SemaExpr.cpp revision cd19b57e8c03a742954680830bc440b8b0e08965
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>()) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>();
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(Context,
62                                                    MD->getSelector(),
63                                                    MD->isInstanceMethod());
64          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
65        }
66      }
67    }
68
69    if (!isSilenced)
70      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
71  }
72
73  // See if this is a deleted function.
74  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
75    if (FD->isDeleted()) {
76      Diag(Loc, diag::err_deleted_function_use);
77      Diag(D->getLocation(), diag::note_unavailable_here) << true;
78      return true;
79    }
80  }
81
82  // See if the decl is unavailable
83  if (D->getAttr<UnavailableAttr>()) {
84    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
85    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
86  }
87
88  return false;
89}
90
91SourceRange Sema::getExprRange(ExprTy *E) const {
92  Expr *Ex = (Expr *)E;
93  return Ex? Ex->getSourceRange() : SourceRange();
94}
95
96//===----------------------------------------------------------------------===//
97//  Standard Promotions and Conversions
98//===----------------------------------------------------------------------===//
99
100/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
101void Sema::DefaultFunctionArrayConversion(Expr *&E) {
102  QualType Ty = E->getType();
103  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
104
105  if (Ty->isFunctionType())
106    ImpCastExprToType(E, Context.getPointerType(Ty));
107  else if (Ty->isArrayType()) {
108    // In C90 mode, arrays only promote to pointers if the array expression is
109    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
110    // type 'array of type' is converted to an expression that has type 'pointer
111    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
112    // that has type 'array of type' ...".  The relevant change is "an lvalue"
113    // (C90) to "an expression" (C99).
114    //
115    // C++ 4.2p1:
116    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
117    // T" can be converted to an rvalue of type "pointer to T".
118    //
119    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
120        E->isLvalue(Context) == Expr::LV_Valid)
121      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
122  }
123}
124
125/// UsualUnaryConversions - Performs various conversions that are common to most
126/// operators (C99 6.3). The conversions of array and function types are
127/// sometimes surpressed. For example, the array->pointer conversion doesn't
128/// apply if the array is an argument to the sizeof or address (&) operators.
129/// In these instances, this routine should *not* be called.
130Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
131  QualType Ty = Expr->getType();
132  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
133
134  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
135    ImpCastExprToType(Expr, Context.IntTy);
136  else
137    DefaultFunctionArrayConversion(Expr);
138
139  return Expr;
140}
141
142/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
143/// do not have a prototype. Arguments that have type float are promoted to
144/// double. All other argument types are converted by UsualUnaryConversions().
145void Sema::DefaultArgumentPromotion(Expr *&Expr) {
146  QualType Ty = Expr->getType();
147  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
148
149  // If this is a 'float' (CVR qualified or typedef) promote to double.
150  if (const BuiltinType *BT = Ty->getAsBuiltinType())
151    if (BT->getKind() == BuiltinType::Float)
152      return ImpCastExprToType(Expr, Context.DoubleTy);
153
154  UsualUnaryConversions(Expr);
155}
156
157/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
158/// will warn if the resulting type is not a POD type, and rejects ObjC
159/// interfaces passed by value.  This returns true if the argument type is
160/// completely illegal.
161bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
162  DefaultArgumentPromotion(Expr);
163
164  if (Expr->getType()->isObjCInterfaceType()) {
165    Diag(Expr->getLocStart(),
166         diag::err_cannot_pass_objc_interface_to_vararg)
167      << Expr->getType() << CT;
168    return true;
169  }
170
171  if (!Expr->getType()->isPODType())
172    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
173      << Expr->getType() << CT;
174
175  return false;
176}
177
178
179/// UsualArithmeticConversions - Performs various conversions that are common to
180/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
181/// routine returns the first non-arithmetic type found. The client is
182/// responsible for emitting appropriate error diagnostics.
183/// FIXME: verify the conversion rules for "complex int" are consistent with
184/// GCC.
185QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
186                                          bool isCompAssign) {
187  if (!isCompAssign)
188    UsualUnaryConversions(lhsExpr);
189
190  UsualUnaryConversions(rhsExpr);
191
192  // For conversion purposes, we ignore any qualifiers.
193  // For example, "const float" and "float" are equivalent.
194  QualType lhs =
195    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
196  QualType rhs =
197    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
198
199  // If both types are identical, no conversion is needed.
200  if (lhs == rhs)
201    return lhs;
202
203  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
204  // The caller can deal with this (e.g. pointer + int).
205  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
206    return lhs;
207
208  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
209  if (!isCompAssign)
210    ImpCastExprToType(lhsExpr, destType);
211  ImpCastExprToType(rhsExpr, destType);
212  return destType;
213}
214
215QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
216  // Perform the usual unary conversions. We do this early so that
217  // integral promotions to "int" can allow us to exit early, in the
218  // lhs == rhs check. Also, for conversion purposes, we ignore any
219  // qualifiers.  For example, "const float" and "float" are
220  // equivalent.
221  if (lhs->isPromotableIntegerType())
222    lhs = Context.IntTy;
223  else
224    lhs = lhs.getUnqualifiedType();
225  if (rhs->isPromotableIntegerType())
226    rhs = Context.IntTy;
227  else
228    rhs = rhs.getUnqualifiedType();
229
230  // If both types are identical, no conversion is needed.
231  if (lhs == rhs)
232    return lhs;
233
234  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
235  // The caller can deal with this (e.g. pointer + int).
236  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
237    return lhs;
238
239  // At this point, we have two different arithmetic types.
240
241  // Handle complex types first (C99 6.3.1.8p1).
242  if (lhs->isComplexType() || rhs->isComplexType()) {
243    // if we have an integer operand, the result is the complex type.
244    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
245      // convert the rhs to the lhs complex type.
246      return lhs;
247    }
248    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
249      // convert the lhs to the rhs complex type.
250      return rhs;
251    }
252    // This handles complex/complex, complex/float, or float/complex.
253    // When both operands are complex, the shorter operand is converted to the
254    // type of the longer, and that is the type of the result. This corresponds
255    // to what is done when combining two real floating-point operands.
256    // The fun begins when size promotion occur across type domains.
257    // From H&S 6.3.4: When one operand is complex and the other is a real
258    // floating-point type, the less precise type is converted, within it's
259    // real or complex domain, to the precision of the other type. For example,
260    // when combining a "long double" with a "double _Complex", the
261    // "double _Complex" is promoted to "long double _Complex".
262    int result = Context.getFloatingTypeOrder(lhs, rhs);
263
264    if (result > 0) { // The left side is bigger, convert rhs.
265      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
266    } else if (result < 0) { // The right side is bigger, convert lhs.
267      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
268    }
269    // At this point, lhs and rhs have the same rank/size. Now, make sure the
270    // domains match. This is a requirement for our implementation, C99
271    // does not require this promotion.
272    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
273      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
274        return rhs;
275      } else { // handle "_Complex double, double".
276        return lhs;
277      }
278    }
279    return lhs; // The domain/size match exactly.
280  }
281  // Now handle "real" floating types (i.e. float, double, long double).
282  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
283    // if we have an integer operand, the result is the real floating type.
284    if (rhs->isIntegerType()) {
285      // convert rhs to the lhs floating point type.
286      return lhs;
287    }
288    if (rhs->isComplexIntegerType()) {
289      // convert rhs to the complex floating point type.
290      return Context.getComplexType(lhs);
291    }
292    if (lhs->isIntegerType()) {
293      // convert lhs to the rhs floating point type.
294      return rhs;
295    }
296    if (lhs->isComplexIntegerType()) {
297      // convert lhs to the complex floating point type.
298      return Context.getComplexType(rhs);
299    }
300    // We have two real floating types, float/complex combos were handled above.
301    // Convert the smaller operand to the bigger result.
302    int result = Context.getFloatingTypeOrder(lhs, rhs);
303    if (result > 0) // convert the rhs
304      return lhs;
305    assert(result < 0 && "illegal float comparison");
306    return rhs;   // convert the lhs
307  }
308  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
309    // Handle GCC complex int extension.
310    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
311    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
312
313    if (lhsComplexInt && rhsComplexInt) {
314      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
315                                      rhsComplexInt->getElementType()) >= 0)
316        return lhs; // convert the rhs
317      return rhs;
318    } else if (lhsComplexInt && rhs->isIntegerType()) {
319      // convert the rhs to the lhs complex type.
320      return lhs;
321    } else if (rhsComplexInt && lhs->isIntegerType()) {
322      // convert the lhs to the rhs complex type.
323      return rhs;
324    }
325  }
326  // Finally, we have two differing integer types.
327  // The rules for this case are in C99 6.3.1.8
328  int compare = Context.getIntegerTypeOrder(lhs, rhs);
329  bool lhsSigned = lhs->isSignedIntegerType(),
330       rhsSigned = rhs->isSignedIntegerType();
331  QualType destType;
332  if (lhsSigned == rhsSigned) {
333    // Same signedness; use the higher-ranked type
334    destType = compare >= 0 ? lhs : rhs;
335  } else if (compare != (lhsSigned ? 1 : -1)) {
336    // The unsigned type has greater than or equal rank to the
337    // signed type, so use the unsigned type
338    destType = lhsSigned ? rhs : lhs;
339  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
340    // The two types are different widths; if we are here, that
341    // means the signed type is larger than the unsigned type, so
342    // use the signed type.
343    destType = lhsSigned ? lhs : rhs;
344  } else {
345    // The signed type is higher-ranked than the unsigned type,
346    // but isn't actually any bigger (like unsigned int and long
347    // on most 32-bit systems).  Use the unsigned type corresponding
348    // to the signed type.
349    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
350  }
351  return destType;
352}
353
354//===----------------------------------------------------------------------===//
355//  Semantic Analysis for various Expression Types
356//===----------------------------------------------------------------------===//
357
358
359/// ActOnStringLiteral - The specified tokens were lexed as pasted string
360/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
361/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
362/// multiple tokens.  However, the common case is that StringToks points to one
363/// string.
364///
365Action::OwningExprResult
366Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
367  assert(NumStringToks && "Must have at least one string!");
368
369  StringLiteralParser Literal(StringToks, NumStringToks, PP);
370  if (Literal.hadError)
371    return ExprError();
372
373  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
374  for (unsigned i = 0; i != NumStringToks; ++i)
375    StringTokLocs.push_back(StringToks[i].getLocation());
376
377  QualType StrTy = Context.CharTy;
378  if (Literal.AnyWide) StrTy = Context.getWCharType();
379  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
380
381  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
382  if (getLangOptions().CPlusPlus)
383    StrTy.addConst();
384
385  // Get an array type for the string, according to C99 6.4.5.  This includes
386  // the nul terminator character as well as the string length for pascal
387  // strings.
388  StrTy = Context.getConstantArrayType(StrTy,
389                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
390                                       ArrayType::Normal, 0);
391
392  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
393  return Owned(StringLiteral::Create(Context, Literal.GetString(),
394                                     Literal.GetStringLength(),
395                                     Literal.AnyWide, StrTy,
396                                     &StringTokLocs[0],
397                                     StringTokLocs.size()));
398}
399
400/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
401/// CurBlock to VD should cause it to be snapshotted (as we do for auto
402/// variables defined outside the block) or false if this is not needed (e.g.
403/// for values inside the block or for globals).
404///
405/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
406/// up-to-date.
407///
408static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
409                                              ValueDecl *VD) {
410  // If the value is defined inside the block, we couldn't snapshot it even if
411  // we wanted to.
412  if (CurBlock->TheDecl == VD->getDeclContext())
413    return false;
414
415  // If this is an enum constant or function, it is constant, don't snapshot.
416  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
417    return false;
418
419  // If this is a reference to an extern, static, or global variable, no need to
420  // snapshot it.
421  // FIXME: What about 'const' variables in C++?
422  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
423    if (!Var->hasLocalStorage())
424      return false;
425
426  // Blocks that have these can't be constant.
427  CurBlock->hasBlockDeclRefExprs = true;
428
429  // If we have nested blocks, the decl may be declared in an outer block (in
430  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
431  // be defined outside all of the current blocks (in which case the blocks do
432  // all get the bit).  Walk the nesting chain.
433  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
434       NextBlock = NextBlock->PrevBlockInfo) {
435    // If we found the defining block for the variable, don't mark the block as
436    // having a reference outside it.
437    if (NextBlock->TheDecl == VD->getDeclContext())
438      break;
439
440    // Otherwise, the DeclRef from the inner block causes the outer one to need
441    // a snapshot as well.
442    NextBlock->hasBlockDeclRefExprs = true;
443  }
444
445  return true;
446}
447
448
449
450/// ActOnIdentifierExpr - The parser read an identifier in expression context,
451/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
452/// identifier is used in a function call context.
453/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
454/// class or namespace that the identifier must be a member of.
455Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
456                                                 IdentifierInfo &II,
457                                                 bool HasTrailingLParen,
458                                                 const CXXScopeSpec *SS,
459                                                 bool isAddressOfOperand) {
460  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
461                                  isAddressOfOperand);
462}
463
464/// BuildDeclRefExpr - Build either a DeclRefExpr or a
465/// QualifiedDeclRefExpr based on whether or not SS is a
466/// nested-name-specifier.
467DeclRefExpr *
468Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
469                       bool TypeDependent, bool ValueDependent,
470                       const CXXScopeSpec *SS) {
471  if (SS && !SS->isEmpty()) {
472    return new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
473                                              ValueDependent, SS->getRange(),
474                  static_cast<NestedNameSpecifier *>(SS->getScopeRep()));
475  } else
476    return new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
477}
478
479/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
480/// variable corresponding to the anonymous union or struct whose type
481/// is Record.
482static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
483                                             RecordDecl *Record) {
484  assert(Record->isAnonymousStructOrUnion() &&
485         "Record must be an anonymous struct or union!");
486
487  // FIXME: Once Decls are directly linked together, this will
488  // be an O(1) operation rather than a slow walk through DeclContext's
489  // vector (which itself will be eliminated). DeclGroups might make
490  // this even better.
491  DeclContext *Ctx = Record->getDeclContext();
492  for (DeclContext::decl_iterator D = Ctx->decls_begin(Context),
493                               DEnd = Ctx->decls_end(Context);
494       D != DEnd; ++D) {
495    if (*D == Record) {
496      // The object for the anonymous struct/union directly
497      // follows its type in the list of declarations.
498      ++D;
499      assert(D != DEnd && "Missing object for anonymous record");
500      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
501      return *D;
502    }
503  }
504
505  assert(false && "Missing object for anonymous record");
506  return 0;
507}
508
509/// \brief Given a field that represents a member of an anonymous
510/// struct/union, build the path from that field's context to the
511/// actual member.
512///
513/// Construct the sequence of field member references we'll have to
514/// perform to get to the field in the anonymous union/struct. The
515/// list of members is built from the field outward, so traverse it
516/// backwards to go from an object in the current context to the field
517/// we found.
518///
519/// \returns The variable from which the field access should begin,
520/// for an anonymous struct/union that is not a member of another
521/// class. Otherwise, returns NULL.
522VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
523                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
524  assert(Field->getDeclContext()->isRecord() &&
525         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
526         && "Field must be stored inside an anonymous struct or union");
527
528  Path.push_back(Field);
529  VarDecl *BaseObject = 0;
530  DeclContext *Ctx = Field->getDeclContext();
531  do {
532    RecordDecl *Record = cast<RecordDecl>(Ctx);
533    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
534    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
535      Path.push_back(AnonField);
536    else {
537      BaseObject = cast<VarDecl>(AnonObject);
538      break;
539    }
540    Ctx = Ctx->getParent();
541  } while (Ctx->isRecord() &&
542           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
543
544  return BaseObject;
545}
546
547Sema::OwningExprResult
548Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
549                                               FieldDecl *Field,
550                                               Expr *BaseObjectExpr,
551                                               SourceLocation OpLoc) {
552  llvm::SmallVector<FieldDecl *, 4> AnonFields;
553  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
554                                                            AnonFields);
555
556  // Build the expression that refers to the base object, from
557  // which we will build a sequence of member references to each
558  // of the anonymous union objects and, eventually, the field we
559  // found via name lookup.
560  bool BaseObjectIsPointer = false;
561  unsigned ExtraQuals = 0;
562  if (BaseObject) {
563    // BaseObject is an anonymous struct/union variable (and is,
564    // therefore, not part of another non-anonymous record).
565    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
566    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
567                                               SourceLocation());
568    ExtraQuals
569      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
570  } else if (BaseObjectExpr) {
571    // The caller provided the base object expression. Determine
572    // whether its a pointer and whether it adds any qualifiers to the
573    // anonymous struct/union fields we're looking into.
574    QualType ObjectType = BaseObjectExpr->getType();
575    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
576      BaseObjectIsPointer = true;
577      ObjectType = ObjectPtr->getPointeeType();
578    }
579    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
580  } else {
581    // We've found a member of an anonymous struct/union that is
582    // inside a non-anonymous struct/union, so in a well-formed
583    // program our base object expression is "this".
584    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
585      if (!MD->isStatic()) {
586        QualType AnonFieldType
587          = Context.getTagDeclType(
588                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
589        QualType ThisType = Context.getTagDeclType(MD->getParent());
590        if ((Context.getCanonicalType(AnonFieldType)
591               == Context.getCanonicalType(ThisType)) ||
592            IsDerivedFrom(ThisType, AnonFieldType)) {
593          // Our base object expression is "this".
594          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
595                                                     MD->getThisType(Context));
596          BaseObjectIsPointer = true;
597        }
598      } else {
599        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
600          << Field->getDeclName());
601      }
602      ExtraQuals = MD->getTypeQualifiers();
603    }
604
605    if (!BaseObjectExpr)
606      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
607        << Field->getDeclName());
608  }
609
610  // Build the implicit member references to the field of the
611  // anonymous struct/union.
612  Expr *Result = BaseObjectExpr;
613  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
614         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
615       FI != FIEnd; ++FI) {
616    QualType MemberType = (*FI)->getType();
617    if (!(*FI)->isMutable()) {
618      unsigned combinedQualifiers
619        = MemberType.getCVRQualifiers() | ExtraQuals;
620      MemberType = MemberType.getQualifiedType(combinedQualifiers);
621    }
622    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
623                                      OpLoc, MemberType);
624    BaseObjectIsPointer = false;
625    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
626  }
627
628  return Owned(Result);
629}
630
631/// ActOnDeclarationNameExpr - The parser has read some kind of name
632/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
633/// performs lookup on that name and returns an expression that refers
634/// to that name. This routine isn't directly called from the parser,
635/// because the parser doesn't know about DeclarationName. Rather,
636/// this routine is called by ActOnIdentifierExpr,
637/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
638/// which form the DeclarationName from the corresponding syntactic
639/// forms.
640///
641/// HasTrailingLParen indicates whether this identifier is used in a
642/// function call context.  LookupCtx is only used for a C++
643/// qualified-id (foo::bar) to indicate the class or namespace that
644/// the identifier must be a member of.
645///
646/// isAddressOfOperand means that this expression is the direct operand
647/// of an address-of operator. This matters because this is the only
648/// situation where a qualified name referencing a non-static member may
649/// appear outside a member function of this class.
650Sema::OwningExprResult
651Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
652                               DeclarationName Name, bool HasTrailingLParen,
653                               const CXXScopeSpec *SS,
654                               bool isAddressOfOperand) {
655  // Could be enum-constant, value decl, instance variable, etc.
656  if (SS && SS->isInvalid())
657    return ExprError();
658
659  // C++ [temp.dep.expr]p3:
660  //   An id-expression is type-dependent if it contains:
661  //     -- a nested-name-specifier that contains a class-name that
662  //        names a dependent type.
663  if (SS && isDependentScopeSpecifier(*SS)) {
664    return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
665                                                     Loc, SS->getRange(),
666                static_cast<NestedNameSpecifier *>(SS->getScopeRep())));
667  }
668
669  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
670                                         false, true, Loc);
671
672  NamedDecl *D = 0;
673  if (Lookup.isAmbiguous()) {
674    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
675                            SS && SS->isSet() ? SS->getRange()
676                                              : SourceRange());
677    return ExprError();
678  } else
679    D = Lookup.getAsDecl();
680
681  // If this reference is in an Objective-C method, then ivar lookup happens as
682  // well.
683  IdentifierInfo *II = Name.getAsIdentifierInfo();
684  if (II && getCurMethodDecl()) {
685    // There are two cases to handle here.  1) scoped lookup could have failed,
686    // in which case we should look for an ivar.  2) scoped lookup could have
687    // found a decl, but that decl is outside the current instance method (i.e.
688    // a global variable).  In these two cases, we do a lookup for an ivar with
689    // this name, if the lookup sucedes, we replace it our current decl.
690    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
691      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
692      ObjCInterfaceDecl *ClassDeclared;
693      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
694                                                           ClassDeclared)) {
695        // Check if referencing a field with __attribute__((deprecated)).
696        if (DiagnoseUseOfDecl(IV, Loc))
697          return ExprError();
698        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
699        // If a class method attemps to use a free standing ivar, this is
700        // an error.
701        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
702           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
703                           << IV->getDeclName());
704        // If a class method uses a global variable, even if an ivar with
705        // same name exists, use the global.
706        if (!IsClsMethod) {
707          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
708              ClassDeclared != IFace)
709           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
710          // FIXME: This should use a new expr for a direct reference, don't turn
711          // this into Self->ivar, just return a BareIVarExpr or something.
712          IdentifierInfo &II = Context.Idents.get("self");
713          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
714          return Owned(new (Context)
715                       ObjCIvarRefExpr(IV, IV->getType(), Loc,
716                                       static_cast<Expr*>(SelfExpr.release()),
717                                       true, true));
718        }
719      }
720    }
721    else if (getCurMethodDecl()->isInstanceMethod()) {
722      // We should warn if a local variable hides an ivar.
723      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
724      ObjCInterfaceDecl *ClassDeclared;
725      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
726                                                           ClassDeclared)) {
727        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
728            IFace == ClassDeclared)
729          Diag(Loc, diag::warn_ivar_use_hidden)<<IV->getDeclName();
730      }
731    }
732    // Needed to implement property "super.method" notation.
733    if (D == 0 && II->isStr("super")) {
734      QualType T;
735
736      if (getCurMethodDecl()->isInstanceMethod())
737        T = Context.getPointerType(Context.getObjCInterfaceType(
738                                   getCurMethodDecl()->getClassInterface()));
739      else
740        T = Context.getObjCClassType();
741      return Owned(new (Context) ObjCSuperExpr(Loc, T));
742    }
743  }
744
745  // Determine whether this name might be a candidate for
746  // argument-dependent lookup.
747  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
748             HasTrailingLParen;
749
750  if (ADL && D == 0) {
751    // We've seen something of the form
752    //
753    //   identifier(
754    //
755    // and we did not find any entity by the name
756    // "identifier". However, this identifier is still subject to
757    // argument-dependent lookup, so keep track of the name.
758    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
759                                                          Context.OverloadTy,
760                                                          Loc));
761  }
762
763  if (D == 0) {
764    // Otherwise, this could be an implicitly declared function reference (legal
765    // in C90, extension in C99).
766    if (HasTrailingLParen && II &&
767        !getLangOptions().CPlusPlus) // Not in C++.
768      D = ImplicitlyDefineFunction(Loc, *II, S);
769    else {
770      // If this name wasn't predeclared and if this is not a function call,
771      // diagnose the problem.
772      if (SS && !SS->isEmpty())
773        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
774          << Name << SS->getRange());
775      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
776               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
777        return ExprError(Diag(Loc, diag::err_undeclared_use)
778          << Name.getAsString());
779      else
780        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
781    }
782  }
783
784  // If this is an expression of the form &Class::member, don't build an
785  // implicit member ref, because we want a pointer to the member in general,
786  // not any specific instance's member.
787  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
788    DeclContext *DC = computeDeclContext(*SS);
789    if (D && isa<CXXRecordDecl>(DC)) {
790      QualType DType;
791      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
792        DType = FD->getType().getNonReferenceType();
793      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
794        DType = Method->getType();
795      } else if (isa<OverloadedFunctionDecl>(D)) {
796        DType = Context.OverloadTy;
797      }
798      // Could be an inner type. That's diagnosed below, so ignore it here.
799      if (!DType.isNull()) {
800        // The pointer is type- and value-dependent if it points into something
801        // dependent.
802        bool Dependent = false;
803        for (; DC; DC = DC->getParent()) {
804          // FIXME: could stop early at namespace scope.
805          if (DC->isRecord()) {
806            CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
807            if (Context.getTypeDeclType(Record)->isDependentType()) {
808              Dependent = true;
809              break;
810            }
811          }
812        }
813        return Owned(BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS));
814      }
815    }
816  }
817
818  // We may have found a field within an anonymous union or struct
819  // (C++ [class.union]).
820  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
821    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
822      return BuildAnonymousStructUnionMemberReference(Loc, FD);
823
824  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
825    if (!MD->isStatic()) {
826      // C++ [class.mfct.nonstatic]p2:
827      //   [...] if name lookup (3.4.1) resolves the name in the
828      //   id-expression to a nonstatic nontype member of class X or of
829      //   a base class of X, the id-expression is transformed into a
830      //   class member access expression (5.2.5) using (*this) (9.3.2)
831      //   as the postfix-expression to the left of the '.' operator.
832      DeclContext *Ctx = 0;
833      QualType MemberType;
834      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
835        Ctx = FD->getDeclContext();
836        MemberType = FD->getType();
837
838        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
839          MemberType = RefType->getPointeeType();
840        else if (!FD->isMutable()) {
841          unsigned combinedQualifiers
842            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
843          MemberType = MemberType.getQualifiedType(combinedQualifiers);
844        }
845      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
846        if (!Method->isStatic()) {
847          Ctx = Method->getParent();
848          MemberType = Method->getType();
849        }
850      } else if (OverloadedFunctionDecl *Ovl
851                   = dyn_cast<OverloadedFunctionDecl>(D)) {
852        for (OverloadedFunctionDecl::function_iterator
853               Func = Ovl->function_begin(),
854               FuncEnd = Ovl->function_end();
855             Func != FuncEnd; ++Func) {
856          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
857            if (!DMethod->isStatic()) {
858              Ctx = Ovl->getDeclContext();
859              MemberType = Context.OverloadTy;
860              break;
861            }
862        }
863      }
864
865      if (Ctx && Ctx->isRecord()) {
866        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
867        QualType ThisType = Context.getTagDeclType(MD->getParent());
868        if ((Context.getCanonicalType(CtxType)
869               == Context.getCanonicalType(ThisType)) ||
870            IsDerivedFrom(ThisType, CtxType)) {
871          // Build the implicit member access expression.
872          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
873                                                 MD->getThisType(Context));
874          return Owned(new (Context) MemberExpr(This, true, D,
875                                                SourceLocation(), MemberType));
876        }
877      }
878    }
879  }
880
881  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
882    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
883      if (MD->isStatic())
884        // "invalid use of member 'x' in static member function"
885        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
886          << FD->getDeclName());
887    }
888
889    // Any other ways we could have found the field in a well-formed
890    // program would have been turned into implicit member expressions
891    // above.
892    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
893      << FD->getDeclName());
894  }
895
896  if (isa<TypedefDecl>(D))
897    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
898  if (isa<ObjCInterfaceDecl>(D))
899    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
900  if (isa<NamespaceDecl>(D))
901    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
902
903  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
904  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
905    return Owned(BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
906                                  false, false, SS));
907  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
908    return Owned(BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
909                                  false, false, SS));
910  ValueDecl *VD = cast<ValueDecl>(D);
911
912  // Check whether this declaration can be used. Note that we suppress
913  // this check when we're going to perform argument-dependent lookup
914  // on this function name, because this might not be the function
915  // that overload resolution actually selects.
916  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
917    return ExprError();
918
919  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
920    // Warn about constructs like:
921    //   if (void *X = foo()) { ... } else { X }.
922    // In the else block, the pointer is always false.
923    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
924      Scope *CheckS = S;
925      while (CheckS) {
926        if (CheckS->isWithinElse() &&
927            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
928          if (Var->getType()->isBooleanType())
929            ExprError(Diag(Loc, diag::warn_value_always_false)
930              << Var->getDeclName());
931          else
932            ExprError(Diag(Loc, diag::warn_value_always_zero)
933              << Var->getDeclName());
934          break;
935        }
936
937        // Move up one more control parent to check again.
938        CheckS = CheckS->getControlParent();
939        if (CheckS)
940          CheckS = CheckS->getParent();
941      }
942    }
943  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(VD)) {
944    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
945      // C99 DR 316 says that, if a function type comes from a
946      // function definition (without a prototype), that type is only
947      // used for checking compatibility. Therefore, when referencing
948      // the function, we pretend that we don't have the full function
949      // type.
950      QualType T = Func->getType();
951      QualType NoProtoType = T;
952      if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
953        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
954      return Owned(BuildDeclRefExpr(VD, NoProtoType, Loc, false, false, SS));
955    }
956  }
957
958  // Only create DeclRefExpr's for valid Decl's.
959  if (VD->isInvalidDecl())
960    return ExprError();
961
962  // If the identifier reference is inside a block, and it refers to a value
963  // that is outside the block, create a BlockDeclRefExpr instead of a
964  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
965  // the block is formed.
966  //
967  // We do not do this for things like enum constants, global variables, etc,
968  // as they do not get snapshotted.
969  //
970  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
971    QualType ExprTy = VD->getType().getNonReferenceType();
972    // The BlocksAttr indicates the variable is bound by-reference.
973    if (VD->getAttr<BlocksAttr>())
974      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
975
976    // Variable will be bound by-copy, make it const within the closure.
977    ExprTy.addConst();
978    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false));
979  }
980  // If this reference is not in a block or if the referenced variable is
981  // within the block, create a normal DeclRefExpr.
982
983  bool TypeDependent = false;
984  bool ValueDependent = false;
985  if (getLangOptions().CPlusPlus) {
986    // C++ [temp.dep.expr]p3:
987    //   An id-expression is type-dependent if it contains:
988    //     - an identifier that was declared with a dependent type,
989    if (VD->getType()->isDependentType())
990      TypeDependent = true;
991    //     - FIXME: a template-id that is dependent,
992    //     - a conversion-function-id that specifies a dependent type,
993    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
994             Name.getCXXNameType()->isDependentType())
995      TypeDependent = true;
996    //     - a nested-name-specifier that contains a class-name that
997    //       names a dependent type.
998    else if (SS && !SS->isEmpty()) {
999      for (DeclContext *DC = computeDeclContext(*SS);
1000           DC; DC = DC->getParent()) {
1001        // FIXME: could stop early at namespace scope.
1002        if (DC->isRecord()) {
1003          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1004          if (Context.getTypeDeclType(Record)->isDependentType()) {
1005            TypeDependent = true;
1006            break;
1007          }
1008        }
1009      }
1010    }
1011
1012    // C++ [temp.dep.constexpr]p2:
1013    //
1014    //   An identifier is value-dependent if it is:
1015    //     - a name declared with a dependent type,
1016    if (TypeDependent)
1017      ValueDependent = true;
1018    //     - the name of a non-type template parameter,
1019    else if (isa<NonTypeTemplateParmDecl>(VD))
1020      ValueDependent = true;
1021    //    - a constant with integral or enumeration type and is
1022    //      initialized with an expression that is value-dependent
1023    //      (FIXME!).
1024  }
1025
1026  return Owned(BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
1027                                TypeDependent, ValueDependent, SS));
1028}
1029
1030Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1031                                                 tok::TokenKind Kind) {
1032  PredefinedExpr::IdentType IT;
1033
1034  switch (Kind) {
1035  default: assert(0 && "Unknown simple primary expr!");
1036  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1037  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1038  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1039  }
1040
1041  // Pre-defined identifiers are of type char[x], where x is the length of the
1042  // string.
1043  unsigned Length;
1044  if (FunctionDecl *FD = getCurFunctionDecl())
1045    Length = FD->getIdentifier()->getLength();
1046  else if (ObjCMethodDecl *MD = getCurMethodDecl())
1047    Length = MD->getSynthesizedMethodSize();
1048  else {
1049    Diag(Loc, diag::ext_predef_outside_function);
1050    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
1051    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
1052  }
1053
1054
1055  llvm::APInt LengthI(32, Length + 1);
1056  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
1057  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1058  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1059}
1060
1061Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1062  llvm::SmallString<16> CharBuffer;
1063  CharBuffer.resize(Tok.getLength());
1064  const char *ThisTokBegin = &CharBuffer[0];
1065  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1066
1067  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1068                            Tok.getLocation(), PP);
1069  if (Literal.hadError())
1070    return ExprError();
1071
1072  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1073
1074  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1075                                              Literal.isWide(),
1076                                              type, Tok.getLocation()));
1077}
1078
1079Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1080  // Fast path for a single digit (which is quite common).  A single digit
1081  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1082  if (Tok.getLength() == 1) {
1083    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1084    unsigned IntSize = Context.Target.getIntWidth();
1085    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1086                    Context.IntTy, Tok.getLocation()));
1087  }
1088
1089  llvm::SmallString<512> IntegerBuffer;
1090  // Add padding so that NumericLiteralParser can overread by one character.
1091  IntegerBuffer.resize(Tok.getLength()+1);
1092  const char *ThisTokBegin = &IntegerBuffer[0];
1093
1094  // Get the spelling of the token, which eliminates trigraphs, etc.
1095  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1096
1097  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1098                               Tok.getLocation(), PP);
1099  if (Literal.hadError)
1100    return ExprError();
1101
1102  Expr *Res;
1103
1104  if (Literal.isFloatingLiteral()) {
1105    QualType Ty;
1106    if (Literal.isFloat)
1107      Ty = Context.FloatTy;
1108    else if (!Literal.isLong)
1109      Ty = Context.DoubleTy;
1110    else
1111      Ty = Context.LongDoubleTy;
1112
1113    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1114
1115    // isExact will be set by GetFloatValue().
1116    bool isExact = false;
1117    Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
1118                                        &isExact, Ty, Tok.getLocation());
1119
1120  } else if (!Literal.isIntegerLiteral()) {
1121    return ExprError();
1122  } else {
1123    QualType Ty;
1124
1125    // long long is a C99 feature.
1126    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1127        Literal.isLongLong)
1128      Diag(Tok.getLocation(), diag::ext_longlong);
1129
1130    // Get the value in the widest-possible width.
1131    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1132
1133    if (Literal.GetIntegerValue(ResultVal)) {
1134      // If this value didn't fit into uintmax_t, warn and force to ull.
1135      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1136      Ty = Context.UnsignedLongLongTy;
1137      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1138             "long long is not intmax_t?");
1139    } else {
1140      // If this value fits into a ULL, try to figure out what else it fits into
1141      // according to the rules of C99 6.4.4.1p5.
1142
1143      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1144      // be an unsigned int.
1145      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1146
1147      // Check from smallest to largest, picking the smallest type we can.
1148      unsigned Width = 0;
1149      if (!Literal.isLong && !Literal.isLongLong) {
1150        // Are int/unsigned possibilities?
1151        unsigned IntSize = Context.Target.getIntWidth();
1152
1153        // Does it fit in a unsigned int?
1154        if (ResultVal.isIntN(IntSize)) {
1155          // Does it fit in a signed int?
1156          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1157            Ty = Context.IntTy;
1158          else if (AllowUnsigned)
1159            Ty = Context.UnsignedIntTy;
1160          Width = IntSize;
1161        }
1162      }
1163
1164      // Are long/unsigned long possibilities?
1165      if (Ty.isNull() && !Literal.isLongLong) {
1166        unsigned LongSize = Context.Target.getLongWidth();
1167
1168        // Does it fit in a unsigned long?
1169        if (ResultVal.isIntN(LongSize)) {
1170          // Does it fit in a signed long?
1171          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1172            Ty = Context.LongTy;
1173          else if (AllowUnsigned)
1174            Ty = Context.UnsignedLongTy;
1175          Width = LongSize;
1176        }
1177      }
1178
1179      // Finally, check long long if needed.
1180      if (Ty.isNull()) {
1181        unsigned LongLongSize = Context.Target.getLongLongWidth();
1182
1183        // Does it fit in a unsigned long long?
1184        if (ResultVal.isIntN(LongLongSize)) {
1185          // Does it fit in a signed long long?
1186          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1187            Ty = Context.LongLongTy;
1188          else if (AllowUnsigned)
1189            Ty = Context.UnsignedLongLongTy;
1190          Width = LongLongSize;
1191        }
1192      }
1193
1194      // If we still couldn't decide a type, we probably have something that
1195      // does not fit in a signed long long, but has no U suffix.
1196      if (Ty.isNull()) {
1197        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1198        Ty = Context.UnsignedLongLongTy;
1199        Width = Context.Target.getLongLongWidth();
1200      }
1201
1202      if (ResultVal.getBitWidth() != Width)
1203        ResultVal.trunc(Width);
1204    }
1205    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1206  }
1207
1208  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1209  if (Literal.isImaginary)
1210    Res = new (Context) ImaginaryLiteral(Res,
1211                                        Context.getComplexType(Res->getType()));
1212
1213  return Owned(Res);
1214}
1215
1216Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1217                                              SourceLocation R, ExprArg Val) {
1218  Expr *E = (Expr *)Val.release();
1219  assert((E != 0) && "ActOnParenExpr() missing expr");
1220  return Owned(new (Context) ParenExpr(L, R, E));
1221}
1222
1223/// The UsualUnaryConversions() function is *not* called by this routine.
1224/// See C99 6.3.2.1p[2-4] for more details.
1225bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1226                                     SourceLocation OpLoc,
1227                                     const SourceRange &ExprRange,
1228                                     bool isSizeof) {
1229  if (exprType->isDependentType())
1230    return false;
1231
1232  // C99 6.5.3.4p1:
1233  if (isa<FunctionType>(exprType)) {
1234    // alignof(function) is allowed.
1235    if (isSizeof)
1236      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1237    return false;
1238  }
1239
1240  if (exprType->isVoidType()) {
1241    Diag(OpLoc, diag::ext_sizeof_void_type)
1242      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1243    return false;
1244  }
1245
1246  // sizeof(interface) and sizeof(interface<proto>)
1247  if (const ObjCInterfaceType *IIT = exprType->getAsObjCInterfaceType()) {
1248    if (IIT->getDecl()->isForwardDecl()) {
1249      Diag(OpLoc, diag::err_sizeof_forward_interface)
1250        << IIT->getDecl()->getDeclName() << isSizeof;
1251      return true;
1252    }
1253
1254    if (LangOpts.ObjCNonFragileABI) {
1255      Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1256        << IIT->getDecl()->getDeclName() << isSizeof;
1257      //return false;
1258    }
1259  }
1260
1261  return RequireCompleteType(OpLoc, exprType,
1262                                isSizeof ? diag::err_sizeof_incomplete_type :
1263                                           diag::err_alignof_incomplete_type,
1264                                ExprRange);
1265}
1266
1267bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1268                            const SourceRange &ExprRange) {
1269  E = E->IgnoreParens();
1270
1271  // alignof decl is always ok.
1272  if (isa<DeclRefExpr>(E))
1273    return false;
1274
1275  // Cannot know anything else if the expression is dependent.
1276  if (E->isTypeDependent())
1277    return false;
1278
1279  if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1280    if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
1281      if (FD->isBitField()) {
1282        Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1283        return true;
1284      }
1285      // Other fields are ok.
1286      return false;
1287    }
1288  }
1289  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1290}
1291
1292/// \brief Build a sizeof or alignof expression given a type operand.
1293Action::OwningExprResult
1294Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
1295                              bool isSizeOf, SourceRange R) {
1296  if (T.isNull())
1297    return ExprError();
1298
1299  if (!T->isDependentType() &&
1300      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1301    return ExprError();
1302
1303  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1304  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
1305                                               Context.getSizeType(), OpLoc,
1306                                               R.getEnd()));
1307}
1308
1309/// \brief Build a sizeof or alignof expression given an expression
1310/// operand.
1311Action::OwningExprResult
1312Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1313                              bool isSizeOf, SourceRange R) {
1314  // Verify that the operand is valid.
1315  bool isInvalid = false;
1316  if (E->isTypeDependent()) {
1317    // Delay type-checking for type-dependent expressions.
1318  } else if (!isSizeOf) {
1319    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1320  } else if (E->isBitField()) {  // C99 6.5.3.4p1.
1321    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1322    isInvalid = true;
1323  } else {
1324    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1325  }
1326
1327  if (isInvalid)
1328    return ExprError();
1329
1330  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1331  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1332                                               Context.getSizeType(), OpLoc,
1333                                               R.getEnd()));
1334}
1335
1336/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1337/// the same for @c alignof and @c __alignof
1338/// Note that the ArgRange is invalid if isType is false.
1339Action::OwningExprResult
1340Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1341                             void *TyOrEx, const SourceRange &ArgRange) {
1342  // If error parsing type, ignore.
1343  if (TyOrEx == 0) return ExprError();
1344
1345  if (isType) {
1346    QualType ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1347    return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
1348  }
1349
1350  // Get the end location.
1351  Expr *ArgEx = (Expr *)TyOrEx;
1352  Action::OwningExprResult Result
1353    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1354
1355  if (Result.isInvalid())
1356    DeleteExpr(ArgEx);
1357
1358  return move(Result);
1359}
1360
1361QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1362  if (V->isTypeDependent())
1363    return Context.DependentTy;
1364
1365  // These operators return the element type of a complex type.
1366  if (const ComplexType *CT = V->getType()->getAsComplexType())
1367    return CT->getElementType();
1368
1369  // Otherwise they pass through real integer and floating point types here.
1370  if (V->getType()->isArithmeticType())
1371    return V->getType();
1372
1373  // Reject anything else.
1374  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1375    << (isReal ? "__real" : "__imag");
1376  return QualType();
1377}
1378
1379
1380
1381Action::OwningExprResult
1382Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1383                          tok::TokenKind Kind, ExprArg Input) {
1384  Expr *Arg = (Expr *)Input.get();
1385
1386  UnaryOperator::Opcode Opc;
1387  switch (Kind) {
1388  default: assert(0 && "Unknown unary op!");
1389  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1390  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1391  }
1392
1393  if (getLangOptions().CPlusPlus &&
1394      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1395    // Which overloaded operator?
1396    OverloadedOperatorKind OverOp =
1397      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1398
1399    // C++ [over.inc]p1:
1400    //
1401    //     [...] If the function is a member function with one
1402    //     parameter (which shall be of type int) or a non-member
1403    //     function with two parameters (the second of which shall be
1404    //     of type int), it defines the postfix increment operator ++
1405    //     for objects of that type. When the postfix increment is
1406    //     called as a result of using the ++ operator, the int
1407    //     argument will have value zero.
1408    Expr *Args[2] = {
1409      Arg,
1410      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1411                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1412    };
1413
1414    // Build the candidate set for overloading
1415    OverloadCandidateSet CandidateSet;
1416    AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
1417
1418    // Perform overload resolution.
1419    OverloadCandidateSet::iterator Best;
1420    switch (BestViableFunction(CandidateSet, Best)) {
1421    case OR_Success: {
1422      // We found a built-in operator or an overloaded operator.
1423      FunctionDecl *FnDecl = Best->Function;
1424
1425      if (FnDecl) {
1426        // We matched an overloaded operator. Build a call to that
1427        // operator.
1428
1429        // Convert the arguments.
1430        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1431          if (PerformObjectArgumentInitialization(Arg, Method))
1432            return ExprError();
1433        } else {
1434          // Convert the arguments.
1435          if (PerformCopyInitialization(Arg,
1436                                        FnDecl->getParamDecl(0)->getType(),
1437                                        "passing"))
1438            return ExprError();
1439        }
1440
1441        // Determine the result type
1442        QualType ResultTy
1443          = FnDecl->getType()->getAsFunctionType()->getResultType();
1444        ResultTy = ResultTy.getNonReferenceType();
1445
1446        // Build the actual expression node.
1447        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1448                                                 SourceLocation());
1449        UsualUnaryConversions(FnExpr);
1450
1451        Input.release();
1452        return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
1453                                                       Args, 2, ResultTy,
1454                                                       OpLoc));
1455      } else {
1456        // We matched a built-in operator. Convert the arguments, then
1457        // break out so that we will build the appropriate built-in
1458        // operator node.
1459        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1460                                      "passing"))
1461          return ExprError();
1462
1463        break;
1464      }
1465    }
1466
1467    case OR_No_Viable_Function:
1468      // No viable function; fall through to handling this as a
1469      // built-in operator, which will produce an error message for us.
1470      break;
1471
1472    case OR_Ambiguous:
1473      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1474          << UnaryOperator::getOpcodeStr(Opc)
1475          << Arg->getSourceRange();
1476      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1477      return ExprError();
1478
1479    case OR_Deleted:
1480      Diag(OpLoc, diag::err_ovl_deleted_oper)
1481        << Best->Function->isDeleted()
1482        << UnaryOperator::getOpcodeStr(Opc)
1483        << Arg->getSourceRange();
1484      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1485      return ExprError();
1486    }
1487
1488    // Either we found no viable overloaded operator or we matched a
1489    // built-in operator. In either case, fall through to trying to
1490    // build a built-in operation.
1491  }
1492
1493  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1494                                                 Opc == UnaryOperator::PostInc);
1495  if (result.isNull())
1496    return ExprError();
1497  Input.release();
1498  return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
1499}
1500
1501Action::OwningExprResult
1502Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1503                              ExprArg Idx, SourceLocation RLoc) {
1504  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1505       *RHSExp = static_cast<Expr*>(Idx.get());
1506
1507  if (getLangOptions().CPlusPlus &&
1508      (LHSExp->getType()->isRecordType() ||
1509       LHSExp->getType()->isEnumeralType() ||
1510       RHSExp->getType()->isRecordType() ||
1511       RHSExp->getType()->isEnumeralType())) {
1512    // Add the appropriate overloaded operators (C++ [over.match.oper])
1513    // to the candidate set.
1514    OverloadCandidateSet CandidateSet;
1515    Expr *Args[2] = { LHSExp, RHSExp };
1516    AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1517                          SourceRange(LLoc, RLoc));
1518
1519    // Perform overload resolution.
1520    OverloadCandidateSet::iterator Best;
1521    switch (BestViableFunction(CandidateSet, Best)) {
1522    case OR_Success: {
1523      // We found a built-in operator or an overloaded operator.
1524      FunctionDecl *FnDecl = Best->Function;
1525
1526      if (FnDecl) {
1527        // We matched an overloaded operator. Build a call to that
1528        // operator.
1529
1530        // Convert the arguments.
1531        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1532          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1533              PerformCopyInitialization(RHSExp,
1534                                        FnDecl->getParamDecl(0)->getType(),
1535                                        "passing"))
1536            return ExprError();
1537        } else {
1538          // Convert the arguments.
1539          if (PerformCopyInitialization(LHSExp,
1540                                        FnDecl->getParamDecl(0)->getType(),
1541                                        "passing") ||
1542              PerformCopyInitialization(RHSExp,
1543                                        FnDecl->getParamDecl(1)->getType(),
1544                                        "passing"))
1545            return ExprError();
1546        }
1547
1548        // Determine the result type
1549        QualType ResultTy
1550          = FnDecl->getType()->getAsFunctionType()->getResultType();
1551        ResultTy = ResultTy.getNonReferenceType();
1552
1553        // Build the actual expression node.
1554        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1555                                                 SourceLocation());
1556        UsualUnaryConversions(FnExpr);
1557
1558        Base.release();
1559        Idx.release();
1560        return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
1561                                                       FnExpr, Args, 2,
1562                                                       ResultTy, LLoc));
1563      } else {
1564        // We matched a built-in operator. Convert the arguments, then
1565        // break out so that we will build the appropriate built-in
1566        // operator node.
1567        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1568                                      "passing") ||
1569            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1570                                      "passing"))
1571          return ExprError();
1572
1573        break;
1574      }
1575    }
1576
1577    case OR_No_Viable_Function:
1578      // No viable function; fall through to handling this as a
1579      // built-in operator, which will produce an error message for us.
1580      break;
1581
1582    case OR_Ambiguous:
1583      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1584          << "[]"
1585          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1586      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1587      return ExprError();
1588
1589    case OR_Deleted:
1590      Diag(LLoc, diag::err_ovl_deleted_oper)
1591        << Best->Function->isDeleted()
1592        << "[]"
1593        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1594      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1595      return ExprError();
1596    }
1597
1598    // Either we found no viable overloaded operator or we matched a
1599    // built-in operator. In either case, fall through to trying to
1600    // build a built-in operation.
1601  }
1602
1603  // Perform default conversions.
1604  DefaultFunctionArrayConversion(LHSExp);
1605  DefaultFunctionArrayConversion(RHSExp);
1606
1607  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1608
1609  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1610  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1611  // in the subscript position. As a result, we need to derive the array base
1612  // and index from the expression types.
1613  Expr *BaseExpr, *IndexExpr;
1614  QualType ResultType;
1615  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1616    BaseExpr = LHSExp;
1617    IndexExpr = RHSExp;
1618    ResultType = Context.DependentTy;
1619  } else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1620    BaseExpr = LHSExp;
1621    IndexExpr = RHSExp;
1622    // FIXME: need to deal with const...
1623    ResultType = PTy->getPointeeType();
1624  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1625     // Handle the uncommon case of "123[Ptr]".
1626    BaseExpr = RHSExp;
1627    IndexExpr = LHSExp;
1628    // FIXME: need to deal with const...
1629    ResultType = PTy->getPointeeType();
1630  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1631    BaseExpr = LHSExp;    // vectors: V[123]
1632    IndexExpr = RHSExp;
1633
1634    // FIXME: need to deal with const...
1635    ResultType = VTy->getElementType();
1636  } else {
1637    return ExprError(Diag(LHSExp->getLocStart(),
1638      diag::err_typecheck_subscript_value) << RHSExp->getSourceRange());
1639  }
1640  // C99 6.5.2.1p1
1641  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
1642    return ExprError(Diag(IndexExpr->getLocStart(),
1643      diag::err_typecheck_subscript) << IndexExpr->getSourceRange());
1644
1645  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1646  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1647  // type. Note that Functions are not objects, and that (in C99 parlance)
1648  // incomplete types are not object types.
1649  if (ResultType->isFunctionType()) {
1650    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1651      << ResultType << BaseExpr->getSourceRange();
1652    return ExprError();
1653  }
1654  if (!ResultType->isDependentType() &&
1655      RequireCompleteType(BaseExpr->getLocStart(), ResultType,
1656                          diag::err_subscript_incomplete_type,
1657                          BaseExpr->getSourceRange()))
1658    return ExprError();
1659
1660  Base.release();
1661  Idx.release();
1662  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1663                                                ResultType, RLoc));
1664}
1665
1666QualType Sema::
1667CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1668                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1669  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1670
1671  // The vector accessor can't exceed the number of elements.
1672  const char *compStr = CompName.getName();
1673
1674  // This flag determines whether or not the component is one of the four
1675  // special names that indicate a subset of exactly half the elements are
1676  // to be selected.
1677  bool HalvingSwizzle = false;
1678
1679  // This flag determines whether or not CompName has an 's' char prefix,
1680  // indicating that it is a string of hex values to be used as vector indices.
1681  bool HexSwizzle = *compStr == 's';
1682
1683  // Check that we've found one of the special components, or that the component
1684  // names must come from the same set.
1685  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1686      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1687    HalvingSwizzle = true;
1688  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1689    do
1690      compStr++;
1691    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1692  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1693    do
1694      compStr++;
1695    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1696  }
1697
1698  if (!HalvingSwizzle && *compStr) {
1699    // We didn't get to the end of the string. This means the component names
1700    // didn't come from the same set *or* we encountered an illegal name.
1701    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1702      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1703    return QualType();
1704  }
1705
1706  // Ensure no component accessor exceeds the width of the vector type it
1707  // operates on.
1708  if (!HalvingSwizzle) {
1709    compStr = CompName.getName();
1710
1711    if (HexSwizzle)
1712      compStr++;
1713
1714    while (*compStr) {
1715      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1716        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1717          << baseType << SourceRange(CompLoc);
1718        return QualType();
1719      }
1720    }
1721  }
1722
1723  // If this is a halving swizzle, verify that the base type has an even
1724  // number of elements.
1725  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1726    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1727      << baseType << SourceRange(CompLoc);
1728    return QualType();
1729  }
1730
1731  // The component accessor looks fine - now we need to compute the actual type.
1732  // The vector type is implied by the component accessor. For example,
1733  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1734  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1735  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1736  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1737                                     : CompName.getLength();
1738  if (HexSwizzle)
1739    CompSize--;
1740
1741  if (CompSize == 1)
1742    return vecType->getElementType();
1743
1744  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1745  // Now look up the TypeDefDecl from the vector type. Without this,
1746  // diagostics look bad. We want extended vector types to appear built-in.
1747  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1748    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1749      return Context.getTypedefType(ExtVectorDecls[i]);
1750  }
1751  return VT; // should never get here (a typedef type should always be found).
1752}
1753
1754static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
1755                                                IdentifierInfo &Member,
1756                                                const Selector &Sel,
1757                                                ASTContext &Context) {
1758
1759  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Context, &Member))
1760    return PD;
1761  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Context, Sel))
1762    return OMD;
1763
1764  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
1765       E = PDecl->protocol_end(); I != E; ++I) {
1766    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
1767                                                     Context))
1768      return D;
1769  }
1770  return 0;
1771}
1772
1773static Decl *FindGetterNameDecl(const ObjCQualifiedIdType *QIdTy,
1774                                IdentifierInfo &Member,
1775                                const Selector &Sel,
1776                                ASTContext &Context) {
1777  // Check protocols on qualified interfaces.
1778  Decl *GDecl = 0;
1779  for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1780       E = QIdTy->qual_end(); I != E; ++I) {
1781    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context, &Member)) {
1782      GDecl = PD;
1783      break;
1784    }
1785    // Also must look for a getter name which uses property syntax.
1786    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Context, Sel)) {
1787      GDecl = OMD;
1788      break;
1789    }
1790  }
1791  if (!GDecl) {
1792    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1793         E = QIdTy->qual_end(); I != E; ++I) {
1794      // Search in the protocol-qualifier list of current protocol.
1795      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
1796      if (GDecl)
1797        return GDecl;
1798    }
1799  }
1800  return GDecl;
1801}
1802
1803/// FindMethodInNestedImplementations - Look up a method in current and
1804/// all base class implementations.
1805///
1806ObjCMethodDecl *Sema::FindMethodInNestedImplementations(
1807                                              const ObjCInterfaceDecl *IFace,
1808                                              const Selector &Sel) {
1809  ObjCMethodDecl *Method = 0;
1810  if (ObjCImplementationDecl *ImpDecl =
1811      Sema::ObjCImplementations[IFace->getIdentifier()])
1812    Method = ImpDecl->getInstanceMethod(Context, Sel);
1813
1814  if (!Method && IFace->getSuperClass())
1815    return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel);
1816  return Method;
1817}
1818
1819Action::OwningExprResult
1820Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
1821                               tok::TokenKind OpKind, SourceLocation MemberLoc,
1822                               IdentifierInfo &Member,
1823                               DeclPtrTy ObjCImpDecl) {
1824  Expr *BaseExpr = static_cast<Expr *>(Base.release());
1825  assert(BaseExpr && "no record expression");
1826
1827  // Perform default conversions.
1828  DefaultFunctionArrayConversion(BaseExpr);
1829
1830  QualType BaseType = BaseExpr->getType();
1831  assert(!BaseType.isNull() && "no type for member expression");
1832
1833  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1834  // must have pointer type, and the accessed type is the pointee.
1835  if (OpKind == tok::arrow) {
1836    if (const PointerType *PT = BaseType->getAsPointerType())
1837      BaseType = PT->getPointeeType();
1838    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
1839      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
1840                                            MemberLoc, Member));
1841    else
1842      return ExprError(Diag(MemberLoc,
1843                            diag::err_typecheck_member_reference_arrow)
1844        << BaseType << BaseExpr->getSourceRange());
1845  }
1846
1847  // Handle field access to simple records.  This also handles access to fields
1848  // of the ObjC 'id' struct.
1849  if (const RecordType *RTy = BaseType->getAsRecordType()) {
1850    RecordDecl *RDecl = RTy->getDecl();
1851    if (RequireCompleteType(OpLoc, BaseType,
1852                               diag::err_typecheck_incomplete_tag,
1853                               BaseExpr->getSourceRange()))
1854      return ExprError();
1855
1856    // The record definition is complete, now make sure the member is valid.
1857    // FIXME: Qualified name lookup for C++ is a bit more complicated
1858    // than this.
1859    LookupResult Result
1860      = LookupQualifiedName(RDecl, DeclarationName(&Member),
1861                            LookupMemberName, false);
1862
1863    if (!Result)
1864      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
1865               << &Member << BaseExpr->getSourceRange());
1866    if (Result.isAmbiguous()) {
1867      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
1868                              MemberLoc, BaseExpr->getSourceRange());
1869      return ExprError();
1870    }
1871
1872    NamedDecl *MemberDecl = Result;
1873
1874    // If the decl being referenced had an error, return an error for this
1875    // sub-expr without emitting another error, in order to avoid cascading
1876    // error cases.
1877    if (MemberDecl->isInvalidDecl())
1878      return ExprError();
1879
1880    // Check the use of this field
1881    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1882      return ExprError();
1883
1884    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
1885      // We may have found a field within an anonymous union or struct
1886      // (C++ [class.union]).
1887      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1888        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
1889                                                        BaseExpr, OpLoc);
1890
1891      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1892      // FIXME: Handle address space modifiers
1893      QualType MemberType = FD->getType();
1894      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
1895        MemberType = Ref->getPointeeType();
1896      else {
1897        unsigned combinedQualifiers =
1898          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
1899        if (FD->isMutable())
1900          combinedQualifiers &= ~QualType::Const;
1901        MemberType = MemberType.getQualifiedType(combinedQualifiers);
1902      }
1903
1904      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
1905                                            MemberLoc, MemberType));
1906    }
1907
1908    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl))
1909      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1910                                            Var, MemberLoc,
1911                                         Var->getType().getNonReferenceType()));
1912    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
1913      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1914                                            MemberFn, MemberLoc,
1915                                            MemberFn->getType()));
1916    if (OverloadedFunctionDecl *Ovl
1917          = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
1918      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
1919                                            MemberLoc, Context.OverloadTy));
1920    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
1921      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1922                                            Enum, MemberLoc, Enum->getType()));
1923    if (isa<TypeDecl>(MemberDecl))
1924      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
1925        << DeclarationName(&Member) << int(OpKind == tok::arrow));
1926
1927    // We found a declaration kind that we didn't expect. This is a
1928    // generic error message that tells the user that she can't refer
1929    // to this member with '.' or '->'.
1930    return ExprError(Diag(MemberLoc,
1931                          diag::err_typecheck_member_reference_unknown)
1932      << DeclarationName(&Member) << int(OpKind == tok::arrow));
1933  }
1934
1935  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
1936  // (*Obj).ivar.
1937  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
1938    ObjCInterfaceDecl *ClassDeclared;
1939    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(Context,
1940                                                                   &Member,
1941                                                             ClassDeclared)) {
1942      // If the decl being referenced had an error, return an error for this
1943      // sub-expr without emitting another error, in order to avoid cascading
1944      // error cases.
1945      if (IV->isInvalidDecl())
1946        return ExprError();
1947
1948      // Check whether we can reference this field.
1949      if (DiagnoseUseOfDecl(IV, MemberLoc))
1950        return ExprError();
1951      if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1952          IV->getAccessControl() != ObjCIvarDecl::Package) {
1953        ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1954        if (ObjCMethodDecl *MD = getCurMethodDecl())
1955          ClassOfMethodDecl =  MD->getClassInterface();
1956        else if (ObjCImpDecl && getCurFunctionDecl()) {
1957          // Case of a c-function declared inside an objc implementation.
1958          // FIXME: For a c-style function nested inside an objc implementation
1959          // class, there is no implementation context available, so we pass down
1960          // the context as argument to this routine. Ideally, this context need
1961          // be passed down in the AST node and somehow calculated from the AST
1962          // for a function decl.
1963          Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
1964          if (ObjCImplementationDecl *IMPD =
1965              dyn_cast<ObjCImplementationDecl>(ImplDecl))
1966            ClassOfMethodDecl = IMPD->getClassInterface();
1967          else if (ObjCCategoryImplDecl* CatImplClass =
1968                      dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
1969            ClassOfMethodDecl = CatImplClass->getClassInterface();
1970        }
1971
1972        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1973          if (ClassDeclared != IFTy->getDecl() ||
1974              ClassOfMethodDecl != ClassDeclared)
1975            Diag(MemberLoc, diag::error_private_ivar_access) << IV->getDeclName();
1976        }
1977        // @protected
1978        else if (!IFTy->getDecl()->isSuperClassOf(ClassOfMethodDecl))
1979          Diag(MemberLoc, diag::error_protected_ivar_access) << IV->getDeclName();
1980      }
1981
1982      return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1983                                                 MemberLoc, BaseExpr,
1984                                                 OpKind == tok::arrow));
1985    }
1986    return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1987                       << IFTy->getDecl()->getDeclName() << &Member
1988                       << BaseExpr->getSourceRange());
1989  }
1990
1991  // Handle Objective-C property access, which is "Obj.property" where Obj is a
1992  // pointer to a (potentially qualified) interface type.
1993  const PointerType *PTy;
1994  const ObjCInterfaceType *IFTy;
1995  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
1996      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
1997    ObjCInterfaceDecl *IFace = IFTy->getDecl();
1998
1999    // Search for a declared property first.
2000    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Context,
2001                                                              &Member)) {
2002      // Check whether we can reference this property.
2003      if (DiagnoseUseOfDecl(PD, MemberLoc))
2004        return ExprError();
2005
2006      return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2007                                                     MemberLoc, BaseExpr));
2008    }
2009
2010    // Check protocols on qualified interfaces.
2011    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
2012         E = IFTy->qual_end(); I != E; ++I)
2013      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context,
2014                                                               &Member)) {
2015        // Check whether we can reference this property.
2016        if (DiagnoseUseOfDecl(PD, MemberLoc))
2017          return ExprError();
2018
2019        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2020                                                       MemberLoc, BaseExpr));
2021      }
2022
2023    // If that failed, look for an "implicit" property by seeing if the nullary
2024    // selector is implemented.
2025
2026    // FIXME: The logic for looking up nullary and unary selectors should be
2027    // shared with the code in ActOnInstanceMessage.
2028
2029    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2030    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel);
2031
2032    // If this reference is in an @implementation, check for 'private' methods.
2033    if (!Getter)
2034      Getter = FindMethodInNestedImplementations(IFace, Sel);
2035
2036    // Look through local category implementations associated with the class.
2037    if (!Getter) {
2038      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
2039        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2040          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Context, Sel);
2041      }
2042    }
2043    if (Getter) {
2044      // Check if we can reference this property.
2045      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2046        return ExprError();
2047    }
2048    // If we found a getter then this may be a valid dot-reference, we
2049    // will look for the matching setter, in case it is needed.
2050    Selector SetterSel =
2051      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2052                                         PP.getSelectorTable(), &Member);
2053    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(Context, SetterSel);
2054    if (!Setter) {
2055      // If this reference is in an @implementation, also check for 'private'
2056      // methods.
2057      Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2058    }
2059    // Look through local category implementations associated with the class.
2060    if (!Setter) {
2061      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2062        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2063          Setter = ObjCCategoryImpls[i]->getInstanceMethod(Context, SetterSel);
2064      }
2065    }
2066
2067    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2068      return ExprError();
2069
2070    if (Getter || Setter) {
2071      QualType PType;
2072
2073      if (Getter)
2074        PType = Getter->getResultType();
2075      else {
2076        for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2077             E = Setter->param_end(); PI != E; ++PI)
2078          PType = (*PI)->getType();
2079      }
2080      // FIXME: we must check that the setter has property type.
2081      return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2082                                      Setter, MemberLoc, BaseExpr));
2083    }
2084    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2085      << &Member << BaseType);
2086  }
2087  // Handle properties on qualified "id" protocols.
2088  const ObjCQualifiedIdType *QIdTy;
2089  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
2090    // Check protocols on qualified interfaces.
2091    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2092    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2093      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2094        // Check the use of this declaration
2095        if (DiagnoseUseOfDecl(PD, MemberLoc))
2096          return ExprError();
2097
2098        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2099                                                       MemberLoc, BaseExpr));
2100      }
2101      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2102        // Check the use of this method.
2103        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2104          return ExprError();
2105
2106        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2107                                                   OMD->getResultType(),
2108                                                   OMD, OpLoc, MemberLoc,
2109                                                   NULL, 0));
2110      }
2111    }
2112
2113    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2114                       << &Member << BaseType);
2115  }
2116  // Handle properties on ObjC 'Class' types.
2117  if (OpKind == tok::period && (BaseType == Context.getObjCClassType())) {
2118    // Also must look for a getter name which uses property syntax.
2119    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2120    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2121      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2122      ObjCMethodDecl *Getter;
2123      // FIXME: need to also look locally in the implementation.
2124      if ((Getter = IFace->lookupClassMethod(Context, Sel))) {
2125        // Check the use of this method.
2126        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2127          return ExprError();
2128      }
2129      // If we found a getter then this may be a valid dot-reference, we
2130      // will look for the matching setter, in case it is needed.
2131      Selector SetterSel =
2132        SelectorTable::constructSetterName(PP.getIdentifierTable(),
2133                                           PP.getSelectorTable(), &Member);
2134      ObjCMethodDecl *Setter = IFace->lookupClassMethod(Context, SetterSel);
2135      if (!Setter) {
2136        // If this reference is in an @implementation, also check for 'private'
2137        // methods.
2138        Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2139      }
2140      // Look through local category implementations associated with the class.
2141      if (!Setter) {
2142        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2143          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2144            Setter = ObjCCategoryImpls[i]->getClassMethod(Context, SetterSel);
2145        }
2146      }
2147
2148      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2149        return ExprError();
2150
2151      if (Getter || Setter) {
2152        QualType PType;
2153
2154        if (Getter)
2155          PType = Getter->getResultType();
2156        else {
2157          for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2158               E = Setter->param_end(); PI != E; ++PI)
2159            PType = (*PI)->getType();
2160        }
2161        // FIXME: we must check that the setter has property type.
2162        return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2163                                        Setter, MemberLoc, BaseExpr));
2164      }
2165      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2166        << &Member << BaseType);
2167    }
2168  }
2169
2170  // Handle 'field access' to vectors, such as 'V.xx'.
2171  if (BaseType->isExtVectorType()) {
2172    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2173    if (ret.isNull())
2174      return ExprError();
2175    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
2176                                                    MemberLoc));
2177  }
2178
2179  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2180    << BaseType << BaseExpr->getSourceRange();
2181
2182  // If the user is trying to apply -> or . to a function or function
2183  // pointer, it's probably because they forgot parentheses to call
2184  // the function. Suggest the addition of those parentheses.
2185  if (BaseType == Context.OverloadTy ||
2186      BaseType->isFunctionType() ||
2187      (BaseType->isPointerType() &&
2188       BaseType->getAsPointerType()->isFunctionType())) {
2189    SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2190    Diag(Loc, diag::note_member_reference_needs_call)
2191      << CodeModificationHint::CreateInsertion(Loc, "()");
2192  }
2193
2194  return ExprError();
2195}
2196
2197/// ConvertArgumentsForCall - Converts the arguments specified in
2198/// Args/NumArgs to the parameter types of the function FDecl with
2199/// function prototype Proto. Call is the call expression itself, and
2200/// Fn is the function expression. For a C++ member function, this
2201/// routine does not attempt to convert the object argument. Returns
2202/// true if the call is ill-formed.
2203bool
2204Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2205                              FunctionDecl *FDecl,
2206                              const FunctionProtoType *Proto,
2207                              Expr **Args, unsigned NumArgs,
2208                              SourceLocation RParenLoc) {
2209  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2210  // assignment, to the types of the corresponding parameter, ...
2211  unsigned NumArgsInProto = Proto->getNumArgs();
2212  unsigned NumArgsToCheck = NumArgs;
2213  bool Invalid = false;
2214
2215  // If too few arguments are available (and we don't have default
2216  // arguments for the remaining parameters), don't make the call.
2217  if (NumArgs < NumArgsInProto) {
2218    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2219      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2220        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2221    // Use default arguments for missing arguments
2222    NumArgsToCheck = NumArgsInProto;
2223    Call->setNumArgs(Context, NumArgsInProto);
2224  }
2225
2226  // If too many are passed and not variadic, error on the extras and drop
2227  // them.
2228  if (NumArgs > NumArgsInProto) {
2229    if (!Proto->isVariadic()) {
2230      Diag(Args[NumArgsInProto]->getLocStart(),
2231           diag::err_typecheck_call_too_many_args)
2232        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2233        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2234                       Args[NumArgs-1]->getLocEnd());
2235      // This deletes the extra arguments.
2236      Call->setNumArgs(Context, NumArgsInProto);
2237      Invalid = true;
2238    }
2239    NumArgsToCheck = NumArgsInProto;
2240  }
2241
2242  // Continue to check argument types (even if we have too few/many args).
2243  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2244    QualType ProtoArgType = Proto->getArgType(i);
2245
2246    Expr *Arg;
2247    if (i < NumArgs) {
2248      Arg = Args[i];
2249
2250      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2251                              ProtoArgType,
2252                              diag::err_call_incomplete_argument,
2253                              Arg->getSourceRange()))
2254        return true;
2255
2256      // Pass the argument.
2257      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2258        return true;
2259    } else
2260      // We already type-checked the argument, so we know it works.
2261      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
2262    QualType ArgType = Arg->getType();
2263
2264    Call->setArg(i, Arg);
2265  }
2266
2267  // If this is a variadic call, handle args passed through "...".
2268  if (Proto->isVariadic()) {
2269    VariadicCallType CallType = VariadicFunction;
2270    if (Fn->getType()->isBlockPointerType())
2271      CallType = VariadicBlock; // Block
2272    else if (isa<MemberExpr>(Fn))
2273      CallType = VariadicMethod;
2274
2275    // Promote the arguments (C99 6.5.2.2p7).
2276    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2277      Expr *Arg = Args[i];
2278      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2279      Call->setArg(i, Arg);
2280    }
2281  }
2282
2283  return Invalid;
2284}
2285
2286/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2287/// This provides the location of the left/right parens and a list of comma
2288/// locations.
2289Action::OwningExprResult
2290Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2291                    MultiExprArg args,
2292                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2293  unsigned NumArgs = args.size();
2294  Expr *Fn = static_cast<Expr *>(fn.release());
2295  Expr **Args = reinterpret_cast<Expr**>(args.release());
2296  assert(Fn && "no function call expression");
2297  FunctionDecl *FDecl = NULL;
2298  DeclarationName UnqualifiedName;
2299
2300  if (getLangOptions().CPlusPlus) {
2301    // Determine whether this is a dependent call inside a C++ template,
2302    // in which case we won't do any semantic analysis now.
2303    // FIXME: Will need to cache the results of name lookup (including ADL) in Fn.
2304    bool Dependent = false;
2305    if (Fn->isTypeDependent())
2306      Dependent = true;
2307    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2308      Dependent = true;
2309
2310    if (Dependent)
2311      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2312                                          Context.DependentTy, RParenLoc));
2313
2314    // Determine whether this is a call to an object (C++ [over.call.object]).
2315    if (Fn->getType()->isRecordType())
2316      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2317                                                CommaLocs, RParenLoc));
2318
2319    // Determine whether this is a call to a member function.
2320    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
2321      if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
2322          isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
2323        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2324                                               CommaLocs, RParenLoc));
2325  }
2326
2327  // If we're directly calling a function, get the appropriate declaration.
2328  DeclRefExpr *DRExpr = NULL;
2329  Expr *FnExpr = Fn;
2330  bool ADL = true;
2331  while (true) {
2332    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2333      FnExpr = IcExpr->getSubExpr();
2334    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2335      // Parentheses around a function disable ADL
2336      // (C++0x [basic.lookup.argdep]p1).
2337      ADL = false;
2338      FnExpr = PExpr->getSubExpr();
2339    } else if (isa<UnaryOperator>(FnExpr) &&
2340               cast<UnaryOperator>(FnExpr)->getOpcode()
2341                 == UnaryOperator::AddrOf) {
2342      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2343    } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) {
2344      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2345      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2346      break;
2347    } else if (UnresolvedFunctionNameExpr *DepName
2348                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2349      UnqualifiedName = DepName->getName();
2350      break;
2351    } else {
2352      // Any kind of name that does not refer to a declaration (or
2353      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2354      ADL = false;
2355      break;
2356    }
2357  }
2358
2359  OverloadedFunctionDecl *Ovl = 0;
2360  if (DRExpr) {
2361    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
2362    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
2363  }
2364
2365  if (Ovl || (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2366    // We don't perform ADL for implicit declarations of builtins.
2367    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2368      ADL = false;
2369
2370    // We don't perform ADL in C.
2371    if (!getLangOptions().CPlusPlus)
2372      ADL = false;
2373
2374    if (Ovl || ADL) {
2375      FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0,
2376                                      UnqualifiedName, LParenLoc, Args,
2377                                      NumArgs, CommaLocs, RParenLoc, ADL);
2378      if (!FDecl)
2379        return ExprError();
2380
2381      // Update Fn to refer to the actual function selected.
2382      Expr *NewFn = 0;
2383      if (QualifiedDeclRefExpr *QDRExpr
2384            = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr))
2385        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
2386                                                   QDRExpr->getLocation(),
2387                                                   false, false,
2388                                                 QDRExpr->getQualifierRange(),
2389                                                   QDRExpr->getQualifier());
2390      else
2391        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2392                                          Fn->getSourceRange().getBegin());
2393      Fn->Destroy(Context);
2394      Fn = NewFn;
2395    }
2396  }
2397
2398  // Promote the function operand.
2399  UsualUnaryConversions(Fn);
2400
2401  // Make the call expr early, before semantic checks.  This guarantees cleanup
2402  // of arguments and function on error.
2403  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2404                                                               Args, NumArgs,
2405                                                               Context.BoolTy,
2406                                                               RParenLoc));
2407
2408  const FunctionType *FuncT;
2409  if (!Fn->getType()->isBlockPointerType()) {
2410    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2411    // have type pointer to function".
2412    const PointerType *PT = Fn->getType()->getAsPointerType();
2413    if (PT == 0)
2414      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2415        << Fn->getType() << Fn->getSourceRange());
2416    FuncT = PT->getPointeeType()->getAsFunctionType();
2417  } else { // This is a block call.
2418    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
2419                getAsFunctionType();
2420  }
2421  if (FuncT == 0)
2422    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2423      << Fn->getType() << Fn->getSourceRange());
2424
2425  // Check for a valid return type
2426  if (!FuncT->getResultType()->isVoidType() &&
2427      RequireCompleteType(Fn->getSourceRange().getBegin(),
2428                          FuncT->getResultType(),
2429                          diag::err_call_incomplete_return,
2430                          TheCall->getSourceRange()))
2431    return ExprError();
2432
2433  // We know the result type of the call, set it.
2434  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2435
2436  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2437    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2438                                RParenLoc))
2439      return ExprError();
2440  } else {
2441    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2442
2443    if (FDecl) {
2444      // Check if we have too few/too many template arguments, based
2445      // on our knowledge of the function definition.
2446      const FunctionDecl *Def = 0;
2447      if (FDecl->getBody(Context, Def) && NumArgs != Def->param_size())
2448        Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2449          << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2450    }
2451
2452    // Promote the arguments (C99 6.5.2.2p6).
2453    for (unsigned i = 0; i != NumArgs; i++) {
2454      Expr *Arg = Args[i];
2455      DefaultArgumentPromotion(Arg);
2456      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2457                              Arg->getType(),
2458                              diag::err_call_incomplete_argument,
2459                              Arg->getSourceRange()))
2460        return ExprError();
2461      TheCall->setArg(i, Arg);
2462    }
2463  }
2464
2465  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2466    if (!Method->isStatic())
2467      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2468        << Fn->getSourceRange());
2469
2470  // Do special checking on direct calls to functions.
2471  if (FDecl)
2472    return CheckFunctionCall(FDecl, TheCall.take());
2473
2474  return Owned(TheCall.take());
2475}
2476
2477Action::OwningExprResult
2478Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2479                           SourceLocation RParenLoc, ExprArg InitExpr) {
2480  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2481  QualType literalType = QualType::getFromOpaquePtr(Ty);
2482  // FIXME: put back this assert when initializers are worked out.
2483  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2484  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2485
2486  if (literalType->isArrayType()) {
2487    if (literalType->isVariableArrayType())
2488      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2489        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2490  } else if (RequireCompleteType(LParenLoc, literalType,
2491                                    diag::err_typecheck_decl_incomplete_type,
2492                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2493    return ExprError();
2494
2495  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2496                            DeclarationName(), /*FIXME:DirectInit=*/false))
2497    return ExprError();
2498
2499  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2500  if (isFileScope) { // 6.5.2.5p3
2501    if (CheckForConstantInitializer(literalExpr, literalType))
2502      return ExprError();
2503  }
2504  InitExpr.release();
2505  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2506                                                 literalExpr, isFileScope));
2507}
2508
2509Action::OwningExprResult
2510Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2511                    SourceLocation RBraceLoc) {
2512  unsigned NumInit = initlist.size();
2513  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2514
2515  // Semantic analysis for initializers is done by ActOnDeclarator() and
2516  // CheckInitializer() - it requires knowledge of the object being intialized.
2517
2518  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2519                                               RBraceLoc);
2520  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2521  return Owned(E);
2522}
2523
2524/// CheckCastTypes - Check type constraints for casting between types.
2525bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
2526  UsualUnaryConversions(castExpr);
2527
2528  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2529  // type needs to be scalar.
2530  if (castType->isVoidType()) {
2531    // Cast to void allows any expr type.
2532  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
2533    // We can't check any more until template instantiation time.
2534  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2535    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2536        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2537        (castType->isStructureType() || castType->isUnionType())) {
2538      // GCC struct/union extension: allow cast to self.
2539      // FIXME: Check that the cast destination type is complete.
2540      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2541        << castType << castExpr->getSourceRange();
2542    } else if (castType->isUnionType()) {
2543      // GCC cast to union extension
2544      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2545      RecordDecl::field_iterator Field, FieldEnd;
2546      for (Field = RD->field_begin(Context), FieldEnd = RD->field_end(Context);
2547           Field != FieldEnd; ++Field) {
2548        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2549            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2550          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2551            << castExpr->getSourceRange();
2552          break;
2553        }
2554      }
2555      if (Field == FieldEnd)
2556        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2557          << castExpr->getType() << castExpr->getSourceRange();
2558    } else {
2559      // Reject any other conversions to non-scalar types.
2560      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2561        << castType << castExpr->getSourceRange();
2562    }
2563  } else if (!castExpr->getType()->isScalarType() &&
2564             !castExpr->getType()->isVectorType()) {
2565    return Diag(castExpr->getLocStart(),
2566                diag::err_typecheck_expect_scalar_operand)
2567      << castExpr->getType() << castExpr->getSourceRange();
2568  } else if (castExpr->getType()->isVectorType()) {
2569    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2570      return true;
2571  } else if (castType->isVectorType()) {
2572    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2573      return true;
2574  } else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
2575    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
2576  }
2577  return false;
2578}
2579
2580bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
2581  assert(VectorTy->isVectorType() && "Not a vector type!");
2582
2583  if (Ty->isVectorType() || Ty->isIntegerType()) {
2584    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
2585      return Diag(R.getBegin(),
2586                  Ty->isVectorType() ?
2587                  diag::err_invalid_conversion_between_vectors :
2588                  diag::err_invalid_conversion_between_vector_and_integer)
2589        << VectorTy << Ty << R;
2590  } else
2591    return Diag(R.getBegin(),
2592                diag::err_invalid_conversion_between_vector_and_scalar)
2593      << VectorTy << Ty << R;
2594
2595  return false;
2596}
2597
2598Action::OwningExprResult
2599Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
2600                    SourceLocation RParenLoc, ExprArg Op) {
2601  assert((Ty != 0) && (Op.get() != 0) &&
2602         "ActOnCastExpr(): missing type or expr");
2603
2604  Expr *castExpr = static_cast<Expr*>(Op.release());
2605  QualType castType = QualType::getFromOpaquePtr(Ty);
2606
2607  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2608    return ExprError();
2609  return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
2610                                            LParenLoc, RParenLoc));
2611}
2612
2613/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
2614/// In that case, lhs = cond.
2615/// C99 6.5.15
2616QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2617                                        SourceLocation QuestionLoc) {
2618  // C++ is sufficiently different to merit its own checker.
2619  if (getLangOptions().CPlusPlus)
2620    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
2621
2622  UsualUnaryConversions(Cond);
2623  UsualUnaryConversions(LHS);
2624  UsualUnaryConversions(RHS);
2625  QualType CondTy = Cond->getType();
2626  QualType LHSTy = LHS->getType();
2627  QualType RHSTy = RHS->getType();
2628
2629  // first, check the condition.
2630  if (!CondTy->isScalarType()) { // C99 6.5.15p2
2631    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
2632      << CondTy;
2633    return QualType();
2634  }
2635
2636  // Now check the two expressions.
2637
2638  // If both operands have arithmetic type, do the usual arithmetic conversions
2639  // to find a common type: C99 6.5.15p3,5.
2640  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
2641    UsualArithmeticConversions(LHS, RHS);
2642    return LHS->getType();
2643  }
2644
2645  // If both operands are the same structure or union type, the result is that
2646  // type.
2647  if (const RecordType *LHSRT = LHSTy->getAsRecordType()) {    // C99 6.5.15p3
2648    if (const RecordType *RHSRT = RHSTy->getAsRecordType())
2649      if (LHSRT->getDecl() == RHSRT->getDecl())
2650        // "If both the operands have structure or union type, the result has
2651        // that type."  This implies that CV qualifiers are dropped.
2652        return LHSTy.getUnqualifiedType();
2653    // FIXME: Type of conditional expression must be complete in C mode.
2654  }
2655
2656  // C99 6.5.15p5: "If both operands have void type, the result has void type."
2657  // The following || allows only one side to be void (a GCC-ism).
2658  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
2659    if (!LHSTy->isVoidType())
2660      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2661        << RHS->getSourceRange();
2662    if (!RHSTy->isVoidType())
2663      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2664        << LHS->getSourceRange();
2665    ImpCastExprToType(LHS, Context.VoidTy);
2666    ImpCastExprToType(RHS, Context.VoidTy);
2667    return Context.VoidTy;
2668  }
2669  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
2670  // the type of the other operand."
2671  if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() ||
2672       Context.isObjCObjectPointerType(LHSTy)) &&
2673      RHS->isNullPointerConstant(Context)) {
2674    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
2675    return LHSTy;
2676  }
2677  if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() ||
2678       Context.isObjCObjectPointerType(RHSTy)) &&
2679      LHS->isNullPointerConstant(Context)) {
2680    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
2681    return RHSTy;
2682  }
2683
2684  // Handle the case where both operands are pointers before we handle null
2685  // pointer constants in case both operands are null pointer constants.
2686  if (const PointerType *LHSPT = LHSTy->getAsPointerType()) { // C99 6.5.15p3,6
2687    if (const PointerType *RHSPT = RHSTy->getAsPointerType()) {
2688      // get the "pointed to" types
2689      QualType lhptee = LHSPT->getPointeeType();
2690      QualType rhptee = RHSPT->getPointeeType();
2691
2692      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
2693      if (lhptee->isVoidType() &&
2694          rhptee->isIncompleteOrObjectType()) {
2695        // Figure out necessary qualifiers (C99 6.5.15p6)
2696        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
2697        QualType destType = Context.getPointerType(destPointee);
2698        ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2699        ImpCastExprToType(RHS, destType); // promote to void*
2700        return destType;
2701      }
2702      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
2703        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
2704        QualType destType = Context.getPointerType(destPointee);
2705        ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2706        ImpCastExprToType(RHS, destType); // promote to void*
2707        return destType;
2708      }
2709
2710      if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
2711        // Two identical pointer types are always compatible.
2712        return LHSTy;
2713      }
2714
2715      QualType compositeType = LHSTy;
2716
2717      // If either type is an Objective-C object type then check
2718      // compatibility according to Objective-C.
2719      if (Context.isObjCObjectPointerType(LHSTy) ||
2720          Context.isObjCObjectPointerType(RHSTy)) {
2721        // If both operands are interfaces and either operand can be
2722        // assigned to the other, use that type as the composite
2723        // type. This allows
2724        //   xxx ? (A*) a : (B*) b
2725        // where B is a subclass of A.
2726        //
2727        // Additionally, as for assignment, if either type is 'id'
2728        // allow silent coercion. Finally, if the types are
2729        // incompatible then make sure to use 'id' as the composite
2730        // type so the result is acceptable for sending messages to.
2731
2732        // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
2733        // It could return the composite type.
2734        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2735        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2736        if (LHSIface && RHSIface &&
2737            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
2738          compositeType = LHSTy;
2739        } else if (LHSIface && RHSIface &&
2740                   Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
2741          compositeType = RHSTy;
2742        } else if (Context.isObjCIdStructType(lhptee) ||
2743                   Context.isObjCIdStructType(rhptee)) {
2744          compositeType = Context.getObjCIdType();
2745        } else {
2746          Diag(QuestionLoc, diag::ext_typecheck_comparison_of_distinct_pointers)
2747               << LHSTy << RHSTy
2748               << LHS->getSourceRange() << RHS->getSourceRange();
2749          QualType incompatTy = Context.getObjCIdType();
2750          ImpCastExprToType(LHS, incompatTy);
2751          ImpCastExprToType(RHS, incompatTy);
2752          return incompatTy;
2753        }
2754      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2755                                             rhptee.getUnqualifiedType())) {
2756        Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
2757          << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2758        // In this situation, we assume void* type. No especially good
2759        // reason, but this is what gcc does, and we do have to pick
2760        // to get a consistent AST.
2761        QualType incompatTy = Context.getPointerType(Context.VoidTy);
2762        ImpCastExprToType(LHS, incompatTy);
2763        ImpCastExprToType(RHS, incompatTy);
2764        return incompatTy;
2765      }
2766      // The pointer types are compatible.
2767      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
2768      // differently qualified versions of compatible types, the result type is
2769      // a pointer to an appropriately qualified version of the *composite*
2770      // type.
2771      // FIXME: Need to calculate the composite type.
2772      // FIXME: Need to add qualifiers
2773      ImpCastExprToType(LHS, compositeType);
2774      ImpCastExprToType(RHS, compositeType);
2775      return compositeType;
2776    }
2777  }
2778
2779  // GCC compatibility: soften pointer/integer mismatch.
2780  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
2781    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
2782      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2783    ImpCastExprToType(LHS, RHSTy); // promote the integer to a pointer.
2784    return RHSTy;
2785  }
2786  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
2787    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
2788      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2789    ImpCastExprToType(RHS, LHSTy); // promote the integer to a pointer.
2790    return LHSTy;
2791  }
2792
2793  // Selection between block pointer types is ok as long as they are the same.
2794  if (LHSTy->isBlockPointerType() && RHSTy->isBlockPointerType() &&
2795      Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy))
2796    return LHSTy;
2797
2798  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
2799  // evaluates to "struct objc_object *" (and is handled above when comparing
2800  // id with statically typed objects).
2801  if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
2802    // GCC allows qualified id and any Objective-C type to devolve to
2803    // id. Currently localizing to here until clear this should be
2804    // part of ObjCQualifiedIdTypesAreCompatible.
2805    if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
2806        (LHSTy->isObjCQualifiedIdType() &&
2807         Context.isObjCObjectPointerType(RHSTy)) ||
2808        (RHSTy->isObjCQualifiedIdType() &&
2809         Context.isObjCObjectPointerType(LHSTy))) {
2810      // FIXME: This is not the correct composite type. This only
2811      // happens to work because id can more or less be used anywhere,
2812      // however this may change the type of method sends.
2813      // FIXME: gcc adds some type-checking of the arguments and emits
2814      // (confusing) incompatible comparison warnings in some
2815      // cases. Investigate.
2816      QualType compositeType = Context.getObjCIdType();
2817      ImpCastExprToType(LHS, compositeType);
2818      ImpCastExprToType(RHS, compositeType);
2819      return compositeType;
2820    }
2821  }
2822
2823  // Otherwise, the operands are not compatible.
2824  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2825    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2826  return QualType();
2827}
2828
2829/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
2830/// in the case of a the GNU conditional expr extension.
2831Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
2832                                                  SourceLocation ColonLoc,
2833                                                  ExprArg Cond, ExprArg LHS,
2834                                                  ExprArg RHS) {
2835  Expr *CondExpr = (Expr *) Cond.get();
2836  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
2837
2838  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
2839  // was the condition.
2840  bool isLHSNull = LHSExpr == 0;
2841  if (isLHSNull)
2842    LHSExpr = CondExpr;
2843
2844  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
2845                                             RHSExpr, QuestionLoc);
2846  if (result.isNull())
2847    return ExprError();
2848
2849  Cond.release();
2850  LHS.release();
2851  RHS.release();
2852  return Owned(new (Context) ConditionalOperator(CondExpr,
2853                                                 isLHSNull ? 0 : LHSExpr,
2854                                                 RHSExpr, result));
2855}
2856
2857
2858// CheckPointerTypesForAssignment - This is a very tricky routine (despite
2859// being closely modeled after the C99 spec:-). The odd characteristic of this
2860// routine is it effectively iqnores the qualifiers on the top level pointee.
2861// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
2862// FIXME: add a couple examples in this comment.
2863Sema::AssignConvertType
2864Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
2865  QualType lhptee, rhptee;
2866
2867  // get the "pointed to" type (ignoring qualifiers at the top level)
2868  lhptee = lhsType->getAsPointerType()->getPointeeType();
2869  rhptee = rhsType->getAsPointerType()->getPointeeType();
2870
2871  // make sure we operate on the canonical type
2872  lhptee = Context.getCanonicalType(lhptee);
2873  rhptee = Context.getCanonicalType(rhptee);
2874
2875  AssignConvertType ConvTy = Compatible;
2876
2877  // C99 6.5.16.1p1: This following citation is common to constraints
2878  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
2879  // qualifiers of the type *pointed to* by the right;
2880  // FIXME: Handle ExtQualType
2881  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
2882    ConvTy = CompatiblePointerDiscardsQualifiers;
2883
2884  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
2885  // incomplete type and the other is a pointer to a qualified or unqualified
2886  // version of void...
2887  if (lhptee->isVoidType()) {
2888    if (rhptee->isIncompleteOrObjectType())
2889      return ConvTy;
2890
2891    // As an extension, we allow cast to/from void* to function pointer.
2892    assert(rhptee->isFunctionType());
2893    return FunctionVoidPointer;
2894  }
2895
2896  if (rhptee->isVoidType()) {
2897    if (lhptee->isIncompleteOrObjectType())
2898      return ConvTy;
2899
2900    // As an extension, we allow cast to/from void* to function pointer.
2901    assert(lhptee->isFunctionType());
2902    return FunctionVoidPointer;
2903  }
2904  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
2905  // unqualified versions of compatible types, ...
2906  lhptee = lhptee.getUnqualifiedType();
2907  rhptee = rhptee.getUnqualifiedType();
2908  if (!Context.typesAreCompatible(lhptee, rhptee)) {
2909    // Check if the pointee types are compatible ignoring the sign.
2910    // We explicitly check for char so that we catch "char" vs
2911    // "unsigned char" on systems where "char" is unsigned.
2912    if (lhptee->isCharType()) {
2913      lhptee = Context.UnsignedCharTy;
2914    } else if (lhptee->isSignedIntegerType()) {
2915      lhptee = Context.getCorrespondingUnsignedType(lhptee);
2916    }
2917    if (rhptee->isCharType()) {
2918      rhptee = Context.UnsignedCharTy;
2919    } else if (rhptee->isSignedIntegerType()) {
2920      rhptee = Context.getCorrespondingUnsignedType(rhptee);
2921    }
2922    if (lhptee == rhptee) {
2923      // Types are compatible ignoring the sign. Qualifier incompatibility
2924      // takes priority over sign incompatibility because the sign
2925      // warning can be disabled.
2926      if (ConvTy != Compatible)
2927        return ConvTy;
2928      return IncompatiblePointerSign;
2929    }
2930    // General pointer incompatibility takes priority over qualifiers.
2931    return IncompatiblePointer;
2932  }
2933  return ConvTy;
2934}
2935
2936/// CheckBlockPointerTypesForAssignment - This routine determines whether two
2937/// block pointer types are compatible or whether a block and normal pointer
2938/// are compatible. It is more restrict than comparing two function pointer
2939// types.
2940Sema::AssignConvertType
2941Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
2942                                          QualType rhsType) {
2943  QualType lhptee, rhptee;
2944
2945  // get the "pointed to" type (ignoring qualifiers at the top level)
2946  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
2947  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
2948
2949  // make sure we operate on the canonical type
2950  lhptee = Context.getCanonicalType(lhptee);
2951  rhptee = Context.getCanonicalType(rhptee);
2952
2953  AssignConvertType ConvTy = Compatible;
2954
2955  // For blocks we enforce that qualifiers are identical.
2956  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
2957    ConvTy = CompatiblePointerDiscardsQualifiers;
2958
2959  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
2960    return IncompatibleBlockPointer;
2961  return ConvTy;
2962}
2963
2964/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
2965/// has code to accommodate several GCC extensions when type checking
2966/// pointers. Here are some objectionable examples that GCC considers warnings:
2967///
2968///  int a, *pint;
2969///  short *pshort;
2970///  struct foo *pfoo;
2971///
2972///  pint = pshort; // warning: assignment from incompatible pointer type
2973///  a = pint; // warning: assignment makes integer from pointer without a cast
2974///  pint = a; // warning: assignment makes pointer from integer without a cast
2975///  pint = pfoo; // warning: assignment from incompatible pointer type
2976///
2977/// As a result, the code for dealing with pointers is more complex than the
2978/// C99 spec dictates.
2979///
2980Sema::AssignConvertType
2981Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
2982  // Get canonical types.  We're not formatting these types, just comparing
2983  // them.
2984  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
2985  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
2986
2987  if (lhsType == rhsType)
2988    return Compatible; // Common case: fast path an exact match.
2989
2990  // If the left-hand side is a reference type, then we are in a
2991  // (rare!) case where we've allowed the use of references in C,
2992  // e.g., as a parameter type in a built-in function. In this case,
2993  // just make sure that the type referenced is compatible with the
2994  // right-hand side type. The caller is responsible for adjusting
2995  // lhsType so that the resulting expression does not have reference
2996  // type.
2997  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
2998    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
2999      return Compatible;
3000    return Incompatible;
3001  }
3002
3003  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
3004    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
3005      return Compatible;
3006    // Relax integer conversions like we do for pointers below.
3007    if (rhsType->isIntegerType())
3008      return IntToPointer;
3009    if (lhsType->isIntegerType())
3010      return PointerToInt;
3011    return IncompatibleObjCQualifiedId;
3012  }
3013
3014  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3015    // For ExtVector, allow vector splats; float -> <n x float>
3016    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
3017      if (LV->getElementType() == rhsType)
3018        return Compatible;
3019
3020    // If we are allowing lax vector conversions, and LHS and RHS are both
3021    // vectors, the total size only needs to be the same. This is a bitcast;
3022    // no bits are changed but the result type is different.
3023    if (getLangOptions().LaxVectorConversions &&
3024        lhsType->isVectorType() && rhsType->isVectorType()) {
3025      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3026        return IncompatibleVectors;
3027    }
3028    return Incompatible;
3029  }
3030
3031  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3032    return Compatible;
3033
3034  if (isa<PointerType>(lhsType)) {
3035    if (rhsType->isIntegerType())
3036      return IntToPointer;
3037
3038    if (isa<PointerType>(rhsType))
3039      return CheckPointerTypesForAssignment(lhsType, rhsType);
3040
3041    if (rhsType->getAsBlockPointerType()) {
3042      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
3043        return Compatible;
3044
3045      // Treat block pointers as objects.
3046      if (getLangOptions().ObjC1 &&
3047          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
3048        return Compatible;
3049    }
3050    return Incompatible;
3051  }
3052
3053  if (isa<BlockPointerType>(lhsType)) {
3054    if (rhsType->isIntegerType())
3055      return IntToBlockPointer;
3056
3057    // Treat block pointers as objects.
3058    if (getLangOptions().ObjC1 &&
3059        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
3060      return Compatible;
3061
3062    if (rhsType->isBlockPointerType())
3063      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3064
3065    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
3066      if (RHSPT->getPointeeType()->isVoidType())
3067        return Compatible;
3068    }
3069    return Incompatible;
3070  }
3071
3072  if (isa<PointerType>(rhsType)) {
3073    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3074    if (lhsType == Context.BoolTy)
3075      return Compatible;
3076
3077    if (lhsType->isIntegerType())
3078      return PointerToInt;
3079
3080    if (isa<PointerType>(lhsType))
3081      return CheckPointerTypesForAssignment(lhsType, rhsType);
3082
3083    if (isa<BlockPointerType>(lhsType) &&
3084        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
3085      return Compatible;
3086    return Incompatible;
3087  }
3088
3089  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3090    if (Context.typesAreCompatible(lhsType, rhsType))
3091      return Compatible;
3092  }
3093  return Incompatible;
3094}
3095
3096Sema::AssignConvertType
3097Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
3098  if (getLangOptions().CPlusPlus) {
3099    if (!lhsType->isRecordType()) {
3100      // C++ 5.17p3: If the left operand is not of class type, the
3101      // expression is implicitly converted (C++ 4) to the
3102      // cv-unqualified type of the left operand.
3103      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
3104                                    "assigning"))
3105        return Incompatible;
3106      return Compatible;
3107    }
3108
3109    // FIXME: Currently, we fall through and treat C++ classes like C
3110    // structures.
3111  }
3112
3113  // C99 6.5.16.1p1: the left operand is a pointer and the right is
3114  // a null pointer constant.
3115  if ((lhsType->isPointerType() ||
3116       lhsType->isObjCQualifiedIdType() ||
3117       lhsType->isBlockPointerType())
3118      && rExpr->isNullPointerConstant(Context)) {
3119    ImpCastExprToType(rExpr, lhsType);
3120    return Compatible;
3121  }
3122
3123  // This check seems unnatural, however it is necessary to ensure the proper
3124  // conversion of functions/arrays. If the conversion were done for all
3125  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
3126  // expressions that surpress this implicit conversion (&, sizeof).
3127  //
3128  // Suppress this for references: C++ 8.5.3p5.
3129  if (!lhsType->isReferenceType())
3130    DefaultFunctionArrayConversion(rExpr);
3131
3132  Sema::AssignConvertType result =
3133    CheckAssignmentConstraints(lhsType, rExpr->getType());
3134
3135  // C99 6.5.16.1p2: The value of the right operand is converted to the
3136  // type of the assignment expression.
3137  // CheckAssignmentConstraints allows the left-hand side to be a reference,
3138  // so that we can use references in built-in functions even in C.
3139  // The getNonReferenceType() call makes sure that the resulting expression
3140  // does not have reference type.
3141  if (rExpr->getType() != lhsType)
3142    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
3143  return result;
3144}
3145
3146Sema::AssignConvertType
3147Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
3148  return CheckAssignmentConstraints(lhsType, rhsType);
3149}
3150
3151QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
3152  Diag(Loc, diag::err_typecheck_invalid_operands)
3153    << lex->getType() << rex->getType()
3154    << lex->getSourceRange() << rex->getSourceRange();
3155  return QualType();
3156}
3157
3158inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
3159                                                              Expr *&rex) {
3160  // For conversion purposes, we ignore any qualifiers.
3161  // For example, "const float" and "float" are equivalent.
3162  QualType lhsType =
3163    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
3164  QualType rhsType =
3165    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
3166
3167  // If the vector types are identical, return.
3168  if (lhsType == rhsType)
3169    return lhsType;
3170
3171  // Handle the case of a vector & extvector type of the same size and element
3172  // type.  It would be nice if we only had one vector type someday.
3173  if (getLangOptions().LaxVectorConversions) {
3174    // FIXME: Should we warn here?
3175    if (const VectorType *LV = lhsType->getAsVectorType()) {
3176      if (const VectorType *RV = rhsType->getAsVectorType())
3177        if (LV->getElementType() == RV->getElementType() &&
3178            LV->getNumElements() == RV->getNumElements()) {
3179          return lhsType->isExtVectorType() ? lhsType : rhsType;
3180        }
3181    }
3182  }
3183
3184  // If the lhs is an extended vector and the rhs is a scalar of the same type
3185  // or a literal, promote the rhs to the vector type.
3186  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
3187    QualType eltType = V->getElementType();
3188
3189    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
3190        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
3191        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
3192      ImpCastExprToType(rex, lhsType);
3193      return lhsType;
3194    }
3195  }
3196
3197  // If the rhs is an extended vector and the lhs is a scalar of the same type,
3198  // promote the lhs to the vector type.
3199  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
3200    QualType eltType = V->getElementType();
3201
3202    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
3203        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
3204        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
3205      ImpCastExprToType(lex, rhsType);
3206      return rhsType;
3207    }
3208  }
3209
3210  // You cannot convert between vector values of different size.
3211  Diag(Loc, diag::err_typecheck_vector_not_convertable)
3212    << lex->getType() << rex->getType()
3213    << lex->getSourceRange() << rex->getSourceRange();
3214  return QualType();
3215}
3216
3217inline QualType Sema::CheckMultiplyDivideOperands(
3218  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3219{
3220  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3221    return CheckVectorOperands(Loc, lex, rex);
3222
3223  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3224
3225  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3226    return compType;
3227  return InvalidOperands(Loc, lex, rex);
3228}
3229
3230inline QualType Sema::CheckRemainderOperands(
3231  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3232{
3233  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3234    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3235      return CheckVectorOperands(Loc, lex, rex);
3236    return InvalidOperands(Loc, lex, rex);
3237  }
3238
3239  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3240
3241  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3242    return compType;
3243  return InvalidOperands(Loc, lex, rex);
3244}
3245
3246inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
3247  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy)
3248{
3249  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3250    QualType compType = CheckVectorOperands(Loc, lex, rex);
3251    if (CompLHSTy) *CompLHSTy = compType;
3252    return compType;
3253  }
3254
3255  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3256
3257  // handle the common case first (both operands are arithmetic).
3258  if (lex->getType()->isArithmeticType() &&
3259      rex->getType()->isArithmeticType()) {
3260    if (CompLHSTy) *CompLHSTy = compType;
3261    return compType;
3262  }
3263
3264  // Put any potential pointer into PExp
3265  Expr* PExp = lex, *IExp = rex;
3266  if (IExp->getType()->isPointerType())
3267    std::swap(PExp, IExp);
3268
3269  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
3270    if (IExp->getType()->isIntegerType()) {
3271      // Check for arithmetic on pointers to incomplete types
3272      if (PTy->getPointeeType()->isVoidType()) {
3273        if (getLangOptions().CPlusPlus) {
3274          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3275            << lex->getSourceRange() << rex->getSourceRange();
3276          return QualType();
3277        }
3278
3279        // GNU extension: arithmetic on pointer to void
3280        Diag(Loc, diag::ext_gnu_void_ptr)
3281          << lex->getSourceRange() << rex->getSourceRange();
3282      } else if (PTy->getPointeeType()->isFunctionType()) {
3283        if (getLangOptions().CPlusPlus) {
3284          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3285            << lex->getType() << lex->getSourceRange();
3286          return QualType();
3287        }
3288
3289        // GNU extension: arithmetic on pointer to function
3290        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3291          << lex->getType() << lex->getSourceRange();
3292      } else if (!PTy->isDependentType() &&
3293                 RequireCompleteType(Loc, PTy->getPointeeType(),
3294                                diag::err_typecheck_arithmetic_incomplete_type,
3295                                     lex->getSourceRange(), SourceRange(),
3296                                     lex->getType()))
3297        return QualType();
3298
3299      if (CompLHSTy) {
3300        QualType LHSTy = lex->getType();
3301        if (LHSTy->isPromotableIntegerType())
3302          LHSTy = Context.IntTy;
3303        *CompLHSTy = LHSTy;
3304      }
3305      return PExp->getType();
3306    }
3307  }
3308
3309  return InvalidOperands(Loc, lex, rex);
3310}
3311
3312// C99 6.5.6
3313QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
3314                                        SourceLocation Loc, QualType* CompLHSTy) {
3315  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3316    QualType compType = CheckVectorOperands(Loc, lex, rex);
3317    if (CompLHSTy) *CompLHSTy = compType;
3318    return compType;
3319  }
3320
3321  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3322
3323  // Enforce type constraints: C99 6.5.6p3.
3324
3325  // Handle the common case first (both operands are arithmetic).
3326  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) {
3327    if (CompLHSTy) *CompLHSTy = compType;
3328    return compType;
3329  }
3330
3331  // Either ptr - int   or   ptr - ptr.
3332  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
3333    QualType lpointee = LHSPTy->getPointeeType();
3334
3335    // The LHS must be an completely-defined object type.
3336
3337    bool ComplainAboutVoid = false;
3338    Expr *ComplainAboutFunc = 0;
3339    if (lpointee->isVoidType()) {
3340      if (getLangOptions().CPlusPlus) {
3341        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3342          << lex->getSourceRange() << rex->getSourceRange();
3343        return QualType();
3344      }
3345
3346      // GNU C extension: arithmetic on pointer to void
3347      ComplainAboutVoid = true;
3348    } else if (lpointee->isFunctionType()) {
3349      if (getLangOptions().CPlusPlus) {
3350        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3351          << lex->getType() << lex->getSourceRange();
3352        return QualType();
3353      }
3354
3355      // GNU C extension: arithmetic on pointer to function
3356      ComplainAboutFunc = lex;
3357    } else if (!lpointee->isDependentType() &&
3358               RequireCompleteType(Loc, lpointee,
3359                                   diag::err_typecheck_sub_ptr_object,
3360                                   lex->getSourceRange(),
3361                                   SourceRange(),
3362                                   lex->getType()))
3363      return QualType();
3364
3365    // The result type of a pointer-int computation is the pointer type.
3366    if (rex->getType()->isIntegerType()) {
3367      if (ComplainAboutVoid)
3368        Diag(Loc, diag::ext_gnu_void_ptr)
3369          << lex->getSourceRange() << rex->getSourceRange();
3370      if (ComplainAboutFunc)
3371        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3372          << ComplainAboutFunc->getType()
3373          << ComplainAboutFunc->getSourceRange();
3374
3375      if (CompLHSTy) *CompLHSTy = lex->getType();
3376      return lex->getType();
3377    }
3378
3379    // Handle pointer-pointer subtractions.
3380    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
3381      QualType rpointee = RHSPTy->getPointeeType();
3382
3383      // RHS must be a completely-type object type.
3384      // Handle the GNU void* extension.
3385      if (rpointee->isVoidType()) {
3386        if (getLangOptions().CPlusPlus) {
3387          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3388            << lex->getSourceRange() << rex->getSourceRange();
3389          return QualType();
3390        }
3391
3392        ComplainAboutVoid = true;
3393      } else if (rpointee->isFunctionType()) {
3394        if (getLangOptions().CPlusPlus) {
3395          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3396            << rex->getType() << rex->getSourceRange();
3397          return QualType();
3398        }
3399
3400        // GNU extension: arithmetic on pointer to function
3401        if (!ComplainAboutFunc)
3402          ComplainAboutFunc = rex;
3403      } else if (!rpointee->isDependentType() &&
3404                 RequireCompleteType(Loc, rpointee,
3405                                     diag::err_typecheck_sub_ptr_object,
3406                                     rex->getSourceRange(),
3407                                     SourceRange(),
3408                                     rex->getType()))
3409        return QualType();
3410
3411      // Pointee types must be compatible.
3412      if (!Context.typesAreCompatible(
3413              Context.getCanonicalType(lpointee).getUnqualifiedType(),
3414              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
3415        Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3416          << lex->getType() << rex->getType()
3417          << lex->getSourceRange() << rex->getSourceRange();
3418        return QualType();
3419      }
3420
3421      if (ComplainAboutVoid)
3422        Diag(Loc, diag::ext_gnu_void_ptr)
3423          << lex->getSourceRange() << rex->getSourceRange();
3424      if (ComplainAboutFunc)
3425        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3426          << ComplainAboutFunc->getType()
3427          << ComplainAboutFunc->getSourceRange();
3428
3429      if (CompLHSTy) *CompLHSTy = lex->getType();
3430      return Context.getPointerDiffType();
3431    }
3432  }
3433
3434  return InvalidOperands(Loc, lex, rex);
3435}
3436
3437// C99 6.5.7
3438QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3439                                  bool isCompAssign) {
3440  // C99 6.5.7p2: Each of the operands shall have integer type.
3441  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
3442    return InvalidOperands(Loc, lex, rex);
3443
3444  // Shifts don't perform usual arithmetic conversions, they just do integer
3445  // promotions on each operand. C99 6.5.7p3
3446  QualType LHSTy;
3447  if (lex->getType()->isPromotableIntegerType())
3448    LHSTy = Context.IntTy;
3449  else
3450    LHSTy = lex->getType();
3451  if (!isCompAssign)
3452    ImpCastExprToType(lex, LHSTy);
3453
3454  UsualUnaryConversions(rex);
3455
3456  // "The type of the result is that of the promoted left operand."
3457  return LHSTy;
3458}
3459
3460// C99 6.5.8
3461QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3462                                    unsigned OpaqueOpc, bool isRelational) {
3463  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
3464
3465  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3466    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
3467
3468  // C99 6.5.8p3 / C99 6.5.9p4
3469  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3470    UsualArithmeticConversions(lex, rex);
3471  else {
3472    UsualUnaryConversions(lex);
3473    UsualUnaryConversions(rex);
3474  }
3475  QualType lType = lex->getType();
3476  QualType rType = rex->getType();
3477
3478  if (!lType->isFloatingType()) {
3479    // For non-floating point types, check for self-comparisons of the form
3480    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3481    // often indicate logic errors in the program.
3482    // NOTE: Don't warn about comparisons of enum constants. These can arise
3483    //  from macro expansions, and are usually quite deliberate.
3484    Expr *LHSStripped = lex->IgnoreParens();
3485    Expr *RHSStripped = rex->IgnoreParens();
3486    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
3487      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
3488        if (DRL->getDecl() == DRR->getDecl() &&
3489            !isa<EnumConstantDecl>(DRL->getDecl()))
3490          Diag(Loc, diag::warn_selfcomparison);
3491
3492    if (isa<CastExpr>(LHSStripped))
3493      LHSStripped = LHSStripped->IgnoreParenCasts();
3494    if (isa<CastExpr>(RHSStripped))
3495      RHSStripped = RHSStripped->IgnoreParenCasts();
3496
3497    // Warn about comparisons against a string constant (unless the other
3498    // operand is null), the user probably wants strcmp.
3499    Expr *literalString = 0;
3500    Expr *literalStringStripped = 0;
3501    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
3502        !RHSStripped->isNullPointerConstant(Context)) {
3503      literalString = lex;
3504      literalStringStripped = LHSStripped;
3505    }
3506    else if ((isa<StringLiteral>(RHSStripped) ||
3507              isa<ObjCEncodeExpr>(RHSStripped)) &&
3508             !LHSStripped->isNullPointerConstant(Context)) {
3509      literalString = rex;
3510      literalStringStripped = RHSStripped;
3511    }
3512
3513    if (literalString) {
3514      std::string resultComparison;
3515      switch (Opc) {
3516      case BinaryOperator::LT: resultComparison = ") < 0"; break;
3517      case BinaryOperator::GT: resultComparison = ") > 0"; break;
3518      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
3519      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
3520      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
3521      case BinaryOperator::NE: resultComparison = ") != 0"; break;
3522      default: assert(false && "Invalid comparison operator");
3523      }
3524      Diag(Loc, diag::warn_stringcompare)
3525        << isa<ObjCEncodeExpr>(literalStringStripped)
3526        << literalString->getSourceRange()
3527        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
3528        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
3529                                                 "strcmp(")
3530        << CodeModificationHint::CreateInsertion(
3531                                       PP.getLocForEndOfToken(rex->getLocEnd()),
3532                                       resultComparison);
3533    }
3534  }
3535
3536  // The result of comparisons is 'bool' in C++, 'int' in C.
3537  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
3538
3539  if (isRelational) {
3540    if (lType->isRealType() && rType->isRealType())
3541      return ResultTy;
3542  } else {
3543    // Check for comparisons of floating point operands using != and ==.
3544    if (lType->isFloatingType()) {
3545      assert(rType->isFloatingType());
3546      CheckFloatComparison(Loc,lex,rex);
3547    }
3548
3549    if (lType->isArithmeticType() && rType->isArithmeticType())
3550      return ResultTy;
3551  }
3552
3553  bool LHSIsNull = lex->isNullPointerConstant(Context);
3554  bool RHSIsNull = rex->isNullPointerConstant(Context);
3555
3556  // All of the following pointer related warnings are GCC extensions, except
3557  // when handling null pointer constants. One day, we can consider making them
3558  // errors (when -pedantic-errors is enabled).
3559  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
3560    QualType LCanPointeeTy =
3561      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
3562    QualType RCanPointeeTy =
3563      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
3564
3565    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
3566        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
3567        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
3568                                    RCanPointeeTy.getUnqualifiedType()) &&
3569        !Context.areComparableObjCPointerTypes(lType, rType)) {
3570      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3571        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3572    }
3573    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3574    return ResultTy;
3575  }
3576  // Handle block pointer types.
3577  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
3578    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
3579    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
3580
3581    if (!LHSIsNull && !RHSIsNull &&
3582        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
3583      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3584        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3585    }
3586    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3587    return ResultTy;
3588  }
3589  // Allow block pointers to be compared with null pointer constants.
3590  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
3591      (lType->isPointerType() && rType->isBlockPointerType())) {
3592    if (!LHSIsNull && !RHSIsNull) {
3593      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3594        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3595    }
3596    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3597    return ResultTy;
3598  }
3599
3600  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
3601    if (lType->isPointerType() || rType->isPointerType()) {
3602      const PointerType *LPT = lType->getAsPointerType();
3603      const PointerType *RPT = rType->getAsPointerType();
3604      bool LPtrToVoid = LPT ?
3605        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
3606      bool RPtrToVoid = RPT ?
3607        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
3608
3609      if (!LPtrToVoid && !RPtrToVoid &&
3610          !Context.typesAreCompatible(lType, rType)) {
3611        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3612          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3613        ImpCastExprToType(rex, lType);
3614        return ResultTy;
3615      }
3616      ImpCastExprToType(rex, lType);
3617      return ResultTy;
3618    }
3619    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
3620      ImpCastExprToType(rex, lType);
3621      return ResultTy;
3622    } else {
3623      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
3624        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
3625          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3626        ImpCastExprToType(rex, lType);
3627        return ResultTy;
3628      }
3629    }
3630  }
3631  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
3632       rType->isIntegerType()) {
3633    if (!RHSIsNull)
3634      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3635        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3636    ImpCastExprToType(rex, lType); // promote the integer to pointer
3637    return ResultTy;
3638  }
3639  if (lType->isIntegerType() &&
3640      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
3641    if (!LHSIsNull)
3642      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3643        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3644    ImpCastExprToType(lex, rType); // promote the integer to pointer
3645    return ResultTy;
3646  }
3647  // Handle block pointers.
3648  if (lType->isBlockPointerType() && rType->isIntegerType()) {
3649    if (!RHSIsNull)
3650      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3651        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3652    ImpCastExprToType(rex, lType); // promote the integer to pointer
3653    return ResultTy;
3654  }
3655  if (lType->isIntegerType() && rType->isBlockPointerType()) {
3656    if (!LHSIsNull)
3657      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3658        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3659    ImpCastExprToType(lex, rType); // promote the integer to pointer
3660    return ResultTy;
3661  }
3662  return InvalidOperands(Loc, lex, rex);
3663}
3664
3665/// CheckVectorCompareOperands - vector comparisons are a clang extension that
3666/// operates on extended vector types.  Instead of producing an IntTy result,
3667/// like a scalar comparison, a vector comparison produces a vector of integer
3668/// types.
3669QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
3670                                          SourceLocation Loc,
3671                                          bool isRelational) {
3672  // Check to make sure we're operating on vectors of the same type and width,
3673  // Allowing one side to be a scalar of element type.
3674  QualType vType = CheckVectorOperands(Loc, lex, rex);
3675  if (vType.isNull())
3676    return vType;
3677
3678  QualType lType = lex->getType();
3679  QualType rType = rex->getType();
3680
3681  // For non-floating point types, check for self-comparisons of the form
3682  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3683  // often indicate logic errors in the program.
3684  if (!lType->isFloatingType()) {
3685    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
3686      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
3687        if (DRL->getDecl() == DRR->getDecl())
3688          Diag(Loc, diag::warn_selfcomparison);
3689  }
3690
3691  // Check for comparisons of floating point operands using != and ==.
3692  if (!isRelational && lType->isFloatingType()) {
3693    assert (rType->isFloatingType());
3694    CheckFloatComparison(Loc,lex,rex);
3695  }
3696
3697  // FIXME: Vector compare support in the LLVM backend is not fully reliable,
3698  // just reject all vector comparisons for now.
3699  if (1) {
3700    Diag(Loc, diag::err_typecheck_vector_comparison)
3701      << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3702    return QualType();
3703  }
3704
3705  // Return the type for the comparison, which is the same as vector type for
3706  // integer vectors, or an integer type of identical size and number of
3707  // elements for floating point vectors.
3708  if (lType->isIntegerType())
3709    return lType;
3710
3711  const VectorType *VTy = lType->getAsVectorType();
3712  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
3713  if (TypeSize == Context.getTypeSize(Context.IntTy))
3714    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
3715  if (TypeSize == Context.getTypeSize(Context.LongTy))
3716    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
3717
3718  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
3719         "Unhandled vector element size in vector compare");
3720  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
3721}
3722
3723inline QualType Sema::CheckBitwiseOperands(
3724  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3725{
3726  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3727    return CheckVectorOperands(Loc, lex, rex);
3728
3729  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3730
3731  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3732    return compType;
3733  return InvalidOperands(Loc, lex, rex);
3734}
3735
3736inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
3737  Expr *&lex, Expr *&rex, SourceLocation Loc)
3738{
3739  UsualUnaryConversions(lex);
3740  UsualUnaryConversions(rex);
3741
3742  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
3743    return Context.IntTy;
3744  return InvalidOperands(Loc, lex, rex);
3745}
3746
3747/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
3748/// is a read-only property; return true if so. A readonly property expression
3749/// depends on various declarations and thus must be treated specially.
3750///
3751static bool IsReadonlyProperty(Expr *E, Sema &S)
3752{
3753  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
3754    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
3755    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
3756      QualType BaseType = PropExpr->getBase()->getType();
3757      if (const PointerType *PTy = BaseType->getAsPointerType())
3758        if (const ObjCInterfaceType *IFTy =
3759            PTy->getPointeeType()->getAsObjCInterfaceType())
3760          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
3761            if (S.isPropertyReadonly(PDecl, IFace))
3762              return true;
3763    }
3764  }
3765  return false;
3766}
3767
3768/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
3769/// emit an error and return true.  If so, return false.
3770static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
3771  SourceLocation OrigLoc = Loc;
3772  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
3773                                                              &Loc);
3774  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
3775    IsLV = Expr::MLV_ReadonlyProperty;
3776  if (IsLV == Expr::MLV_Valid)
3777    return false;
3778
3779  unsigned Diag = 0;
3780  bool NeedType = false;
3781  switch (IsLV) { // C99 6.5.16p2
3782  default: assert(0 && "Unknown result from isModifiableLvalue!");
3783  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
3784  case Expr::MLV_ArrayType:
3785    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
3786    NeedType = true;
3787    break;
3788  case Expr::MLV_NotObjectType:
3789    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
3790    NeedType = true;
3791    break;
3792  case Expr::MLV_LValueCast:
3793    Diag = diag::err_typecheck_lvalue_casts_not_supported;
3794    break;
3795  case Expr::MLV_InvalidExpression:
3796    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
3797    break;
3798  case Expr::MLV_IncompleteType:
3799  case Expr::MLV_IncompleteVoidType:
3800    return S.RequireCompleteType(Loc, E->getType(),
3801                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
3802                                    E->getSourceRange());
3803  case Expr::MLV_DuplicateVectorComponents:
3804    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
3805    break;
3806  case Expr::MLV_NotBlockQualified:
3807    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
3808    break;
3809  case Expr::MLV_ReadonlyProperty:
3810    Diag = diag::error_readonly_property_assignment;
3811    break;
3812  case Expr::MLV_NoSetterProperty:
3813    Diag = diag::error_nosetter_property_assignment;
3814    break;
3815  }
3816
3817  SourceRange Assign;
3818  if (Loc != OrigLoc)
3819    Assign = SourceRange(OrigLoc, OrigLoc);
3820  if (NeedType)
3821    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
3822  else
3823    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
3824  return true;
3825}
3826
3827
3828
3829// C99 6.5.16.1
3830QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
3831                                       SourceLocation Loc,
3832                                       QualType CompoundType) {
3833  // Verify that LHS is a modifiable lvalue, and emit error if not.
3834  if (CheckForModifiableLvalue(LHS, Loc, *this))
3835    return QualType();
3836
3837  QualType LHSType = LHS->getType();
3838  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
3839
3840  AssignConvertType ConvTy;
3841  if (CompoundType.isNull()) {
3842    // Simple assignment "x = y".
3843    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
3844    // Special case of NSObject attributes on c-style pointer types.
3845    if (ConvTy == IncompatiblePointer &&
3846        ((Context.isObjCNSObjectType(LHSType) &&
3847          Context.isObjCObjectPointerType(RHSType)) ||
3848         (Context.isObjCNSObjectType(RHSType) &&
3849          Context.isObjCObjectPointerType(LHSType))))
3850      ConvTy = Compatible;
3851
3852    // If the RHS is a unary plus or minus, check to see if they = and + are
3853    // right next to each other.  If so, the user may have typo'd "x =+ 4"
3854    // instead of "x += 4".
3855    Expr *RHSCheck = RHS;
3856    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
3857      RHSCheck = ICE->getSubExpr();
3858    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
3859      if ((UO->getOpcode() == UnaryOperator::Plus ||
3860           UO->getOpcode() == UnaryOperator::Minus) &&
3861          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
3862          // Only if the two operators are exactly adjacent.
3863          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
3864          // And there is a space or other character before the subexpr of the
3865          // unary +/-.  We don't want to warn on "x=-1".
3866          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
3867          UO->getSubExpr()->getLocStart().isFileID()) {
3868        Diag(Loc, diag::warn_not_compound_assign)
3869          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
3870          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
3871      }
3872    }
3873  } else {
3874    // Compound assignment "x += y"
3875    ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
3876  }
3877
3878  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
3879                               RHS, "assigning"))
3880    return QualType();
3881
3882  // C99 6.5.16p3: The type of an assignment expression is the type of the
3883  // left operand unless the left operand has qualified type, in which case
3884  // it is the unqualified version of the type of the left operand.
3885  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
3886  // is converted to the type of the assignment expression (above).
3887  // C++ 5.17p1: the type of the assignment expression is that of its left
3888  // oprdu.
3889  return LHSType.getUnqualifiedType();
3890}
3891
3892// C99 6.5.17
3893QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
3894  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
3895  DefaultFunctionArrayConversion(RHS);
3896
3897  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
3898  // incomplete in C++).
3899
3900  return RHS->getType();
3901}
3902
3903/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
3904/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
3905QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
3906                                              bool isInc) {
3907  if (Op->isTypeDependent())
3908    return Context.DependentTy;
3909
3910  QualType ResType = Op->getType();
3911  assert(!ResType.isNull() && "no type for increment/decrement expression");
3912
3913  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
3914    // Decrement of bool is not allowed.
3915    if (!isInc) {
3916      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
3917      return QualType();
3918    }
3919    // Increment of bool sets it to true, but is deprecated.
3920    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
3921  } else if (ResType->isRealType()) {
3922    // OK!
3923  } else if (const PointerType *PT = ResType->getAsPointerType()) {
3924    // C99 6.5.2.4p2, 6.5.6p2
3925    if (PT->getPointeeType()->isVoidType()) {
3926      if (getLangOptions().CPlusPlus) {
3927        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
3928          << Op->getSourceRange();
3929        return QualType();
3930      }
3931
3932      // Pointer to void is a GNU extension in C.
3933      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
3934    } else if (PT->getPointeeType()->isFunctionType()) {
3935      if (getLangOptions().CPlusPlus) {
3936        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
3937          << Op->getType() << Op->getSourceRange();
3938        return QualType();
3939      }
3940
3941      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
3942        << ResType << Op->getSourceRange();
3943    } else if (RequireCompleteType(OpLoc, PT->getPointeeType(),
3944                               diag::err_typecheck_arithmetic_incomplete_type,
3945                                   Op->getSourceRange(), SourceRange(),
3946                                   ResType))
3947      return QualType();
3948  } else if (ResType->isComplexType()) {
3949    // C99 does not support ++/-- on complex types, we allow as an extension.
3950    Diag(OpLoc, diag::ext_integer_increment_complex)
3951      << ResType << Op->getSourceRange();
3952  } else {
3953    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
3954      << ResType << Op->getSourceRange();
3955    return QualType();
3956  }
3957  // At this point, we know we have a real, complex or pointer type.
3958  // Now make sure the operand is a modifiable lvalue.
3959  if (CheckForModifiableLvalue(Op, OpLoc, *this))
3960    return QualType();
3961  return ResType;
3962}
3963
3964/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
3965/// This routine allows us to typecheck complex/recursive expressions
3966/// where the declaration is needed for type checking. We only need to
3967/// handle cases when the expression references a function designator
3968/// or is an lvalue. Here are some examples:
3969///  - &(x) => x
3970///  - &*****f => f for f a function designator.
3971///  - &s.xx => s
3972///  - &s.zz[1].yy -> s, if zz is an array
3973///  - *(x + 1) -> x, if x is an array
3974///  - &"123"[2] -> 0
3975///  - & __real__ x -> x
3976static NamedDecl *getPrimaryDecl(Expr *E) {
3977  switch (E->getStmtClass()) {
3978  case Stmt::DeclRefExprClass:
3979  case Stmt::QualifiedDeclRefExprClass:
3980    return cast<DeclRefExpr>(E)->getDecl();
3981  case Stmt::MemberExprClass:
3982    // If this is an arrow operator, the address is an offset from
3983    // the base's value, so the object the base refers to is
3984    // irrelevant.
3985    if (cast<MemberExpr>(E)->isArrow())
3986      return 0;
3987    // Otherwise, the expression refers to a part of the base
3988    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
3989  case Stmt::ArraySubscriptExprClass: {
3990    // FIXME: This code shouldn't be necessary!  We should catch the
3991    // implicit promotion of register arrays earlier.
3992    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
3993    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
3994      if (ICE->getSubExpr()->getType()->isArrayType())
3995        return getPrimaryDecl(ICE->getSubExpr());
3996    }
3997    return 0;
3998  }
3999  case Stmt::UnaryOperatorClass: {
4000    UnaryOperator *UO = cast<UnaryOperator>(E);
4001
4002    switch(UO->getOpcode()) {
4003    case UnaryOperator::Real:
4004    case UnaryOperator::Imag:
4005    case UnaryOperator::Extension:
4006      return getPrimaryDecl(UO->getSubExpr());
4007    default:
4008      return 0;
4009    }
4010  }
4011  case Stmt::ParenExprClass:
4012    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
4013  case Stmt::ImplicitCastExprClass:
4014    // If the result of an implicit cast is an l-value, we care about
4015    // the sub-expression; otherwise, the result here doesn't matter.
4016    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
4017  default:
4018    return 0;
4019  }
4020}
4021
4022/// CheckAddressOfOperand - The operand of & must be either a function
4023/// designator or an lvalue designating an object. If it is an lvalue, the
4024/// object cannot be declared with storage class register or be a bit field.
4025/// Note: The usual conversions are *not* applied to the operand of the &
4026/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
4027/// In C++, the operand might be an overloaded function name, in which case
4028/// we allow the '&' but retain the overloaded-function type.
4029QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
4030  // Make sure to ignore parentheses in subsequent checks
4031  op = op->IgnoreParens();
4032
4033  if (op->isTypeDependent())
4034    return Context.DependentTy;
4035
4036  if (getLangOptions().C99) {
4037    // Implement C99-only parts of addressof rules.
4038    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
4039      if (uOp->getOpcode() == UnaryOperator::Deref)
4040        // Per C99 6.5.3.2, the address of a deref always returns a valid result
4041        // (assuming the deref expression is valid).
4042        return uOp->getSubExpr()->getType();
4043    }
4044    // Technically, there should be a check for array subscript
4045    // expressions here, but the result of one is always an lvalue anyway.
4046  }
4047  NamedDecl *dcl = getPrimaryDecl(op);
4048  Expr::isLvalueResult lval = op->isLvalue(Context);
4049
4050  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
4051    // The operand must be either an l-value or a function designator
4052    if (!dcl || !isa<FunctionDecl>(dcl)) {
4053      // FIXME: emit more specific diag...
4054      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
4055        << op->getSourceRange();
4056      return QualType();
4057    }
4058  } else if (op->isBitField()) { // C99 6.5.3.2p1
4059    // The operand cannot be a bit-field
4060    Diag(OpLoc, diag::err_typecheck_address_of)
4061      << "bit-field" << op->getSourceRange();
4062        return QualType();
4063  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
4064           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
4065    // The operand cannot be an element of a vector
4066    Diag(OpLoc, diag::err_typecheck_address_of)
4067      << "vector element" << op->getSourceRange();
4068    return QualType();
4069  } else if (dcl) { // C99 6.5.3.2p1
4070    // We have an lvalue with a decl. Make sure the decl is not declared
4071    // with the register storage-class specifier.
4072    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
4073      if (vd->getStorageClass() == VarDecl::Register) {
4074        Diag(OpLoc, diag::err_typecheck_address_of)
4075          << "register variable" << op->getSourceRange();
4076        return QualType();
4077      }
4078    } else if (isa<OverloadedFunctionDecl>(dcl)) {
4079      return Context.OverloadTy;
4080    } else if (isa<FieldDecl>(dcl)) {
4081      // Okay: we can take the address of a field.
4082      // Could be a pointer to member, though, if there is an explicit
4083      // scope qualifier for the class.
4084      if (isa<QualifiedDeclRefExpr>(op)) {
4085        DeclContext *Ctx = dcl->getDeclContext();
4086        if (Ctx && Ctx->isRecord())
4087          return Context.getMemberPointerType(op->getType(),
4088                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
4089      }
4090    } else if (isa<FunctionDecl>(dcl)) {
4091      // Okay: we can take the address of a function.
4092      // As above.
4093      if (isa<QualifiedDeclRefExpr>(op)) {
4094        DeclContext *Ctx = dcl->getDeclContext();
4095        if (Ctx && Ctx->isRecord())
4096          return Context.getMemberPointerType(op->getType(),
4097                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
4098      }
4099    }
4100    else
4101      assert(0 && "Unknown/unexpected decl type");
4102  }
4103
4104  // If the operand has type "type", the result has type "pointer to type".
4105  return Context.getPointerType(op->getType());
4106}
4107
4108QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
4109  if (Op->isTypeDependent())
4110    return Context.DependentTy;
4111
4112  UsualUnaryConversions(Op);
4113  QualType Ty = Op->getType();
4114
4115  // Note that per both C89 and C99, this is always legal, even if ptype is an
4116  // incomplete type or void.  It would be possible to warn about dereferencing
4117  // a void pointer, but it's completely well-defined, and such a warning is
4118  // unlikely to catch any mistakes.
4119  if (const PointerType *PT = Ty->getAsPointerType())
4120    return PT->getPointeeType();
4121
4122  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
4123    << Ty << Op->getSourceRange();
4124  return QualType();
4125}
4126
4127static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
4128  tok::TokenKind Kind) {
4129  BinaryOperator::Opcode Opc;
4130  switch (Kind) {
4131  default: assert(0 && "Unknown binop!");
4132  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
4133  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
4134  case tok::star:                 Opc = BinaryOperator::Mul; break;
4135  case tok::slash:                Opc = BinaryOperator::Div; break;
4136  case tok::percent:              Opc = BinaryOperator::Rem; break;
4137  case tok::plus:                 Opc = BinaryOperator::Add; break;
4138  case tok::minus:                Opc = BinaryOperator::Sub; break;
4139  case tok::lessless:             Opc = BinaryOperator::Shl; break;
4140  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
4141  case tok::lessequal:            Opc = BinaryOperator::LE; break;
4142  case tok::less:                 Opc = BinaryOperator::LT; break;
4143  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
4144  case tok::greater:              Opc = BinaryOperator::GT; break;
4145  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
4146  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
4147  case tok::amp:                  Opc = BinaryOperator::And; break;
4148  case tok::caret:                Opc = BinaryOperator::Xor; break;
4149  case tok::pipe:                 Opc = BinaryOperator::Or; break;
4150  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
4151  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
4152  case tok::equal:                Opc = BinaryOperator::Assign; break;
4153  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
4154  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
4155  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
4156  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
4157  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
4158  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
4159  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
4160  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
4161  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
4162  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
4163  case tok::comma:                Opc = BinaryOperator::Comma; break;
4164  }
4165  return Opc;
4166}
4167
4168static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
4169  tok::TokenKind Kind) {
4170  UnaryOperator::Opcode Opc;
4171  switch (Kind) {
4172  default: assert(0 && "Unknown unary op!");
4173  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
4174  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
4175  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
4176  case tok::star:         Opc = UnaryOperator::Deref; break;
4177  case tok::plus:         Opc = UnaryOperator::Plus; break;
4178  case tok::minus:        Opc = UnaryOperator::Minus; break;
4179  case tok::tilde:        Opc = UnaryOperator::Not; break;
4180  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
4181  case tok::kw___real:    Opc = UnaryOperator::Real; break;
4182  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
4183  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
4184  }
4185  return Opc;
4186}
4187
4188/// CreateBuiltinBinOp - Creates a new built-in binary operation with
4189/// operator @p Opc at location @c TokLoc. This routine only supports
4190/// built-in operations; ActOnBinOp handles overloaded operators.
4191Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
4192                                                  unsigned Op,
4193                                                  Expr *lhs, Expr *rhs) {
4194  QualType ResultTy;     // Result type of the binary operator.
4195  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
4196  // The following two variables are used for compound assignment operators
4197  QualType CompLHSTy;    // Type of LHS after promotions for computation
4198  QualType CompResultTy; // Type of computation result
4199
4200  switch (Opc) {
4201  case BinaryOperator::Assign:
4202    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
4203    break;
4204  case BinaryOperator::PtrMemD:
4205  case BinaryOperator::PtrMemI:
4206    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
4207                                            Opc == BinaryOperator::PtrMemI);
4208    break;
4209  case BinaryOperator::Mul:
4210  case BinaryOperator::Div:
4211    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
4212    break;
4213  case BinaryOperator::Rem:
4214    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
4215    break;
4216  case BinaryOperator::Add:
4217    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
4218    break;
4219  case BinaryOperator::Sub:
4220    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
4221    break;
4222  case BinaryOperator::Shl:
4223  case BinaryOperator::Shr:
4224    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
4225    break;
4226  case BinaryOperator::LE:
4227  case BinaryOperator::LT:
4228  case BinaryOperator::GE:
4229  case BinaryOperator::GT:
4230    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
4231    break;
4232  case BinaryOperator::EQ:
4233  case BinaryOperator::NE:
4234    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
4235    break;
4236  case BinaryOperator::And:
4237  case BinaryOperator::Xor:
4238  case BinaryOperator::Or:
4239    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
4240    break;
4241  case BinaryOperator::LAnd:
4242  case BinaryOperator::LOr:
4243    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
4244    break;
4245  case BinaryOperator::MulAssign:
4246  case BinaryOperator::DivAssign:
4247    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
4248    CompLHSTy = CompResultTy;
4249    if (!CompResultTy.isNull())
4250      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4251    break;
4252  case BinaryOperator::RemAssign:
4253    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
4254    CompLHSTy = CompResultTy;
4255    if (!CompResultTy.isNull())
4256      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4257    break;
4258  case BinaryOperator::AddAssign:
4259    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4260    if (!CompResultTy.isNull())
4261      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4262    break;
4263  case BinaryOperator::SubAssign:
4264    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4265    if (!CompResultTy.isNull())
4266      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4267    break;
4268  case BinaryOperator::ShlAssign:
4269  case BinaryOperator::ShrAssign:
4270    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
4271    CompLHSTy = CompResultTy;
4272    if (!CompResultTy.isNull())
4273      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4274    break;
4275  case BinaryOperator::AndAssign:
4276  case BinaryOperator::XorAssign:
4277  case BinaryOperator::OrAssign:
4278    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
4279    CompLHSTy = CompResultTy;
4280    if (!CompResultTy.isNull())
4281      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4282    break;
4283  case BinaryOperator::Comma:
4284    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
4285    break;
4286  }
4287  if (ResultTy.isNull())
4288    return ExprError();
4289  if (CompResultTy.isNull())
4290    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
4291  else
4292    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
4293                                                      CompLHSTy, CompResultTy,
4294                                                      OpLoc));
4295}
4296
4297// Binary Operators.  'Tok' is the token for the operator.
4298Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
4299                                          tok::TokenKind Kind,
4300                                          ExprArg LHS, ExprArg RHS) {
4301  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
4302  Expr *lhs = (Expr *)LHS.release(), *rhs = (Expr*)RHS.release();
4303
4304  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
4305  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
4306
4307  if (getLangOptions().CPlusPlus &&
4308      (lhs->getType()->isOverloadableType() ||
4309       rhs->getType()->isOverloadableType())) {
4310    // Find all of the overloaded operators visible from this
4311    // point. We perform both an operator-name lookup from the local
4312    // scope and an argument-dependent lookup based on the types of
4313    // the arguments.
4314    FunctionSet Functions;
4315    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
4316    if (OverOp != OO_None) {
4317      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
4318                                   Functions);
4319      Expr *Args[2] = { lhs, rhs };
4320      DeclarationName OpName
4321        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4322      ArgumentDependentLookup(OpName, Args, 2, Functions);
4323    }
4324
4325    // Build the (potentially-overloaded, potentially-dependent)
4326    // binary operation.
4327    return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
4328  }
4329
4330  // Build a built-in binary operation.
4331  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
4332}
4333
4334Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
4335                                                    unsigned OpcIn,
4336                                                    ExprArg InputArg) {
4337  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4338
4339  // FIXME: Input is modified below, but InputArg is not updated
4340  // appropriately.
4341  Expr *Input = (Expr *)InputArg.get();
4342  QualType resultType;
4343  switch (Opc) {
4344  case UnaryOperator::PostInc:
4345  case UnaryOperator::PostDec:
4346  case UnaryOperator::OffsetOf:
4347    assert(false && "Invalid unary operator");
4348    break;
4349
4350  case UnaryOperator::PreInc:
4351  case UnaryOperator::PreDec:
4352    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
4353                                                Opc == UnaryOperator::PreInc);
4354    break;
4355  case UnaryOperator::AddrOf:
4356    resultType = CheckAddressOfOperand(Input, OpLoc);
4357    break;
4358  case UnaryOperator::Deref:
4359    DefaultFunctionArrayConversion(Input);
4360    resultType = CheckIndirectionOperand(Input, OpLoc);
4361    break;
4362  case UnaryOperator::Plus:
4363  case UnaryOperator::Minus:
4364    UsualUnaryConversions(Input);
4365    resultType = Input->getType();
4366    if (resultType->isDependentType())
4367      break;
4368    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
4369      break;
4370    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
4371             resultType->isEnumeralType())
4372      break;
4373    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
4374             Opc == UnaryOperator::Plus &&
4375             resultType->isPointerType())
4376      break;
4377
4378    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4379      << resultType << Input->getSourceRange());
4380  case UnaryOperator::Not: // bitwise complement
4381    UsualUnaryConversions(Input);
4382    resultType = Input->getType();
4383    if (resultType->isDependentType())
4384      break;
4385    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
4386    if (resultType->isComplexType() || resultType->isComplexIntegerType())
4387      // C99 does not support '~' for complex conjugation.
4388      Diag(OpLoc, diag::ext_integer_complement_complex)
4389        << resultType << Input->getSourceRange();
4390    else if (!resultType->isIntegerType())
4391      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4392        << resultType << Input->getSourceRange());
4393    break;
4394  case UnaryOperator::LNot: // logical negation
4395    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
4396    DefaultFunctionArrayConversion(Input);
4397    resultType = Input->getType();
4398    if (resultType->isDependentType())
4399      break;
4400    if (!resultType->isScalarType()) // C99 6.5.3.3p1
4401      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4402        << resultType << Input->getSourceRange());
4403    // LNot always has type int. C99 6.5.3.3p5.
4404    // In C++, it's bool. C++ 5.3.1p8
4405    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
4406    break;
4407  case UnaryOperator::Real:
4408  case UnaryOperator::Imag:
4409    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
4410    break;
4411  case UnaryOperator::Extension:
4412    resultType = Input->getType();
4413    break;
4414  }
4415  if (resultType.isNull())
4416    return ExprError();
4417
4418  InputArg.release();
4419  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
4420}
4421
4422// Unary Operators.  'Tok' is the token for the operator.
4423Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
4424                                            tok::TokenKind Op, ExprArg input) {
4425  Expr *Input = (Expr*)input.get();
4426  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
4427
4428  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
4429    // Find all of the overloaded operators visible from this
4430    // point. We perform both an operator-name lookup from the local
4431    // scope and an argument-dependent lookup based on the types of
4432    // the arguments.
4433    FunctionSet Functions;
4434    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
4435    if (OverOp != OO_None) {
4436      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
4437                                   Functions);
4438      DeclarationName OpName
4439        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4440      ArgumentDependentLookup(OpName, &Input, 1, Functions);
4441    }
4442
4443    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
4444  }
4445
4446  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
4447}
4448
4449/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
4450Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
4451                                            SourceLocation LabLoc,
4452                                            IdentifierInfo *LabelII) {
4453  // Look up the record for this label identifier.
4454  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
4455
4456  // If we haven't seen this label yet, create a forward reference. It
4457  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
4458  if (LabelDecl == 0)
4459    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
4460
4461  // Create the AST node.  The address of a label always has type 'void*'.
4462  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
4463                                       Context.getPointerType(Context.VoidTy)));
4464}
4465
4466Sema::OwningExprResult
4467Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
4468                    SourceLocation RPLoc) { // "({..})"
4469  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
4470  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
4471  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
4472
4473  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4474  if (isFileScope) {
4475    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
4476  }
4477
4478  // FIXME: there are a variety of strange constraints to enforce here, for
4479  // example, it is not possible to goto into a stmt expression apparently.
4480  // More semantic analysis is needed.
4481
4482  // FIXME: the last statement in the compount stmt has its value used.  We
4483  // should not warn about it being unused.
4484
4485  // If there are sub stmts in the compound stmt, take the type of the last one
4486  // as the type of the stmtexpr.
4487  QualType Ty = Context.VoidTy;
4488
4489  if (!Compound->body_empty()) {
4490    Stmt *LastStmt = Compound->body_back();
4491    // If LastStmt is a label, skip down through into the body.
4492    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
4493      LastStmt = Label->getSubStmt();
4494
4495    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
4496      Ty = LastExpr->getType();
4497  }
4498
4499  // FIXME: Check that expression type is complete/non-abstract; statement
4500  // expressions are not lvalues.
4501
4502  substmt.release();
4503  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
4504}
4505
4506Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
4507                                                  SourceLocation BuiltinLoc,
4508                                                  SourceLocation TypeLoc,
4509                                                  TypeTy *argty,
4510                                                  OffsetOfComponent *CompPtr,
4511                                                  unsigned NumComponents,
4512                                                  SourceLocation RPLoc) {
4513  // FIXME: This function leaks all expressions in the offset components on
4514  // error.
4515  QualType ArgTy = QualType::getFromOpaquePtr(argty);
4516  assert(!ArgTy.isNull() && "Missing type argument!");
4517
4518  bool Dependent = ArgTy->isDependentType();
4519
4520  // We must have at least one component that refers to the type, and the first
4521  // one is known to be a field designator.  Verify that the ArgTy represents
4522  // a struct/union/class.
4523  if (!Dependent && !ArgTy->isRecordType())
4524    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
4525
4526  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
4527  // with an incomplete type would be illegal.
4528
4529  // Otherwise, create a null pointer as the base, and iteratively process
4530  // the offsetof designators.
4531  QualType ArgTyPtr = Context.getPointerType(ArgTy);
4532  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
4533  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
4534                                    ArgTy, SourceLocation());
4535
4536  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
4537  // GCC extension, diagnose them.
4538  // FIXME: This diagnostic isn't actually visible because the location is in
4539  // a system header!
4540  if (NumComponents != 1)
4541    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
4542      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
4543
4544  if (!Dependent) {
4545    // FIXME: Dependent case loses a lot of information here. And probably
4546    // leaks like a sieve.
4547    for (unsigned i = 0; i != NumComponents; ++i) {
4548      const OffsetOfComponent &OC = CompPtr[i];
4549      if (OC.isBrackets) {
4550        // Offset of an array sub-field.  TODO: Should we allow vector elements?
4551        const ArrayType *AT = Context.getAsArrayType(Res->getType());
4552        if (!AT) {
4553          Res->Destroy(Context);
4554          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
4555            << Res->getType());
4556        }
4557
4558        // FIXME: C++: Verify that operator[] isn't overloaded.
4559
4560        // Promote the array so it looks more like a normal array subscript
4561        // expression.
4562        DefaultFunctionArrayConversion(Res);
4563
4564        // C99 6.5.2.1p1
4565        Expr *Idx = static_cast<Expr*>(OC.U.E);
4566        // FIXME: Leaks Res
4567        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
4568          return ExprError(Diag(Idx->getLocStart(),
4569                                diag::err_typecheck_subscript)
4570            << Idx->getSourceRange());
4571
4572        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
4573                                               OC.LocEnd);
4574        continue;
4575      }
4576
4577      const RecordType *RC = Res->getType()->getAsRecordType();
4578      if (!RC) {
4579        Res->Destroy(Context);
4580        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
4581          << Res->getType());
4582      }
4583
4584      // Get the decl corresponding to this.
4585      RecordDecl *RD = RC->getDecl();
4586      FieldDecl *MemberDecl
4587        = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
4588                                                          LookupMemberName)
4589                                        .getAsDecl());
4590      // FIXME: Leaks Res
4591      if (!MemberDecl)
4592        return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member)
4593         << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd));
4594
4595      // FIXME: C++: Verify that MemberDecl isn't a static field.
4596      // FIXME: Verify that MemberDecl isn't a bitfield.
4597      // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
4598      // matter here.
4599      Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
4600                                   MemberDecl->getType().getNonReferenceType());
4601    }
4602  }
4603
4604  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
4605                                           Context.getSizeType(), BuiltinLoc));
4606}
4607
4608
4609Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
4610                                                      TypeTy *arg1,TypeTy *arg2,
4611                                                      SourceLocation RPLoc) {
4612  QualType argT1 = QualType::getFromOpaquePtr(arg1);
4613  QualType argT2 = QualType::getFromOpaquePtr(arg2);
4614
4615  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
4616
4617  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
4618                                                 argT1, argT2, RPLoc));
4619}
4620
4621Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
4622                                             ExprArg cond,
4623                                             ExprArg expr1, ExprArg expr2,
4624                                             SourceLocation RPLoc) {
4625  Expr *CondExpr = static_cast<Expr*>(cond.get());
4626  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
4627  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
4628
4629  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
4630
4631  QualType resType;
4632  if (CondExpr->isValueDependent()) {
4633    resType = Context.DependentTy;
4634  } else {
4635    // The conditional expression is required to be a constant expression.
4636    llvm::APSInt condEval(32);
4637    SourceLocation ExpLoc;
4638    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
4639      return ExprError(Diag(ExpLoc,
4640                       diag::err_typecheck_choose_expr_requires_constant)
4641        << CondExpr->getSourceRange());
4642
4643    // If the condition is > zero, then the AST type is the same as the LSHExpr.
4644    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
4645  }
4646
4647  cond.release(); expr1.release(); expr2.release();
4648  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
4649                                        resType, RPLoc));
4650}
4651
4652//===----------------------------------------------------------------------===//
4653// Clang Extensions.
4654//===----------------------------------------------------------------------===//
4655
4656/// ActOnBlockStart - This callback is invoked when a block literal is started.
4657void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
4658  // Analyze block parameters.
4659  BlockSemaInfo *BSI = new BlockSemaInfo();
4660
4661  // Add BSI to CurBlock.
4662  BSI->PrevBlockInfo = CurBlock;
4663  CurBlock = BSI;
4664
4665  BSI->ReturnType = 0;
4666  BSI->TheScope = BlockScope;
4667  BSI->hasBlockDeclRefExprs = false;
4668  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
4669  CurFunctionNeedsScopeChecking = false;
4670
4671  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
4672  PushDeclContext(BlockScope, BSI->TheDecl);
4673}
4674
4675void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
4676  assert(ParamInfo.getIdentifier() == 0 && "block-id should have no identifier!");
4677
4678  if (ParamInfo.getNumTypeObjects() == 0
4679      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
4680    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
4681
4682    // The type is entirely optional as well, if none, use DependentTy.
4683    if (T.isNull())
4684      T = Context.DependentTy;
4685
4686    // The parameter list is optional, if there was none, assume ().
4687    if (!T->isFunctionType())
4688      T = Context.getFunctionType(T, NULL, 0, 0, 0);
4689
4690    CurBlock->hasPrototype = true;
4691    CurBlock->isVariadic = false;
4692
4693    QualType RetTy = T.getTypePtr()->getAsFunctionType()->getResultType();
4694
4695    // Do not allow returning a objc interface by-value.
4696    if (RetTy->isObjCInterfaceType()) {
4697      Diag(ParamInfo.getSourceRange().getBegin(),
4698           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
4699      return;
4700    }
4701
4702    if (!RetTy->isDependentType())
4703      CurBlock->ReturnType = RetTy.getTypePtr();
4704    return;
4705  }
4706
4707  // Analyze arguments to block.
4708  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4709         "Not a function declarator!");
4710  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
4711
4712  CurBlock->hasPrototype = FTI.hasPrototype;
4713  CurBlock->isVariadic = true;
4714
4715  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
4716  // no arguments, not a function that takes a single void argument.
4717  if (FTI.hasPrototype &&
4718      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4719     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
4720        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
4721    // empty arg list, don't push any params.
4722    CurBlock->isVariadic = false;
4723  } else if (FTI.hasPrototype) {
4724    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
4725      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
4726    CurBlock->isVariadic = FTI.isVariadic;
4727  }
4728  CurBlock->TheDecl->setParams(Context, &CurBlock->Params[0],
4729                               CurBlock->Params.size());
4730
4731  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
4732       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
4733    // If this has an identifier, add it to the scope stack.
4734    if ((*AI)->getIdentifier())
4735      PushOnScopeChains(*AI, CurBlock->TheScope);
4736
4737  // Analyze the return type.
4738  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
4739  QualType RetTy = T->getAsFunctionType()->getResultType();
4740
4741  // Do not allow returning a objc interface by-value.
4742  if (RetTy->isObjCInterfaceType()) {
4743    Diag(ParamInfo.getSourceRange().getBegin(),
4744         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
4745  } else if (!RetTy->isDependentType())
4746    CurBlock->ReturnType = RetTy.getTypePtr();
4747}
4748
4749/// ActOnBlockError - If there is an error parsing a block, this callback
4750/// is invoked to pop the information about the block from the action impl.
4751void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
4752  // Ensure that CurBlock is deleted.
4753  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
4754
4755  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
4756
4757  // Pop off CurBlock, handle nested blocks.
4758  PopDeclContext();
4759  CurBlock = CurBlock->PrevBlockInfo;
4760  // FIXME: Delete the ParmVarDecl objects as well???
4761}
4762
4763/// ActOnBlockStmtExpr - This is called when the body of a block statement
4764/// literal was successfully completed.  ^(int x){...}
4765Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
4766                                                StmtArg body, Scope *CurScope) {
4767  // If blocks are disabled, emit an error.
4768  if (!LangOpts.Blocks)
4769    Diag(CaretLoc, diag::err_blocks_disable);
4770
4771  // Ensure that CurBlock is deleted.
4772  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
4773
4774  PopDeclContext();
4775
4776  // Pop off CurBlock, handle nested blocks.
4777  CurBlock = CurBlock->PrevBlockInfo;
4778
4779  QualType RetTy = Context.VoidTy;
4780  if (BSI->ReturnType)
4781    RetTy = QualType(BSI->ReturnType, 0);
4782
4783  llvm::SmallVector<QualType, 8> ArgTypes;
4784  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
4785    ArgTypes.push_back(BSI->Params[i]->getType());
4786
4787  QualType BlockTy;
4788  if (!BSI->hasPrototype)
4789    BlockTy = Context.getFunctionNoProtoType(RetTy);
4790  else
4791    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
4792                                      BSI->isVariadic, 0);
4793
4794  // FIXME: Check that return/parameter types are complete/non-abstract
4795
4796  BlockTy = Context.getBlockPointerType(BlockTy);
4797
4798  // If needed, diagnose invalid gotos and switches in the block.
4799  if (CurFunctionNeedsScopeChecking)
4800    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
4801  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
4802
4803  BSI->TheDecl->setBody(static_cast<CompoundStmt*>(body.release()));
4804  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
4805                                       BSI->hasBlockDeclRefExprs));
4806}
4807
4808Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
4809                                        ExprArg expr, TypeTy *type,
4810                                        SourceLocation RPLoc) {
4811  QualType T = QualType::getFromOpaquePtr(type);
4812  Expr *E = static_cast<Expr*>(expr.get());
4813  Expr *OrigExpr = E;
4814
4815  InitBuiltinVaListType();
4816
4817  // Get the va_list type
4818  QualType VaListType = Context.getBuiltinVaListType();
4819  // Deal with implicit array decay; for example, on x86-64,
4820  // va_list is an array, but it's supposed to decay to
4821  // a pointer for va_arg.
4822  if (VaListType->isArrayType())
4823    VaListType = Context.getArrayDecayedType(VaListType);
4824  // Make sure the input expression also decays appropriately.
4825  UsualUnaryConversions(E);
4826
4827  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible) {
4828    return ExprError(Diag(E->getLocStart(),
4829                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
4830      << OrigExpr->getType() << E->getSourceRange());
4831  }
4832
4833  // FIXME: Check that type is complete/non-abstract
4834  // FIXME: Warn if a non-POD type is passed in.
4835
4836  expr.release();
4837  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
4838                                       RPLoc));
4839}
4840
4841Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
4842  // The type of __null will be int or long, depending on the size of
4843  // pointers on the target.
4844  QualType Ty;
4845  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
4846    Ty = Context.IntTy;
4847  else
4848    Ty = Context.LongTy;
4849
4850  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
4851}
4852
4853bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
4854                                    SourceLocation Loc,
4855                                    QualType DstType, QualType SrcType,
4856                                    Expr *SrcExpr, const char *Flavor) {
4857  // Decode the result (notice that AST's are still created for extensions).
4858  bool isInvalid = false;
4859  unsigned DiagKind;
4860  switch (ConvTy) {
4861  default: assert(0 && "Unknown conversion type");
4862  case Compatible: return false;
4863  case PointerToInt:
4864    DiagKind = diag::ext_typecheck_convert_pointer_int;
4865    break;
4866  case IntToPointer:
4867    DiagKind = diag::ext_typecheck_convert_int_pointer;
4868    break;
4869  case IncompatiblePointer:
4870    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
4871    break;
4872  case IncompatiblePointerSign:
4873    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
4874    break;
4875  case FunctionVoidPointer:
4876    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
4877    break;
4878  case CompatiblePointerDiscardsQualifiers:
4879    // If the qualifiers lost were because we were applying the
4880    // (deprecated) C++ conversion from a string literal to a char*
4881    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
4882    // Ideally, this check would be performed in
4883    // CheckPointerTypesForAssignment. However, that would require a
4884    // bit of refactoring (so that the second argument is an
4885    // expression, rather than a type), which should be done as part
4886    // of a larger effort to fix CheckPointerTypesForAssignment for
4887    // C++ semantics.
4888    if (getLangOptions().CPlusPlus &&
4889        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
4890      return false;
4891    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
4892    break;
4893  case IntToBlockPointer:
4894    DiagKind = diag::err_int_to_block_pointer;
4895    break;
4896  case IncompatibleBlockPointer:
4897    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
4898    break;
4899  case IncompatibleObjCQualifiedId:
4900    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
4901    // it can give a more specific diagnostic.
4902    DiagKind = diag::warn_incompatible_qualified_id;
4903    break;
4904  case IncompatibleVectors:
4905    DiagKind = diag::warn_incompatible_vectors;
4906    break;
4907  case Incompatible:
4908    DiagKind = diag::err_typecheck_convert_incompatible;
4909    isInvalid = true;
4910    break;
4911  }
4912
4913  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
4914    << SrcExpr->getSourceRange();
4915  return isInvalid;
4916}
4917
4918bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result)
4919{
4920  Expr::EvalResult EvalResult;
4921
4922  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
4923      EvalResult.HasSideEffects) {
4924    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
4925
4926    if (EvalResult.Diag) {
4927      // We only show the note if it's not the usual "invalid subexpression"
4928      // or if it's actually in a subexpression.
4929      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
4930          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
4931        Diag(EvalResult.DiagLoc, EvalResult.Diag);
4932    }
4933
4934    return true;
4935  }
4936
4937  if (EvalResult.Diag) {
4938    Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
4939      E->getSourceRange();
4940
4941    // Print the reason it's not a constant.
4942    if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
4943      Diag(EvalResult.DiagLoc, EvalResult.Diag);
4944  }
4945
4946  if (Result)
4947    *Result = EvalResult.Val.getInt();
4948  return false;
4949}
4950