SemaExpr.cpp revision cf739927f9b00c801867f620b04b79e3259c311f
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/AnalysisBasedWarnings.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTMutationListener.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/EvaluatedExprVisitor.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/RecursiveASTVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/LiteralSupport.h"
33#include "clang/Lex/Preprocessor.h"
34#include "clang/Sema/DeclSpec.h"
35#include "clang/Sema/Designator.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "clang/Sema/ParsedTemplate.h"
39#include "clang/Sema/Template.h"
40using namespace clang;
41using namespace sema;
42
43
44/// \brief Determine whether the use of this declaration is valid, and
45/// emit any corresponding diagnostics.
46///
47/// This routine diagnoses various problems with referencing
48/// declarations that can occur when using a declaration. For example,
49/// it might warn if a deprecated or unavailable declaration is being
50/// used, or produce an error (and return true) if a C++0x deleted
51/// function is being used.
52///
53/// If IgnoreDeprecated is set to true, this should not warn about deprecated
54/// decls.
55///
56/// \returns true if there was an error (this declaration cannot be
57/// referenced), false otherwise.
58///
59bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
60                             const ObjCInterfaceDecl *UnknownObjCClass) {
61  if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
62    // If there were any diagnostics suppressed by template argument deduction,
63    // emit them now.
64    llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator
65      Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
66    if (Pos != SuppressedDiagnostics.end()) {
67      llvm::SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
68      for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
69        Diag(Suppressed[I].first, Suppressed[I].second);
70
71      // Clear out the list of suppressed diagnostics, so that we don't emit
72      // them again for this specialization. However, we don't obsolete this
73      // entry from the table, because we want to avoid ever emitting these
74      // diagnostics again.
75      Suppressed.clear();
76    }
77  }
78
79  // See if this is an auto-typed variable whose initializer we are parsing.
80  if (ParsingInitForAutoVars.count(D)) {
81    Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
82      << D->getDeclName();
83    return true;
84  }
85
86  // See if this is a deleted function.
87  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
88    if (FD->isDeleted()) {
89      Diag(Loc, diag::err_deleted_function_use);
90      Diag(D->getLocation(), diag::note_unavailable_here) << true;
91      return true;
92    }
93  }
94
95  // See if this declaration is unavailable or deprecated.
96  std::string Message;
97  switch (D->getAvailability(&Message)) {
98  case AR_Available:
99  case AR_NotYetIntroduced:
100    break;
101
102  case AR_Deprecated:
103    EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
104    break;
105
106  case AR_Unavailable:
107    if (Message.empty()) {
108      if (!UnknownObjCClass)
109        Diag(Loc, diag::err_unavailable) << D->getDeclName();
110      else
111        Diag(Loc, diag::warn_unavailable_fwdclass_message)
112             << D->getDeclName();
113    }
114    else
115      Diag(Loc, diag::err_unavailable_message)
116        << D->getDeclName() << Message;
117    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
118    break;
119  }
120
121  // Warn if this is used but marked unused.
122  if (D->hasAttr<UnusedAttr>())
123    Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
124
125  return false;
126}
127
128/// \brief Retrieve the message suffix that should be added to a
129/// diagnostic complaining about the given function being deleted or
130/// unavailable.
131std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
132  // FIXME: C++0x implicitly-deleted special member functions could be
133  // detected here so that we could improve diagnostics to say, e.g.,
134  // "base class 'A' had a deleted copy constructor".
135  if (FD->isDeleted())
136    return std::string();
137
138  std::string Message;
139  if (FD->getAvailability(&Message))
140    return ": " + Message;
141
142  return std::string();
143}
144
145/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
146/// (and other functions in future), which have been declared with sentinel
147/// attribute. It warns if call does not have the sentinel argument.
148///
149void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
150                                 Expr **Args, unsigned NumArgs) {
151  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
152  if (!attr)
153    return;
154
155  // FIXME: In C++0x, if any of the arguments are parameter pack
156  // expansions, we can't check for the sentinel now.
157  int sentinelPos = attr->getSentinel();
158  int nullPos = attr->getNullPos();
159
160  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
161  // base class. Then we won't be needing two versions of the same code.
162  unsigned int i = 0;
163  bool warnNotEnoughArgs = false;
164  int isMethod = 0;
165  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
166    // skip over named parameters.
167    ObjCMethodDecl::param_iterator P, E = MD->param_end();
168    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
169      if (nullPos)
170        --nullPos;
171      else
172        ++i;
173    }
174    warnNotEnoughArgs = (P != E || i >= NumArgs);
175    isMethod = 1;
176  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
177    // skip over named parameters.
178    ObjCMethodDecl::param_iterator P, E = FD->param_end();
179    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
180      if (nullPos)
181        --nullPos;
182      else
183        ++i;
184    }
185    warnNotEnoughArgs = (P != E || i >= NumArgs);
186  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
187    // block or function pointer call.
188    QualType Ty = V->getType();
189    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
190      const FunctionType *FT = Ty->isFunctionPointerType()
191      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
192      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
193      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
194        unsigned NumArgsInProto = Proto->getNumArgs();
195        unsigned k;
196        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
197          if (nullPos)
198            --nullPos;
199          else
200            ++i;
201        }
202        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
203      }
204      if (Ty->isBlockPointerType())
205        isMethod = 2;
206    } else
207      return;
208  } else
209    return;
210
211  if (warnNotEnoughArgs) {
212    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
213    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
214    return;
215  }
216  int sentinel = i;
217  while (sentinelPos > 0 && i < NumArgs-1) {
218    --sentinelPos;
219    ++i;
220  }
221  if (sentinelPos > 0) {
222    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
223    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
224    return;
225  }
226  while (i < NumArgs-1) {
227    ++i;
228    ++sentinel;
229  }
230  Expr *sentinelExpr = Args[sentinel];
231  if (!sentinelExpr) return;
232  if (sentinelExpr->isTypeDependent()) return;
233  if (sentinelExpr->isValueDependent()) return;
234
235  // nullptr_t is always treated as null.
236  if (sentinelExpr->getType()->isNullPtrType()) return;
237
238  if (sentinelExpr->getType()->isAnyPointerType() &&
239      sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
240                                            Expr::NPC_ValueDependentIsNull))
241    return;
242
243  // Unfortunately, __null has type 'int'.
244  if (isa<GNUNullExpr>(sentinelExpr)) return;
245
246  Diag(Loc, diag::warn_missing_sentinel) << isMethod;
247  Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
248}
249
250SourceRange Sema::getExprRange(ExprTy *E) const {
251  Expr *Ex = (Expr *)E;
252  return Ex? Ex->getSourceRange() : SourceRange();
253}
254
255//===----------------------------------------------------------------------===//
256//  Standard Promotions and Conversions
257//===----------------------------------------------------------------------===//
258
259/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
260ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
261  QualType Ty = E->getType();
262  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
263
264  if (Ty->isFunctionType())
265    E = ImpCastExprToType(E, Context.getPointerType(Ty),
266                          CK_FunctionToPointerDecay).take();
267  else if (Ty->isArrayType()) {
268    // In C90 mode, arrays only promote to pointers if the array expression is
269    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
270    // type 'array of type' is converted to an expression that has type 'pointer
271    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
272    // that has type 'array of type' ...".  The relevant change is "an lvalue"
273    // (C90) to "an expression" (C99).
274    //
275    // C++ 4.2p1:
276    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
277    // T" can be converted to an rvalue of type "pointer to T".
278    //
279    if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLValue())
280      E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
281                            CK_ArrayToPointerDecay).take();
282  }
283  return Owned(E);
284}
285
286static void CheckForNullPointerDereference(Sema &S, Expr *E) {
287  // Check to see if we are dereferencing a null pointer.  If so,
288  // and if not volatile-qualified, this is undefined behavior that the
289  // optimizer will delete, so warn about it.  People sometimes try to use this
290  // to get a deterministic trap and are surprised by clang's behavior.  This
291  // only handles the pattern "*null", which is a very syntactic check.
292  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
293    if (UO->getOpcode() == UO_Deref &&
294        UO->getSubExpr()->IgnoreParenCasts()->
295          isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
296        !UO->getType().isVolatileQualified()) {
297    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
298                          S.PDiag(diag::warn_indirection_through_null)
299                            << UO->getSubExpr()->getSourceRange());
300    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
301                        S.PDiag(diag::note_indirection_through_null));
302  }
303}
304
305ExprResult Sema::DefaultLvalueConversion(Expr *E) {
306  // C++ [conv.lval]p1:
307  //   A glvalue of a non-function, non-array type T can be
308  //   converted to a prvalue.
309  if (!E->isGLValue()) return Owned(E);
310
311  QualType T = E->getType();
312  assert(!T.isNull() && "r-value conversion on typeless expression?");
313
314  // Create a load out of an ObjCProperty l-value, if necessary.
315  if (E->getObjectKind() == OK_ObjCProperty) {
316    ExprResult Res = ConvertPropertyForRValue(E);
317    if (Res.isInvalid())
318      return Owned(E);
319    E = Res.take();
320    if (!E->isGLValue())
321      return Owned(E);
322  }
323
324  // We don't want to throw lvalue-to-rvalue casts on top of
325  // expressions of certain types in C++.
326  if (getLangOptions().CPlusPlus &&
327      (E->getType() == Context.OverloadTy ||
328       T->isDependentType() ||
329       T->isRecordType()))
330    return Owned(E);
331
332  // The C standard is actually really unclear on this point, and
333  // DR106 tells us what the result should be but not why.  It's
334  // generally best to say that void types just doesn't undergo
335  // lvalue-to-rvalue at all.  Note that expressions of unqualified
336  // 'void' type are never l-values, but qualified void can be.
337  if (T->isVoidType())
338    return Owned(E);
339
340  CheckForNullPointerDereference(*this, E);
341
342  // C++ [conv.lval]p1:
343  //   [...] If T is a non-class type, the type of the prvalue is the
344  //   cv-unqualified version of T. Otherwise, the type of the
345  //   rvalue is T.
346  //
347  // C99 6.3.2.1p2:
348  //   If the lvalue has qualified type, the value has the unqualified
349  //   version of the type of the lvalue; otherwise, the value has the
350  //   type of the lvalue.
351  if (T.hasQualifiers())
352    T = T.getUnqualifiedType();
353
354  CheckArrayAccess(E);
355
356  return Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
357                                        E, 0, VK_RValue));
358}
359
360ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
361  ExprResult Res = DefaultFunctionArrayConversion(E);
362  if (Res.isInvalid())
363    return ExprError();
364  Res = DefaultLvalueConversion(Res.take());
365  if (Res.isInvalid())
366    return ExprError();
367  return move(Res);
368}
369
370
371/// UsualUnaryConversions - Performs various conversions that are common to most
372/// operators (C99 6.3). The conversions of array and function types are
373/// sometimes suppressed. For example, the array->pointer conversion doesn't
374/// apply if the array is an argument to the sizeof or address (&) operators.
375/// In these instances, this routine should *not* be called.
376ExprResult Sema::UsualUnaryConversions(Expr *E) {
377  // First, convert to an r-value.
378  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
379  if (Res.isInvalid())
380    return Owned(E);
381  E = Res.take();
382
383  QualType Ty = E->getType();
384  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
385
386  // Try to perform integral promotions if the object has a theoretically
387  // promotable type.
388  if (Ty->isIntegralOrUnscopedEnumerationType()) {
389    // C99 6.3.1.1p2:
390    //
391    //   The following may be used in an expression wherever an int or
392    //   unsigned int may be used:
393    //     - an object or expression with an integer type whose integer
394    //       conversion rank is less than or equal to the rank of int
395    //       and unsigned int.
396    //     - A bit-field of type _Bool, int, signed int, or unsigned int.
397    //
398    //   If an int can represent all values of the original type, the
399    //   value is converted to an int; otherwise, it is converted to an
400    //   unsigned int. These are called the integer promotions. All
401    //   other types are unchanged by the integer promotions.
402
403    QualType PTy = Context.isPromotableBitField(E);
404    if (!PTy.isNull()) {
405      E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
406      return Owned(E);
407    }
408    if (Ty->isPromotableIntegerType()) {
409      QualType PT = Context.getPromotedIntegerType(Ty);
410      E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
411      return Owned(E);
412    }
413  }
414  return Owned(E);
415}
416
417/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
418/// do not have a prototype. Arguments that have type float are promoted to
419/// double. All other argument types are converted by UsualUnaryConversions().
420ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
421  QualType Ty = E->getType();
422  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
423
424  ExprResult Res = UsualUnaryConversions(E);
425  if (Res.isInvalid())
426    return Owned(E);
427  E = Res.take();
428
429  // If this is a 'float' (CVR qualified or typedef) promote to double.
430  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
431    E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
432
433  return Owned(E);
434}
435
436/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
437/// will warn if the resulting type is not a POD type, and rejects ObjC
438/// interfaces passed by value.
439ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
440                                            FunctionDecl *FDecl) {
441  ExprResult ExprRes = DefaultArgumentPromotion(E);
442  if (ExprRes.isInvalid())
443    return ExprError();
444  E = ExprRes.take();
445
446  // __builtin_va_start takes the second argument as a "varargs" argument, but
447  // it doesn't actually do anything with it.  It doesn't need to be non-pod
448  // etc.
449  if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
450    return Owned(E);
451
452  // Don't allow one to pass an Objective-C interface to a vararg.
453  if (E->getType()->isObjCObjectType() &&
454    DiagRuntimeBehavior(E->getLocStart(), 0,
455                        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
456                          << E->getType() << CT))
457    return ExprError();
458
459  if (!E->getType()->isPODType()) {
460    // C++0x [expr.call]p7:
461    //   Passing a potentially-evaluated argument of class type (Clause 9)
462    //   having a non-trivial copy constructor, a non-trivial move constructor,
463    //   or a non-trivial destructor, with no corresponding parameter,
464    //   is conditionally-supported with implementation-defined semantics.
465    bool TrivialEnough = false;
466    if (getLangOptions().CPlusPlus0x && !E->getType()->isDependentType())  {
467      if (CXXRecordDecl *Record = E->getType()->getAsCXXRecordDecl()) {
468        if (Record->hasTrivialCopyConstructor() &&
469            Record->hasTrivialMoveConstructor() &&
470            Record->hasTrivialDestructor())
471          TrivialEnough = true;
472      }
473    }
474
475    if (TrivialEnough) {
476      // Nothing to diagnose. This is okay.
477    } else if (DiagRuntimeBehavior(E->getLocStart(), 0,
478                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
479                            << getLangOptions().CPlusPlus0x << E->getType()
480                            << CT)) {
481      // Turn this into a trap.
482      CXXScopeSpec SS;
483      UnqualifiedId Name;
484      Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
485                         E->getLocStart());
486      ExprResult TrapFn = ActOnIdExpression(TUScope, SS, Name, true, false);
487      if (TrapFn.isInvalid())
488        return ExprError();
489
490      ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(), E->getLocStart(),
491                                      MultiExprArg(), E->getLocEnd());
492      if (Call.isInvalid())
493        return ExprError();
494
495      ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
496                                    Call.get(), E);
497      if (Comma.isInvalid())
498        return ExprError();
499
500      E = Comma.get();
501    }
502  }
503
504  return Owned(E);
505}
506
507/// UsualArithmeticConversions - Performs various conversions that are common to
508/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
509/// routine returns the first non-arithmetic type found. The client is
510/// responsible for emitting appropriate error diagnostics.
511/// FIXME: verify the conversion rules for "complex int" are consistent with
512/// GCC.
513QualType Sema::UsualArithmeticConversions(ExprResult &lhsExpr, ExprResult &rhsExpr,
514                                          bool isCompAssign) {
515  if (!isCompAssign) {
516    lhsExpr = UsualUnaryConversions(lhsExpr.take());
517    if (lhsExpr.isInvalid())
518      return QualType();
519  }
520
521  rhsExpr = UsualUnaryConversions(rhsExpr.take());
522  if (rhsExpr.isInvalid())
523    return QualType();
524
525  // For conversion purposes, we ignore any qualifiers.
526  // For example, "const float" and "float" are equivalent.
527  QualType lhs =
528    Context.getCanonicalType(lhsExpr.get()->getType()).getUnqualifiedType();
529  QualType rhs =
530    Context.getCanonicalType(rhsExpr.get()->getType()).getUnqualifiedType();
531
532  // If both types are identical, no conversion is needed.
533  if (lhs == rhs)
534    return lhs;
535
536  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
537  // The caller can deal with this (e.g. pointer + int).
538  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
539    return lhs;
540
541  // Apply unary and bitfield promotions to the LHS's type.
542  QualType lhs_unpromoted = lhs;
543  if (lhs->isPromotableIntegerType())
544    lhs = Context.getPromotedIntegerType(lhs);
545  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr.get());
546  if (!LHSBitfieldPromoteTy.isNull())
547    lhs = LHSBitfieldPromoteTy;
548  if (lhs != lhs_unpromoted && !isCompAssign)
549    lhsExpr = ImpCastExprToType(lhsExpr.take(), lhs, CK_IntegralCast);
550
551  // If both types are identical, no conversion is needed.
552  if (lhs == rhs)
553    return lhs;
554
555  // At this point, we have two different arithmetic types.
556
557  // Handle complex types first (C99 6.3.1.8p1).
558  bool LHSComplexFloat = lhs->isComplexType();
559  bool RHSComplexFloat = rhs->isComplexType();
560  if (LHSComplexFloat || RHSComplexFloat) {
561    // if we have an integer operand, the result is the complex type.
562
563    if (!RHSComplexFloat && !rhs->isRealFloatingType()) {
564      if (rhs->isIntegerType()) {
565        QualType fp = cast<ComplexType>(lhs)->getElementType();
566        rhsExpr = ImpCastExprToType(rhsExpr.take(), fp, CK_IntegralToFloating);
567        rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingRealToComplex);
568      } else {
569        assert(rhs->isComplexIntegerType());
570        rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralComplexToFloatingComplex);
571      }
572      return lhs;
573    }
574
575    if (!LHSComplexFloat && !lhs->isRealFloatingType()) {
576      if (!isCompAssign) {
577        // int -> float -> _Complex float
578        if (lhs->isIntegerType()) {
579          QualType fp = cast<ComplexType>(rhs)->getElementType();
580          lhsExpr = ImpCastExprToType(lhsExpr.take(), fp, CK_IntegralToFloating);
581          lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingRealToComplex);
582        } else {
583          assert(lhs->isComplexIntegerType());
584          lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralComplexToFloatingComplex);
585        }
586      }
587      return rhs;
588    }
589
590    // This handles complex/complex, complex/float, or float/complex.
591    // When both operands are complex, the shorter operand is converted to the
592    // type of the longer, and that is the type of the result. This corresponds
593    // to what is done when combining two real floating-point operands.
594    // The fun begins when size promotion occur across type domains.
595    // From H&S 6.3.4: When one operand is complex and the other is a real
596    // floating-point type, the less precise type is converted, within it's
597    // real or complex domain, to the precision of the other type. For example,
598    // when combining a "long double" with a "double _Complex", the
599    // "double _Complex" is promoted to "long double _Complex".
600    int order = Context.getFloatingTypeOrder(lhs, rhs);
601
602    // If both are complex, just cast to the more precise type.
603    if (LHSComplexFloat && RHSComplexFloat) {
604      if (order > 0) {
605        // _Complex float -> _Complex double
606        rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingComplexCast);
607        return lhs;
608
609      } else if (order < 0) {
610        // _Complex float -> _Complex double
611        if (!isCompAssign)
612          lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingComplexCast);
613        return rhs;
614      }
615      return lhs;
616    }
617
618    // If just the LHS is complex, the RHS needs to be converted,
619    // and the LHS might need to be promoted.
620    if (LHSComplexFloat) {
621      if (order > 0) { // LHS is wider
622        // float -> _Complex double
623        QualType fp = cast<ComplexType>(lhs)->getElementType();
624        rhsExpr = ImpCastExprToType(rhsExpr.take(), fp, CK_FloatingCast);
625        rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingRealToComplex);
626        return lhs;
627      }
628
629      // RHS is at least as wide.  Find its corresponding complex type.
630      QualType result = (order == 0 ? lhs : Context.getComplexType(rhs));
631
632      // double -> _Complex double
633      rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingRealToComplex);
634
635      // _Complex float -> _Complex double
636      if (!isCompAssign && order < 0)
637        lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingComplexCast);
638
639      return result;
640    }
641
642    // Just the RHS is complex, so the LHS needs to be converted
643    // and the RHS might need to be promoted.
644    assert(RHSComplexFloat);
645
646    if (order < 0) { // RHS is wider
647      // float -> _Complex double
648      if (!isCompAssign) {
649        QualType fp = cast<ComplexType>(rhs)->getElementType();
650        lhsExpr = ImpCastExprToType(lhsExpr.take(), fp, CK_FloatingCast);
651        lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingRealToComplex);
652      }
653      return rhs;
654    }
655
656    // LHS is at least as wide.  Find its corresponding complex type.
657    QualType result = (order == 0 ? rhs : Context.getComplexType(lhs));
658
659    // double -> _Complex double
660    if (!isCompAssign)
661      lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingRealToComplex);
662
663    // _Complex float -> _Complex double
664    if (order > 0)
665      rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingComplexCast);
666
667    return result;
668  }
669
670  // Now handle "real" floating types (i.e. float, double, long double).
671  bool LHSFloat = lhs->isRealFloatingType();
672  bool RHSFloat = rhs->isRealFloatingType();
673  if (LHSFloat || RHSFloat) {
674    // If we have two real floating types, convert the smaller operand
675    // to the bigger result.
676    if (LHSFloat && RHSFloat) {
677      int order = Context.getFloatingTypeOrder(lhs, rhs);
678      if (order > 0) {
679        rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingCast);
680        return lhs;
681      }
682
683      assert(order < 0 && "illegal float comparison");
684      if (!isCompAssign)
685        lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingCast);
686      return rhs;
687    }
688
689    // If we have an integer operand, the result is the real floating type.
690    if (LHSFloat) {
691      if (rhs->isIntegerType()) {
692        // Convert rhs to the lhs floating point type.
693        rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralToFloating);
694        return lhs;
695      }
696
697      // Convert both sides to the appropriate complex float.
698      assert(rhs->isComplexIntegerType());
699      QualType result = Context.getComplexType(lhs);
700
701      // _Complex int -> _Complex float
702      rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_IntegralComplexToFloatingComplex);
703
704      // float -> _Complex float
705      if (!isCompAssign)
706        lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingRealToComplex);
707
708      return result;
709    }
710
711    assert(RHSFloat);
712    if (lhs->isIntegerType()) {
713      // Convert lhs to the rhs floating point type.
714      if (!isCompAssign)
715        lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralToFloating);
716      return rhs;
717    }
718
719    // Convert both sides to the appropriate complex float.
720    assert(lhs->isComplexIntegerType());
721    QualType result = Context.getComplexType(rhs);
722
723    // _Complex int -> _Complex float
724    if (!isCompAssign)
725      lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_IntegralComplexToFloatingComplex);
726
727    // float -> _Complex float
728    rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingRealToComplex);
729
730    return result;
731  }
732
733  // Handle GCC complex int extension.
734  // FIXME: if the operands are (int, _Complex long), we currently
735  // don't promote the complex.  Also, signedness?
736  const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
737  const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
738  if (lhsComplexInt && rhsComplexInt) {
739    int order = Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
740                                            rhsComplexInt->getElementType());
741    assert(order && "inequal types with equal element ordering");
742    if (order > 0) {
743      // _Complex int -> _Complex long
744      rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralComplexCast);
745      return lhs;
746    }
747
748    if (!isCompAssign)
749      lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralComplexCast);
750    return rhs;
751  } else if (lhsComplexInt) {
752    // int -> _Complex int
753    rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralRealToComplex);
754    return lhs;
755  } else if (rhsComplexInt) {
756    // int -> _Complex int
757    if (!isCompAssign)
758      lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralRealToComplex);
759    return rhs;
760  }
761
762  // Finally, we have two differing integer types.
763  // The rules for this case are in C99 6.3.1.8
764  int compare = Context.getIntegerTypeOrder(lhs, rhs);
765  bool lhsSigned = lhs->hasSignedIntegerRepresentation(),
766       rhsSigned = rhs->hasSignedIntegerRepresentation();
767  if (lhsSigned == rhsSigned) {
768    // Same signedness; use the higher-ranked type
769    if (compare >= 0) {
770      rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
771      return lhs;
772    } else if (!isCompAssign)
773      lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
774    return rhs;
775  } else if (compare != (lhsSigned ? 1 : -1)) {
776    // The unsigned type has greater than or equal rank to the
777    // signed type, so use the unsigned type
778    if (rhsSigned) {
779      rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
780      return lhs;
781    } else if (!isCompAssign)
782      lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
783    return rhs;
784  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
785    // The two types are different widths; if we are here, that
786    // means the signed type is larger than the unsigned type, so
787    // use the signed type.
788    if (lhsSigned) {
789      rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
790      return lhs;
791    } else if (!isCompAssign)
792      lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
793    return rhs;
794  } else {
795    // The signed type is higher-ranked than the unsigned type,
796    // but isn't actually any bigger (like unsigned int and long
797    // on most 32-bit systems).  Use the unsigned type corresponding
798    // to the signed type.
799    QualType result =
800      Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
801    rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_IntegralCast);
802    if (!isCompAssign)
803      lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_IntegralCast);
804    return result;
805  }
806}
807
808//===----------------------------------------------------------------------===//
809//  Semantic Analysis for various Expression Types
810//===----------------------------------------------------------------------===//
811
812
813ExprResult
814Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
815                                SourceLocation DefaultLoc,
816                                SourceLocation RParenLoc,
817                                Expr *ControllingExpr,
818                                MultiTypeArg types,
819                                MultiExprArg exprs) {
820  unsigned NumAssocs = types.size();
821  assert(NumAssocs == exprs.size());
822
823  ParsedType *ParsedTypes = types.release();
824  Expr **Exprs = exprs.release();
825
826  TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
827  for (unsigned i = 0; i < NumAssocs; ++i) {
828    if (ParsedTypes[i])
829      (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
830    else
831      Types[i] = 0;
832  }
833
834  ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
835                                             ControllingExpr, Types, Exprs,
836                                             NumAssocs);
837  delete [] Types;
838  return ER;
839}
840
841ExprResult
842Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
843                                 SourceLocation DefaultLoc,
844                                 SourceLocation RParenLoc,
845                                 Expr *ControllingExpr,
846                                 TypeSourceInfo **Types,
847                                 Expr **Exprs,
848                                 unsigned NumAssocs) {
849  bool TypeErrorFound = false,
850       IsResultDependent = ControllingExpr->isTypeDependent(),
851       ContainsUnexpandedParameterPack
852         = ControllingExpr->containsUnexpandedParameterPack();
853
854  for (unsigned i = 0; i < NumAssocs; ++i) {
855    if (Exprs[i]->containsUnexpandedParameterPack())
856      ContainsUnexpandedParameterPack = true;
857
858    if (Types[i]) {
859      if (Types[i]->getType()->containsUnexpandedParameterPack())
860        ContainsUnexpandedParameterPack = true;
861
862      if (Types[i]->getType()->isDependentType()) {
863        IsResultDependent = true;
864      } else {
865        // C1X 6.5.1.1p2 "The type name in a generic association shall specify a
866        // complete object type other than a variably modified type."
867        unsigned D = 0;
868        if (Types[i]->getType()->isIncompleteType())
869          D = diag::err_assoc_type_incomplete;
870        else if (!Types[i]->getType()->isObjectType())
871          D = diag::err_assoc_type_nonobject;
872        else if (Types[i]->getType()->isVariablyModifiedType())
873          D = diag::err_assoc_type_variably_modified;
874
875        if (D != 0) {
876          Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
877            << Types[i]->getTypeLoc().getSourceRange()
878            << Types[i]->getType();
879          TypeErrorFound = true;
880        }
881
882        // C1X 6.5.1.1p2 "No two generic associations in the same generic
883        // selection shall specify compatible types."
884        for (unsigned j = i+1; j < NumAssocs; ++j)
885          if (Types[j] && !Types[j]->getType()->isDependentType() &&
886              Context.typesAreCompatible(Types[i]->getType(),
887                                         Types[j]->getType())) {
888            Diag(Types[j]->getTypeLoc().getBeginLoc(),
889                 diag::err_assoc_compatible_types)
890              << Types[j]->getTypeLoc().getSourceRange()
891              << Types[j]->getType()
892              << Types[i]->getType();
893            Diag(Types[i]->getTypeLoc().getBeginLoc(),
894                 diag::note_compat_assoc)
895              << Types[i]->getTypeLoc().getSourceRange()
896              << Types[i]->getType();
897            TypeErrorFound = true;
898          }
899      }
900    }
901  }
902  if (TypeErrorFound)
903    return ExprError();
904
905  // If we determined that the generic selection is result-dependent, don't
906  // try to compute the result expression.
907  if (IsResultDependent)
908    return Owned(new (Context) GenericSelectionExpr(
909                   Context, KeyLoc, ControllingExpr,
910                   Types, Exprs, NumAssocs, DefaultLoc,
911                   RParenLoc, ContainsUnexpandedParameterPack));
912
913  llvm::SmallVector<unsigned, 1> CompatIndices;
914  unsigned DefaultIndex = -1U;
915  for (unsigned i = 0; i < NumAssocs; ++i) {
916    if (!Types[i])
917      DefaultIndex = i;
918    else if (Context.typesAreCompatible(ControllingExpr->getType(),
919                                        Types[i]->getType()))
920      CompatIndices.push_back(i);
921  }
922
923  // C1X 6.5.1.1p2 "The controlling expression of a generic selection shall have
924  // type compatible with at most one of the types named in its generic
925  // association list."
926  if (CompatIndices.size() > 1) {
927    // We strip parens here because the controlling expression is typically
928    // parenthesized in macro definitions.
929    ControllingExpr = ControllingExpr->IgnoreParens();
930    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
931      << ControllingExpr->getSourceRange() << ControllingExpr->getType()
932      << (unsigned) CompatIndices.size();
933    for (llvm::SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
934         E = CompatIndices.end(); I != E; ++I) {
935      Diag(Types[*I]->getTypeLoc().getBeginLoc(),
936           diag::note_compat_assoc)
937        << Types[*I]->getTypeLoc().getSourceRange()
938        << Types[*I]->getType();
939    }
940    return ExprError();
941  }
942
943  // C1X 6.5.1.1p2 "If a generic selection has no default generic association,
944  // its controlling expression shall have type compatible with exactly one of
945  // the types named in its generic association list."
946  if (DefaultIndex == -1U && CompatIndices.size() == 0) {
947    // We strip parens here because the controlling expression is typically
948    // parenthesized in macro definitions.
949    ControllingExpr = ControllingExpr->IgnoreParens();
950    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
951      << ControllingExpr->getSourceRange() << ControllingExpr->getType();
952    return ExprError();
953  }
954
955  // C1X 6.5.1.1p3 "If a generic selection has a generic association with a
956  // type name that is compatible with the type of the controlling expression,
957  // then the result expression of the generic selection is the expression
958  // in that generic association. Otherwise, the result expression of the
959  // generic selection is the expression in the default generic association."
960  unsigned ResultIndex =
961    CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
962
963  return Owned(new (Context) GenericSelectionExpr(
964                 Context, KeyLoc, ControllingExpr,
965                 Types, Exprs, NumAssocs, DefaultLoc,
966                 RParenLoc, ContainsUnexpandedParameterPack,
967                 ResultIndex));
968}
969
970/// ActOnStringLiteral - The specified tokens were lexed as pasted string
971/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
972/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
973/// multiple tokens.  However, the common case is that StringToks points to one
974/// string.
975///
976ExprResult
977Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
978  assert(NumStringToks && "Must have at least one string!");
979
980  StringLiteralParser Literal(StringToks, NumStringToks, PP);
981  if (Literal.hadError)
982    return ExprError();
983
984  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
985  for (unsigned i = 0; i != NumStringToks; ++i)
986    StringTokLocs.push_back(StringToks[i].getLocation());
987
988  QualType StrTy = Context.CharTy;
989  if (Literal.AnyWide)
990    StrTy = Context.getWCharType();
991  else if (Literal.Pascal)
992    StrTy = Context.UnsignedCharTy;
993
994  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
995  if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
996    StrTy.addConst();
997
998  // Get an array type for the string, according to C99 6.4.5.  This includes
999  // the nul terminator character as well as the string length for pascal
1000  // strings.
1001  StrTy = Context.getConstantArrayType(StrTy,
1002                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
1003                                       ArrayType::Normal, 0);
1004
1005  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1006  return Owned(StringLiteral::Create(Context, Literal.GetString(),
1007                                     Literal.GetStringLength(),
1008                                     Literal.AnyWide, Literal.Pascal, StrTy,
1009                                     &StringTokLocs[0],
1010                                     StringTokLocs.size()));
1011}
1012
1013enum CaptureResult {
1014  /// No capture is required.
1015  CR_NoCapture,
1016
1017  /// A capture is required.
1018  CR_Capture,
1019
1020  /// A by-ref capture is required.
1021  CR_CaptureByRef,
1022
1023  /// An error occurred when trying to capture the given variable.
1024  CR_Error
1025};
1026
1027/// Diagnose an uncapturable value reference.
1028///
1029/// \param var - the variable referenced
1030/// \param DC - the context which we couldn't capture through
1031static CaptureResult
1032diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
1033                                   VarDecl *var, DeclContext *DC) {
1034  switch (S.ExprEvalContexts.back().Context) {
1035  case Sema::Unevaluated:
1036    // The argument will never be evaluated, so don't complain.
1037    return CR_NoCapture;
1038
1039  case Sema::PotentiallyEvaluated:
1040  case Sema::PotentiallyEvaluatedIfUsed:
1041    break;
1042
1043  case Sema::PotentiallyPotentiallyEvaluated:
1044    // FIXME: delay these!
1045    break;
1046  }
1047
1048  // Don't diagnose about capture if we're not actually in code right
1049  // now; in general, there are more appropriate places that will
1050  // diagnose this.
1051  if (!S.CurContext->isFunctionOrMethod()) return CR_NoCapture;
1052
1053  // Certain madnesses can happen with parameter declarations, which
1054  // we want to ignore.
1055  if (isa<ParmVarDecl>(var)) {
1056    // - If the parameter still belongs to the translation unit, then
1057    //   we're actually just using one parameter in the declaration of
1058    //   the next.  This is useful in e.g. VLAs.
1059    if (isa<TranslationUnitDecl>(var->getDeclContext()))
1060      return CR_NoCapture;
1061
1062    // - This particular madness can happen in ill-formed default
1063    //   arguments; claim it's okay and let downstream code handle it.
1064    if (S.CurContext == var->getDeclContext()->getParent())
1065      return CR_NoCapture;
1066  }
1067
1068  DeclarationName functionName;
1069  if (FunctionDecl *fn = dyn_cast<FunctionDecl>(var->getDeclContext()))
1070    functionName = fn->getDeclName();
1071  // FIXME: variable from enclosing block that we couldn't capture from!
1072
1073  S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
1074    << var->getIdentifier() << functionName;
1075  S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
1076    << var->getIdentifier();
1077
1078  return CR_Error;
1079}
1080
1081/// There is a well-formed capture at a particular scope level;
1082/// propagate it through all the nested blocks.
1083static CaptureResult propagateCapture(Sema &S, unsigned validScopeIndex,
1084                                      const BlockDecl::Capture &capture) {
1085  VarDecl *var = capture.getVariable();
1086
1087  // Update all the inner blocks with the capture information.
1088  for (unsigned i = validScopeIndex + 1, e = S.FunctionScopes.size();
1089         i != e; ++i) {
1090    BlockScopeInfo *innerBlock = cast<BlockScopeInfo>(S.FunctionScopes[i]);
1091    innerBlock->Captures.push_back(
1092      BlockDecl::Capture(capture.getVariable(), capture.isByRef(),
1093                         /*nested*/ true, capture.getCopyExpr()));
1094    innerBlock->CaptureMap[var] = innerBlock->Captures.size(); // +1
1095  }
1096
1097  return capture.isByRef() ? CR_CaptureByRef : CR_Capture;
1098}
1099
1100/// shouldCaptureValueReference - Determine if a reference to the
1101/// given value in the current context requires a variable capture.
1102///
1103/// This also keeps the captures set in the BlockScopeInfo records
1104/// up-to-date.
1105static CaptureResult shouldCaptureValueReference(Sema &S, SourceLocation loc,
1106                                                 ValueDecl *value) {
1107  // Only variables ever require capture.
1108  VarDecl *var = dyn_cast<VarDecl>(value);
1109  if (!var) return CR_NoCapture;
1110
1111  // Fast path: variables from the current context never require capture.
1112  DeclContext *DC = S.CurContext;
1113  if (var->getDeclContext() == DC) return CR_NoCapture;
1114
1115  // Only variables with local storage require capture.
1116  // FIXME: What about 'const' variables in C++?
1117  if (!var->hasLocalStorage()) return CR_NoCapture;
1118
1119  // Otherwise, we need to capture.
1120
1121  unsigned functionScopesIndex = S.FunctionScopes.size() - 1;
1122  do {
1123    // Only blocks (and eventually C++0x closures) can capture; other
1124    // scopes don't work.
1125    if (!isa<BlockDecl>(DC))
1126      return diagnoseUncapturableValueReference(S, loc, var, DC);
1127
1128    BlockScopeInfo *blockScope =
1129      cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
1130    assert(blockScope->TheDecl == static_cast<BlockDecl*>(DC));
1131
1132    // Check whether we've already captured it in this block.  If so,
1133    // we're done.
1134    if (unsigned indexPlus1 = blockScope->CaptureMap[var])
1135      return propagateCapture(S, functionScopesIndex,
1136                              blockScope->Captures[indexPlus1 - 1]);
1137
1138    functionScopesIndex--;
1139    DC = cast<BlockDecl>(DC)->getDeclContext();
1140  } while (var->getDeclContext() != DC);
1141
1142  // Okay, we descended all the way to the block that defines the variable.
1143  // Actually try to capture it.
1144  QualType type = var->getType();
1145
1146  // Prohibit variably-modified types.
1147  if (type->isVariablyModifiedType()) {
1148    S.Diag(loc, diag::err_ref_vm_type);
1149    S.Diag(var->getLocation(), diag::note_declared_at);
1150    return CR_Error;
1151  }
1152
1153  // Prohibit arrays, even in __block variables, but not references to
1154  // them.
1155  if (type->isArrayType()) {
1156    S.Diag(loc, diag::err_ref_array_type);
1157    S.Diag(var->getLocation(), diag::note_declared_at);
1158    return CR_Error;
1159  }
1160
1161  S.MarkDeclarationReferenced(loc, var);
1162
1163  // The BlocksAttr indicates the variable is bound by-reference.
1164  bool byRef = var->hasAttr<BlocksAttr>();
1165
1166  // Build a copy expression.
1167  Expr *copyExpr = 0;
1168  const RecordType *rtype;
1169  if (!byRef && S.getLangOptions().CPlusPlus && !type->isDependentType() &&
1170      (rtype = type->getAs<RecordType>())) {
1171
1172    // The capture logic needs the destructor, so make sure we mark it.
1173    // Usually this is unnecessary because most local variables have
1174    // their destructors marked at declaration time, but parameters are
1175    // an exception because it's technically only the call site that
1176    // actually requires the destructor.
1177    if (isa<ParmVarDecl>(var))
1178      S.FinalizeVarWithDestructor(var, rtype);
1179
1180    // According to the blocks spec, the capture of a variable from
1181    // the stack requires a const copy constructor.  This is not true
1182    // of the copy/move done to move a __block variable to the heap.
1183    type.addConst();
1184
1185    Expr *declRef = new (S.Context) DeclRefExpr(var, type, VK_LValue, loc);
1186    ExprResult result =
1187      S.PerformCopyInitialization(
1188                      InitializedEntity::InitializeBlock(var->getLocation(),
1189                                                         type, false),
1190                                  loc, S.Owned(declRef));
1191
1192    // Build a full-expression copy expression if initialization
1193    // succeeded and used a non-trivial constructor.  Recover from
1194    // errors by pretending that the copy isn't necessary.
1195    if (!result.isInvalid() &&
1196        !cast<CXXConstructExpr>(result.get())->getConstructor()->isTrivial()) {
1197      result = S.MaybeCreateExprWithCleanups(result);
1198      copyExpr = result.take();
1199    }
1200  }
1201
1202  // We're currently at the declarer; go back to the closure.
1203  functionScopesIndex++;
1204  BlockScopeInfo *blockScope =
1205    cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
1206
1207  // Build a valid capture in this scope.
1208  blockScope->Captures.push_back(
1209                 BlockDecl::Capture(var, byRef, /*nested*/ false, copyExpr));
1210  blockScope->CaptureMap[var] = blockScope->Captures.size(); // +1
1211
1212  // Propagate that to inner captures if necessary.
1213  return propagateCapture(S, functionScopesIndex,
1214                          blockScope->Captures.back());
1215}
1216
1217static ExprResult BuildBlockDeclRefExpr(Sema &S, ValueDecl *vd,
1218                                        const DeclarationNameInfo &NameInfo,
1219                                        bool byRef) {
1220  assert(isa<VarDecl>(vd) && "capturing non-variable");
1221
1222  VarDecl *var = cast<VarDecl>(vd);
1223  assert(var->hasLocalStorage() && "capturing non-local");
1224  assert(byRef == var->hasAttr<BlocksAttr>() && "byref set wrong");
1225
1226  QualType exprType = var->getType().getNonReferenceType();
1227
1228  BlockDeclRefExpr *BDRE;
1229  if (!byRef) {
1230    // The variable will be bound by copy; make it const within the
1231    // closure, but record that this was done in the expression.
1232    bool constAdded = !exprType.isConstQualified();
1233    exprType.addConst();
1234
1235    BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
1236                                            NameInfo.getLoc(), false,
1237                                            constAdded);
1238  } else {
1239    BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
1240                                            NameInfo.getLoc(), true);
1241  }
1242
1243  return S.Owned(BDRE);
1244}
1245
1246ExprResult
1247Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1248                       SourceLocation Loc,
1249                       const CXXScopeSpec *SS) {
1250  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1251  return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1252}
1253
1254/// BuildDeclRefExpr - Build an expression that references a
1255/// declaration that does not require a closure capture.
1256ExprResult
1257Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1258                       const DeclarationNameInfo &NameInfo,
1259                       const CXXScopeSpec *SS) {
1260  MarkDeclarationReferenced(NameInfo.getLoc(), D);
1261
1262  Expr *E = DeclRefExpr::Create(Context,
1263                                SS? SS->getWithLocInContext(Context)
1264                                  : NestedNameSpecifierLoc(),
1265                                D, NameInfo, Ty, VK);
1266
1267  // Just in case we're building an illegal pointer-to-member.
1268  if (isa<FieldDecl>(D) && cast<FieldDecl>(D)->getBitWidth())
1269    E->setObjectKind(OK_BitField);
1270
1271  return Owned(E);
1272}
1273
1274static ExprResult
1275BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
1276                        const CXXScopeSpec &SS, FieldDecl *Field,
1277                        DeclAccessPair FoundDecl,
1278                        const DeclarationNameInfo &MemberNameInfo);
1279
1280ExprResult
1281Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
1282                                               SourceLocation loc,
1283                                               IndirectFieldDecl *indirectField,
1284                                               Expr *baseObjectExpr,
1285                                               SourceLocation opLoc) {
1286  // First, build the expression that refers to the base object.
1287
1288  bool baseObjectIsPointer = false;
1289  Qualifiers baseQuals;
1290
1291  // Case 1:  the base of the indirect field is not a field.
1292  VarDecl *baseVariable = indirectField->getVarDecl();
1293  CXXScopeSpec EmptySS;
1294  if (baseVariable) {
1295    assert(baseVariable->getType()->isRecordType());
1296
1297    // In principle we could have a member access expression that
1298    // accesses an anonymous struct/union that's a static member of
1299    // the base object's class.  However, under the current standard,
1300    // static data members cannot be anonymous structs or unions.
1301    // Supporting this is as easy as building a MemberExpr here.
1302    assert(!baseObjectExpr && "anonymous struct/union is static data member?");
1303
1304    DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
1305
1306    ExprResult result =
1307      BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
1308    if (result.isInvalid()) return ExprError();
1309
1310    baseObjectExpr = result.take();
1311    baseObjectIsPointer = false;
1312    baseQuals = baseObjectExpr->getType().getQualifiers();
1313
1314  // Case 2: the base of the indirect field is a field and the user
1315  // wrote a member expression.
1316  } else if (baseObjectExpr) {
1317    // The caller provided the base object expression. Determine
1318    // whether its a pointer and whether it adds any qualifiers to the
1319    // anonymous struct/union fields we're looking into.
1320    QualType objectType = baseObjectExpr->getType();
1321
1322    if (const PointerType *ptr = objectType->getAs<PointerType>()) {
1323      baseObjectIsPointer = true;
1324      objectType = ptr->getPointeeType();
1325    } else {
1326      baseObjectIsPointer = false;
1327    }
1328    baseQuals = objectType.getQualifiers();
1329
1330  // Case 3: the base of the indirect field is a field and we should
1331  // build an implicit member access.
1332  } else {
1333    // We've found a member of an anonymous struct/union that is
1334    // inside a non-anonymous struct/union, so in a well-formed
1335    // program our base object expression is "this".
1336    QualType ThisTy = getAndCaptureCurrentThisType();
1337    if (ThisTy.isNull()) {
1338      Diag(loc, diag::err_invalid_member_use_in_static_method)
1339        << indirectField->getDeclName();
1340      return ExprError();
1341    }
1342
1343    // Our base object expression is "this".
1344    baseObjectExpr =
1345      new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
1346    baseObjectIsPointer = true;
1347    baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
1348  }
1349
1350  // Build the implicit member references to the field of the
1351  // anonymous struct/union.
1352  Expr *result = baseObjectExpr;
1353  IndirectFieldDecl::chain_iterator
1354    FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
1355
1356  // Build the first member access in the chain with full information.
1357  if (!baseVariable) {
1358    FieldDecl *field = cast<FieldDecl>(*FI);
1359
1360    // FIXME: use the real found-decl info!
1361    DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
1362
1363    // Make a nameInfo that properly uses the anonymous name.
1364    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
1365
1366    result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
1367                                     EmptySS, field, foundDecl,
1368                                     memberNameInfo).take();
1369    baseObjectIsPointer = false;
1370
1371    // FIXME: check qualified member access
1372  }
1373
1374  // In all cases, we should now skip the first declaration in the chain.
1375  ++FI;
1376
1377  while (FI != FEnd) {
1378    FieldDecl *field = cast<FieldDecl>(*FI++);
1379
1380    // FIXME: these are somewhat meaningless
1381    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
1382    DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
1383
1384    result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
1385                                     (FI == FEnd? SS : EmptySS), field,
1386                                     foundDecl, memberNameInfo)
1387      .take();
1388  }
1389
1390  return Owned(result);
1391}
1392
1393/// Decomposes the given name into a DeclarationNameInfo, its location, and
1394/// possibly a list of template arguments.
1395///
1396/// If this produces template arguments, it is permitted to call
1397/// DecomposeTemplateName.
1398///
1399/// This actually loses a lot of source location information for
1400/// non-standard name kinds; we should consider preserving that in
1401/// some way.
1402static void DecomposeUnqualifiedId(Sema &SemaRef,
1403                                   const UnqualifiedId &Id,
1404                                   TemplateArgumentListInfo &Buffer,
1405                                   DeclarationNameInfo &NameInfo,
1406                             const TemplateArgumentListInfo *&TemplateArgs) {
1407  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1408    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1409    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1410
1411    ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
1412                                       Id.TemplateId->getTemplateArgs(),
1413                                       Id.TemplateId->NumArgs);
1414    SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
1415    TemplateArgsPtr.release();
1416
1417    TemplateName TName = Id.TemplateId->Template.get();
1418    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1419    NameInfo = SemaRef.Context.getNameForTemplate(TName, TNameLoc);
1420    TemplateArgs = &Buffer;
1421  } else {
1422    NameInfo = SemaRef.GetNameFromUnqualifiedId(Id);
1423    TemplateArgs = 0;
1424  }
1425}
1426
1427/// Determines if the given class is provably not derived from all of
1428/// the prospective base classes.
1429static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
1430                                     CXXRecordDecl *Record,
1431                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
1432  if (Bases.count(Record->getCanonicalDecl()))
1433    return false;
1434
1435  RecordDecl *RD = Record->getDefinition();
1436  if (!RD) return false;
1437  Record = cast<CXXRecordDecl>(RD);
1438
1439  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
1440         E = Record->bases_end(); I != E; ++I) {
1441    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
1442    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
1443    if (!BaseRT) return false;
1444
1445    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
1446    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
1447      return false;
1448  }
1449
1450  return true;
1451}
1452
1453enum IMAKind {
1454  /// The reference is definitely not an instance member access.
1455  IMA_Static,
1456
1457  /// The reference may be an implicit instance member access.
1458  IMA_Mixed,
1459
1460  /// The reference may be to an instance member, but it is invalid if
1461  /// so, because the context is not an instance method.
1462  IMA_Mixed_StaticContext,
1463
1464  /// The reference may be to an instance member, but it is invalid if
1465  /// so, because the context is from an unrelated class.
1466  IMA_Mixed_Unrelated,
1467
1468  /// The reference is definitely an implicit instance member access.
1469  IMA_Instance,
1470
1471  /// The reference may be to an unresolved using declaration.
1472  IMA_Unresolved,
1473
1474  /// The reference may be to an unresolved using declaration and the
1475  /// context is not an instance method.
1476  IMA_Unresolved_StaticContext,
1477
1478  /// All possible referrents are instance members and the current
1479  /// context is not an instance method.
1480  IMA_Error_StaticContext,
1481
1482  /// All possible referrents are instance members of an unrelated
1483  /// class.
1484  IMA_Error_Unrelated
1485};
1486
1487/// The given lookup names class member(s) and is not being used for
1488/// an address-of-member expression.  Classify the type of access
1489/// according to whether it's possible that this reference names an
1490/// instance member.  This is best-effort; it is okay to
1491/// conservatively answer "yes", in which case some errors will simply
1492/// not be caught until template-instantiation.
1493static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
1494                                            Scope *CurScope,
1495                                            const LookupResult &R) {
1496  assert(!R.empty() && (*R.begin())->isCXXClassMember());
1497
1498  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
1499
1500  bool isStaticContext =
1501    (!isa<CXXMethodDecl>(DC) ||
1502     cast<CXXMethodDecl>(DC)->isStatic());
1503
1504  // C++0x [expr.prim]p4:
1505  //   Otherwise, if a member-declarator declares a non-static data member
1506  // of a class X, the expression this is a prvalue of type "pointer to X"
1507  // within the optional brace-or-equal-initializer.
1508  if (CurScope->getFlags() & Scope::ThisScope)
1509    isStaticContext = false;
1510
1511  if (R.isUnresolvableResult())
1512    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
1513
1514  // Collect all the declaring classes of instance members we find.
1515  bool hasNonInstance = false;
1516  bool hasField = false;
1517  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
1518  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1519    NamedDecl *D = *I;
1520
1521    if (D->isCXXInstanceMember()) {
1522      if (dyn_cast<FieldDecl>(D))
1523        hasField = true;
1524
1525      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
1526      Classes.insert(R->getCanonicalDecl());
1527    }
1528    else
1529      hasNonInstance = true;
1530  }
1531
1532  // If we didn't find any instance members, it can't be an implicit
1533  // member reference.
1534  if (Classes.empty())
1535    return IMA_Static;
1536
1537  // If the current context is not an instance method, it can't be
1538  // an implicit member reference.
1539  if (isStaticContext) {
1540    if (hasNonInstance)
1541        return IMA_Mixed_StaticContext;
1542
1543    if (SemaRef.getLangOptions().CPlusPlus0x && hasField) {
1544      // C++0x [expr.prim.general]p10:
1545      //   An id-expression that denotes a non-static data member or non-static
1546      //   member function of a class can only be used:
1547      //   (...)
1548      //   - if that id-expression denotes a non-static data member and it appears in an unevaluated operand.
1549      const Sema::ExpressionEvaluationContextRecord& record = SemaRef.ExprEvalContexts.back();
1550      bool isUnevaluatedExpression = record.Context == Sema::Unevaluated;
1551      if (isUnevaluatedExpression)
1552        return IMA_Mixed_StaticContext;
1553    }
1554
1555    return IMA_Error_StaticContext;
1556  }
1557
1558  CXXRecordDecl *contextClass;
1559  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
1560    contextClass = MD->getParent()->getCanonicalDecl();
1561  else
1562    contextClass = cast<CXXRecordDecl>(DC);
1563
1564  // [class.mfct.non-static]p3:
1565  // ...is used in the body of a non-static member function of class X,
1566  // if name lookup (3.4.1) resolves the name in the id-expression to a
1567  // non-static non-type member of some class C [...]
1568  // ...if C is not X or a base class of X, the class member access expression
1569  // is ill-formed.
1570  if (R.getNamingClass() &&
1571      contextClass != R.getNamingClass()->getCanonicalDecl() &&
1572      contextClass->isProvablyNotDerivedFrom(R.getNamingClass()))
1573    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
1574
1575  // If we can prove that the current context is unrelated to all the
1576  // declaring classes, it can't be an implicit member reference (in
1577  // which case it's an error if any of those members are selected).
1578  if (IsProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
1579    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
1580
1581  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
1582}
1583
1584/// Diagnose a reference to a field with no object available.
1585static void DiagnoseInstanceReference(Sema &SemaRef,
1586                                      const CXXScopeSpec &SS,
1587                                      NamedDecl *rep,
1588                                      const DeclarationNameInfo &nameInfo) {
1589  SourceLocation Loc = nameInfo.getLoc();
1590  SourceRange Range(Loc);
1591  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
1592
1593  if (isa<FieldDecl>(rep) || isa<IndirectFieldDecl>(rep)) {
1594    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
1595      if (MD->isStatic()) {
1596        // "invalid use of member 'x' in static member function"
1597        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
1598          << Range << nameInfo.getName();
1599        return;
1600      }
1601    }
1602
1603    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
1604      << nameInfo.getName() << Range;
1605    return;
1606  }
1607
1608  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
1609}
1610
1611/// Diagnose an empty lookup.
1612///
1613/// \return false if new lookup candidates were found
1614bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1615                               CorrectTypoContext CTC) {
1616  DeclarationName Name = R.getLookupName();
1617
1618  unsigned diagnostic = diag::err_undeclared_var_use;
1619  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1620  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1621      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1622      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1623    diagnostic = diag::err_undeclared_use;
1624    diagnostic_suggest = diag::err_undeclared_use_suggest;
1625  }
1626
1627  // If the original lookup was an unqualified lookup, fake an
1628  // unqualified lookup.  This is useful when (for example) the
1629  // original lookup would not have found something because it was a
1630  // dependent name.
1631  for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
1632       DC; DC = DC->getParent()) {
1633    if (isa<CXXRecordDecl>(DC)) {
1634      LookupQualifiedName(R, DC);
1635
1636      if (!R.empty()) {
1637        // Don't give errors about ambiguities in this lookup.
1638        R.suppressDiagnostics();
1639
1640        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1641        bool isInstance = CurMethod &&
1642                          CurMethod->isInstance() &&
1643                          DC == CurMethod->getParent();
1644
1645        // Give a code modification hint to insert 'this->'.
1646        // TODO: fixit for inserting 'Base<T>::' in the other cases.
1647        // Actually quite difficult!
1648        if (isInstance) {
1649          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1650              CallsUndergoingInstantiation.back()->getCallee());
1651          CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
1652              CurMethod->getInstantiatedFromMemberFunction());
1653          if (DepMethod) {
1654            Diag(R.getNameLoc(), diagnostic) << Name
1655              << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1656            QualType DepThisType = DepMethod->getThisType(Context);
1657            CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1658                                       R.getNameLoc(), DepThisType, false);
1659            TemplateArgumentListInfo TList;
1660            if (ULE->hasExplicitTemplateArgs())
1661              ULE->copyTemplateArgumentsInto(TList);
1662
1663            CXXScopeSpec SS;
1664            SS.Adopt(ULE->getQualifierLoc());
1665            CXXDependentScopeMemberExpr *DepExpr =
1666                CXXDependentScopeMemberExpr::Create(
1667                    Context, DepThis, DepThisType, true, SourceLocation(),
1668                    SS.getWithLocInContext(Context), NULL,
1669                    R.getLookupNameInfo(), &TList);
1670            CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1671          } else {
1672            // FIXME: we should be able to handle this case too. It is correct
1673            // to add this-> here. This is a workaround for PR7947.
1674            Diag(R.getNameLoc(), diagnostic) << Name;
1675          }
1676        } else {
1677          Diag(R.getNameLoc(), diagnostic) << Name;
1678        }
1679
1680        // Do we really want to note all of these?
1681        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1682          Diag((*I)->getLocation(), diag::note_dependent_var_use);
1683
1684        // Tell the callee to try to recover.
1685        return false;
1686      }
1687
1688      R.clear();
1689    }
1690  }
1691
1692  // We didn't find anything, so try to correct for a typo.
1693  DeclarationName Corrected;
1694  if (S && (Corrected = CorrectTypo(R, S, &SS, 0, false, CTC))) {
1695    if (!R.empty()) {
1696      if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
1697        if (SS.isEmpty())
1698          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
1699            << FixItHint::CreateReplacement(R.getNameLoc(),
1700                                            R.getLookupName().getAsString());
1701        else
1702          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1703            << Name << computeDeclContext(SS, false) << R.getLookupName()
1704            << SS.getRange()
1705            << FixItHint::CreateReplacement(R.getNameLoc(),
1706                                            R.getLookupName().getAsString());
1707        if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
1708          Diag(ND->getLocation(), diag::note_previous_decl)
1709            << ND->getDeclName();
1710
1711        // Tell the callee to try to recover.
1712        return false;
1713      }
1714
1715      if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
1716        // FIXME: If we ended up with a typo for a type name or
1717        // Objective-C class name, we're in trouble because the parser
1718        // is in the wrong place to recover. Suggest the typo
1719        // correction, but don't make it a fix-it since we're not going
1720        // to recover well anyway.
1721        if (SS.isEmpty())
1722          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
1723        else
1724          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1725            << Name << computeDeclContext(SS, false) << R.getLookupName()
1726            << SS.getRange();
1727
1728        // Don't try to recover; it won't work.
1729        return true;
1730      }
1731    } else {
1732      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1733      // because we aren't able to recover.
1734      if (SS.isEmpty())
1735        Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected;
1736      else
1737        Diag(R.getNameLoc(), diag::err_no_member_suggest)
1738        << Name << computeDeclContext(SS, false) << Corrected
1739        << SS.getRange();
1740      return true;
1741    }
1742    R.clear();
1743  }
1744
1745  // Emit a special diagnostic for failed member lookups.
1746  // FIXME: computing the declaration context might fail here (?)
1747  if (!SS.isEmpty()) {
1748    Diag(R.getNameLoc(), diag::err_no_member)
1749      << Name << computeDeclContext(SS, false)
1750      << SS.getRange();
1751    return true;
1752  }
1753
1754  // Give up, we can't recover.
1755  Diag(R.getNameLoc(), diagnostic) << Name;
1756  return true;
1757}
1758
1759ObjCPropertyDecl *Sema::canSynthesizeProvisionalIvar(IdentifierInfo *II) {
1760  ObjCMethodDecl *CurMeth = getCurMethodDecl();
1761  ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1762  if (!IDecl)
1763    return 0;
1764  ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1765  if (!ClassImpDecl)
1766    return 0;
1767  ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
1768  if (!property)
1769    return 0;
1770  if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
1771    if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
1772        PIDecl->getPropertyIvarDecl())
1773      return 0;
1774  return property;
1775}
1776
1777bool Sema::canSynthesizeProvisionalIvar(ObjCPropertyDecl *Property) {
1778  ObjCMethodDecl *CurMeth = getCurMethodDecl();
1779  ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1780  if (!IDecl)
1781    return false;
1782  ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1783  if (!ClassImpDecl)
1784    return false;
1785  if (ObjCPropertyImplDecl *PIDecl
1786                = ClassImpDecl->FindPropertyImplDecl(Property->getIdentifier()))
1787    if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
1788        PIDecl->getPropertyIvarDecl())
1789      return false;
1790
1791  return true;
1792}
1793
1794ObjCIvarDecl *Sema::SynthesizeProvisionalIvar(LookupResult &Lookup,
1795                                              IdentifierInfo *II,
1796                                              SourceLocation NameLoc) {
1797  ObjCMethodDecl *CurMeth = getCurMethodDecl();
1798  bool LookForIvars;
1799  if (Lookup.empty())
1800    LookForIvars = true;
1801  else if (CurMeth->isClassMethod())
1802    LookForIvars = false;
1803  else
1804    LookForIvars = (Lookup.isSingleResult() &&
1805                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod() &&
1806                    (Lookup.getAsSingle<VarDecl>() != 0));
1807  if (!LookForIvars)
1808    return 0;
1809
1810  ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1811  if (!IDecl)
1812    return 0;
1813  ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1814  if (!ClassImpDecl)
1815    return 0;
1816  bool DynamicImplSeen = false;
1817  ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
1818  if (!property)
1819    return 0;
1820  if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II)) {
1821    DynamicImplSeen =
1822      (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
1823    // property implementation has a designated ivar. No need to assume a new
1824    // one.
1825    if (!DynamicImplSeen && PIDecl->getPropertyIvarDecl())
1826      return 0;
1827  }
1828  if (!DynamicImplSeen) {
1829    QualType PropType = Context.getCanonicalType(property->getType());
1830    ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(Context, ClassImpDecl,
1831                                              NameLoc, NameLoc,
1832                                              II, PropType, /*Dinfo=*/0,
1833                                              ObjCIvarDecl::Private,
1834                                              (Expr *)0, true);
1835    ClassImpDecl->addDecl(Ivar);
1836    IDecl->makeDeclVisibleInContext(Ivar, false);
1837    property->setPropertyIvarDecl(Ivar);
1838    return Ivar;
1839  }
1840  return 0;
1841}
1842
1843ExprResult Sema::ActOnIdExpression(Scope *S,
1844                                   CXXScopeSpec &SS,
1845                                   UnqualifiedId &Id,
1846                                   bool HasTrailingLParen,
1847                                   bool isAddressOfOperand) {
1848  assert(!(isAddressOfOperand && HasTrailingLParen) &&
1849         "cannot be direct & operand and have a trailing lparen");
1850
1851  if (SS.isInvalid())
1852    return ExprError();
1853
1854  TemplateArgumentListInfo TemplateArgsBuffer;
1855
1856  // Decompose the UnqualifiedId into the following data.
1857  DeclarationNameInfo NameInfo;
1858  const TemplateArgumentListInfo *TemplateArgs;
1859  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1860
1861  DeclarationName Name = NameInfo.getName();
1862  IdentifierInfo *II = Name.getAsIdentifierInfo();
1863  SourceLocation NameLoc = NameInfo.getLoc();
1864
1865  // C++ [temp.dep.expr]p3:
1866  //   An id-expression is type-dependent if it contains:
1867  //     -- an identifier that was declared with a dependent type,
1868  //        (note: handled after lookup)
1869  //     -- a template-id that is dependent,
1870  //        (note: handled in BuildTemplateIdExpr)
1871  //     -- a conversion-function-id that specifies a dependent type,
1872  //     -- a nested-name-specifier that contains a class-name that
1873  //        names a dependent type.
1874  // Determine whether this is a member of an unknown specialization;
1875  // we need to handle these differently.
1876  bool DependentID = false;
1877  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1878      Name.getCXXNameType()->isDependentType()) {
1879    DependentID = true;
1880  } else if (SS.isSet()) {
1881    if (DeclContext *DC = computeDeclContext(SS, false)) {
1882      if (RequireCompleteDeclContext(SS, DC))
1883        return ExprError();
1884    } else {
1885      DependentID = true;
1886    }
1887  }
1888
1889  if (DependentID)
1890    return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
1891                                      TemplateArgs);
1892
1893  bool IvarLookupFollowUp = false;
1894  // Perform the required lookup.
1895  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1896  if (TemplateArgs) {
1897    // Lookup the template name again to correctly establish the context in
1898    // which it was found. This is really unfortunate as we already did the
1899    // lookup to determine that it was a template name in the first place. If
1900    // this becomes a performance hit, we can work harder to preserve those
1901    // results until we get here but it's likely not worth it.
1902    bool MemberOfUnknownSpecialization;
1903    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1904                       MemberOfUnknownSpecialization);
1905
1906    if (MemberOfUnknownSpecialization ||
1907        (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1908      return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
1909                                        TemplateArgs);
1910  } else {
1911    IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1912    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1913
1914    // If the result might be in a dependent base class, this is a dependent
1915    // id-expression.
1916    if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1917      return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
1918                                        TemplateArgs);
1919
1920    // If this reference is in an Objective-C method, then we need to do
1921    // some special Objective-C lookup, too.
1922    if (IvarLookupFollowUp) {
1923      ExprResult E(LookupInObjCMethod(R, S, II, true));
1924      if (E.isInvalid())
1925        return ExprError();
1926
1927      if (Expr *Ex = E.takeAs<Expr>())
1928        return Owned(Ex);
1929
1930      // Synthesize ivars lazily.
1931      if (getLangOptions().ObjCDefaultSynthProperties &&
1932          getLangOptions().ObjCNonFragileABI2) {
1933        if (SynthesizeProvisionalIvar(R, II, NameLoc)) {
1934          if (const ObjCPropertyDecl *Property =
1935                canSynthesizeProvisionalIvar(II)) {
1936            Diag(NameLoc, diag::warn_synthesized_ivar_access) << II;
1937            Diag(Property->getLocation(), diag::note_property_declare);
1938          }
1939          return ActOnIdExpression(S, SS, Id, HasTrailingLParen,
1940                                   isAddressOfOperand);
1941        }
1942      }
1943      // for further use, this must be set to false if in class method.
1944      IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
1945    }
1946  }
1947
1948  if (R.isAmbiguous())
1949    return ExprError();
1950
1951  // Determine whether this name might be a candidate for
1952  // argument-dependent lookup.
1953  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1954
1955  if (R.empty() && !ADL) {
1956    // Otherwise, this could be an implicitly declared function reference (legal
1957    // in C90, extension in C99, forbidden in C++).
1958    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1959      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1960      if (D) R.addDecl(D);
1961    }
1962
1963    // If this name wasn't predeclared and if this is not a function
1964    // call, diagnose the problem.
1965    if (R.empty()) {
1966      if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
1967        return ExprError();
1968
1969      assert(!R.empty() &&
1970             "DiagnoseEmptyLookup returned false but added no results");
1971
1972      // If we found an Objective-C instance variable, let
1973      // LookupInObjCMethod build the appropriate expression to
1974      // reference the ivar.
1975      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1976        R.clear();
1977        ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1978        assert(E.isInvalid() || E.get());
1979        return move(E);
1980      }
1981    }
1982  }
1983
1984  // This is guaranteed from this point on.
1985  assert(!R.empty() || ADL);
1986
1987  // Check whether this might be a C++ implicit instance member access.
1988  // C++ [class.mfct.non-static]p3:
1989  //   When an id-expression that is not part of a class member access
1990  //   syntax and not used to form a pointer to member is used in the
1991  //   body of a non-static member function of class X, if name lookup
1992  //   resolves the name in the id-expression to a non-static non-type
1993  //   member of some class C, the id-expression is transformed into a
1994  //   class member access expression using (*this) as the
1995  //   postfix-expression to the left of the . operator.
1996  //
1997  // But we don't actually need to do this for '&' operands if R
1998  // resolved to a function or overloaded function set, because the
1999  // expression is ill-formed if it actually works out to be a
2000  // non-static member function:
2001  //
2002  // C++ [expr.ref]p4:
2003  //   Otherwise, if E1.E2 refers to a non-static member function. . .
2004  //   [t]he expression can be used only as the left-hand operand of a
2005  //   member function call.
2006  //
2007  // There are other safeguards against such uses, but it's important
2008  // to get this right here so that we don't end up making a
2009  // spuriously dependent expression if we're inside a dependent
2010  // instance method.
2011  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2012    bool MightBeImplicitMember;
2013    if (!isAddressOfOperand)
2014      MightBeImplicitMember = true;
2015    else if (!SS.isEmpty())
2016      MightBeImplicitMember = false;
2017    else if (R.isOverloadedResult())
2018      MightBeImplicitMember = false;
2019    else if (R.isUnresolvableResult())
2020      MightBeImplicitMember = true;
2021    else
2022      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2023                              isa<IndirectFieldDecl>(R.getFoundDecl());
2024
2025    if (MightBeImplicitMember)
2026      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
2027  }
2028
2029  if (TemplateArgs)
2030    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
2031
2032  return BuildDeclarationNameExpr(SS, R, ADL);
2033}
2034
2035/// Builds an expression which might be an implicit member expression.
2036ExprResult
2037Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
2038                                      LookupResult &R,
2039                                const TemplateArgumentListInfo *TemplateArgs) {
2040  switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
2041  case IMA_Instance:
2042    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
2043
2044  case IMA_Mixed:
2045  case IMA_Mixed_Unrelated:
2046  case IMA_Unresolved:
2047    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
2048
2049  case IMA_Static:
2050  case IMA_Mixed_StaticContext:
2051  case IMA_Unresolved_StaticContext:
2052    if (TemplateArgs)
2053      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
2054    return BuildDeclarationNameExpr(SS, R, false);
2055
2056  case IMA_Error_StaticContext:
2057  case IMA_Error_Unrelated:
2058    DiagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
2059                              R.getLookupNameInfo());
2060    return ExprError();
2061  }
2062
2063  llvm_unreachable("unexpected instance member access kind");
2064  return ExprError();
2065}
2066
2067/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2068/// declaration name, generally during template instantiation.
2069/// There's a large number of things which don't need to be done along
2070/// this path.
2071ExprResult
2072Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
2073                                        const DeclarationNameInfo &NameInfo) {
2074  DeclContext *DC;
2075  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
2076    return BuildDependentDeclRefExpr(SS, NameInfo, 0);
2077
2078  if (RequireCompleteDeclContext(SS, DC))
2079    return ExprError();
2080
2081  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2082  LookupQualifiedName(R, DC);
2083
2084  if (R.isAmbiguous())
2085    return ExprError();
2086
2087  if (R.empty()) {
2088    Diag(NameInfo.getLoc(), diag::err_no_member)
2089      << NameInfo.getName() << DC << SS.getRange();
2090    return ExprError();
2091  }
2092
2093  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
2094}
2095
2096/// LookupInObjCMethod - The parser has read a name in, and Sema has
2097/// detected that we're currently inside an ObjC method.  Perform some
2098/// additional lookup.
2099///
2100/// Ideally, most of this would be done by lookup, but there's
2101/// actually quite a lot of extra work involved.
2102///
2103/// Returns a null sentinel to indicate trivial success.
2104ExprResult
2105Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2106                         IdentifierInfo *II, bool AllowBuiltinCreation) {
2107  SourceLocation Loc = Lookup.getNameLoc();
2108  ObjCMethodDecl *CurMethod = getCurMethodDecl();
2109
2110  // There are two cases to handle here.  1) scoped lookup could have failed,
2111  // in which case we should look for an ivar.  2) scoped lookup could have
2112  // found a decl, but that decl is outside the current instance method (i.e.
2113  // a global variable).  In these two cases, we do a lookup for an ivar with
2114  // this name, if the lookup sucedes, we replace it our current decl.
2115
2116  // If we're in a class method, we don't normally want to look for
2117  // ivars.  But if we don't find anything else, and there's an
2118  // ivar, that's an error.
2119  bool IsClassMethod = CurMethod->isClassMethod();
2120
2121  bool LookForIvars;
2122  if (Lookup.empty())
2123    LookForIvars = true;
2124  else if (IsClassMethod)
2125    LookForIvars = false;
2126  else
2127    LookForIvars = (Lookup.isSingleResult() &&
2128                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2129  ObjCInterfaceDecl *IFace = 0;
2130  if (LookForIvars) {
2131    IFace = CurMethod->getClassInterface();
2132    ObjCInterfaceDecl *ClassDeclared;
2133    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2134      // Diagnose using an ivar in a class method.
2135      if (IsClassMethod)
2136        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2137                         << IV->getDeclName());
2138
2139      // If we're referencing an invalid decl, just return this as a silent
2140      // error node.  The error diagnostic was already emitted on the decl.
2141      if (IV->isInvalidDecl())
2142        return ExprError();
2143
2144      // Check if referencing a field with __attribute__((deprecated)).
2145      if (DiagnoseUseOfDecl(IV, Loc))
2146        return ExprError();
2147
2148      // Diagnose the use of an ivar outside of the declaring class.
2149      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2150          ClassDeclared != IFace)
2151        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
2152
2153      // FIXME: This should use a new expr for a direct reference, don't
2154      // turn this into Self->ivar, just return a BareIVarExpr or something.
2155      IdentifierInfo &II = Context.Idents.get("self");
2156      UnqualifiedId SelfName;
2157      SelfName.setIdentifier(&II, SourceLocation());
2158      CXXScopeSpec SelfScopeSpec;
2159      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
2160                                              SelfName, false, false);
2161      if (SelfExpr.isInvalid())
2162        return ExprError();
2163
2164      SelfExpr = DefaultLvalueConversion(SelfExpr.take());
2165      if (SelfExpr.isInvalid())
2166        return ExprError();
2167
2168      MarkDeclarationReferenced(Loc, IV);
2169      Expr *base = SelfExpr.take();
2170      base = base->IgnoreParenImpCasts();
2171      if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(base)) {
2172        const NamedDecl *ND = DE->getDecl();
2173        if (!isa<ImplicitParamDecl>(ND)) {
2174          // relax the rule such that it is allowed to have a shadow 'self'
2175          // where stand-alone ivar can be found in this 'self' object.
2176          // This is to match gcc's behavior.
2177          ObjCInterfaceDecl *selfIFace = 0;
2178          if (const ObjCObjectPointerType *OPT =
2179              base->getType()->getAsObjCInterfacePointerType())
2180            selfIFace = OPT->getInterfaceDecl();
2181          if (!selfIFace ||
2182              !selfIFace->lookupInstanceVariable(IV->getIdentifier())) {
2183            Diag(Loc, diag::error_implicit_ivar_access)
2184            << IV->getDeclName();
2185            Diag(ND->getLocation(), diag::note_declared_at);
2186            return ExprError();
2187          }
2188        }
2189      }
2190      return Owned(new (Context)
2191                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
2192                                   SelfExpr.take(), true, true));
2193    }
2194  } else if (CurMethod->isInstanceMethod()) {
2195    // We should warn if a local variable hides an ivar.
2196    ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
2197    ObjCInterfaceDecl *ClassDeclared;
2198    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2199      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2200          IFace == ClassDeclared)
2201        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2202    }
2203  }
2204
2205  if (Lookup.empty() && II && AllowBuiltinCreation) {
2206    // FIXME. Consolidate this with similar code in LookupName.
2207    if (unsigned BuiltinID = II->getBuiltinID()) {
2208      if (!(getLangOptions().CPlusPlus &&
2209            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2210        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2211                                           S, Lookup.isForRedeclaration(),
2212                                           Lookup.getNameLoc());
2213        if (D) Lookup.addDecl(D);
2214      }
2215    }
2216  }
2217  // Sentinel value saying that we didn't do anything special.
2218  return Owned((Expr*) 0);
2219}
2220
2221/// \brief Cast a base object to a member's actual type.
2222///
2223/// Logically this happens in three phases:
2224///
2225/// * First we cast from the base type to the naming class.
2226///   The naming class is the class into which we were looking
2227///   when we found the member;  it's the qualifier type if a
2228///   qualifier was provided, and otherwise it's the base type.
2229///
2230/// * Next we cast from the naming class to the declaring class.
2231///   If the member we found was brought into a class's scope by
2232///   a using declaration, this is that class;  otherwise it's
2233///   the class declaring the member.
2234///
2235/// * Finally we cast from the declaring class to the "true"
2236///   declaring class of the member.  This conversion does not
2237///   obey access control.
2238ExprResult
2239Sema::PerformObjectMemberConversion(Expr *From,
2240                                    NestedNameSpecifier *Qualifier,
2241                                    NamedDecl *FoundDecl,
2242                                    NamedDecl *Member) {
2243  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2244  if (!RD)
2245    return Owned(From);
2246
2247  QualType DestRecordType;
2248  QualType DestType;
2249  QualType FromRecordType;
2250  QualType FromType = From->getType();
2251  bool PointerConversions = false;
2252  if (isa<FieldDecl>(Member)) {
2253    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2254
2255    if (FromType->getAs<PointerType>()) {
2256      DestType = Context.getPointerType(DestRecordType);
2257      FromRecordType = FromType->getPointeeType();
2258      PointerConversions = true;
2259    } else {
2260      DestType = DestRecordType;
2261      FromRecordType = FromType;
2262    }
2263  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2264    if (Method->isStatic())
2265      return Owned(From);
2266
2267    DestType = Method->getThisType(Context);
2268    DestRecordType = DestType->getPointeeType();
2269
2270    if (FromType->getAs<PointerType>()) {
2271      FromRecordType = FromType->getPointeeType();
2272      PointerConversions = true;
2273    } else {
2274      FromRecordType = FromType;
2275      DestType = DestRecordType;
2276    }
2277  } else {
2278    // No conversion necessary.
2279    return Owned(From);
2280  }
2281
2282  if (DestType->isDependentType() || FromType->isDependentType())
2283    return Owned(From);
2284
2285  // If the unqualified types are the same, no conversion is necessary.
2286  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2287    return Owned(From);
2288
2289  SourceRange FromRange = From->getSourceRange();
2290  SourceLocation FromLoc = FromRange.getBegin();
2291
2292  ExprValueKind VK = CastCategory(From);
2293
2294  // C++ [class.member.lookup]p8:
2295  //   [...] Ambiguities can often be resolved by qualifying a name with its
2296  //   class name.
2297  //
2298  // If the member was a qualified name and the qualified referred to a
2299  // specific base subobject type, we'll cast to that intermediate type
2300  // first and then to the object in which the member is declared. That allows
2301  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2302  //
2303  //   class Base { public: int x; };
2304  //   class Derived1 : public Base { };
2305  //   class Derived2 : public Base { };
2306  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2307  //
2308  //   void VeryDerived::f() {
2309  //     x = 17; // error: ambiguous base subobjects
2310  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2311  //   }
2312  if (Qualifier) {
2313    QualType QType = QualType(Qualifier->getAsType(), 0);
2314    assert(!QType.isNull() && "lookup done with dependent qualifier?");
2315    assert(QType->isRecordType() && "lookup done with non-record type");
2316
2317    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2318
2319    // In C++98, the qualifier type doesn't actually have to be a base
2320    // type of the object type, in which case we just ignore it.
2321    // Otherwise build the appropriate casts.
2322    if (IsDerivedFrom(FromRecordType, QRecordType)) {
2323      CXXCastPath BasePath;
2324      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2325                                       FromLoc, FromRange, &BasePath))
2326        return ExprError();
2327
2328      if (PointerConversions)
2329        QType = Context.getPointerType(QType);
2330      From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2331                               VK, &BasePath).take();
2332
2333      FromType = QType;
2334      FromRecordType = QRecordType;
2335
2336      // If the qualifier type was the same as the destination type,
2337      // we're done.
2338      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2339        return Owned(From);
2340    }
2341  }
2342
2343  bool IgnoreAccess = false;
2344
2345  // If we actually found the member through a using declaration, cast
2346  // down to the using declaration's type.
2347  //
2348  // Pointer equality is fine here because only one declaration of a
2349  // class ever has member declarations.
2350  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2351    assert(isa<UsingShadowDecl>(FoundDecl));
2352    QualType URecordType = Context.getTypeDeclType(
2353                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2354
2355    // We only need to do this if the naming-class to declaring-class
2356    // conversion is non-trivial.
2357    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2358      assert(IsDerivedFrom(FromRecordType, URecordType));
2359      CXXCastPath BasePath;
2360      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2361                                       FromLoc, FromRange, &BasePath))
2362        return ExprError();
2363
2364      QualType UType = URecordType;
2365      if (PointerConversions)
2366        UType = Context.getPointerType(UType);
2367      From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2368                               VK, &BasePath).take();
2369      FromType = UType;
2370      FromRecordType = URecordType;
2371    }
2372
2373    // We don't do access control for the conversion from the
2374    // declaring class to the true declaring class.
2375    IgnoreAccess = true;
2376  }
2377
2378  CXXCastPath BasePath;
2379  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2380                                   FromLoc, FromRange, &BasePath,
2381                                   IgnoreAccess))
2382    return ExprError();
2383
2384  return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2385                           VK, &BasePath);
2386}
2387
2388/// \brief Build a MemberExpr AST node.
2389static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
2390                                   const CXXScopeSpec &SS, ValueDecl *Member,
2391                                   DeclAccessPair FoundDecl,
2392                                   const DeclarationNameInfo &MemberNameInfo,
2393                                   QualType Ty,
2394                                   ExprValueKind VK, ExprObjectKind OK,
2395                          const TemplateArgumentListInfo *TemplateArgs = 0) {
2396  return MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
2397                            Member, FoundDecl, MemberNameInfo,
2398                            TemplateArgs, Ty, VK, OK);
2399}
2400
2401static ExprResult
2402BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
2403                        const CXXScopeSpec &SS, FieldDecl *Field,
2404                        DeclAccessPair FoundDecl,
2405                        const DeclarationNameInfo &MemberNameInfo) {
2406  // x.a is an l-value if 'a' has a reference type. Otherwise:
2407  // x.a is an l-value/x-value/pr-value if the base is (and note
2408  //   that *x is always an l-value), except that if the base isn't
2409  //   an ordinary object then we must have an rvalue.
2410  ExprValueKind VK = VK_LValue;
2411  ExprObjectKind OK = OK_Ordinary;
2412  if (!IsArrow) {
2413    if (BaseExpr->getObjectKind() == OK_Ordinary)
2414      VK = BaseExpr->getValueKind();
2415    else
2416      VK = VK_RValue;
2417  }
2418  if (VK != VK_RValue && Field->isBitField())
2419    OK = OK_BitField;
2420
2421  // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2422  QualType MemberType = Field->getType();
2423  if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
2424    MemberType = Ref->getPointeeType();
2425    VK = VK_LValue;
2426  } else {
2427    QualType BaseType = BaseExpr->getType();
2428    if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
2429
2430    Qualifiers BaseQuals = BaseType.getQualifiers();
2431
2432    // GC attributes are never picked up by members.
2433    BaseQuals.removeObjCGCAttr();
2434
2435    // CVR attributes from the base are picked up by members,
2436    // except that 'mutable' members don't pick up 'const'.
2437    if (Field->isMutable()) BaseQuals.removeConst();
2438
2439    Qualifiers MemberQuals
2440      = S.Context.getCanonicalType(MemberType).getQualifiers();
2441
2442    // TR 18037 does not allow fields to be declared with address spaces.
2443    assert(!MemberQuals.hasAddressSpace());
2444
2445    Qualifiers Combined = BaseQuals + MemberQuals;
2446    if (Combined != MemberQuals)
2447      MemberType = S.Context.getQualifiedType(MemberType, Combined);
2448  }
2449
2450  S.MarkDeclarationReferenced(MemberNameInfo.getLoc(), Field);
2451  ExprResult Base =
2452    S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
2453                                    FoundDecl, Field);
2454  if (Base.isInvalid())
2455    return ExprError();
2456  return S.Owned(BuildMemberExpr(S.Context, Base.take(), IsArrow, SS,
2457                                 Field, FoundDecl, MemberNameInfo,
2458                                 MemberType, VK, OK));
2459}
2460
2461/// Builds an implicit member access expression.  The current context
2462/// is known to be an instance method, and the given unqualified lookup
2463/// set is known to contain only instance members, at least one of which
2464/// is from an appropriate type.
2465ExprResult
2466Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
2467                              LookupResult &R,
2468                              const TemplateArgumentListInfo *TemplateArgs,
2469                              bool IsKnownInstance) {
2470  assert(!R.empty() && !R.isAmbiguous());
2471
2472  SourceLocation loc = R.getNameLoc();
2473
2474  // We may have found a field within an anonymous union or struct
2475  // (C++ [class.union]).
2476  // FIXME: template-ids inside anonymous structs?
2477  if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
2478    return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD);
2479
2480  // If this is known to be an instance access, go ahead and build an
2481  // implicit 'this' expression now.
2482  // 'this' expression now.
2483  QualType ThisTy = getAndCaptureCurrentThisType();
2484  assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
2485
2486  Expr *baseExpr = 0; // null signifies implicit access
2487  if (IsKnownInstance) {
2488    SourceLocation Loc = R.getNameLoc();
2489    if (SS.getRange().isValid())
2490      Loc = SS.getRange().getBegin();
2491    baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
2492  }
2493
2494  return BuildMemberReferenceExpr(baseExpr, ThisTy,
2495                                  /*OpLoc*/ SourceLocation(),
2496                                  /*IsArrow*/ true,
2497                                  SS,
2498                                  /*FirstQualifierInScope*/ 0,
2499                                  R, TemplateArgs);
2500}
2501
2502bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2503                                      const LookupResult &R,
2504                                      bool HasTrailingLParen) {
2505  // Only when used directly as the postfix-expression of a call.
2506  if (!HasTrailingLParen)
2507    return false;
2508
2509  // Never if a scope specifier was provided.
2510  if (SS.isSet())
2511    return false;
2512
2513  // Only in C++ or ObjC++.
2514  if (!getLangOptions().CPlusPlus)
2515    return false;
2516
2517  // Turn off ADL when we find certain kinds of declarations during
2518  // normal lookup:
2519  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2520    NamedDecl *D = *I;
2521
2522    // C++0x [basic.lookup.argdep]p3:
2523    //     -- a declaration of a class member
2524    // Since using decls preserve this property, we check this on the
2525    // original decl.
2526    if (D->isCXXClassMember())
2527      return false;
2528
2529    // C++0x [basic.lookup.argdep]p3:
2530    //     -- a block-scope function declaration that is not a
2531    //        using-declaration
2532    // NOTE: we also trigger this for function templates (in fact, we
2533    // don't check the decl type at all, since all other decl types
2534    // turn off ADL anyway).
2535    if (isa<UsingShadowDecl>(D))
2536      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2537    else if (D->getDeclContext()->isFunctionOrMethod())
2538      return false;
2539
2540    // C++0x [basic.lookup.argdep]p3:
2541    //     -- a declaration that is neither a function or a function
2542    //        template
2543    // And also for builtin functions.
2544    if (isa<FunctionDecl>(D)) {
2545      FunctionDecl *FDecl = cast<FunctionDecl>(D);
2546
2547      // But also builtin functions.
2548      if (FDecl->getBuiltinID() && FDecl->isImplicit())
2549        return false;
2550    } else if (!isa<FunctionTemplateDecl>(D))
2551      return false;
2552  }
2553
2554  return true;
2555}
2556
2557
2558/// Diagnoses obvious problems with the use of the given declaration
2559/// as an expression.  This is only actually called for lookups that
2560/// were not overloaded, and it doesn't promise that the declaration
2561/// will in fact be used.
2562static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2563  if (isa<TypedefNameDecl>(D)) {
2564    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2565    return true;
2566  }
2567
2568  if (isa<ObjCInterfaceDecl>(D)) {
2569    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2570    return true;
2571  }
2572
2573  if (isa<NamespaceDecl>(D)) {
2574    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2575    return true;
2576  }
2577
2578  return false;
2579}
2580
2581ExprResult
2582Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2583                               LookupResult &R,
2584                               bool NeedsADL) {
2585  // If this is a single, fully-resolved result and we don't need ADL,
2586  // just build an ordinary singleton decl ref.
2587  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2588    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
2589                                    R.getFoundDecl());
2590
2591  // We only need to check the declaration if there's exactly one
2592  // result, because in the overloaded case the results can only be
2593  // functions and function templates.
2594  if (R.isSingleResult() &&
2595      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2596    return ExprError();
2597
2598  // Otherwise, just build an unresolved lookup expression.  Suppress
2599  // any lookup-related diagnostics; we'll hash these out later, when
2600  // we've picked a target.
2601  R.suppressDiagnostics();
2602
2603  UnresolvedLookupExpr *ULE
2604    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2605                                   SS.getWithLocInContext(Context),
2606                                   R.getLookupNameInfo(),
2607                                   NeedsADL, R.isOverloadedResult(),
2608                                   R.begin(), R.end());
2609
2610  return Owned(ULE);
2611}
2612
2613/// \brief Complete semantic analysis for a reference to the given declaration.
2614ExprResult
2615Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2616                               const DeclarationNameInfo &NameInfo,
2617                               NamedDecl *D) {
2618  assert(D && "Cannot refer to a NULL declaration");
2619  assert(!isa<FunctionTemplateDecl>(D) &&
2620         "Cannot refer unambiguously to a function template");
2621
2622  SourceLocation Loc = NameInfo.getLoc();
2623  if (CheckDeclInExpr(*this, Loc, D))
2624    return ExprError();
2625
2626  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2627    // Specifically diagnose references to class templates that are missing
2628    // a template argument list.
2629    Diag(Loc, diag::err_template_decl_ref)
2630      << Template << SS.getRange();
2631    Diag(Template->getLocation(), diag::note_template_decl_here);
2632    return ExprError();
2633  }
2634
2635  // Make sure that we're referring to a value.
2636  ValueDecl *VD = dyn_cast<ValueDecl>(D);
2637  if (!VD) {
2638    Diag(Loc, diag::err_ref_non_value)
2639      << D << SS.getRange();
2640    Diag(D->getLocation(), diag::note_declared_at);
2641    return ExprError();
2642  }
2643
2644  // Check whether this declaration can be used. Note that we suppress
2645  // this check when we're going to perform argument-dependent lookup
2646  // on this function name, because this might not be the function
2647  // that overload resolution actually selects.
2648  if (DiagnoseUseOfDecl(VD, Loc))
2649    return ExprError();
2650
2651  // Only create DeclRefExpr's for valid Decl's.
2652  if (VD->isInvalidDecl())
2653    return ExprError();
2654
2655  // Handle members of anonymous structs and unions.  If we got here,
2656  // and the reference is to a class member indirect field, then this
2657  // must be the subject of a pointer-to-member expression.
2658  if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2659    if (!indirectField->isCXXClassMember())
2660      return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2661                                                      indirectField);
2662
2663  // If the identifier reference is inside a block, and it refers to a value
2664  // that is outside the block, create a BlockDeclRefExpr instead of a
2665  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
2666  // the block is formed.
2667  //
2668  // We do not do this for things like enum constants, global variables, etc,
2669  // as they do not get snapshotted.
2670  //
2671  switch (shouldCaptureValueReference(*this, NameInfo.getLoc(), VD)) {
2672  case CR_Error:
2673    return ExprError();
2674
2675  case CR_Capture:
2676    assert(!SS.isSet() && "referenced local variable with scope specifier?");
2677    return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ false);
2678
2679  case CR_CaptureByRef:
2680    assert(!SS.isSet() && "referenced local variable with scope specifier?");
2681    return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ true);
2682
2683  case CR_NoCapture: {
2684    // If this reference is not in a block or if the referenced
2685    // variable is within the block, create a normal DeclRefExpr.
2686
2687    QualType type = VD->getType();
2688    ExprValueKind valueKind = VK_RValue;
2689
2690    switch (D->getKind()) {
2691    // Ignore all the non-ValueDecl kinds.
2692#define ABSTRACT_DECL(kind)
2693#define VALUE(type, base)
2694#define DECL(type, base) \
2695    case Decl::type:
2696#include "clang/AST/DeclNodes.inc"
2697      llvm_unreachable("invalid value decl kind");
2698      return ExprError();
2699
2700    // These shouldn't make it here.
2701    case Decl::ObjCAtDefsField:
2702    case Decl::ObjCIvar:
2703      llvm_unreachable("forming non-member reference to ivar?");
2704      return ExprError();
2705
2706    // Enum constants are always r-values and never references.
2707    // Unresolved using declarations are dependent.
2708    case Decl::EnumConstant:
2709    case Decl::UnresolvedUsingValue:
2710      valueKind = VK_RValue;
2711      break;
2712
2713    // Fields and indirect fields that got here must be for
2714    // pointer-to-member expressions; we just call them l-values for
2715    // internal consistency, because this subexpression doesn't really
2716    // exist in the high-level semantics.
2717    case Decl::Field:
2718    case Decl::IndirectField:
2719      assert(getLangOptions().CPlusPlus &&
2720             "building reference to field in C?");
2721
2722      // These can't have reference type in well-formed programs, but
2723      // for internal consistency we do this anyway.
2724      type = type.getNonReferenceType();
2725      valueKind = VK_LValue;
2726      break;
2727
2728    // Non-type template parameters are either l-values or r-values
2729    // depending on the type.
2730    case Decl::NonTypeTemplateParm: {
2731      if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2732        type = reftype->getPointeeType();
2733        valueKind = VK_LValue; // even if the parameter is an r-value reference
2734        break;
2735      }
2736
2737      // For non-references, we need to strip qualifiers just in case
2738      // the template parameter was declared as 'const int' or whatever.
2739      valueKind = VK_RValue;
2740      type = type.getUnqualifiedType();
2741      break;
2742    }
2743
2744    case Decl::Var:
2745      // In C, "extern void blah;" is valid and is an r-value.
2746      if (!getLangOptions().CPlusPlus &&
2747          !type.hasQualifiers() &&
2748          type->isVoidType()) {
2749        valueKind = VK_RValue;
2750        break;
2751      }
2752      // fallthrough
2753
2754    case Decl::ImplicitParam:
2755    case Decl::ParmVar:
2756      // These are always l-values.
2757      valueKind = VK_LValue;
2758      type = type.getNonReferenceType();
2759      break;
2760
2761    case Decl::Function: {
2762      const FunctionType *fty = type->castAs<FunctionType>();
2763
2764      // If we're referring to a function with an __unknown_anytype
2765      // result type, make the entire expression __unknown_anytype.
2766      if (fty->getResultType() == Context.UnknownAnyTy) {
2767        type = Context.UnknownAnyTy;
2768        valueKind = VK_RValue;
2769        break;
2770      }
2771
2772      // Functions are l-values in C++.
2773      if (getLangOptions().CPlusPlus) {
2774        valueKind = VK_LValue;
2775        break;
2776      }
2777
2778      // C99 DR 316 says that, if a function type comes from a
2779      // function definition (without a prototype), that type is only
2780      // used for checking compatibility. Therefore, when referencing
2781      // the function, we pretend that we don't have the full function
2782      // type.
2783      if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2784          isa<FunctionProtoType>(fty))
2785        type = Context.getFunctionNoProtoType(fty->getResultType(),
2786                                              fty->getExtInfo());
2787
2788      // Functions are r-values in C.
2789      valueKind = VK_RValue;
2790      break;
2791    }
2792
2793    case Decl::CXXMethod:
2794      // If we're referring to a method with an __unknown_anytype
2795      // result type, make the entire expression __unknown_anytype.
2796      // This should only be possible with a type written directly.
2797      if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(VD->getType()))
2798        if (proto->getResultType() == Context.UnknownAnyTy) {
2799          type = Context.UnknownAnyTy;
2800          valueKind = VK_RValue;
2801          break;
2802        }
2803
2804      // C++ methods are l-values if static, r-values if non-static.
2805      if (cast<CXXMethodDecl>(VD)->isStatic()) {
2806        valueKind = VK_LValue;
2807        break;
2808      }
2809      // fallthrough
2810
2811    case Decl::CXXConversion:
2812    case Decl::CXXDestructor:
2813    case Decl::CXXConstructor:
2814      valueKind = VK_RValue;
2815      break;
2816    }
2817
2818    return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
2819  }
2820
2821  }
2822
2823  llvm_unreachable("unknown capture result");
2824  return ExprError();
2825}
2826
2827ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2828  PredefinedExpr::IdentType IT;
2829
2830  switch (Kind) {
2831  default: assert(0 && "Unknown simple primary expr!");
2832  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2833  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2834  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2835  }
2836
2837  // Pre-defined identifiers are of type char[x], where x is the length of the
2838  // string.
2839
2840  Decl *currentDecl = getCurFunctionOrMethodDecl();
2841  if (!currentDecl && getCurBlock())
2842    currentDecl = getCurBlock()->TheDecl;
2843  if (!currentDecl) {
2844    Diag(Loc, diag::ext_predef_outside_function);
2845    currentDecl = Context.getTranslationUnitDecl();
2846  }
2847
2848  QualType ResTy;
2849  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2850    ResTy = Context.DependentTy;
2851  } else {
2852    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2853
2854    llvm::APInt LengthI(32, Length + 1);
2855    ResTy = Context.CharTy.withConst();
2856    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2857  }
2858  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2859}
2860
2861ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
2862  llvm::SmallString<16> CharBuffer;
2863  bool Invalid = false;
2864  llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2865  if (Invalid)
2866    return ExprError();
2867
2868  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2869                            PP);
2870  if (Literal.hadError())
2871    return ExprError();
2872
2873  QualType Ty;
2874  if (!getLangOptions().CPlusPlus)
2875    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
2876  else if (Literal.isWide())
2877    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
2878  else if (Literal.isMultiChar())
2879    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
2880  else
2881    Ty = Context.CharTy;  // 'x' -> char in C++
2882
2883  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
2884                                              Literal.isWide(),
2885                                              Ty, Tok.getLocation()));
2886}
2887
2888ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
2889  // Fast path for a single digit (which is quite common).  A single digit
2890  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
2891  if (Tok.getLength() == 1) {
2892    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2893    unsigned IntSize = Context.Target.getIntWidth();
2894    return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'),
2895                    Context.IntTy, Tok.getLocation()));
2896  }
2897
2898  llvm::SmallString<512> IntegerBuffer;
2899  // Add padding so that NumericLiteralParser can overread by one character.
2900  IntegerBuffer.resize(Tok.getLength()+1);
2901  const char *ThisTokBegin = &IntegerBuffer[0];
2902
2903  // Get the spelling of the token, which eliminates trigraphs, etc.
2904  bool Invalid = false;
2905  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
2906  if (Invalid)
2907    return ExprError();
2908
2909  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
2910                               Tok.getLocation(), PP);
2911  if (Literal.hadError)
2912    return ExprError();
2913
2914  Expr *Res;
2915
2916  if (Literal.isFloatingLiteral()) {
2917    QualType Ty;
2918    if (Literal.isFloat)
2919      Ty = Context.FloatTy;
2920    else if (!Literal.isLong)
2921      Ty = Context.DoubleTy;
2922    else
2923      Ty = Context.LongDoubleTy;
2924
2925    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
2926
2927    using llvm::APFloat;
2928    APFloat Val(Format);
2929
2930    APFloat::opStatus result = Literal.GetFloatValue(Val);
2931
2932    // Overflow is always an error, but underflow is only an error if
2933    // we underflowed to zero (APFloat reports denormals as underflow).
2934    if ((result & APFloat::opOverflow) ||
2935        ((result & APFloat::opUnderflow) && Val.isZero())) {
2936      unsigned diagnostic;
2937      llvm::SmallString<20> buffer;
2938      if (result & APFloat::opOverflow) {
2939        diagnostic = diag::warn_float_overflow;
2940        APFloat::getLargest(Format).toString(buffer);
2941      } else {
2942        diagnostic = diag::warn_float_underflow;
2943        APFloat::getSmallest(Format).toString(buffer);
2944      }
2945
2946      Diag(Tok.getLocation(), diagnostic)
2947        << Ty
2948        << llvm::StringRef(buffer.data(), buffer.size());
2949    }
2950
2951    bool isExact = (result == APFloat::opOK);
2952    Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation());
2953
2954    if (Ty == Context.DoubleTy) {
2955      if (getLangOptions().SinglePrecisionConstants) {
2956        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2957      } else if (getLangOptions().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
2958        Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
2959        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2960      }
2961    }
2962  } else if (!Literal.isIntegerLiteral()) {
2963    return ExprError();
2964  } else {
2965    QualType Ty;
2966
2967    // long long is a C99 feature.
2968    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
2969        Literal.isLongLong)
2970      Diag(Tok.getLocation(), diag::ext_longlong);
2971
2972    // Get the value in the widest-possible width.
2973    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
2974
2975    if (Literal.GetIntegerValue(ResultVal)) {
2976      // If this value didn't fit into uintmax_t, warn and force to ull.
2977      Diag(Tok.getLocation(), diag::warn_integer_too_large);
2978      Ty = Context.UnsignedLongLongTy;
2979      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2980             "long long is not intmax_t?");
2981    } else {
2982      // If this value fits into a ULL, try to figure out what else it fits into
2983      // according to the rules of C99 6.4.4.1p5.
2984
2985      // Octal, Hexadecimal, and integers with a U suffix are allowed to
2986      // be an unsigned int.
2987      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2988
2989      // Check from smallest to largest, picking the smallest type we can.
2990      unsigned Width = 0;
2991      if (!Literal.isLong && !Literal.isLongLong) {
2992        // Are int/unsigned possibilities?
2993        unsigned IntSize = Context.Target.getIntWidth();
2994
2995        // Does it fit in a unsigned int?
2996        if (ResultVal.isIntN(IntSize)) {
2997          // Does it fit in a signed int?
2998          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2999            Ty = Context.IntTy;
3000          else if (AllowUnsigned)
3001            Ty = Context.UnsignedIntTy;
3002          Width = IntSize;
3003        }
3004      }
3005
3006      // Are long/unsigned long possibilities?
3007      if (Ty.isNull() && !Literal.isLongLong) {
3008        unsigned LongSize = Context.Target.getLongWidth();
3009
3010        // Does it fit in a unsigned long?
3011        if (ResultVal.isIntN(LongSize)) {
3012          // Does it fit in a signed long?
3013          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3014            Ty = Context.LongTy;
3015          else if (AllowUnsigned)
3016            Ty = Context.UnsignedLongTy;
3017          Width = LongSize;
3018        }
3019      }
3020
3021      // Finally, check long long if needed.
3022      if (Ty.isNull()) {
3023        unsigned LongLongSize = Context.Target.getLongLongWidth();
3024
3025        // Does it fit in a unsigned long long?
3026        if (ResultVal.isIntN(LongLongSize)) {
3027          // Does it fit in a signed long long?
3028          // To be compatible with MSVC, hex integer literals ending with the
3029          // LL or i64 suffix are always signed in Microsoft mode.
3030          if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3031              (getLangOptions().Microsoft && Literal.isLongLong)))
3032            Ty = Context.LongLongTy;
3033          else if (AllowUnsigned)
3034            Ty = Context.UnsignedLongLongTy;
3035          Width = LongLongSize;
3036        }
3037      }
3038
3039      // If we still couldn't decide a type, we probably have something that
3040      // does not fit in a signed long long, but has no U suffix.
3041      if (Ty.isNull()) {
3042        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
3043        Ty = Context.UnsignedLongLongTy;
3044        Width = Context.Target.getLongLongWidth();
3045      }
3046
3047      if (ResultVal.getBitWidth() != Width)
3048        ResultVal = ResultVal.trunc(Width);
3049    }
3050    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
3051  }
3052
3053  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
3054  if (Literal.isImaginary)
3055    Res = new (Context) ImaginaryLiteral(Res,
3056                                        Context.getComplexType(Res->getType()));
3057
3058  return Owned(Res);
3059}
3060
3061ExprResult Sema::ActOnParenExpr(SourceLocation L,
3062                                              SourceLocation R, Expr *E) {
3063  assert((E != 0) && "ActOnParenExpr() missing expr");
3064  return Owned(new (Context) ParenExpr(L, R, E));
3065}
3066
3067static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
3068                                         SourceLocation Loc,
3069                                         SourceRange ArgRange) {
3070  // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
3071  // scalar or vector data type argument..."
3072  // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
3073  // type (C99 6.2.5p18) or void.
3074  if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
3075    S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
3076      << T << ArgRange;
3077    return true;
3078  }
3079
3080  assert((T->isVoidType() || !T->isIncompleteType()) &&
3081         "Scalar types should always be complete");
3082  return false;
3083}
3084
3085static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
3086                                           SourceLocation Loc,
3087                                           SourceRange ArgRange,
3088                                           UnaryExprOrTypeTrait TraitKind) {
3089  // C99 6.5.3.4p1:
3090  if (T->isFunctionType()) {
3091    // alignof(function) is allowed as an extension.
3092    if (TraitKind == UETT_SizeOf)
3093      S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
3094    return false;
3095  }
3096
3097  // Allow sizeof(void)/alignof(void) as an extension.
3098  if (T->isVoidType()) {
3099    S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
3100    return false;
3101  }
3102
3103  return true;
3104}
3105
3106static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
3107                                             SourceLocation Loc,
3108                                             SourceRange ArgRange,
3109                                             UnaryExprOrTypeTrait TraitKind) {
3110  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
3111  if (S.LangOpts.ObjCNonFragileABI && T->isObjCObjectType()) {
3112    S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
3113      << T << (TraitKind == UETT_SizeOf)
3114      << ArgRange;
3115    return true;
3116  }
3117
3118  return false;
3119}
3120
3121/// \brief Check the constrains on expression operands to unary type expression
3122/// and type traits.
3123///
3124/// Completes any types necessary and validates the constraints on the operand
3125/// expression. The logic mostly mirrors the type-based overload, but may modify
3126/// the expression as it completes the type for that expression through template
3127/// instantiation, etc.
3128bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *Op,
3129                                            UnaryExprOrTypeTrait ExprKind) {
3130  QualType ExprTy = Op->getType();
3131
3132  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
3133  //   the result is the size of the referenced type."
3134  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
3135  //   result shall be the alignment of the referenced type."
3136  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
3137    ExprTy = Ref->getPointeeType();
3138
3139  if (ExprKind == UETT_VecStep)
3140    return CheckVecStepTraitOperandType(*this, ExprTy, Op->getExprLoc(),
3141                                        Op->getSourceRange());
3142
3143  // Whitelist some types as extensions
3144  if (!CheckExtensionTraitOperandType(*this, ExprTy, Op->getExprLoc(),
3145                                      Op->getSourceRange(), ExprKind))
3146    return false;
3147
3148  if (RequireCompleteExprType(Op,
3149                              PDiag(diag::err_sizeof_alignof_incomplete_type)
3150                              << ExprKind << Op->getSourceRange(),
3151                              std::make_pair(SourceLocation(), PDiag(0))))
3152    return true;
3153
3154  // Completeing the expression's type may have changed it.
3155  ExprTy = Op->getType();
3156  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
3157    ExprTy = Ref->getPointeeType();
3158
3159  if (CheckObjCTraitOperandConstraints(*this, ExprTy, Op->getExprLoc(),
3160                                       Op->getSourceRange(), ExprKind))
3161    return true;
3162
3163  if (ExprKind == UETT_SizeOf) {
3164    if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(Op->IgnoreParens())) {
3165      if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
3166        QualType OType = PVD->getOriginalType();
3167        QualType Type = PVD->getType();
3168        if (Type->isPointerType() && OType->isArrayType()) {
3169          Diag(Op->getExprLoc(), diag::warn_sizeof_array_param)
3170            << Type << OType;
3171          Diag(PVD->getLocation(), diag::note_declared_at);
3172        }
3173      }
3174    }
3175  }
3176
3177  return false;
3178}
3179
3180/// \brief Check the constraints on operands to unary expression and type
3181/// traits.
3182///
3183/// This will complete any types necessary, and validate the various constraints
3184/// on those operands.
3185///
3186/// The UsualUnaryConversions() function is *not* called by this routine.
3187/// C99 6.3.2.1p[2-4] all state:
3188///   Except when it is the operand of the sizeof operator ...
3189///
3190/// C++ [expr.sizeof]p4
3191///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3192///   standard conversions are not applied to the operand of sizeof.
3193///
3194/// This policy is followed for all of the unary trait expressions.
3195bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType exprType,
3196                                            SourceLocation OpLoc,
3197                                            SourceRange ExprRange,
3198                                            UnaryExprOrTypeTrait ExprKind) {
3199  if (exprType->isDependentType())
3200    return false;
3201
3202  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
3203  //   the result is the size of the referenced type."
3204  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
3205  //   result shall be the alignment of the referenced type."
3206  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
3207    exprType = Ref->getPointeeType();
3208
3209  if (ExprKind == UETT_VecStep)
3210    return CheckVecStepTraitOperandType(*this, exprType, OpLoc, ExprRange);
3211
3212  // Whitelist some types as extensions
3213  if (!CheckExtensionTraitOperandType(*this, exprType, OpLoc, ExprRange,
3214                                      ExprKind))
3215    return false;
3216
3217  if (RequireCompleteType(OpLoc, exprType,
3218                          PDiag(diag::err_sizeof_alignof_incomplete_type)
3219                          << ExprKind << ExprRange))
3220    return true;
3221
3222  if (CheckObjCTraitOperandConstraints(*this, exprType, OpLoc, ExprRange,
3223                                       ExprKind))
3224    return true;
3225
3226  return false;
3227}
3228
3229static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3230  E = E->IgnoreParens();
3231
3232  // alignof decl is always ok.
3233  if (isa<DeclRefExpr>(E))
3234    return false;
3235
3236  // Cannot know anything else if the expression is dependent.
3237  if (E->isTypeDependent())
3238    return false;
3239
3240  if (E->getBitField()) {
3241    S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
3242       << 1 << E->getSourceRange();
3243    return true;
3244  }
3245
3246  // Alignment of a field access is always okay, so long as it isn't a
3247  // bit-field.
3248  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
3249    if (isa<FieldDecl>(ME->getMemberDecl()))
3250      return false;
3251
3252  return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3253}
3254
3255bool Sema::CheckVecStepExpr(Expr *E) {
3256  E = E->IgnoreParens();
3257
3258  // Cannot know anything else if the expression is dependent.
3259  if (E->isTypeDependent())
3260    return false;
3261
3262  return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3263}
3264
3265/// \brief Build a sizeof or alignof expression given a type operand.
3266ExprResult
3267Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3268                                     SourceLocation OpLoc,
3269                                     UnaryExprOrTypeTrait ExprKind,
3270                                     SourceRange R) {
3271  if (!TInfo)
3272    return ExprError();
3273
3274  QualType T = TInfo->getType();
3275
3276  if (!T->isDependentType() &&
3277      CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3278    return ExprError();
3279
3280  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3281  return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
3282                                                      Context.getSizeType(),
3283                                                      OpLoc, R.getEnd()));
3284}
3285
3286/// \brief Build a sizeof or alignof expression given an expression
3287/// operand.
3288ExprResult
3289Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
3290                                     UnaryExprOrTypeTrait ExprKind) {
3291  // Verify that the operand is valid.
3292  bool isInvalid = false;
3293  if (E->isTypeDependent()) {
3294    // Delay type-checking for type-dependent expressions.
3295  } else if (ExprKind == UETT_AlignOf) {
3296    isInvalid = CheckAlignOfExpr(*this, E);
3297  } else if (ExprKind == UETT_VecStep) {
3298    isInvalid = CheckVecStepExpr(E);
3299  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
3300    Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
3301    isInvalid = true;
3302  } else if (E->getType()->isPlaceholderType()) {
3303    ExprResult PE = CheckPlaceholderExpr(E);
3304    if (PE.isInvalid()) return ExprError();
3305    return CreateUnaryExprOrTypeTraitExpr(PE.take(), OpLoc, ExprKind);
3306  } else {
3307    isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3308  }
3309
3310  if (isInvalid)
3311    return ExprError();
3312
3313  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3314  return Owned(new (Context) UnaryExprOrTypeTraitExpr(
3315      ExprKind, E, Context.getSizeType(), OpLoc,
3316      E->getSourceRange().getEnd()));
3317}
3318
3319/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3320/// expr and the same for @c alignof and @c __alignof
3321/// Note that the ArgRange is invalid if isType is false.
3322ExprResult
3323Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3324                                    UnaryExprOrTypeTrait ExprKind, bool isType,
3325                                    void *TyOrEx, const SourceRange &ArgRange) {
3326  // If error parsing type, ignore.
3327  if (TyOrEx == 0) return ExprError();
3328
3329  if (isType) {
3330    TypeSourceInfo *TInfo;
3331    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3332    return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3333  }
3334
3335  Expr *ArgEx = (Expr *)TyOrEx;
3336  ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3337  return move(Result);
3338}
3339
3340static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3341                                     bool isReal) {
3342  if (V.get()->isTypeDependent())
3343    return S.Context.DependentTy;
3344
3345  // _Real and _Imag are only l-values for normal l-values.
3346  if (V.get()->getObjectKind() != OK_Ordinary) {
3347    V = S.DefaultLvalueConversion(V.take());
3348    if (V.isInvalid())
3349      return QualType();
3350  }
3351
3352  // These operators return the element type of a complex type.
3353  if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3354    return CT->getElementType();
3355
3356  // Otherwise they pass through real integer and floating point types here.
3357  if (V.get()->getType()->isArithmeticType())
3358    return V.get()->getType();
3359
3360  // Test for placeholders.
3361  ExprResult PR = S.CheckPlaceholderExpr(V.get());
3362  if (PR.isInvalid()) return QualType();
3363  if (PR.get() != V.get()) {
3364    V = move(PR);
3365    return CheckRealImagOperand(S, V, Loc, isReal);
3366  }
3367
3368  // Reject anything else.
3369  S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3370    << (isReal ? "__real" : "__imag");
3371  return QualType();
3372}
3373
3374
3375
3376ExprResult
3377Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3378                          tok::TokenKind Kind, Expr *Input) {
3379  UnaryOperatorKind Opc;
3380  switch (Kind) {
3381  default: assert(0 && "Unknown unary op!");
3382  case tok::plusplus:   Opc = UO_PostInc; break;
3383  case tok::minusminus: Opc = UO_PostDec; break;
3384  }
3385
3386  return BuildUnaryOp(S, OpLoc, Opc, Input);
3387}
3388
3389/// Expressions of certain arbitrary types are forbidden by C from
3390/// having l-value type.  These are:
3391///   - 'void', but not qualified void
3392///   - function types
3393///
3394/// The exact rule here is C99 6.3.2.1:
3395///   An lvalue is an expression with an object type or an incomplete
3396///   type other than void.
3397static bool IsCForbiddenLValueType(ASTContext &C, QualType T) {
3398  return ((T->isVoidType() && !T.hasQualifiers()) ||
3399          T->isFunctionType());
3400}
3401
3402ExprResult
3403Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
3404                              Expr *Idx, SourceLocation RLoc) {
3405  // Since this might be a postfix expression, get rid of ParenListExprs.
3406  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3407  if (Result.isInvalid()) return ExprError();
3408  Base = Result.take();
3409
3410  Expr *LHSExp = Base, *RHSExp = Idx;
3411
3412  if (getLangOptions().CPlusPlus &&
3413      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
3414    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3415                                                  Context.DependentTy,
3416                                                  VK_LValue, OK_Ordinary,
3417                                                  RLoc));
3418  }
3419
3420  if (getLangOptions().CPlusPlus &&
3421      (LHSExp->getType()->isRecordType() ||
3422       LHSExp->getType()->isEnumeralType() ||
3423       RHSExp->getType()->isRecordType() ||
3424       RHSExp->getType()->isEnumeralType())) {
3425    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
3426  }
3427
3428  return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
3429}
3430
3431
3432ExprResult
3433Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3434                                     Expr *Idx, SourceLocation RLoc) {
3435  Expr *LHSExp = Base;
3436  Expr *RHSExp = Idx;
3437
3438  // Perform default conversions.
3439  if (!LHSExp->getType()->getAs<VectorType>()) {
3440    ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3441    if (Result.isInvalid())
3442      return ExprError();
3443    LHSExp = Result.take();
3444  }
3445  ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3446  if (Result.isInvalid())
3447    return ExprError();
3448  RHSExp = Result.take();
3449
3450  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3451  ExprValueKind VK = VK_LValue;
3452  ExprObjectKind OK = OK_Ordinary;
3453
3454  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3455  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3456  // in the subscript position. As a result, we need to derive the array base
3457  // and index from the expression types.
3458  Expr *BaseExpr, *IndexExpr;
3459  QualType ResultType;
3460  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3461    BaseExpr = LHSExp;
3462    IndexExpr = RHSExp;
3463    ResultType = Context.DependentTy;
3464  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3465    BaseExpr = LHSExp;
3466    IndexExpr = RHSExp;
3467    ResultType = PTy->getPointeeType();
3468  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3469     // Handle the uncommon case of "123[Ptr]".
3470    BaseExpr = RHSExp;
3471    IndexExpr = LHSExp;
3472    ResultType = PTy->getPointeeType();
3473  } else if (const ObjCObjectPointerType *PTy =
3474               LHSTy->getAs<ObjCObjectPointerType>()) {
3475    BaseExpr = LHSExp;
3476    IndexExpr = RHSExp;
3477    ResultType = PTy->getPointeeType();
3478  } else if (const ObjCObjectPointerType *PTy =
3479               RHSTy->getAs<ObjCObjectPointerType>()) {
3480     // Handle the uncommon case of "123[Ptr]".
3481    BaseExpr = RHSExp;
3482    IndexExpr = LHSExp;
3483    ResultType = PTy->getPointeeType();
3484  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3485    BaseExpr = LHSExp;    // vectors: V[123]
3486    IndexExpr = RHSExp;
3487    VK = LHSExp->getValueKind();
3488    if (VK != VK_RValue)
3489      OK = OK_VectorComponent;
3490
3491    // FIXME: need to deal with const...
3492    ResultType = VTy->getElementType();
3493  } else if (LHSTy->isArrayType()) {
3494    // If we see an array that wasn't promoted by
3495    // DefaultFunctionArrayLvalueConversion, it must be an array that
3496    // wasn't promoted because of the C90 rule that doesn't
3497    // allow promoting non-lvalue arrays.  Warn, then
3498    // force the promotion here.
3499    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3500        LHSExp->getSourceRange();
3501    LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3502                               CK_ArrayToPointerDecay).take();
3503    LHSTy = LHSExp->getType();
3504
3505    BaseExpr = LHSExp;
3506    IndexExpr = RHSExp;
3507    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3508  } else if (RHSTy->isArrayType()) {
3509    // Same as previous, except for 123[f().a] case
3510    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3511        RHSExp->getSourceRange();
3512    RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3513                               CK_ArrayToPointerDecay).take();
3514    RHSTy = RHSExp->getType();
3515
3516    BaseExpr = RHSExp;
3517    IndexExpr = LHSExp;
3518    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3519  } else {
3520    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3521       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3522  }
3523  // C99 6.5.2.1p1
3524  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3525    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3526                     << IndexExpr->getSourceRange());
3527
3528  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3529       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3530         && !IndexExpr->isTypeDependent())
3531    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3532
3533  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3534  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3535  // type. Note that Functions are not objects, and that (in C99 parlance)
3536  // incomplete types are not object types.
3537  if (ResultType->isFunctionType()) {
3538    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3539      << ResultType << BaseExpr->getSourceRange();
3540    return ExprError();
3541  }
3542
3543  if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) {
3544    // GNU extension: subscripting on pointer to void
3545    Diag(LLoc, diag::ext_gnu_void_ptr)
3546      << BaseExpr->getSourceRange();
3547
3548    // C forbids expressions of unqualified void type from being l-values.
3549    // See IsCForbiddenLValueType.
3550    if (!ResultType.hasQualifiers()) VK = VK_RValue;
3551  } else if (!ResultType->isDependentType() &&
3552      RequireCompleteType(LLoc, ResultType,
3553                          PDiag(diag::err_subscript_incomplete_type)
3554                            << BaseExpr->getSourceRange()))
3555    return ExprError();
3556
3557  // Diagnose bad cases where we step over interface counts.
3558  if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
3559    Diag(LLoc, diag::err_subscript_nonfragile_interface)
3560      << ResultType << BaseExpr->getSourceRange();
3561    return ExprError();
3562  }
3563
3564  assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3565         !IsCForbiddenLValueType(Context, ResultType));
3566
3567  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3568                                                ResultType, VK, OK, RLoc));
3569}
3570
3571/// Check an ext-vector component access expression.
3572///
3573/// VK should be set in advance to the value kind of the base
3574/// expression.
3575static QualType
3576CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
3577                        SourceLocation OpLoc, const IdentifierInfo *CompName,
3578                        SourceLocation CompLoc) {
3579  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
3580  // see FIXME there.
3581  //
3582  // FIXME: This logic can be greatly simplified by splitting it along
3583  // halving/not halving and reworking the component checking.
3584  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
3585
3586  // The vector accessor can't exceed the number of elements.
3587  const char *compStr = CompName->getNameStart();
3588
3589  // This flag determines whether or not the component is one of the four
3590  // special names that indicate a subset of exactly half the elements are
3591  // to be selected.
3592  bool HalvingSwizzle = false;
3593
3594  // This flag determines whether or not CompName has an 's' char prefix,
3595  // indicating that it is a string of hex values to be used as vector indices.
3596  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
3597
3598  bool HasRepeated = false;
3599  bool HasIndex[16] = {};
3600
3601  int Idx;
3602
3603  // Check that we've found one of the special components, or that the component
3604  // names must come from the same set.
3605  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
3606      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
3607    HalvingSwizzle = true;
3608  } else if (!HexSwizzle &&
3609             (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
3610    do {
3611      if (HasIndex[Idx]) HasRepeated = true;
3612      HasIndex[Idx] = true;
3613      compStr++;
3614    } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
3615  } else {
3616    if (HexSwizzle) compStr++;
3617    while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
3618      if (HasIndex[Idx]) HasRepeated = true;
3619      HasIndex[Idx] = true;
3620      compStr++;
3621    }
3622  }
3623
3624  if (!HalvingSwizzle && *compStr) {
3625    // We didn't get to the end of the string. This means the component names
3626    // didn't come from the same set *or* we encountered an illegal name.
3627    S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
3628      << llvm::StringRef(compStr, 1) << SourceRange(CompLoc);
3629    return QualType();
3630  }
3631
3632  // Ensure no component accessor exceeds the width of the vector type it
3633  // operates on.
3634  if (!HalvingSwizzle) {
3635    compStr = CompName->getNameStart();
3636
3637    if (HexSwizzle)
3638      compStr++;
3639
3640    while (*compStr) {
3641      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
3642        S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
3643          << baseType << SourceRange(CompLoc);
3644        return QualType();
3645      }
3646    }
3647  }
3648
3649  // The component accessor looks fine - now we need to compute the actual type.
3650  // The vector type is implied by the component accessor. For example,
3651  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
3652  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
3653  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
3654  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
3655                                     : CompName->getLength();
3656  if (HexSwizzle)
3657    CompSize--;
3658
3659  if (CompSize == 1)
3660    return vecType->getElementType();
3661
3662  if (HasRepeated) VK = VK_RValue;
3663
3664  QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
3665  // Now look up the TypeDefDecl from the vector type. Without this,
3666  // diagostics look bad. We want extended vector types to appear built-in.
3667  for (unsigned i = 0, E = S.ExtVectorDecls.size(); i != E; ++i) {
3668    if (S.ExtVectorDecls[i]->getUnderlyingType() == VT)
3669      return S.Context.getTypedefType(S.ExtVectorDecls[i]);
3670  }
3671  return VT; // should never get here (a typedef type should always be found).
3672}
3673
3674static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
3675                                                IdentifierInfo *Member,
3676                                                const Selector &Sel,
3677                                                ASTContext &Context) {
3678  if (Member)
3679    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
3680      return PD;
3681  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
3682    return OMD;
3683
3684  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
3685       E = PDecl->protocol_end(); I != E; ++I) {
3686    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
3687                                                           Context))
3688      return D;
3689  }
3690  return 0;
3691}
3692
3693static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
3694                                      IdentifierInfo *Member,
3695                                      const Selector &Sel,
3696                                      ASTContext &Context) {
3697  // Check protocols on qualified interfaces.
3698  Decl *GDecl = 0;
3699  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
3700       E = QIdTy->qual_end(); I != E; ++I) {
3701    if (Member)
3702      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
3703        GDecl = PD;
3704        break;
3705      }
3706    // Also must look for a getter or setter name which uses property syntax.
3707    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
3708      GDecl = OMD;
3709      break;
3710    }
3711  }
3712  if (!GDecl) {
3713    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
3714         E = QIdTy->qual_end(); I != E; ++I) {
3715      // Search in the protocol-qualifier list of current protocol.
3716      GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
3717                                                       Context);
3718      if (GDecl)
3719        return GDecl;
3720    }
3721  }
3722  return GDecl;
3723}
3724
3725ExprResult
3726Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
3727                               bool IsArrow, SourceLocation OpLoc,
3728                               const CXXScopeSpec &SS,
3729                               NamedDecl *FirstQualifierInScope,
3730                               const DeclarationNameInfo &NameInfo,
3731                               const TemplateArgumentListInfo *TemplateArgs) {
3732  // Even in dependent contexts, try to diagnose base expressions with
3733  // obviously wrong types, e.g.:
3734  //
3735  // T* t;
3736  // t.f;
3737  //
3738  // In Obj-C++, however, the above expression is valid, since it could be
3739  // accessing the 'f' property if T is an Obj-C interface. The extra check
3740  // allows this, while still reporting an error if T is a struct pointer.
3741  if (!IsArrow) {
3742    const PointerType *PT = BaseType->getAs<PointerType>();
3743    if (PT && (!getLangOptions().ObjC1 ||
3744               PT->getPointeeType()->isRecordType())) {
3745      assert(BaseExpr && "cannot happen with implicit member accesses");
3746      Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
3747        << BaseType << BaseExpr->getSourceRange();
3748      return ExprError();
3749    }
3750  }
3751
3752  assert(BaseType->isDependentType() ||
3753         NameInfo.getName().isDependentName() ||
3754         isDependentScopeSpecifier(SS));
3755
3756  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
3757  // must have pointer type, and the accessed type is the pointee.
3758  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
3759                                                   IsArrow, OpLoc,
3760                                               SS.getWithLocInContext(Context),
3761                                                   FirstQualifierInScope,
3762                                                   NameInfo, TemplateArgs));
3763}
3764
3765/// We know that the given qualified member reference points only to
3766/// declarations which do not belong to the static type of the base
3767/// expression.  Diagnose the problem.
3768static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
3769                                             Expr *BaseExpr,
3770                                             QualType BaseType,
3771                                             const CXXScopeSpec &SS,
3772                                             NamedDecl *rep,
3773                                       const DeclarationNameInfo &nameInfo) {
3774  // If this is an implicit member access, use a different set of
3775  // diagnostics.
3776  if (!BaseExpr)
3777    return DiagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
3778
3779  SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
3780    << SS.getRange() << rep << BaseType;
3781}
3782
3783// Check whether the declarations we found through a nested-name
3784// specifier in a member expression are actually members of the base
3785// type.  The restriction here is:
3786//
3787//   C++ [expr.ref]p2:
3788//     ... In these cases, the id-expression shall name a
3789//     member of the class or of one of its base classes.
3790//
3791// So it's perfectly legitimate for the nested-name specifier to name
3792// an unrelated class, and for us to find an overload set including
3793// decls from classes which are not superclasses, as long as the decl
3794// we actually pick through overload resolution is from a superclass.
3795bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
3796                                         QualType BaseType,
3797                                         const CXXScopeSpec &SS,
3798                                         const LookupResult &R) {
3799  const RecordType *BaseRT = BaseType->getAs<RecordType>();
3800  if (!BaseRT) {
3801    // We can't check this yet because the base type is still
3802    // dependent.
3803    assert(BaseType->isDependentType());
3804    return false;
3805  }
3806  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
3807
3808  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3809    // If this is an implicit member reference and we find a
3810    // non-instance member, it's not an error.
3811    if (!BaseExpr && !(*I)->isCXXInstanceMember())
3812      return false;
3813
3814    // Note that we use the DC of the decl, not the underlying decl.
3815    DeclContext *DC = (*I)->getDeclContext();
3816    while (DC->isTransparentContext())
3817      DC = DC->getParent();
3818
3819    if (!DC->isRecord())
3820      continue;
3821
3822    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
3823    MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
3824
3825    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
3826      return false;
3827  }
3828
3829  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
3830                                   R.getRepresentativeDecl(),
3831                                   R.getLookupNameInfo());
3832  return true;
3833}
3834
3835static bool
3836LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
3837                         SourceRange BaseRange, const RecordType *RTy,
3838                         SourceLocation OpLoc, CXXScopeSpec &SS,
3839                         bool HasTemplateArgs) {
3840  RecordDecl *RDecl = RTy->getDecl();
3841  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
3842                              SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
3843                                    << BaseRange))
3844    return true;
3845
3846  if (HasTemplateArgs) {
3847    // LookupTemplateName doesn't expect these both to exist simultaneously.
3848    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
3849
3850    bool MOUS;
3851    SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
3852    return false;
3853  }
3854
3855  DeclContext *DC = RDecl;
3856  if (SS.isSet()) {
3857    // If the member name was a qualified-id, look into the
3858    // nested-name-specifier.
3859    DC = SemaRef.computeDeclContext(SS, false);
3860
3861    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
3862      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
3863        << SS.getRange() << DC;
3864      return true;
3865    }
3866
3867    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
3868
3869    if (!isa<TypeDecl>(DC)) {
3870      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
3871        << DC << SS.getRange();
3872      return true;
3873    }
3874  }
3875
3876  // The record definition is complete, now look up the member.
3877  SemaRef.LookupQualifiedName(R, DC);
3878
3879  if (!R.empty())
3880    return false;
3881
3882  // We didn't find anything with the given name, so try to correct
3883  // for typos.
3884  DeclarationName Name = R.getLookupName();
3885  if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
3886      !R.empty() &&
3887      (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
3888    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
3889      << Name << DC << R.getLookupName() << SS.getRange()
3890      << FixItHint::CreateReplacement(R.getNameLoc(),
3891                                      R.getLookupName().getAsString());
3892    if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
3893      SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
3894        << ND->getDeclName();
3895    return false;
3896  } else {
3897    R.clear();
3898    R.setLookupName(Name);
3899  }
3900
3901  return false;
3902}
3903
3904ExprResult
3905Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
3906                               SourceLocation OpLoc, bool IsArrow,
3907                               CXXScopeSpec &SS,
3908                               NamedDecl *FirstQualifierInScope,
3909                               const DeclarationNameInfo &NameInfo,
3910                               const TemplateArgumentListInfo *TemplateArgs) {
3911  if (BaseType->isDependentType() ||
3912      (SS.isSet() && isDependentScopeSpecifier(SS)))
3913    return ActOnDependentMemberExpr(Base, BaseType,
3914                                    IsArrow, OpLoc,
3915                                    SS, FirstQualifierInScope,
3916                                    NameInfo, TemplateArgs);
3917
3918  LookupResult R(*this, NameInfo, LookupMemberName);
3919
3920  // Implicit member accesses.
3921  if (!Base) {
3922    QualType RecordTy = BaseType;
3923    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
3924    if (LookupMemberExprInRecord(*this, R, SourceRange(),
3925                                 RecordTy->getAs<RecordType>(),
3926                                 OpLoc, SS, TemplateArgs != 0))
3927      return ExprError();
3928
3929  // Explicit member accesses.
3930  } else {
3931    ExprResult BaseResult = Owned(Base);
3932    ExprResult Result =
3933      LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
3934                       SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
3935
3936    if (BaseResult.isInvalid())
3937      return ExprError();
3938    Base = BaseResult.take();
3939
3940    if (Result.isInvalid()) {
3941      Owned(Base);
3942      return ExprError();
3943    }
3944
3945    if (Result.get())
3946      return move(Result);
3947
3948    // LookupMemberExpr can modify Base, and thus change BaseType
3949    BaseType = Base->getType();
3950  }
3951
3952  return BuildMemberReferenceExpr(Base, BaseType,
3953                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
3954                                  R, TemplateArgs);
3955}
3956
3957ExprResult
3958Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
3959                               SourceLocation OpLoc, bool IsArrow,
3960                               const CXXScopeSpec &SS,
3961                               NamedDecl *FirstQualifierInScope,
3962                               LookupResult &R,
3963                         const TemplateArgumentListInfo *TemplateArgs,
3964                               bool SuppressQualifierCheck) {
3965  QualType BaseType = BaseExprType;
3966  if (IsArrow) {
3967    assert(BaseType->isPointerType());
3968    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
3969  }
3970  R.setBaseObjectType(BaseType);
3971
3972  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
3973  DeclarationName MemberName = MemberNameInfo.getName();
3974  SourceLocation MemberLoc = MemberNameInfo.getLoc();
3975
3976  if (R.isAmbiguous())
3977    return ExprError();
3978
3979  if (R.empty()) {
3980    // Rederive where we looked up.
3981    DeclContext *DC = (SS.isSet()
3982                       ? computeDeclContext(SS, false)
3983                       : BaseType->getAs<RecordType>()->getDecl());
3984
3985    Diag(R.getNameLoc(), diag::err_no_member)
3986      << MemberName << DC
3987      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
3988    return ExprError();
3989  }
3990
3991  // Diagnose lookups that find only declarations from a non-base
3992  // type.  This is possible for either qualified lookups (which may
3993  // have been qualified with an unrelated type) or implicit member
3994  // expressions (which were found with unqualified lookup and thus
3995  // may have come from an enclosing scope).  Note that it's okay for
3996  // lookup to find declarations from a non-base type as long as those
3997  // aren't the ones picked by overload resolution.
3998  if ((SS.isSet() || !BaseExpr ||
3999       (isa<CXXThisExpr>(BaseExpr) &&
4000        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
4001      !SuppressQualifierCheck &&
4002      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
4003    return ExprError();
4004
4005  // Construct an unresolved result if we in fact got an unresolved
4006  // result.
4007  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
4008    // Suppress any lookup-related diagnostics; we'll do these when we
4009    // pick a member.
4010    R.suppressDiagnostics();
4011
4012    UnresolvedMemberExpr *MemExpr
4013      = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
4014                                     BaseExpr, BaseExprType,
4015                                     IsArrow, OpLoc,
4016                                     SS.getWithLocInContext(Context),
4017                                     MemberNameInfo,
4018                                     TemplateArgs, R.begin(), R.end());
4019
4020    return Owned(MemExpr);
4021  }
4022
4023  assert(R.isSingleResult());
4024  DeclAccessPair FoundDecl = R.begin().getPair();
4025  NamedDecl *MemberDecl = R.getFoundDecl();
4026
4027  // FIXME: diagnose the presence of template arguments now.
4028
4029  // If the decl being referenced had an error, return an error for this
4030  // sub-expr without emitting another error, in order to avoid cascading
4031  // error cases.
4032  if (MemberDecl->isInvalidDecl())
4033    return ExprError();
4034
4035  // Handle the implicit-member-access case.
4036  if (!BaseExpr) {
4037    // If this is not an instance member, convert to a non-member access.
4038    if (!MemberDecl->isCXXInstanceMember())
4039      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
4040
4041    SourceLocation Loc = R.getNameLoc();
4042    if (SS.getRange().isValid())
4043      Loc = SS.getRange().getBegin();
4044    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
4045  }
4046
4047  bool ShouldCheckUse = true;
4048  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
4049    // Don't diagnose the use of a virtual member function unless it's
4050    // explicitly qualified.
4051    if (MD->isVirtual() && !SS.isSet())
4052      ShouldCheckUse = false;
4053  }
4054
4055  // Check the use of this member.
4056  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
4057    Owned(BaseExpr);
4058    return ExprError();
4059  }
4060
4061  // Perform a property load on the base regardless of whether we
4062  // actually need it for the declaration.
4063  if (BaseExpr->getObjectKind() == OK_ObjCProperty) {
4064    ExprResult Result = ConvertPropertyForRValue(BaseExpr);
4065    if (Result.isInvalid())
4066      return ExprError();
4067    BaseExpr = Result.take();
4068  }
4069
4070  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
4071    return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
4072                                   SS, FD, FoundDecl, MemberNameInfo);
4073
4074  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
4075    // We may have found a field within an anonymous union or struct
4076    // (C++ [class.union]).
4077    return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
4078                                                    BaseExpr, OpLoc);
4079
4080  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
4081    MarkDeclarationReferenced(MemberLoc, Var);
4082    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
4083                                 Var, FoundDecl, MemberNameInfo,
4084                                 Var->getType().getNonReferenceType(),
4085                                 VK_LValue, OK_Ordinary));
4086  }
4087
4088  if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
4089    ExprValueKind valueKind;
4090    QualType type;
4091    if (MemberFn->isInstance()) {
4092      valueKind = VK_RValue;
4093      type = Context.BoundMemberTy;
4094    } else {
4095      valueKind = VK_LValue;
4096      type = MemberFn->getType();
4097    }
4098
4099    MarkDeclarationReferenced(MemberLoc, MemberDecl);
4100    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
4101                                 MemberFn, FoundDecl, MemberNameInfo,
4102                                 type, valueKind, OK_Ordinary));
4103  }
4104  assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
4105
4106  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
4107    MarkDeclarationReferenced(MemberLoc, MemberDecl);
4108    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
4109                                 Enum, FoundDecl, MemberNameInfo,
4110                                 Enum->getType(), VK_RValue, OK_Ordinary));
4111  }
4112
4113  Owned(BaseExpr);
4114
4115  // We found something that we didn't expect. Complain.
4116  if (isa<TypeDecl>(MemberDecl))
4117    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
4118      << MemberName << BaseType << int(IsArrow);
4119  else
4120    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
4121      << MemberName << BaseType << int(IsArrow);
4122
4123  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
4124    << MemberName;
4125  R.suppressDiagnostics();
4126  return ExprError();
4127}
4128
4129/// Given that normal member access failed on the given expression,
4130/// and given that the expression's type involves builtin-id or
4131/// builtin-Class, decide whether substituting in the redefinition
4132/// types would be profitable.  The redefinition type is whatever
4133/// this translation unit tried to typedef to id/Class;  we store
4134/// it to the side and then re-use it in places like this.
4135static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
4136  const ObjCObjectPointerType *opty
4137    = base.get()->getType()->getAs<ObjCObjectPointerType>();
4138  if (!opty) return false;
4139
4140  const ObjCObjectType *ty = opty->getObjectType();
4141
4142  QualType redef;
4143  if (ty->isObjCId()) {
4144    redef = S.Context.ObjCIdRedefinitionType;
4145  } else if (ty->isObjCClass()) {
4146    redef = S.Context.ObjCClassRedefinitionType;
4147  } else {
4148    return false;
4149  }
4150
4151  // Do the substitution as long as the redefinition type isn't just a
4152  // possibly-qualified pointer to builtin-id or builtin-Class again.
4153  opty = redef->getAs<ObjCObjectPointerType>();
4154  if (opty && !opty->getObjectType()->getInterface() != 0)
4155    return false;
4156
4157  base = S.ImpCastExprToType(base.take(), redef, CK_BitCast);
4158  return true;
4159}
4160
4161/// Look up the given member of the given non-type-dependent
4162/// expression.  This can return in one of two ways:
4163///  * If it returns a sentinel null-but-valid result, the caller will
4164///    assume that lookup was performed and the results written into
4165///    the provided structure.  It will take over from there.
4166///  * Otherwise, the returned expression will be produced in place of
4167///    an ordinary member expression.
4168///
4169/// The ObjCImpDecl bit is a gross hack that will need to be properly
4170/// fixed for ObjC++.
4171ExprResult
4172Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr,
4173                       bool &IsArrow, SourceLocation OpLoc,
4174                       CXXScopeSpec &SS,
4175                       Decl *ObjCImpDecl, bool HasTemplateArgs) {
4176  assert(BaseExpr.get() && "no base expression");
4177
4178  // Perform default conversions.
4179  BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
4180
4181  if (IsArrow) {
4182    BaseExpr = DefaultLvalueConversion(BaseExpr.take());
4183    if (BaseExpr.isInvalid())
4184      return ExprError();
4185  }
4186
4187  QualType BaseType = BaseExpr.get()->getType();
4188  assert(!BaseType->isDependentType());
4189
4190  DeclarationName MemberName = R.getLookupName();
4191  SourceLocation MemberLoc = R.getNameLoc();
4192
4193  // For later type-checking purposes, turn arrow accesses into dot
4194  // accesses.  The only access type we support that doesn't follow
4195  // the C equivalence "a->b === (*a).b" is ObjC property accesses,
4196  // and those never use arrows, so this is unaffected.
4197  if (IsArrow) {
4198    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
4199      BaseType = Ptr->getPointeeType();
4200    else if (const ObjCObjectPointerType *Ptr
4201               = BaseType->getAs<ObjCObjectPointerType>())
4202      BaseType = Ptr->getPointeeType();
4203    else if (BaseType->isRecordType()) {
4204      // Recover from arrow accesses to records, e.g.:
4205      //   struct MyRecord foo;
4206      //   foo->bar
4207      // This is actually well-formed in C++ if MyRecord has an
4208      // overloaded operator->, but that should have been dealt with
4209      // by now.
4210      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
4211        << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
4212        << FixItHint::CreateReplacement(OpLoc, ".");
4213      IsArrow = false;
4214    } else if (BaseType == Context.BoundMemberTy) {
4215      goto fail;
4216    } else {
4217      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
4218        << BaseType << BaseExpr.get()->getSourceRange();
4219      return ExprError();
4220    }
4221  }
4222
4223  // Handle field access to simple records.
4224  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
4225    if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(),
4226                                 RTy, OpLoc, SS, HasTemplateArgs))
4227      return ExprError();
4228
4229    // Returning valid-but-null is how we indicate to the caller that
4230    // the lookup result was filled in.
4231    return Owned((Expr*) 0);
4232  }
4233
4234  // Handle ivar access to Objective-C objects.
4235  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
4236    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
4237
4238    // There are three cases for the base type:
4239    //   - builtin id (qualified or unqualified)
4240    //   - builtin Class (qualified or unqualified)
4241    //   - an interface
4242    ObjCInterfaceDecl *IDecl = OTy->getInterface();
4243    if (!IDecl) {
4244      // There's an implicit 'isa' ivar on all objects.
4245      // But we only actually find it this way on objects of type 'id',
4246      // apparently.
4247      if (OTy->isObjCId() && Member->isStr("isa"))
4248        return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc,
4249                                               Context.getObjCClassType()));
4250
4251      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
4252        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
4253                                ObjCImpDecl, HasTemplateArgs);
4254      goto fail;
4255    }
4256
4257    ObjCInterfaceDecl *ClassDeclared;
4258    ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
4259
4260    if (!IV) {
4261      // Attempt to correct for typos in ivar names.
4262      LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
4263                       LookupMemberName);
4264      if (CorrectTypo(Res, 0, 0, IDecl, false,
4265                      IsArrow ? CTC_ObjCIvarLookup
4266                              : CTC_ObjCPropertyLookup) &&
4267          (IV = Res.getAsSingle<ObjCIvarDecl>())) {
4268        Diag(R.getNameLoc(),
4269             diag::err_typecheck_member_reference_ivar_suggest)
4270          << IDecl->getDeclName() << MemberName << IV->getDeclName()
4271          << FixItHint::CreateReplacement(R.getNameLoc(),
4272                                          IV->getNameAsString());
4273        Diag(IV->getLocation(), diag::note_previous_decl)
4274          << IV->getDeclName();
4275      } else {
4276        Res.clear();
4277        Res.setLookupName(Member);
4278
4279        Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
4280          << IDecl->getDeclName() << MemberName
4281          << BaseExpr.get()->getSourceRange();
4282        return ExprError();
4283      }
4284    }
4285
4286    // If the decl being referenced had an error, return an error for this
4287    // sub-expr without emitting another error, in order to avoid cascading
4288    // error cases.
4289    if (IV->isInvalidDecl())
4290      return ExprError();
4291
4292    // Check whether we can reference this field.
4293    if (DiagnoseUseOfDecl(IV, MemberLoc))
4294      return ExprError();
4295    if (IV->getAccessControl() != ObjCIvarDecl::Public &&
4296        IV->getAccessControl() != ObjCIvarDecl::Package) {
4297      ObjCInterfaceDecl *ClassOfMethodDecl = 0;
4298      if (ObjCMethodDecl *MD = getCurMethodDecl())
4299        ClassOfMethodDecl =  MD->getClassInterface();
4300      else if (ObjCImpDecl && getCurFunctionDecl()) {
4301        // Case of a c-function declared inside an objc implementation.
4302        // FIXME: For a c-style function nested inside an objc implementation
4303        // class, there is no implementation context available, so we pass
4304        // down the context as argument to this routine. Ideally, this context
4305        // need be passed down in the AST node and somehow calculated from the
4306        // AST for a function decl.
4307        if (ObjCImplementationDecl *IMPD =
4308              dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
4309          ClassOfMethodDecl = IMPD->getClassInterface();
4310        else if (ObjCCategoryImplDecl* CatImplClass =
4311                   dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
4312          ClassOfMethodDecl = CatImplClass->getClassInterface();
4313      }
4314
4315      if (IV->getAccessControl() == ObjCIvarDecl::Private) {
4316        if (ClassDeclared != IDecl ||
4317            ClassOfMethodDecl != ClassDeclared)
4318          Diag(MemberLoc, diag::error_private_ivar_access)
4319            << IV->getDeclName();
4320      } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
4321        // @protected
4322        Diag(MemberLoc, diag::error_protected_ivar_access)
4323          << IV->getDeclName();
4324    }
4325
4326    return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
4327                                               MemberLoc, BaseExpr.take(),
4328                                               IsArrow));
4329  }
4330
4331  // Objective-C property access.
4332  const ObjCObjectPointerType *OPT;
4333  if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
4334    // This actually uses the base as an r-value.
4335    BaseExpr = DefaultLvalueConversion(BaseExpr.take());
4336    if (BaseExpr.isInvalid())
4337      return ExprError();
4338
4339    assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType()));
4340
4341    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
4342
4343    const ObjCObjectType *OT = OPT->getObjectType();
4344
4345    // id, with and without qualifiers.
4346    if (OT->isObjCId()) {
4347      // Check protocols on qualified interfaces.
4348      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
4349      if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
4350        if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
4351          // Check the use of this declaration
4352          if (DiagnoseUseOfDecl(PD, MemberLoc))
4353            return ExprError();
4354
4355          QualType T = PD->getType();
4356          if (ObjCMethodDecl *Getter = PD->getGetterMethodDecl())
4357            T = getMessageSendResultType(BaseType, Getter, false, false);
4358
4359          return Owned(new (Context) ObjCPropertyRefExpr(PD, T,
4360                                                         VK_LValue,
4361                                                         OK_ObjCProperty,
4362                                                         MemberLoc,
4363                                                         BaseExpr.take()));
4364        }
4365
4366        if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
4367          // Check the use of this method.
4368          if (DiagnoseUseOfDecl(OMD, MemberLoc))
4369            return ExprError();
4370          Selector SetterSel =
4371            SelectorTable::constructSetterName(PP.getIdentifierTable(),
4372                                               PP.getSelectorTable(), Member);
4373          ObjCMethodDecl *SMD = 0;
4374          if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0,
4375                                                     SetterSel, Context))
4376            SMD = dyn_cast<ObjCMethodDecl>(SDecl);
4377          QualType PType = getMessageSendResultType(BaseType, OMD, false,
4378                                                    false);
4379
4380          ExprValueKind VK = VK_LValue;
4381          if (!getLangOptions().CPlusPlus &&
4382              IsCForbiddenLValueType(Context, PType))
4383            VK = VK_RValue;
4384          ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
4385
4386          return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD, PType,
4387                                                         VK, OK,
4388                                                         MemberLoc, BaseExpr.take()));
4389        }
4390      }
4391      // Use of id.member can only be for a property reference. Do not
4392      // use the 'id' redefinition in this case.
4393      if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
4394        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
4395                                ObjCImpDecl, HasTemplateArgs);
4396
4397      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
4398                         << MemberName << BaseType);
4399    }
4400
4401    // 'Class', unqualified only.
4402    if (OT->isObjCClass()) {
4403      // Only works in a method declaration (??!).
4404      ObjCMethodDecl *MD = getCurMethodDecl();
4405      if (!MD) {
4406        if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
4407          return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
4408                                  ObjCImpDecl, HasTemplateArgs);
4409
4410        goto fail;
4411      }
4412
4413      // Also must look for a getter name which uses property syntax.
4414      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
4415      ObjCInterfaceDecl *IFace = MD->getClassInterface();
4416      ObjCMethodDecl *Getter;
4417      if ((Getter = IFace->lookupClassMethod(Sel))) {
4418        // Check the use of this method.
4419        if (DiagnoseUseOfDecl(Getter, MemberLoc))
4420          return ExprError();
4421      } else
4422        Getter = IFace->lookupPrivateMethod(Sel, false);
4423      // If we found a getter then this may be a valid dot-reference, we
4424      // will look for the matching setter, in case it is needed.
4425      Selector SetterSel =
4426        SelectorTable::constructSetterName(PP.getIdentifierTable(),
4427                                           PP.getSelectorTable(), Member);
4428      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
4429      if (!Setter) {
4430        // If this reference is in an @implementation, also check for 'private'
4431        // methods.
4432        Setter = IFace->lookupPrivateMethod(SetterSel, false);
4433      }
4434      // Look through local category implementations associated with the class.
4435      if (!Setter)
4436        Setter = IFace->getCategoryClassMethod(SetterSel);
4437
4438      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
4439        return ExprError();
4440
4441      if (Getter || Setter) {
4442        QualType PType;
4443
4444        ExprValueKind VK = VK_LValue;
4445        if (Getter) {
4446          PType = getMessageSendResultType(QualType(OT, 0), Getter, true,
4447                                           false);
4448          if (!getLangOptions().CPlusPlus &&
4449              IsCForbiddenLValueType(Context, PType))
4450            VK = VK_RValue;
4451        } else {
4452          // Get the expression type from Setter's incoming parameter.
4453          PType = (*(Setter->param_end() -1))->getType();
4454        }
4455        ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
4456
4457        // FIXME: we must check that the setter has property type.
4458        return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
4459                                                       PType, VK, OK,
4460                                                       MemberLoc, BaseExpr.take()));
4461      }
4462
4463      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
4464        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
4465                                ObjCImpDecl, HasTemplateArgs);
4466
4467      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
4468                         << MemberName << BaseType);
4469    }
4470
4471    // Normal property access.
4472    return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), MemberName, MemberLoc,
4473                                     SourceLocation(), QualType(), false);
4474  }
4475
4476  // Handle 'field access' to vectors, such as 'V.xx'.
4477  if (BaseType->isExtVectorType()) {
4478    // FIXME: this expr should store IsArrow.
4479    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
4480    ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
4481    QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
4482                                           Member, MemberLoc);
4483    if (ret.isNull())
4484      return ExprError();
4485
4486    return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(),
4487                                                    *Member, MemberLoc));
4488  }
4489
4490  // Adjust builtin-sel to the appropriate redefinition type if that's
4491  // not just a pointer to builtin-sel again.
4492  if (IsArrow &&
4493      BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
4494      !Context.ObjCSelRedefinitionType->isObjCSelType()) {
4495    BaseExpr = ImpCastExprToType(BaseExpr.take(), Context.ObjCSelRedefinitionType,
4496                                 CK_BitCast);
4497    return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
4498                            ObjCImpDecl, HasTemplateArgs);
4499  }
4500
4501  // Failure cases.
4502 fail:
4503
4504  // Recover from dot accesses to pointers, e.g.:
4505  //   type *foo;
4506  //   foo.bar
4507  // This is actually well-formed in two cases:
4508  //   - 'type' is an Objective C type
4509  //   - 'bar' is a pseudo-destructor name which happens to refer to
4510  //     the appropriate pointer type
4511  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4512    if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
4513        MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
4514      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
4515        << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
4516          << FixItHint::CreateReplacement(OpLoc, "->");
4517
4518      // Recurse as an -> access.
4519      IsArrow = true;
4520      return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
4521                              ObjCImpDecl, HasTemplateArgs);
4522    }
4523  }
4524
4525  // If the user is trying to apply -> or . to a function name, it's probably
4526  // because they forgot parentheses to call that function.
4527  QualType ZeroArgCallTy;
4528  UnresolvedSet<4> Overloads;
4529  if (isExprCallable(*BaseExpr.get(), ZeroArgCallTy, Overloads)) {
4530    if (ZeroArgCallTy.isNull()) {
4531      Diag(BaseExpr.get()->getExprLoc(), diag::err_member_reference_needs_call)
4532          << (Overloads.size() > 1) << 0 << BaseExpr.get()->getSourceRange();
4533      UnresolvedSet<2> PlausibleOverloads;
4534      for (OverloadExpr::decls_iterator It = Overloads.begin(),
4535           DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) {
4536        const FunctionDecl *OverloadDecl = cast<FunctionDecl>(*It);
4537        QualType OverloadResultTy = OverloadDecl->getResultType();
4538        if ((!IsArrow && OverloadResultTy->isRecordType()) ||
4539            (IsArrow && OverloadResultTy->isPointerType() &&
4540             OverloadResultTy->getPointeeType()->isRecordType()))
4541          PlausibleOverloads.addDecl(It.getDecl());
4542      }
4543      NoteOverloads(PlausibleOverloads, BaseExpr.get()->getExprLoc());
4544      return ExprError();
4545    }
4546    if ((!IsArrow && ZeroArgCallTy->isRecordType()) ||
4547        (IsArrow && ZeroArgCallTy->isPointerType() &&
4548         ZeroArgCallTy->getPointeeType()->isRecordType())) {
4549      // At this point, we know BaseExpr looks like it's potentially callable
4550      // with 0 arguments, and that it returns something of a reasonable type,
4551      // so we can emit a fixit and carry on pretending that BaseExpr was
4552      // actually a CallExpr.
4553      SourceLocation ParenInsertionLoc =
4554          PP.getLocForEndOfToken(BaseExpr.get()->getLocEnd());
4555      Diag(BaseExpr.get()->getExprLoc(), diag::err_member_reference_needs_call)
4556          << (Overloads.size() > 1) << 1 << BaseExpr.get()->getSourceRange()
4557          << FixItHint::CreateInsertion(ParenInsertionLoc, "()");
4558      // FIXME: Try this before emitting the fixit, and suppress diagnostics
4559      // while doing so.
4560      ExprResult NewBase =
4561          ActOnCallExpr(0, BaseExpr.take(), ParenInsertionLoc,
4562                        MultiExprArg(*this, 0, 0),
4563                        ParenInsertionLoc.getFileLocWithOffset(1));
4564      if (NewBase.isInvalid())
4565        return ExprError();
4566      BaseExpr = NewBase;
4567      BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
4568      return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
4569                              ObjCImpDecl, HasTemplateArgs);
4570    }
4571  }
4572
4573  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
4574    << BaseType << BaseExpr.get()->getSourceRange();
4575
4576  return ExprError();
4577}
4578
4579/// The main callback when the parser finds something like
4580///   expression . [nested-name-specifier] identifier
4581///   expression -> [nested-name-specifier] identifier
4582/// where 'identifier' encompasses a fairly broad spectrum of
4583/// possibilities, including destructor and operator references.
4584///
4585/// \param OpKind either tok::arrow or tok::period
4586/// \param HasTrailingLParen whether the next token is '(', which
4587///   is used to diagnose mis-uses of special members that can
4588///   only be called
4589/// \param ObjCImpDecl the current ObjC @implementation decl;
4590///   this is an ugly hack around the fact that ObjC @implementations
4591///   aren't properly put in the context chain
4592ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
4593                                       SourceLocation OpLoc,
4594                                       tok::TokenKind OpKind,
4595                                       CXXScopeSpec &SS,
4596                                       UnqualifiedId &Id,
4597                                       Decl *ObjCImpDecl,
4598                                       bool HasTrailingLParen) {
4599  if (SS.isSet() && SS.isInvalid())
4600    return ExprError();
4601
4602  // Warn about the explicit constructor calls Microsoft extension.
4603  if (getLangOptions().Microsoft &&
4604      Id.getKind() == UnqualifiedId::IK_ConstructorName)
4605    Diag(Id.getSourceRange().getBegin(),
4606         diag::ext_ms_explicit_constructor_call);
4607
4608  TemplateArgumentListInfo TemplateArgsBuffer;
4609
4610  // Decompose the name into its component parts.
4611  DeclarationNameInfo NameInfo;
4612  const TemplateArgumentListInfo *TemplateArgs;
4613  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
4614                         NameInfo, TemplateArgs);
4615
4616  DeclarationName Name = NameInfo.getName();
4617  bool IsArrow = (OpKind == tok::arrow);
4618
4619  NamedDecl *FirstQualifierInScope
4620    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
4621                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
4622
4623  // This is a postfix expression, so get rid of ParenListExprs.
4624  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4625  if (Result.isInvalid()) return ExprError();
4626  Base = Result.take();
4627
4628  if (Base->getType()->isDependentType() || Name.isDependentName() ||
4629      isDependentScopeSpecifier(SS)) {
4630    Result = ActOnDependentMemberExpr(Base, Base->getType(),
4631                                      IsArrow, OpLoc,
4632                                      SS, FirstQualifierInScope,
4633                                      NameInfo, TemplateArgs);
4634  } else {
4635    LookupResult R(*this, NameInfo, LookupMemberName);
4636    ExprResult BaseResult = Owned(Base);
4637    Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
4638                              SS, ObjCImpDecl, TemplateArgs != 0);
4639    if (BaseResult.isInvalid())
4640      return ExprError();
4641    Base = BaseResult.take();
4642
4643    if (Result.isInvalid()) {
4644      Owned(Base);
4645      return ExprError();
4646    }
4647
4648    if (Result.get()) {
4649      // The only way a reference to a destructor can be used is to
4650      // immediately call it, which falls into this case.  If the
4651      // next token is not a '(', produce a diagnostic and build the
4652      // call now.
4653      if (!HasTrailingLParen &&
4654          Id.getKind() == UnqualifiedId::IK_DestructorName)
4655        return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
4656
4657      return move(Result);
4658    }
4659
4660    Result = BuildMemberReferenceExpr(Base, Base->getType(),
4661                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
4662                                      R, TemplateArgs);
4663  }
4664
4665  return move(Result);
4666}
4667
4668ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
4669                                        FunctionDecl *FD,
4670                                        ParmVarDecl *Param) {
4671  if (Param->hasUnparsedDefaultArg()) {
4672    Diag(CallLoc,
4673         diag::err_use_of_default_argument_to_function_declared_later) <<
4674      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
4675    Diag(UnparsedDefaultArgLocs[Param],
4676         diag::note_default_argument_declared_here);
4677    return ExprError();
4678  }
4679
4680  if (Param->hasUninstantiatedDefaultArg()) {
4681    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
4682
4683    // Instantiate the expression.
4684    MultiLevelTemplateArgumentList ArgList
4685      = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
4686
4687    std::pair<const TemplateArgument *, unsigned> Innermost
4688      = ArgList.getInnermost();
4689    InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
4690                               Innermost.second);
4691
4692    ExprResult Result;
4693    {
4694      // C++ [dcl.fct.default]p5:
4695      //   The names in the [default argument] expression are bound, and
4696      //   the semantic constraints are checked, at the point where the
4697      //   default argument expression appears.
4698      ContextRAII SavedContext(*this, FD);
4699      Result = SubstExpr(UninstExpr, ArgList);
4700    }
4701    if (Result.isInvalid())
4702      return ExprError();
4703
4704    // Check the expression as an initializer for the parameter.
4705    InitializedEntity Entity
4706      = InitializedEntity::InitializeParameter(Context, Param);
4707    InitializationKind Kind
4708      = InitializationKind::CreateCopy(Param->getLocation(),
4709             /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
4710    Expr *ResultE = Result.takeAs<Expr>();
4711
4712    InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
4713    Result = InitSeq.Perform(*this, Entity, Kind,
4714                             MultiExprArg(*this, &ResultE, 1));
4715    if (Result.isInvalid())
4716      return ExprError();
4717
4718    // Build the default argument expression.
4719    return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
4720                                           Result.takeAs<Expr>()));
4721  }
4722
4723  // If the default expression creates temporaries, we need to
4724  // push them to the current stack of expression temporaries so they'll
4725  // be properly destroyed.
4726  // FIXME: We should really be rebuilding the default argument with new
4727  // bound temporaries; see the comment in PR5810.
4728  for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) {
4729    CXXTemporary *Temporary = Param->getDefaultArgTemporary(i);
4730    MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(),
4731                    const_cast<CXXDestructorDecl*>(Temporary->getDestructor()));
4732    ExprTemporaries.push_back(Temporary);
4733  }
4734
4735  // We already type-checked the argument, so we know it works.
4736  // Just mark all of the declarations in this potentially-evaluated expression
4737  // as being "referenced".
4738  MarkDeclarationsReferencedInExpr(Param->getDefaultArg());
4739  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
4740}
4741
4742/// ConvertArgumentsForCall - Converts the arguments specified in
4743/// Args/NumArgs to the parameter types of the function FDecl with
4744/// function prototype Proto. Call is the call expression itself, and
4745/// Fn is the function expression. For a C++ member function, this
4746/// routine does not attempt to convert the object argument. Returns
4747/// true if the call is ill-formed.
4748bool
4749Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
4750                              FunctionDecl *FDecl,
4751                              const FunctionProtoType *Proto,
4752                              Expr **Args, unsigned NumArgs,
4753                              SourceLocation RParenLoc) {
4754  // Bail out early if calling a builtin with custom typechecking.
4755  // We don't need to do this in the
4756  if (FDecl)
4757    if (unsigned ID = FDecl->getBuiltinID())
4758      if (Context.BuiltinInfo.hasCustomTypechecking(ID))
4759        return false;
4760
4761  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
4762  // assignment, to the types of the corresponding parameter, ...
4763  unsigned NumArgsInProto = Proto->getNumArgs();
4764  bool Invalid = false;
4765
4766  // If too few arguments are available (and we don't have default
4767  // arguments for the remaining parameters), don't make the call.
4768  if (NumArgs < NumArgsInProto) {
4769    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
4770      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
4771        << Fn->getType()->isBlockPointerType()
4772        << NumArgsInProto << NumArgs << Fn->getSourceRange();
4773    Call->setNumArgs(Context, NumArgsInProto);
4774  }
4775
4776  // If too many are passed and not variadic, error on the extras and drop
4777  // them.
4778  if (NumArgs > NumArgsInProto) {
4779    if (!Proto->isVariadic()) {
4780      Diag(Args[NumArgsInProto]->getLocStart(),
4781           diag::err_typecheck_call_too_many_args)
4782        << Fn->getType()->isBlockPointerType()
4783        << NumArgsInProto << NumArgs << Fn->getSourceRange()
4784        << SourceRange(Args[NumArgsInProto]->getLocStart(),
4785                       Args[NumArgs-1]->getLocEnd());
4786
4787      // Emit the location of the prototype.
4788      if (FDecl && !FDecl->getBuiltinID())
4789        Diag(FDecl->getLocStart(),
4790             diag::note_typecheck_call_too_many_args)
4791             << FDecl;
4792
4793      // This deletes the extra arguments.
4794      Call->setNumArgs(Context, NumArgsInProto);
4795      return true;
4796    }
4797  }
4798  llvm::SmallVector<Expr *, 8> AllArgs;
4799  VariadicCallType CallType =
4800    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
4801  if (Fn->getType()->isBlockPointerType())
4802    CallType = VariadicBlock; // Block
4803  else if (isa<MemberExpr>(Fn))
4804    CallType = VariadicMethod;
4805  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
4806                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
4807  if (Invalid)
4808    return true;
4809  unsigned TotalNumArgs = AllArgs.size();
4810  for (unsigned i = 0; i < TotalNumArgs; ++i)
4811    Call->setArg(i, AllArgs[i]);
4812
4813  return false;
4814}
4815
4816bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
4817                                  FunctionDecl *FDecl,
4818                                  const FunctionProtoType *Proto,
4819                                  unsigned FirstProtoArg,
4820                                  Expr **Args, unsigned NumArgs,
4821                                  llvm::SmallVector<Expr *, 8> &AllArgs,
4822                                  VariadicCallType CallType) {
4823  unsigned NumArgsInProto = Proto->getNumArgs();
4824  unsigned NumArgsToCheck = NumArgs;
4825  bool Invalid = false;
4826  if (NumArgs != NumArgsInProto)
4827    // Use default arguments for missing arguments
4828    NumArgsToCheck = NumArgsInProto;
4829  unsigned ArgIx = 0;
4830  // Continue to check argument types (even if we have too few/many args).
4831  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
4832    QualType ProtoArgType = Proto->getArgType(i);
4833
4834    Expr *Arg;
4835    if (ArgIx < NumArgs) {
4836      Arg = Args[ArgIx++];
4837
4838      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
4839                              ProtoArgType,
4840                              PDiag(diag::err_call_incomplete_argument)
4841                              << Arg->getSourceRange()))
4842        return true;
4843
4844      // Pass the argument
4845      ParmVarDecl *Param = 0;
4846      if (FDecl && i < FDecl->getNumParams())
4847        Param = FDecl->getParamDecl(i);
4848
4849      InitializedEntity Entity =
4850        Param? InitializedEntity::InitializeParameter(Context, Param)
4851             : InitializedEntity::InitializeParameter(Context, ProtoArgType);
4852      ExprResult ArgE = PerformCopyInitialization(Entity,
4853                                                  SourceLocation(),
4854                                                  Owned(Arg));
4855      if (ArgE.isInvalid())
4856        return true;
4857
4858      Arg = ArgE.takeAs<Expr>();
4859    } else {
4860      ParmVarDecl *Param = FDecl->getParamDecl(i);
4861
4862      ExprResult ArgExpr =
4863        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
4864      if (ArgExpr.isInvalid())
4865        return true;
4866
4867      Arg = ArgExpr.takeAs<Expr>();
4868    }
4869    AllArgs.push_back(Arg);
4870  }
4871
4872  // If this is a variadic call, handle args passed through "...".
4873  if (CallType != VariadicDoesNotApply) {
4874
4875    // Assume that extern "C" functions with variadic arguments that
4876    // return __unknown_anytype aren't *really* variadic.
4877    if (Proto->getResultType() == Context.UnknownAnyTy &&
4878        FDecl && FDecl->isExternC()) {
4879      for (unsigned i = ArgIx; i != NumArgs; ++i) {
4880        ExprResult arg;
4881        if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
4882          arg = DefaultFunctionArrayLvalueConversion(Args[i]);
4883        else
4884          arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
4885        Invalid |= arg.isInvalid();
4886        AllArgs.push_back(arg.take());
4887      }
4888
4889    // Otherwise do argument promotion, (C99 6.5.2.2p7).
4890    } else {
4891      for (unsigned i = ArgIx; i != NumArgs; ++i) {
4892        ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
4893        Invalid |= Arg.isInvalid();
4894        AllArgs.push_back(Arg.take());
4895      }
4896    }
4897  }
4898  return Invalid;
4899}
4900
4901/// Given a function expression of unknown-any type, try to rebuild it
4902/// to have a function type.
4903static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
4904
4905/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
4906/// This provides the location of the left/right parens and a list of comma
4907/// locations.
4908ExprResult
4909Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
4910                    MultiExprArg args, SourceLocation RParenLoc,
4911                    Expr *ExecConfig) {
4912  unsigned NumArgs = args.size();
4913
4914  // Since this might be a postfix expression, get rid of ParenListExprs.
4915  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
4916  if (Result.isInvalid()) return ExprError();
4917  Fn = Result.take();
4918
4919  Expr **Args = args.release();
4920
4921  if (getLangOptions().CPlusPlus) {
4922    // If this is a pseudo-destructor expression, build the call immediately.
4923    if (isa<CXXPseudoDestructorExpr>(Fn)) {
4924      if (NumArgs > 0) {
4925        // Pseudo-destructor calls should not have any arguments.
4926        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
4927          << FixItHint::CreateRemoval(
4928                                    SourceRange(Args[0]->getLocStart(),
4929                                                Args[NumArgs-1]->getLocEnd()));
4930
4931        NumArgs = 0;
4932      }
4933
4934      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
4935                                          VK_RValue, RParenLoc));
4936    }
4937
4938    // Determine whether this is a dependent call inside a C++ template,
4939    // in which case we won't do any semantic analysis now.
4940    // FIXME: Will need to cache the results of name lookup (including ADL) in
4941    // Fn.
4942    bool Dependent = false;
4943    if (Fn->isTypeDependent())
4944      Dependent = true;
4945    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
4946      Dependent = true;
4947
4948    if (Dependent) {
4949      if (ExecConfig) {
4950        return Owned(new (Context) CUDAKernelCallExpr(
4951            Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
4952            Context.DependentTy, VK_RValue, RParenLoc));
4953      } else {
4954        return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
4955                                            Context.DependentTy, VK_RValue,
4956                                            RParenLoc));
4957      }
4958    }
4959
4960    // Determine whether this is a call to an object (C++ [over.call.object]).
4961    if (Fn->getType()->isRecordType())
4962      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
4963                                                RParenLoc));
4964
4965    if (Fn->getType() == Context.UnknownAnyTy) {
4966      ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4967      if (result.isInvalid()) return ExprError();
4968      Fn = result.take();
4969    }
4970
4971    if (Fn->getType() == Context.BoundMemberTy) {
4972      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
4973                                       RParenLoc);
4974    }
4975  }
4976
4977  // Check for overloaded calls.  This can happen even in C due to extensions.
4978  if (Fn->getType() == Context.OverloadTy) {
4979    OverloadExpr::FindResult find = OverloadExpr::find(Fn);
4980
4981    // We aren't supposed to apply this logic if there's an '&' involved.
4982    if (!find.IsAddressOfOperand) {
4983      OverloadExpr *ovl = find.Expression;
4984      if (isa<UnresolvedLookupExpr>(ovl)) {
4985        UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
4986        return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
4987                                       RParenLoc, ExecConfig);
4988      } else {
4989        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
4990                                         RParenLoc);
4991      }
4992    }
4993  }
4994
4995  // If we're directly calling a function, get the appropriate declaration.
4996
4997  Expr *NakedFn = Fn->IgnoreParens();
4998
4999  NamedDecl *NDecl = 0;
5000  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
5001    if (UnOp->getOpcode() == UO_AddrOf)
5002      NakedFn = UnOp->getSubExpr()->IgnoreParens();
5003
5004  if (isa<DeclRefExpr>(NakedFn))
5005    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
5006  else if (isa<MemberExpr>(NakedFn))
5007    NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
5008
5009  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
5010                               ExecConfig);
5011}
5012
5013ExprResult
5014Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
5015                              MultiExprArg execConfig, SourceLocation GGGLoc) {
5016  FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
5017  if (!ConfigDecl)
5018    return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
5019                          << "cudaConfigureCall");
5020  QualType ConfigQTy = ConfigDecl->getType();
5021
5022  DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
5023      ConfigDecl, ConfigQTy, VK_LValue, LLLLoc);
5024
5025  return ActOnCallExpr(S, ConfigDR, LLLLoc, execConfig, GGGLoc, 0);
5026}
5027
5028/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
5029///
5030/// __builtin_astype( value, dst type )
5031///
5032ExprResult Sema::ActOnAsTypeExpr(Expr *expr, ParsedType destty,
5033                                 SourceLocation BuiltinLoc,
5034                                 SourceLocation RParenLoc) {
5035  ExprValueKind VK = VK_RValue;
5036  ExprObjectKind OK = OK_Ordinary;
5037  QualType DstTy = GetTypeFromParser(destty);
5038  QualType SrcTy = expr->getType();
5039  if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
5040    return ExprError(Diag(BuiltinLoc,
5041                          diag::err_invalid_astype_of_different_size)
5042                     << DstTy
5043                     << SrcTy
5044                     << expr->getSourceRange());
5045  return Owned(new (Context) AsTypeExpr(expr, DstTy, VK, OK, BuiltinLoc, RParenLoc));
5046}
5047
5048/// BuildResolvedCallExpr - Build a call to a resolved expression,
5049/// i.e. an expression not of \p OverloadTy.  The expression should
5050/// unary-convert to an expression of function-pointer or
5051/// block-pointer type.
5052///
5053/// \param NDecl the declaration being called, if available
5054ExprResult
5055Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
5056                            SourceLocation LParenLoc,
5057                            Expr **Args, unsigned NumArgs,
5058                            SourceLocation RParenLoc,
5059                            Expr *Config) {
5060  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
5061
5062  // Promote the function operand.
5063  ExprResult Result = UsualUnaryConversions(Fn);
5064  if (Result.isInvalid())
5065    return ExprError();
5066  Fn = Result.take();
5067
5068  // Make the call expr early, before semantic checks.  This guarantees cleanup
5069  // of arguments and function on error.
5070  CallExpr *TheCall;
5071  if (Config) {
5072    TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
5073                                               cast<CallExpr>(Config),
5074                                               Args, NumArgs,
5075                                               Context.BoolTy,
5076                                               VK_RValue,
5077                                               RParenLoc);
5078  } else {
5079    TheCall = new (Context) CallExpr(Context, Fn,
5080                                     Args, NumArgs,
5081                                     Context.BoolTy,
5082                                     VK_RValue,
5083                                     RParenLoc);
5084  }
5085
5086  unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
5087
5088  // Bail out early if calling a builtin with custom typechecking.
5089  if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
5090    return CheckBuiltinFunctionCall(BuiltinID, TheCall);
5091
5092 retry:
5093  const FunctionType *FuncT;
5094  if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
5095    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
5096    // have type pointer to function".
5097    FuncT = PT->getPointeeType()->getAs<FunctionType>();
5098    if (FuncT == 0)
5099      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
5100                         << Fn->getType() << Fn->getSourceRange());
5101  } else if (const BlockPointerType *BPT =
5102               Fn->getType()->getAs<BlockPointerType>()) {
5103    FuncT = BPT->getPointeeType()->castAs<FunctionType>();
5104  } else {
5105    // Handle calls to expressions of unknown-any type.
5106    if (Fn->getType() == Context.UnknownAnyTy) {
5107      ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
5108      if (rewrite.isInvalid()) return ExprError();
5109      Fn = rewrite.take();
5110      TheCall->setCallee(Fn);
5111      goto retry;
5112    }
5113
5114    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
5115      << Fn->getType() << Fn->getSourceRange());
5116  }
5117
5118  if (getLangOptions().CUDA) {
5119    if (Config) {
5120      // CUDA: Kernel calls must be to global functions
5121      if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
5122        return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
5123            << FDecl->getName() << Fn->getSourceRange());
5124
5125      // CUDA: Kernel function must have 'void' return type
5126      if (!FuncT->getResultType()->isVoidType())
5127        return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
5128            << Fn->getType() << Fn->getSourceRange());
5129    }
5130  }
5131
5132  // Check for a valid return type
5133  if (CheckCallReturnType(FuncT->getResultType(),
5134                          Fn->getSourceRange().getBegin(), TheCall,
5135                          FDecl))
5136    return ExprError();
5137
5138  // We know the result type of the call, set it.
5139  TheCall->setType(FuncT->getCallResultType(Context));
5140  TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
5141
5142  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
5143    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
5144                                RParenLoc))
5145      return ExprError();
5146  } else {
5147    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
5148
5149    if (FDecl) {
5150      // Check if we have too few/too many template arguments, based
5151      // on our knowledge of the function definition.
5152      const FunctionDecl *Def = 0;
5153      if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
5154        const FunctionProtoType *Proto
5155          = Def->getType()->getAs<FunctionProtoType>();
5156        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
5157          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
5158            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
5159      }
5160
5161      // If the function we're calling isn't a function prototype, but we have
5162      // a function prototype from a prior declaratiom, use that prototype.
5163      if (!FDecl->hasPrototype())
5164        Proto = FDecl->getType()->getAs<FunctionProtoType>();
5165    }
5166
5167    // Promote the arguments (C99 6.5.2.2p6).
5168    for (unsigned i = 0; i != NumArgs; i++) {
5169      Expr *Arg = Args[i];
5170
5171      if (Proto && i < Proto->getNumArgs()) {
5172        InitializedEntity Entity
5173          = InitializedEntity::InitializeParameter(Context,
5174                                                   Proto->getArgType(i));
5175        ExprResult ArgE = PerformCopyInitialization(Entity,
5176                                                    SourceLocation(),
5177                                                    Owned(Arg));
5178        if (ArgE.isInvalid())
5179          return true;
5180
5181        Arg = ArgE.takeAs<Expr>();
5182
5183      } else {
5184        ExprResult ArgE = DefaultArgumentPromotion(Arg);
5185
5186        if (ArgE.isInvalid())
5187          return true;
5188
5189        Arg = ArgE.takeAs<Expr>();
5190      }
5191
5192      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
5193                              Arg->getType(),
5194                              PDiag(diag::err_call_incomplete_argument)
5195                                << Arg->getSourceRange()))
5196        return ExprError();
5197
5198      TheCall->setArg(i, Arg);
5199    }
5200  }
5201
5202  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5203    if (!Method->isStatic())
5204      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
5205        << Fn->getSourceRange());
5206
5207  // Check for sentinels
5208  if (NDecl)
5209    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
5210
5211  // Do special checking on direct calls to functions.
5212  if (FDecl) {
5213    if (CheckFunctionCall(FDecl, TheCall))
5214      return ExprError();
5215
5216    if (BuiltinID)
5217      return CheckBuiltinFunctionCall(BuiltinID, TheCall);
5218  } else if (NDecl) {
5219    if (CheckBlockCall(NDecl, TheCall))
5220      return ExprError();
5221  }
5222
5223  return MaybeBindToTemporary(TheCall);
5224}
5225
5226ExprResult
5227Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
5228                           SourceLocation RParenLoc, Expr *InitExpr) {
5229  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
5230  // FIXME: put back this assert when initializers are worked out.
5231  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
5232
5233  TypeSourceInfo *TInfo;
5234  QualType literalType = GetTypeFromParser(Ty, &TInfo);
5235  if (!TInfo)
5236    TInfo = Context.getTrivialTypeSourceInfo(literalType);
5237
5238  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
5239}
5240
5241ExprResult
5242Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
5243                               SourceLocation RParenLoc, Expr *literalExpr) {
5244  QualType literalType = TInfo->getType();
5245
5246  if (literalType->isArrayType()) {
5247    if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
5248             PDiag(diag::err_illegal_decl_array_incomplete_type)
5249               << SourceRange(LParenLoc,
5250                              literalExpr->getSourceRange().getEnd())))
5251      return ExprError();
5252    if (literalType->isVariableArrayType())
5253      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
5254        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
5255  } else if (!literalType->isDependentType() &&
5256             RequireCompleteType(LParenLoc, literalType,
5257                      PDiag(diag::err_typecheck_decl_incomplete_type)
5258                        << SourceRange(LParenLoc,
5259                                       literalExpr->getSourceRange().getEnd())))
5260    return ExprError();
5261
5262  InitializedEntity Entity
5263    = InitializedEntity::InitializeTemporary(literalType);
5264  InitializationKind Kind
5265    = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
5266                                     /*IsCStyleCast=*/true);
5267  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
5268  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5269                                       MultiExprArg(*this, &literalExpr, 1),
5270                                            &literalType);
5271  if (Result.isInvalid())
5272    return ExprError();
5273  literalExpr = Result.get();
5274
5275  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
5276  if (isFileScope) { // 6.5.2.5p3
5277    if (CheckForConstantInitializer(literalExpr, literalType))
5278      return ExprError();
5279  }
5280
5281  // In C, compound literals are l-values for some reason.
5282  ExprValueKind VK = getLangOptions().CPlusPlus ? VK_RValue : VK_LValue;
5283
5284  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
5285                                                 VK, literalExpr, isFileScope));
5286}
5287
5288ExprResult
5289Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
5290                    SourceLocation RBraceLoc) {
5291  unsigned NumInit = initlist.size();
5292  Expr **InitList = initlist.release();
5293
5294  // Semantic analysis for initializers is done by ActOnDeclarator() and
5295  // CheckInitializer() - it requires knowledge of the object being intialized.
5296
5297  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
5298                                               NumInit, RBraceLoc);
5299  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
5300  return Owned(E);
5301}
5302
5303/// Prepares for a scalar cast, performing all the necessary stages
5304/// except the final cast and returning the kind required.
5305static CastKind PrepareScalarCast(Sema &S, ExprResult &Src, QualType DestTy) {
5306  // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
5307  // Also, callers should have filtered out the invalid cases with
5308  // pointers.  Everything else should be possible.
5309
5310  QualType SrcTy = Src.get()->getType();
5311  if (S.Context.hasSameUnqualifiedType(SrcTy, DestTy))
5312    return CK_NoOp;
5313
5314  switch (SrcTy->getScalarTypeKind()) {
5315  case Type::STK_MemberPointer:
5316    llvm_unreachable("member pointer type in C");
5317
5318  case Type::STK_Pointer:
5319    switch (DestTy->getScalarTypeKind()) {
5320    case Type::STK_Pointer:
5321      return DestTy->isObjCObjectPointerType() ?
5322                CK_AnyPointerToObjCPointerCast :
5323                CK_BitCast;
5324    case Type::STK_Bool:
5325      return CK_PointerToBoolean;
5326    case Type::STK_Integral:
5327      return CK_PointerToIntegral;
5328    case Type::STK_Floating:
5329    case Type::STK_FloatingComplex:
5330    case Type::STK_IntegralComplex:
5331    case Type::STK_MemberPointer:
5332      llvm_unreachable("illegal cast from pointer");
5333    }
5334    break;
5335
5336  case Type::STK_Bool: // casting from bool is like casting from an integer
5337  case Type::STK_Integral:
5338    switch (DestTy->getScalarTypeKind()) {
5339    case Type::STK_Pointer:
5340      if (Src.get()->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull))
5341        return CK_NullToPointer;
5342      return CK_IntegralToPointer;
5343    case Type::STK_Bool:
5344      return CK_IntegralToBoolean;
5345    case Type::STK_Integral:
5346      return CK_IntegralCast;
5347    case Type::STK_Floating:
5348      return CK_IntegralToFloating;
5349    case Type::STK_IntegralComplex:
5350      Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
5351                                CK_IntegralCast);
5352      return CK_IntegralRealToComplex;
5353    case Type::STK_FloatingComplex:
5354      Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
5355                                CK_IntegralToFloating);
5356      return CK_FloatingRealToComplex;
5357    case Type::STK_MemberPointer:
5358      llvm_unreachable("member pointer type in C");
5359    }
5360    break;
5361
5362  case Type::STK_Floating:
5363    switch (DestTy->getScalarTypeKind()) {
5364    case Type::STK_Floating:
5365      return CK_FloatingCast;
5366    case Type::STK_Bool:
5367      return CK_FloatingToBoolean;
5368    case Type::STK_Integral:
5369      return CK_FloatingToIntegral;
5370    case Type::STK_FloatingComplex:
5371      Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
5372                                CK_FloatingCast);
5373      return CK_FloatingRealToComplex;
5374    case Type::STK_IntegralComplex:
5375      Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
5376                                CK_FloatingToIntegral);
5377      return CK_IntegralRealToComplex;
5378    case Type::STK_Pointer:
5379      llvm_unreachable("valid float->pointer cast?");
5380    case Type::STK_MemberPointer:
5381      llvm_unreachable("member pointer type in C");
5382    }
5383    break;
5384
5385  case Type::STK_FloatingComplex:
5386    switch (DestTy->getScalarTypeKind()) {
5387    case Type::STK_FloatingComplex:
5388      return CK_FloatingComplexCast;
5389    case Type::STK_IntegralComplex:
5390      return CK_FloatingComplexToIntegralComplex;
5391    case Type::STK_Floating: {
5392      QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
5393      if (S.Context.hasSameType(ET, DestTy))
5394        return CK_FloatingComplexToReal;
5395      Src = S.ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
5396      return CK_FloatingCast;
5397    }
5398    case Type::STK_Bool:
5399      return CK_FloatingComplexToBoolean;
5400    case Type::STK_Integral:
5401      Src = S.ImpCastExprToType(Src.take(), SrcTy->getAs<ComplexType>()->getElementType(),
5402                                CK_FloatingComplexToReal);
5403      return CK_FloatingToIntegral;
5404    case Type::STK_Pointer:
5405      llvm_unreachable("valid complex float->pointer cast?");
5406    case Type::STK_MemberPointer:
5407      llvm_unreachable("member pointer type in C");
5408    }
5409    break;
5410
5411  case Type::STK_IntegralComplex:
5412    switch (DestTy->getScalarTypeKind()) {
5413    case Type::STK_FloatingComplex:
5414      return CK_IntegralComplexToFloatingComplex;
5415    case Type::STK_IntegralComplex:
5416      return CK_IntegralComplexCast;
5417    case Type::STK_Integral: {
5418      QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
5419      if (S.Context.hasSameType(ET, DestTy))
5420        return CK_IntegralComplexToReal;
5421      Src = S.ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
5422      return CK_IntegralCast;
5423    }
5424    case Type::STK_Bool:
5425      return CK_IntegralComplexToBoolean;
5426    case Type::STK_Floating:
5427      Src = S.ImpCastExprToType(Src.take(), SrcTy->getAs<ComplexType>()->getElementType(),
5428                                CK_IntegralComplexToReal);
5429      return CK_IntegralToFloating;
5430    case Type::STK_Pointer:
5431      llvm_unreachable("valid complex int->pointer cast?");
5432    case Type::STK_MemberPointer:
5433      llvm_unreachable("member pointer type in C");
5434    }
5435    break;
5436  }
5437
5438  llvm_unreachable("Unhandled scalar cast");
5439  return CK_BitCast;
5440}
5441
5442/// CheckCastTypes - Check type constraints for casting between types.
5443ExprResult Sema::CheckCastTypes(SourceRange TyR, QualType castType,
5444                                Expr *castExpr, CastKind& Kind, ExprValueKind &VK,
5445                                CXXCastPath &BasePath, bool FunctionalStyle) {
5446  if (castExpr->getType() == Context.UnknownAnyTy)
5447    return checkUnknownAnyCast(TyR, castType, castExpr, Kind, VK, BasePath);
5448
5449  if (getLangOptions().CPlusPlus)
5450    return CXXCheckCStyleCast(SourceRange(TyR.getBegin(),
5451                                          castExpr->getLocEnd()),
5452                              castType, VK, castExpr, Kind, BasePath,
5453                              FunctionalStyle);
5454
5455  assert(!castExpr->getType()->isPlaceholderType());
5456
5457  // We only support r-value casts in C.
5458  VK = VK_RValue;
5459
5460  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
5461  // type needs to be scalar.
5462  if (castType->isVoidType()) {
5463    // We don't necessarily do lvalue-to-rvalue conversions on this.
5464    ExprResult castExprRes = IgnoredValueConversions(castExpr);
5465    if (castExprRes.isInvalid())
5466      return ExprError();
5467    castExpr = castExprRes.take();
5468
5469    // Cast to void allows any expr type.
5470    Kind = CK_ToVoid;
5471    return Owned(castExpr);
5472  }
5473
5474  ExprResult castExprRes = DefaultFunctionArrayLvalueConversion(castExpr);
5475  if (castExprRes.isInvalid())
5476    return ExprError();
5477  castExpr = castExprRes.take();
5478
5479  if (RequireCompleteType(TyR.getBegin(), castType,
5480                          diag::err_typecheck_cast_to_incomplete))
5481    return ExprError();
5482
5483  if (!castType->isScalarType() && !castType->isVectorType()) {
5484    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
5485        (castType->isStructureType() || castType->isUnionType())) {
5486      // GCC struct/union extension: allow cast to self.
5487      // FIXME: Check that the cast destination type is complete.
5488      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
5489        << castType << castExpr->getSourceRange();
5490      Kind = CK_NoOp;
5491      return Owned(castExpr);
5492    }
5493
5494    if (castType->isUnionType()) {
5495      // GCC cast to union extension
5496      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
5497      RecordDecl::field_iterator Field, FieldEnd;
5498      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
5499           Field != FieldEnd; ++Field) {
5500        if (Context.hasSameUnqualifiedType(Field->getType(),
5501                                           castExpr->getType()) &&
5502            !Field->isUnnamedBitfield()) {
5503          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
5504            << castExpr->getSourceRange();
5505          break;
5506        }
5507      }
5508      if (Field == FieldEnd) {
5509        Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
5510          << castExpr->getType() << castExpr->getSourceRange();
5511        return ExprError();
5512      }
5513      Kind = CK_ToUnion;
5514      return Owned(castExpr);
5515    }
5516
5517    // Reject any other conversions to non-scalar types.
5518    Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
5519      << castType << castExpr->getSourceRange();
5520    return ExprError();
5521  }
5522
5523  // The type we're casting to is known to be a scalar or vector.
5524
5525  // Require the operand to be a scalar or vector.
5526  if (!castExpr->getType()->isScalarType() &&
5527      !castExpr->getType()->isVectorType()) {
5528    Diag(castExpr->getLocStart(),
5529                diag::err_typecheck_expect_scalar_operand)
5530      << castExpr->getType() << castExpr->getSourceRange();
5531    return ExprError();
5532  }
5533
5534  if (castType->isExtVectorType())
5535    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
5536
5537  if (castType->isVectorType()) {
5538    if (castType->getAs<VectorType>()->getVectorKind() ==
5539        VectorType::AltiVecVector &&
5540          (castExpr->getType()->isIntegerType() ||
5541           castExpr->getType()->isFloatingType())) {
5542      Kind = CK_VectorSplat;
5543      return Owned(castExpr);
5544    } else if (CheckVectorCast(TyR, castType, castExpr->getType(), Kind)) {
5545      return ExprError();
5546    } else
5547      return Owned(castExpr);
5548  }
5549  if (castExpr->getType()->isVectorType()) {
5550    if (CheckVectorCast(TyR, castExpr->getType(), castType, Kind))
5551      return ExprError();
5552    else
5553      return Owned(castExpr);
5554  }
5555
5556  // The source and target types are both scalars, i.e.
5557  //   - arithmetic types (fundamental, enum, and complex)
5558  //   - all kinds of pointers
5559  // Note that member pointers were filtered out with C++, above.
5560
5561  if (isa<ObjCSelectorExpr>(castExpr)) {
5562    Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
5563    return ExprError();
5564  }
5565
5566  // If either type is a pointer, the other type has to be either an
5567  // integer or a pointer.
5568  if (!castType->isArithmeticType()) {
5569    QualType castExprType = castExpr->getType();
5570    if (!castExprType->isIntegralType(Context) &&
5571        castExprType->isArithmeticType()) {
5572      Diag(castExpr->getLocStart(),
5573           diag::err_cast_pointer_from_non_pointer_int)
5574        << castExprType << castExpr->getSourceRange();
5575      return ExprError();
5576    }
5577  } else if (!castExpr->getType()->isArithmeticType()) {
5578    if (!castType->isIntegralType(Context) && castType->isArithmeticType()) {
5579      Diag(castExpr->getLocStart(), diag::err_cast_pointer_to_non_pointer_int)
5580        << castType << castExpr->getSourceRange();
5581      return ExprError();
5582    }
5583  }
5584
5585  castExprRes = Owned(castExpr);
5586  Kind = PrepareScalarCast(*this, castExprRes, castType);
5587  if (castExprRes.isInvalid())
5588    return ExprError();
5589  castExpr = castExprRes.take();
5590
5591  if (Kind == CK_BitCast)
5592    CheckCastAlign(castExpr, castType, TyR);
5593
5594  return Owned(castExpr);
5595}
5596
5597bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
5598                           CastKind &Kind) {
5599  assert(VectorTy->isVectorType() && "Not a vector type!");
5600
5601  if (Ty->isVectorType() || Ty->isIntegerType()) {
5602    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
5603      return Diag(R.getBegin(),
5604                  Ty->isVectorType() ?
5605                  diag::err_invalid_conversion_between_vectors :
5606                  diag::err_invalid_conversion_between_vector_and_integer)
5607        << VectorTy << Ty << R;
5608  } else
5609    return Diag(R.getBegin(),
5610                diag::err_invalid_conversion_between_vector_and_scalar)
5611      << VectorTy << Ty << R;
5612
5613  Kind = CK_BitCast;
5614  return false;
5615}
5616
5617ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
5618                                    Expr *CastExpr, CastKind &Kind) {
5619  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
5620
5621  QualType SrcTy = CastExpr->getType();
5622
5623  // If SrcTy is a VectorType, the total size must match to explicitly cast to
5624  // an ExtVectorType.
5625  if (SrcTy->isVectorType()) {
5626    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) {
5627      Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
5628        << DestTy << SrcTy << R;
5629      return ExprError();
5630    }
5631    Kind = CK_BitCast;
5632    return Owned(CastExpr);
5633  }
5634
5635  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
5636  // conversion will take place first from scalar to elt type, and then
5637  // splat from elt type to vector.
5638  if (SrcTy->isPointerType())
5639    return Diag(R.getBegin(),
5640                diag::err_invalid_conversion_between_vector_and_scalar)
5641      << DestTy << SrcTy << R;
5642
5643  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
5644  ExprResult CastExprRes = Owned(CastExpr);
5645  CastKind CK = PrepareScalarCast(*this, CastExprRes, DestElemTy);
5646  if (CastExprRes.isInvalid())
5647    return ExprError();
5648  CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
5649
5650  Kind = CK_VectorSplat;
5651  return Owned(CastExpr);
5652}
5653
5654ExprResult
5655Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, ParsedType Ty,
5656                    SourceLocation RParenLoc, Expr *castExpr) {
5657  assert((Ty != 0) && (castExpr != 0) &&
5658         "ActOnCastExpr(): missing type or expr");
5659
5660  TypeSourceInfo *castTInfo;
5661  QualType castType = GetTypeFromParser(Ty, &castTInfo);
5662  if (!castTInfo)
5663    castTInfo = Context.getTrivialTypeSourceInfo(castType);
5664
5665  // If the Expr being casted is a ParenListExpr, handle it specially.
5666  if (isa<ParenListExpr>(castExpr))
5667    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, castExpr,
5668                                    castTInfo);
5669
5670  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr);
5671}
5672
5673ExprResult
5674Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
5675                          SourceLocation RParenLoc, Expr *castExpr) {
5676  CastKind Kind = CK_Invalid;
5677  ExprValueKind VK = VK_RValue;
5678  CXXCastPath BasePath;
5679  ExprResult CastResult =
5680    CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
5681                   Kind, VK, BasePath);
5682  if (CastResult.isInvalid())
5683    return ExprError();
5684  castExpr = CastResult.take();
5685
5686  return Owned(CStyleCastExpr::Create(Context,
5687                                      Ty->getType().getNonLValueExprType(Context),
5688                                      VK, Kind, castExpr, &BasePath, Ty,
5689                                      LParenLoc, RParenLoc));
5690}
5691
5692/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
5693/// of comma binary operators.
5694ExprResult
5695Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) {
5696  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
5697  if (!E)
5698    return Owned(expr);
5699
5700  ExprResult Result(E->getExpr(0));
5701
5702  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
5703    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
5704                        E->getExpr(i));
5705
5706  if (Result.isInvalid()) return ExprError();
5707
5708  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
5709}
5710
5711ExprResult
5712Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
5713                               SourceLocation RParenLoc, Expr *Op,
5714                               TypeSourceInfo *TInfo) {
5715  ParenListExpr *PE = cast<ParenListExpr>(Op);
5716  QualType Ty = TInfo->getType();
5717  bool isVectorLiteral = false;
5718
5719  // Check for an altivec or OpenCL literal,
5720  // i.e. all the elements are integer constants.
5721  if (getLangOptions().AltiVec && Ty->isVectorType()) {
5722    if (PE->getNumExprs() == 0) {
5723      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
5724      return ExprError();
5725    }
5726    if (PE->getNumExprs() == 1) {
5727      if (!PE->getExpr(0)->getType()->isVectorType())
5728        isVectorLiteral = true;
5729    }
5730    else
5731      isVectorLiteral = true;
5732  }
5733
5734  // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
5735  // then handle it as such.
5736  if (isVectorLiteral) {
5737    llvm::SmallVector<Expr *, 8> initExprs;
5738    // '(...)' form of vector initialization in AltiVec: the number of
5739    // initializers must be one or must match the size of the vector.
5740    // If a single value is specified in the initializer then it will be
5741    // replicated to all the components of the vector
5742    if (Ty->getAs<VectorType>()->getVectorKind() ==
5743        VectorType::AltiVecVector) {
5744      unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
5745      // The number of initializers must be one or must match the size of the
5746      // vector. If a single value is specified in the initializer then it will
5747      // be replicated to all the components of the vector
5748      if (PE->getNumExprs() == 1) {
5749        QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
5750        ExprResult Literal = Owned(PE->getExpr(0));
5751        Literal = ImpCastExprToType(Literal.take(), ElemTy,
5752                                    PrepareScalarCast(*this, Literal, ElemTy));
5753        return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
5754      }
5755      else if (PE->getNumExprs() < numElems) {
5756        Diag(PE->getExprLoc(),
5757             diag::err_incorrect_number_of_vector_initializers);
5758        return ExprError();
5759      }
5760      else
5761        for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
5762          initExprs.push_back(PE->getExpr(i));
5763    }
5764    else
5765      for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
5766        initExprs.push_back(PE->getExpr(i));
5767
5768    // FIXME: This means that pretty-printing the final AST will produce curly
5769    // braces instead of the original commas.
5770    InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc,
5771                                                 &initExprs[0],
5772                                                 initExprs.size(), RParenLoc);
5773    E->setType(Ty);
5774    return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, E);
5775  } else {
5776    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
5777    // sequence of BinOp comma operators.
5778    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Op);
5779    if (Result.isInvalid()) return ExprError();
5780    return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Result.take());
5781  }
5782}
5783
5784ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
5785                                                  SourceLocation R,
5786                                                  MultiExprArg Val,
5787                                                  ParsedType TypeOfCast) {
5788  unsigned nexprs = Val.size();
5789  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
5790  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
5791  Expr *expr;
5792  if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
5793    expr = new (Context) ParenExpr(L, R, exprs[0]);
5794  else
5795    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
5796  return Owned(expr);
5797}
5798
5799/// \brief Emit a specialized diagnostic when one expression is a null pointer
5800/// constant and the other is not a pointer.
5801bool Sema::DiagnoseConditionalForNull(Expr *LHS, Expr *RHS,
5802                                      SourceLocation QuestionLoc) {
5803  Expr *NullExpr = LHS;
5804  Expr *NonPointerExpr = RHS;
5805  Expr::NullPointerConstantKind NullKind =
5806      NullExpr->isNullPointerConstant(Context,
5807                                      Expr::NPC_ValueDependentIsNotNull);
5808
5809  if (NullKind == Expr::NPCK_NotNull) {
5810    NullExpr = RHS;
5811    NonPointerExpr = LHS;
5812    NullKind =
5813        NullExpr->isNullPointerConstant(Context,
5814                                        Expr::NPC_ValueDependentIsNotNull);
5815  }
5816
5817  if (NullKind == Expr::NPCK_NotNull)
5818    return false;
5819
5820  if (NullKind == Expr::NPCK_ZeroInteger) {
5821    // In this case, check to make sure that we got here from a "NULL"
5822    // string in the source code.
5823    NullExpr = NullExpr->IgnoreParenImpCasts();
5824    SourceLocation loc = NullExpr->getExprLoc();
5825    if (!findMacroSpelling(loc, "NULL"))
5826      return false;
5827  }
5828
5829  int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
5830  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
5831      << NonPointerExpr->getType() << DiagType
5832      << NonPointerExpr->getSourceRange();
5833  return true;
5834}
5835
5836/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
5837/// In that case, lhs = cond.
5838/// C99 6.5.15
5839QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
5840                                        ExprValueKind &VK, ExprObjectKind &OK,
5841                                        SourceLocation QuestionLoc) {
5842
5843  ExprResult lhsResult = CheckPlaceholderExpr(LHS.get());
5844  if (!lhsResult.isUsable()) return QualType();
5845  LHS = move(lhsResult);
5846
5847  ExprResult rhsResult = CheckPlaceholderExpr(RHS.get());
5848  if (!rhsResult.isUsable()) return QualType();
5849  RHS = move(rhsResult);
5850
5851  // C++ is sufficiently different to merit its own checker.
5852  if (getLangOptions().CPlusPlus)
5853    return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
5854
5855  VK = VK_RValue;
5856  OK = OK_Ordinary;
5857
5858  Cond = UsualUnaryConversions(Cond.take());
5859  if (Cond.isInvalid())
5860    return QualType();
5861  LHS = UsualUnaryConversions(LHS.take());
5862  if (LHS.isInvalid())
5863    return QualType();
5864  RHS = UsualUnaryConversions(RHS.take());
5865  if (RHS.isInvalid())
5866    return QualType();
5867
5868  QualType CondTy = Cond.get()->getType();
5869  QualType LHSTy = LHS.get()->getType();
5870  QualType RHSTy = RHS.get()->getType();
5871
5872  // first, check the condition.
5873  if (!CondTy->isScalarType()) { // C99 6.5.15p2
5874    // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
5875    // Throw an error if its not either.
5876    if (getLangOptions().OpenCL) {
5877      if (!CondTy->isVectorType()) {
5878        Diag(Cond.get()->getLocStart(),
5879             diag::err_typecheck_cond_expect_scalar_or_vector)
5880          << CondTy;
5881        return QualType();
5882      }
5883    }
5884    else {
5885      Diag(Cond.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
5886        << CondTy;
5887      return QualType();
5888    }
5889  }
5890
5891  // Now check the two expressions.
5892  if (LHSTy->isVectorType() || RHSTy->isVectorType())
5893    return CheckVectorOperands(QuestionLoc, LHS, RHS);
5894
5895  // OpenCL: If the condition is a vector, and both operands are scalar,
5896  // attempt to implicity convert them to the vector type to act like the
5897  // built in select.
5898  if (getLangOptions().OpenCL && CondTy->isVectorType()) {
5899    // Both operands should be of scalar type.
5900    if (!LHSTy->isScalarType()) {
5901      Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
5902        << CondTy;
5903      return QualType();
5904    }
5905    if (!RHSTy->isScalarType()) {
5906      Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
5907        << CondTy;
5908      return QualType();
5909    }
5910    // Implicity convert these scalars to the type of the condition.
5911    LHS = ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
5912    RHS = ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
5913  }
5914
5915  // If both operands have arithmetic type, do the usual arithmetic conversions
5916  // to find a common type: C99 6.5.15p3,5.
5917  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
5918    UsualArithmeticConversions(LHS, RHS);
5919    if (LHS.isInvalid() || RHS.isInvalid())
5920      return QualType();
5921    return LHS.get()->getType();
5922  }
5923
5924  // If both operands are the same structure or union type, the result is that
5925  // type.
5926  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
5927    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
5928      if (LHSRT->getDecl() == RHSRT->getDecl())
5929        // "If both the operands have structure or union type, the result has
5930        // that type."  This implies that CV qualifiers are dropped.
5931        return LHSTy.getUnqualifiedType();
5932    // FIXME: Type of conditional expression must be complete in C mode.
5933  }
5934
5935  // C99 6.5.15p5: "If both operands have void type, the result has void type."
5936  // The following || allows only one side to be void (a GCC-ism).
5937  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
5938    if (!LHSTy->isVoidType())
5939      Diag(RHS.get()->getLocStart(), diag::ext_typecheck_cond_one_void)
5940        << RHS.get()->getSourceRange();
5941    if (!RHSTy->isVoidType())
5942      Diag(LHS.get()->getLocStart(), diag::ext_typecheck_cond_one_void)
5943        << LHS.get()->getSourceRange();
5944    LHS = ImpCastExprToType(LHS.take(), Context.VoidTy, CK_ToVoid);
5945    RHS = ImpCastExprToType(RHS.take(), Context.VoidTy, CK_ToVoid);
5946    return Context.VoidTy;
5947  }
5948  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
5949  // the type of the other operand."
5950  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
5951      RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5952    // promote the null to a pointer.
5953    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_NullToPointer);
5954    return LHSTy;
5955  }
5956  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
5957      LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5958    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_NullToPointer);
5959    return RHSTy;
5960  }
5961
5962  // All objective-c pointer type analysis is done here.
5963  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
5964                                                        QuestionLoc);
5965  if (LHS.isInvalid() || RHS.isInvalid())
5966    return QualType();
5967  if (!compositeType.isNull())
5968    return compositeType;
5969
5970
5971  // Handle block pointer types.
5972  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
5973    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
5974      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
5975        QualType destType = Context.getPointerType(Context.VoidTy);
5976        LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5977        RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5978        return destType;
5979      }
5980      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5981      << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5982      return QualType();
5983    }
5984    // We have 2 block pointer types.
5985    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
5986      // Two identical block pointer types are always compatible.
5987      return LHSTy;
5988    }
5989    // The block pointer types aren't identical, continue checking.
5990    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
5991    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
5992
5993    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
5994                                    rhptee.getUnqualifiedType())) {
5995      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
5996      << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5997      // In this situation, we assume void* type. No especially good
5998      // reason, but this is what gcc does, and we do have to pick
5999      // to get a consistent AST.
6000      QualType incompatTy = Context.getPointerType(Context.VoidTy);
6001      LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
6002      RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
6003      return incompatTy;
6004    }
6005    // The block pointer types are compatible.
6006    LHS = ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
6007    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
6008    return LHSTy;
6009  }
6010
6011  // Check constraints for C object pointers types (C99 6.5.15p3,6).
6012  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
6013    // get the "pointed to" types
6014    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
6015    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
6016
6017    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
6018    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
6019      // Figure out necessary qualifiers (C99 6.5.15p6)
6020      QualType destPointee
6021        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
6022      QualType destType = Context.getPointerType(destPointee);
6023      // Add qualifiers if necessary.
6024      LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
6025      // Promote to void*.
6026      RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
6027      return destType;
6028    }
6029    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
6030      QualType destPointee
6031        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
6032      QualType destType = Context.getPointerType(destPointee);
6033      // Add qualifiers if necessary.
6034      RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
6035      // Promote to void*.
6036      LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
6037      return destType;
6038    }
6039
6040    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
6041      // Two identical pointer types are always compatible.
6042      return LHSTy;
6043    }
6044    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
6045                                    rhptee.getUnqualifiedType())) {
6046      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
6047        << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6048      // In this situation, we assume void* type. No especially good
6049      // reason, but this is what gcc does, and we do have to pick
6050      // to get a consistent AST.
6051      QualType incompatTy = Context.getPointerType(Context.VoidTy);
6052      LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
6053      RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
6054      return incompatTy;
6055    }
6056    // The pointer types are compatible.
6057    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
6058    // differently qualified versions of compatible types, the result type is
6059    // a pointer to an appropriately qualified version of the *composite*
6060    // type.
6061    // FIXME: Need to calculate the composite type.
6062    // FIXME: Need to add qualifiers
6063    LHS = ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
6064    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
6065    return LHSTy;
6066  }
6067
6068  // GCC compatibility: soften pointer/integer mismatch.  Note that
6069  // null pointers have been filtered out by this point.
6070  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
6071    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
6072      << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6073    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_IntegralToPointer);
6074    return RHSTy;
6075  }
6076  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
6077    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
6078      << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6079    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_IntegralToPointer);
6080    return LHSTy;
6081  }
6082
6083  // Emit a better diagnostic if one of the expressions is a null pointer
6084  // constant and the other is not a pointer type. In this case, the user most
6085  // likely forgot to take the address of the other expression.
6086  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6087    return QualType();
6088
6089  // Otherwise, the operands are not compatible.
6090  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6091    << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6092  return QualType();
6093}
6094
6095/// FindCompositeObjCPointerType - Helper method to find composite type of
6096/// two objective-c pointer types of the two input expressions.
6097QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
6098                                        SourceLocation QuestionLoc) {
6099  QualType LHSTy = LHS.get()->getType();
6100  QualType RHSTy = RHS.get()->getType();
6101
6102  // Handle things like Class and struct objc_class*.  Here we case the result
6103  // to the pseudo-builtin, because that will be implicitly cast back to the
6104  // redefinition type if an attempt is made to access its fields.
6105  if (LHSTy->isObjCClassType() &&
6106      (Context.hasSameType(RHSTy, Context.ObjCClassRedefinitionType))) {
6107    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
6108    return LHSTy;
6109  }
6110  if (RHSTy->isObjCClassType() &&
6111      (Context.hasSameType(LHSTy, Context.ObjCClassRedefinitionType))) {
6112    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
6113    return RHSTy;
6114  }
6115  // And the same for struct objc_object* / id
6116  if (LHSTy->isObjCIdType() &&
6117      (Context.hasSameType(RHSTy, Context.ObjCIdRedefinitionType))) {
6118    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
6119    return LHSTy;
6120  }
6121  if (RHSTy->isObjCIdType() &&
6122      (Context.hasSameType(LHSTy, Context.ObjCIdRedefinitionType))) {
6123    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
6124    return RHSTy;
6125  }
6126  // And the same for struct objc_selector* / SEL
6127  if (Context.isObjCSelType(LHSTy) &&
6128      (Context.hasSameType(RHSTy, Context.ObjCSelRedefinitionType))) {
6129    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
6130    return LHSTy;
6131  }
6132  if (Context.isObjCSelType(RHSTy) &&
6133      (Context.hasSameType(LHSTy, Context.ObjCSelRedefinitionType))) {
6134    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
6135    return RHSTy;
6136  }
6137  // Check constraints for Objective-C object pointers types.
6138  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
6139
6140    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
6141      // Two identical object pointer types are always compatible.
6142      return LHSTy;
6143    }
6144    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
6145    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
6146    QualType compositeType = LHSTy;
6147
6148    // If both operands are interfaces and either operand can be
6149    // assigned to the other, use that type as the composite
6150    // type. This allows
6151    //   xxx ? (A*) a : (B*) b
6152    // where B is a subclass of A.
6153    //
6154    // Additionally, as for assignment, if either type is 'id'
6155    // allow silent coercion. Finally, if the types are
6156    // incompatible then make sure to use 'id' as the composite
6157    // type so the result is acceptable for sending messages to.
6158
6159    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
6160    // It could return the composite type.
6161    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
6162      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
6163    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
6164      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
6165    } else if ((LHSTy->isObjCQualifiedIdType() ||
6166                RHSTy->isObjCQualifiedIdType()) &&
6167               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
6168      // Need to handle "id<xx>" explicitly.
6169      // GCC allows qualified id and any Objective-C type to devolve to
6170      // id. Currently localizing to here until clear this should be
6171      // part of ObjCQualifiedIdTypesAreCompatible.
6172      compositeType = Context.getObjCIdType();
6173    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
6174      compositeType = Context.getObjCIdType();
6175    } else if (!(compositeType =
6176                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
6177      ;
6178    else {
6179      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
6180      << LHSTy << RHSTy
6181      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6182      QualType incompatTy = Context.getObjCIdType();
6183      LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
6184      RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
6185      return incompatTy;
6186    }
6187    // The object pointer types are compatible.
6188    LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
6189    RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
6190    return compositeType;
6191  }
6192  // Check Objective-C object pointer types and 'void *'
6193  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
6194    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
6195    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
6196    QualType destPointee
6197    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
6198    QualType destType = Context.getPointerType(destPointee);
6199    // Add qualifiers if necessary.
6200    LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
6201    // Promote to void*.
6202    RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
6203    return destType;
6204  }
6205  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
6206    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
6207    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
6208    QualType destPointee
6209    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
6210    QualType destType = Context.getPointerType(destPointee);
6211    // Add qualifiers if necessary.
6212    RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
6213    // Promote to void*.
6214    LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
6215    return destType;
6216  }
6217  return QualType();
6218}
6219
6220/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
6221/// ParenRange in parentheses.
6222static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6223                               const PartialDiagnostic &PD,
6224                               const PartialDiagnostic &FirstNote,
6225                               SourceRange FirstParenRange,
6226                               const PartialDiagnostic &SecondNote,
6227                               SourceRange SecondParenRange) {
6228  Self.Diag(Loc, PD);
6229
6230  if (!FirstNote.getDiagID())
6231    return;
6232
6233  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd());
6234  if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6235    // We can't display the parentheses, so just return.
6236    return;
6237  }
6238
6239  Self.Diag(Loc, FirstNote)
6240    << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(")
6241    << FixItHint::CreateInsertion(EndLoc, ")");
6242
6243  if (!SecondNote.getDiagID())
6244    return;
6245
6246  EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
6247  if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6248    // We can't display the parentheses, so just dig the
6249    // warning/error and return.
6250    Self.Diag(Loc, SecondNote);
6251    return;
6252  }
6253
6254  Self.Diag(Loc, SecondNote)
6255    << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(")
6256    << FixItHint::CreateInsertion(EndLoc, ")");
6257}
6258
6259static bool IsArithmeticOp(BinaryOperatorKind Opc) {
6260  return Opc >= BO_Mul && Opc <= BO_Shr;
6261}
6262
6263/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
6264/// expression, either using a built-in or overloaded operator,
6265/// and sets *OpCode to the opcode and *RHS to the right-hand side expression.
6266static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
6267                                   Expr **RHS) {
6268  E = E->IgnoreParenImpCasts();
6269  E = E->IgnoreConversionOperator();
6270  E = E->IgnoreParenImpCasts();
6271
6272  // Built-in binary operator.
6273  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
6274    if (IsArithmeticOp(OP->getOpcode())) {
6275      *Opcode = OP->getOpcode();
6276      *RHS = OP->getRHS();
6277      return true;
6278    }
6279  }
6280
6281  // Overloaded operator.
6282  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
6283    if (Call->getNumArgs() != 2)
6284      return false;
6285
6286    // Make sure this is really a binary operator that is safe to pass into
6287    // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
6288    OverloadedOperatorKind OO = Call->getOperator();
6289    if (OO < OO_Plus || OO > OO_Arrow)
6290      return false;
6291
6292    BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
6293    if (IsArithmeticOp(OpKind)) {
6294      *Opcode = OpKind;
6295      *RHS = Call->getArg(1);
6296      return true;
6297    }
6298  }
6299
6300  return false;
6301}
6302
6303static bool IsLogicOp(BinaryOperatorKind Opc) {
6304  return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
6305}
6306
6307/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
6308/// or is a logical expression such as (x==y) which has int type, but is
6309/// commonly interpreted as boolean.
6310static bool ExprLooksBoolean(Expr *E) {
6311  E = E->IgnoreParenImpCasts();
6312
6313  if (E->getType()->isBooleanType())
6314    return true;
6315  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
6316    return IsLogicOp(OP->getOpcode());
6317  if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
6318    return OP->getOpcode() == UO_LNot;
6319
6320  return false;
6321}
6322
6323/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
6324/// and binary operator are mixed in a way that suggests the programmer assumed
6325/// the conditional operator has higher precedence, for example:
6326/// "int x = a + someBinaryCondition ? 1 : 2".
6327static void DiagnoseConditionalPrecedence(Sema &Self,
6328                                          SourceLocation OpLoc,
6329                                          Expr *cond,
6330                                          Expr *lhs,
6331                                          Expr *rhs) {
6332  BinaryOperatorKind CondOpcode;
6333  Expr *CondRHS;
6334
6335  if (!IsArithmeticBinaryExpr(cond, &CondOpcode, &CondRHS))
6336    return;
6337  if (!ExprLooksBoolean(CondRHS))
6338    return;
6339
6340  // The condition is an arithmetic binary expression, with a right-
6341  // hand side that looks boolean, so warn.
6342
6343  PartialDiagnostic Warn = Self.PDiag(diag::warn_precedence_conditional)
6344      << cond->getSourceRange()
6345      << BinaryOperator::getOpcodeStr(CondOpcode);
6346
6347  PartialDiagnostic FirstNote =
6348      Self.PDiag(diag::note_precedence_conditional_silence)
6349      << BinaryOperator::getOpcodeStr(CondOpcode);
6350
6351  SourceRange FirstParenRange(cond->getLocStart(),
6352                              cond->getLocEnd());
6353
6354  PartialDiagnostic SecondNote =
6355      Self.PDiag(diag::note_precedence_conditional_first);
6356
6357  SourceRange SecondParenRange(CondRHS->getLocStart(),
6358                               rhs->getLocEnd());
6359
6360  SuggestParentheses(Self, OpLoc, Warn, FirstNote, FirstParenRange,
6361                     SecondNote, SecondParenRange);
6362}
6363
6364/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
6365/// in the case of a the GNU conditional expr extension.
6366ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
6367                                    SourceLocation ColonLoc,
6368                                    Expr *CondExpr, Expr *LHSExpr,
6369                                    Expr *RHSExpr) {
6370  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
6371  // was the condition.
6372  OpaqueValueExpr *opaqueValue = 0;
6373  Expr *commonExpr = 0;
6374  if (LHSExpr == 0) {
6375    commonExpr = CondExpr;
6376
6377    // We usually want to apply unary conversions *before* saving, except
6378    // in the special case of a C++ l-value conditional.
6379    if (!(getLangOptions().CPlusPlus
6380          && !commonExpr->isTypeDependent()
6381          && commonExpr->getValueKind() == RHSExpr->getValueKind()
6382          && commonExpr->isGLValue()
6383          && commonExpr->isOrdinaryOrBitFieldObject()
6384          && RHSExpr->isOrdinaryOrBitFieldObject()
6385          && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
6386      ExprResult commonRes = UsualUnaryConversions(commonExpr);
6387      if (commonRes.isInvalid())
6388        return ExprError();
6389      commonExpr = commonRes.take();
6390    }
6391
6392    opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
6393                                                commonExpr->getType(),
6394                                                commonExpr->getValueKind(),
6395                                                commonExpr->getObjectKind());
6396    LHSExpr = CondExpr = opaqueValue;
6397  }
6398
6399  ExprValueKind VK = VK_RValue;
6400  ExprObjectKind OK = OK_Ordinary;
6401  ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
6402  QualType result = CheckConditionalOperands(Cond, LHS, RHS,
6403                                             VK, OK, QuestionLoc);
6404  if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
6405      RHS.isInvalid())
6406    return ExprError();
6407
6408  DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
6409                                RHS.get());
6410
6411  if (!commonExpr)
6412    return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
6413                                                   LHS.take(), ColonLoc,
6414                                                   RHS.take(), result, VK, OK));
6415
6416  return Owned(new (Context)
6417    BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
6418                              RHS.take(), QuestionLoc, ColonLoc, result, VK, OK));
6419}
6420
6421// checkPointerTypesForAssignment - This is a very tricky routine (despite
6422// being closely modeled after the C99 spec:-). The odd characteristic of this
6423// routine is it effectively iqnores the qualifiers on the top level pointee.
6424// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
6425// FIXME: add a couple examples in this comment.
6426static Sema::AssignConvertType
6427checkPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
6428  assert(lhsType.isCanonical() && "LHS not canonicalized!");
6429  assert(rhsType.isCanonical() && "RHS not canonicalized!");
6430
6431  // get the "pointed to" type (ignoring qualifiers at the top level)
6432  const Type *lhptee, *rhptee;
6433  Qualifiers lhq, rhq;
6434  llvm::tie(lhptee, lhq) = cast<PointerType>(lhsType)->getPointeeType().split();
6435  llvm::tie(rhptee, rhq) = cast<PointerType>(rhsType)->getPointeeType().split();
6436
6437  Sema::AssignConvertType ConvTy = Sema::Compatible;
6438
6439  // C99 6.5.16.1p1: This following citation is common to constraints
6440  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
6441  // qualifiers of the type *pointed to* by the right;
6442  Qualifiers lq;
6443
6444  if (!lhq.compatiblyIncludes(rhq)) {
6445    // Treat address-space mismatches as fatal.  TODO: address subspaces
6446    if (lhq.getAddressSpace() != rhq.getAddressSpace())
6447      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
6448
6449    // It's okay to add or remove GC qualifiers when converting to
6450    // and from void*.
6451    else if (lhq.withoutObjCGCAttr().compatiblyIncludes(rhq.withoutObjCGCAttr())
6452             && (lhptee->isVoidType() || rhptee->isVoidType()))
6453      ; // keep old
6454
6455    // For GCC compatibility, other qualifier mismatches are treated
6456    // as still compatible in C.
6457    else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
6458  }
6459
6460  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
6461  // incomplete type and the other is a pointer to a qualified or unqualified
6462  // version of void...
6463  if (lhptee->isVoidType()) {
6464    if (rhptee->isIncompleteOrObjectType())
6465      return ConvTy;
6466
6467    // As an extension, we allow cast to/from void* to function pointer.
6468    assert(rhptee->isFunctionType());
6469    return Sema::FunctionVoidPointer;
6470  }
6471
6472  if (rhptee->isVoidType()) {
6473    if (lhptee->isIncompleteOrObjectType())
6474      return ConvTy;
6475
6476    // As an extension, we allow cast to/from void* to function pointer.
6477    assert(lhptee->isFunctionType());
6478    return Sema::FunctionVoidPointer;
6479  }
6480
6481  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
6482  // unqualified versions of compatible types, ...
6483  QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
6484  if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
6485    // Check if the pointee types are compatible ignoring the sign.
6486    // We explicitly check for char so that we catch "char" vs
6487    // "unsigned char" on systems where "char" is unsigned.
6488    if (lhptee->isCharType())
6489      ltrans = S.Context.UnsignedCharTy;
6490    else if (lhptee->hasSignedIntegerRepresentation())
6491      ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
6492
6493    if (rhptee->isCharType())
6494      rtrans = S.Context.UnsignedCharTy;
6495    else if (rhptee->hasSignedIntegerRepresentation())
6496      rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
6497
6498    if (ltrans == rtrans) {
6499      // Types are compatible ignoring the sign. Qualifier incompatibility
6500      // takes priority over sign incompatibility because the sign
6501      // warning can be disabled.
6502      if (ConvTy != Sema::Compatible)
6503        return ConvTy;
6504
6505      return Sema::IncompatiblePointerSign;
6506    }
6507
6508    // If we are a multi-level pointer, it's possible that our issue is simply
6509    // one of qualification - e.g. char ** -> const char ** is not allowed. If
6510    // the eventual target type is the same and the pointers have the same
6511    // level of indirection, this must be the issue.
6512    if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
6513      do {
6514        lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
6515        rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
6516      } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
6517
6518      if (lhptee == rhptee)
6519        return Sema::IncompatibleNestedPointerQualifiers;
6520    }
6521
6522    // General pointer incompatibility takes priority over qualifiers.
6523    return Sema::IncompatiblePointer;
6524  }
6525  return ConvTy;
6526}
6527
6528/// checkBlockPointerTypesForAssignment - This routine determines whether two
6529/// block pointer types are compatible or whether a block and normal pointer
6530/// are compatible. It is more restrict than comparing two function pointer
6531// types.
6532static Sema::AssignConvertType
6533checkBlockPointerTypesForAssignment(Sema &S, QualType lhsType,
6534                                    QualType rhsType) {
6535  assert(lhsType.isCanonical() && "LHS not canonicalized!");
6536  assert(rhsType.isCanonical() && "RHS not canonicalized!");
6537
6538  QualType lhptee, rhptee;
6539
6540  // get the "pointed to" type (ignoring qualifiers at the top level)
6541  lhptee = cast<BlockPointerType>(lhsType)->getPointeeType();
6542  rhptee = cast<BlockPointerType>(rhsType)->getPointeeType();
6543
6544  // In C++, the types have to match exactly.
6545  if (S.getLangOptions().CPlusPlus)
6546    return Sema::IncompatibleBlockPointer;
6547
6548  Sema::AssignConvertType ConvTy = Sema::Compatible;
6549
6550  // For blocks we enforce that qualifiers are identical.
6551  if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
6552    ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
6553
6554  if (!S.Context.typesAreBlockPointerCompatible(lhsType, rhsType))
6555    return Sema::IncompatibleBlockPointer;
6556
6557  return ConvTy;
6558}
6559
6560/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
6561/// for assignment compatibility.
6562static Sema::AssignConvertType
6563checkObjCPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
6564  assert(lhsType.isCanonical() && "LHS was not canonicalized!");
6565  assert(rhsType.isCanonical() && "RHS was not canonicalized!");
6566
6567  if (lhsType->isObjCBuiltinType()) {
6568    // Class is not compatible with ObjC object pointers.
6569    if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
6570        !rhsType->isObjCQualifiedClassType())
6571      return Sema::IncompatiblePointer;
6572    return Sema::Compatible;
6573  }
6574  if (rhsType->isObjCBuiltinType()) {
6575    // Class is not compatible with ObjC object pointers.
6576    if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
6577        !lhsType->isObjCQualifiedClassType())
6578      return Sema::IncompatiblePointer;
6579    return Sema::Compatible;
6580  }
6581  QualType lhptee =
6582  lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
6583  QualType rhptee =
6584  rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
6585
6586  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
6587    return Sema::CompatiblePointerDiscardsQualifiers;
6588
6589  if (S.Context.typesAreCompatible(lhsType, rhsType))
6590    return Sema::Compatible;
6591  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
6592    return Sema::IncompatibleObjCQualifiedId;
6593  return Sema::IncompatiblePointer;
6594}
6595
6596Sema::AssignConvertType
6597Sema::CheckAssignmentConstraints(SourceLocation Loc,
6598                                 QualType lhsType, QualType rhsType) {
6599  // Fake up an opaque expression.  We don't actually care about what
6600  // cast operations are required, so if CheckAssignmentConstraints
6601  // adds casts to this they'll be wasted, but fortunately that doesn't
6602  // usually happen on valid code.
6603  OpaqueValueExpr rhs(Loc, rhsType, VK_RValue);
6604  ExprResult rhsPtr = &rhs;
6605  CastKind K = CK_Invalid;
6606
6607  return CheckAssignmentConstraints(lhsType, rhsPtr, K);
6608}
6609
6610/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
6611/// has code to accommodate several GCC extensions when type checking
6612/// pointers. Here are some objectionable examples that GCC considers warnings:
6613///
6614///  int a, *pint;
6615///  short *pshort;
6616///  struct foo *pfoo;
6617///
6618///  pint = pshort; // warning: assignment from incompatible pointer type
6619///  a = pint; // warning: assignment makes integer from pointer without a cast
6620///  pint = a; // warning: assignment makes pointer from integer without a cast
6621///  pint = pfoo; // warning: assignment from incompatible pointer type
6622///
6623/// As a result, the code for dealing with pointers is more complex than the
6624/// C99 spec dictates.
6625///
6626/// Sets 'Kind' for any result kind except Incompatible.
6627Sema::AssignConvertType
6628Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
6629                                 CastKind &Kind) {
6630  QualType rhsType = rhs.get()->getType();
6631
6632  // Get canonical types.  We're not formatting these types, just comparing
6633  // them.
6634  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
6635  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
6636
6637  // Common case: no conversion required.
6638  if (lhsType == rhsType) {
6639    Kind = CK_NoOp;
6640    return Compatible;
6641  }
6642
6643  // If the left-hand side is a reference type, then we are in a
6644  // (rare!) case where we've allowed the use of references in C,
6645  // e.g., as a parameter type in a built-in function. In this case,
6646  // just make sure that the type referenced is compatible with the
6647  // right-hand side type. The caller is responsible for adjusting
6648  // lhsType so that the resulting expression does not have reference
6649  // type.
6650  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
6651    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) {
6652      Kind = CK_LValueBitCast;
6653      return Compatible;
6654    }
6655    return Incompatible;
6656  }
6657
6658  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
6659  // to the same ExtVector type.
6660  if (lhsType->isExtVectorType()) {
6661    if (rhsType->isExtVectorType())
6662      return Incompatible;
6663    if (rhsType->isArithmeticType()) {
6664      // CK_VectorSplat does T -> vector T, so first cast to the
6665      // element type.
6666      QualType elType = cast<ExtVectorType>(lhsType)->getElementType();
6667      if (elType != rhsType) {
6668        Kind = PrepareScalarCast(*this, rhs, elType);
6669        rhs = ImpCastExprToType(rhs.take(), elType, Kind);
6670      }
6671      Kind = CK_VectorSplat;
6672      return Compatible;
6673    }
6674  }
6675
6676  // Conversions to or from vector type.
6677  if (lhsType->isVectorType() || rhsType->isVectorType()) {
6678    if (lhsType->isVectorType() && rhsType->isVectorType()) {
6679      // Allow assignments of an AltiVec vector type to an equivalent GCC
6680      // vector type and vice versa
6681      if (Context.areCompatibleVectorTypes(lhsType, rhsType)) {
6682        Kind = CK_BitCast;
6683        return Compatible;
6684      }
6685
6686      // If we are allowing lax vector conversions, and LHS and RHS are both
6687      // vectors, the total size only needs to be the same. This is a bitcast;
6688      // no bits are changed but the result type is different.
6689      if (getLangOptions().LaxVectorConversions &&
6690          (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))) {
6691        Kind = CK_BitCast;
6692        return IncompatibleVectors;
6693      }
6694    }
6695    return Incompatible;
6696  }
6697
6698  // Arithmetic conversions.
6699  if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
6700      !(getLangOptions().CPlusPlus && lhsType->isEnumeralType())) {
6701    Kind = PrepareScalarCast(*this, rhs, lhsType);
6702    return Compatible;
6703  }
6704
6705  // Conversions to normal pointers.
6706  if (const PointerType *lhsPointer = dyn_cast<PointerType>(lhsType)) {
6707    // U* -> T*
6708    if (isa<PointerType>(rhsType)) {
6709      Kind = CK_BitCast;
6710      return checkPointerTypesForAssignment(*this, lhsType, rhsType);
6711    }
6712
6713    // int -> T*
6714    if (rhsType->isIntegerType()) {
6715      Kind = CK_IntegralToPointer; // FIXME: null?
6716      return IntToPointer;
6717    }
6718
6719    // C pointers are not compatible with ObjC object pointers,
6720    // with two exceptions:
6721    if (isa<ObjCObjectPointerType>(rhsType)) {
6722      //  - conversions to void*
6723      if (lhsPointer->getPointeeType()->isVoidType()) {
6724        Kind = CK_AnyPointerToObjCPointerCast;
6725        return Compatible;
6726      }
6727
6728      //  - conversions from 'Class' to the redefinition type
6729      if (rhsType->isObjCClassType() &&
6730          Context.hasSameType(lhsType, Context.ObjCClassRedefinitionType)) {
6731        Kind = CK_BitCast;
6732        return Compatible;
6733      }
6734
6735      Kind = CK_BitCast;
6736      return IncompatiblePointer;
6737    }
6738
6739    // U^ -> void*
6740    if (rhsType->getAs<BlockPointerType>()) {
6741      if (lhsPointer->getPointeeType()->isVoidType()) {
6742        Kind = CK_BitCast;
6743        return Compatible;
6744      }
6745    }
6746
6747    return Incompatible;
6748  }
6749
6750  // Conversions to block pointers.
6751  if (isa<BlockPointerType>(lhsType)) {
6752    // U^ -> T^
6753    if (rhsType->isBlockPointerType()) {
6754      Kind = CK_AnyPointerToBlockPointerCast;
6755      return checkBlockPointerTypesForAssignment(*this, lhsType, rhsType);
6756    }
6757
6758    // int or null -> T^
6759    if (rhsType->isIntegerType()) {
6760      Kind = CK_IntegralToPointer; // FIXME: null
6761      return IntToBlockPointer;
6762    }
6763
6764    // id -> T^
6765    if (getLangOptions().ObjC1 && rhsType->isObjCIdType()) {
6766      Kind = CK_AnyPointerToBlockPointerCast;
6767      return Compatible;
6768    }
6769
6770    // void* -> T^
6771    if (const PointerType *RHSPT = rhsType->getAs<PointerType>())
6772      if (RHSPT->getPointeeType()->isVoidType()) {
6773        Kind = CK_AnyPointerToBlockPointerCast;
6774        return Compatible;
6775      }
6776
6777    return Incompatible;
6778  }
6779
6780  // Conversions to Objective-C pointers.
6781  if (isa<ObjCObjectPointerType>(lhsType)) {
6782    // A* -> B*
6783    if (rhsType->isObjCObjectPointerType()) {
6784      Kind = CK_BitCast;
6785      return checkObjCPointerTypesForAssignment(*this, lhsType, rhsType);
6786    }
6787
6788    // int or null -> A*
6789    if (rhsType->isIntegerType()) {
6790      Kind = CK_IntegralToPointer; // FIXME: null
6791      return IntToPointer;
6792    }
6793
6794    // In general, C pointers are not compatible with ObjC object pointers,
6795    // with two exceptions:
6796    if (isa<PointerType>(rhsType)) {
6797      //  - conversions from 'void*'
6798      if (rhsType->isVoidPointerType()) {
6799        Kind = CK_AnyPointerToObjCPointerCast;
6800        return Compatible;
6801      }
6802
6803      //  - conversions to 'Class' from its redefinition type
6804      if (lhsType->isObjCClassType() &&
6805          Context.hasSameType(rhsType, Context.ObjCClassRedefinitionType)) {
6806        Kind = CK_BitCast;
6807        return Compatible;
6808      }
6809
6810      Kind = CK_AnyPointerToObjCPointerCast;
6811      return IncompatiblePointer;
6812    }
6813
6814    // T^ -> A*
6815    if (rhsType->isBlockPointerType()) {
6816      Kind = CK_AnyPointerToObjCPointerCast;
6817      return Compatible;
6818    }
6819
6820    return Incompatible;
6821  }
6822
6823  // Conversions from pointers that are not covered by the above.
6824  if (isa<PointerType>(rhsType)) {
6825    // T* -> _Bool
6826    if (lhsType == Context.BoolTy) {
6827      Kind = CK_PointerToBoolean;
6828      return Compatible;
6829    }
6830
6831    // T* -> int
6832    if (lhsType->isIntegerType()) {
6833      Kind = CK_PointerToIntegral;
6834      return PointerToInt;
6835    }
6836
6837    return Incompatible;
6838  }
6839
6840  // Conversions from Objective-C pointers that are not covered by the above.
6841  if (isa<ObjCObjectPointerType>(rhsType)) {
6842    // T* -> _Bool
6843    if (lhsType == Context.BoolTy) {
6844      Kind = CK_PointerToBoolean;
6845      return Compatible;
6846    }
6847
6848    // T* -> int
6849    if (lhsType->isIntegerType()) {
6850      Kind = CK_PointerToIntegral;
6851      return PointerToInt;
6852    }
6853
6854    return Incompatible;
6855  }
6856
6857  // struct A -> struct B
6858  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
6859    if (Context.typesAreCompatible(lhsType, rhsType)) {
6860      Kind = CK_NoOp;
6861      return Compatible;
6862    }
6863  }
6864
6865  return Incompatible;
6866}
6867
6868/// \brief Constructs a transparent union from an expression that is
6869/// used to initialize the transparent union.
6870static void ConstructTransparentUnion(Sema &S, ASTContext &C, ExprResult &EResult,
6871                                      QualType UnionType, FieldDecl *Field) {
6872  // Build an initializer list that designates the appropriate member
6873  // of the transparent union.
6874  Expr *E = EResult.take();
6875  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
6876                                                   &E, 1,
6877                                                   SourceLocation());
6878  Initializer->setType(UnionType);
6879  Initializer->setInitializedFieldInUnion(Field);
6880
6881  // Build a compound literal constructing a value of the transparent
6882  // union type from this initializer list.
6883  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
6884  EResult = S.Owned(
6885    new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
6886                                VK_RValue, Initializer, false));
6887}
6888
6889Sema::AssignConvertType
6890Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, ExprResult &rExpr) {
6891  QualType FromType = rExpr.get()->getType();
6892
6893  // If the ArgType is a Union type, we want to handle a potential
6894  // transparent_union GCC extension.
6895  const RecordType *UT = ArgType->getAsUnionType();
6896  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
6897    return Incompatible;
6898
6899  // The field to initialize within the transparent union.
6900  RecordDecl *UD = UT->getDecl();
6901  FieldDecl *InitField = 0;
6902  // It's compatible if the expression matches any of the fields.
6903  for (RecordDecl::field_iterator it = UD->field_begin(),
6904         itend = UD->field_end();
6905       it != itend; ++it) {
6906    if (it->getType()->isPointerType()) {
6907      // If the transparent union contains a pointer type, we allow:
6908      // 1) void pointer
6909      // 2) null pointer constant
6910      if (FromType->isPointerType())
6911        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
6912          rExpr = ImpCastExprToType(rExpr.take(), it->getType(), CK_BitCast);
6913          InitField = *it;
6914          break;
6915        }
6916
6917      if (rExpr.get()->isNullPointerConstant(Context,
6918                                       Expr::NPC_ValueDependentIsNull)) {
6919        rExpr = ImpCastExprToType(rExpr.take(), it->getType(), CK_NullToPointer);
6920        InitField = *it;
6921        break;
6922      }
6923    }
6924
6925    CastKind Kind = CK_Invalid;
6926    if (CheckAssignmentConstraints(it->getType(), rExpr, Kind)
6927          == Compatible) {
6928      rExpr = ImpCastExprToType(rExpr.take(), it->getType(), Kind);
6929      InitField = *it;
6930      break;
6931    }
6932  }
6933
6934  if (!InitField)
6935    return Incompatible;
6936
6937  ConstructTransparentUnion(*this, Context, rExpr, ArgType, InitField);
6938  return Compatible;
6939}
6940
6941Sema::AssignConvertType
6942Sema::CheckSingleAssignmentConstraints(QualType lhsType, ExprResult &rExpr) {
6943  if (getLangOptions().CPlusPlus) {
6944    if (!lhsType->isRecordType()) {
6945      // C++ 5.17p3: If the left operand is not of class type, the
6946      // expression is implicitly converted (C++ 4) to the
6947      // cv-unqualified type of the left operand.
6948      ExprResult Res = PerformImplicitConversion(rExpr.get(),
6949                                                 lhsType.getUnqualifiedType(),
6950                                                 AA_Assigning);
6951      if (Res.isInvalid())
6952        return Incompatible;
6953      rExpr = move(Res);
6954      return Compatible;
6955    }
6956
6957    // FIXME: Currently, we fall through and treat C++ classes like C
6958    // structures.
6959  }
6960
6961  // C99 6.5.16.1p1: the left operand is a pointer and the right is
6962  // a null pointer constant.
6963  if ((lhsType->isPointerType() ||
6964       lhsType->isObjCObjectPointerType() ||
6965       lhsType->isBlockPointerType())
6966      && rExpr.get()->isNullPointerConstant(Context,
6967                                      Expr::NPC_ValueDependentIsNull)) {
6968    rExpr = ImpCastExprToType(rExpr.take(), lhsType, CK_NullToPointer);
6969    return Compatible;
6970  }
6971
6972  // This check seems unnatural, however it is necessary to ensure the proper
6973  // conversion of functions/arrays. If the conversion were done for all
6974  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
6975  // expressions that suppress this implicit conversion (&, sizeof).
6976  //
6977  // Suppress this for references: C++ 8.5.3p5.
6978  if (!lhsType->isReferenceType()) {
6979    rExpr = DefaultFunctionArrayLvalueConversion(rExpr.take());
6980    if (rExpr.isInvalid())
6981      return Incompatible;
6982  }
6983
6984  CastKind Kind = CK_Invalid;
6985  Sema::AssignConvertType result =
6986    CheckAssignmentConstraints(lhsType, rExpr, Kind);
6987
6988  // C99 6.5.16.1p2: The value of the right operand is converted to the
6989  // type of the assignment expression.
6990  // CheckAssignmentConstraints allows the left-hand side to be a reference,
6991  // so that we can use references in built-in functions even in C.
6992  // The getNonReferenceType() call makes sure that the resulting expression
6993  // does not have reference type.
6994  if (result != Incompatible && rExpr.get()->getType() != lhsType)
6995    rExpr = ImpCastExprToType(rExpr.take(), lhsType.getNonLValueExprType(Context), Kind);
6996  return result;
6997}
6998
6999QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &lex, ExprResult &rex) {
7000  Diag(Loc, diag::err_typecheck_invalid_operands)
7001    << lex.get()->getType() << rex.get()->getType()
7002    << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7003  return QualType();
7004}
7005
7006QualType Sema::CheckVectorOperands(SourceLocation Loc, ExprResult &lex, ExprResult &rex) {
7007  // For conversion purposes, we ignore any qualifiers.
7008  // For example, "const float" and "float" are equivalent.
7009  QualType lhsType =
7010    Context.getCanonicalType(lex.get()->getType()).getUnqualifiedType();
7011  QualType rhsType =
7012    Context.getCanonicalType(rex.get()->getType()).getUnqualifiedType();
7013
7014  // If the vector types are identical, return.
7015  if (lhsType == rhsType)
7016    return lhsType;
7017
7018  // Handle the case of a vector & extvector type of the same size and element
7019  // type.  It would be nice if we only had one vector type someday.
7020  if (getLangOptions().LaxVectorConversions) {
7021    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
7022      if (const VectorType *RV = rhsType->getAs<VectorType>()) {
7023        if (LV->getElementType() == RV->getElementType() &&
7024            LV->getNumElements() == RV->getNumElements()) {
7025          if (lhsType->isExtVectorType()) {
7026            rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast);
7027            return lhsType;
7028          }
7029
7030          lex = ImpCastExprToType(lex.take(), rhsType, CK_BitCast);
7031          return rhsType;
7032        } else if (Context.getTypeSize(lhsType) ==Context.getTypeSize(rhsType)){
7033          // If we are allowing lax vector conversions, and LHS and RHS are both
7034          // vectors, the total size only needs to be the same. This is a
7035          // bitcast; no bits are changed but the result type is different.
7036          rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast);
7037          return lhsType;
7038        }
7039      }
7040    }
7041  }
7042
7043  // Handle the case of equivalent AltiVec and GCC vector types
7044  if (lhsType->isVectorType() && rhsType->isVectorType() &&
7045      Context.areCompatibleVectorTypes(lhsType, rhsType)) {
7046    lex = ImpCastExprToType(lex.take(), rhsType, CK_BitCast);
7047    return rhsType;
7048  }
7049
7050  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
7051  // swap back (so that we don't reverse the inputs to a subtract, for instance.
7052  bool swapped = false;
7053  if (rhsType->isExtVectorType()) {
7054    swapped = true;
7055    std::swap(rex, lex);
7056    std::swap(rhsType, lhsType);
7057  }
7058
7059  // Handle the case of an ext vector and scalar.
7060  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
7061    QualType EltTy = LV->getElementType();
7062    if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
7063      int order = Context.getIntegerTypeOrder(EltTy, rhsType);
7064      if (order > 0)
7065        rex = ImpCastExprToType(rex.take(), EltTy, CK_IntegralCast);
7066      if (order >= 0) {
7067        rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat);
7068        if (swapped) std::swap(rex, lex);
7069        return lhsType;
7070      }
7071    }
7072    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
7073        rhsType->isRealFloatingType()) {
7074      int order = Context.getFloatingTypeOrder(EltTy, rhsType);
7075      if (order > 0)
7076        rex = ImpCastExprToType(rex.take(), EltTy, CK_FloatingCast);
7077      if (order >= 0) {
7078        rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat);
7079        if (swapped) std::swap(rex, lex);
7080        return lhsType;
7081      }
7082    }
7083  }
7084
7085  // Vectors of different size or scalar and non-ext-vector are errors.
7086  Diag(Loc, diag::err_typecheck_vector_not_convertable)
7087    << lex.get()->getType() << rex.get()->getType()
7088    << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7089  return QualType();
7090}
7091
7092QualType Sema::CheckMultiplyDivideOperands(
7093  ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
7094  if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType())
7095    return CheckVectorOperands(Loc, lex, rex);
7096
7097  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
7098  if (lex.isInvalid() || rex.isInvalid())
7099    return QualType();
7100
7101  if (!lex.get()->getType()->isArithmeticType() ||
7102      !rex.get()->getType()->isArithmeticType())
7103    return InvalidOperands(Loc, lex, rex);
7104
7105  // Check for division by zero.
7106  if (isDiv &&
7107      rex.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
7108    DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_division_by_zero)
7109                                     << rex.get()->getSourceRange());
7110
7111  return compType;
7112}
7113
7114QualType Sema::CheckRemainderOperands(
7115  ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) {
7116  if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
7117    if (lex.get()->getType()->hasIntegerRepresentation() &&
7118        rex.get()->getType()->hasIntegerRepresentation())
7119      return CheckVectorOperands(Loc, lex, rex);
7120    return InvalidOperands(Loc, lex, rex);
7121  }
7122
7123  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
7124  if (lex.isInvalid() || rex.isInvalid())
7125    return QualType();
7126
7127  if (!lex.get()->getType()->isIntegerType() || !rex.get()->getType()->isIntegerType())
7128    return InvalidOperands(Loc, lex, rex);
7129
7130  // Check for remainder by zero.
7131  if (rex.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
7132    DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_remainder_by_zero)
7133                                 << rex.get()->getSourceRange());
7134
7135  return compType;
7136}
7137
7138QualType Sema::CheckAdditionOperands( // C99 6.5.6
7139  ExprResult &lex, ExprResult &rex, SourceLocation Loc, QualType* CompLHSTy) {
7140  if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
7141    QualType compType = CheckVectorOperands(Loc, lex, rex);
7142    if (CompLHSTy) *CompLHSTy = compType;
7143    return compType;
7144  }
7145
7146  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
7147  if (lex.isInvalid() || rex.isInvalid())
7148    return QualType();
7149
7150  // handle the common case first (both operands are arithmetic).
7151  if (lex.get()->getType()->isArithmeticType() &&
7152      rex.get()->getType()->isArithmeticType()) {
7153    if (CompLHSTy) *CompLHSTy = compType;
7154    return compType;
7155  }
7156
7157  // Put any potential pointer into PExp
7158  Expr* PExp = lex.get(), *IExp = rex.get();
7159  if (IExp->getType()->isAnyPointerType())
7160    std::swap(PExp, IExp);
7161
7162  if (PExp->getType()->isAnyPointerType()) {
7163
7164    if (IExp->getType()->isIntegerType()) {
7165      QualType PointeeTy = PExp->getType()->getPointeeType();
7166
7167      // Check for arithmetic on pointers to incomplete types.
7168      if (PointeeTy->isVoidType()) {
7169        if (getLangOptions().CPlusPlus) {
7170          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
7171            << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7172          return QualType();
7173        }
7174
7175        // GNU extension: arithmetic on pointer to void
7176        Diag(Loc, diag::ext_gnu_void_ptr)
7177          << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7178      } else if (PointeeTy->isFunctionType()) {
7179        if (getLangOptions().CPlusPlus) {
7180          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
7181            << lex.get()->getType() << lex.get()->getSourceRange();
7182          return QualType();
7183        }
7184
7185        // GNU extension: arithmetic on pointer to function
7186        Diag(Loc, diag::ext_gnu_ptr_func_arith)
7187          << lex.get()->getType() << lex.get()->getSourceRange();
7188      } else {
7189        // Check if we require a complete type.
7190        if (((PExp->getType()->isPointerType() &&
7191              !PExp->getType()->isDependentType()) ||
7192              PExp->getType()->isObjCObjectPointerType()) &&
7193             RequireCompleteType(Loc, PointeeTy,
7194                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
7195                             << PExp->getSourceRange()
7196                             << PExp->getType()))
7197          return QualType();
7198      }
7199      // Diagnose bad cases where we step over interface counts.
7200      if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
7201        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
7202          << PointeeTy << PExp->getSourceRange();
7203        return QualType();
7204      }
7205
7206      if (CompLHSTy) {
7207        QualType LHSTy = Context.isPromotableBitField(lex.get());
7208        if (LHSTy.isNull()) {
7209          LHSTy = lex.get()->getType();
7210          if (LHSTy->isPromotableIntegerType())
7211            LHSTy = Context.getPromotedIntegerType(LHSTy);
7212        }
7213        *CompLHSTy = LHSTy;
7214      }
7215      return PExp->getType();
7216    }
7217  }
7218
7219  return InvalidOperands(Loc, lex, rex);
7220}
7221
7222// C99 6.5.6
7223QualType Sema::CheckSubtractionOperands(ExprResult &lex, ExprResult &rex,
7224                                        SourceLocation Loc, QualType* CompLHSTy) {
7225  if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
7226    QualType compType = CheckVectorOperands(Loc, lex, rex);
7227    if (CompLHSTy) *CompLHSTy = compType;
7228    return compType;
7229  }
7230
7231  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
7232  if (lex.isInvalid() || rex.isInvalid())
7233    return QualType();
7234
7235  // Enforce type constraints: C99 6.5.6p3.
7236
7237  // Handle the common case first (both operands are arithmetic).
7238  if (lex.get()->getType()->isArithmeticType() &&
7239      rex.get()->getType()->isArithmeticType()) {
7240    if (CompLHSTy) *CompLHSTy = compType;
7241    return compType;
7242  }
7243
7244  // Either ptr - int   or   ptr - ptr.
7245  if (lex.get()->getType()->isAnyPointerType()) {
7246    QualType lpointee = lex.get()->getType()->getPointeeType();
7247
7248    // The LHS must be an completely-defined object type.
7249
7250    bool ComplainAboutVoid = false;
7251    Expr *ComplainAboutFunc = 0;
7252    if (lpointee->isVoidType()) {
7253      if (getLangOptions().CPlusPlus) {
7254        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
7255          << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7256        return QualType();
7257      }
7258
7259      // GNU C extension: arithmetic on pointer to void
7260      ComplainAboutVoid = true;
7261    } else if (lpointee->isFunctionType()) {
7262      if (getLangOptions().CPlusPlus) {
7263        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
7264          << lex.get()->getType() << lex.get()->getSourceRange();
7265        return QualType();
7266      }
7267
7268      // GNU C extension: arithmetic on pointer to function
7269      ComplainAboutFunc = lex.get();
7270    } else if (!lpointee->isDependentType() &&
7271               RequireCompleteType(Loc, lpointee,
7272                                   PDiag(diag::err_typecheck_sub_ptr_object)
7273                                     << lex.get()->getSourceRange()
7274                                     << lex.get()->getType()))
7275      return QualType();
7276
7277    // Diagnose bad cases where we step over interface counts.
7278    if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
7279      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
7280        << lpointee << lex.get()->getSourceRange();
7281      return QualType();
7282    }
7283
7284    // The result type of a pointer-int computation is the pointer type.
7285    if (rex.get()->getType()->isIntegerType()) {
7286      if (ComplainAboutVoid)
7287        Diag(Loc, diag::ext_gnu_void_ptr)
7288          << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7289      if (ComplainAboutFunc)
7290        Diag(Loc, diag::ext_gnu_ptr_func_arith)
7291          << ComplainAboutFunc->getType()
7292          << ComplainAboutFunc->getSourceRange();
7293
7294      if (CompLHSTy) *CompLHSTy = lex.get()->getType();
7295      return lex.get()->getType();
7296    }
7297
7298    // Handle pointer-pointer subtractions.
7299    if (const PointerType *RHSPTy = rex.get()->getType()->getAs<PointerType>()) {
7300      QualType rpointee = RHSPTy->getPointeeType();
7301
7302      // RHS must be a completely-type object type.
7303      // Handle the GNU void* extension.
7304      if (rpointee->isVoidType()) {
7305        if (getLangOptions().CPlusPlus) {
7306          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
7307            << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7308          return QualType();
7309        }
7310
7311        ComplainAboutVoid = true;
7312      } else if (rpointee->isFunctionType()) {
7313        if (getLangOptions().CPlusPlus) {
7314          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
7315            << rex.get()->getType() << rex.get()->getSourceRange();
7316          return QualType();
7317        }
7318
7319        // GNU extension: arithmetic on pointer to function
7320        if (!ComplainAboutFunc)
7321          ComplainAboutFunc = rex.get();
7322      } else if (!rpointee->isDependentType() &&
7323                 RequireCompleteType(Loc, rpointee,
7324                                     PDiag(diag::err_typecheck_sub_ptr_object)
7325                                       << rex.get()->getSourceRange()
7326                                       << rex.get()->getType()))
7327        return QualType();
7328
7329      if (getLangOptions().CPlusPlus) {
7330        // Pointee types must be the same: C++ [expr.add]
7331        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
7332          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
7333            << lex.get()->getType() << rex.get()->getType()
7334            << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7335          return QualType();
7336        }
7337      } else {
7338        // Pointee types must be compatible C99 6.5.6p3
7339        if (!Context.typesAreCompatible(
7340                Context.getCanonicalType(lpointee).getUnqualifiedType(),
7341                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
7342          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
7343            << lex.get()->getType() << rex.get()->getType()
7344            << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7345          return QualType();
7346        }
7347      }
7348
7349      if (ComplainAboutVoid)
7350        Diag(Loc, diag::ext_gnu_void_ptr)
7351          << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7352      if (ComplainAboutFunc)
7353        Diag(Loc, diag::ext_gnu_ptr_func_arith)
7354          << ComplainAboutFunc->getType()
7355          << ComplainAboutFunc->getSourceRange();
7356
7357      if (CompLHSTy) *CompLHSTy = lex.get()->getType();
7358      return Context.getPointerDiffType();
7359    }
7360  }
7361
7362  return InvalidOperands(Loc, lex, rex);
7363}
7364
7365static bool isScopedEnumerationType(QualType T) {
7366  if (const EnumType *ET = dyn_cast<EnumType>(T))
7367    return ET->getDecl()->isScoped();
7368  return false;
7369}
7370
7371static void DiagnoseBadShiftValues(Sema& S, ExprResult &lex, ExprResult &rex,
7372                                   SourceLocation Loc, unsigned Opc,
7373                                   QualType LHSTy) {
7374  llvm::APSInt Right;
7375  // Check right/shifter operand
7376  if (rex.get()->isValueDependent() || !rex.get()->isIntegerConstantExpr(Right, S.Context))
7377    return;
7378
7379  if (Right.isNegative()) {
7380    S.DiagRuntimeBehavior(Loc, rex.get(),
7381                          S.PDiag(diag::warn_shift_negative)
7382                            << rex.get()->getSourceRange());
7383    return;
7384  }
7385  llvm::APInt LeftBits(Right.getBitWidth(),
7386                       S.Context.getTypeSize(lex.get()->getType()));
7387  if (Right.uge(LeftBits)) {
7388    S.DiagRuntimeBehavior(Loc, rex.get(),
7389                          S.PDiag(diag::warn_shift_gt_typewidth)
7390                            << rex.get()->getSourceRange());
7391    return;
7392  }
7393  if (Opc != BO_Shl)
7394    return;
7395
7396  // When left shifting an ICE which is signed, we can check for overflow which
7397  // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
7398  // integers have defined behavior modulo one more than the maximum value
7399  // representable in the result type, so never warn for those.
7400  llvm::APSInt Left;
7401  if (lex.get()->isValueDependent() || !lex.get()->isIntegerConstantExpr(Left, S.Context) ||
7402      LHSTy->hasUnsignedIntegerRepresentation())
7403    return;
7404  llvm::APInt ResultBits =
7405      static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
7406  if (LeftBits.uge(ResultBits))
7407    return;
7408  llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
7409  Result = Result.shl(Right);
7410
7411  // Print the bit representation of the signed integer as an unsigned
7412  // hexadecimal number.
7413  llvm::SmallString<40> HexResult;
7414  Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
7415
7416  // If we are only missing a sign bit, this is less likely to result in actual
7417  // bugs -- if the result is cast back to an unsigned type, it will have the
7418  // expected value. Thus we place this behind a different warning that can be
7419  // turned off separately if needed.
7420  if (LeftBits == ResultBits - 1) {
7421    S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
7422        << HexResult.str() << LHSTy
7423        << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7424    return;
7425  }
7426
7427  S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
7428    << HexResult.str() << Result.getMinSignedBits() << LHSTy
7429    << Left.getBitWidth() << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7430}
7431
7432// C99 6.5.7
7433QualType Sema::CheckShiftOperands(ExprResult &lex, ExprResult &rex, SourceLocation Loc,
7434                                  unsigned Opc, bool isCompAssign) {
7435  // C99 6.5.7p2: Each of the operands shall have integer type.
7436  if (!lex.get()->getType()->hasIntegerRepresentation() ||
7437      !rex.get()->getType()->hasIntegerRepresentation())
7438    return InvalidOperands(Loc, lex, rex);
7439
7440  // C++0x: Don't allow scoped enums. FIXME: Use something better than
7441  // hasIntegerRepresentation() above instead of this.
7442  if (isScopedEnumerationType(lex.get()->getType()) ||
7443      isScopedEnumerationType(rex.get()->getType())) {
7444    return InvalidOperands(Loc, lex, rex);
7445  }
7446
7447  // Vector shifts promote their scalar inputs to vector type.
7448  if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType())
7449    return CheckVectorOperands(Loc, lex, rex);
7450
7451  // Shifts don't perform usual arithmetic conversions, they just do integer
7452  // promotions on each operand. C99 6.5.7p3
7453
7454  // For the LHS, do usual unary conversions, but then reset them away
7455  // if this is a compound assignment.
7456  ExprResult old_lex = lex;
7457  lex = UsualUnaryConversions(lex.take());
7458  if (lex.isInvalid())
7459    return QualType();
7460  QualType LHSTy = lex.get()->getType();
7461  if (isCompAssign) lex = old_lex;
7462
7463  // The RHS is simpler.
7464  rex = UsualUnaryConversions(rex.take());
7465  if (rex.isInvalid())
7466    return QualType();
7467
7468  // Sanity-check shift operands
7469  DiagnoseBadShiftValues(*this, lex, rex, Loc, Opc, LHSTy);
7470
7471  // "The type of the result is that of the promoted left operand."
7472  return LHSTy;
7473}
7474
7475static bool IsWithinTemplateSpecialization(Decl *D) {
7476  if (DeclContext *DC = D->getDeclContext()) {
7477    if (isa<ClassTemplateSpecializationDecl>(DC))
7478      return true;
7479    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
7480      return FD->isFunctionTemplateSpecialization();
7481  }
7482  return false;
7483}
7484
7485// C99 6.5.8, C++ [expr.rel]
7486QualType Sema::CheckCompareOperands(ExprResult &lex, ExprResult &rex, SourceLocation Loc,
7487                                    unsigned OpaqueOpc, bool isRelational) {
7488  BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
7489
7490  // Handle vector comparisons separately.
7491  if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType())
7492    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
7493
7494  QualType lType = lex.get()->getType();
7495  QualType rType = rex.get()->getType();
7496
7497  Expr *LHSStripped = lex.get()->IgnoreParenImpCasts();
7498  Expr *RHSStripped = rex.get()->IgnoreParenImpCasts();
7499  QualType LHSStrippedType = LHSStripped->getType();
7500  QualType RHSStrippedType = RHSStripped->getType();
7501
7502
7503
7504  // Two different enums will raise a warning when compared.
7505  if (const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>()) {
7506    if (const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>()) {
7507      if (LHSEnumType->getDecl()->getIdentifier() &&
7508          RHSEnumType->getDecl()->getIdentifier() &&
7509          !Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
7510        Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
7511          << LHSStrippedType << RHSStrippedType
7512          << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7513      }
7514    }
7515  }
7516
7517  if (!lType->hasFloatingRepresentation() &&
7518      !(lType->isBlockPointerType() && isRelational) &&
7519      !lex.get()->getLocStart().isMacroID() &&
7520      !rex.get()->getLocStart().isMacroID()) {
7521    // For non-floating point types, check for self-comparisons of the form
7522    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
7523    // often indicate logic errors in the program.
7524    //
7525    // NOTE: Don't warn about comparison expressions resulting from macro
7526    // expansion. Also don't warn about comparisons which are only self
7527    // comparisons within a template specialization. The warnings should catch
7528    // obvious cases in the definition of the template anyways. The idea is to
7529    // warn when the typed comparison operator will always evaluate to the same
7530    // result.
7531    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
7532      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
7533        if (DRL->getDecl() == DRR->getDecl() &&
7534            !IsWithinTemplateSpecialization(DRL->getDecl())) {
7535          DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
7536                              << 0 // self-
7537                              << (Opc == BO_EQ
7538                                  || Opc == BO_LE
7539                                  || Opc == BO_GE));
7540        } else if (lType->isArrayType() && rType->isArrayType() &&
7541                   !DRL->getDecl()->getType()->isReferenceType() &&
7542                   !DRR->getDecl()->getType()->isReferenceType()) {
7543            // what is it always going to eval to?
7544            char always_evals_to;
7545            switch(Opc) {
7546            case BO_EQ: // e.g. array1 == array2
7547              always_evals_to = 0; // false
7548              break;
7549            case BO_NE: // e.g. array1 != array2
7550              always_evals_to = 1; // true
7551              break;
7552            default:
7553              // best we can say is 'a constant'
7554              always_evals_to = 2; // e.g. array1 <= array2
7555              break;
7556            }
7557            DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
7558                                << 1 // array
7559                                << always_evals_to);
7560        }
7561      }
7562    }
7563
7564    if (isa<CastExpr>(LHSStripped))
7565      LHSStripped = LHSStripped->IgnoreParenCasts();
7566    if (isa<CastExpr>(RHSStripped))
7567      RHSStripped = RHSStripped->IgnoreParenCasts();
7568
7569    // Warn about comparisons against a string constant (unless the other
7570    // operand is null), the user probably wants strcmp.
7571    Expr *literalString = 0;
7572    Expr *literalStringStripped = 0;
7573    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
7574        !RHSStripped->isNullPointerConstant(Context,
7575                                            Expr::NPC_ValueDependentIsNull)) {
7576      literalString = lex.get();
7577      literalStringStripped = LHSStripped;
7578    } else if ((isa<StringLiteral>(RHSStripped) ||
7579                isa<ObjCEncodeExpr>(RHSStripped)) &&
7580               !LHSStripped->isNullPointerConstant(Context,
7581                                            Expr::NPC_ValueDependentIsNull)) {
7582      literalString = rex.get();
7583      literalStringStripped = RHSStripped;
7584    }
7585
7586    if (literalString) {
7587      std::string resultComparison;
7588      switch (Opc) {
7589      case BO_LT: resultComparison = ") < 0"; break;
7590      case BO_GT: resultComparison = ") > 0"; break;
7591      case BO_LE: resultComparison = ") <= 0"; break;
7592      case BO_GE: resultComparison = ") >= 0"; break;
7593      case BO_EQ: resultComparison = ") == 0"; break;
7594      case BO_NE: resultComparison = ") != 0"; break;
7595      default: assert(false && "Invalid comparison operator");
7596      }
7597
7598      DiagRuntimeBehavior(Loc, 0,
7599        PDiag(diag::warn_stringcompare)
7600          << isa<ObjCEncodeExpr>(literalStringStripped)
7601          << literalString->getSourceRange());
7602    }
7603  }
7604
7605  // C99 6.5.8p3 / C99 6.5.9p4
7606  if (lex.get()->getType()->isArithmeticType() && rex.get()->getType()->isArithmeticType()) {
7607    UsualArithmeticConversions(lex, rex);
7608    if (lex.isInvalid() || rex.isInvalid())
7609      return QualType();
7610  }
7611  else {
7612    lex = UsualUnaryConversions(lex.take());
7613    if (lex.isInvalid())
7614      return QualType();
7615
7616    rex = UsualUnaryConversions(rex.take());
7617    if (rex.isInvalid())
7618      return QualType();
7619  }
7620
7621  lType = lex.get()->getType();
7622  rType = rex.get()->getType();
7623
7624  // The result of comparisons is 'bool' in C++, 'int' in C.
7625  QualType ResultTy = Context.getLogicalOperationType();
7626
7627  if (isRelational) {
7628    if (lType->isRealType() && rType->isRealType())
7629      return ResultTy;
7630  } else {
7631    // Check for comparisons of floating point operands using != and ==.
7632    if (lType->hasFloatingRepresentation())
7633      CheckFloatComparison(Loc, lex.get(), rex.get());
7634
7635    if (lType->isArithmeticType() && rType->isArithmeticType())
7636      return ResultTy;
7637  }
7638
7639  bool LHSIsNull = lex.get()->isNullPointerConstant(Context,
7640                                              Expr::NPC_ValueDependentIsNull);
7641  bool RHSIsNull = rex.get()->isNullPointerConstant(Context,
7642                                              Expr::NPC_ValueDependentIsNull);
7643
7644  // All of the following pointer-related warnings are GCC extensions, except
7645  // when handling null pointer constants.
7646  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
7647    QualType LCanPointeeTy =
7648      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
7649    QualType RCanPointeeTy =
7650      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
7651
7652    if (getLangOptions().CPlusPlus) {
7653      if (LCanPointeeTy == RCanPointeeTy)
7654        return ResultTy;
7655      if (!isRelational &&
7656          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7657        // Valid unless comparison between non-null pointer and function pointer
7658        // This is a gcc extension compatibility comparison.
7659        // In a SFINAE context, we treat this as a hard error to maintain
7660        // conformance with the C++ standard.
7661        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7662            && !LHSIsNull && !RHSIsNull) {
7663          Diag(Loc,
7664               isSFINAEContext()?
7665                   diag::err_typecheck_comparison_of_fptr_to_void
7666                 : diag::ext_typecheck_comparison_of_fptr_to_void)
7667            << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7668
7669          if (isSFINAEContext())
7670            return QualType();
7671
7672          rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
7673          return ResultTy;
7674        }
7675      }
7676
7677      // C++ [expr.rel]p2:
7678      //   [...] Pointer conversions (4.10) and qualification
7679      //   conversions (4.4) are performed on pointer operands (or on
7680      //   a pointer operand and a null pointer constant) to bring
7681      //   them to their composite pointer type. [...]
7682      //
7683      // C++ [expr.eq]p1 uses the same notion for (in)equality
7684      // comparisons of pointers.
7685      bool NonStandardCompositeType = false;
7686      QualType T = FindCompositePointerType(Loc, lex, rex,
7687                              isSFINAEContext()? 0 : &NonStandardCompositeType);
7688      if (T.isNull()) {
7689        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
7690          << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7691        return QualType();
7692      } else if (NonStandardCompositeType) {
7693        Diag(Loc,
7694             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
7695          << lType << rType << T
7696          << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7697      }
7698
7699      lex = ImpCastExprToType(lex.take(), T, CK_BitCast);
7700      rex = ImpCastExprToType(rex.take(), T, CK_BitCast);
7701      return ResultTy;
7702    }
7703    // C99 6.5.9p2 and C99 6.5.8p2
7704    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
7705                                   RCanPointeeTy.getUnqualifiedType())) {
7706      // Valid unless a relational comparison of function pointers
7707      if (isRelational && LCanPointeeTy->isFunctionType()) {
7708        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
7709          << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7710      }
7711    } else if (!isRelational &&
7712               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7713      // Valid unless comparison between non-null pointer and function pointer
7714      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7715          && !LHSIsNull && !RHSIsNull) {
7716        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
7717          << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7718      }
7719    } else {
7720      // Invalid
7721      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
7722        << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7723    }
7724    if (LCanPointeeTy != RCanPointeeTy) {
7725      if (LHSIsNull && !RHSIsNull)
7726        lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
7727      else
7728        rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
7729    }
7730    return ResultTy;
7731  }
7732
7733  if (getLangOptions().CPlusPlus) {
7734    // Comparison of nullptr_t with itself.
7735    if (lType->isNullPtrType() && rType->isNullPtrType())
7736      return ResultTy;
7737
7738    // Comparison of pointers with null pointer constants and equality
7739    // comparisons of member pointers to null pointer constants.
7740    if (RHSIsNull &&
7741        ((lType->isAnyPointerType() || lType->isNullPtrType()) ||
7742         (!isRelational && lType->isMemberPointerType()))) {
7743      rex = ImpCastExprToType(rex.take(), lType,
7744                        lType->isMemberPointerType()
7745                          ? CK_NullToMemberPointer
7746                          : CK_NullToPointer);
7747      return ResultTy;
7748    }
7749    if (LHSIsNull &&
7750        ((rType->isAnyPointerType() || rType->isNullPtrType()) ||
7751         (!isRelational && rType->isMemberPointerType()))) {
7752      lex = ImpCastExprToType(lex.take(), rType,
7753                        rType->isMemberPointerType()
7754                          ? CK_NullToMemberPointer
7755                          : CK_NullToPointer);
7756      return ResultTy;
7757    }
7758
7759    // Comparison of member pointers.
7760    if (!isRelational &&
7761        lType->isMemberPointerType() && rType->isMemberPointerType()) {
7762      // C++ [expr.eq]p2:
7763      //   In addition, pointers to members can be compared, or a pointer to
7764      //   member and a null pointer constant. Pointer to member conversions
7765      //   (4.11) and qualification conversions (4.4) are performed to bring
7766      //   them to a common type. If one operand is a null pointer constant,
7767      //   the common type is the type of the other operand. Otherwise, the
7768      //   common type is a pointer to member type similar (4.4) to the type
7769      //   of one of the operands, with a cv-qualification signature (4.4)
7770      //   that is the union of the cv-qualification signatures of the operand
7771      //   types.
7772      bool NonStandardCompositeType = false;
7773      QualType T = FindCompositePointerType(Loc, lex, rex,
7774                              isSFINAEContext()? 0 : &NonStandardCompositeType);
7775      if (T.isNull()) {
7776        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
7777          << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7778        return QualType();
7779      } else if (NonStandardCompositeType) {
7780        Diag(Loc,
7781             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
7782          << lType << rType << T
7783          << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7784      }
7785
7786      lex = ImpCastExprToType(lex.take(), T, CK_BitCast);
7787      rex = ImpCastExprToType(rex.take(), T, CK_BitCast);
7788      return ResultTy;
7789    }
7790
7791    // Handle scoped enumeration types specifically, since they don't promote
7792    // to integers.
7793    if (lex.get()->getType()->isEnumeralType() &&
7794        Context.hasSameUnqualifiedType(lex.get()->getType(), rex.get()->getType()))
7795      return ResultTy;
7796  }
7797
7798  // Handle block pointer types.
7799  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
7800    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
7801    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
7802
7803    if (!LHSIsNull && !RHSIsNull &&
7804        !Context.typesAreCompatible(lpointee, rpointee)) {
7805      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7806        << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7807    }
7808    rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
7809    return ResultTy;
7810  }
7811
7812  // Allow block pointers to be compared with null pointer constants.
7813  if (!isRelational
7814      && ((lType->isBlockPointerType() && rType->isPointerType())
7815          || (lType->isPointerType() && rType->isBlockPointerType()))) {
7816    if (!LHSIsNull && !RHSIsNull) {
7817      if (!((rType->isPointerType() && rType->castAs<PointerType>()
7818             ->getPointeeType()->isVoidType())
7819            || (lType->isPointerType() && lType->castAs<PointerType>()
7820                ->getPointeeType()->isVoidType())))
7821        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7822          << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7823    }
7824    if (LHSIsNull && !RHSIsNull)
7825      lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
7826    else
7827      rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
7828    return ResultTy;
7829  }
7830
7831  if (lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType()) {
7832    const PointerType *LPT = lType->getAs<PointerType>();
7833    const PointerType *RPT = rType->getAs<PointerType>();
7834    if (LPT || RPT) {
7835      bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
7836      bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
7837
7838      if (!LPtrToVoid && !RPtrToVoid &&
7839          !Context.typesAreCompatible(lType, rType)) {
7840        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
7841          << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7842      }
7843      if (LHSIsNull && !RHSIsNull)
7844        lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
7845      else
7846        rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
7847      return ResultTy;
7848    }
7849    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
7850      if (!Context.areComparableObjCPointerTypes(lType, rType))
7851        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
7852          << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7853      if (LHSIsNull && !RHSIsNull)
7854        lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
7855      else
7856        rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
7857      return ResultTy;
7858    }
7859  }
7860  if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
7861      (lType->isIntegerType() && rType->isAnyPointerType())) {
7862    unsigned DiagID = 0;
7863    bool isError = false;
7864    if ((LHSIsNull && lType->isIntegerType()) ||
7865        (RHSIsNull && rType->isIntegerType())) {
7866      if (isRelational && !getLangOptions().CPlusPlus)
7867        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
7868    } else if (isRelational && !getLangOptions().CPlusPlus)
7869      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
7870    else if (getLangOptions().CPlusPlus) {
7871      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
7872      isError = true;
7873    } else
7874      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
7875
7876    if (DiagID) {
7877      Diag(Loc, DiagID)
7878        << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7879      if (isError)
7880        return QualType();
7881    }
7882
7883    if (lType->isIntegerType())
7884      lex = ImpCastExprToType(lex.take(), rType,
7885                        LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7886    else
7887      rex = ImpCastExprToType(rex.take(), lType,
7888                        RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7889    return ResultTy;
7890  }
7891
7892  // Handle block pointers.
7893  if (!isRelational && RHSIsNull
7894      && lType->isBlockPointerType() && rType->isIntegerType()) {
7895    rex = ImpCastExprToType(rex.take(), lType, CK_NullToPointer);
7896    return ResultTy;
7897  }
7898  if (!isRelational && LHSIsNull
7899      && lType->isIntegerType() && rType->isBlockPointerType()) {
7900    lex = ImpCastExprToType(lex.take(), rType, CK_NullToPointer);
7901    return ResultTy;
7902  }
7903
7904  return InvalidOperands(Loc, lex, rex);
7905}
7906
7907/// CheckVectorCompareOperands - vector comparisons are a clang extension that
7908/// operates on extended vector types.  Instead of producing an IntTy result,
7909/// like a scalar comparison, a vector comparison produces a vector of integer
7910/// types.
7911QualType Sema::CheckVectorCompareOperands(ExprResult &lex, ExprResult &rex,
7912                                          SourceLocation Loc,
7913                                          bool isRelational) {
7914  // Check to make sure we're operating on vectors of the same type and width,
7915  // Allowing one side to be a scalar of element type.
7916  QualType vType = CheckVectorOperands(Loc, lex, rex);
7917  if (vType.isNull())
7918    return vType;
7919
7920  QualType lType = lex.get()->getType();
7921  QualType rType = rex.get()->getType();
7922
7923  // If AltiVec, the comparison results in a numeric type, i.e.
7924  // bool for C++, int for C
7925  if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
7926    return Context.getLogicalOperationType();
7927
7928  // For non-floating point types, check for self-comparisons of the form
7929  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
7930  // often indicate logic errors in the program.
7931  if (!lType->hasFloatingRepresentation()) {
7932    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex.get()->IgnoreParens()))
7933      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex.get()->IgnoreParens()))
7934        if (DRL->getDecl() == DRR->getDecl())
7935          DiagRuntimeBehavior(Loc, 0,
7936                              PDiag(diag::warn_comparison_always)
7937                                << 0 // self-
7938                                << 2 // "a constant"
7939                              );
7940  }
7941
7942  // Check for comparisons of floating point operands using != and ==.
7943  if (!isRelational && lType->hasFloatingRepresentation()) {
7944    assert (rType->hasFloatingRepresentation());
7945    CheckFloatComparison(Loc, lex.get(), rex.get());
7946  }
7947
7948  // Return the type for the comparison, which is the same as vector type for
7949  // integer vectors, or an integer type of identical size and number of
7950  // elements for floating point vectors.
7951  if (lType->hasIntegerRepresentation())
7952    return lType;
7953
7954  const VectorType *VTy = lType->getAs<VectorType>();
7955  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
7956  if (TypeSize == Context.getTypeSize(Context.IntTy))
7957    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
7958  if (TypeSize == Context.getTypeSize(Context.LongTy))
7959    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
7960
7961  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
7962         "Unhandled vector element size in vector compare");
7963  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
7964}
7965
7966inline QualType Sema::CheckBitwiseOperands(
7967  ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) {
7968  if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
7969    if (lex.get()->getType()->hasIntegerRepresentation() &&
7970        rex.get()->getType()->hasIntegerRepresentation())
7971      return CheckVectorOperands(Loc, lex, rex);
7972
7973    return InvalidOperands(Loc, lex, rex);
7974  }
7975
7976  ExprResult lexResult = Owned(lex), rexResult = Owned(rex);
7977  QualType compType = UsualArithmeticConversions(lexResult, rexResult, isCompAssign);
7978  if (lexResult.isInvalid() || rexResult.isInvalid())
7979    return QualType();
7980  lex = lexResult.take();
7981  rex = rexResult.take();
7982
7983  if (lex.get()->getType()->isIntegralOrUnscopedEnumerationType() &&
7984      rex.get()->getType()->isIntegralOrUnscopedEnumerationType())
7985    return compType;
7986  return InvalidOperands(Loc, lex, rex);
7987}
7988
7989inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
7990  ExprResult &lex, ExprResult &rex, SourceLocation Loc, unsigned Opc) {
7991
7992  // Diagnose cases where the user write a logical and/or but probably meant a
7993  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
7994  // is a constant.
7995  if (lex.get()->getType()->isIntegerType() && !lex.get()->getType()->isBooleanType() &&
7996      rex.get()->getType()->isIntegerType() && !rex.get()->isValueDependent() &&
7997      // Don't warn in macros.
7998      !Loc.isMacroID()) {
7999    // If the RHS can be constant folded, and if it constant folds to something
8000    // that isn't 0 or 1 (which indicate a potential logical operation that
8001    // happened to fold to true/false) then warn.
8002    // Parens on the RHS are ignored.
8003    Expr::EvalResult Result;
8004    if (rex.get()->Evaluate(Result, Context) && !Result.HasSideEffects)
8005      if ((getLangOptions().Bool && !rex.get()->getType()->isBooleanType()) ||
8006          (Result.Val.getInt() != 0 && Result.Val.getInt() != 1)) {
8007        Diag(Loc, diag::warn_logical_instead_of_bitwise)
8008          << rex.get()->getSourceRange()
8009          << (Opc == BO_LAnd ? "&&" : "||")
8010          << (Opc == BO_LAnd ? "&" : "|");
8011    }
8012  }
8013
8014  if (!Context.getLangOptions().CPlusPlus) {
8015    lex = UsualUnaryConversions(lex.take());
8016    if (lex.isInvalid())
8017      return QualType();
8018
8019    rex = UsualUnaryConversions(rex.take());
8020    if (rex.isInvalid())
8021      return QualType();
8022
8023    if (!lex.get()->getType()->isScalarType() || !rex.get()->getType()->isScalarType())
8024      return InvalidOperands(Loc, lex, rex);
8025
8026    return Context.IntTy;
8027  }
8028
8029  // The following is safe because we only use this method for
8030  // non-overloadable operands.
8031
8032  // C++ [expr.log.and]p1
8033  // C++ [expr.log.or]p1
8034  // The operands are both contextually converted to type bool.
8035  ExprResult lexRes = PerformContextuallyConvertToBool(lex.get());
8036  if (lexRes.isInvalid())
8037    return InvalidOperands(Loc, lex, rex);
8038  lex = move(lexRes);
8039
8040  ExprResult rexRes = PerformContextuallyConvertToBool(rex.get());
8041  if (rexRes.isInvalid())
8042    return InvalidOperands(Loc, lex, rex);
8043  rex = move(rexRes);
8044
8045  // C++ [expr.log.and]p2
8046  // C++ [expr.log.or]p2
8047  // The result is a bool.
8048  return Context.BoolTy;
8049}
8050
8051/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
8052/// is a read-only property; return true if so. A readonly property expression
8053/// depends on various declarations and thus must be treated specially.
8054///
8055static bool IsReadonlyProperty(Expr *E, Sema &S) {
8056  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
8057    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
8058    if (PropExpr->isImplicitProperty()) return false;
8059
8060    ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
8061    QualType BaseType = PropExpr->isSuperReceiver() ?
8062                            PropExpr->getSuperReceiverType() :
8063                            PropExpr->getBase()->getType();
8064
8065    if (const ObjCObjectPointerType *OPT =
8066          BaseType->getAsObjCInterfacePointerType())
8067      if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
8068        if (S.isPropertyReadonly(PDecl, IFace))
8069          return true;
8070  }
8071  return false;
8072}
8073
8074static bool IsConstProperty(Expr *E, Sema &S) {
8075  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
8076    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
8077    if (PropExpr->isImplicitProperty()) return false;
8078
8079    ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
8080    QualType T = PDecl->getType();
8081    if (T->isReferenceType())
8082      T = T->getAs<ReferenceType>()->getPointeeType();
8083    CanQualType CT = S.Context.getCanonicalType(T);
8084    return CT.isConstQualified();
8085  }
8086  return false;
8087}
8088
8089static bool IsReadonlyMessage(Expr *E, Sema &S) {
8090  if (E->getStmtClass() != Expr::MemberExprClass)
8091    return false;
8092  const MemberExpr *ME = cast<MemberExpr>(E);
8093  NamedDecl *Member = ME->getMemberDecl();
8094  if (isa<FieldDecl>(Member)) {
8095    Expr *Base = ME->getBase()->IgnoreParenImpCasts();
8096    if (Base->getStmtClass() != Expr::ObjCMessageExprClass)
8097      return false;
8098    return cast<ObjCMessageExpr>(Base)->getMethodDecl() != 0;
8099  }
8100  return false;
8101}
8102
8103/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
8104/// emit an error and return true.  If so, return false.
8105static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
8106  SourceLocation OrigLoc = Loc;
8107  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
8108                                                              &Loc);
8109  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
8110    IsLV = Expr::MLV_ReadonlyProperty;
8111  else if (Expr::MLV_ConstQualified && IsConstProperty(E, S))
8112    IsLV = Expr::MLV_Valid;
8113  else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
8114    IsLV = Expr::MLV_InvalidMessageExpression;
8115  if (IsLV == Expr::MLV_Valid)
8116    return false;
8117
8118  unsigned Diag = 0;
8119  bool NeedType = false;
8120  switch (IsLV) { // C99 6.5.16p2
8121  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
8122  case Expr::MLV_ArrayType:
8123    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
8124    NeedType = true;
8125    break;
8126  case Expr::MLV_NotObjectType:
8127    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
8128    NeedType = true;
8129    break;
8130  case Expr::MLV_LValueCast:
8131    Diag = diag::err_typecheck_lvalue_casts_not_supported;
8132    break;
8133  case Expr::MLV_Valid:
8134    llvm_unreachable("did not take early return for MLV_Valid");
8135  case Expr::MLV_InvalidExpression:
8136  case Expr::MLV_MemberFunction:
8137  case Expr::MLV_ClassTemporary:
8138    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
8139    break;
8140  case Expr::MLV_IncompleteType:
8141  case Expr::MLV_IncompleteVoidType:
8142    return S.RequireCompleteType(Loc, E->getType(),
8143              S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
8144                  << E->getSourceRange());
8145  case Expr::MLV_DuplicateVectorComponents:
8146    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
8147    break;
8148  case Expr::MLV_NotBlockQualified:
8149    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
8150    break;
8151  case Expr::MLV_ReadonlyProperty:
8152    Diag = diag::error_readonly_property_assignment;
8153    break;
8154  case Expr::MLV_NoSetterProperty:
8155    Diag = diag::error_nosetter_property_assignment;
8156    break;
8157  case Expr::MLV_InvalidMessageExpression:
8158    Diag = diag::error_readonly_message_assignment;
8159    break;
8160  case Expr::MLV_SubObjCPropertySetting:
8161    Diag = diag::error_no_subobject_property_setting;
8162    break;
8163  }
8164
8165  SourceRange Assign;
8166  if (Loc != OrigLoc)
8167    Assign = SourceRange(OrigLoc, OrigLoc);
8168  if (NeedType)
8169    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
8170  else
8171    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
8172  return true;
8173}
8174
8175
8176
8177// C99 6.5.16.1
8178QualType Sema::CheckAssignmentOperands(Expr *LHS, ExprResult &RHS,
8179                                       SourceLocation Loc,
8180                                       QualType CompoundType) {
8181  // Verify that LHS is a modifiable lvalue, and emit error if not.
8182  if (CheckForModifiableLvalue(LHS, Loc, *this))
8183    return QualType();
8184
8185  QualType LHSType = LHS->getType();
8186  QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() : CompoundType;
8187  AssignConvertType ConvTy;
8188  if (CompoundType.isNull()) {
8189    QualType LHSTy(LHSType);
8190    // Simple assignment "x = y".
8191    if (LHS->getObjectKind() == OK_ObjCProperty) {
8192      ExprResult LHSResult = Owned(LHS);
8193      ConvertPropertyForLValue(LHSResult, RHS, LHSTy);
8194      if (LHSResult.isInvalid())
8195        return QualType();
8196      LHS = LHSResult.take();
8197    }
8198    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
8199    if (RHS.isInvalid())
8200      return QualType();
8201    // Special case of NSObject attributes on c-style pointer types.
8202    if (ConvTy == IncompatiblePointer &&
8203        ((Context.isObjCNSObjectType(LHSType) &&
8204          RHSType->isObjCObjectPointerType()) ||
8205         (Context.isObjCNSObjectType(RHSType) &&
8206          LHSType->isObjCObjectPointerType())))
8207      ConvTy = Compatible;
8208
8209    if (ConvTy == Compatible &&
8210        getLangOptions().ObjCNonFragileABI &&
8211        LHSType->isObjCObjectType())
8212      Diag(Loc, diag::err_assignment_requires_nonfragile_object)
8213        << LHSType;
8214
8215    // If the RHS is a unary plus or minus, check to see if they = and + are
8216    // right next to each other.  If so, the user may have typo'd "x =+ 4"
8217    // instead of "x += 4".
8218    Expr *RHSCheck = RHS.get();
8219    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
8220      RHSCheck = ICE->getSubExpr();
8221    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
8222      if ((UO->getOpcode() == UO_Plus ||
8223           UO->getOpcode() == UO_Minus) &&
8224          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
8225          // Only if the two operators are exactly adjacent.
8226          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
8227          // And there is a space or other character before the subexpr of the
8228          // unary +/-.  We don't want to warn on "x=-1".
8229          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
8230          UO->getSubExpr()->getLocStart().isFileID()) {
8231        Diag(Loc, diag::warn_not_compound_assign)
8232          << (UO->getOpcode() == UO_Plus ? "+" : "-")
8233          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
8234      }
8235    }
8236  } else {
8237    // Compound assignment "x += y"
8238    ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
8239  }
8240
8241  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
8242                               RHS.get(), AA_Assigning))
8243    return QualType();
8244
8245  CheckForNullPointerDereference(*this, LHS);
8246  // Check for trivial buffer overflows.
8247  CheckArrayAccess(LHS->IgnoreParenCasts());
8248
8249  // C99 6.5.16p3: The type of an assignment expression is the type of the
8250  // left operand unless the left operand has qualified type, in which case
8251  // it is the unqualified version of the type of the left operand.
8252  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
8253  // is converted to the type of the assignment expression (above).
8254  // C++ 5.17p1: the type of the assignment expression is that of its left
8255  // operand.
8256  return (getLangOptions().CPlusPlus
8257          ? LHSType : LHSType.getUnqualifiedType());
8258}
8259
8260// C99 6.5.17
8261static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
8262                                   SourceLocation Loc) {
8263  S.DiagnoseUnusedExprResult(LHS.get());
8264
8265  LHS = S.CheckPlaceholderExpr(LHS.take());
8266  RHS = S.CheckPlaceholderExpr(RHS.take());
8267  if (LHS.isInvalid() || RHS.isInvalid())
8268    return QualType();
8269
8270  // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
8271  // operands, but not unary promotions.
8272  // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
8273
8274  // So we treat the LHS as a ignored value, and in C++ we allow the
8275  // containing site to determine what should be done with the RHS.
8276  LHS = S.IgnoredValueConversions(LHS.take());
8277  if (LHS.isInvalid())
8278    return QualType();
8279
8280  if (!S.getLangOptions().CPlusPlus) {
8281    RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
8282    if (RHS.isInvalid())
8283      return QualType();
8284    if (!RHS.get()->getType()->isVoidType())
8285      S.RequireCompleteType(Loc, RHS.get()->getType(), diag::err_incomplete_type);
8286  }
8287
8288  return RHS.get()->getType();
8289}
8290
8291/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
8292/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
8293static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
8294                                               ExprValueKind &VK,
8295                                               SourceLocation OpLoc,
8296                                               bool isInc, bool isPrefix) {
8297  if (Op->isTypeDependent())
8298    return S.Context.DependentTy;
8299
8300  QualType ResType = Op->getType();
8301  assert(!ResType.isNull() && "no type for increment/decrement expression");
8302
8303  if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) {
8304    // Decrement of bool is not allowed.
8305    if (!isInc) {
8306      S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
8307      return QualType();
8308    }
8309    // Increment of bool sets it to true, but is deprecated.
8310    S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
8311  } else if (ResType->isRealType()) {
8312    // OK!
8313  } else if (ResType->isAnyPointerType()) {
8314    QualType PointeeTy = ResType->getPointeeType();
8315
8316    // C99 6.5.2.4p2, 6.5.6p2
8317    if (PointeeTy->isVoidType()) {
8318      if (S.getLangOptions().CPlusPlus) {
8319        S.Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
8320          << Op->getSourceRange();
8321        return QualType();
8322      }
8323
8324      // Pointer to void is a GNU extension in C.
8325      S.Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
8326    } else if (PointeeTy->isFunctionType()) {
8327      if (S.getLangOptions().CPlusPlus) {
8328        S.Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
8329          << Op->getType() << Op->getSourceRange();
8330        return QualType();
8331      }
8332
8333      S.Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
8334        << ResType << Op->getSourceRange();
8335    } else if (S.RequireCompleteType(OpLoc, PointeeTy,
8336                 S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
8337                             << Op->getSourceRange()
8338                             << ResType))
8339      return QualType();
8340    // Diagnose bad cases where we step over interface counts.
8341    else if (PointeeTy->isObjCObjectType() && S.LangOpts.ObjCNonFragileABI) {
8342      S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
8343        << PointeeTy << Op->getSourceRange();
8344      return QualType();
8345    }
8346  } else if (ResType->isAnyComplexType()) {
8347    // C99 does not support ++/-- on complex types, we allow as an extension.
8348    S.Diag(OpLoc, diag::ext_integer_increment_complex)
8349      << ResType << Op->getSourceRange();
8350  } else if (ResType->isPlaceholderType()) {
8351    ExprResult PR = S.CheckPlaceholderExpr(Op);
8352    if (PR.isInvalid()) return QualType();
8353    return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
8354                                          isInc, isPrefix);
8355  } else if (S.getLangOptions().AltiVec && ResType->isVectorType()) {
8356    // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
8357  } else {
8358    S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
8359      << ResType << int(isInc) << Op->getSourceRange();
8360    return QualType();
8361  }
8362  // At this point, we know we have a real, complex or pointer type.
8363  // Now make sure the operand is a modifiable lvalue.
8364  if (CheckForModifiableLvalue(Op, OpLoc, S))
8365    return QualType();
8366  // In C++, a prefix increment is the same type as the operand. Otherwise
8367  // (in C or with postfix), the increment is the unqualified type of the
8368  // operand.
8369  if (isPrefix && S.getLangOptions().CPlusPlus) {
8370    VK = VK_LValue;
8371    return ResType;
8372  } else {
8373    VK = VK_RValue;
8374    return ResType.getUnqualifiedType();
8375  }
8376}
8377
8378ExprResult Sema::ConvertPropertyForRValue(Expr *E) {
8379  assert(E->getValueKind() == VK_LValue &&
8380         E->getObjectKind() == OK_ObjCProperty);
8381  const ObjCPropertyRefExpr *PRE = E->getObjCProperty();
8382
8383  QualType T = E->getType();
8384  QualType ReceiverType;
8385  if (PRE->isObjectReceiver())
8386    ReceiverType = PRE->getBase()->getType();
8387  else if (PRE->isSuperReceiver())
8388    ReceiverType = PRE->getSuperReceiverType();
8389  else
8390    ReceiverType = Context.getObjCInterfaceType(PRE->getClassReceiver());
8391
8392  ExprValueKind VK = VK_RValue;
8393  if (PRE->isImplicitProperty()) {
8394    if (ObjCMethodDecl *GetterMethod =
8395          PRE->getImplicitPropertyGetter()) {
8396      T = getMessageSendResultType(ReceiverType, GetterMethod,
8397                                   PRE->isClassReceiver(),
8398                                   PRE->isSuperReceiver());
8399      VK = Expr::getValueKindForType(GetterMethod->getResultType());
8400    }
8401    else {
8402      Diag(PRE->getLocation(), diag::err_getter_not_found)
8403            << PRE->getBase()->getType();
8404    }
8405  }
8406
8407  E = ImplicitCastExpr::Create(Context, T, CK_GetObjCProperty,
8408                               E, 0, VK);
8409
8410  ExprResult Result = MaybeBindToTemporary(E);
8411  if (!Result.isInvalid())
8412    E = Result.take();
8413
8414  return Owned(E);
8415}
8416
8417void Sema::ConvertPropertyForLValue(ExprResult &LHS, ExprResult &RHS, QualType &LHSTy) {
8418  assert(LHS.get()->getValueKind() == VK_LValue &&
8419         LHS.get()->getObjectKind() == OK_ObjCProperty);
8420  const ObjCPropertyRefExpr *PropRef = LHS.get()->getObjCProperty();
8421
8422  if (PropRef->isImplicitProperty()) {
8423    // If using property-dot syntax notation for assignment, and there is a
8424    // setter, RHS expression is being passed to the setter argument. So,
8425    // type conversion (and comparison) is RHS to setter's argument type.
8426    if (const ObjCMethodDecl *SetterMD = PropRef->getImplicitPropertySetter()) {
8427      ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
8428      LHSTy = (*P)->getType();
8429
8430    // Otherwise, if the getter returns an l-value, just call that.
8431    } else {
8432      QualType Result = PropRef->getImplicitPropertyGetter()->getResultType();
8433      ExprValueKind VK = Expr::getValueKindForType(Result);
8434      if (VK == VK_LValue) {
8435        LHS = ImplicitCastExpr::Create(Context, LHS.get()->getType(),
8436                                        CK_GetObjCProperty, LHS.take(), 0, VK);
8437        return;
8438      }
8439    }
8440  }
8441
8442  if (getLangOptions().CPlusPlus && LHSTy->isRecordType()) {
8443    InitializedEntity Entity =
8444    InitializedEntity::InitializeParameter(Context, LHSTy);
8445    ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), RHS);
8446    if (!ArgE.isInvalid())
8447      RHS = ArgE;
8448  }
8449}
8450
8451
8452/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
8453/// This routine allows us to typecheck complex/recursive expressions
8454/// where the declaration is needed for type checking. We only need to
8455/// handle cases when the expression references a function designator
8456/// or is an lvalue. Here are some examples:
8457///  - &(x) => x
8458///  - &*****f => f for f a function designator.
8459///  - &s.xx => s
8460///  - &s.zz[1].yy -> s, if zz is an array
8461///  - *(x + 1) -> x, if x is an array
8462///  - &"123"[2] -> 0
8463///  - & __real__ x -> x
8464static ValueDecl *getPrimaryDecl(Expr *E) {
8465  switch (E->getStmtClass()) {
8466  case Stmt::DeclRefExprClass:
8467    return cast<DeclRefExpr>(E)->getDecl();
8468  case Stmt::MemberExprClass:
8469    // If this is an arrow operator, the address is an offset from
8470    // the base's value, so the object the base refers to is
8471    // irrelevant.
8472    if (cast<MemberExpr>(E)->isArrow())
8473      return 0;
8474    // Otherwise, the expression refers to a part of the base
8475    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
8476  case Stmt::ArraySubscriptExprClass: {
8477    // FIXME: This code shouldn't be necessary!  We should catch the implicit
8478    // promotion of register arrays earlier.
8479    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
8480    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
8481      if (ICE->getSubExpr()->getType()->isArrayType())
8482        return getPrimaryDecl(ICE->getSubExpr());
8483    }
8484    return 0;
8485  }
8486  case Stmt::UnaryOperatorClass: {
8487    UnaryOperator *UO = cast<UnaryOperator>(E);
8488
8489    switch(UO->getOpcode()) {
8490    case UO_Real:
8491    case UO_Imag:
8492    case UO_Extension:
8493      return getPrimaryDecl(UO->getSubExpr());
8494    default:
8495      return 0;
8496    }
8497  }
8498  case Stmt::ParenExprClass:
8499    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
8500  case Stmt::ImplicitCastExprClass:
8501    // If the result of an implicit cast is an l-value, we care about
8502    // the sub-expression; otherwise, the result here doesn't matter.
8503    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
8504  default:
8505    return 0;
8506  }
8507}
8508
8509/// CheckAddressOfOperand - The operand of & must be either a function
8510/// designator or an lvalue designating an object. If it is an lvalue, the
8511/// object cannot be declared with storage class register or be a bit field.
8512/// Note: The usual conversions are *not* applied to the operand of the &
8513/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
8514/// In C++, the operand might be an overloaded function name, in which case
8515/// we allow the '&' but retain the overloaded-function type.
8516static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp,
8517                                      SourceLocation OpLoc) {
8518  if (OrigOp->isTypeDependent())
8519    return S.Context.DependentTy;
8520  if (OrigOp->getType() == S.Context.OverloadTy)
8521    return S.Context.OverloadTy;
8522  if (OrigOp->getType() == S.Context.UnknownAnyTy)
8523    return S.Context.UnknownAnyTy;
8524  if (OrigOp->getType() == S.Context.BoundMemberTy) {
8525    S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8526      << OrigOp->getSourceRange();
8527    return QualType();
8528  }
8529
8530  assert(!OrigOp->getType()->isPlaceholderType());
8531
8532  // Make sure to ignore parentheses in subsequent checks
8533  Expr *op = OrigOp->IgnoreParens();
8534
8535  if (S.getLangOptions().C99) {
8536    // Implement C99-only parts of addressof rules.
8537    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
8538      if (uOp->getOpcode() == UO_Deref)
8539        // Per C99 6.5.3.2, the address of a deref always returns a valid result
8540        // (assuming the deref expression is valid).
8541        return uOp->getSubExpr()->getType();
8542    }
8543    // Technically, there should be a check for array subscript
8544    // expressions here, but the result of one is always an lvalue anyway.
8545  }
8546  ValueDecl *dcl = getPrimaryDecl(op);
8547  Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
8548
8549  if (lval == Expr::LV_ClassTemporary) {
8550    bool sfinae = S.isSFINAEContext();
8551    S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
8552                         : diag::ext_typecheck_addrof_class_temporary)
8553      << op->getType() << op->getSourceRange();
8554    if (sfinae)
8555      return QualType();
8556  } else if (isa<ObjCSelectorExpr>(op)) {
8557    return S.Context.getPointerType(op->getType());
8558  } else if (lval == Expr::LV_MemberFunction) {
8559    // If it's an instance method, make a member pointer.
8560    // The expression must have exactly the form &A::foo.
8561
8562    // If the underlying expression isn't a decl ref, give up.
8563    if (!isa<DeclRefExpr>(op)) {
8564      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8565        << OrigOp->getSourceRange();
8566      return QualType();
8567    }
8568    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
8569    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
8570
8571    // The id-expression was parenthesized.
8572    if (OrigOp != DRE) {
8573      S.Diag(OpLoc, diag::err_parens_pointer_member_function)
8574        << OrigOp->getSourceRange();
8575
8576    // The method was named without a qualifier.
8577    } else if (!DRE->getQualifier()) {
8578      S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
8579        << op->getSourceRange();
8580    }
8581
8582    return S.Context.getMemberPointerType(op->getType(),
8583              S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
8584  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
8585    // C99 6.5.3.2p1
8586    // The operand must be either an l-value or a function designator
8587    if (!op->getType()->isFunctionType()) {
8588      // FIXME: emit more specific diag...
8589      S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
8590        << op->getSourceRange();
8591      return QualType();
8592    }
8593  } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
8594    // The operand cannot be a bit-field
8595    S.Diag(OpLoc, diag::err_typecheck_address_of)
8596      << "bit-field" << op->getSourceRange();
8597        return QualType();
8598  } else if (op->getObjectKind() == OK_VectorComponent) {
8599    // The operand cannot be an element of a vector
8600    S.Diag(OpLoc, diag::err_typecheck_address_of)
8601      << "vector element" << op->getSourceRange();
8602    return QualType();
8603  } else if (op->getObjectKind() == OK_ObjCProperty) {
8604    // cannot take address of a property expression.
8605    S.Diag(OpLoc, diag::err_typecheck_address_of)
8606      << "property expression" << op->getSourceRange();
8607    return QualType();
8608  } else if (dcl) { // C99 6.5.3.2p1
8609    // We have an lvalue with a decl. Make sure the decl is not declared
8610    // with the register storage-class specifier.
8611    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
8612      // in C++ it is not error to take address of a register
8613      // variable (c++03 7.1.1P3)
8614      if (vd->getStorageClass() == SC_Register &&
8615          !S.getLangOptions().CPlusPlus) {
8616        S.Diag(OpLoc, diag::err_typecheck_address_of)
8617          << "register variable" << op->getSourceRange();
8618        return QualType();
8619      }
8620    } else if (isa<FunctionTemplateDecl>(dcl)) {
8621      return S.Context.OverloadTy;
8622    } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
8623      // Okay: we can take the address of a field.
8624      // Could be a pointer to member, though, if there is an explicit
8625      // scope qualifier for the class.
8626      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
8627        DeclContext *Ctx = dcl->getDeclContext();
8628        if (Ctx && Ctx->isRecord()) {
8629          if (dcl->getType()->isReferenceType()) {
8630            S.Diag(OpLoc,
8631                   diag::err_cannot_form_pointer_to_member_of_reference_type)
8632              << dcl->getDeclName() << dcl->getType();
8633            return QualType();
8634          }
8635
8636          while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
8637            Ctx = Ctx->getParent();
8638          return S.Context.getMemberPointerType(op->getType(),
8639                S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
8640        }
8641      }
8642    } else if (!isa<FunctionDecl>(dcl))
8643      assert(0 && "Unknown/unexpected decl type");
8644  }
8645
8646  if (lval == Expr::LV_IncompleteVoidType) {
8647    // Taking the address of a void variable is technically illegal, but we
8648    // allow it in cases which are otherwise valid.
8649    // Example: "extern void x; void* y = &x;".
8650    S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
8651  }
8652
8653  // If the operand has type "type", the result has type "pointer to type".
8654  if (op->getType()->isObjCObjectType())
8655    return S.Context.getObjCObjectPointerType(op->getType());
8656  return S.Context.getPointerType(op->getType());
8657}
8658
8659/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
8660static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
8661                                        SourceLocation OpLoc) {
8662  if (Op->isTypeDependent())
8663    return S.Context.DependentTy;
8664
8665  ExprResult ConvResult = S.UsualUnaryConversions(Op);
8666  if (ConvResult.isInvalid())
8667    return QualType();
8668  Op = ConvResult.take();
8669  QualType OpTy = Op->getType();
8670  QualType Result;
8671
8672  if (isa<CXXReinterpretCastExpr>(Op)) {
8673    QualType OpOrigType = Op->IgnoreParenCasts()->getType();
8674    S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
8675                                     Op->getSourceRange());
8676  }
8677
8678  // Note that per both C89 and C99, indirection is always legal, even if OpTy
8679  // is an incomplete type or void.  It would be possible to warn about
8680  // dereferencing a void pointer, but it's completely well-defined, and such a
8681  // warning is unlikely to catch any mistakes.
8682  if (const PointerType *PT = OpTy->getAs<PointerType>())
8683    Result = PT->getPointeeType();
8684  else if (const ObjCObjectPointerType *OPT =
8685             OpTy->getAs<ObjCObjectPointerType>())
8686    Result = OPT->getPointeeType();
8687  else {
8688    ExprResult PR = S.CheckPlaceholderExpr(Op);
8689    if (PR.isInvalid()) return QualType();
8690    if (PR.take() != Op)
8691      return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
8692  }
8693
8694  if (Result.isNull()) {
8695    S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
8696      << OpTy << Op->getSourceRange();
8697    return QualType();
8698  }
8699
8700  // Dereferences are usually l-values...
8701  VK = VK_LValue;
8702
8703  // ...except that certain expressions are never l-values in C.
8704  if (!S.getLangOptions().CPlusPlus &&
8705      IsCForbiddenLValueType(S.Context, Result))
8706    VK = VK_RValue;
8707
8708  return Result;
8709}
8710
8711static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
8712  tok::TokenKind Kind) {
8713  BinaryOperatorKind Opc;
8714  switch (Kind) {
8715  default: assert(0 && "Unknown binop!");
8716  case tok::periodstar:           Opc = BO_PtrMemD; break;
8717  case tok::arrowstar:            Opc = BO_PtrMemI; break;
8718  case tok::star:                 Opc = BO_Mul; break;
8719  case tok::slash:                Opc = BO_Div; break;
8720  case tok::percent:              Opc = BO_Rem; break;
8721  case tok::plus:                 Opc = BO_Add; break;
8722  case tok::minus:                Opc = BO_Sub; break;
8723  case tok::lessless:             Opc = BO_Shl; break;
8724  case tok::greatergreater:       Opc = BO_Shr; break;
8725  case tok::lessequal:            Opc = BO_LE; break;
8726  case tok::less:                 Opc = BO_LT; break;
8727  case tok::greaterequal:         Opc = BO_GE; break;
8728  case tok::greater:              Opc = BO_GT; break;
8729  case tok::exclaimequal:         Opc = BO_NE; break;
8730  case tok::equalequal:           Opc = BO_EQ; break;
8731  case tok::amp:                  Opc = BO_And; break;
8732  case tok::caret:                Opc = BO_Xor; break;
8733  case tok::pipe:                 Opc = BO_Or; break;
8734  case tok::ampamp:               Opc = BO_LAnd; break;
8735  case tok::pipepipe:             Opc = BO_LOr; break;
8736  case tok::equal:                Opc = BO_Assign; break;
8737  case tok::starequal:            Opc = BO_MulAssign; break;
8738  case tok::slashequal:           Opc = BO_DivAssign; break;
8739  case tok::percentequal:         Opc = BO_RemAssign; break;
8740  case tok::plusequal:            Opc = BO_AddAssign; break;
8741  case tok::minusequal:           Opc = BO_SubAssign; break;
8742  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
8743  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
8744  case tok::ampequal:             Opc = BO_AndAssign; break;
8745  case tok::caretequal:           Opc = BO_XorAssign; break;
8746  case tok::pipeequal:            Opc = BO_OrAssign; break;
8747  case tok::comma:                Opc = BO_Comma; break;
8748  }
8749  return Opc;
8750}
8751
8752static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
8753  tok::TokenKind Kind) {
8754  UnaryOperatorKind Opc;
8755  switch (Kind) {
8756  default: assert(0 && "Unknown unary op!");
8757  case tok::plusplus:     Opc = UO_PreInc; break;
8758  case tok::minusminus:   Opc = UO_PreDec; break;
8759  case tok::amp:          Opc = UO_AddrOf; break;
8760  case tok::star:         Opc = UO_Deref; break;
8761  case tok::plus:         Opc = UO_Plus; break;
8762  case tok::minus:        Opc = UO_Minus; break;
8763  case tok::tilde:        Opc = UO_Not; break;
8764  case tok::exclaim:      Opc = UO_LNot; break;
8765  case tok::kw___real:    Opc = UO_Real; break;
8766  case tok::kw___imag:    Opc = UO_Imag; break;
8767  case tok::kw___extension__: Opc = UO_Extension; break;
8768  }
8769  return Opc;
8770}
8771
8772/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
8773/// This warning is only emitted for builtin assignment operations. It is also
8774/// suppressed in the event of macro expansions.
8775static void DiagnoseSelfAssignment(Sema &S, Expr *lhs, Expr *rhs,
8776                                   SourceLocation OpLoc) {
8777  if (!S.ActiveTemplateInstantiations.empty())
8778    return;
8779  if (OpLoc.isInvalid() || OpLoc.isMacroID())
8780    return;
8781  lhs = lhs->IgnoreParenImpCasts();
8782  rhs = rhs->IgnoreParenImpCasts();
8783  const DeclRefExpr *LeftDeclRef = dyn_cast<DeclRefExpr>(lhs);
8784  const DeclRefExpr *RightDeclRef = dyn_cast<DeclRefExpr>(rhs);
8785  if (!LeftDeclRef || !RightDeclRef ||
8786      LeftDeclRef->getLocation().isMacroID() ||
8787      RightDeclRef->getLocation().isMacroID())
8788    return;
8789  const ValueDecl *LeftDecl =
8790    cast<ValueDecl>(LeftDeclRef->getDecl()->getCanonicalDecl());
8791  const ValueDecl *RightDecl =
8792    cast<ValueDecl>(RightDeclRef->getDecl()->getCanonicalDecl());
8793  if (LeftDecl != RightDecl)
8794    return;
8795  if (LeftDecl->getType().isVolatileQualified())
8796    return;
8797  if (const ReferenceType *RefTy = LeftDecl->getType()->getAs<ReferenceType>())
8798    if (RefTy->getPointeeType().isVolatileQualified())
8799      return;
8800
8801  S.Diag(OpLoc, diag::warn_self_assignment)
8802      << LeftDeclRef->getType()
8803      << lhs->getSourceRange() << rhs->getSourceRange();
8804}
8805
8806/// CreateBuiltinBinOp - Creates a new built-in binary operation with
8807/// operator @p Opc at location @c TokLoc. This routine only supports
8808/// built-in operations; ActOnBinOp handles overloaded operators.
8809ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
8810                                    BinaryOperatorKind Opc,
8811                                    Expr *lhsExpr, Expr *rhsExpr) {
8812  ExprResult lhs = Owned(lhsExpr), rhs = Owned(rhsExpr);
8813  QualType ResultTy;     // Result type of the binary operator.
8814  // The following two variables are used for compound assignment operators
8815  QualType CompLHSTy;    // Type of LHS after promotions for computation
8816  QualType CompResultTy; // Type of computation result
8817  ExprValueKind VK = VK_RValue;
8818  ExprObjectKind OK = OK_Ordinary;
8819
8820  // Check if a 'foo<int>' involved in a binary op, identifies a single
8821  // function unambiguously (i.e. an lvalue ala 13.4)
8822  // But since an assignment can trigger target based overload, exclude it in
8823  // our blind search. i.e:
8824  // template<class T> void f(); template<class T, class U> void f(U);
8825  // f<int> == 0;  // resolve f<int> blindly
8826  // void (*p)(int); p = f<int>;  // resolve f<int> using target
8827  if (Opc != BO_Assign) {
8828    ExprResult resolvedLHS = CheckPlaceholderExpr(lhs.get());
8829    if (!resolvedLHS.isUsable()) return ExprError();
8830    lhs = move(resolvedLHS);
8831
8832    ExprResult resolvedRHS = CheckPlaceholderExpr(rhs.get());
8833    if (!resolvedRHS.isUsable()) return ExprError();
8834    rhs = move(resolvedRHS);
8835  }
8836
8837  switch (Opc) {
8838  case BO_Assign:
8839    ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, QualType());
8840    if (getLangOptions().CPlusPlus &&
8841        lhs.get()->getObjectKind() != OK_ObjCProperty) {
8842      VK = lhs.get()->getValueKind();
8843      OK = lhs.get()->getObjectKind();
8844    }
8845    if (!ResultTy.isNull())
8846      DiagnoseSelfAssignment(*this, lhs.get(), rhs.get(), OpLoc);
8847    break;
8848  case BO_PtrMemD:
8849  case BO_PtrMemI:
8850    ResultTy = CheckPointerToMemberOperands(lhs, rhs, VK, OpLoc,
8851                                            Opc == BO_PtrMemI);
8852    break;
8853  case BO_Mul:
8854  case BO_Div:
8855    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
8856                                           Opc == BO_Div);
8857    break;
8858  case BO_Rem:
8859    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
8860    break;
8861  case BO_Add:
8862    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
8863    break;
8864  case BO_Sub:
8865    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
8866    break;
8867  case BO_Shl:
8868  case BO_Shr:
8869    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc);
8870    break;
8871  case BO_LE:
8872  case BO_LT:
8873  case BO_GE:
8874  case BO_GT:
8875    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
8876    break;
8877  case BO_EQ:
8878  case BO_NE:
8879    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
8880    break;
8881  case BO_And:
8882  case BO_Xor:
8883  case BO_Or:
8884    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
8885    break;
8886  case BO_LAnd:
8887  case BO_LOr:
8888    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
8889    break;
8890  case BO_MulAssign:
8891  case BO_DivAssign:
8892    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
8893                                               Opc == BO_DivAssign);
8894    CompLHSTy = CompResultTy;
8895    if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
8896      ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
8897    break;
8898  case BO_RemAssign:
8899    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
8900    CompLHSTy = CompResultTy;
8901    if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
8902      ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
8903    break;
8904  case BO_AddAssign:
8905    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
8906    if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
8907      ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
8908    break;
8909  case BO_SubAssign:
8910    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
8911    if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
8912      ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
8913    break;
8914  case BO_ShlAssign:
8915  case BO_ShrAssign:
8916    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc, true);
8917    CompLHSTy = CompResultTy;
8918    if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
8919      ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
8920    break;
8921  case BO_AndAssign:
8922  case BO_XorAssign:
8923  case BO_OrAssign:
8924    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
8925    CompLHSTy = CompResultTy;
8926    if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
8927      ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
8928    break;
8929  case BO_Comma:
8930    ResultTy = CheckCommaOperands(*this, lhs, rhs, OpLoc);
8931    if (getLangOptions().CPlusPlus && !rhs.isInvalid()) {
8932      VK = rhs.get()->getValueKind();
8933      OK = rhs.get()->getObjectKind();
8934    }
8935    break;
8936  }
8937  if (ResultTy.isNull() || lhs.isInvalid() || rhs.isInvalid())
8938    return ExprError();
8939  if (CompResultTy.isNull())
8940    return Owned(new (Context) BinaryOperator(lhs.take(), rhs.take(), Opc,
8941                                              ResultTy, VK, OK, OpLoc));
8942  if (getLangOptions().CPlusPlus && lhs.get()->getObjectKind() != OK_ObjCProperty) {
8943    VK = VK_LValue;
8944    OK = lhs.get()->getObjectKind();
8945  }
8946  return Owned(new (Context) CompoundAssignOperator(lhs.take(), rhs.take(), Opc,
8947                                                    ResultTy, VK, OK, CompLHSTy,
8948                                                    CompResultTy, OpLoc));
8949}
8950
8951/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
8952/// operators are mixed in a way that suggests that the programmer forgot that
8953/// comparison operators have higher precedence. The most typical example of
8954/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
8955static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
8956                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
8957  typedef BinaryOperator BinOp;
8958  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
8959                rhsopc = static_cast<BinOp::Opcode>(-1);
8960  if (BinOp *BO = dyn_cast<BinOp>(lhs))
8961    lhsopc = BO->getOpcode();
8962  if (BinOp *BO = dyn_cast<BinOp>(rhs))
8963    rhsopc = BO->getOpcode();
8964
8965  // Subs are not binary operators.
8966  if (lhsopc == -1 && rhsopc == -1)
8967    return;
8968
8969  // Bitwise operations are sometimes used as eager logical ops.
8970  // Don't diagnose this.
8971  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
8972      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
8973    return;
8974
8975  if (BinOp::isComparisonOp(lhsopc))
8976    SuggestParentheses(Self, OpLoc,
8977      Self.PDiag(diag::warn_precedence_bitwise_rel)
8978          << SourceRange(lhs->getLocStart(), OpLoc)
8979          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
8980      Self.PDiag(diag::note_precedence_bitwise_silence)
8981          << BinOp::getOpcodeStr(lhsopc),
8982      lhs->getSourceRange(),
8983      Self.PDiag(diag::note_precedence_bitwise_first)
8984          << BinOp::getOpcodeStr(Opc),
8985      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
8986  else if (BinOp::isComparisonOp(rhsopc))
8987    SuggestParentheses(Self, OpLoc,
8988      Self.PDiag(diag::warn_precedence_bitwise_rel)
8989          << SourceRange(OpLoc, rhs->getLocEnd())
8990          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
8991      Self.PDiag(diag::note_precedence_bitwise_silence)
8992          << BinOp::getOpcodeStr(rhsopc),
8993      rhs->getSourceRange(),
8994      Self.PDiag(diag::note_precedence_bitwise_first)
8995        << BinOp::getOpcodeStr(Opc),
8996      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()));
8997}
8998
8999/// \brief It accepts a '&&' expr that is inside a '||' one.
9000/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
9001/// in parentheses.
9002static void
9003EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
9004                                       BinaryOperator *Bop) {
9005  assert(Bop->getOpcode() == BO_LAnd);
9006  SuggestParentheses(Self, Bop->getOperatorLoc(),
9007    Self.PDiag(diag::warn_logical_and_in_logical_or)
9008        << Bop->getSourceRange() << OpLoc,
9009    Self.PDiag(diag::note_logical_and_in_logical_or_silence),
9010    Bop->getSourceRange(),
9011    Self.PDiag(0), SourceRange());
9012}
9013
9014/// \brief Returns true if the given expression can be evaluated as a constant
9015/// 'true'.
9016static bool EvaluatesAsTrue(Sema &S, Expr *E) {
9017  bool Res;
9018  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
9019}
9020
9021/// \brief Returns true if the given expression can be evaluated as a constant
9022/// 'false'.
9023static bool EvaluatesAsFalse(Sema &S, Expr *E) {
9024  bool Res;
9025  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
9026}
9027
9028/// \brief Look for '&&' in the left hand of a '||' expr.
9029static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
9030                                             Expr *OrLHS, Expr *OrRHS) {
9031  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrLHS)) {
9032    if (Bop->getOpcode() == BO_LAnd) {
9033      // If it's "a && b || 0" don't warn since the precedence doesn't matter.
9034      if (EvaluatesAsFalse(S, OrRHS))
9035        return;
9036      // If it's "1 && a || b" don't warn since the precedence doesn't matter.
9037      if (!EvaluatesAsTrue(S, Bop->getLHS()))
9038        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
9039    } else if (Bop->getOpcode() == BO_LOr) {
9040      if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
9041        // If it's "a || b && 1 || c" we didn't warn earlier for
9042        // "a || b && 1", but warn now.
9043        if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
9044          return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
9045      }
9046    }
9047  }
9048}
9049
9050/// \brief Look for '&&' in the right hand of a '||' expr.
9051static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
9052                                             Expr *OrLHS, Expr *OrRHS) {
9053  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrRHS)) {
9054    if (Bop->getOpcode() == BO_LAnd) {
9055      // If it's "0 || a && b" don't warn since the precedence doesn't matter.
9056      if (EvaluatesAsFalse(S, OrLHS))
9057        return;
9058      // If it's "a || b && 1" don't warn since the precedence doesn't matter.
9059      if (!EvaluatesAsTrue(S, Bop->getRHS()))
9060        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
9061    }
9062  }
9063}
9064
9065/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
9066/// precedence.
9067static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
9068                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
9069  // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
9070  if (BinaryOperator::isBitwiseOp(Opc))
9071    return DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
9072
9073  // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
9074  // We don't warn for 'assert(a || b && "bad")' since this is safe.
9075  if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
9076    DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, lhs, rhs);
9077    DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, lhs, rhs);
9078  }
9079}
9080
9081// Binary Operators.  'Tok' is the token for the operator.
9082ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
9083                            tok::TokenKind Kind,
9084                            Expr *lhs, Expr *rhs) {
9085  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
9086  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
9087  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
9088
9089  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
9090  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
9091
9092  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
9093}
9094
9095ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
9096                            BinaryOperatorKind Opc,
9097                            Expr *lhs, Expr *rhs) {
9098  if (getLangOptions().CPlusPlus) {
9099    bool UseBuiltinOperator;
9100
9101    if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
9102      UseBuiltinOperator = false;
9103    } else if (Opc == BO_Assign && lhs->getObjectKind() == OK_ObjCProperty) {
9104      UseBuiltinOperator = true;
9105    } else {
9106      UseBuiltinOperator = !lhs->getType()->isOverloadableType() &&
9107                           !rhs->getType()->isOverloadableType();
9108    }
9109
9110    if (!UseBuiltinOperator) {
9111      // Find all of the overloaded operators visible from this
9112      // point. We perform both an operator-name lookup from the local
9113      // scope and an argument-dependent lookup based on the types of
9114      // the arguments.
9115      UnresolvedSet<16> Functions;
9116      OverloadedOperatorKind OverOp
9117        = BinaryOperator::getOverloadedOperator(Opc);
9118      if (S && OverOp != OO_None)
9119        LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
9120                                     Functions);
9121
9122      // Build the (potentially-overloaded, potentially-dependent)
9123      // binary operation.
9124      return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
9125    }
9126  }
9127
9128  // Build a built-in binary operation.
9129  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
9130}
9131
9132ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
9133                                      UnaryOperatorKind Opc,
9134                                      Expr *InputExpr) {
9135  ExprResult Input = Owned(InputExpr);
9136  ExprValueKind VK = VK_RValue;
9137  ExprObjectKind OK = OK_Ordinary;
9138  QualType resultType;
9139  switch (Opc) {
9140  case UO_PreInc:
9141  case UO_PreDec:
9142  case UO_PostInc:
9143  case UO_PostDec:
9144    resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
9145                                                Opc == UO_PreInc ||
9146                                                Opc == UO_PostInc,
9147                                                Opc == UO_PreInc ||
9148                                                Opc == UO_PreDec);
9149    break;
9150  case UO_AddrOf:
9151    resultType = CheckAddressOfOperand(*this, Input.get(), OpLoc);
9152    break;
9153  case UO_Deref: {
9154    ExprResult resolved = CheckPlaceholderExpr(Input.get());
9155    if (!resolved.isUsable()) return ExprError();
9156    Input = move(resolved);
9157    Input = DefaultFunctionArrayLvalueConversion(Input.take());
9158    resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
9159    break;
9160  }
9161  case UO_Plus:
9162  case UO_Minus:
9163    Input = UsualUnaryConversions(Input.take());
9164    if (Input.isInvalid()) return ExprError();
9165    resultType = Input.get()->getType();
9166    if (resultType->isDependentType())
9167      break;
9168    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
9169        resultType->isVectorType())
9170      break;
9171    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
9172             resultType->isEnumeralType())
9173      break;
9174    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
9175             Opc == UO_Plus &&
9176             resultType->isPointerType())
9177      break;
9178    else if (resultType->isPlaceholderType()) {
9179      Input = CheckPlaceholderExpr(Input.take());
9180      if (Input.isInvalid()) return ExprError();
9181      return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
9182    }
9183
9184    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9185      << resultType << Input.get()->getSourceRange());
9186
9187  case UO_Not: // bitwise complement
9188    Input = UsualUnaryConversions(Input.take());
9189    if (Input.isInvalid()) return ExprError();
9190    resultType = Input.get()->getType();
9191    if (resultType->isDependentType())
9192      break;
9193    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
9194    if (resultType->isComplexType() || resultType->isComplexIntegerType())
9195      // C99 does not support '~' for complex conjugation.
9196      Diag(OpLoc, diag::ext_integer_complement_complex)
9197        << resultType << Input.get()->getSourceRange();
9198    else if (resultType->hasIntegerRepresentation())
9199      break;
9200    else if (resultType->isPlaceholderType()) {
9201      Input = CheckPlaceholderExpr(Input.take());
9202      if (Input.isInvalid()) return ExprError();
9203      return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
9204    } else {
9205      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9206        << resultType << Input.get()->getSourceRange());
9207    }
9208    break;
9209
9210  case UO_LNot: // logical negation
9211    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
9212    Input = DefaultFunctionArrayLvalueConversion(Input.take());
9213    if (Input.isInvalid()) return ExprError();
9214    resultType = Input.get()->getType();
9215    if (resultType->isDependentType())
9216      break;
9217    if (resultType->isScalarType()) {
9218      // C99 6.5.3.3p1: ok, fallthrough;
9219      if (Context.getLangOptions().CPlusPlus) {
9220        // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
9221        // operand contextually converted to bool.
9222        Input = ImpCastExprToType(Input.take(), Context.BoolTy,
9223                                  ScalarTypeToBooleanCastKind(resultType));
9224      }
9225    } else if (resultType->isPlaceholderType()) {
9226      Input = CheckPlaceholderExpr(Input.take());
9227      if (Input.isInvalid()) return ExprError();
9228      return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
9229    } else {
9230      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9231        << resultType << Input.get()->getSourceRange());
9232    }
9233
9234    // LNot always has type int. C99 6.5.3.3p5.
9235    // In C++, it's bool. C++ 5.3.1p8
9236    resultType = Context.getLogicalOperationType();
9237    break;
9238  case UO_Real:
9239  case UO_Imag:
9240    resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
9241    // _Real and _Imag map ordinary l-values into ordinary l-values.
9242    if (Input.isInvalid()) return ExprError();
9243    if (Input.get()->getValueKind() != VK_RValue &&
9244        Input.get()->getObjectKind() == OK_Ordinary)
9245      VK = Input.get()->getValueKind();
9246    break;
9247  case UO_Extension:
9248    resultType = Input.get()->getType();
9249    VK = Input.get()->getValueKind();
9250    OK = Input.get()->getObjectKind();
9251    break;
9252  }
9253  if (resultType.isNull() || Input.isInvalid())
9254    return ExprError();
9255
9256  return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
9257                                           VK, OK, OpLoc));
9258}
9259
9260ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
9261                              UnaryOperatorKind Opc,
9262                              Expr *Input) {
9263  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
9264      UnaryOperator::getOverloadedOperator(Opc) != OO_None) {
9265    // Find all of the overloaded operators visible from this
9266    // point. We perform both an operator-name lookup from the local
9267    // scope and an argument-dependent lookup based on the types of
9268    // the arguments.
9269    UnresolvedSet<16> Functions;
9270    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
9271    if (S && OverOp != OO_None)
9272      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
9273                                   Functions);
9274
9275    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
9276  }
9277
9278  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9279}
9280
9281// Unary Operators.  'Tok' is the token for the operator.
9282ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
9283                              tok::TokenKind Op, Expr *Input) {
9284  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
9285}
9286
9287/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
9288ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
9289                                LabelDecl *TheDecl) {
9290  TheDecl->setUsed();
9291  // Create the AST node.  The address of a label always has type 'void*'.
9292  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
9293                                       Context.getPointerType(Context.VoidTy)));
9294}
9295
9296ExprResult
9297Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
9298                    SourceLocation RPLoc) { // "({..})"
9299  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
9300  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
9301
9302  bool isFileScope
9303    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
9304  if (isFileScope)
9305    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
9306
9307  // FIXME: there are a variety of strange constraints to enforce here, for
9308  // example, it is not possible to goto into a stmt expression apparently.
9309  // More semantic analysis is needed.
9310
9311  // If there are sub stmts in the compound stmt, take the type of the last one
9312  // as the type of the stmtexpr.
9313  QualType Ty = Context.VoidTy;
9314  bool StmtExprMayBindToTemp = false;
9315  if (!Compound->body_empty()) {
9316    Stmt *LastStmt = Compound->body_back();
9317    LabelStmt *LastLabelStmt = 0;
9318    // If LastStmt is a label, skip down through into the body.
9319    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
9320      LastLabelStmt = Label;
9321      LastStmt = Label->getSubStmt();
9322    }
9323    if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
9324      // Do function/array conversion on the last expression, but not
9325      // lvalue-to-rvalue.  However, initialize an unqualified type.
9326      ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
9327      if (LastExpr.isInvalid())
9328        return ExprError();
9329      Ty = LastExpr.get()->getType().getUnqualifiedType();
9330
9331      if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
9332        LastExpr = PerformCopyInitialization(
9333                            InitializedEntity::InitializeResult(LPLoc,
9334                                                                Ty,
9335                                                                false),
9336                                                   SourceLocation(),
9337                                             LastExpr);
9338        if (LastExpr.isInvalid())
9339          return ExprError();
9340        if (LastExpr.get() != 0) {
9341          if (!LastLabelStmt)
9342            Compound->setLastStmt(LastExpr.take());
9343          else
9344            LastLabelStmt->setSubStmt(LastExpr.take());
9345          StmtExprMayBindToTemp = true;
9346        }
9347      }
9348    }
9349  }
9350
9351  // FIXME: Check that expression type is complete/non-abstract; statement
9352  // expressions are not lvalues.
9353  Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
9354  if (StmtExprMayBindToTemp)
9355    return MaybeBindToTemporary(ResStmtExpr);
9356  return Owned(ResStmtExpr);
9357}
9358
9359ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
9360                                      TypeSourceInfo *TInfo,
9361                                      OffsetOfComponent *CompPtr,
9362                                      unsigned NumComponents,
9363                                      SourceLocation RParenLoc) {
9364  QualType ArgTy = TInfo->getType();
9365  bool Dependent = ArgTy->isDependentType();
9366  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
9367
9368  // We must have at least one component that refers to the type, and the first
9369  // one is known to be a field designator.  Verify that the ArgTy represents
9370  // a struct/union/class.
9371  if (!Dependent && !ArgTy->isRecordType())
9372    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
9373                       << ArgTy << TypeRange);
9374
9375  // Type must be complete per C99 7.17p3 because a declaring a variable
9376  // with an incomplete type would be ill-formed.
9377  if (!Dependent
9378      && RequireCompleteType(BuiltinLoc, ArgTy,
9379                             PDiag(diag::err_offsetof_incomplete_type)
9380                               << TypeRange))
9381    return ExprError();
9382
9383  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
9384  // GCC extension, diagnose them.
9385  // FIXME: This diagnostic isn't actually visible because the location is in
9386  // a system header!
9387  if (NumComponents != 1)
9388    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
9389      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
9390
9391  bool DidWarnAboutNonPOD = false;
9392  QualType CurrentType = ArgTy;
9393  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
9394  llvm::SmallVector<OffsetOfNode, 4> Comps;
9395  llvm::SmallVector<Expr*, 4> Exprs;
9396  for (unsigned i = 0; i != NumComponents; ++i) {
9397    const OffsetOfComponent &OC = CompPtr[i];
9398    if (OC.isBrackets) {
9399      // Offset of an array sub-field.  TODO: Should we allow vector elements?
9400      if (!CurrentType->isDependentType()) {
9401        const ArrayType *AT = Context.getAsArrayType(CurrentType);
9402        if(!AT)
9403          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
9404                           << CurrentType);
9405        CurrentType = AT->getElementType();
9406      } else
9407        CurrentType = Context.DependentTy;
9408
9409      // The expression must be an integral expression.
9410      // FIXME: An integral constant expression?
9411      Expr *Idx = static_cast<Expr*>(OC.U.E);
9412      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
9413          !Idx->getType()->isIntegerType())
9414        return ExprError(Diag(Idx->getLocStart(),
9415                              diag::err_typecheck_subscript_not_integer)
9416                         << Idx->getSourceRange());
9417
9418      // Record this array index.
9419      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
9420      Exprs.push_back(Idx);
9421      continue;
9422    }
9423
9424    // Offset of a field.
9425    if (CurrentType->isDependentType()) {
9426      // We have the offset of a field, but we can't look into the dependent
9427      // type. Just record the identifier of the field.
9428      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
9429      CurrentType = Context.DependentTy;
9430      continue;
9431    }
9432
9433    // We need to have a complete type to look into.
9434    if (RequireCompleteType(OC.LocStart, CurrentType,
9435                            diag::err_offsetof_incomplete_type))
9436      return ExprError();
9437
9438    // Look for the designated field.
9439    const RecordType *RC = CurrentType->getAs<RecordType>();
9440    if (!RC)
9441      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
9442                       << CurrentType);
9443    RecordDecl *RD = RC->getDecl();
9444
9445    // C++ [lib.support.types]p5:
9446    //   The macro offsetof accepts a restricted set of type arguments in this
9447    //   International Standard. type shall be a POD structure or a POD union
9448    //   (clause 9).
9449    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
9450      if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
9451          DiagRuntimeBehavior(BuiltinLoc, 0,
9452                              PDiag(diag::warn_offsetof_non_pod_type)
9453                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
9454                              << CurrentType))
9455        DidWarnAboutNonPOD = true;
9456    }
9457
9458    // Look for the field.
9459    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
9460    LookupQualifiedName(R, RD);
9461    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
9462    IndirectFieldDecl *IndirectMemberDecl = 0;
9463    if (!MemberDecl) {
9464      if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
9465        MemberDecl = IndirectMemberDecl->getAnonField();
9466    }
9467
9468    if (!MemberDecl)
9469      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
9470                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
9471                                                              OC.LocEnd));
9472
9473    // C99 7.17p3:
9474    //   (If the specified member is a bit-field, the behavior is undefined.)
9475    //
9476    // We diagnose this as an error.
9477    if (MemberDecl->getBitWidth()) {
9478      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
9479        << MemberDecl->getDeclName()
9480        << SourceRange(BuiltinLoc, RParenLoc);
9481      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
9482      return ExprError();
9483    }
9484
9485    RecordDecl *Parent = MemberDecl->getParent();
9486    if (IndirectMemberDecl)
9487      Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
9488
9489    // If the member was found in a base class, introduce OffsetOfNodes for
9490    // the base class indirections.
9491    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
9492                       /*DetectVirtual=*/false);
9493    if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
9494      CXXBasePath &Path = Paths.front();
9495      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
9496           B != BEnd; ++B)
9497        Comps.push_back(OffsetOfNode(B->Base));
9498    }
9499
9500    if (IndirectMemberDecl) {
9501      for (IndirectFieldDecl::chain_iterator FI =
9502           IndirectMemberDecl->chain_begin(),
9503           FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
9504        assert(isa<FieldDecl>(*FI));
9505        Comps.push_back(OffsetOfNode(OC.LocStart,
9506                                     cast<FieldDecl>(*FI), OC.LocEnd));
9507      }
9508    } else
9509      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
9510
9511    CurrentType = MemberDecl->getType().getNonReferenceType();
9512  }
9513
9514  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
9515                                    TInfo, Comps.data(), Comps.size(),
9516                                    Exprs.data(), Exprs.size(), RParenLoc));
9517}
9518
9519ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
9520                                      SourceLocation BuiltinLoc,
9521                                      SourceLocation TypeLoc,
9522                                      ParsedType argty,
9523                                      OffsetOfComponent *CompPtr,
9524                                      unsigned NumComponents,
9525                                      SourceLocation RPLoc) {
9526
9527  TypeSourceInfo *ArgTInfo;
9528  QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
9529  if (ArgTy.isNull())
9530    return ExprError();
9531
9532  if (!ArgTInfo)
9533    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
9534
9535  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
9536                              RPLoc);
9537}
9538
9539
9540ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
9541                                 Expr *CondExpr,
9542                                 Expr *LHSExpr, Expr *RHSExpr,
9543                                 SourceLocation RPLoc) {
9544  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
9545
9546  ExprValueKind VK = VK_RValue;
9547  ExprObjectKind OK = OK_Ordinary;
9548  QualType resType;
9549  bool ValueDependent = false;
9550  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
9551    resType = Context.DependentTy;
9552    ValueDependent = true;
9553  } else {
9554    // The conditional expression is required to be a constant expression.
9555    llvm::APSInt condEval(32);
9556    SourceLocation ExpLoc;
9557    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
9558      return ExprError(Diag(ExpLoc,
9559                       diag::err_typecheck_choose_expr_requires_constant)
9560        << CondExpr->getSourceRange());
9561
9562    // If the condition is > zero, then the AST type is the same as the LSHExpr.
9563    Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
9564
9565    resType = ActiveExpr->getType();
9566    ValueDependent = ActiveExpr->isValueDependent();
9567    VK = ActiveExpr->getValueKind();
9568    OK = ActiveExpr->getObjectKind();
9569  }
9570
9571  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
9572                                        resType, VK, OK, RPLoc,
9573                                        resType->isDependentType(),
9574                                        ValueDependent));
9575}
9576
9577//===----------------------------------------------------------------------===//
9578// Clang Extensions.
9579//===----------------------------------------------------------------------===//
9580
9581/// ActOnBlockStart - This callback is invoked when a block literal is started.
9582void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
9583  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
9584  PushBlockScope(BlockScope, Block);
9585  CurContext->addDecl(Block);
9586  if (BlockScope)
9587    PushDeclContext(BlockScope, Block);
9588  else
9589    CurContext = Block;
9590}
9591
9592void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
9593  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
9594  assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
9595  BlockScopeInfo *CurBlock = getCurBlock();
9596
9597  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
9598  QualType T = Sig->getType();
9599
9600  // GetTypeForDeclarator always produces a function type for a block
9601  // literal signature.  Furthermore, it is always a FunctionProtoType
9602  // unless the function was written with a typedef.
9603  assert(T->isFunctionType() &&
9604         "GetTypeForDeclarator made a non-function block signature");
9605
9606  // Look for an explicit signature in that function type.
9607  FunctionProtoTypeLoc ExplicitSignature;
9608
9609  TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
9610  if (isa<FunctionProtoTypeLoc>(tmp)) {
9611    ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
9612
9613    // Check whether that explicit signature was synthesized by
9614    // GetTypeForDeclarator.  If so, don't save that as part of the
9615    // written signature.
9616    if (ExplicitSignature.getLocalRangeBegin() ==
9617        ExplicitSignature.getLocalRangeEnd()) {
9618      // This would be much cheaper if we stored TypeLocs instead of
9619      // TypeSourceInfos.
9620      TypeLoc Result = ExplicitSignature.getResultLoc();
9621      unsigned Size = Result.getFullDataSize();
9622      Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
9623      Sig->getTypeLoc().initializeFullCopy(Result, Size);
9624
9625      ExplicitSignature = FunctionProtoTypeLoc();
9626    }
9627  }
9628
9629  CurBlock->TheDecl->setSignatureAsWritten(Sig);
9630  CurBlock->FunctionType = T;
9631
9632  const FunctionType *Fn = T->getAs<FunctionType>();
9633  QualType RetTy = Fn->getResultType();
9634  bool isVariadic =
9635    (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
9636
9637  CurBlock->TheDecl->setIsVariadic(isVariadic);
9638
9639  // Don't allow returning a objc interface by value.
9640  if (RetTy->isObjCObjectType()) {
9641    Diag(ParamInfo.getSourceRange().getBegin(),
9642         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
9643    return;
9644  }
9645
9646  // Context.DependentTy is used as a placeholder for a missing block
9647  // return type.  TODO:  what should we do with declarators like:
9648  //   ^ * { ... }
9649  // If the answer is "apply template argument deduction"....
9650  if (RetTy != Context.DependentTy)
9651    CurBlock->ReturnType = RetTy;
9652
9653  // Push block parameters from the declarator if we had them.
9654  llvm::SmallVector<ParmVarDecl*, 8> Params;
9655  if (ExplicitSignature) {
9656    for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
9657      ParmVarDecl *Param = ExplicitSignature.getArg(I);
9658      if (Param->getIdentifier() == 0 &&
9659          !Param->isImplicit() &&
9660          !Param->isInvalidDecl() &&
9661          !getLangOptions().CPlusPlus)
9662        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
9663      Params.push_back(Param);
9664    }
9665
9666  // Fake up parameter variables if we have a typedef, like
9667  //   ^ fntype { ... }
9668  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
9669    for (FunctionProtoType::arg_type_iterator
9670           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
9671      ParmVarDecl *Param =
9672        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
9673                                   ParamInfo.getSourceRange().getBegin(),
9674                                   *I);
9675      Params.push_back(Param);
9676    }
9677  }
9678
9679  // Set the parameters on the block decl.
9680  if (!Params.empty()) {
9681    CurBlock->TheDecl->setParams(Params.data(), Params.size());
9682    CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
9683                             CurBlock->TheDecl->param_end(),
9684                             /*CheckParameterNames=*/false);
9685  }
9686
9687  // Finally we can process decl attributes.
9688  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
9689
9690  if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
9691    Diag(ParamInfo.getAttributes()->getLoc(),
9692         diag::warn_attribute_sentinel_not_variadic) << 1;
9693    // FIXME: remove the attribute.
9694  }
9695
9696  // Put the parameter variables in scope.  We can bail out immediately
9697  // if we don't have any.
9698  if (Params.empty())
9699    return;
9700
9701  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
9702         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
9703    (*AI)->setOwningFunction(CurBlock->TheDecl);
9704
9705    // If this has an identifier, add it to the scope stack.
9706    if ((*AI)->getIdentifier()) {
9707      CheckShadow(CurBlock->TheScope, *AI);
9708
9709      PushOnScopeChains(*AI, CurBlock->TheScope);
9710    }
9711  }
9712}
9713
9714/// ActOnBlockError - If there is an error parsing a block, this callback
9715/// is invoked to pop the information about the block from the action impl.
9716void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
9717  // Pop off CurBlock, handle nested blocks.
9718  PopDeclContext();
9719  PopFunctionOrBlockScope();
9720}
9721
9722/// ActOnBlockStmtExpr - This is called when the body of a block statement
9723/// literal was successfully completed.  ^(int x){...}
9724ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
9725                                    Stmt *Body, Scope *CurScope) {
9726  // If blocks are disabled, emit an error.
9727  if (!LangOpts.Blocks)
9728    Diag(CaretLoc, diag::err_blocks_disable);
9729
9730  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
9731
9732  PopDeclContext();
9733
9734  QualType RetTy = Context.VoidTy;
9735  if (!BSI->ReturnType.isNull())
9736    RetTy = BSI->ReturnType;
9737
9738  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
9739  QualType BlockTy;
9740
9741  // Set the captured variables on the block.
9742  BSI->TheDecl->setCaptures(Context, BSI->Captures.begin(), BSI->Captures.end(),
9743                            BSI->CapturesCXXThis);
9744
9745  // If the user wrote a function type in some form, try to use that.
9746  if (!BSI->FunctionType.isNull()) {
9747    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
9748
9749    FunctionType::ExtInfo Ext = FTy->getExtInfo();
9750    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
9751
9752    // Turn protoless block types into nullary block types.
9753    if (isa<FunctionNoProtoType>(FTy)) {
9754      FunctionProtoType::ExtProtoInfo EPI;
9755      EPI.ExtInfo = Ext;
9756      BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9757
9758    // Otherwise, if we don't need to change anything about the function type,
9759    // preserve its sugar structure.
9760    } else if (FTy->getResultType() == RetTy &&
9761               (!NoReturn || FTy->getNoReturnAttr())) {
9762      BlockTy = BSI->FunctionType;
9763
9764    // Otherwise, make the minimal modifications to the function type.
9765    } else {
9766      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
9767      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9768      EPI.TypeQuals = 0; // FIXME: silently?
9769      EPI.ExtInfo = Ext;
9770      BlockTy = Context.getFunctionType(RetTy,
9771                                        FPT->arg_type_begin(),
9772                                        FPT->getNumArgs(),
9773                                        EPI);
9774    }
9775
9776  // If we don't have a function type, just build one from nothing.
9777  } else {
9778    FunctionProtoType::ExtProtoInfo EPI;
9779    EPI.ExtInfo = FunctionType::ExtInfo(NoReturn, false, 0, CC_Default);
9780    BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9781  }
9782
9783  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
9784                           BSI->TheDecl->param_end());
9785  BlockTy = Context.getBlockPointerType(BlockTy);
9786
9787  // If needed, diagnose invalid gotos and switches in the block.
9788  if (getCurFunction()->NeedsScopeChecking() && !hasAnyErrorsInThisFunction())
9789    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
9790
9791  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
9792
9793  BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
9794
9795  const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
9796  PopFunctionOrBlockScope(&WP, Result->getBlockDecl(), Result);
9797  return Owned(Result);
9798}
9799
9800ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
9801                                        Expr *expr, ParsedType type,
9802                                        SourceLocation RPLoc) {
9803  TypeSourceInfo *TInfo;
9804  GetTypeFromParser(type, &TInfo);
9805  return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc);
9806}
9807
9808ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
9809                                Expr *E, TypeSourceInfo *TInfo,
9810                                SourceLocation RPLoc) {
9811  Expr *OrigExpr = E;
9812
9813  // Get the va_list type
9814  QualType VaListType = Context.getBuiltinVaListType();
9815  if (VaListType->isArrayType()) {
9816    // Deal with implicit array decay; for example, on x86-64,
9817    // va_list is an array, but it's supposed to decay to
9818    // a pointer for va_arg.
9819    VaListType = Context.getArrayDecayedType(VaListType);
9820    // Make sure the input expression also decays appropriately.
9821    ExprResult Result = UsualUnaryConversions(E);
9822    if (Result.isInvalid())
9823      return ExprError();
9824    E = Result.take();
9825  } else {
9826    // Otherwise, the va_list argument must be an l-value because
9827    // it is modified by va_arg.
9828    if (!E->isTypeDependent() &&
9829        CheckForModifiableLvalue(E, BuiltinLoc, *this))
9830      return ExprError();
9831  }
9832
9833  if (!E->isTypeDependent() &&
9834      !Context.hasSameType(VaListType, E->getType())) {
9835    return ExprError(Diag(E->getLocStart(),
9836                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
9837      << OrigExpr->getType() << E->getSourceRange());
9838  }
9839
9840  if (!TInfo->getType()->isDependentType()) {
9841    if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
9842          PDiag(diag::err_second_parameter_to_va_arg_incomplete)
9843          << TInfo->getTypeLoc().getSourceRange()))
9844      return ExprError();
9845
9846    if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
9847          TInfo->getType(),
9848          PDiag(diag::err_second_parameter_to_va_arg_abstract)
9849          << TInfo->getTypeLoc().getSourceRange()))
9850      return ExprError();
9851
9852    if (!TInfo->getType()->isPODType())
9853      Diag(TInfo->getTypeLoc().getBeginLoc(),
9854          diag::warn_second_parameter_to_va_arg_not_pod)
9855        << TInfo->getType()
9856        << TInfo->getTypeLoc().getSourceRange();
9857  }
9858
9859  QualType T = TInfo->getType().getNonLValueExprType(Context);
9860  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
9861}
9862
9863ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
9864  // The type of __null will be int or long, depending on the size of
9865  // pointers on the target.
9866  QualType Ty;
9867  unsigned pw = Context.Target.getPointerWidth(0);
9868  if (pw == Context.Target.getIntWidth())
9869    Ty = Context.IntTy;
9870  else if (pw == Context.Target.getLongWidth())
9871    Ty = Context.LongTy;
9872  else if (pw == Context.Target.getLongLongWidth())
9873    Ty = Context.LongLongTy;
9874  else {
9875    assert(!"I don't know size of pointer!");
9876    Ty = Context.IntTy;
9877  }
9878
9879  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
9880}
9881
9882static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
9883                                           Expr *SrcExpr, FixItHint &Hint) {
9884  if (!SemaRef.getLangOptions().ObjC1)
9885    return;
9886
9887  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
9888  if (!PT)
9889    return;
9890
9891  // Check if the destination is of type 'id'.
9892  if (!PT->isObjCIdType()) {
9893    // Check if the destination is the 'NSString' interface.
9894    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
9895    if (!ID || !ID->getIdentifier()->isStr("NSString"))
9896      return;
9897  }
9898
9899  // Strip off any parens and casts.
9900  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
9901  if (!SL || SL->isWide())
9902    return;
9903
9904  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
9905}
9906
9907bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
9908                                    SourceLocation Loc,
9909                                    QualType DstType, QualType SrcType,
9910                                    Expr *SrcExpr, AssignmentAction Action,
9911                                    bool *Complained) {
9912  if (Complained)
9913    *Complained = false;
9914
9915  // Decode the result (notice that AST's are still created for extensions).
9916  bool CheckInferredResultType = false;
9917  bool isInvalid = false;
9918  unsigned DiagKind;
9919  FixItHint Hint;
9920
9921  switch (ConvTy) {
9922  default: assert(0 && "Unknown conversion type");
9923  case Compatible: return false;
9924  case PointerToInt:
9925    DiagKind = diag::ext_typecheck_convert_pointer_int;
9926    break;
9927  case IntToPointer:
9928    DiagKind = diag::ext_typecheck_convert_int_pointer;
9929    break;
9930  case IncompatiblePointer:
9931    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
9932    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
9933    CheckInferredResultType = DstType->isObjCObjectPointerType() &&
9934      SrcType->isObjCObjectPointerType();
9935    break;
9936  case IncompatiblePointerSign:
9937    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
9938    break;
9939  case FunctionVoidPointer:
9940    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
9941    break;
9942  case IncompatiblePointerDiscardsQualifiers: {
9943    // Perform array-to-pointer decay if necessary.
9944    if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
9945
9946    Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
9947    Qualifiers rhq = DstType->getPointeeType().getQualifiers();
9948    if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
9949      DiagKind = diag::err_typecheck_incompatible_address_space;
9950      break;
9951    }
9952
9953    llvm_unreachable("unknown error case for discarding qualifiers!");
9954    // fallthrough
9955  }
9956  case CompatiblePointerDiscardsQualifiers:
9957    // If the qualifiers lost were because we were applying the
9958    // (deprecated) C++ conversion from a string literal to a char*
9959    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
9960    // Ideally, this check would be performed in
9961    // checkPointerTypesForAssignment. However, that would require a
9962    // bit of refactoring (so that the second argument is an
9963    // expression, rather than a type), which should be done as part
9964    // of a larger effort to fix checkPointerTypesForAssignment for
9965    // C++ semantics.
9966    if (getLangOptions().CPlusPlus &&
9967        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
9968      return false;
9969    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
9970    break;
9971  case IncompatibleNestedPointerQualifiers:
9972    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
9973    break;
9974  case IntToBlockPointer:
9975    DiagKind = diag::err_int_to_block_pointer;
9976    break;
9977  case IncompatibleBlockPointer:
9978    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
9979    break;
9980  case IncompatibleObjCQualifiedId:
9981    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
9982    // it can give a more specific diagnostic.
9983    DiagKind = diag::warn_incompatible_qualified_id;
9984    break;
9985  case IncompatibleVectors:
9986    DiagKind = diag::warn_incompatible_vectors;
9987    break;
9988  case Incompatible:
9989    DiagKind = diag::err_typecheck_convert_incompatible;
9990    isInvalid = true;
9991    break;
9992  }
9993
9994  QualType FirstType, SecondType;
9995  switch (Action) {
9996  case AA_Assigning:
9997  case AA_Initializing:
9998    // The destination type comes first.
9999    FirstType = DstType;
10000    SecondType = SrcType;
10001    break;
10002
10003  case AA_Returning:
10004  case AA_Passing:
10005  case AA_Converting:
10006  case AA_Sending:
10007  case AA_Casting:
10008    // The source type comes first.
10009    FirstType = SrcType;
10010    SecondType = DstType;
10011    break;
10012  }
10013
10014  Diag(Loc, DiagKind) << FirstType << SecondType << Action
10015    << SrcExpr->getSourceRange() << Hint;
10016  if (CheckInferredResultType)
10017    EmitRelatedResultTypeNote(SrcExpr);
10018
10019  if (Complained)
10020    *Complained = true;
10021  return isInvalid;
10022}
10023
10024bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
10025  llvm::APSInt ICEResult;
10026  if (E->isIntegerConstantExpr(ICEResult, Context)) {
10027    if (Result)
10028      *Result = ICEResult;
10029    return false;
10030  }
10031
10032  Expr::EvalResult EvalResult;
10033
10034  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
10035      EvalResult.HasSideEffects) {
10036    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
10037
10038    if (EvalResult.Diag) {
10039      // We only show the note if it's not the usual "invalid subexpression"
10040      // or if it's actually in a subexpression.
10041      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
10042          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
10043        Diag(EvalResult.DiagLoc, EvalResult.Diag);
10044    }
10045
10046    return true;
10047  }
10048
10049  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
10050    E->getSourceRange();
10051
10052  if (EvalResult.Diag &&
10053      Diags.getDiagnosticLevel(diag::ext_expr_not_ice, EvalResult.DiagLoc)
10054          != Diagnostic::Ignored)
10055    Diag(EvalResult.DiagLoc, EvalResult.Diag);
10056
10057  if (Result)
10058    *Result = EvalResult.Val.getInt();
10059  return false;
10060}
10061
10062void
10063Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
10064  ExprEvalContexts.push_back(
10065        ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
10066}
10067
10068void
10069Sema::PopExpressionEvaluationContext() {
10070  // Pop the current expression evaluation context off the stack.
10071  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
10072  ExprEvalContexts.pop_back();
10073
10074  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
10075    if (Rec.PotentiallyReferenced) {
10076      // Mark any remaining declarations in the current position of the stack
10077      // as "referenced". If they were not meant to be referenced, semantic
10078      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
10079      for (PotentiallyReferencedDecls::iterator
10080             I = Rec.PotentiallyReferenced->begin(),
10081             IEnd = Rec.PotentiallyReferenced->end();
10082           I != IEnd; ++I)
10083        MarkDeclarationReferenced(I->first, I->second);
10084    }
10085
10086    if (Rec.PotentiallyDiagnosed) {
10087      // Emit any pending diagnostics.
10088      for (PotentiallyEmittedDiagnostics::iterator
10089                I = Rec.PotentiallyDiagnosed->begin(),
10090             IEnd = Rec.PotentiallyDiagnosed->end();
10091           I != IEnd; ++I)
10092        Diag(I->first, I->second);
10093    }
10094  }
10095
10096  // When are coming out of an unevaluated context, clear out any
10097  // temporaries that we may have created as part of the evaluation of
10098  // the expression in that context: they aren't relevant because they
10099  // will never be constructed.
10100  if (Rec.Context == Unevaluated &&
10101      ExprTemporaries.size() > Rec.NumTemporaries)
10102    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
10103                          ExprTemporaries.end());
10104
10105  // Destroy the popped expression evaluation record.
10106  Rec.Destroy();
10107}
10108
10109/// \brief Note that the given declaration was referenced in the source code.
10110///
10111/// This routine should be invoke whenever a given declaration is referenced
10112/// in the source code, and where that reference occurred. If this declaration
10113/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
10114/// C99 6.9p3), then the declaration will be marked as used.
10115///
10116/// \param Loc the location where the declaration was referenced.
10117///
10118/// \param D the declaration that has been referenced by the source code.
10119void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
10120  assert(D && "No declaration?");
10121
10122  D->setReferenced();
10123
10124  if (D->isUsed(false))
10125    return;
10126
10127  // Mark a parameter or variable declaration "used", regardless of whether we're in a
10128  // template or not. The reason for this is that unevaluated expressions
10129  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
10130  // -Wunused-parameters)
10131  if (isa<ParmVarDecl>(D) ||
10132      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
10133    D->setUsed();
10134    return;
10135  }
10136
10137  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
10138    return;
10139
10140  // Do not mark anything as "used" within a dependent context; wait for
10141  // an instantiation.
10142  if (CurContext->isDependentContext())
10143    return;
10144
10145  switch (ExprEvalContexts.back().Context) {
10146    case Unevaluated:
10147      // We are in an expression that is not potentially evaluated; do nothing.
10148      return;
10149
10150    case PotentiallyEvaluated:
10151      // We are in a potentially-evaluated expression, so this declaration is
10152      // "used"; handle this below.
10153      break;
10154
10155    case PotentiallyPotentiallyEvaluated:
10156      // We are in an expression that may be potentially evaluated; queue this
10157      // declaration reference until we know whether the expression is
10158      // potentially evaluated.
10159      ExprEvalContexts.back().addReferencedDecl(Loc, D);
10160      return;
10161
10162    case PotentiallyEvaluatedIfUsed:
10163      // Referenced declarations will only be used if the construct in the
10164      // containing expression is used.
10165      return;
10166  }
10167
10168  // Note that this declaration has been used.
10169  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
10170    if (Constructor->isDefaulted() && Constructor->isDefaultConstructor()) {
10171      if (Constructor->isTrivial())
10172        return;
10173      if (!Constructor->isUsed(false))
10174        DefineImplicitDefaultConstructor(Loc, Constructor);
10175    } else if (Constructor->isDefaulted() &&
10176               Constructor->isCopyConstructor()) {
10177      if (!Constructor->isUsed(false))
10178        DefineImplicitCopyConstructor(Loc, Constructor);
10179    }
10180
10181    MarkVTableUsed(Loc, Constructor->getParent());
10182  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
10183    if (Destructor->isDefaulted() && !Destructor->isUsed(false))
10184      DefineImplicitDestructor(Loc, Destructor);
10185    if (Destructor->isVirtual())
10186      MarkVTableUsed(Loc, Destructor->getParent());
10187  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
10188    if (MethodDecl->isDefaulted() && MethodDecl->isOverloadedOperator() &&
10189        MethodDecl->getOverloadedOperator() == OO_Equal) {
10190      if (!MethodDecl->isUsed(false))
10191        DefineImplicitCopyAssignment(Loc, MethodDecl);
10192    } else if (MethodDecl->isVirtual())
10193      MarkVTableUsed(Loc, MethodDecl->getParent());
10194  }
10195  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
10196    // Recursive functions should be marked when used from another function.
10197    if (CurContext == Function) return;
10198
10199    // Implicit instantiation of function templates and member functions of
10200    // class templates.
10201    if (Function->isImplicitlyInstantiable()) {
10202      bool AlreadyInstantiated = false;
10203      if (FunctionTemplateSpecializationInfo *SpecInfo
10204                                = Function->getTemplateSpecializationInfo()) {
10205        if (SpecInfo->getPointOfInstantiation().isInvalid())
10206          SpecInfo->setPointOfInstantiation(Loc);
10207        else if (SpecInfo->getTemplateSpecializationKind()
10208                   == TSK_ImplicitInstantiation)
10209          AlreadyInstantiated = true;
10210      } else if (MemberSpecializationInfo *MSInfo
10211                                  = Function->getMemberSpecializationInfo()) {
10212        if (MSInfo->getPointOfInstantiation().isInvalid())
10213          MSInfo->setPointOfInstantiation(Loc);
10214        else if (MSInfo->getTemplateSpecializationKind()
10215                   == TSK_ImplicitInstantiation)
10216          AlreadyInstantiated = true;
10217      }
10218
10219      if (!AlreadyInstantiated) {
10220        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
10221            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
10222          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
10223                                                                      Loc));
10224        else
10225          PendingInstantiations.push_back(std::make_pair(Function, Loc));
10226      }
10227    } else {
10228      // Walk redefinitions, as some of them may be instantiable.
10229      for (FunctionDecl::redecl_iterator i(Function->redecls_begin()),
10230           e(Function->redecls_end()); i != e; ++i) {
10231        if (!i->isUsed(false) && i->isImplicitlyInstantiable())
10232          MarkDeclarationReferenced(Loc, *i);
10233      }
10234    }
10235
10236    // Keep track of used but undefined functions.
10237    if (!Function->isPure() && !Function->hasBody() &&
10238        Function->getLinkage() != ExternalLinkage) {
10239      SourceLocation &old = UndefinedInternals[Function->getCanonicalDecl()];
10240      if (old.isInvalid()) old = Loc;
10241    }
10242
10243    Function->setUsed(true);
10244    return;
10245  }
10246
10247  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
10248    // Implicit instantiation of static data members of class templates.
10249    if (Var->isStaticDataMember() &&
10250        Var->getInstantiatedFromStaticDataMember()) {
10251      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
10252      assert(MSInfo && "Missing member specialization information?");
10253      if (MSInfo->getPointOfInstantiation().isInvalid() &&
10254          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
10255        MSInfo->setPointOfInstantiation(Loc);
10256        // This is a modification of an existing AST node. Notify listeners.
10257        if (ASTMutationListener *L = getASTMutationListener())
10258          L->StaticDataMemberInstantiated(Var);
10259        PendingInstantiations.push_back(std::make_pair(Var, Loc));
10260      }
10261    }
10262
10263    // Keep track of used but undefined variables.  We make a hole in
10264    // the warning for static const data members with in-line
10265    // initializers.
10266    if (Var->hasDefinition() == VarDecl::DeclarationOnly
10267        && Var->getLinkage() != ExternalLinkage
10268        && !(Var->isStaticDataMember() && Var->hasInit())) {
10269      SourceLocation &old = UndefinedInternals[Var->getCanonicalDecl()];
10270      if (old.isInvalid()) old = Loc;
10271    }
10272
10273    D->setUsed(true);
10274    return;
10275  }
10276}
10277
10278namespace {
10279  // Mark all of the declarations referenced
10280  // FIXME: Not fully implemented yet! We need to have a better understanding
10281  // of when we're entering
10282  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
10283    Sema &S;
10284    SourceLocation Loc;
10285
10286  public:
10287    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
10288
10289    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
10290
10291    bool TraverseTemplateArgument(const TemplateArgument &Arg);
10292    bool TraverseRecordType(RecordType *T);
10293  };
10294}
10295
10296bool MarkReferencedDecls::TraverseTemplateArgument(
10297  const TemplateArgument &Arg) {
10298  if (Arg.getKind() == TemplateArgument::Declaration) {
10299    S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
10300  }
10301
10302  return Inherited::TraverseTemplateArgument(Arg);
10303}
10304
10305bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
10306  if (ClassTemplateSpecializationDecl *Spec
10307                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
10308    const TemplateArgumentList &Args = Spec->getTemplateArgs();
10309    return TraverseTemplateArguments(Args.data(), Args.size());
10310  }
10311
10312  return true;
10313}
10314
10315void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
10316  MarkReferencedDecls Marker(*this, Loc);
10317  Marker.TraverseType(Context.getCanonicalType(T));
10318}
10319
10320namespace {
10321  /// \brief Helper class that marks all of the declarations referenced by
10322  /// potentially-evaluated subexpressions as "referenced".
10323  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
10324    Sema &S;
10325
10326  public:
10327    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
10328
10329    explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { }
10330
10331    void VisitDeclRefExpr(DeclRefExpr *E) {
10332      S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
10333    }
10334
10335    void VisitMemberExpr(MemberExpr *E) {
10336      S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl());
10337      Inherited::VisitMemberExpr(E);
10338    }
10339
10340    void VisitCXXNewExpr(CXXNewExpr *E) {
10341      if (E->getConstructor())
10342        S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
10343      if (E->getOperatorNew())
10344        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew());
10345      if (E->getOperatorDelete())
10346        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
10347      Inherited::VisitCXXNewExpr(E);
10348    }
10349
10350    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
10351      if (E->getOperatorDelete())
10352        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
10353      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
10354      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
10355        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
10356        S.MarkDeclarationReferenced(E->getLocStart(),
10357                                    S.LookupDestructor(Record));
10358      }
10359
10360      Inherited::VisitCXXDeleteExpr(E);
10361    }
10362
10363    void VisitCXXConstructExpr(CXXConstructExpr *E) {
10364      S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
10365      Inherited::VisitCXXConstructExpr(E);
10366    }
10367
10368    void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
10369      S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
10370    }
10371
10372    void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
10373      Visit(E->getExpr());
10374    }
10375  };
10376}
10377
10378/// \brief Mark any declarations that appear within this expression or any
10379/// potentially-evaluated subexpressions as "referenced".
10380void Sema::MarkDeclarationsReferencedInExpr(Expr *E) {
10381  EvaluatedExprMarker(*this).Visit(E);
10382}
10383
10384/// \brief Emit a diagnostic that describes an effect on the run-time behavior
10385/// of the program being compiled.
10386///
10387/// This routine emits the given diagnostic when the code currently being
10388/// type-checked is "potentially evaluated", meaning that there is a
10389/// possibility that the code will actually be executable. Code in sizeof()
10390/// expressions, code used only during overload resolution, etc., are not
10391/// potentially evaluated. This routine will suppress such diagnostics or,
10392/// in the absolutely nutty case of potentially potentially evaluated
10393/// expressions (C++ typeid), queue the diagnostic to potentially emit it
10394/// later.
10395///
10396/// This routine should be used for all diagnostics that describe the run-time
10397/// behavior of a program, such as passing a non-POD value through an ellipsis.
10398/// Failure to do so will likely result in spurious diagnostics or failures
10399/// during overload resolution or within sizeof/alignof/typeof/typeid.
10400bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *stmt,
10401                               const PartialDiagnostic &PD) {
10402  switch (ExprEvalContexts.back().Context ) {
10403  case Unevaluated:
10404    // The argument will never be evaluated, so don't complain.
10405    break;
10406
10407  case PotentiallyEvaluated:
10408  case PotentiallyEvaluatedIfUsed:
10409    if (stmt && getCurFunctionOrMethodDecl()) {
10410      FunctionScopes.back()->PossiblyUnreachableDiags.
10411        push_back(sema::PossiblyUnreachableDiag(PD, Loc, stmt));
10412    }
10413    else
10414      Diag(Loc, PD);
10415
10416    return true;
10417
10418  case PotentiallyPotentiallyEvaluated:
10419    ExprEvalContexts.back().addDiagnostic(Loc, PD);
10420    break;
10421  }
10422
10423  return false;
10424}
10425
10426bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
10427                               CallExpr *CE, FunctionDecl *FD) {
10428  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
10429    return false;
10430
10431  PartialDiagnostic Note =
10432    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
10433    << FD->getDeclName() : PDiag();
10434  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
10435
10436  if (RequireCompleteType(Loc, ReturnType,
10437                          FD ?
10438                          PDiag(diag::err_call_function_incomplete_return)
10439                            << CE->getSourceRange() << FD->getDeclName() :
10440                          PDiag(diag::err_call_incomplete_return)
10441                            << CE->getSourceRange(),
10442                          std::make_pair(NoteLoc, Note)))
10443    return true;
10444
10445  return false;
10446}
10447
10448// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
10449// will prevent this condition from triggering, which is what we want.
10450void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
10451  SourceLocation Loc;
10452
10453  unsigned diagnostic = diag::warn_condition_is_assignment;
10454  bool IsOrAssign = false;
10455
10456  if (isa<BinaryOperator>(E)) {
10457    BinaryOperator *Op = cast<BinaryOperator>(E);
10458    if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
10459      return;
10460
10461    IsOrAssign = Op->getOpcode() == BO_OrAssign;
10462
10463    // Greylist some idioms by putting them into a warning subcategory.
10464    if (ObjCMessageExpr *ME
10465          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
10466      Selector Sel = ME->getSelector();
10467
10468      // self = [<foo> init...]
10469      if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
10470        diagnostic = diag::warn_condition_is_idiomatic_assignment;
10471
10472      // <foo> = [<bar> nextObject]
10473      else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
10474        diagnostic = diag::warn_condition_is_idiomatic_assignment;
10475    }
10476
10477    Loc = Op->getOperatorLoc();
10478  } else if (isa<CXXOperatorCallExpr>(E)) {
10479    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
10480    if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
10481      return;
10482
10483    IsOrAssign = Op->getOperator() == OO_PipeEqual;
10484    Loc = Op->getOperatorLoc();
10485  } else {
10486    // Not an assignment.
10487    return;
10488  }
10489
10490  Diag(Loc, diagnostic) << E->getSourceRange();
10491
10492  SourceLocation Open = E->getSourceRange().getBegin();
10493  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
10494  Diag(Loc, diag::note_condition_assign_silence)
10495        << FixItHint::CreateInsertion(Open, "(")
10496        << FixItHint::CreateInsertion(Close, ")");
10497
10498  if (IsOrAssign)
10499    Diag(Loc, diag::note_condition_or_assign_to_comparison)
10500      << FixItHint::CreateReplacement(Loc, "!=");
10501  else
10502    Diag(Loc, diag::note_condition_assign_to_comparison)
10503      << FixItHint::CreateReplacement(Loc, "==");
10504}
10505
10506/// \brief Redundant parentheses over an equality comparison can indicate
10507/// that the user intended an assignment used as condition.
10508void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *parenE) {
10509  // Don't warn if the parens came from a macro.
10510  SourceLocation parenLoc = parenE->getLocStart();
10511  if (parenLoc.isInvalid() || parenLoc.isMacroID())
10512    return;
10513  // Don't warn for dependent expressions.
10514  if (parenE->isTypeDependent())
10515    return;
10516
10517  Expr *E = parenE->IgnoreParens();
10518
10519  if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
10520    if (opE->getOpcode() == BO_EQ &&
10521        opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
10522                                                           == Expr::MLV_Valid) {
10523      SourceLocation Loc = opE->getOperatorLoc();
10524
10525      Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
10526      Diag(Loc, diag::note_equality_comparison_silence)
10527        << FixItHint::CreateRemoval(parenE->getSourceRange().getBegin())
10528        << FixItHint::CreateRemoval(parenE->getSourceRange().getEnd());
10529      Diag(Loc, diag::note_equality_comparison_to_assign)
10530        << FixItHint::CreateReplacement(Loc, "=");
10531    }
10532}
10533
10534ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
10535  DiagnoseAssignmentAsCondition(E);
10536  if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
10537    DiagnoseEqualityWithExtraParens(parenE);
10538
10539  ExprResult result = CheckPlaceholderExpr(E);
10540  if (result.isInvalid()) return ExprError();
10541  E = result.take();
10542
10543  if (!E->isTypeDependent()) {
10544    if (getLangOptions().CPlusPlus)
10545      return CheckCXXBooleanCondition(E); // C++ 6.4p4
10546
10547    ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
10548    if (ERes.isInvalid())
10549      return ExprError();
10550    E = ERes.take();
10551
10552    QualType T = E->getType();
10553    if (!T->isScalarType()) { // C99 6.8.4.1p1
10554      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
10555        << T << E->getSourceRange();
10556      return ExprError();
10557    }
10558  }
10559
10560  return Owned(E);
10561}
10562
10563ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
10564                                       Expr *Sub) {
10565  if (!Sub)
10566    return ExprError();
10567
10568  return CheckBooleanCondition(Sub, Loc);
10569}
10570
10571namespace {
10572  /// A visitor for rebuilding a call to an __unknown_any expression
10573  /// to have an appropriate type.
10574  struct RebuildUnknownAnyFunction
10575    : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
10576
10577    Sema &S;
10578
10579    RebuildUnknownAnyFunction(Sema &S) : S(S) {}
10580
10581    ExprResult VisitStmt(Stmt *S) {
10582      llvm_unreachable("unexpected statement!");
10583      return ExprError();
10584    }
10585
10586    ExprResult VisitExpr(Expr *expr) {
10587      S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_call)
10588        << expr->getSourceRange();
10589      return ExprError();
10590    }
10591
10592    /// Rebuild an expression which simply semantically wraps another
10593    /// expression which it shares the type and value kind of.
10594    template <class T> ExprResult rebuildSugarExpr(T *expr) {
10595      ExprResult subResult = Visit(expr->getSubExpr());
10596      if (subResult.isInvalid()) return ExprError();
10597
10598      Expr *subExpr = subResult.take();
10599      expr->setSubExpr(subExpr);
10600      expr->setType(subExpr->getType());
10601      expr->setValueKind(subExpr->getValueKind());
10602      assert(expr->getObjectKind() == OK_Ordinary);
10603      return expr;
10604    }
10605
10606    ExprResult VisitParenExpr(ParenExpr *paren) {
10607      return rebuildSugarExpr(paren);
10608    }
10609
10610    ExprResult VisitUnaryExtension(UnaryOperator *op) {
10611      return rebuildSugarExpr(op);
10612    }
10613
10614    ExprResult VisitUnaryAddrOf(UnaryOperator *op) {
10615      ExprResult subResult = Visit(op->getSubExpr());
10616      if (subResult.isInvalid()) return ExprError();
10617
10618      Expr *subExpr = subResult.take();
10619      op->setSubExpr(subExpr);
10620      op->setType(S.Context.getPointerType(subExpr->getType()));
10621      assert(op->getValueKind() == VK_RValue);
10622      assert(op->getObjectKind() == OK_Ordinary);
10623      return op;
10624    }
10625
10626    ExprResult resolveDecl(Expr *expr, ValueDecl *decl) {
10627      if (!isa<FunctionDecl>(decl)) return VisitExpr(expr);
10628
10629      expr->setType(decl->getType());
10630
10631      assert(expr->getValueKind() == VK_RValue);
10632      if (S.getLangOptions().CPlusPlus &&
10633          !(isa<CXXMethodDecl>(decl) &&
10634            cast<CXXMethodDecl>(decl)->isInstance()))
10635        expr->setValueKind(VK_LValue);
10636
10637      return expr;
10638    }
10639
10640    ExprResult VisitMemberExpr(MemberExpr *mem) {
10641      return resolveDecl(mem, mem->getMemberDecl());
10642    }
10643
10644    ExprResult VisitDeclRefExpr(DeclRefExpr *ref) {
10645      return resolveDecl(ref, ref->getDecl());
10646    }
10647  };
10648}
10649
10650/// Given a function expression of unknown-any type, try to rebuild it
10651/// to have a function type.
10652static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn) {
10653  ExprResult result = RebuildUnknownAnyFunction(S).Visit(fn);
10654  if (result.isInvalid()) return ExprError();
10655  return S.DefaultFunctionArrayConversion(result.take());
10656}
10657
10658namespace {
10659  /// A visitor for rebuilding an expression of type __unknown_anytype
10660  /// into one which resolves the type directly on the referring
10661  /// expression.  Strict preservation of the original source
10662  /// structure is not a goal.
10663  struct RebuildUnknownAnyExpr
10664    : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
10665
10666    Sema &S;
10667
10668    /// The current destination type.
10669    QualType DestType;
10670
10671    RebuildUnknownAnyExpr(Sema &S, QualType castType)
10672      : S(S), DestType(castType) {}
10673
10674    ExprResult VisitStmt(Stmt *S) {
10675      llvm_unreachable("unexpected statement!");
10676      return ExprError();
10677    }
10678
10679    ExprResult VisitExpr(Expr *expr) {
10680      S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_expr)
10681        << expr->getSourceRange();
10682      return ExprError();
10683    }
10684
10685    ExprResult VisitCallExpr(CallExpr *call);
10686    ExprResult VisitObjCMessageExpr(ObjCMessageExpr *message);
10687
10688    /// Rebuild an expression which simply semantically wraps another
10689    /// expression which it shares the type and value kind of.
10690    template <class T> ExprResult rebuildSugarExpr(T *expr) {
10691      ExprResult subResult = Visit(expr->getSubExpr());
10692      if (subResult.isInvalid()) return ExprError();
10693      Expr *subExpr = subResult.take();
10694      expr->setSubExpr(subExpr);
10695      expr->setType(subExpr->getType());
10696      expr->setValueKind(subExpr->getValueKind());
10697      assert(expr->getObjectKind() == OK_Ordinary);
10698      return expr;
10699    }
10700
10701    ExprResult VisitParenExpr(ParenExpr *paren) {
10702      return rebuildSugarExpr(paren);
10703    }
10704
10705    ExprResult VisitUnaryExtension(UnaryOperator *op) {
10706      return rebuildSugarExpr(op);
10707    }
10708
10709    ExprResult VisitUnaryAddrOf(UnaryOperator *op) {
10710      const PointerType *ptr = DestType->getAs<PointerType>();
10711      if (!ptr) {
10712        S.Diag(op->getOperatorLoc(), diag::err_unknown_any_addrof)
10713          << op->getSourceRange();
10714        return ExprError();
10715      }
10716      assert(op->getValueKind() == VK_RValue);
10717      assert(op->getObjectKind() == OK_Ordinary);
10718      op->setType(DestType);
10719
10720      // Build the sub-expression as if it were an object of the pointee type.
10721      DestType = ptr->getPointeeType();
10722      ExprResult subResult = Visit(op->getSubExpr());
10723      if (subResult.isInvalid()) return ExprError();
10724      op->setSubExpr(subResult.take());
10725      return op;
10726    }
10727
10728    ExprResult VisitImplicitCastExpr(ImplicitCastExpr *ice);
10729
10730    ExprResult resolveDecl(Expr *expr, ValueDecl *decl);
10731
10732    ExprResult VisitMemberExpr(MemberExpr *mem) {
10733      return resolveDecl(mem, mem->getMemberDecl());
10734    }
10735
10736    ExprResult VisitDeclRefExpr(DeclRefExpr *ref) {
10737      return resolveDecl(ref, ref->getDecl());
10738    }
10739  };
10740}
10741
10742/// Rebuilds a call expression which yielded __unknown_anytype.
10743ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *call) {
10744  Expr *callee = call->getCallee();
10745
10746  enum FnKind {
10747    FK_MemberFunction,
10748    FK_FunctionPointer,
10749    FK_BlockPointer
10750  };
10751
10752  FnKind kind;
10753  QualType type = callee->getType();
10754  if (type == S.Context.BoundMemberTy) {
10755    assert(isa<CXXMemberCallExpr>(call) || isa<CXXOperatorCallExpr>(call));
10756    kind = FK_MemberFunction;
10757    type = Expr::findBoundMemberType(callee);
10758  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
10759    type = ptr->getPointeeType();
10760    kind = FK_FunctionPointer;
10761  } else {
10762    type = type->castAs<BlockPointerType>()->getPointeeType();
10763    kind = FK_BlockPointer;
10764  }
10765  const FunctionType *fnType = type->castAs<FunctionType>();
10766
10767  // Verify that this is a legal result type of a function.
10768  if (DestType->isArrayType() || DestType->isFunctionType()) {
10769    unsigned diagID = diag::err_func_returning_array_function;
10770    if (kind == FK_BlockPointer)
10771      diagID = diag::err_block_returning_array_function;
10772
10773    S.Diag(call->getExprLoc(), diagID)
10774      << DestType->isFunctionType() << DestType;
10775    return ExprError();
10776  }
10777
10778  // Otherwise, go ahead and set DestType as the call's result.
10779  call->setType(DestType.getNonLValueExprType(S.Context));
10780  call->setValueKind(Expr::getValueKindForType(DestType));
10781  assert(call->getObjectKind() == OK_Ordinary);
10782
10783  // Rebuild the function type, replacing the result type with DestType.
10784  if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType))
10785    DestType = S.Context.getFunctionType(DestType,
10786                                         proto->arg_type_begin(),
10787                                         proto->getNumArgs(),
10788                                         proto->getExtProtoInfo());
10789  else
10790    DestType = S.Context.getFunctionNoProtoType(DestType,
10791                                                fnType->getExtInfo());
10792
10793  // Rebuild the appropriate pointer-to-function type.
10794  switch (kind) {
10795  case FK_MemberFunction:
10796    // Nothing to do.
10797    break;
10798
10799  case FK_FunctionPointer:
10800    DestType = S.Context.getPointerType(DestType);
10801    break;
10802
10803  case FK_BlockPointer:
10804    DestType = S.Context.getBlockPointerType(DestType);
10805    break;
10806  }
10807
10808  // Finally, we can recurse.
10809  ExprResult calleeResult = Visit(callee);
10810  if (!calleeResult.isUsable()) return ExprError();
10811  call->setCallee(calleeResult.take());
10812
10813  // Bind a temporary if necessary.
10814  return S.MaybeBindToTemporary(call);
10815}
10816
10817ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *msg) {
10818  ObjCMethodDecl *method = msg->getMethodDecl();
10819  assert(method && "__unknown_anytype message without result type?");
10820
10821  // Verify that this is a legal result type of a call.
10822  if (DestType->isArrayType() || DestType->isFunctionType()) {
10823    S.Diag(msg->getExprLoc(), diag::err_func_returning_array_function)
10824      << DestType->isFunctionType() << DestType;
10825    return ExprError();
10826  }
10827
10828  assert(method->getResultType() == S.Context.UnknownAnyTy);
10829  method->setResultType(DestType);
10830
10831  // Change the type of the message.
10832  msg->setType(DestType.getNonReferenceType());
10833  msg->setValueKind(Expr::getValueKindForType(DestType));
10834
10835  return S.MaybeBindToTemporary(msg);
10836}
10837
10838ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *ice) {
10839  // The only case we should ever see here is a function-to-pointer decay.
10840  assert(ice->getCastKind() == CK_FunctionToPointerDecay);
10841  assert(ice->getValueKind() == VK_RValue);
10842  assert(ice->getObjectKind() == OK_Ordinary);
10843
10844  ice->setType(DestType);
10845
10846  // Rebuild the sub-expression as the pointee (function) type.
10847  DestType = DestType->castAs<PointerType>()->getPointeeType();
10848
10849  ExprResult result = Visit(ice->getSubExpr());
10850  if (!result.isUsable()) return ExprError();
10851
10852  ice->setSubExpr(result.take());
10853  return S.Owned(ice);
10854}
10855
10856ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *expr, ValueDecl *decl) {
10857  ExprValueKind valueKind = VK_LValue;
10858  QualType type = DestType;
10859
10860  // We know how to make this work for certain kinds of decls:
10861
10862  //  - functions
10863  if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) {
10864    // This is true because FunctionDecls must always have function
10865    // type, so we can't be resolving the entire thing at once.
10866    assert(type->isFunctionType());
10867
10868    if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(fn))
10869      if (method->isInstance()) {
10870        valueKind = VK_RValue;
10871        type = S.Context.BoundMemberTy;
10872      }
10873
10874    // Function references aren't l-values in C.
10875    if (!S.getLangOptions().CPlusPlus)
10876      valueKind = VK_RValue;
10877
10878  //  - variables
10879  } else if (isa<VarDecl>(decl)) {
10880    if (const ReferenceType *refTy = type->getAs<ReferenceType>()) {
10881      type = refTy->getPointeeType();
10882    } else if (type->isFunctionType()) {
10883      S.Diag(expr->getExprLoc(), diag::err_unknown_any_var_function_type)
10884        << decl << expr->getSourceRange();
10885      return ExprError();
10886    }
10887
10888  //  - nothing else
10889  } else {
10890    S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_decl)
10891      << decl << expr->getSourceRange();
10892    return ExprError();
10893  }
10894
10895  decl->setType(DestType);
10896  expr->setType(type);
10897  expr->setValueKind(valueKind);
10898  return S.Owned(expr);
10899}
10900
10901/// Check a cast of an unknown-any type.  We intentionally only
10902/// trigger this for C-style casts.
10903ExprResult Sema::checkUnknownAnyCast(SourceRange typeRange, QualType castType,
10904                                     Expr *castExpr, CastKind &castKind,
10905                                     ExprValueKind &VK, CXXCastPath &path) {
10906  // Rewrite the casted expression from scratch.
10907  ExprResult result = RebuildUnknownAnyExpr(*this, castType).Visit(castExpr);
10908  if (!result.isUsable()) return ExprError();
10909
10910  castExpr = result.take();
10911  VK = castExpr->getValueKind();
10912  castKind = CK_NoOp;
10913
10914  return castExpr;
10915}
10916
10917static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *e) {
10918  Expr *orig = e;
10919  unsigned diagID = diag::err_uncasted_use_of_unknown_any;
10920  while (true) {
10921    e = e->IgnoreParenImpCasts();
10922    if (CallExpr *call = dyn_cast<CallExpr>(e)) {
10923      e = call->getCallee();
10924      diagID = diag::err_uncasted_call_of_unknown_any;
10925    } else {
10926      break;
10927    }
10928  }
10929
10930  SourceLocation loc;
10931  NamedDecl *d;
10932  if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
10933    loc = ref->getLocation();
10934    d = ref->getDecl();
10935  } else if (MemberExpr *mem = dyn_cast<MemberExpr>(e)) {
10936    loc = mem->getMemberLoc();
10937    d = mem->getMemberDecl();
10938  } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(e)) {
10939    diagID = diag::err_uncasted_call_of_unknown_any;
10940    loc = msg->getSelectorLoc();
10941    d = msg->getMethodDecl();
10942    assert(d && "unknown method returning __unknown_any?");
10943  } else {
10944    S.Diag(e->getExprLoc(), diag::err_unsupported_unknown_any_expr)
10945      << e->getSourceRange();
10946    return ExprError();
10947  }
10948
10949  S.Diag(loc, diagID) << d << orig->getSourceRange();
10950
10951  // Never recoverable.
10952  return ExprError();
10953}
10954
10955/// Check for operands with placeholder types and complain if found.
10956/// Returns true if there was an error and no recovery was possible.
10957ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
10958  // Placeholder types are always *exactly* the appropriate builtin type.
10959  QualType type = E->getType();
10960
10961  // Overloaded expressions.
10962  if (type == Context.OverloadTy)
10963    return ResolveAndFixSingleFunctionTemplateSpecialization(E, false, true,
10964                                                           E->getSourceRange(),
10965                                                             QualType(),
10966                                                   diag::err_ovl_unresolvable);
10967
10968  // Bound member functions.
10969  if (type == Context.BoundMemberTy) {
10970    Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func)
10971      << E->getSourceRange();
10972    return ExprError();
10973  }
10974
10975  // Expressions of unknown type.
10976  if (type == Context.UnknownAnyTy)
10977    return diagnoseUnknownAnyExpr(*this, E);
10978
10979  assert(!type->isPlaceholderType());
10980  return Owned(E);
10981}
10982
10983bool Sema::CheckCaseExpression(Expr *expr) {
10984  if (expr->isTypeDependent())
10985    return true;
10986  if (expr->isValueDependent() || expr->isIntegerConstantExpr(Context))
10987    return expr->getType()->isIntegralOrEnumerationType();
10988  return false;
10989}
10990