAsRecordType()) {
1512    RecordDecl *RDecl = RTy->getDecl();
1513    if (DiagnoseIncompleteType(OpLoc, BaseType,
1514                               diag::err_typecheck_incomplete_tag,
1515                               BaseExpr->getSourceRange()))
1516      return ExprError();
1517
1518    // The record definition is complete, now make sure the member is valid.
1519    // FIXME: Qualified name lookup for C++ is a bit more complicated
1520    // than this.
1521    LookupResult Result
1522      = LookupQualifiedName(RDecl, DeclarationName(&Member),
1523                            LookupCriteria(LookupCriteria::Member,
1524                                           /*RedeclarationOnly=*/false,
1525                                           getLangOptions().CPlusPlus));
1526
1527    Decl *MemberDecl = 0;
1528    if (!Result)
1529      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
1530               << &Member << BaseExpr->getSourceRange());
1531    else if (Result.isAmbiguous()) {
1532      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
1533                              MemberLoc, BaseExpr->getSourceRange());
1534      return ExprError();
1535    } else
1536      MemberDecl = Result;
1537
1538    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
1539      // We may have found a field within an anonymous union or struct
1540      // (C++ [class.union]).
1541      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1542        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
1543                                                        BaseExpr, OpLoc);
1544
1545      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1546      // FIXME: Handle address space modifiers
1547      QualType MemberType = FD->getType();
1548      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
1549        MemberType = Ref->getPointeeType();
1550      else {
1551        unsigned combinedQualifiers =
1552          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
1553        if (FD->isMutable())
1554          combinedQualifiers &= ~QualType::Const;
1555        MemberType = MemberType.getQualifiedType(combinedQualifiers);
1556      }
1557
1558      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
1559                                            MemberLoc, MemberType));
1560    } else if (CXXClassVarDecl *Var = dyn_cast<CXXClassVarDecl>(MemberDecl))
1561      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1562                                  Var, MemberLoc,
1563                                  Var->getType().getNonReferenceType()));
1564    else if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
1565      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1566                                  MemberFn, MemberLoc, MemberFn->getType()));
1567    else if (OverloadedFunctionDecl *Ovl
1568             = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
1569      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
1570                                  MemberLoc, Context.OverloadTy));
1571    else if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
1572      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Enum,
1573                                  MemberLoc, Enum->getType()));
1574    else if (isa<TypeDecl>(MemberDecl))
1575      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
1576        << DeclarationName(&Member) << int(OpKind == tok::arrow));
1577
1578    // We found a declaration kind that we didn't expect. This is a
1579    // generic error message that tells the user that she can't refer
1580    // to this member with '.' or '->'.
1581    return ExprError(Diag(MemberLoc,
1582                          diag::err_typecheck_member_reference_unknown)
1583      << DeclarationName(&Member) << int(OpKind == tok::arrow));
1584  }
1585
1586  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
1587  // (*Obj).ivar.
1588  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
1589    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member)) {
1590      ObjCIvarRefExpr *MRef= new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1591                                                 MemberLoc, BaseExpr,
1592                                                 OpKind == tok::arrow);
1593      Context.setFieldDecl(IFTy->getDecl(), IV, MRef);
1594      return Owned(MRef);
1595    }
1596    return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1597                       << IFTy->getDecl()->getDeclName() << &Member
1598                       << BaseExpr->getSourceRange());
1599  }
1600
1601  // Handle Objective-C property access, which is "Obj.property" where Obj is a
1602  // pointer to a (potentially qualified) interface type.
1603  const PointerType *PTy;
1604  const ObjCInterfaceType *IFTy;
1605  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
1606      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
1607    ObjCInterfaceDecl *IFace = IFTy->getDecl();
1608
1609    // Search for a declared property first.
1610    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
1611      return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1612                                           MemberLoc, BaseExpr));
1613
1614    // Check protocols on qualified interfaces.
1615    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
1616         E = IFTy->qual_end(); I != E; ++I)
1617      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1618        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1619                                             MemberLoc, BaseExpr));
1620
1621    // If that failed, look for an "implicit" property by seeing if the nullary
1622    // selector is implemented.
1623
1624    // FIXME: The logic for looking up nullary and unary selectors should be
1625    // shared with the code in ActOnInstanceMessage.
1626
1627    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1628    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1629
1630    // If this reference is in an @implementation, check for 'private' methods.
1631    if (!Getter)
1632      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1633        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1634          if (ObjCImplementationDecl *ImpDecl =
1635              ObjCImplementations[ClassDecl->getIdentifier()])
1636            Getter = ImpDecl->getInstanceMethod(Sel);
1637
1638    // Look through local category implementations associated with the class.
1639    if (!Getter) {
1640      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
1641        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1642          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
1643      }
1644    }
1645    if (Getter) {
1646      // If we found a getter then this may be a valid dot-reference, we
1647      // will look for the matching setter, in case it is needed.
1648      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
1649                                                       &Member);
1650      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
1651      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1652      if (!Setter) {
1653        // If this reference is in an @implementation, also check for 'private'
1654        // methods.
1655        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1656          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1657            if (ObjCImplementationDecl *ImpDecl =
1658                  ObjCImplementations[ClassDecl->getIdentifier()])
1659              Setter = ImpDecl->getInstanceMethod(SetterSel);
1660      }
1661      // Look through local category implementations associated with the class.
1662      if (!Setter) {
1663        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
1664          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1665            Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
1666        }
1667      }
1668
1669      // FIXME: we must check that the setter has property type.
1670      return Owned(new (Context) ObjCKVCRefExpr(Getter, Getter->getResultType(),
1671                                      Setter, MemberLoc, BaseExpr));
1672    }
1673
1674    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1675      << &Member << BaseType);
1676  }
1677  // Handle properties on qualified "id" protocols.
1678  const ObjCQualifiedIdType *QIdTy;
1679  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
1680    // Check protocols on qualified interfaces.
1681    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1682         E = QIdTy->qual_end(); I != E; ++I) {
1683      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1684        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1685                                             MemberLoc, BaseExpr));
1686      // Also must look for a getter name which uses property syntax.
1687      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1688      if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1689        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
1690                        OMD->getResultType(), OMD, OpLoc, MemberLoc, NULL, 0));
1691      }
1692    }
1693
1694    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1695                       << &Member << BaseType);
1696  }
1697  // Handle 'field access' to vectors, such as 'V.xx'.
1698  if (BaseType->isExtVectorType() && OpKind == tok::period) {
1699    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1700    if (ret.isNull())
1701      return ExprError();
1702    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
1703                                                    MemberLoc));
1704  }
1705
1706  return ExprError(Diag(MemberLoc,
1707                        diag::err_typecheck_member_reference_struct_union)
1708                     << BaseType << BaseExpr->getSourceRange());
1709}
1710
1711/// ConvertArgumentsForCall - Converts the arguments specified in
1712/// Args/NumArgs to the parameter types of the function FDecl with
1713/// function prototype Proto. Call is the call expression itself, and
1714/// Fn is the function expression. For a C++ member function, this
1715/// routine does not attempt to convert the object argument. Returns
1716/// true if the call is ill-formed.
1717bool
1718Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
1719                              FunctionDecl *FDecl,
1720                              const FunctionTypeProto *Proto,
1721                              Expr **Args, unsigned NumArgs,
1722                              SourceLocation RParenLoc) {
1723  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
1724  // assignment, to the types of the corresponding parameter, ...
1725  unsigned NumArgsInProto = Proto->getNumArgs();
1726  unsigned NumArgsToCheck = NumArgs;
1727  bool Invalid = false;
1728
1729  // If too few arguments are available (and we don't have default
1730  // arguments for the remaining parameters), don't make the call.
1731  if (NumArgs < NumArgsInProto) {
1732    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
1733      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
1734        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
1735    // Use default arguments for missing arguments
1736    NumArgsToCheck = NumArgsInProto;
1737    Call->setNumArgs(NumArgsInProto);
1738  }
1739
1740  // If too many are passed and not variadic, error on the extras and drop
1741  // them.
1742  if (NumArgs > NumArgsInProto) {
1743    if (!Proto->isVariadic()) {
1744      Diag(Args[NumArgsInProto]->getLocStart(),
1745           diag::err_typecheck_call_too_many_args)
1746        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
1747        << SourceRange(Args[NumArgsInProto]->getLocStart(),
1748                       Args[NumArgs-1]->getLocEnd());
1749      // This deletes the extra arguments.
1750      Call->setNumArgs(NumArgsInProto);
1751      Invalid = true;
1752    }
1753    NumArgsToCheck = NumArgsInProto;
1754  }
1755
1756  // Continue to check argument types (even if we have too few/many args).
1757  for (unsigned i = 0; i != NumArgsToCheck; i++) {
1758    QualType ProtoArgType = Proto->getArgType(i);
1759
1760    Expr *Arg;
1761    if (i < NumArgs) {
1762      Arg = Args[i];
1763
1764      // Pass the argument.
1765      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
1766        return true;
1767    } else
1768      // We already type-checked the argument, so we know it works.
1769      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
1770    QualType ArgType = Arg->getType();
1771
1772    Call->setArg(i, Arg);
1773  }
1774
1775  // If this is a variadic call, handle args passed through "...".
1776  if (Proto->isVariadic()) {
1777    VariadicCallType CallType = VariadicFunction;
1778    if (Fn->getType()->isBlockPointerType())
1779      CallType = VariadicBlock; // Block
1780    else if (isa<MemberExpr>(Fn))
1781      CallType = VariadicMethod;
1782
1783    // Promote the arguments (C99 6.5.2.2p7).
1784    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1785      Expr *Arg = Args[i];
1786      DefaultVariadicArgumentPromotion(Arg, CallType);
1787      Call->setArg(i, Arg);
1788    }
1789  }
1790
1791  return Invalid;
1792}
1793
1794/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
1795/// This provides the location of the left/right parens and a list of comma
1796/// locations.
1797Action::OwningExprResult
1798Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
1799                    MultiExprArg args,
1800                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
1801  unsigned NumArgs = args.size();
1802  Expr *Fn = static_cast<Expr *>(fn.release());
1803  Expr **Args = reinterpret_cast<Expr**>(args.release());
1804  assert(Fn && "no function call expression");
1805  FunctionDecl *FDecl = NULL;
1806  OverloadedFunctionDecl *Ovl = NULL;
1807
1808  // Determine whether this is a dependent call inside a C++ template,
1809  // in which case we won't do any semantic analysis now.
1810  bool Dependent = false;
1811  if (Fn->isTypeDependent()) {
1812    if (CXXDependentNameExpr *FnName = dyn_cast<CXXDependentNameExpr>(Fn)) {
1813      if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
1814        Dependent = true;
1815      else {
1816        // Resolve the CXXDependentNameExpr to an actual identifier;
1817        // it wasn't really a dependent name after all.
1818        OwningExprResult Resolved
1819          = ActOnDeclarationNameExpr(S, FnName->getLocation(),
1820                                     FnName->getName(),
1821                                     /*HasTrailingLParen=*/true,
1822                                     /*SS=*/0,
1823                                     /*ForceResolution=*/true);
1824        if (Resolved.isInvalid())
1825          return ExprError();
1826        else {
1827          delete Fn;
1828          Fn = (Expr *)Resolved.release();
1829        }
1830      }
1831    } else
1832      Dependent = true;
1833  } else
1834    Dependent = Expr::hasAnyTypeDependentArguments(Args, NumArgs);
1835
1836  // FIXME: Will need to cache the results of name lookup (including
1837  // ADL) in Fn.
1838  if (Dependent)
1839    return Owned(new (Context) CallExpr(Fn, Args, NumArgs,
1840                                        Context.DependentTy, RParenLoc));
1841
1842  // Determine whether this is a call to an object (C++ [over.call.object]).
1843  if (getLangOptions().CPlusPlus && Fn->getType()->isRecordType())
1844    return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
1845                                              CommaLocs, RParenLoc));
1846
1847  // Determine whether this is a call to a member function.
1848  if (getLangOptions().CPlusPlus) {
1849    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
1850      if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
1851          isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
1852        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
1853                                               CommaLocs, RParenLoc));
1854  }
1855
1856  // If we're directly calling a function or a set of overloaded
1857  // functions, get the appropriate declaration.
1858  DeclRefExpr *DRExpr = NULL;
1859  if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
1860    DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr());
1861  else
1862    DRExpr = dyn_cast<DeclRefExpr>(Fn);
1863
1864  if (DRExpr) {
1865    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
1866    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
1867  }
1868
1869  if (Ovl) {
1870    FDecl = ResolveOverloadedCallFn(Fn, Ovl, LParenLoc, Args, NumArgs,
1871                                    CommaLocs, RParenLoc);
1872    if (!FDecl)
1873      return ExprError();
1874
1875    // Update Fn to refer to the actual function selected.
1876    Expr *NewFn = 0;
1877    if (QualifiedDeclRefExpr *QDRExpr = dyn_cast<QualifiedDeclRefExpr>(DRExpr))
1878      NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
1879                                       QDRExpr->getLocation(), false, false,
1880                                       QDRExpr->getSourceRange().getBegin());
1881    else
1882      NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
1883                                        Fn->getSourceRange().getBegin());
1884    Fn->Destroy(Context);
1885    Fn = NewFn;
1886  }
1887
1888  // Promote the function operand.
1889  UsualUnaryConversions(Fn);
1890
1891  // Make the call expr early, before semantic checks.  This guarantees cleanup
1892  // of arguments and function on error.
1893  // FIXME: Except that llvm::OwningPtr uses delete, when it really must be
1894  // Destroy(), or nothing gets cleaned up.
1895  llvm::OwningPtr<CallExpr> TheCall(new (Context) CallExpr(Fn, Args, NumArgs,
1896                                                 Context.BoolTy, RParenLoc));
1897
1898  const FunctionType *FuncT;
1899  if (!Fn->getType()->isBlockPointerType()) {
1900    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
1901    // have type pointer to function".
1902    const PointerType *PT = Fn->getType()->getAsPointerType();
1903    if (PT == 0)
1904      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
1905        << Fn->getType() << Fn->getSourceRange());
1906    FuncT = PT->getPointeeType()->getAsFunctionType();
1907  } else { // This is a block call.
1908    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
1909                getAsFunctionType();
1910  }
1911  if (FuncT == 0)
1912    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
1913      << Fn->getType() << Fn->getSourceRange());
1914
1915  // We know the result type of the call, set it.
1916  TheCall->setType(FuncT->getResultType().getNonReferenceType());
1917
1918  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
1919    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
1920                                RParenLoc))
1921      return ExprError();
1922  } else {
1923    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
1924
1925    // Promote the arguments (C99 6.5.2.2p6).
1926    for (unsigned i = 0; i != NumArgs; i++) {
1927      Expr *Arg = Args[i];
1928      DefaultArgumentPromotion(Arg);
1929      TheCall->setArg(i, Arg);
1930    }
1931  }
1932
1933  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
1934    if (!Method->isStatic())
1935      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
1936        << Fn->getSourceRange());
1937
1938  // Do special checking on direct calls to functions.
1939  if (FDecl)
1940    return CheckFunctionCall(FDecl, TheCall.take());
1941
1942  return Owned(TheCall.take());
1943}
1944
1945Action::OwningExprResult
1946Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
1947                           SourceLocation RParenLoc, ExprArg InitExpr) {
1948  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
1949  QualType literalType = QualType::getFromOpaquePtr(Ty);
1950  // FIXME: put back this assert when initializers are worked out.
1951  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
1952  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
1953
1954  if (literalType->isArrayType()) {
1955    if (literalType->isVariableArrayType())
1956      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
1957        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
1958  } else if (DiagnoseIncompleteType(LParenLoc, literalType,
1959                                    diag::err_typecheck_decl_incomplete_type,
1960                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
1961    return ExprError();
1962
1963  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
1964                            DeclarationName(), /*FIXME:DirectInit=*/false))
1965    return ExprError();
1966
1967  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
1968  if (isFileScope) { // 6.5.2.5p3
1969    if (CheckForConstantInitializer(literalExpr, literalType))
1970      return ExprError();
1971  }
1972  InitExpr.release();
1973  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
1974                                                 literalExpr, isFileScope));
1975}
1976
1977Action::OwningExprResult
1978Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
1979                    InitListDesignations &Designators,
1980                    SourceLocation RBraceLoc) {
1981  unsigned NumInit = initlist.size();
1982  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
1983
1984  // Semantic analysis for initializers is done by ActOnDeclarator() and
1985  // CheckInitializer() - it requires knowledge of the object being intialized.
1986
1987  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
1988                                    RBraceLoc, Designators.hasAnyDesignators());
1989  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
1990  return Owned(E);
1991}
1992
1993/// CheckCastTypes - Check type constraints for casting between types.
1994bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
1995  UsualUnaryConversions(castExpr);
1996
1997  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
1998  // type needs to be scalar.
1999  if (castType->isVoidType()) {
2000    // Cast to void allows any expr type.
2001  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
2002    // We can't check any more until template instantiation time.
2003  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2004    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2005        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2006        (castType->isStructureType() || castType->isUnionType())) {
2007      // GCC struct/union extension: allow cast to self.
2008      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2009        << castType << castExpr->getSourceRange();
2010    } else if (castType->isUnionType()) {
2011      // GCC cast to union extension
2012      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2013      RecordDecl::field_iterator Field, FieldEnd;
2014      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2015           Field != FieldEnd; ++Field) {
2016        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2017            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2018          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2019            << castExpr->getSourceRange();
2020          break;
2021        }
2022      }
2023      if (Field == FieldEnd)
2024        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2025          << castExpr->getType() << castExpr->getSourceRange();
2026    } else {
2027      // Reject any other conversions to non-scalar types.
2028      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2029        << castType << castExpr->getSourceRange();
2030    }
2031  } else if (!castExpr->getType()->isScalarType() &&
2032             !castExpr->getType()->isVectorType()) {
2033    return Diag(castExpr->getLocStart(),
2034                diag::err_typecheck_expect_scalar_operand)
2035      << castExpr->getType() << castExpr->getSourceRange();
2036  } else if (castExpr->getType()->isVectorType()) {
2037    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2038      return true;
2039  } else if (castType->isVectorType()) {
2040    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2041      return true;
2042  }
2043  return false;
2044}
2045
2046bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
2047  assert(VectorTy->isVectorType() && "Not a vector type!");
2048
2049  if (Ty->isVectorType() || Ty->isIntegerType()) {
2050    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
2051      return Diag(R.getBegin(),
2052                  Ty->isVectorType() ?
2053                  diag::err_invalid_conversion_between_vectors :
2054                  diag::err_invalid_conversion_between_vector_and_integer)
2055        << VectorTy << Ty << R;
2056  } else
2057    return Diag(R.getBegin(),
2058                diag::err_invalid_conversion_between_vector_and_scalar)
2059      << VectorTy << Ty << R;
2060
2061  return false;
2062}
2063
2064Action::OwningExprResult
2065Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
2066                    SourceLocation RParenLoc, ExprArg Op) {
2067  assert((Ty != 0) && (Op.get() != 0) &&
2068         "ActOnCastExpr(): missing type or expr");
2069
2070  Expr *castExpr = static_cast<Expr*>(Op.release());
2071  QualType castType = QualType::getFromOpaquePtr(Ty);
2072
2073  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2074    return ExprError();
2075  return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
2076                                  LParenLoc, RParenLoc));
2077}
2078
2079/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
2080/// In that case, lex = cond.
2081inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
2082  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
2083  UsualUnaryConversions(cond);
2084  UsualUnaryConversions(lex);
2085  UsualUnaryConversions(rex);
2086  QualType condT = cond->getType();
2087  QualType lexT = lex->getType();
2088  QualType rexT = rex->getType();
2089
2090  // first, check the condition.
2091  if (!cond->isTypeDependent()) {
2092    if (!condT->isScalarType()) { // C99 6.5.15p2
2093      Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar) << condT;
2094      return QualType();
2095    }
2096  }
2097
2098  // Now check the two expressions.
2099  if ((lex && lex->isTypeDependent()) || (rex && rex->isTypeDependent()))
2100    return Context.DependentTy;
2101
2102  // If both operands have arithmetic type, do the usual arithmetic conversions
2103  // to find a common type: C99 6.5.15p3,5.
2104  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
2105    UsualArithmeticConversions(lex, rex);
2106    return lex->getType();
2107  }
2108
2109  // If both operands are the same structure or union type, the result is that
2110  // type.
2111  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
2112    if (const RecordType *RHSRT = rexT->getAsRecordType())
2113      if (LHSRT->getDecl() == RHSRT->getDecl())
2114        // "If both the operands have structure or union type, the result has
2115        // that type."  This implies that CV qualifiers are dropped.
2116        return lexT.getUnqualifiedType();
2117  }
2118
2119  // C99 6.5.15p5: "If both operands have void type, the result has void type."
2120  // The following || allows only one side to be void (a GCC-ism).
2121  if (lexT->isVoidType() || rexT->isVoidType()) {
2122    if (!lexT->isVoidType())
2123      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void)
2124        << rex->getSourceRange();
2125    if (!rexT->isVoidType())
2126      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void)
2127        << lex->getSourceRange();
2128    ImpCastExprToType(lex, Context.VoidTy);
2129    ImpCastExprToType(rex, Context.VoidTy);
2130    return Context.VoidTy;
2131  }
2132  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
2133  // the type of the other operand."
2134  if ((lexT->isPointerType() || lexT->isBlockPointerType() ||
2135       Context.isObjCObjectPointerType(lexT)) &&
2136      rex->isNullPointerConstant(Context)) {
2137    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
2138    return lexT;
2139  }
2140  if ((rexT->isPointerType() || rexT->isBlockPointerType() ||
2141       Context.isObjCObjectPointerType(rexT)) &&
2142      lex->isNullPointerConstant(Context)) {
2143    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
2144    return rexT;
2145  }
2146  // Handle the case where both operands are pointers before we handle null
2147  // pointer constants in case both operands are null pointer constants.
2148  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
2149    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
2150      // get the "pointed to" types
2151      QualType lhptee = LHSPT->getPointeeType();
2152      QualType rhptee = RHSPT->getPointeeType();
2153
2154      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
2155      if (lhptee->isVoidType() &&
2156          rhptee->isIncompleteOrObjectType()) {
2157        // Figure out necessary qualifiers (C99 6.5.15p6)
2158        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
2159        QualType destType = Context.getPointerType(destPointee);
2160        ImpCastExprToType(lex, destType); // add qualifiers if necessary
2161        ImpCastExprToType(rex, destType); // promote to void*
2162        return destType;
2163      }
2164      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
2165        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
2166        QualType destType = Context.getPointerType(destPointee);
2167        ImpCastExprToType(lex, destType); // add qualifiers if necessary
2168        ImpCastExprToType(rex, destType); // promote to void*
2169        return destType;
2170      }
2171
2172      QualType compositeType = lexT;
2173
2174      // If either type is an Objective-C object type then check
2175      // compatibility according to Objective-C.
2176      if (Context.isObjCObjectPointerType(lexT) ||
2177          Context.isObjCObjectPointerType(rexT)) {
2178        // If both operands are interfaces and either operand can be
2179        // assigned to the other, use that type as the composite
2180        // type. This allows
2181        //   xxx ? (A*) a : (B*) b
2182        // where B is a subclass of A.
2183        //
2184        // Additionally, as for assignment, if either type is 'id'
2185        // allow silent coercion. Finally, if the types are
2186        // incompatible then make sure to use 'id' as the composite
2187        // type so the result is acceptable for sending messages to.
2188
2189        // FIXME: This code should not be localized to here. Also this
2190        // should use a compatible check instead of abusing the
2191        // canAssignObjCInterfaces code.
2192        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2193        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2194        if (LHSIface && RHSIface &&
2195            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
2196          compositeType = lexT;
2197        } else if (LHSIface && RHSIface &&
2198                   Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
2199          compositeType = rexT;
2200        } else if (Context.isObjCIdType(lhptee) ||
2201                   Context.isObjCIdType(rhptee)) {
2202          // FIXME: This code looks wrong, because isObjCIdType checks
2203          // the struct but getObjCIdType returns the pointer to
2204          // struct. This is horrible and should be fixed.
2205          compositeType = Context.getObjCIdType();
2206        } else {
2207          QualType incompatTy = Context.getObjCIdType();
2208          ImpCastExprToType(lex, incompatTy);
2209          ImpCastExprToType(rex, incompatTy);
2210          return incompatTy;
2211        }
2212      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2213                                             rhptee.getUnqualifiedType())) {
2214        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers)
2215          << lexT << rexT << lex->getSourceRange() << rex->getSourceRange();
2216        // In this situation, we assume void* type. No especially good
2217        // reason, but this is what gcc does, and we do have to pick
2218        // to get a consistent AST.
2219        QualType incompatTy = Context.getPointerType(Context.VoidTy);
2220        ImpCastExprToType(lex, incompatTy);
2221        ImpCastExprToType(rex, incompatTy);
2222        return incompatTy;
2223      }
2224      // The pointer types are compatible.
2225      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
2226      // differently qualified versions of compatible types, the result type is
2227      // a pointer to an appropriately qualified version of the *composite*
2228      // type.
2229      // FIXME: Need to calculate the composite type.
2230      // FIXME: Need to add qualifiers
2231      ImpCastExprToType(lex, compositeType);
2232      ImpCastExprToType(rex, compositeType);
2233      return compositeType;
2234    }
2235  }
2236  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
2237  // evaluates to "struct objc_object *" (and is handled above when comparing
2238  // id with statically typed objects).
2239  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
2240    // GCC allows qualified id and any Objective-C type to devolve to
2241    // id. Currently localizing to here until clear this should be
2242    // part of ObjCQualifiedIdTypesAreCompatible.
2243    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) ||
2244        (lexT->isObjCQualifiedIdType() &&
2245         Context.isObjCObjectPointerType(rexT)) ||
2246        (rexT->isObjCQualifiedIdType() &&
2247         Context.isObjCObjectPointerType(lexT))) {
2248      // FIXME: This is not the correct composite type. This only
2249      // happens to work because id can more or less be used anywhere,
2250      // however this may change the type of method sends.
2251      // FIXME: gcc adds some type-checking of the arguments and emits
2252      // (confusing) incompatible comparison warnings in some
2253      // cases. Investigate.
2254      QualType compositeType = Context.getObjCIdType();
2255      ImpCastExprToType(lex, compositeType);
2256      ImpCastExprToType(rex, compositeType);
2257      return compositeType;
2258    }
2259  }
2260
2261  // Selection between block pointer types is ok as long as they are the same.
2262  if (lexT->isBlockPointerType() && rexT->isBlockPointerType() &&
2263      Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT))
2264    return lexT;
2265
2266  // Otherwise, the operands are not compatible.
2267  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands)
2268    << lexT << rexT << lex->getSourceRange() << rex->getSourceRange();
2269  return QualType();
2270}
2271
2272/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
2273/// in the case of a the GNU conditional expr extension.
2274Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
2275                                                  SourceLocation ColonLoc,
2276                                                  ExprArg Cond, ExprArg LHS,
2277                                                  ExprArg RHS) {
2278  Expr *CondExpr = (Expr *) Cond.get();
2279  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
2280
2281  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
2282  // was the condition.
2283  bool isLHSNull = LHSExpr == 0;
2284  if (isLHSNull)
2285    LHSExpr = CondExpr;
2286
2287  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
2288                                             RHSExpr, QuestionLoc);
2289  if (result.isNull())
2290    return ExprError();
2291
2292  Cond.release();
2293  LHS.release();
2294  RHS.release();
2295  return Owned(new (Context) ConditionalOperator(CondExpr,
2296                                                 isLHSNull ? 0 : LHSExpr,
2297                                                 RHSExpr, result));
2298}
2299
2300
2301// CheckPointerTypesForAssignment - This is a very tricky routine (despite
2302// being closely modeled after the C99 spec:-). The odd characteristic of this
2303// routine is it effectively iqnores the qualifiers on the top level pointee.
2304// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
2305// FIXME: add a couple examples in this comment.
2306Sema::AssignConvertType
2307Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
2308  QualType lhptee, rhptee;
2309
2310  // get the "pointed to" type (ignoring qualifiers at the top level)
2311  lhptee = lhsType->getAsPointerType()->getPointeeType();
2312  rhptee = rhsType->getAsPointerType()->getPointeeType();
2313
2314  // make sure we operate on the canonical type
2315  lhptee = Context.getCanonicalType(lhptee);
2316  rhptee = Context.getCanonicalType(rhptee);
2317
2318  AssignConvertType ConvTy = Compatible;
2319
2320  // C99 6.5.16.1p1: This following citation is common to constraints
2321  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
2322  // qualifiers of the type *pointed to* by the right;
2323  // FIXME: Handle ASQualType
2324  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
2325    ConvTy = CompatiblePointerDiscardsQualifiers;
2326
2327  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
2328  // incomplete type and the other is a pointer to a qualified or unqualified
2329  // version of void...
2330  if (lhptee->isVoidType()) {
2331    if (rhptee->isIncompleteOrObjectType())
2332      return ConvTy;
2333
2334    // As an extension, we allow cast to/from void* to function pointer.
2335    assert(rhptee->isFunctionType());
2336    return FunctionVoidPointer;
2337  }
2338
2339  if (rhptee->isVoidType()) {
2340    if (lhptee->isIncompleteOrObjectType())
2341      return ConvTy;
2342
2343    // As an extension, we allow cast to/from void* to function pointer.
2344    assert(lhptee->isFunctionType());
2345    return FunctionVoidPointer;
2346  }
2347
2348  // Check for ObjC interfaces
2349  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2350  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2351  if (LHSIface && RHSIface &&
2352      Context.canAssignObjCInterfaces(LHSIface, RHSIface))
2353    return ConvTy;
2354
2355  // ID acts sort of like void* for ObjC interfaces
2356  if (LHSIface && Context.isObjCIdType(rhptee))
2357    return ConvTy;
2358  if (RHSIface && Context.isObjCIdType(lhptee))
2359    return ConvTy;
2360
2361  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
2362  // unqualified versions of compatible types, ...
2363  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2364                                  rhptee.getUnqualifiedType()))
2365    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
2366  return ConvTy;
2367}
2368
2369/// CheckBlockPointerTypesForAssignment - This routine determines whether two
2370/// block pointer types are compatible or whether a block and normal pointer
2371/// are compatible. It is more restrict than comparing two function pointer
2372// types.
2373Sema::AssignConvertType
2374Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
2375                                          QualType rhsType) {
2376  QualType lhptee, rhptee;
2377
2378  // get the "pointed to" type (ignoring qualifiers at the top level)
2379  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
2380  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
2381
2382  // make sure we operate on the canonical type
2383  lhptee = Context.getCanonicalType(lhptee);
2384  rhptee = Context.getCanonicalType(rhptee);
2385
2386  AssignConvertType ConvTy = Compatible;
2387
2388  // For blocks we enforce that qualifiers are identical.
2389  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
2390    ConvTy = CompatiblePointerDiscardsQualifiers;
2391
2392  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
2393    return IncompatibleBlockPointer;
2394  return ConvTy;
2395}
2396
2397/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
2398/// has code to accommodate several GCC extensions when type checking
2399/// pointers. Here are some objectionable examples that GCC considers warnings:
2400///
2401///  int a, *pint;
2402///  short *pshort;
2403///  struct foo *pfoo;
2404///
2405///  pint = pshort; // warning: assignment from incompatible pointer type
2406///  a = pint; // warning: assignment makes integer from pointer without a cast
2407///  pint = a; // warning: assignment makes pointer from integer without a cast
2408///  pint = pfoo; // warning: assignment from incompatible pointer type
2409///
2410/// As a result, the code for dealing with pointers is more complex than the
2411/// C99 spec dictates.
2412///
2413Sema::AssignConvertType
2414Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
2415  // Get canonical types.  We're not formatting these types, just comparing
2416  // them.
2417  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
2418  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
2419
2420  if (lhsType == rhsType)
2421    return Compatible; // Common case: fast path an exact match.
2422
2423  // If the left-hand side is a reference type, then we are in a
2424  // (rare!) case where we've allowed the use of references in C,
2425  // e.g., as a parameter type in a built-in function. In this case,
2426  // just make sure that the type referenced is compatible with the
2427  // right-hand side type. The caller is responsible for adjusting
2428  // lhsType so that the resulting expression does not have reference
2429  // type.
2430  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
2431    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
2432      return Compatible;
2433    return Incompatible;
2434  }
2435
2436  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
2437    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
2438      return Compatible;
2439    // Relax integer conversions like we do for pointers below.
2440    if (rhsType->isIntegerType())
2441      return IntToPointer;
2442    if (lhsType->isIntegerType())
2443      return PointerToInt;
2444    return IncompatibleObjCQualifiedId;
2445  }
2446
2447  if (lhsType->isVectorType() || rhsType->isVectorType()) {
2448    // For ExtVector, allow vector splats; float -> <n x float>
2449    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
2450      if (LV->getElementType() == rhsType)
2451        return Compatible;
2452
2453    // If we are allowing lax vector conversions, and LHS and RHS are both
2454    // vectors, the total size only needs to be the same. This is a bitcast;
2455    // no bits are changed but the result type is different.
2456    if (getLangOptions().LaxVectorConversions &&
2457        lhsType->isVectorType() && rhsType->isVectorType()) {
2458      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
2459        return Compatible;
2460    }
2461    return Incompatible;
2462  }
2463
2464  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
2465    return Compatible;
2466
2467  if (isa<PointerType>(lhsType)) {
2468    if (rhsType->isIntegerType())
2469      return IntToPointer;
2470
2471    if (isa<PointerType>(rhsType))
2472      return CheckPointerTypesForAssignment(lhsType, rhsType);
2473
2474    if (rhsType->getAsBlockPointerType()) {
2475      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
2476        return Compatible;
2477
2478      // Treat block pointers as objects.
2479      if (getLangOptions().ObjC1 &&
2480          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
2481        return Compatible;
2482    }
2483    return Incompatible;
2484  }
2485
2486  if (isa<BlockPointerType>(lhsType)) {
2487    if (rhsType->isIntegerType())
2488      return IntToPointer;
2489
2490    // Treat block pointers as objects.
2491    if (getLangOptions().ObjC1 &&
2492        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
2493      return Compatible;
2494
2495    if (rhsType->isBlockPointerType())
2496      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
2497
2498    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
2499      if (RHSPT->getPointeeType()->isVoidType())
2500        return Compatible;
2501    }
2502    return Incompatible;
2503  }
2504
2505  if (isa<PointerType>(rhsType)) {
2506    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
2507    if (lhsType == Context.BoolTy)
2508      return Compatible;
2509
2510    if (lhsType->isIntegerType())
2511      return PointerToInt;
2512
2513    if (isa<PointerType>(lhsType))
2514      return CheckPointerTypesForAssignment(lhsType, rhsType);
2515
2516    if (isa<BlockPointerType>(lhsType) &&
2517        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
2518      return Compatible;
2519    return Incompatible;
2520  }
2521
2522  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
2523    if (Context.typesAreCompatible(lhsType, rhsType))
2524      return Compatible;
2525  }
2526  return Incompatible;
2527}
2528
2529Sema::AssignConvertType
2530Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
2531  if (getLangOptions().CPlusPlus) {
2532    if (!lhsType->isRecordType()) {
2533      // C++ 5.17p3: If the left operand is not of class type, the
2534      // expression is implicitly converted (C++ 4) to the
2535      // cv-unqualified type of the left operand.
2536      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
2537                                    "assigning"))
2538        return Incompatible;
2539      else
2540        return Compatible;
2541    }
2542
2543    // FIXME: Currently, we fall through and treat C++ classes like C
2544    // structures.
2545  }
2546
2547  // C99 6.5.16.1p1: the left operand is a pointer and the right is
2548  // a null pointer constant.
2549  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
2550       lhsType->isBlockPointerType())
2551      && rExpr->isNullPointerConstant(Context)) {
2552    ImpCastExprToType(rExpr, lhsType);
2553    return Compatible;
2554  }
2555
2556  // We don't allow conversion of non-null-pointer constants to integers.
2557  if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
2558    return IntToBlockPointer;
2559
2560  // This check seems unnatural, however it is necessary to ensure the proper
2561  // conversion of functions/arrays. If the conversion were done for all
2562  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
2563  // expressions that surpress this implicit conversion (&, sizeof).
2564  //
2565  // Suppress this for references: C++ 8.5.3p5.
2566  if (!lhsType->isReferenceType())
2567    DefaultFunctionArrayConversion(rExpr);
2568
2569  Sema::AssignConvertType result =
2570    CheckAssignmentConstraints(lhsType, rExpr->getType());
2571
2572  // C99 6.5.16.1p2: The value of the right operand is converted to the
2573  // type of the assignment expression.
2574  // CheckAssignmentConstraints allows the left-hand side to be a reference,
2575  // so that we can use references in built-in functions even in C.
2576  // The getNonReferenceType() call makes sure that the resulting expression
2577  // does not have reference type.
2578  if (rExpr->getType() != lhsType)
2579    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
2580  return result;
2581}
2582
2583Sema::AssignConvertType
2584Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
2585  return CheckAssignmentConstraints(lhsType, rhsType);
2586}
2587
2588QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
2589  Diag(Loc, diag::err_typecheck_invalid_operands)
2590    << lex->getType() << rex->getType()
2591    << lex->getSourceRange() << rex->getSourceRange();
2592  return QualType();
2593}
2594
2595inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
2596                                                              Expr *&rex) {
2597  // For conversion purposes, we ignore any qualifiers.
2598  // For example, "const float" and "float" are equivalent.
2599  QualType lhsType =
2600    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
2601  QualType rhsType =
2602    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
2603
2604  // If the vector types are identical, return.
2605  if (lhsType == rhsType)
2606    return lhsType;
2607
2608  // Handle the case of a vector & extvector type of the same size and element
2609  // type.  It would be nice if we only had one vector type someday.
2610  if (getLangOptions().LaxVectorConversions)
2611    if (const VectorType *LV = lhsType->getAsVectorType())
2612      if (const VectorType *RV = rhsType->getAsVectorType())
2613        if (LV->getElementType() == RV->getElementType() &&
2614            LV->getNumElements() == RV->getNumElements())
2615          return lhsType->isExtVectorType() ? lhsType : rhsType;
2616
2617  // If the lhs is an extended vector and the rhs is a scalar of the same type
2618  // or a literal, promote the rhs to the vector type.
2619  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
2620    QualType eltType = V->getElementType();
2621
2622    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
2623        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
2624        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
2625      ImpCastExprToType(rex, lhsType);
2626      return lhsType;
2627    }
2628  }
2629
2630  // If the rhs is an extended vector and the lhs is a scalar of the same type,
2631  // promote the lhs to the vector type.
2632  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
2633    QualType eltType = V->getElementType();
2634
2635    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
2636        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
2637        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
2638      ImpCastExprToType(lex, rhsType);
2639      return rhsType;
2640    }
2641  }
2642
2643  // You cannot convert between vector values of different size.
2644  Diag(Loc, diag::err_typecheck_vector_not_convertable)
2645    << lex->getType() << rex->getType()
2646    << lex->getSourceRange() << rex->getSourceRange();
2647  return QualType();
2648}
2649
2650inline QualType Sema::CheckMultiplyDivideOperands(
2651  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2652{
2653  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2654    return CheckVectorOperands(Loc, lex, rex);
2655
2656  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2657
2658  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2659    return compType;
2660  return InvalidOperands(Loc, lex, rex);
2661}
2662
2663inline QualType Sema::CheckRemainderOperands(
2664  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2665{
2666  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
2667    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2668      return CheckVectorOperands(Loc, lex, rex);
2669    return InvalidOperands(Loc, lex, rex);
2670  }
2671
2672  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2673
2674  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2675    return compType;
2676  return InvalidOperands(Loc, lex, rex);
2677}
2678
2679inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
2680  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2681{
2682  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2683    return CheckVectorOperands(Loc, lex, rex);
2684
2685  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2686
2687  // handle the common case first (both operands are arithmetic).
2688  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2689    return compType;
2690
2691  // Put any potential pointer into PExp
2692  Expr* PExp = lex, *IExp = rex;
2693  if (IExp->getType()->isPointerType())
2694    std::swap(PExp, IExp);
2695
2696  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
2697    if (IExp->getType()->isIntegerType()) {
2698      // Check for arithmetic on pointers to incomplete types
2699      if (!PTy->getPointeeType()->isObjectType()) {
2700        if (PTy->getPointeeType()->isVoidType()) {
2701          if (getLangOptions().CPlusPlus) {
2702            Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
2703              << lex->getSourceRange() << rex->getSourceRange();
2704            return QualType();
2705          }
2706
2707          // GNU extension: arithmetic on pointer to void
2708          Diag(Loc, diag::ext_gnu_void_ptr)
2709            << lex->getSourceRange() << rex->getSourceRange();
2710        } else if (PTy->getPointeeType()->isFunctionType()) {
2711          if (getLangOptions().CPlusPlus) {
2712            Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
2713              << lex->getType() << lex->getSourceRange();
2714            return QualType();
2715          }
2716
2717          // GNU extension: arithmetic on pointer to function
2718          Diag(Loc, diag::ext_gnu_ptr_func_arith)
2719            << lex->getType() << lex->getSourceRange();
2720        } else {
2721          DiagnoseIncompleteType(Loc, PTy->getPointeeType(),
2722                                 diag::err_typecheck_arithmetic_incomplete_type,
2723                                 lex->getSourceRange(), SourceRange(),
2724                                 lex->getType());
2725          return QualType();
2726        }
2727      }
2728      return PExp->getType();
2729    }
2730  }
2731
2732  return InvalidOperands(Loc, lex, rex);
2733}
2734
2735// C99 6.5.6
2736QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
2737                                        SourceLocation Loc, bool isCompAssign) {
2738  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2739    return CheckVectorOperands(Loc, lex, rex);
2740
2741  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2742
2743  // Enforce type constraints: C99 6.5.6p3.
2744
2745  // Handle the common case first (both operands are arithmetic).
2746  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2747    return compType;
2748
2749  // Either ptr - int   or   ptr - ptr.
2750  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
2751    QualType lpointee = LHSPTy->getPointeeType();
2752
2753    // The LHS must be an object type, not incomplete, function, etc.
2754    if (!lpointee->isObjectType()) {
2755      // Handle the GNU void* extension.
2756      if (lpointee->isVoidType()) {
2757        Diag(Loc, diag::ext_gnu_void_ptr)
2758          << lex->getSourceRange() << rex->getSourceRange();
2759      } else if (lpointee->isFunctionType()) {
2760        if (getLangOptions().CPlusPlus) {
2761          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
2762            << lex->getType() << lex->getSourceRange();
2763          return QualType();
2764        }
2765
2766        // GNU extension: arithmetic on pointer to function
2767        Diag(Loc, diag::ext_gnu_ptr_func_arith)
2768          << lex->getType() << lex->getSourceRange();
2769      } else {
2770        Diag(Loc, diag::err_typecheck_sub_ptr_object)
2771          << lex->getType() << lex->getSourceRange();
2772        return QualType();
2773      }
2774    }
2775
2776    // The result type of a pointer-int computation is the pointer type.
2777    if (rex->getType()->isIntegerType())
2778      return lex->getType();
2779
2780    // Handle pointer-pointer subtractions.
2781    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
2782      QualType rpointee = RHSPTy->getPointeeType();
2783
2784      // RHS must be an object type, unless void (GNU).
2785      if (!rpointee->isObjectType()) {
2786        // Handle the GNU void* extension.
2787        if (rpointee->isVoidType()) {
2788          if (!lpointee->isVoidType())
2789            Diag(Loc, diag::ext_gnu_void_ptr)
2790              << lex->getSourceRange() << rex->getSourceRange();
2791        } else if (rpointee->isFunctionType()) {
2792          if (getLangOptions().CPlusPlus) {
2793            Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
2794              << rex->getType() << rex->getSourceRange();
2795            return QualType();
2796          }
2797
2798          // GNU extension: arithmetic on pointer to function
2799          if (!lpointee->isFunctionType())
2800            Diag(Loc, diag::ext_gnu_ptr_func_arith)
2801              << lex->getType() << lex->getSourceRange();
2802        } else {
2803          Diag(Loc, diag::err_typecheck_sub_ptr_object)
2804            << rex->getType() << rex->getSourceRange();
2805          return QualType();
2806        }
2807      }
2808
2809      // Pointee types must be compatible.
2810      if (!Context.typesAreCompatible(
2811              Context.getCanonicalType(lpointee).getUnqualifiedType(),
2812              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
2813        Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
2814          << lex->getType() << rex->getType()
2815          << lex->getSourceRange() << rex->getSourceRange();
2816        return QualType();
2817      }
2818
2819      return Context.getPointerDiffType();
2820    }
2821  }
2822
2823  return InvalidOperands(Loc, lex, rex);
2824}
2825
2826// C99 6.5.7
2827QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
2828                                  bool isCompAssign) {
2829  // C99 6.5.7p2: Each of the operands shall have integer type.
2830  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
2831    return InvalidOperands(Loc, lex, rex);
2832
2833  // Shifts don't perform usual arithmetic conversions, they just do integer
2834  // promotions on each operand. C99 6.5.7p3
2835  if (!isCompAssign)
2836    UsualUnaryConversions(lex);
2837  UsualUnaryConversions(rex);
2838
2839  // "The type of the result is that of the promoted left operand."
2840  return lex->getType();
2841}
2842
2843static bool areComparableObjCInterfaces(QualType LHS, QualType RHS,
2844                                        ASTContext& Context) {
2845  const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
2846  const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
2847  // ID acts sort of like void* for ObjC interfaces
2848  if (LHSIface && Context.isObjCIdType(RHS))
2849    return true;
2850  if (RHSIface && Context.isObjCIdType(LHS))
2851    return true;
2852  if (!LHSIface || !RHSIface)
2853    return false;
2854  return Context.canAssignObjCInterfaces(LHSIface, RHSIface) ||
2855         Context.canAssignObjCInterfaces(RHSIface, LHSIface);
2856}
2857
2858// C99 6.5.8
2859QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
2860                                    bool isRelational) {
2861  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2862    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
2863
2864  // C99 6.5.8p3 / C99 6.5.9p4
2865  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2866    UsualArithmeticConversions(lex, rex);
2867  else {
2868    UsualUnaryConversions(lex);
2869    UsualUnaryConversions(rex);
2870  }
2871  QualType lType = lex->getType();
2872  QualType rType = rex->getType();
2873
2874  // For non-floating point types, check for self-comparisons of the form
2875  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2876  // often indicate logic errors in the program.
2877  if (!lType->isFloatingType()) {
2878    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2879      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2880        if (DRL->getDecl() == DRR->getDecl())
2881          Diag(Loc, diag::warn_selfcomparison);
2882  }
2883
2884  // The result of comparisons is 'bool' in C++, 'int' in C.
2885  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy : Context.IntTy;
2886
2887  if (isRelational) {
2888    if (lType->isRealType() && rType->isRealType())
2889      return ResultTy;
2890  } else {
2891    // Check for comparisons of floating point operands using != and ==.
2892    if (lType->isFloatingType()) {
2893      assert (rType->isFloatingType());
2894      CheckFloatComparison(Loc,lex,rex);
2895    }
2896
2897    if (lType->isArithmeticType() && rType->isArithmeticType())
2898      return ResultTy;
2899  }
2900
2901  bool LHSIsNull = lex->isNullPointerConstant(Context);
2902  bool RHSIsNull = rex->isNullPointerConstant(Context);
2903
2904  // All of the following pointer related warnings are GCC extensions, except
2905  // when handling null pointer constants. One day, we can consider making them
2906  // errors (when -pedantic-errors is enabled).
2907  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
2908    QualType LCanPointeeTy =
2909      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
2910    QualType RCanPointeeTy =
2911      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
2912
2913    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
2914        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
2915        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
2916                                    RCanPointeeTy.getUnqualifiedType()) &&
2917        !areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) {
2918      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
2919        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2920    }
2921    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2922    return ResultTy;
2923  }
2924  // Handle block pointer types.
2925  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
2926    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
2927    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
2928
2929    if (!LHSIsNull && !RHSIsNull &&
2930        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
2931      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
2932        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2933    }
2934    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2935    return ResultTy;
2936  }
2937  // Allow block pointers to be compared with null pointer constants.
2938  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
2939      (lType->isPointerType() && rType->isBlockPointerType())) {
2940    if (!LHSIsNull && !RHSIsNull) {
2941      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
2942        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2943    }
2944    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2945    return ResultTy;
2946  }
2947
2948  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
2949    if (lType->isPointerType() || rType->isPointerType()) {
2950      const PointerType *LPT = lType->getAsPointerType();
2951      const PointerType *RPT = rType->getAsPointerType();
2952      bool LPtrToVoid = LPT ?
2953        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
2954      bool RPtrToVoid = RPT ?
2955        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
2956
2957      if (!LPtrToVoid && !RPtrToVoid &&
2958          !Context.typesAreCompatible(lType, rType)) {
2959        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
2960          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2961        ImpCastExprToType(rex, lType);
2962        return ResultTy;
2963      }
2964      ImpCastExprToType(rex, lType);
2965      return ResultTy;
2966    }
2967    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
2968      ImpCastExprToType(rex, lType);
2969      return ResultTy;
2970    } else {
2971      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
2972        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
2973          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2974        ImpCastExprToType(rex, lType);
2975        return ResultTy;
2976      }
2977    }
2978  }
2979  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
2980       rType->isIntegerType()) {
2981    if (!RHSIsNull)
2982      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2983        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2984    ImpCastExprToType(rex, lType); // promote the integer to pointer
2985    return ResultTy;
2986  }
2987  if (lType->isIntegerType() &&
2988      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
2989    if (!LHSIsNull)
2990      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2991        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2992    ImpCastExprToType(lex, rType); // promote the integer to pointer
2993    return ResultTy;
2994  }
2995  // Handle block pointers.
2996  if (lType->isBlockPointerType() && rType->isIntegerType()) {
2997    if (!RHSIsNull)
2998      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2999        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3000    ImpCastExprToType(rex, lType); // promote the integer to pointer
3001    return ResultTy;
3002  }
3003  if (lType->isIntegerType() && rType->isBlockPointerType()) {
3004    if (!LHSIsNull)
3005      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3006        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3007    ImpCastExprToType(lex, rType); // promote the integer to pointer
3008    return ResultTy;
3009  }
3010  return InvalidOperands(Loc, lex, rex);
3011}
3012
3013/// CheckVectorCompareOperands - vector comparisons are a clang extension that
3014/// operates on extended vector types.  Instead of producing an IntTy result,
3015/// like a scalar comparison, a vector comparison produces a vector of integer
3016/// types.
3017QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
3018                                          SourceLocation Loc,
3019                                          bool isRelational) {
3020  // Check to make sure we're operating on vectors of the same type and width,
3021  // Allowing one side to be a scalar of element type.
3022  QualType vType = CheckVectorOperands(Loc, lex, rex);
3023  if (vType.isNull())
3024    return vType;
3025
3026  QualType lType = lex->getType();
3027  QualType rType = rex->getType();
3028
3029  // For non-floating point types, check for self-comparisons of the form
3030  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3031  // often indicate logic errors in the program.
3032  if (!lType->isFloatingType()) {
3033    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
3034      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
3035        if (DRL->getDecl() == DRR->getDecl())
3036          Diag(Loc, diag::warn_selfcomparison);
3037  }
3038
3039  // Check for comparisons of floating point operands using != and ==.
3040  if (!isRelational && lType->isFloatingType()) {
3041    assert (rType->isFloatingType());
3042    CheckFloatComparison(Loc,lex,rex);
3043  }
3044
3045  // Return the type for the comparison, which is the same as vector type for
3046  // integer vectors, or an integer type of identical size and number of
3047  // elements for floating point vectors.
3048  if (lType->isIntegerType())
3049    return lType;
3050
3051  const VectorType *VTy = lType->getAsVectorType();
3052  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
3053  if (TypeSize == Context.getTypeSize(Context.IntTy))
3054    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
3055  else if (TypeSize == Context.getTypeSize(Context.LongTy))
3056    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
3057
3058  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
3059         "Unhandled vector element size in vector compare");
3060  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
3061}
3062
3063inline QualType Sema::CheckBitwiseOperands(
3064  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3065{
3066  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3067    return CheckVectorOperands(Loc, lex, rex);
3068
3069  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3070
3071  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3072    return compType;
3073  return InvalidOperands(Loc, lex, rex);
3074}
3075
3076inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
3077  Expr *&lex, Expr *&rex, SourceLocation Loc)
3078{
3079  UsualUnaryConversions(lex);
3080  UsualUnaryConversions(rex);
3081
3082  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
3083    return Context.IntTy;
3084  return InvalidOperands(Loc, lex, rex);
3085}
3086
3087/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
3088/// is a read-only property; return true if so. A readonly property expression
3089/// depends on various declarations and thus must be treated specially.
3090///
3091static bool IsReadonlyProperty(Expr *E, Sema &S)
3092{
3093  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
3094    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
3095    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
3096      QualType BaseType = PropExpr->getBase()->getType();
3097      if (const PointerType *PTy = BaseType->getAsPointerType())
3098        if (const ObjCInterfaceType *IFTy =
3099            PTy->getPointeeType()->getAsObjCInterfaceType())
3100          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
3101            if (S.isPropertyReadonly(PDecl, IFace))
3102              return true;
3103    }
3104  }
3105  return false;
3106}
3107
3108/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
3109/// emit an error and return true.  If so, return false.
3110static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
3111  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context);
3112  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
3113    IsLV = Expr::MLV_ReadonlyProperty;
3114  if (IsLV == Expr::MLV_Valid)
3115    return false;
3116
3117  unsigned Diag = 0;
3118  bool NeedType = false;
3119  switch (IsLV) { // C99 6.5.16p2
3120  default: assert(0 && "Unknown result from isModifiableLvalue!");
3121  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
3122  case Expr::MLV_ArrayType:
3123    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
3124    NeedType = true;
3125    break;
3126  case Expr::MLV_NotObjectType:
3127    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
3128    NeedType = true;
3129    break;
3130  case Expr::MLV_LValueCast:
3131    Diag = diag::err_typecheck_lvalue_casts_not_supported;
3132    break;
3133  case Expr::MLV_InvalidExpression:
3134    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
3135    break;
3136  case Expr::MLV_IncompleteType:
3137  case Expr::MLV_IncompleteVoidType:
3138    return S.DiagnoseIncompleteType(Loc, E->getType(),
3139                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
3140                                    E->getSourceRange());
3141  case Expr::MLV_DuplicateVectorComponents:
3142    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
3143    break;
3144  case Expr::MLV_NotBlockQualified:
3145    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
3146    break;
3147  case Expr::MLV_ReadonlyProperty:
3148    Diag = diag::error_readonly_property_assignment;
3149    break;
3150  case Expr::MLV_NoSetterProperty:
3151    Diag = diag::error_nosetter_property_assignment;
3152    break;
3153  }
3154
3155  if (NeedType)
3156    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange();
3157  else
3158    S.Diag(Loc, Diag) << E->getSourceRange();
3159  return true;
3160}
3161
3162
3163
3164// C99 6.5.16.1
3165QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
3166                                       SourceLocation Loc,
3167                                       QualType CompoundType) {
3168  // Verify that LHS is a modifiable lvalue, and emit error if not.
3169  if (CheckForModifiableLvalue(LHS, Loc, *this))
3170    return QualType();
3171
3172  QualType LHSType = LHS->getType();
3173  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
3174
3175  AssignConvertType ConvTy;
3176  if (CompoundType.isNull()) {
3177    // Simple assignment "x = y".
3178    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
3179    // Special case of NSObject attributes on c-style pointer types.
3180    if (ConvTy == IncompatiblePointer &&
3181        ((Context.isObjCNSObjectType(LHSType) &&
3182          Context.isObjCObjectPointerType(RHSType)) ||
3183         (Context.isObjCNSObjectType(RHSType) &&
3184          Context.isObjCObjectPointerType(LHSType))))
3185      ConvTy = Compatible;
3186
3187    // If the RHS is a unary plus or minus, check to see if they = and + are
3188    // right next to each other.  If so, the user may have typo'd "x =+ 4"
3189    // instead of "x += 4".
3190    Expr *RHSCheck = RHS;
3191    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
3192      RHSCheck = ICE->getSubExpr();
3193    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
3194      if ((UO->getOpcode() == UnaryOperator::Plus ||
3195           UO->getOpcode() == UnaryOperator::Minus) &&
3196          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
3197          // Only if the two operators are exactly adjacent.
3198          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
3199        Diag(Loc, diag::warn_not_compound_assign)
3200          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
3201          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
3202    }
3203  } else {
3204    // Compound assignment "x += y"
3205    ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
3206  }
3207
3208  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
3209                               RHS, "assigning"))
3210    return QualType();
3211
3212  // C99 6.5.16p3: The type of an assignment expression is the type of the
3213  // left operand unless the left operand has qualified type, in which case
3214  // it is the unqualified version of the type of the left operand.
3215  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
3216  // is converted to the type of the assignment expression (above).
3217  // C++ 5.17p1: the type of the assignment expression is that of its left
3218  // oprdu.
3219  return LHSType.getUnqualifiedType();
3220}
3221
3222// C99 6.5.17
3223QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
3224  // FIXME: what is required for LHS?
3225
3226  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
3227  DefaultFunctionArrayConversion(RHS);
3228  return RHS->getType();
3229}
3230
3231/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
3232/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
3233QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
3234                                              bool isInc) {
3235  QualType ResType = Op->getType();
3236  assert(!ResType.isNull() && "no type for increment/decrement expression");
3237
3238  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
3239    // Decrement of bool is not allowed.
3240    if (!isInc) {
3241      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
3242      return QualType();
3243    }
3244    // Increment of bool sets it to true, but is deprecated.
3245    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
3246  } else if (ResType->isRealType()) {
3247    // OK!
3248  } else if (const PointerType *PT = ResType->getAsPointerType()) {
3249    // C99 6.5.2.4p2, 6.5.6p2
3250    if (PT->getPointeeType()->isObjectType()) {
3251      // Pointer to object is ok!
3252    } else if (PT->getPointeeType()->isVoidType()) {
3253      if (getLangOptions().CPlusPlus) {
3254        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
3255          << Op->getSourceRange();
3256        return QualType();
3257      }
3258
3259      // Pointer to void is a GNU extension in C.
3260      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
3261    } else if (PT->getPointeeType()->isFunctionType()) {
3262      if (getLangOptions().CPlusPlus) {
3263        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
3264          << Op->getType() << Op->getSourceRange();
3265        return QualType();
3266      }
3267
3268      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
3269        << ResType << Op->getSourceRange();
3270      return QualType();
3271    } else {
3272      DiagnoseIncompleteType(OpLoc, PT->getPointeeType(),
3273                             diag::err_typecheck_arithmetic_incomplete_type,
3274                             Op->getSourceRange(), SourceRange(),
3275                             ResType);
3276      return QualType();
3277    }
3278  } else if (ResType->isComplexType()) {
3279    // C99 does not support ++/-- on complex types, we allow as an extension.
3280    Diag(OpLoc, diag::ext_integer_increment_complex)
3281      << ResType << Op->getSourceRange();
3282  } else {
3283    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
3284      << ResType << Op->getSourceRange();
3285    return QualType();
3286  }
3287  // At this point, we know we have a real, complex or pointer type.
3288  // Now make sure the operand is a modifiable lvalue.
3289  if (CheckForModifiableLvalue(Op, OpLoc, *this))
3290    return QualType();
3291  return ResType;
3292}
3293
3294/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
3295/// This routine allows us to typecheck complex/recursive expressions
3296/// where the declaration is needed for type checking. We only need to
3297/// handle cases when the expression references a function designator
3298/// or is an lvalue. Here are some examples:
3299///  - &(x) => x
3300///  - &*****f => f for f a function designator.
3301///  - &s.xx => s
3302///  - &s.zz[1].yy -> s, if zz is an array
3303///  - *(x + 1) -> x, if x is an array
3304///  - &"123"[2] -> 0
3305///  - & __real__ x -> x
3306static NamedDecl *getPrimaryDecl(Expr *E) {
3307  switch (E->getStmtClass()) {
3308  case Stmt::DeclRefExprClass:
3309  case Stmt::QualifiedDeclRefExprClass:
3310    return cast<DeclRefExpr>(E)->getDecl();
3311  case Stmt::MemberExprClass:
3312    // Fields cannot be declared with a 'register' storage class.
3313    // &X->f is always ok, even if X is declared register.
3314    if (cast<MemberExpr>(E)->isArrow())
3315      return 0;
3316    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
3317  case Stmt::ArraySubscriptExprClass: {
3318    // &X[4] and &4[X] refers to X if X is not a pointer.
3319
3320    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
3321    ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
3322    if (!VD || VD->getType()->isPointerType())
3323      return 0;
3324    else
3325      return VD;
3326  }
3327  case Stmt::UnaryOperatorClass: {
3328    UnaryOperator *UO = cast<UnaryOperator>(E);
3329
3330    switch(UO->getOpcode()) {
3331    case UnaryOperator::Deref: {
3332      // *(X + 1) refers to X if X is not a pointer.
3333      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
3334        ValueDecl *VD = dyn_cast<ValueDecl>(D);
3335        if (!VD || VD->getType()->isPointerType())
3336          return 0;
3337        return VD;
3338      }
3339      return 0;
3340    }
3341    case UnaryOperator::Real:
3342    case UnaryOperator::Imag:
3343    case UnaryOperator::Extension:
3344      return getPrimaryDecl(UO->getSubExpr());
3345    default:
3346      return 0;
3347    }
3348  }
3349  case Stmt::BinaryOperatorClass: {
3350    BinaryOperator *BO = cast<BinaryOperator>(E);
3351
3352    // Handle cases involving pointer arithmetic. The result of an
3353    // Assign or AddAssign is not an lvalue so they can be ignored.
3354
3355    // (x + n) or (n + x) => x
3356    if (BO->getOpcode() == BinaryOperator::Add) {
3357      if (BO->getLHS()->getType()->isPointerType()) {
3358        return getPrimaryDecl(BO->getLHS());
3359      } else if (BO->getRHS()->getType()->isPointerType()) {
3360        return getPrimaryDecl(BO->getRHS());
3361      }
3362    }
3363
3364    return 0;
3365  }
3366  case Stmt::ParenExprClass:
3367    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
3368  case Stmt::ImplicitCastExprClass:
3369    // &X[4] when X is an array, has an implicit cast from array to pointer.
3370    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
3371  default:
3372    return 0;
3373  }
3374}
3375
3376/// CheckAddressOfOperand - The operand of & must be either a function
3377/// designator or an lvalue designating an object. If it is an lvalue, the
3378/// object cannot be declared with storage class register or be a bit field.
3379/// Note: The usual conversions are *not* applied to the operand of the &
3380/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
3381/// In C++, the operand might be an overloaded function name, in which case
3382/// we allow the '&' but retain the overloaded-function type.
3383QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
3384  if (op->isTypeDependent())
3385    return Context.DependentTy;
3386
3387  if (getLangOptions().C99) {
3388    // Implement C99-only parts of addressof rules.
3389    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
3390      if (uOp->getOpcode() == UnaryOperator::Deref)
3391        // Per C99 6.5.3.2, the address of a deref always returns a valid result
3392        // (assuming the deref expression is valid).
3393        return uOp->getSubExpr()->getType();
3394    }
3395    // Technically, there should be a check for array subscript
3396    // expressions here, but the result of one is always an lvalue anyway.
3397  }
3398  NamedDecl *dcl = getPrimaryDecl(op);
3399  Expr::isLvalueResult lval = op->isLvalue(Context);
3400
3401  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
3402    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
3403      // FIXME: emit more specific diag...
3404      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
3405        << op->getSourceRange();
3406      return QualType();
3407    }
3408  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
3409    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemExpr->getMemberDecl())) {
3410      if (Field->isBitField()) {
3411        Diag(OpLoc, diag::err_typecheck_address_of)
3412          << "bit-field" << op->getSourceRange();
3413        return QualType();
3414      }
3415    }
3416  // Check for Apple extension for accessing vector components.
3417  } else if (isa<ArraySubscriptExpr>(op) &&
3418           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
3419    Diag(OpLoc, diag::err_typecheck_address_of)
3420      << "vector" << op->getSourceRange();
3421    return QualType();
3422  } else if (dcl) { // C99 6.5.3.2p1
3423    // We have an lvalue with a decl. Make sure the decl is not declared
3424    // with the register storage-class specifier.
3425    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
3426      if (vd->getStorageClass() == VarDecl::Register) {
3427        Diag(OpLoc, diag::err_typecheck_address_of)
3428          << "register variable" << op->getSourceRange();
3429        return QualType();
3430      }
3431    } else if (isa<OverloadedFunctionDecl>(dcl)) {
3432      return Context.OverloadTy;
3433    } else if (isa<FieldDecl>(dcl)) {
3434      // Okay: we can take the address of a field.
3435    } else if (isa<FunctionDecl>(dcl)) {
3436      // Okay: we can take the address of a function.
3437    }
3438    else
3439      assert(0 && "Unknown/unexpected decl type");
3440  }
3441
3442  // If the operand has type "type", the result has type "pointer to type".
3443  return Context.getPointerType(op->getType());
3444}
3445
3446QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
3447  UsualUnaryConversions(Op);
3448  QualType Ty = Op->getType();
3449
3450  // Note that per both C89 and C99, this is always legal, even if ptype is an
3451  // incomplete type or void.  It would be possible to warn about dereferencing
3452  // a void pointer, but it's completely well-defined, and such a warning is
3453  // unlikely to catch any mistakes.
3454  if (const PointerType *PT = Ty->getAsPointerType())
3455    return PT->getPointeeType();
3456
3457  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
3458    << Ty << Op->getSourceRange();
3459  return QualType();
3460}
3461
3462static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
3463  tok::TokenKind Kind) {
3464  BinaryOperator::Opcode Opc;
3465  switch (Kind) {
3466  default: assert(0 && "Unknown binop!");
3467  case tok::star:                 Opc = BinaryOperator::Mul; break;
3468  case tok::slash:                Opc = BinaryOperator::Div; break;
3469  case tok::percent:              Opc = BinaryOperator::Rem; break;
3470  case tok::plus:                 Opc = BinaryOperator::Add; break;
3471  case tok::minus:                Opc = BinaryOperator::Sub; break;
3472  case tok::lessless:             Opc = BinaryOperator::Shl; break;
3473  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
3474  case tok::lessequal:            Opc = BinaryOperator::LE; break;
3475  case tok::less:                 Opc = BinaryOperator::LT; break;
3476  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
3477  case tok::greater:              Opc = BinaryOperator::GT; break;
3478  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
3479  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
3480  case tok::amp:                  Opc = BinaryOperator::And; break;
3481  case tok::caret:                Opc = BinaryOperator::Xor; break;
3482  case tok::pipe:                 Opc = BinaryOperator::Or; break;
3483  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
3484  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
3485  case tok::equal:                Opc = BinaryOperator::Assign; break;
3486  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
3487  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
3488  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
3489  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
3490  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
3491  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
3492  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
3493  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
3494  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
3495  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
3496  case tok::comma:                Opc = BinaryOperator::Comma; break;
3497  }
3498  return Opc;
3499}
3500
3501static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
3502  tok::TokenKind Kind) {
3503  UnaryOperator::Opcode Opc;
3504  switch (Kind) {
3505  default: assert(0 && "Unknown unary op!");
3506  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
3507  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
3508  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
3509  case tok::star:         Opc = UnaryOperator::Deref; break;
3510  case tok::plus:         Opc = UnaryOperator::Plus; break;
3511  case tok::minus:        Opc = UnaryOperator::Minus; break;
3512  case tok::tilde:        Opc = UnaryOperator::Not; break;
3513  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
3514  case tok::kw___real:    Opc = UnaryOperator::Real; break;
3515  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
3516  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
3517  }
3518  return Opc;
3519}
3520
3521/// CreateBuiltinBinOp - Creates a new built-in binary operation with
3522/// operator @p Opc at location @c TokLoc. This routine only supports
3523/// built-in operations; ActOnBinOp handles overloaded operators.
3524Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
3525                                                  unsigned Op,
3526                                                  Expr *lhs, Expr *rhs) {
3527  QualType ResultTy;  // Result type of the binary operator.
3528  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
3529  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
3530
3531  switch (Opc) {
3532  default:
3533    assert(0 && "Unknown binary expr!");
3534  case BinaryOperator::Assign:
3535    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
3536    break;
3537  case BinaryOperator::Mul:
3538  case BinaryOperator::Div:
3539    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
3540    break;
3541  case BinaryOperator::Rem:
3542    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
3543    break;
3544  case BinaryOperator::Add:
3545    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
3546    break;
3547  case BinaryOperator::Sub:
3548    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
3549    break;
3550  case BinaryOperator::Shl:
3551  case BinaryOperator::Shr:
3552    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
3553    break;
3554  case BinaryOperator::LE:
3555  case BinaryOperator::LT:
3556  case BinaryOperator::GE:
3557  case BinaryOperator::GT:
3558    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true);
3559    break;
3560  case BinaryOperator::EQ:
3561  case BinaryOperator::NE:
3562    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false);
3563    break;
3564  case BinaryOperator::And:
3565  case BinaryOperator::Xor:
3566  case BinaryOperator::Or:
3567    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
3568    break;
3569  case BinaryOperator::LAnd:
3570  case BinaryOperator::LOr:
3571    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
3572    break;
3573  case BinaryOperator::MulAssign:
3574  case BinaryOperator::DivAssign:
3575    CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
3576    if (!CompTy.isNull())
3577      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3578    break;
3579  case BinaryOperator::RemAssign:
3580    CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
3581    if (!CompTy.isNull())
3582      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3583    break;
3584  case BinaryOperator::AddAssign:
3585    CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true);
3586    if (!CompTy.isNull())
3587      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3588    break;
3589  case BinaryOperator::SubAssign:
3590    CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true);
3591    if (!CompTy.isNull())
3592      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3593    break;
3594  case BinaryOperator::ShlAssign:
3595  case BinaryOperator::ShrAssign:
3596    CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
3597    if (!CompTy.isNull())
3598      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3599    break;
3600  case BinaryOperator::AndAssign:
3601  case BinaryOperator::XorAssign:
3602  case BinaryOperator::OrAssign:
3603    CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
3604    if (!CompTy.isNull())
3605      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3606    break;
3607  case BinaryOperator::Comma:
3608    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
3609    break;
3610  }
3611  if (ResultTy.isNull())
3612    return ExprError();
3613  if (CompTy.isNull())
3614    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
3615  else
3616    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
3617                                                  CompTy, OpLoc));
3618}
3619
3620// Binary Operators.  'Tok' is the token for the operator.
3621Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
3622                                          tok::TokenKind Kind,
3623                                          ExprArg LHS, ExprArg RHS) {
3624  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
3625  Expr *lhs = (Expr *)LHS.release(), *rhs = (Expr*)RHS.release();
3626
3627  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
3628  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
3629
3630  // If either expression is type-dependent, just build the AST.
3631  // FIXME: We'll need to perform some caching of the result of name
3632  // lookup for operator+.
3633  if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
3634    if (Opc > BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign)
3635      return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc,
3636                                              Context.DependentTy,
3637                                              Context.DependentTy, TokLoc));
3638    else
3639      return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, Context.DependentTy,
3640                                                TokLoc));
3641  }
3642
3643  if (getLangOptions().CPlusPlus &&
3644      (lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType() ||
3645       rhs->getType()->isRecordType() || rhs->getType()->isEnumeralType())) {
3646    // If this is one of the assignment operators, we only perform
3647    // overload resolution if the left-hand side is a class or
3648    // enumeration type (C++ [expr.ass]p3).
3649    if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3650        !(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType())) {
3651      return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3652    }
3653
3654    // Determine which overloaded operator we're dealing with.
3655    static const OverloadedOperatorKind OverOps[] = {
3656      OO_Star, OO_Slash, OO_Percent,
3657      OO_Plus, OO_Minus,
3658      OO_LessLess, OO_GreaterGreater,
3659      OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
3660      OO_EqualEqual, OO_ExclaimEqual,
3661      OO_Amp,
3662      OO_Caret,
3663      OO_Pipe,
3664      OO_AmpAmp,
3665      OO_PipePipe,
3666      OO_Equal, OO_StarEqual,
3667      OO_SlashEqual, OO_PercentEqual,
3668      OO_PlusEqual, OO_MinusEqual,
3669      OO_LessLessEqual, OO_GreaterGreaterEqual,
3670      OO_AmpEqual, OO_CaretEqual,
3671      OO_PipeEqual,
3672      OO_Comma
3673    };
3674    OverloadedOperatorKind OverOp = OverOps[Opc];
3675
3676    // Add the appropriate overloaded operators (C++ [over.match.oper])
3677    // to the candidate set.
3678    OverloadCandidateSet CandidateSet;
3679    Expr *Args[2] = { lhs, rhs };
3680    AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
3681
3682    // Perform overload resolution.
3683    OverloadCandidateSet::iterator Best;
3684    switch (BestViableFunction(CandidateSet, Best)) {
3685    case OR_Success: {
3686      // We found a built-in operator or an overloaded operator.
3687      FunctionDecl *FnDecl = Best->Function;
3688
3689      if (FnDecl) {
3690        // We matched an overloaded operator. Build a call to that
3691        // operator.
3692
3693        // Convert the arguments.
3694        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3695          if (PerformObjectArgumentInitialization(lhs, Method) ||
3696              PerformCopyInitialization(rhs, FnDecl->getParamDecl(0)->getType(),
3697                                        "passing"))
3698            return ExprError();
3699        } else {
3700          // Convert the arguments.
3701          if (PerformCopyInitialization(lhs, FnDecl->getParamDecl(0)->getType(),
3702                                        "passing") ||
3703              PerformCopyInitialization(rhs, FnDecl->getParamDecl(1)->getType(),
3704                                        "passing"))
3705            return ExprError();
3706        }
3707
3708        // Determine the result type
3709        QualType ResultTy
3710          = FnDecl->getType()->getAsFunctionType()->getResultType();
3711        ResultTy = ResultTy.getNonReferenceType();
3712
3713        // Build the actual expression node.
3714        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3715                                                 SourceLocation());
3716        UsualUnaryConversions(FnExpr);
3717
3718        return Owned(new (Context) CXXOperatorCallExpr(FnExpr, Args, 2,
3719                                                       ResultTy, TokLoc));
3720      } else {
3721        // We matched a built-in operator. Convert the arguments, then
3722        // break out so that we will build the appropriate built-in
3723        // operator node.
3724        if (PerformImplicitConversion(lhs, Best->BuiltinTypes.ParamTypes[0],
3725                                      Best->Conversions[0], "passing") ||
3726            PerformImplicitConversion(rhs, Best->BuiltinTypes.ParamTypes[1],
3727                                      Best->Conversions[1], "passing"))
3728          return ExprError();
3729
3730        break;
3731      }
3732    }
3733
3734    case OR_No_Viable_Function:
3735      // No viable function; fall through to handling this as a
3736      // built-in operator, which will produce an error message for us.
3737      break;
3738
3739    case OR_Ambiguous:
3740      Diag(TokLoc,  diag::err_ovl_ambiguous_oper)
3741          << BinaryOperator::getOpcodeStr(Opc)
3742          << lhs->getSourceRange() << rhs->getSourceRange();
3743      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3744      return ExprError();
3745    }
3746
3747    // Either we found no viable overloaded operator or we matched a
3748    // built-in operator. In either case, fall through to trying to
3749    // build a built-in operation.
3750  }
3751
3752  // Build a built-in binary operation.
3753  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3754}
3755
3756// Unary Operators.  'Tok' is the token for the operator.
3757Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
3758                                            tok::TokenKind Op, ExprArg input) {
3759  // FIXME: Input is modified later, but smart pointer not reassigned.
3760  Expr *Input = (Expr*)input.get();
3761  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
3762
3763  if (getLangOptions().CPlusPlus &&
3764      (Input->getType()->isRecordType()
3765       || Input->getType()->isEnumeralType())) {
3766    // Determine which overloaded operator we're dealing with.
3767    static const OverloadedOperatorKind OverOps[] = {
3768      OO_None, OO_None,
3769      OO_PlusPlus, OO_MinusMinus,
3770      OO_Amp, OO_Star,
3771      OO_Plus, OO_Minus,
3772      OO_Tilde, OO_Exclaim,
3773      OO_None, OO_None,
3774      OO_None,
3775      OO_None
3776    };
3777    OverloadedOperatorKind OverOp = OverOps[Opc];
3778
3779    // Add the appropriate overloaded operators (C++ [over.match.oper])
3780    // to the candidate set.
3781    OverloadCandidateSet CandidateSet;
3782    if (OverOp != OO_None)
3783      AddOperatorCandidates(OverOp, S, &Input, 1, CandidateSet);
3784
3785    // Perform overload resolution.
3786    OverloadCandidateSet::iterator Best;
3787    switch (BestViableFunction(CandidateSet, Best)) {
3788    case OR_Success: {
3789      // We found a built-in operator or an overloaded operator.
3790      FunctionDecl *FnDecl = Best->Function;
3791
3792      if (FnDecl) {
3793        // We matched an overloaded operator. Build a call to that
3794        // operator.
3795
3796        // Convert the arguments.
3797        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3798          if (PerformObjectArgumentInitialization(Input, Method))
3799            return ExprError();
3800        } else {
3801          // Convert the arguments.
3802          if (PerformCopyInitialization(Input,
3803                                        FnDecl->getParamDecl(0)->getType(),
3804                                        "passing"))
3805            return ExprError();
3806        }
3807
3808        // Determine the result type
3809        QualType ResultTy
3810          = FnDecl->getType()->getAsFunctionType()->getResultType();
3811        ResultTy = ResultTy.getNonReferenceType();
3812
3813        // Build the actual expression node.
3814        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3815                                                 SourceLocation());
3816        UsualUnaryConversions(FnExpr);
3817
3818        input.release();
3819        return Owned(new (Context) CXXOperatorCallExpr(FnExpr, &Input, 1,
3820                                                       ResultTy, OpLoc));
3821      } else {
3822        // We matched a built-in operator. Convert the arguments, then
3823        // break out so that we will build the appropriate built-in
3824        // operator node.
3825        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
3826                                      Best->Conversions[0], "passing"))
3827          return ExprError();
3828
3829        break;
3830      }
3831    }
3832
3833    case OR_No_Viable_Function:
3834      // No viable function; fall through to handling this as a
3835      // built-in operator, which will produce an error message for us.
3836      break;
3837
3838    case OR_Ambiguous:
3839      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3840          << UnaryOperator::getOpcodeStr(Opc)
3841          << Input->getSourceRange();
3842      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3843      return ExprError();
3844    }
3845
3846    // Either we found no viable overloaded operator or we matched a
3847    // built-in operator. In either case, fall through to trying to
3848    // build a built-in operation.
3849  }
3850
3851  QualType resultType;
3852  switch (Opc) {
3853  default:
3854    assert(0 && "Unimplemented unary expr!");
3855  case UnaryOperator::PreInc:
3856  case UnaryOperator::PreDec:
3857    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
3858                                                Opc == UnaryOperator::PreInc);
3859    break;
3860  case UnaryOperator::AddrOf:
3861    resultType = CheckAddressOfOperand(Input, OpLoc);
3862    break;
3863  case UnaryOperator::Deref:
3864    DefaultFunctionArrayConversion(Input);
3865    resultType = CheckIndirectionOperand(Input, OpLoc);
3866    break;
3867  case UnaryOperator::Plus:
3868  case UnaryOperator::Minus:
3869    UsualUnaryConversions(Input);
3870    resultType = Input->getType();
3871    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
3872      break;
3873    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
3874             resultType->isEnumeralType())
3875      break;
3876    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
3877             Opc == UnaryOperator::Plus &&
3878             resultType->isPointerType())
3879      break;
3880
3881    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
3882      << resultType << Input->getSourceRange());
3883  case UnaryOperator::Not: // bitwise complement
3884    UsualUnaryConversions(Input);
3885    resultType = Input->getType();
3886    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
3887    if (resultType->isComplexType() || resultType->isComplexIntegerType())
3888      // C99 does not support '~' for complex conjugation.
3889      Diag(OpLoc, diag::ext_integer_complement_complex)
3890        << resultType << Input->getSourceRange();
3891    else if (!resultType->isIntegerType())
3892      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
3893        << resultType << Input->getSourceRange());
3894    break;
3895  case UnaryOperator::LNot: // logical negation
3896    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
3897    DefaultFunctionArrayConversion(Input);
3898    resultType = Input->getType();
3899    if (!resultType->isScalarType()) // C99 6.5.3.3p1
3900      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
3901        << resultType << Input->getSourceRange());
3902    // LNot always has type int. C99 6.5.3.3p5.
3903    // In C++, it's bool. C++ 5.3.1p8
3904    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
3905    break;
3906  case UnaryOperator::Real:
3907  case UnaryOperator::Imag:
3908    resultType = CheckRealImagOperand(Input, OpLoc);
3909    break;
3910  case UnaryOperator::Extension:
3911    resultType = Input->getType();
3912    break;
3913  }
3914  if (resultType.isNull())
3915    return ExprError();
3916  input.release();
3917  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
3918}
3919
3920/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
3921Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
3922                                      SourceLocation LabLoc,
3923                                      IdentifierInfo *LabelII) {
3924  // Look up the record for this label identifier.
3925  LabelStmt *&LabelDecl = LabelMap[LabelII];
3926
3927  // If we haven't seen this label yet, create a forward reference. It
3928  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
3929  if (LabelDecl == 0)
3930    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
3931
3932  // Create the AST node.  The address of a label always has type 'void*'.
3933  return new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
3934                                     Context.getPointerType(Context.VoidTy));
3935}
3936
3937Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
3938                                     SourceLocation RPLoc) { // "({..})"
3939  Stmt *SubStmt = static_cast<Stmt*>(substmt);
3940  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
3941  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
3942
3943  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3944  if (isFileScope) {
3945    return Diag(LPLoc, diag::err_stmtexpr_file_scope);
3946  }
3947
3948  // FIXME: there are a variety of strange constraints to enforce here, for
3949  // example, it is not possible to goto into a stmt expression apparently.
3950  // More semantic analysis is needed.
3951
3952  // FIXME: the last statement in the compount stmt has its value used.  We
3953  // should not warn about it being unused.
3954
3955  // If there are sub stmts in the compound stmt, take the type of the last one
3956  // as the type of the stmtexpr.
3957  QualType Ty = Context.VoidTy;
3958
3959  if (!Compound->body_empty()) {
3960    Stmt *LastStmt = Compound->body_back();
3961    // If LastStmt is a label, skip down through into the body.
3962    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
3963      LastStmt = Label->getSubStmt();
3964
3965    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
3966      Ty = LastExpr->getType();
3967  }
3968
3969  return new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
3970}
3971
3972Sema::ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
3973                                            SourceLocation BuiltinLoc,
3974                                            SourceLocation TypeLoc,
3975                                            TypeTy *argty,
3976                                            OffsetOfComponent *CompPtr,
3977                                            unsigned NumComponents,
3978                                            SourceLocation RPLoc) {
3979  QualType ArgTy = QualType::getFromOpaquePtr(argty);
3980  assert(!ArgTy.isNull() && "Missing type argument!");
3981
3982  // We must have at least one component that refers to the type, and the first
3983  // one is known to be a field designator.  Verify that the ArgTy represents
3984  // a struct/union/class.
3985  if (!ArgTy->isRecordType())
3986    return Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy;
3987
3988  // Otherwise, create a compound literal expression as the base, and
3989  // iteratively process the offsetof designators.
3990  InitListExpr *IList =
3991      new (Context) InitListExpr(SourceLocation(), 0, 0,
3992                                 SourceLocation(), false);
3993  IList->setType(ArgTy);
3994  Expr *Res =
3995      new (Context) CompoundLiteralExpr(SourceLocation(), ArgTy, IList, false);
3996
3997  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
3998  // GCC extension, diagnose them.
3999  if (NumComponents != 1)
4000    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
4001      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
4002
4003  for (unsigned i = 0; i != NumComponents; ++i) {
4004    const OffsetOfComponent &OC = CompPtr[i];
4005    if (OC.isBrackets) {
4006      // Offset of an array sub-field.  TODO: Should we allow vector elements?
4007      const ArrayType *AT = Context.getAsArrayType(Res->getType());
4008      if (!AT) {
4009        delete Res;
4010        return Diag(OC.LocEnd, diag::err_offsetof_array_type) << Res->getType();
4011      }
4012
4013      // FIXME: C++: Verify that operator[] isn't overloaded.
4014
4015      // C99 6.5.2.1p1
4016      Expr *Idx = static_cast<Expr*>(OC.U.E);
4017      if (!Idx->getType()->isIntegerType())
4018        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript)
4019          << Idx->getSourceRange();
4020
4021      Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
4022                                             OC.LocEnd);
4023      continue;
4024    }
4025
4026    const RecordType *RC = Res->getType()->getAsRecordType();
4027    if (!RC) {
4028      delete Res;
4029      return Diag(OC.LocEnd, diag::err_offsetof_record_type) << Res->getType();
4030    }
4031
4032    // Get the decl corresponding to this.
4033    RecordDecl *RD = RC->getDecl();
4034    FieldDecl *MemberDecl
4035      = dyn_cast_or_null<FieldDecl>(LookupDecl(OC.U.IdentInfo,
4036                                               Decl::IDNS_Ordinary,
4037                                               S, RD, false, false).getAsDecl());
4038    if (!MemberDecl)
4039      return Diag(BuiltinLoc, diag::err_typecheck_no_member)
4040       << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd);
4041
4042    // FIXME: C++: Verify that MemberDecl isn't a static field.
4043    // FIXME: Verify that MemberDecl isn't a bitfield.
4044    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
4045    // matter here.
4046    Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
4047                                   MemberDecl->getType().getNonReferenceType());
4048  }
4049
4050  return new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
4051                                     Context.getSizeType(), BuiltinLoc);
4052}
4053
4054
4055Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
4056                                                TypeTy *arg1, TypeTy *arg2,
4057                                                SourceLocation RPLoc) {
4058  QualType argT1 = QualType::getFromOpaquePtr(arg1);
4059  QualType argT2 = QualType::getFromOpaquePtr(arg2);
4060
4061  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
4062
4063  return new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1,
4064                                           argT2, RPLoc);
4065}
4066
4067Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
4068                                       ExprTy *expr1, ExprTy *expr2,
4069                                       SourceLocation RPLoc) {
4070  Expr *CondExpr = static_cast<Expr*>(cond);
4071  Expr *LHSExpr = static_cast<Expr*>(expr1);
4072  Expr *RHSExpr = static_cast<Expr*>(expr2);
4073
4074  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
4075
4076  // The conditional expression is required to be a constant expression.
4077  llvm::APSInt condEval(32);
4078  SourceLocation ExpLoc;
4079  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
4080    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant)
4081      << CondExpr->getSourceRange();
4082
4083  // If the condition is > zero, then the AST type is the same as the LSHExpr.
4084  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
4085                                               RHSExpr->getType();
4086  return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
4087                                  resType, RPLoc);
4088}
4089
4090//===----------------------------------------------------------------------===//
4091// Clang Extensions.
4092//===----------------------------------------------------------------------===//
4093
4094/// ActOnBlockStart - This callback is invoked when a block literal is started.
4095void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
4096  // Analyze block parameters.
4097  BlockSemaInfo *BSI = new BlockSemaInfo();
4098
4099  // Add BSI to CurBlock.
4100  BSI->PrevBlockInfo = CurBlock;
4101  CurBlock = BSI;
4102
4103  BSI->ReturnType = 0;
4104  BSI->TheScope = BlockScope;
4105
4106  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
4107  PushDeclContext(BlockScope, BSI->TheDecl);
4108}
4109
4110void Sema::ActOnBlockArguments(Declarator &ParamInfo) {
4111  // Analyze arguments to block.
4112  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4113         "Not a function declarator!");
4114  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
4115
4116  CurBlock->hasPrototype = FTI.hasPrototype;
4117  CurBlock->isVariadic = true;
4118
4119  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
4120  // no arguments, not a function that takes a single void argument.
4121  if (FTI.hasPrototype &&
4122      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4123      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
4124        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
4125    // empty arg list, don't push any params.
4126    CurBlock->isVariadic = false;
4127  } else if (FTI.hasPrototype) {
4128    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
4129      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
4130    CurBlock->isVariadic = FTI.isVariadic;
4131  }
4132  CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
4133
4134  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
4135       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
4136    // If this has an identifier, add it to the scope stack.
4137    if ((*AI)->getIdentifier())
4138      PushOnScopeChains(*AI, CurBlock->TheScope);
4139}
4140
4141/// ActOnBlockError - If there is an error parsing a block, this callback
4142/// is invoked to pop the information about the block from the action impl.
4143void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
4144  // Ensure that CurBlock is deleted.
4145  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
4146
4147  // Pop off CurBlock, handle nested blocks.
4148  CurBlock = CurBlock->PrevBlockInfo;
4149
4150  // FIXME: Delete the ParmVarDecl objects as well???
4151
4152}
4153
4154/// ActOnBlockStmtExpr - This is called when the body of a block statement
4155/// literal was successfully completed.  ^(int x){...}
4156Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
4157                                          Scope *CurScope) {
4158  // Ensure that CurBlock is deleted.
4159  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
4160  llvm::OwningPtr<CompoundStmt> Body(static_cast<CompoundStmt*>(body));
4161
4162  PopDeclContext();
4163
4164  // Pop off CurBlock, handle nested blocks.
4165  CurBlock = CurBlock->PrevBlockInfo;
4166
4167  QualType RetTy = Context.VoidTy;
4168  if (BSI->ReturnType)
4169    RetTy = QualType(BSI->ReturnType, 0);
4170
4171  llvm::SmallVector<QualType, 8> ArgTypes;
4172  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
4173    ArgTypes.push_back(BSI->Params[i]->getType());
4174
4175  QualType BlockTy;
4176  if (!BSI->hasPrototype)
4177    BlockTy = Context.getFunctionTypeNoProto(RetTy);
4178  else
4179    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
4180                                      BSI->isVariadic, 0);
4181
4182  BlockTy = Context.getBlockPointerType(BlockTy);
4183
4184  BSI->TheDecl->setBody(Body.take());
4185  return new (Context) BlockExpr(BSI->TheDecl, BlockTy);
4186}
4187
4188/// ExprsMatchFnType - return true if the Exprs in array Args have
4189/// QualTypes that match the QualTypes of the arguments of the FnType.
4190/// The number of arguments has already been validated to match the number of
4191/// arguments in FnType.
4192static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType,
4193                             ASTContext &Context) {
4194  unsigned NumParams = FnType->getNumArgs();
4195  for (unsigned i = 0; i != NumParams; ++i) {
4196    QualType ExprTy = Context.getCanonicalType(Args[i]->getType());
4197    QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i));
4198
4199    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
4200      return false;
4201  }
4202  return true;
4203}
4204
4205Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
4206                                         SourceLocation *CommaLocs,
4207                                         SourceLocation BuiltinLoc,
4208                                         SourceLocation RParenLoc) {
4209  // __builtin_overload requires at least 2 arguments
4210  if (NumArgs < 2)
4211    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
4212      << SourceRange(BuiltinLoc, RParenLoc);
4213
4214  // The first argument is required to be a constant expression.  It tells us
4215  // the number of arguments to pass to each of the functions to be overloaded.
4216  Expr **Args = reinterpret_cast<Expr**>(args);
4217  Expr *NParamsExpr = Args[0];
4218  llvm::APSInt constEval(32);
4219  SourceLocation ExpLoc;
4220  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
4221    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
4222      << NParamsExpr->getSourceRange();
4223
4224  // Verify that the number of parameters is > 0
4225  unsigned NumParams = constEval.getZExtValue();
4226  if (NumParams == 0)
4227    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
4228      << NParamsExpr->getSourceRange();
4229  // Verify that we have at least 1 + NumParams arguments to the builtin.
4230  if ((NumParams + 1) > NumArgs)
4231    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
4232      << SourceRange(BuiltinLoc, RParenLoc);
4233
4234  // Figure out the return type, by matching the args to one of the functions
4235  // listed after the parameters.
4236  OverloadExpr *OE = 0;
4237  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
4238    // UsualUnaryConversions will convert the function DeclRefExpr into a
4239    // pointer to function.
4240    Expr *Fn = UsualUnaryConversions(Args[i]);
4241    const FunctionTypeProto *FnType = 0;
4242    if (const PointerType *PT = Fn->getType()->getAsPointerType())
4243      FnType = PT->getPointeeType()->getAsFunctionTypeProto();
4244
4245    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
4246    // parameters, and the number of parameters must match the value passed to
4247    // the builtin.
4248    if (!FnType || (FnType->getNumArgs() != NumParams))
4249      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype)
4250        << Fn->getSourceRange();
4251
4252    // Scan the parameter list for the FunctionType, checking the QualType of
4253    // each parameter against the QualTypes of the arguments to the builtin.
4254    // If they match, return a new OverloadExpr.
4255    if (ExprsMatchFnType(Args+1, FnType, Context)) {
4256      if (OE)
4257        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match)
4258          << OE->getFn()->getSourceRange();
4259      // Remember our match, and continue processing the remaining arguments
4260      // to catch any errors.
4261      OE = new (Context) OverloadExpr(Args, NumArgs, i,
4262                            FnType->getResultType().getNonReferenceType(),
4263                            BuiltinLoc, RParenLoc);
4264    }
4265  }
4266  // Return the newly created OverloadExpr node, if we succeded in matching
4267  // exactly one of the candidate functions.
4268  if (OE)
4269    return OE;
4270
4271  // If we didn't find a matching function Expr in the __builtin_overload list
4272  // the return an error.
4273  std::string typeNames;
4274  for (unsigned i = 0; i != NumParams; ++i) {
4275    if (i != 0) typeNames += ", ";
4276    typeNames += Args[i+1]->getType().getAsString();
4277  }
4278
4279  return Diag(BuiltinLoc, diag::err_overload_no_match)
4280    << typeNames << SourceRange(BuiltinLoc, RParenLoc);
4281}
4282
4283Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
4284                                  ExprTy *expr, TypeTy *type,
4285                                  SourceLocation RPLoc) {
4286  Expr *E = static_cast<Expr*>(expr);
4287  QualType T = QualType::getFromOpaquePtr(type);
4288
4289  InitBuiltinVaListType();
4290
4291  // Get the va_list type
4292  QualType VaListType = Context.getBuiltinVaListType();
4293  // Deal with implicit array decay; for example, on x86-64,
4294  // va_list is an array, but it's supposed to decay to
4295  // a pointer for va_arg.
4296  if (VaListType->isArrayType())
4297    VaListType = Context.getArrayDecayedType(VaListType);
4298  // Make sure the input expression also decays appropriately.
4299  UsualUnaryConversions(E);
4300
4301  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
4302    return Diag(E->getLocStart(),
4303                diag::err_first_argument_to_va_arg_not_of_type_va_list)
4304      << E->getType() << E->getSourceRange();
4305
4306  // FIXME: Warn if a non-POD type is passed in.
4307
4308  return new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc);
4309}
4310
4311Sema::ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
4312  // The type of __null will be int or long, depending on the size of
4313  // pointers on the target.
4314  QualType Ty;
4315  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
4316    Ty = Context.IntTy;
4317  else
4318    Ty = Context.LongTy;
4319
4320  return new (Context) GNUNullExpr(Ty, TokenLoc);
4321}
4322
4323bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
4324                                    SourceLocation Loc,
4325                                    QualType DstType, QualType SrcType,
4326                                    Expr *SrcExpr, const char *Flavor) {
4327  // Decode the result (notice that AST's are still created for extensions).
4328  bool isInvalid = false;
4329  unsigned DiagKind;
4330  switch (ConvTy) {
4331  default: assert(0 && "Unknown conversion type");
4332  case Compatible: return false;
4333  case PointerToInt:
4334    DiagKind = diag::ext_typecheck_convert_pointer_int;
4335    break;
4336  case IntToPointer:
4337    DiagKind = diag::ext_typecheck_convert_int_pointer;
4338    break;
4339  case IncompatiblePointer:
4340    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
4341    break;
4342  case FunctionVoidPointer:
4343    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
4344    break;
4345  case CompatiblePointerDiscardsQualifiers:
4346    // If the qualifiers lost were because we were applying the
4347    // (deprecated) C++ conversion from a string literal to a char*
4348    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
4349    // Ideally, this check would be performed in
4350    // CheckPointerTypesForAssignment. However, that would require a
4351    // bit of refactoring (so that the second argument is an
4352    // expression, rather than a type), which should be done as part
4353    // of a larger effort to fix CheckPointerTypesForAssignment for
4354    // C++ semantics.
4355    if (getLangOptions().CPlusPlus &&
4356        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
4357      return false;
4358    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
4359    break;
4360  case IntToBlockPointer:
4361    DiagKind = diag::err_int_to_block_pointer;
4362    break;
4363  case IncompatibleBlockPointer:
4364    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
4365    break;
4366  case IncompatibleObjCQualifiedId:
4367    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
4368    // it can give a more specific diagnostic.
4369    DiagKind = diag::warn_incompatible_qualified_id;
4370    break;
4371  case Incompatible:
4372    DiagKind = diag::err_typecheck_convert_incompatible;
4373    isInvalid = true;
4374    break;
4375  }
4376
4377  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
4378    << SrcExpr->getSourceRange();
4379  return isInvalid;
4380}
4381
4382bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result)
4383{
4384  Expr::EvalResult EvalResult;
4385
4386  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
4387      EvalResult.HasSideEffects) {
4388    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
4389
4390    if (EvalResult.Diag) {
4391      // We only show the note if it's not the usual "invalid subexpression"
4392      // or if it's actually in a subexpression.
4393      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
4394          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
4395        Diag(EvalResult.DiagLoc, EvalResult.Diag);
4396    }
4397
4398    return true;
4399  }
4400
4401  if (EvalResult.Diag) {
4402    Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
4403      E->getSourceRange();
4404
4405    // Print the reason it's not a constant.
4406    if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
4407      Diag(EvalResult.DiagLoc, EvalResult.Diag);
4408  }
4409
4410  if (Result)
4411    *Result = EvalResult.Val.getInt();
4412  return false;
4413}
4414