SemaExpr.cpp revision d2615cc53b916e8aae45783ca7113b93de515ce3
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TreeTransform.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/RecursiveASTVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/LiteralSupport.h"
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Sema/AnalysisBasedWarnings.h"
34#include "clang/Sema/DeclSpec.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Sema/Designator.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "clang/Sema/SemaFixItUtils.h"
43#include "clang/Sema/Template.h"
44using namespace clang;
45using namespace sema;
46
47/// \brief Determine whether the use of this declaration is valid, without
48/// emitting diagnostics.
49bool Sema::CanUseDecl(NamedDecl *D) {
50  // See if this is an auto-typed variable whose initializer we are parsing.
51  if (ParsingInitForAutoVars.count(D))
52    return false;
53
54  // See if this is a deleted function.
55  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
56    if (FD->isDeleted())
57      return false;
58  }
59
60  // See if this function is unavailable.
61  if (D->getAvailability() == AR_Unavailable &&
62      cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
63    return false;
64
65  return true;
66}
67
68static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
69  // Warn if this is used but marked unused.
70  if (D->hasAttr<UnusedAttr>()) {
71    const Decl *DC = cast<Decl>(S.getCurObjCLexicalContext());
72    if (!DC->hasAttr<UnusedAttr>())
73      S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
74  }
75}
76
77static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
78                              NamedDecl *D, SourceLocation Loc,
79                              const ObjCInterfaceDecl *UnknownObjCClass) {
80  // See if this declaration is unavailable or deprecated.
81  std::string Message;
82  AvailabilityResult Result = D->getAvailability(&Message);
83  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
84    if (Result == AR_Available) {
85      const DeclContext *DC = ECD->getDeclContext();
86      if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
87        Result = TheEnumDecl->getAvailability(&Message);
88    }
89
90  const ObjCPropertyDecl *ObjCPDecl = 0;
91  if (Result == AR_Deprecated || Result == AR_Unavailable) {
92    if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
93      if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
94        AvailabilityResult PDeclResult = PD->getAvailability(0);
95        if (PDeclResult == Result)
96          ObjCPDecl = PD;
97      }
98    }
99  }
100
101  switch (Result) {
102    case AR_Available:
103    case AR_NotYetIntroduced:
104      break;
105
106    case AR_Deprecated:
107      S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass, ObjCPDecl);
108      break;
109
110    case AR_Unavailable:
111      if (S.getCurContextAvailability() != AR_Unavailable) {
112        if (Message.empty()) {
113          if (!UnknownObjCClass) {
114            S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
115            if (ObjCPDecl)
116              S.Diag(ObjCPDecl->getLocation(), diag::note_property_attribute)
117                << ObjCPDecl->getDeclName() << 1;
118          }
119          else
120            S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
121              << D->getDeclName();
122        }
123        else
124          S.Diag(Loc, diag::err_unavailable_message)
125            << D->getDeclName() << Message;
126        S.Diag(D->getLocation(), diag::note_unavailable_here)
127                  << isa<FunctionDecl>(D) << false;
128        if (ObjCPDecl)
129          S.Diag(ObjCPDecl->getLocation(), diag::note_property_attribute)
130          << ObjCPDecl->getDeclName() << 1;
131      }
132      break;
133    }
134    return Result;
135}
136
137/// \brief Emit a note explaining that this function is deleted or unavailable.
138void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
139  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
140
141  if (Method && Method->isDeleted() && !Method->isDeletedAsWritten()) {
142    // If the method was explicitly defaulted, point at that declaration.
143    if (!Method->isImplicit())
144      Diag(Decl->getLocation(), diag::note_implicitly_deleted);
145
146    // Try to diagnose why this special member function was implicitly
147    // deleted. This might fail, if that reason no longer applies.
148    CXXSpecialMember CSM = getSpecialMember(Method);
149    if (CSM != CXXInvalid)
150      ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
151
152    return;
153  }
154
155  Diag(Decl->getLocation(), diag::note_unavailable_here)
156    << 1 << Decl->isDeleted();
157}
158
159/// \brief Determine whether a FunctionDecl was ever declared with an
160/// explicit storage class.
161static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
162  for (FunctionDecl::redecl_iterator I = D->redecls_begin(),
163                                     E = D->redecls_end();
164       I != E; ++I) {
165    if (I->getStorageClass() != SC_None)
166      return true;
167  }
168  return false;
169}
170
171/// \brief Check whether we're in an extern inline function and referring to a
172/// variable or function with internal linkage (C11 6.7.4p3).
173///
174/// This is only a warning because we used to silently accept this code, but
175/// in many cases it will not behave correctly. This is not enabled in C++ mode
176/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
177/// and so while there may still be user mistakes, most of the time we can't
178/// prove that there are errors.
179static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
180                                                      const NamedDecl *D,
181                                                      SourceLocation Loc) {
182  // This is disabled under C++; there are too many ways for this to fire in
183  // contexts where the warning is a false positive, or where it is technically
184  // correct but benign.
185  if (S.getLangOpts().CPlusPlus)
186    return;
187
188  // Check if this is an inlined function or method.
189  FunctionDecl *Current = S.getCurFunctionDecl();
190  if (!Current)
191    return;
192  if (!Current->isInlined())
193    return;
194  if (Current->getLinkage() != ExternalLinkage)
195    return;
196
197  // Check if the decl has internal linkage.
198  if (D->getLinkage() != InternalLinkage)
199    return;
200
201  // Downgrade from ExtWarn to Extension if
202  //  (1) the supposedly external inline function is in the main file,
203  //      and probably won't be included anywhere else.
204  //  (2) the thing we're referencing is a pure function.
205  //  (3) the thing we're referencing is another inline function.
206  // This last can give us false negatives, but it's better than warning on
207  // wrappers for simple C library functions.
208  const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
209  bool DowngradeWarning = S.getSourceManager().isFromMainFile(Loc);
210  if (!DowngradeWarning && UsedFn)
211    DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
212
213  S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline
214                               : diag::warn_internal_in_extern_inline)
215    << /*IsVar=*/!UsedFn << D;
216
217  S.MaybeSuggestAddingStaticToDecl(Current);
218
219  S.Diag(D->getCanonicalDecl()->getLocation(),
220         diag::note_internal_decl_declared_here)
221    << D;
222}
223
224void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
225  const FunctionDecl *First = Cur->getFirstDeclaration();
226
227  // Suggest "static" on the function, if possible.
228  if (!hasAnyExplicitStorageClass(First)) {
229    SourceLocation DeclBegin = First->getSourceRange().getBegin();
230    Diag(DeclBegin, diag::note_convert_inline_to_static)
231      << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
232  }
233}
234
235/// \brief Determine whether the use of this declaration is valid, and
236/// emit any corresponding diagnostics.
237///
238/// This routine diagnoses various problems with referencing
239/// declarations that can occur when using a declaration. For example,
240/// it might warn if a deprecated or unavailable declaration is being
241/// used, or produce an error (and return true) if a C++0x deleted
242/// function is being used.
243///
244/// \returns true if there was an error (this declaration cannot be
245/// referenced), false otherwise.
246///
247bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
248                             const ObjCInterfaceDecl *UnknownObjCClass) {
249  if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
250    // If there were any diagnostics suppressed by template argument deduction,
251    // emit them now.
252    llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
253      Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
254    if (Pos != SuppressedDiagnostics.end()) {
255      SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
256      for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
257        Diag(Suppressed[I].first, Suppressed[I].second);
258
259      // Clear out the list of suppressed diagnostics, so that we don't emit
260      // them again for this specialization. However, we don't obsolete this
261      // entry from the table, because we want to avoid ever emitting these
262      // diagnostics again.
263      Suppressed.clear();
264    }
265  }
266
267  // See if this is an auto-typed variable whose initializer we are parsing.
268  if (ParsingInitForAutoVars.count(D)) {
269    Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
270      << D->getDeclName();
271    return true;
272  }
273
274  // See if this is a deleted function.
275  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
276    if (FD->isDeleted()) {
277      Diag(Loc, diag::err_deleted_function_use);
278      NoteDeletedFunction(FD);
279      return true;
280    }
281  }
282  DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
283
284  DiagnoseUnusedOfDecl(*this, D, Loc);
285
286  diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
287
288  return false;
289}
290
291/// \brief Retrieve the message suffix that should be added to a
292/// diagnostic complaining about the given function being deleted or
293/// unavailable.
294std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
295  std::string Message;
296  if (FD->getAvailability(&Message))
297    return ": " + Message;
298
299  return std::string();
300}
301
302/// DiagnoseSentinelCalls - This routine checks whether a call or
303/// message-send is to a declaration with the sentinel attribute, and
304/// if so, it checks that the requirements of the sentinel are
305/// satisfied.
306void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
307                                 Expr **args, unsigned numArgs) {
308  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
309  if (!attr)
310    return;
311
312  // The number of formal parameters of the declaration.
313  unsigned numFormalParams;
314
315  // The kind of declaration.  This is also an index into a %select in
316  // the diagnostic.
317  enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
318
319  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
320    numFormalParams = MD->param_size();
321    calleeType = CT_Method;
322  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
323    numFormalParams = FD->param_size();
324    calleeType = CT_Function;
325  } else if (isa<VarDecl>(D)) {
326    QualType type = cast<ValueDecl>(D)->getType();
327    const FunctionType *fn = 0;
328    if (const PointerType *ptr = type->getAs<PointerType>()) {
329      fn = ptr->getPointeeType()->getAs<FunctionType>();
330      if (!fn) return;
331      calleeType = CT_Function;
332    } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
333      fn = ptr->getPointeeType()->castAs<FunctionType>();
334      calleeType = CT_Block;
335    } else {
336      return;
337    }
338
339    if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
340      numFormalParams = proto->getNumArgs();
341    } else {
342      numFormalParams = 0;
343    }
344  } else {
345    return;
346  }
347
348  // "nullPos" is the number of formal parameters at the end which
349  // effectively count as part of the variadic arguments.  This is
350  // useful if you would prefer to not have *any* formal parameters,
351  // but the language forces you to have at least one.
352  unsigned nullPos = attr->getNullPos();
353  assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
354  numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
355
356  // The number of arguments which should follow the sentinel.
357  unsigned numArgsAfterSentinel = attr->getSentinel();
358
359  // If there aren't enough arguments for all the formal parameters,
360  // the sentinel, and the args after the sentinel, complain.
361  if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
362    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
363    Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
364    return;
365  }
366
367  // Otherwise, find the sentinel expression.
368  Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
369  if (!sentinelExpr) return;
370  if (sentinelExpr->isValueDependent()) return;
371  if (Context.isSentinelNullExpr(sentinelExpr)) return;
372
373  // Pick a reasonable string to insert.  Optimistically use 'nil' or
374  // 'NULL' if those are actually defined in the context.  Only use
375  // 'nil' for ObjC methods, where it's much more likely that the
376  // variadic arguments form a list of object pointers.
377  SourceLocation MissingNilLoc
378    = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
379  std::string NullValue;
380  if (calleeType == CT_Method &&
381      PP.getIdentifierInfo("nil")->hasMacroDefinition())
382    NullValue = "nil";
383  else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
384    NullValue = "NULL";
385  else
386    NullValue = "(void*) 0";
387
388  if (MissingNilLoc.isInvalid())
389    Diag(Loc, diag::warn_missing_sentinel) << calleeType;
390  else
391    Diag(MissingNilLoc, diag::warn_missing_sentinel)
392      << calleeType
393      << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
394  Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
395}
396
397SourceRange Sema::getExprRange(Expr *E) const {
398  return E ? E->getSourceRange() : SourceRange();
399}
400
401//===----------------------------------------------------------------------===//
402//  Standard Promotions and Conversions
403//===----------------------------------------------------------------------===//
404
405/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
406ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
407  // Handle any placeholder expressions which made it here.
408  if (E->getType()->isPlaceholderType()) {
409    ExprResult result = CheckPlaceholderExpr(E);
410    if (result.isInvalid()) return ExprError();
411    E = result.take();
412  }
413
414  QualType Ty = E->getType();
415  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
416
417  if (Ty->isFunctionType())
418    E = ImpCastExprToType(E, Context.getPointerType(Ty),
419                          CK_FunctionToPointerDecay).take();
420  else if (Ty->isArrayType()) {
421    // In C90 mode, arrays only promote to pointers if the array expression is
422    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
423    // type 'array of type' is converted to an expression that has type 'pointer
424    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
425    // that has type 'array of type' ...".  The relevant change is "an lvalue"
426    // (C90) to "an expression" (C99).
427    //
428    // C++ 4.2p1:
429    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
430    // T" can be converted to an rvalue of type "pointer to T".
431    //
432    if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
433      E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
434                            CK_ArrayToPointerDecay).take();
435  }
436  return Owned(E);
437}
438
439static void CheckForNullPointerDereference(Sema &S, Expr *E) {
440  // Check to see if we are dereferencing a null pointer.  If so,
441  // and if not volatile-qualified, this is undefined behavior that the
442  // optimizer will delete, so warn about it.  People sometimes try to use this
443  // to get a deterministic trap and are surprised by clang's behavior.  This
444  // only handles the pattern "*null", which is a very syntactic check.
445  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
446    if (UO->getOpcode() == UO_Deref &&
447        UO->getSubExpr()->IgnoreParenCasts()->
448          isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
449        !UO->getType().isVolatileQualified()) {
450    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
451                          S.PDiag(diag::warn_indirection_through_null)
452                            << UO->getSubExpr()->getSourceRange());
453    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
454                        S.PDiag(diag::note_indirection_through_null));
455  }
456}
457
458static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
459                                    SourceLocation AssignLoc,
460                                    const Expr* RHS) {
461  const ObjCIvarDecl *IV = OIRE->getDecl();
462  if (!IV)
463    return;
464
465  DeclarationName MemberName = IV->getDeclName();
466  IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
467  if (!Member || !Member->isStr("isa"))
468    return;
469
470  const Expr *Base = OIRE->getBase();
471  QualType BaseType = Base->getType();
472  if (OIRE->isArrow())
473    BaseType = BaseType->getPointeeType();
474  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
475    if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
476      ObjCInterfaceDecl *ClassDeclared = 0;
477      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
478      if (!ClassDeclared->getSuperClass()
479          && (*ClassDeclared->ivar_begin()) == IV) {
480        if (RHS) {
481          NamedDecl *ObjectSetClass =
482            S.LookupSingleName(S.TUScope,
483                               &S.Context.Idents.get("object_setClass"),
484                               SourceLocation(), S.LookupOrdinaryName);
485          if (ObjectSetClass) {
486            SourceLocation RHSLocEnd = S.PP.getLocForEndOfToken(RHS->getLocEnd());
487            S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
488            FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
489            FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
490                                                     AssignLoc), ",") <<
491            FixItHint::CreateInsertion(RHSLocEnd, ")");
492          }
493          else
494            S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
495        } else {
496          NamedDecl *ObjectGetClass =
497            S.LookupSingleName(S.TUScope,
498                               &S.Context.Idents.get("object_getClass"),
499                               SourceLocation(), S.LookupOrdinaryName);
500          if (ObjectGetClass)
501            S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
502            FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
503            FixItHint::CreateReplacement(
504                                         SourceRange(OIRE->getOpLoc(),
505                                                     OIRE->getLocEnd()), ")");
506          else
507            S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
508        }
509        S.Diag(IV->getLocation(), diag::note_ivar_decl);
510      }
511    }
512}
513
514ExprResult Sema::DefaultLvalueConversion(Expr *E) {
515  // Handle any placeholder expressions which made it here.
516  if (E->getType()->isPlaceholderType()) {
517    ExprResult result = CheckPlaceholderExpr(E);
518    if (result.isInvalid()) return ExprError();
519    E = result.take();
520  }
521
522  // C++ [conv.lval]p1:
523  //   A glvalue of a non-function, non-array type T can be
524  //   converted to a prvalue.
525  if (!E->isGLValue()) return Owned(E);
526
527  QualType T = E->getType();
528  assert(!T.isNull() && "r-value conversion on typeless expression?");
529
530  // We don't want to throw lvalue-to-rvalue casts on top of
531  // expressions of certain types in C++.
532  if (getLangOpts().CPlusPlus &&
533      (E->getType() == Context.OverloadTy ||
534       T->isDependentType() ||
535       T->isRecordType()))
536    return Owned(E);
537
538  // The C standard is actually really unclear on this point, and
539  // DR106 tells us what the result should be but not why.  It's
540  // generally best to say that void types just doesn't undergo
541  // lvalue-to-rvalue at all.  Note that expressions of unqualified
542  // 'void' type are never l-values, but qualified void can be.
543  if (T->isVoidType())
544    return Owned(E);
545
546  // OpenCL usually rejects direct accesses to values of 'half' type.
547  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
548      T->isHalfType()) {
549    Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
550      << 0 << T;
551    return ExprError();
552  }
553
554  CheckForNullPointerDereference(*this, E);
555  if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
556    NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
557                                     &Context.Idents.get("object_getClass"),
558                                     SourceLocation(), LookupOrdinaryName);
559    if (ObjectGetClass)
560      Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
561        FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
562        FixItHint::CreateReplacement(
563                    SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
564    else
565      Diag(E->getExprLoc(), diag::warn_objc_isa_use);
566  }
567  else if (const ObjCIvarRefExpr *OIRE =
568            dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
569    DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/0);
570
571  // C++ [conv.lval]p1:
572  //   [...] If T is a non-class type, the type of the prvalue is the
573  //   cv-unqualified version of T. Otherwise, the type of the
574  //   rvalue is T.
575  //
576  // C99 6.3.2.1p2:
577  //   If the lvalue has qualified type, the value has the unqualified
578  //   version of the type of the lvalue; otherwise, the value has the
579  //   type of the lvalue.
580  if (T.hasQualifiers())
581    T = T.getUnqualifiedType();
582
583  UpdateMarkingForLValueToRValue(E);
584
585  // Loading a __weak object implicitly retains the value, so we need a cleanup to
586  // balance that.
587  if (getLangOpts().ObjCAutoRefCount &&
588      E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
589    ExprNeedsCleanups = true;
590
591  ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
592                                                  E, 0, VK_RValue));
593
594  // C11 6.3.2.1p2:
595  //   ... if the lvalue has atomic type, the value has the non-atomic version
596  //   of the type of the lvalue ...
597  if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
598    T = Atomic->getValueType().getUnqualifiedType();
599    Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
600                                         Res.get(), 0, VK_RValue));
601  }
602
603  return Res;
604}
605
606ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
607  ExprResult Res = DefaultFunctionArrayConversion(E);
608  if (Res.isInvalid())
609    return ExprError();
610  Res = DefaultLvalueConversion(Res.take());
611  if (Res.isInvalid())
612    return ExprError();
613  return Res;
614}
615
616
617/// UsualUnaryConversions - Performs various conversions that are common to most
618/// operators (C99 6.3). The conversions of array and function types are
619/// sometimes suppressed. For example, the array->pointer conversion doesn't
620/// apply if the array is an argument to the sizeof or address (&) operators.
621/// In these instances, this routine should *not* be called.
622ExprResult Sema::UsualUnaryConversions(Expr *E) {
623  // First, convert to an r-value.
624  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
625  if (Res.isInvalid())
626    return ExprError();
627  E = Res.take();
628
629  QualType Ty = E->getType();
630  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
631
632  // Half FP have to be promoted to float unless it is natively supported
633  if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
634    return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
635
636  // Try to perform integral promotions if the object has a theoretically
637  // promotable type.
638  if (Ty->isIntegralOrUnscopedEnumerationType()) {
639    // C99 6.3.1.1p2:
640    //
641    //   The following may be used in an expression wherever an int or
642    //   unsigned int may be used:
643    //     - an object or expression with an integer type whose integer
644    //       conversion rank is less than or equal to the rank of int
645    //       and unsigned int.
646    //     - A bit-field of type _Bool, int, signed int, or unsigned int.
647    //
648    //   If an int can represent all values of the original type, the
649    //   value is converted to an int; otherwise, it is converted to an
650    //   unsigned int. These are called the integer promotions. All
651    //   other types are unchanged by the integer promotions.
652
653    QualType PTy = Context.isPromotableBitField(E);
654    if (!PTy.isNull()) {
655      E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
656      return Owned(E);
657    }
658    if (Ty->isPromotableIntegerType()) {
659      QualType PT = Context.getPromotedIntegerType(Ty);
660      E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
661      return Owned(E);
662    }
663  }
664  return Owned(E);
665}
666
667/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
668/// do not have a prototype. Arguments that have type float or __fp16
669/// are promoted to double. All other argument types are converted by
670/// UsualUnaryConversions().
671ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
672  QualType Ty = E->getType();
673  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
674
675  ExprResult Res = UsualUnaryConversions(E);
676  if (Res.isInvalid())
677    return ExprError();
678  E = Res.take();
679
680  // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
681  // double.
682  const BuiltinType *BTy = Ty->getAs<BuiltinType>();
683  if (BTy && (BTy->getKind() == BuiltinType::Half ||
684              BTy->getKind() == BuiltinType::Float))
685    E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
686
687  // C++ performs lvalue-to-rvalue conversion as a default argument
688  // promotion, even on class types, but note:
689  //   C++11 [conv.lval]p2:
690  //     When an lvalue-to-rvalue conversion occurs in an unevaluated
691  //     operand or a subexpression thereof the value contained in the
692  //     referenced object is not accessed. Otherwise, if the glvalue
693  //     has a class type, the conversion copy-initializes a temporary
694  //     of type T from the glvalue and the result of the conversion
695  //     is a prvalue for the temporary.
696  // FIXME: add some way to gate this entire thing for correctness in
697  // potentially potentially evaluated contexts.
698  if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
699    ExprResult Temp = PerformCopyInitialization(
700                       InitializedEntity::InitializeTemporary(E->getType()),
701                                                E->getExprLoc(),
702                                                Owned(E));
703    if (Temp.isInvalid())
704      return ExprError();
705    E = Temp.get();
706  }
707
708  return Owned(E);
709}
710
711/// Determine the degree of POD-ness for an expression.
712/// Incomplete types are considered POD, since this check can be performed
713/// when we're in an unevaluated context.
714Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
715  if (Ty->isIncompleteType()) {
716    if (Ty->isObjCObjectType())
717      return VAK_Invalid;
718    return VAK_Valid;
719  }
720
721  if (Ty.isCXX98PODType(Context))
722    return VAK_Valid;
723
724  // C++11 [expr.call]p7:
725  //   Passing a potentially-evaluated argument of class type (Clause 9)
726  //   having a non-trivial copy constructor, a non-trivial move constructor,
727  //   or a non-trivial destructor, with no corresponding parameter,
728  //   is conditionally-supported with implementation-defined semantics.
729  if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
730    if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
731      if (!Record->hasNonTrivialCopyConstructor() &&
732          !Record->hasNonTrivialMoveConstructor() &&
733          !Record->hasNonTrivialDestructor())
734        return VAK_ValidInCXX11;
735
736  if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
737    return VAK_Valid;
738  return VAK_Invalid;
739}
740
741bool Sema::variadicArgumentPODCheck(const Expr *E, VariadicCallType CT) {
742  // Don't allow one to pass an Objective-C interface to a vararg.
743  const QualType & Ty = E->getType();
744
745  // Complain about passing non-POD types through varargs.
746  switch (isValidVarArgType(Ty)) {
747  case VAK_Valid:
748    break;
749  case VAK_ValidInCXX11:
750    DiagRuntimeBehavior(E->getLocStart(), 0,
751        PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
752        << E->getType() << CT);
753    break;
754  case VAK_Invalid: {
755    if (Ty->isObjCObjectType())
756      return DiagRuntimeBehavior(E->getLocStart(), 0,
757                          PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
758                            << Ty << CT);
759
760    return DiagRuntimeBehavior(E->getLocStart(), 0,
761                   PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
762                   << getLangOpts().CPlusPlus11 << Ty << CT);
763  }
764  }
765  // c++ rules are enforced elsewhere.
766  return false;
767}
768
769/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
770/// will create a trap if the resulting type is not a POD type.
771ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
772                                                  FunctionDecl *FDecl) {
773  if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
774    // Strip the unbridged-cast placeholder expression off, if applicable.
775    if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
776        (CT == VariadicMethod ||
777         (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
778      E = stripARCUnbridgedCast(E);
779
780    // Otherwise, do normal placeholder checking.
781    } else {
782      ExprResult ExprRes = CheckPlaceholderExpr(E);
783      if (ExprRes.isInvalid())
784        return ExprError();
785      E = ExprRes.take();
786    }
787  }
788
789  ExprResult ExprRes = DefaultArgumentPromotion(E);
790  if (ExprRes.isInvalid())
791    return ExprError();
792  E = ExprRes.take();
793
794  // Diagnostics regarding non-POD argument types are
795  // emitted along with format string checking in Sema::CheckFunctionCall().
796  if (isValidVarArgType(E->getType()) == VAK_Invalid) {
797    // Turn this into a trap.
798    CXXScopeSpec SS;
799    SourceLocation TemplateKWLoc;
800    UnqualifiedId Name;
801    Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
802                       E->getLocStart());
803    ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
804                                          Name, true, false);
805    if (TrapFn.isInvalid())
806      return ExprError();
807
808    ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
809                                    E->getLocStart(), MultiExprArg(),
810                                    E->getLocEnd());
811    if (Call.isInvalid())
812      return ExprError();
813
814    ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
815                                  Call.get(), E);
816    if (Comma.isInvalid())
817      return ExprError();
818    return Comma.get();
819  }
820
821  if (!getLangOpts().CPlusPlus &&
822      RequireCompleteType(E->getExprLoc(), E->getType(),
823                          diag::err_call_incomplete_argument))
824    return ExprError();
825
826  return Owned(E);
827}
828
829/// \brief Converts an integer to complex float type.  Helper function of
830/// UsualArithmeticConversions()
831///
832/// \return false if the integer expression is an integer type and is
833/// successfully converted to the complex type.
834static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
835                                                  ExprResult &ComplexExpr,
836                                                  QualType IntTy,
837                                                  QualType ComplexTy,
838                                                  bool SkipCast) {
839  if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
840  if (SkipCast) return false;
841  if (IntTy->isIntegerType()) {
842    QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
843    IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
844    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
845                                  CK_FloatingRealToComplex);
846  } else {
847    assert(IntTy->isComplexIntegerType());
848    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
849                                  CK_IntegralComplexToFloatingComplex);
850  }
851  return false;
852}
853
854/// \brief Takes two complex float types and converts them to the same type.
855/// Helper function of UsualArithmeticConversions()
856static QualType
857handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
858                                            ExprResult &RHS, QualType LHSType,
859                                            QualType RHSType,
860                                            bool IsCompAssign) {
861  int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
862
863  if (order < 0) {
864    // _Complex float -> _Complex double
865    if (!IsCompAssign)
866      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
867    return RHSType;
868  }
869  if (order > 0)
870    // _Complex float -> _Complex double
871    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
872  return LHSType;
873}
874
875/// \brief Converts otherExpr to complex float and promotes complexExpr if
876/// necessary.  Helper function of UsualArithmeticConversions()
877static QualType handleOtherComplexFloatConversion(Sema &S,
878                                                  ExprResult &ComplexExpr,
879                                                  ExprResult &OtherExpr,
880                                                  QualType ComplexTy,
881                                                  QualType OtherTy,
882                                                  bool ConvertComplexExpr,
883                                                  bool ConvertOtherExpr) {
884  int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
885
886  // If just the complexExpr is complex, the otherExpr needs to be converted,
887  // and the complexExpr might need to be promoted.
888  if (order > 0) { // complexExpr is wider
889    // float -> _Complex double
890    if (ConvertOtherExpr) {
891      QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
892      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
893      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
894                                      CK_FloatingRealToComplex);
895    }
896    return ComplexTy;
897  }
898
899  // otherTy is at least as wide.  Find its corresponding complex type.
900  QualType result = (order == 0 ? ComplexTy :
901                                  S.Context.getComplexType(OtherTy));
902
903  // double -> _Complex double
904  if (ConvertOtherExpr)
905    OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
906                                    CK_FloatingRealToComplex);
907
908  // _Complex float -> _Complex double
909  if (ConvertComplexExpr && order < 0)
910    ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
911                                      CK_FloatingComplexCast);
912
913  return result;
914}
915
916/// \brief Handle arithmetic conversion with complex types.  Helper function of
917/// UsualArithmeticConversions()
918static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
919                                             ExprResult &RHS, QualType LHSType,
920                                             QualType RHSType,
921                                             bool IsCompAssign) {
922  // if we have an integer operand, the result is the complex type.
923  if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
924                                             /*skipCast*/false))
925    return LHSType;
926  if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
927                                             /*skipCast*/IsCompAssign))
928    return RHSType;
929
930  // This handles complex/complex, complex/float, or float/complex.
931  // When both operands are complex, the shorter operand is converted to the
932  // type of the longer, and that is the type of the result. This corresponds
933  // to what is done when combining two real floating-point operands.
934  // The fun begins when size promotion occur across type domains.
935  // From H&S 6.3.4: When one operand is complex and the other is a real
936  // floating-point type, the less precise type is converted, within it's
937  // real or complex domain, to the precision of the other type. For example,
938  // when combining a "long double" with a "double _Complex", the
939  // "double _Complex" is promoted to "long double _Complex".
940
941  bool LHSComplexFloat = LHSType->isComplexType();
942  bool RHSComplexFloat = RHSType->isComplexType();
943
944  // If both are complex, just cast to the more precise type.
945  if (LHSComplexFloat && RHSComplexFloat)
946    return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
947                                                       LHSType, RHSType,
948                                                       IsCompAssign);
949
950  // If only one operand is complex, promote it if necessary and convert the
951  // other operand to complex.
952  if (LHSComplexFloat)
953    return handleOtherComplexFloatConversion(
954        S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
955        /*convertOtherExpr*/ true);
956
957  assert(RHSComplexFloat);
958  return handleOtherComplexFloatConversion(
959      S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
960      /*convertOtherExpr*/ !IsCompAssign);
961}
962
963/// \brief Hande arithmetic conversion from integer to float.  Helper function
964/// of UsualArithmeticConversions()
965static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
966                                           ExprResult &IntExpr,
967                                           QualType FloatTy, QualType IntTy,
968                                           bool ConvertFloat, bool ConvertInt) {
969  if (IntTy->isIntegerType()) {
970    if (ConvertInt)
971      // Convert intExpr to the lhs floating point type.
972      IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
973                                    CK_IntegralToFloating);
974    return FloatTy;
975  }
976
977  // Convert both sides to the appropriate complex float.
978  assert(IntTy->isComplexIntegerType());
979  QualType result = S.Context.getComplexType(FloatTy);
980
981  // _Complex int -> _Complex float
982  if (ConvertInt)
983    IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
984                                  CK_IntegralComplexToFloatingComplex);
985
986  // float -> _Complex float
987  if (ConvertFloat)
988    FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
989                                    CK_FloatingRealToComplex);
990
991  return result;
992}
993
994/// \brief Handle arithmethic conversion with floating point types.  Helper
995/// function of UsualArithmeticConversions()
996static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
997                                      ExprResult &RHS, QualType LHSType,
998                                      QualType RHSType, bool IsCompAssign) {
999  bool LHSFloat = LHSType->isRealFloatingType();
1000  bool RHSFloat = RHSType->isRealFloatingType();
1001
1002  // If we have two real floating types, convert the smaller operand
1003  // to the bigger result.
1004  if (LHSFloat && RHSFloat) {
1005    int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1006    if (order > 0) {
1007      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
1008      return LHSType;
1009    }
1010
1011    assert(order < 0 && "illegal float comparison");
1012    if (!IsCompAssign)
1013      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
1014    return RHSType;
1015  }
1016
1017  if (LHSFloat)
1018    return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1019                                      /*convertFloat=*/!IsCompAssign,
1020                                      /*convertInt=*/ true);
1021  assert(RHSFloat);
1022  return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1023                                    /*convertInt=*/ true,
1024                                    /*convertFloat=*/!IsCompAssign);
1025}
1026
1027typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1028
1029namespace {
1030/// These helper callbacks are placed in an anonymous namespace to
1031/// permit their use as function template parameters.
1032ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1033  return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1034}
1035
1036ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1037  return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1038                             CK_IntegralComplexCast);
1039}
1040}
1041
1042/// \brief Handle integer arithmetic conversions.  Helper function of
1043/// UsualArithmeticConversions()
1044template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1045static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1046                                        ExprResult &RHS, QualType LHSType,
1047                                        QualType RHSType, bool IsCompAssign) {
1048  // The rules for this case are in C99 6.3.1.8
1049  int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1050  bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1051  bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1052  if (LHSSigned == RHSSigned) {
1053    // Same signedness; use the higher-ranked type
1054    if (order >= 0) {
1055      RHS = (*doRHSCast)(S, RHS.take(), LHSType);
1056      return LHSType;
1057    } else if (!IsCompAssign)
1058      LHS = (*doLHSCast)(S, LHS.take(), RHSType);
1059    return RHSType;
1060  } else if (order != (LHSSigned ? 1 : -1)) {
1061    // The unsigned type has greater than or equal rank to the
1062    // signed type, so use the unsigned type
1063    if (RHSSigned) {
1064      RHS = (*doRHSCast)(S, RHS.take(), LHSType);
1065      return LHSType;
1066    } else if (!IsCompAssign)
1067      LHS = (*doLHSCast)(S, LHS.take(), RHSType);
1068    return RHSType;
1069  } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1070    // The two types are different widths; if we are here, that
1071    // means the signed type is larger than the unsigned type, so
1072    // use the signed type.
1073    if (LHSSigned) {
1074      RHS = (*doRHSCast)(S, RHS.take(), LHSType);
1075      return LHSType;
1076    } else if (!IsCompAssign)
1077      LHS = (*doLHSCast)(S, LHS.take(), RHSType);
1078    return RHSType;
1079  } else {
1080    // The signed type is higher-ranked than the unsigned type,
1081    // but isn't actually any bigger (like unsigned int and long
1082    // on most 32-bit systems).  Use the unsigned type corresponding
1083    // to the signed type.
1084    QualType result =
1085      S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1086    RHS = (*doRHSCast)(S, RHS.take(), result);
1087    if (!IsCompAssign)
1088      LHS = (*doLHSCast)(S, LHS.take(), result);
1089    return result;
1090  }
1091}
1092
1093/// \brief Handle conversions with GCC complex int extension.  Helper function
1094/// of UsualArithmeticConversions()
1095static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1096                                           ExprResult &RHS, QualType LHSType,
1097                                           QualType RHSType,
1098                                           bool IsCompAssign) {
1099  const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1100  const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1101
1102  if (LHSComplexInt && RHSComplexInt) {
1103    QualType LHSEltType = LHSComplexInt->getElementType();
1104    QualType RHSEltType = RHSComplexInt->getElementType();
1105    QualType ScalarType =
1106      handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1107        (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1108
1109    return S.Context.getComplexType(ScalarType);
1110  }
1111
1112  if (LHSComplexInt) {
1113    QualType LHSEltType = LHSComplexInt->getElementType();
1114    QualType ScalarType =
1115      handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1116        (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1117    QualType ComplexType = S.Context.getComplexType(ScalarType);
1118    RHS = S.ImpCastExprToType(RHS.take(), ComplexType,
1119                              CK_IntegralRealToComplex);
1120
1121    return ComplexType;
1122  }
1123
1124  assert(RHSComplexInt);
1125
1126  QualType RHSEltType = RHSComplexInt->getElementType();
1127  QualType ScalarType =
1128    handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1129      (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1130  QualType ComplexType = S.Context.getComplexType(ScalarType);
1131
1132  if (!IsCompAssign)
1133    LHS = S.ImpCastExprToType(LHS.take(), ComplexType,
1134                              CK_IntegralRealToComplex);
1135  return ComplexType;
1136}
1137
1138/// UsualArithmeticConversions - Performs various conversions that are common to
1139/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1140/// routine returns the first non-arithmetic type found. The client is
1141/// responsible for emitting appropriate error diagnostics.
1142QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1143                                          bool IsCompAssign) {
1144  if (!IsCompAssign) {
1145    LHS = UsualUnaryConversions(LHS.take());
1146    if (LHS.isInvalid())
1147      return QualType();
1148  }
1149
1150  RHS = UsualUnaryConversions(RHS.take());
1151  if (RHS.isInvalid())
1152    return QualType();
1153
1154  // For conversion purposes, we ignore any qualifiers.
1155  // For example, "const float" and "float" are equivalent.
1156  QualType LHSType =
1157    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1158  QualType RHSType =
1159    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1160
1161  // For conversion purposes, we ignore any atomic qualifier on the LHS.
1162  if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1163    LHSType = AtomicLHS->getValueType();
1164
1165  // If both types are identical, no conversion is needed.
1166  if (LHSType == RHSType)
1167    return LHSType;
1168
1169  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1170  // The caller can deal with this (e.g. pointer + int).
1171  if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1172    return QualType();
1173
1174  // Apply unary and bitfield promotions to the LHS's type.
1175  QualType LHSUnpromotedType = LHSType;
1176  if (LHSType->isPromotableIntegerType())
1177    LHSType = Context.getPromotedIntegerType(LHSType);
1178  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1179  if (!LHSBitfieldPromoteTy.isNull())
1180    LHSType = LHSBitfieldPromoteTy;
1181  if (LHSType != LHSUnpromotedType && !IsCompAssign)
1182    LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
1183
1184  // If both types are identical, no conversion is needed.
1185  if (LHSType == RHSType)
1186    return LHSType;
1187
1188  // At this point, we have two different arithmetic types.
1189
1190  // Handle complex types first (C99 6.3.1.8p1).
1191  if (LHSType->isComplexType() || RHSType->isComplexType())
1192    return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1193                                        IsCompAssign);
1194
1195  // Now handle "real" floating types (i.e. float, double, long double).
1196  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1197    return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1198                                 IsCompAssign);
1199
1200  // Handle GCC complex int extension.
1201  if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1202    return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1203                                      IsCompAssign);
1204
1205  // Finally, we have two differing integer types.
1206  return handleIntegerConversion<doIntegralCast, doIntegralCast>
1207           (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
1208}
1209
1210
1211//===----------------------------------------------------------------------===//
1212//  Semantic Analysis for various Expression Types
1213//===----------------------------------------------------------------------===//
1214
1215
1216ExprResult
1217Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1218                                SourceLocation DefaultLoc,
1219                                SourceLocation RParenLoc,
1220                                Expr *ControllingExpr,
1221                                MultiTypeArg ArgTypes,
1222                                MultiExprArg ArgExprs) {
1223  unsigned NumAssocs = ArgTypes.size();
1224  assert(NumAssocs == ArgExprs.size());
1225
1226  ParsedType *ParsedTypes = ArgTypes.data();
1227  Expr **Exprs = ArgExprs.data();
1228
1229  TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1230  for (unsigned i = 0; i < NumAssocs; ++i) {
1231    if (ParsedTypes[i])
1232      (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
1233    else
1234      Types[i] = 0;
1235  }
1236
1237  ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1238                                             ControllingExpr, Types, Exprs,
1239                                             NumAssocs);
1240  delete [] Types;
1241  return ER;
1242}
1243
1244ExprResult
1245Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1246                                 SourceLocation DefaultLoc,
1247                                 SourceLocation RParenLoc,
1248                                 Expr *ControllingExpr,
1249                                 TypeSourceInfo **Types,
1250                                 Expr **Exprs,
1251                                 unsigned NumAssocs) {
1252  if (ControllingExpr->getType()->isPlaceholderType()) {
1253    ExprResult result = CheckPlaceholderExpr(ControllingExpr);
1254    if (result.isInvalid()) return ExprError();
1255    ControllingExpr = result.take();
1256  }
1257
1258  bool TypeErrorFound = false,
1259       IsResultDependent = ControllingExpr->isTypeDependent(),
1260       ContainsUnexpandedParameterPack
1261         = ControllingExpr->containsUnexpandedParameterPack();
1262
1263  for (unsigned i = 0; i < NumAssocs; ++i) {
1264    if (Exprs[i]->containsUnexpandedParameterPack())
1265      ContainsUnexpandedParameterPack = true;
1266
1267    if (Types[i]) {
1268      if (Types[i]->getType()->containsUnexpandedParameterPack())
1269        ContainsUnexpandedParameterPack = true;
1270
1271      if (Types[i]->getType()->isDependentType()) {
1272        IsResultDependent = true;
1273      } else {
1274        // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1275        // complete object type other than a variably modified type."
1276        unsigned D = 0;
1277        if (Types[i]->getType()->isIncompleteType())
1278          D = diag::err_assoc_type_incomplete;
1279        else if (!Types[i]->getType()->isObjectType())
1280          D = diag::err_assoc_type_nonobject;
1281        else if (Types[i]->getType()->isVariablyModifiedType())
1282          D = diag::err_assoc_type_variably_modified;
1283
1284        if (D != 0) {
1285          Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1286            << Types[i]->getTypeLoc().getSourceRange()
1287            << Types[i]->getType();
1288          TypeErrorFound = true;
1289        }
1290
1291        // C11 6.5.1.1p2 "No two generic associations in the same generic
1292        // selection shall specify compatible types."
1293        for (unsigned j = i+1; j < NumAssocs; ++j)
1294          if (Types[j] && !Types[j]->getType()->isDependentType() &&
1295              Context.typesAreCompatible(Types[i]->getType(),
1296                                         Types[j]->getType())) {
1297            Diag(Types[j]->getTypeLoc().getBeginLoc(),
1298                 diag::err_assoc_compatible_types)
1299              << Types[j]->getTypeLoc().getSourceRange()
1300              << Types[j]->getType()
1301              << Types[i]->getType();
1302            Diag(Types[i]->getTypeLoc().getBeginLoc(),
1303                 diag::note_compat_assoc)
1304              << Types[i]->getTypeLoc().getSourceRange()
1305              << Types[i]->getType();
1306            TypeErrorFound = true;
1307          }
1308      }
1309    }
1310  }
1311  if (TypeErrorFound)
1312    return ExprError();
1313
1314  // If we determined that the generic selection is result-dependent, don't
1315  // try to compute the result expression.
1316  if (IsResultDependent)
1317    return Owned(new (Context) GenericSelectionExpr(
1318                   Context, KeyLoc, ControllingExpr,
1319                   llvm::makeArrayRef(Types, NumAssocs),
1320                   llvm::makeArrayRef(Exprs, NumAssocs),
1321                   DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack));
1322
1323  SmallVector<unsigned, 1> CompatIndices;
1324  unsigned DefaultIndex = -1U;
1325  for (unsigned i = 0; i < NumAssocs; ++i) {
1326    if (!Types[i])
1327      DefaultIndex = i;
1328    else if (Context.typesAreCompatible(ControllingExpr->getType(),
1329                                        Types[i]->getType()))
1330      CompatIndices.push_back(i);
1331  }
1332
1333  // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1334  // type compatible with at most one of the types named in its generic
1335  // association list."
1336  if (CompatIndices.size() > 1) {
1337    // We strip parens here because the controlling expression is typically
1338    // parenthesized in macro definitions.
1339    ControllingExpr = ControllingExpr->IgnoreParens();
1340    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1341      << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1342      << (unsigned) CompatIndices.size();
1343    for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
1344         E = CompatIndices.end(); I != E; ++I) {
1345      Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1346           diag::note_compat_assoc)
1347        << Types[*I]->getTypeLoc().getSourceRange()
1348        << Types[*I]->getType();
1349    }
1350    return ExprError();
1351  }
1352
1353  // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1354  // its controlling expression shall have type compatible with exactly one of
1355  // the types named in its generic association list."
1356  if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1357    // We strip parens here because the controlling expression is typically
1358    // parenthesized in macro definitions.
1359    ControllingExpr = ControllingExpr->IgnoreParens();
1360    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1361      << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1362    return ExprError();
1363  }
1364
1365  // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1366  // type name that is compatible with the type of the controlling expression,
1367  // then the result expression of the generic selection is the expression
1368  // in that generic association. Otherwise, the result expression of the
1369  // generic selection is the expression in the default generic association."
1370  unsigned ResultIndex =
1371    CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1372
1373  return Owned(new (Context) GenericSelectionExpr(
1374                 Context, KeyLoc, ControllingExpr,
1375                 llvm::makeArrayRef(Types, NumAssocs),
1376                 llvm::makeArrayRef(Exprs, NumAssocs),
1377                 DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack,
1378                 ResultIndex));
1379}
1380
1381/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1382/// location of the token and the offset of the ud-suffix within it.
1383static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1384                                     unsigned Offset) {
1385  return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1386                                        S.getLangOpts());
1387}
1388
1389/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1390/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1391static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1392                                                 IdentifierInfo *UDSuffix,
1393                                                 SourceLocation UDSuffixLoc,
1394                                                 ArrayRef<Expr*> Args,
1395                                                 SourceLocation LitEndLoc) {
1396  assert(Args.size() <= 2 && "too many arguments for literal operator");
1397
1398  QualType ArgTy[2];
1399  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1400    ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1401    if (ArgTy[ArgIdx]->isArrayType())
1402      ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1403  }
1404
1405  DeclarationName OpName =
1406    S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1407  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1408  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1409
1410  LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1411  if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1412                              /*AllowRawAndTemplate*/false) == Sema::LOLR_Error)
1413    return ExprError();
1414
1415  return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1416}
1417
1418/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1419/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1420/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1421/// multiple tokens.  However, the common case is that StringToks points to one
1422/// string.
1423///
1424ExprResult
1425Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
1426                         Scope *UDLScope) {
1427  assert(NumStringToks && "Must have at least one string!");
1428
1429  StringLiteralParser Literal(StringToks, NumStringToks, PP);
1430  if (Literal.hadError)
1431    return ExprError();
1432
1433  SmallVector<SourceLocation, 4> StringTokLocs;
1434  for (unsigned i = 0; i != NumStringToks; ++i)
1435    StringTokLocs.push_back(StringToks[i].getLocation());
1436
1437  QualType StrTy = Context.CharTy;
1438  if (Literal.isWide())
1439    StrTy = Context.getWCharType();
1440  else if (Literal.isUTF16())
1441    StrTy = Context.Char16Ty;
1442  else if (Literal.isUTF32())
1443    StrTy = Context.Char32Ty;
1444  else if (Literal.isPascal())
1445    StrTy = Context.UnsignedCharTy;
1446
1447  StringLiteral::StringKind Kind = StringLiteral::Ascii;
1448  if (Literal.isWide())
1449    Kind = StringLiteral::Wide;
1450  else if (Literal.isUTF8())
1451    Kind = StringLiteral::UTF8;
1452  else if (Literal.isUTF16())
1453    Kind = StringLiteral::UTF16;
1454  else if (Literal.isUTF32())
1455    Kind = StringLiteral::UTF32;
1456
1457  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1458  if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1459    StrTy.addConst();
1460
1461  // Get an array type for the string, according to C99 6.4.5.  This includes
1462  // the nul terminator character as well as the string length for pascal
1463  // strings.
1464  StrTy = Context.getConstantArrayType(StrTy,
1465                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
1466                                       ArrayType::Normal, 0);
1467
1468  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1469  StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1470                                             Kind, Literal.Pascal, StrTy,
1471                                             &StringTokLocs[0],
1472                                             StringTokLocs.size());
1473  if (Literal.getUDSuffix().empty())
1474    return Owned(Lit);
1475
1476  // We're building a user-defined literal.
1477  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1478  SourceLocation UDSuffixLoc =
1479    getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1480                   Literal.getUDSuffixOffset());
1481
1482  // Make sure we're allowed user-defined literals here.
1483  if (!UDLScope)
1484    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1485
1486  // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1487  //   operator "" X (str, len)
1488  QualType SizeType = Context.getSizeType();
1489  llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1490  IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1491                                                  StringTokLocs[0]);
1492  Expr *Args[] = { Lit, LenArg };
1493  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
1494                                        Args, StringTokLocs.back());
1495}
1496
1497ExprResult
1498Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1499                       SourceLocation Loc,
1500                       const CXXScopeSpec *SS) {
1501  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1502  return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1503}
1504
1505/// BuildDeclRefExpr - Build an expression that references a
1506/// declaration that does not require a closure capture.
1507ExprResult
1508Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1509                       const DeclarationNameInfo &NameInfo,
1510                       const CXXScopeSpec *SS, NamedDecl *FoundD) {
1511  if (getLangOpts().CUDA)
1512    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1513      if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1514        CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
1515                           CalleeTarget = IdentifyCUDATarget(Callee);
1516        if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
1517          Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1518            << CalleeTarget << D->getIdentifier() << CallerTarget;
1519          Diag(D->getLocation(), diag::note_previous_decl)
1520            << D->getIdentifier();
1521          return ExprError();
1522        }
1523      }
1524
1525  bool refersToEnclosingScope =
1526    (CurContext != D->getDeclContext() &&
1527     D->getDeclContext()->isFunctionOrMethod());
1528
1529  DeclRefExpr *E = DeclRefExpr::Create(Context,
1530                                       SS ? SS->getWithLocInContext(Context)
1531                                              : NestedNameSpecifierLoc(),
1532                                       SourceLocation(),
1533                                       D, refersToEnclosingScope,
1534                                       NameInfo, Ty, VK, FoundD);
1535
1536  MarkDeclRefReferenced(E);
1537
1538  if (getLangOpts().ObjCARCWeak && isa<VarDecl>(D) &&
1539      Ty.getObjCLifetime() == Qualifiers::OCL_Weak) {
1540    DiagnosticsEngine::Level Level =
1541      Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
1542                               E->getLocStart());
1543    if (Level != DiagnosticsEngine::Ignored)
1544      getCurFunction()->recordUseOfWeak(E);
1545  }
1546
1547  // Just in case we're building an illegal pointer-to-member.
1548  FieldDecl *FD = dyn_cast<FieldDecl>(D);
1549  if (FD && FD->isBitField())
1550    E->setObjectKind(OK_BitField);
1551
1552  return Owned(E);
1553}
1554
1555/// Decomposes the given name into a DeclarationNameInfo, its location, and
1556/// possibly a list of template arguments.
1557///
1558/// If this produces template arguments, it is permitted to call
1559/// DecomposeTemplateName.
1560///
1561/// This actually loses a lot of source location information for
1562/// non-standard name kinds; we should consider preserving that in
1563/// some way.
1564void
1565Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1566                             TemplateArgumentListInfo &Buffer,
1567                             DeclarationNameInfo &NameInfo,
1568                             const TemplateArgumentListInfo *&TemplateArgs) {
1569  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1570    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1571    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1572
1573    ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1574                                       Id.TemplateId->NumArgs);
1575    translateTemplateArguments(TemplateArgsPtr, Buffer);
1576
1577    TemplateName TName = Id.TemplateId->Template.get();
1578    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1579    NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1580    TemplateArgs = &Buffer;
1581  } else {
1582    NameInfo = GetNameFromUnqualifiedId(Id);
1583    TemplateArgs = 0;
1584  }
1585}
1586
1587/// Diagnose an empty lookup.
1588///
1589/// \return false if new lookup candidates were found
1590bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1591                               CorrectionCandidateCallback &CCC,
1592                               TemplateArgumentListInfo *ExplicitTemplateArgs,
1593                               llvm::ArrayRef<Expr *> Args) {
1594  DeclarationName Name = R.getLookupName();
1595
1596  unsigned diagnostic = diag::err_undeclared_var_use;
1597  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1598  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1599      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1600      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1601    diagnostic = diag::err_undeclared_use;
1602    diagnostic_suggest = diag::err_undeclared_use_suggest;
1603  }
1604
1605  // If the original lookup was an unqualified lookup, fake an
1606  // unqualified lookup.  This is useful when (for example) the
1607  // original lookup would not have found something because it was a
1608  // dependent name.
1609  DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
1610    ? CurContext : 0;
1611  while (DC) {
1612    if (isa<CXXRecordDecl>(DC)) {
1613      LookupQualifiedName(R, DC);
1614
1615      if (!R.empty()) {
1616        // Don't give errors about ambiguities in this lookup.
1617        R.suppressDiagnostics();
1618
1619        // During a default argument instantiation the CurContext points
1620        // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1621        // function parameter list, hence add an explicit check.
1622        bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1623                              ActiveTemplateInstantiations.back().Kind ==
1624            ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1625        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1626        bool isInstance = CurMethod &&
1627                          CurMethod->isInstance() &&
1628                          DC == CurMethod->getParent() && !isDefaultArgument;
1629
1630
1631        // Give a code modification hint to insert 'this->'.
1632        // TODO: fixit for inserting 'Base<T>::' in the other cases.
1633        // Actually quite difficult!
1634        if (getLangOpts().MicrosoftMode)
1635          diagnostic = diag::warn_found_via_dependent_bases_lookup;
1636        if (isInstance) {
1637          Diag(R.getNameLoc(), diagnostic) << Name
1638            << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1639          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1640              CallsUndergoingInstantiation.back()->getCallee());
1641
1642          CXXMethodDecl *DepMethod;
1643          if (CurMethod->isDependentContext())
1644            DepMethod = CurMethod;
1645          else if (CurMethod->getTemplatedKind() ==
1646              FunctionDecl::TK_FunctionTemplateSpecialization)
1647            DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
1648                getInstantiatedFromMemberTemplate()->getTemplatedDecl());
1649          else
1650            DepMethod = cast<CXXMethodDecl>(
1651                CurMethod->getInstantiatedFromMemberFunction());
1652          assert(DepMethod && "No template pattern found");
1653
1654          QualType DepThisType = DepMethod->getThisType(Context);
1655          CheckCXXThisCapture(R.getNameLoc());
1656          CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1657                                     R.getNameLoc(), DepThisType, false);
1658          TemplateArgumentListInfo TList;
1659          if (ULE->hasExplicitTemplateArgs())
1660            ULE->copyTemplateArgumentsInto(TList);
1661
1662          CXXScopeSpec SS;
1663          SS.Adopt(ULE->getQualifierLoc());
1664          CXXDependentScopeMemberExpr *DepExpr =
1665              CXXDependentScopeMemberExpr::Create(
1666                  Context, DepThis, DepThisType, true, SourceLocation(),
1667                  SS.getWithLocInContext(Context),
1668                  ULE->getTemplateKeywordLoc(), 0,
1669                  R.getLookupNameInfo(),
1670                  ULE->hasExplicitTemplateArgs() ? &TList : 0);
1671          CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1672        } else {
1673          Diag(R.getNameLoc(), diagnostic) << Name;
1674        }
1675
1676        // Do we really want to note all of these?
1677        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1678          Diag((*I)->getLocation(), diag::note_dependent_var_use);
1679
1680        // Return true if we are inside a default argument instantiation
1681        // and the found name refers to an instance member function, otherwise
1682        // the function calling DiagnoseEmptyLookup will try to create an
1683        // implicit member call and this is wrong for default argument.
1684        if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1685          Diag(R.getNameLoc(), diag::err_member_call_without_object);
1686          return true;
1687        }
1688
1689        // Tell the callee to try to recover.
1690        return false;
1691      }
1692
1693      R.clear();
1694    }
1695
1696    // In Microsoft mode, if we are performing lookup from within a friend
1697    // function definition declared at class scope then we must set
1698    // DC to the lexical parent to be able to search into the parent
1699    // class.
1700    if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
1701        cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1702        DC->getLexicalParent()->isRecord())
1703      DC = DC->getLexicalParent();
1704    else
1705      DC = DC->getParent();
1706  }
1707
1708  // We didn't find anything, so try to correct for a typo.
1709  TypoCorrection Corrected;
1710  if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1711                                    S, &SS, CCC))) {
1712    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1713    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
1714    R.setLookupName(Corrected.getCorrection());
1715
1716    if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
1717      if (Corrected.isOverloaded()) {
1718        OverloadCandidateSet OCS(R.getNameLoc());
1719        OverloadCandidateSet::iterator Best;
1720        for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1721                                        CDEnd = Corrected.end();
1722             CD != CDEnd; ++CD) {
1723          if (FunctionTemplateDecl *FTD =
1724                   dyn_cast<FunctionTemplateDecl>(*CD))
1725            AddTemplateOverloadCandidate(
1726                FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1727                Args, OCS);
1728          else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1729            if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1730              AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1731                                   Args, OCS);
1732        }
1733        switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1734          case OR_Success:
1735            ND = Best->Function;
1736            break;
1737          default:
1738            break;
1739        }
1740      }
1741      R.addDecl(ND);
1742      if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
1743        if (SS.isEmpty())
1744          Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
1745            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1746        else
1747          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1748            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1749            << SS.getRange()
1750            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
1751                                            CorrectedStr);
1752
1753        unsigned diag = isa<ImplicitParamDecl>(ND)
1754          ? diag::note_implicit_param_decl
1755          : diag::note_previous_decl;
1756
1757        Diag(ND->getLocation(), diag)
1758          << CorrectedQuotedStr;
1759
1760        // Tell the callee to try to recover.
1761        return false;
1762      }
1763
1764      if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
1765        // FIXME: If we ended up with a typo for a type name or
1766        // Objective-C class name, we're in trouble because the parser
1767        // is in the wrong place to recover. Suggest the typo
1768        // correction, but don't make it a fix-it since we're not going
1769        // to recover well anyway.
1770        if (SS.isEmpty())
1771          Diag(R.getNameLoc(), diagnostic_suggest)
1772            << Name << CorrectedQuotedStr;
1773        else
1774          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1775            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1776            << SS.getRange();
1777
1778        // Don't try to recover; it won't work.
1779        return true;
1780      }
1781    } else {
1782      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1783      // because we aren't able to recover.
1784      if (SS.isEmpty())
1785        Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
1786      else
1787        Diag(R.getNameLoc(), diag::err_no_member_suggest)
1788        << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1789        << SS.getRange();
1790      return true;
1791    }
1792  }
1793  R.clear();
1794
1795  // Emit a special diagnostic for failed member lookups.
1796  // FIXME: computing the declaration context might fail here (?)
1797  if (!SS.isEmpty()) {
1798    Diag(R.getNameLoc(), diag::err_no_member)
1799      << Name << computeDeclContext(SS, false)
1800      << SS.getRange();
1801    return true;
1802  }
1803
1804  // Give up, we can't recover.
1805  Diag(R.getNameLoc(), diagnostic) << Name;
1806  return true;
1807}
1808
1809ExprResult Sema::ActOnIdExpression(Scope *S,
1810                                   CXXScopeSpec &SS,
1811                                   SourceLocation TemplateKWLoc,
1812                                   UnqualifiedId &Id,
1813                                   bool HasTrailingLParen,
1814                                   bool IsAddressOfOperand,
1815                                   CorrectionCandidateCallback *CCC) {
1816  assert(!(IsAddressOfOperand && HasTrailingLParen) &&
1817         "cannot be direct & operand and have a trailing lparen");
1818
1819  if (SS.isInvalid())
1820    return ExprError();
1821
1822  TemplateArgumentListInfo TemplateArgsBuffer;
1823
1824  // Decompose the UnqualifiedId into the following data.
1825  DeclarationNameInfo NameInfo;
1826  const TemplateArgumentListInfo *TemplateArgs;
1827  DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1828
1829  DeclarationName Name = NameInfo.getName();
1830  IdentifierInfo *II = Name.getAsIdentifierInfo();
1831  SourceLocation NameLoc = NameInfo.getLoc();
1832
1833  // C++ [temp.dep.expr]p3:
1834  //   An id-expression is type-dependent if it contains:
1835  //     -- an identifier that was declared with a dependent type,
1836  //        (note: handled after lookup)
1837  //     -- a template-id that is dependent,
1838  //        (note: handled in BuildTemplateIdExpr)
1839  //     -- a conversion-function-id that specifies a dependent type,
1840  //     -- a nested-name-specifier that contains a class-name that
1841  //        names a dependent type.
1842  // Determine whether this is a member of an unknown specialization;
1843  // we need to handle these differently.
1844  bool DependentID = false;
1845  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1846      Name.getCXXNameType()->isDependentType()) {
1847    DependentID = true;
1848  } else if (SS.isSet()) {
1849    if (DeclContext *DC = computeDeclContext(SS, false)) {
1850      if (RequireCompleteDeclContext(SS, DC))
1851        return ExprError();
1852    } else {
1853      DependentID = true;
1854    }
1855  }
1856
1857  if (DependentID)
1858    return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1859                                      IsAddressOfOperand, TemplateArgs);
1860
1861  // Perform the required lookup.
1862  LookupResult R(*this, NameInfo,
1863                 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1864                  ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1865  if (TemplateArgs) {
1866    // Lookup the template name again to correctly establish the context in
1867    // which it was found. This is really unfortunate as we already did the
1868    // lookup to determine that it was a template name in the first place. If
1869    // this becomes a performance hit, we can work harder to preserve those
1870    // results until we get here but it's likely not worth it.
1871    bool MemberOfUnknownSpecialization;
1872    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1873                       MemberOfUnknownSpecialization);
1874
1875    if (MemberOfUnknownSpecialization ||
1876        (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1877      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1878                                        IsAddressOfOperand, TemplateArgs);
1879  } else {
1880    bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
1881    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1882
1883    // If the result might be in a dependent base class, this is a dependent
1884    // id-expression.
1885    if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1886      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1887                                        IsAddressOfOperand, TemplateArgs);
1888
1889    // If this reference is in an Objective-C method, then we need to do
1890    // some special Objective-C lookup, too.
1891    if (IvarLookupFollowUp) {
1892      ExprResult E(LookupInObjCMethod(R, S, II, true));
1893      if (E.isInvalid())
1894        return ExprError();
1895
1896      if (Expr *Ex = E.takeAs<Expr>())
1897        return Owned(Ex);
1898    }
1899  }
1900
1901  if (R.isAmbiguous())
1902    return ExprError();
1903
1904  // Determine whether this name might be a candidate for
1905  // argument-dependent lookup.
1906  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1907
1908  if (R.empty() && !ADL) {
1909    // Otherwise, this could be an implicitly declared function reference (legal
1910    // in C90, extension in C99, forbidden in C++).
1911    if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
1912      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1913      if (D) R.addDecl(D);
1914    }
1915
1916    // If this name wasn't predeclared and if this is not a function
1917    // call, diagnose the problem.
1918    if (R.empty()) {
1919
1920      // In Microsoft mode, if we are inside a template class member function
1921      // and we can't resolve an identifier then assume the identifier is type
1922      // dependent. The goal is to postpone name lookup to instantiation time
1923      // to be able to search into type dependent base classes.
1924      if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
1925          isa<CXXMethodDecl>(CurContext))
1926        return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1927                                          IsAddressOfOperand, TemplateArgs);
1928
1929      CorrectionCandidateCallback DefaultValidator;
1930      if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
1931        return ExprError();
1932
1933      assert(!R.empty() &&
1934             "DiagnoseEmptyLookup returned false but added no results");
1935
1936      // If we found an Objective-C instance variable, let
1937      // LookupInObjCMethod build the appropriate expression to
1938      // reference the ivar.
1939      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1940        R.clear();
1941        ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1942        // In a hopelessly buggy code, Objective-C instance variable
1943        // lookup fails and no expression will be built to reference it.
1944        if (!E.isInvalid() && !E.get())
1945          return ExprError();
1946        return E;
1947      }
1948    }
1949  }
1950
1951  // This is guaranteed from this point on.
1952  assert(!R.empty() || ADL);
1953
1954  // Check whether this might be a C++ implicit instance member access.
1955  // C++ [class.mfct.non-static]p3:
1956  //   When an id-expression that is not part of a class member access
1957  //   syntax and not used to form a pointer to member is used in the
1958  //   body of a non-static member function of class X, if name lookup
1959  //   resolves the name in the id-expression to a non-static non-type
1960  //   member of some class C, the id-expression is transformed into a
1961  //   class member access expression using (*this) as the
1962  //   postfix-expression to the left of the . operator.
1963  //
1964  // But we don't actually need to do this for '&' operands if R
1965  // resolved to a function or overloaded function set, because the
1966  // expression is ill-formed if it actually works out to be a
1967  // non-static member function:
1968  //
1969  // C++ [expr.ref]p4:
1970  //   Otherwise, if E1.E2 refers to a non-static member function. . .
1971  //   [t]he expression can be used only as the left-hand operand of a
1972  //   member function call.
1973  //
1974  // There are other safeguards against such uses, but it's important
1975  // to get this right here so that we don't end up making a
1976  // spuriously dependent expression if we're inside a dependent
1977  // instance method.
1978  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1979    bool MightBeImplicitMember;
1980    if (!IsAddressOfOperand)
1981      MightBeImplicitMember = true;
1982    else if (!SS.isEmpty())
1983      MightBeImplicitMember = false;
1984    else if (R.isOverloadedResult())
1985      MightBeImplicitMember = false;
1986    else if (R.isUnresolvableResult())
1987      MightBeImplicitMember = true;
1988    else
1989      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
1990                              isa<IndirectFieldDecl>(R.getFoundDecl());
1991
1992    if (MightBeImplicitMember)
1993      return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
1994                                             R, TemplateArgs);
1995  }
1996
1997  if (TemplateArgs || TemplateKWLoc.isValid())
1998    return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
1999
2000  return BuildDeclarationNameExpr(SS, R, ADL);
2001}
2002
2003/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2004/// declaration name, generally during template instantiation.
2005/// There's a large number of things which don't need to be done along
2006/// this path.
2007ExprResult
2008Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
2009                                        const DeclarationNameInfo &NameInfo,
2010                                        bool IsAddressOfOperand) {
2011  DeclContext *DC = computeDeclContext(SS, false);
2012  if (!DC)
2013    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2014                                     NameInfo, /*TemplateArgs=*/0);
2015
2016  if (RequireCompleteDeclContext(SS, DC))
2017    return ExprError();
2018
2019  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2020  LookupQualifiedName(R, DC);
2021
2022  if (R.isAmbiguous())
2023    return ExprError();
2024
2025  if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2026    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2027                                     NameInfo, /*TemplateArgs=*/0);
2028
2029  if (R.empty()) {
2030    Diag(NameInfo.getLoc(), diag::err_no_member)
2031      << NameInfo.getName() << DC << SS.getRange();
2032    return ExprError();
2033  }
2034
2035  // Defend against this resolving to an implicit member access. We usually
2036  // won't get here if this might be a legitimate a class member (we end up in
2037  // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2038  // a pointer-to-member or in an unevaluated context in C++11.
2039  if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2040    return BuildPossibleImplicitMemberExpr(SS,
2041                                           /*TemplateKWLoc=*/SourceLocation(),
2042                                           R, /*TemplateArgs=*/0);
2043
2044  return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2045}
2046
2047/// LookupInObjCMethod - The parser has read a name in, and Sema has
2048/// detected that we're currently inside an ObjC method.  Perform some
2049/// additional lookup.
2050///
2051/// Ideally, most of this would be done by lookup, but there's
2052/// actually quite a lot of extra work involved.
2053///
2054/// Returns a null sentinel to indicate trivial success.
2055ExprResult
2056Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2057                         IdentifierInfo *II, bool AllowBuiltinCreation) {
2058  SourceLocation Loc = Lookup.getNameLoc();
2059  ObjCMethodDecl *CurMethod = getCurMethodDecl();
2060
2061  // Check for error condition which is already reported.
2062  if (!CurMethod)
2063    return ExprError();
2064
2065  // There are two cases to handle here.  1) scoped lookup could have failed,
2066  // in which case we should look for an ivar.  2) scoped lookup could have
2067  // found a decl, but that decl is outside the current instance method (i.e.
2068  // a global variable).  In these two cases, we do a lookup for an ivar with
2069  // this name, if the lookup sucedes, we replace it our current decl.
2070
2071  // If we're in a class method, we don't normally want to look for
2072  // ivars.  But if we don't find anything else, and there's an
2073  // ivar, that's an error.
2074  bool IsClassMethod = CurMethod->isClassMethod();
2075
2076  bool LookForIvars;
2077  if (Lookup.empty())
2078    LookForIvars = true;
2079  else if (IsClassMethod)
2080    LookForIvars = false;
2081  else
2082    LookForIvars = (Lookup.isSingleResult() &&
2083                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2084  ObjCInterfaceDecl *IFace = 0;
2085  if (LookForIvars) {
2086    IFace = CurMethod->getClassInterface();
2087    ObjCInterfaceDecl *ClassDeclared;
2088    ObjCIvarDecl *IV = 0;
2089    if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2090      // Diagnose using an ivar in a class method.
2091      if (IsClassMethod)
2092        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2093                         << IV->getDeclName());
2094
2095      // If we're referencing an invalid decl, just return this as a silent
2096      // error node.  The error diagnostic was already emitted on the decl.
2097      if (IV->isInvalidDecl())
2098        return ExprError();
2099
2100      // Check if referencing a field with __attribute__((deprecated)).
2101      if (DiagnoseUseOfDecl(IV, Loc))
2102        return ExprError();
2103
2104      // Diagnose the use of an ivar outside of the declaring class.
2105      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2106          !declaresSameEntity(ClassDeclared, IFace) &&
2107          !getLangOpts().DebuggerSupport)
2108        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
2109
2110      // FIXME: This should use a new expr for a direct reference, don't
2111      // turn this into Self->ivar, just return a BareIVarExpr or something.
2112      IdentifierInfo &II = Context.Idents.get("self");
2113      UnqualifiedId SelfName;
2114      SelfName.setIdentifier(&II, SourceLocation());
2115      SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
2116      CXXScopeSpec SelfScopeSpec;
2117      SourceLocation TemplateKWLoc;
2118      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
2119                                              SelfName, false, false);
2120      if (SelfExpr.isInvalid())
2121        return ExprError();
2122
2123      SelfExpr = DefaultLvalueConversion(SelfExpr.take());
2124      if (SelfExpr.isInvalid())
2125        return ExprError();
2126
2127      MarkAnyDeclReferenced(Loc, IV, true);
2128
2129      ObjCMethodFamily MF = CurMethod->getMethodFamily();
2130      if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2131          !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2132        Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2133
2134      ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2135                                                              Loc, IV->getLocation(),
2136                                                              SelfExpr.take(),
2137                                                              true, true);
2138
2139      if (getLangOpts().ObjCAutoRefCount) {
2140        if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2141          DiagnosticsEngine::Level Level =
2142            Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
2143          if (Level != DiagnosticsEngine::Ignored)
2144            getCurFunction()->recordUseOfWeak(Result);
2145        }
2146        if (CurContext->isClosure())
2147          Diag(Loc, diag::warn_implicitly_retains_self)
2148            << FixItHint::CreateInsertion(Loc, "self->");
2149      }
2150
2151      return Owned(Result);
2152    }
2153  } else if (CurMethod->isInstanceMethod()) {
2154    // We should warn if a local variable hides an ivar.
2155    if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2156      ObjCInterfaceDecl *ClassDeclared;
2157      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2158        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2159            declaresSameEntity(IFace, ClassDeclared))
2160          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2161      }
2162    }
2163  } else if (Lookup.isSingleResult() &&
2164             Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2165    // If accessing a stand-alone ivar in a class method, this is an error.
2166    if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
2167      return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2168                       << IV->getDeclName());
2169  }
2170
2171  if (Lookup.empty() && II && AllowBuiltinCreation) {
2172    // FIXME. Consolidate this with similar code in LookupName.
2173    if (unsigned BuiltinID = II->getBuiltinID()) {
2174      if (!(getLangOpts().CPlusPlus &&
2175            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2176        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2177                                           S, Lookup.isForRedeclaration(),
2178                                           Lookup.getNameLoc());
2179        if (D) Lookup.addDecl(D);
2180      }
2181    }
2182  }
2183  // Sentinel value saying that we didn't do anything special.
2184  return Owned((Expr*) 0);
2185}
2186
2187/// \brief Cast a base object to a member's actual type.
2188///
2189/// Logically this happens in three phases:
2190///
2191/// * First we cast from the base type to the naming class.
2192///   The naming class is the class into which we were looking
2193///   when we found the member;  it's the qualifier type if a
2194///   qualifier was provided, and otherwise it's the base type.
2195///
2196/// * Next we cast from the naming class to the declaring class.
2197///   If the member we found was brought into a class's scope by
2198///   a using declaration, this is that class;  otherwise it's
2199///   the class declaring the member.
2200///
2201/// * Finally we cast from the declaring class to the "true"
2202///   declaring class of the member.  This conversion does not
2203///   obey access control.
2204ExprResult
2205Sema::PerformObjectMemberConversion(Expr *From,
2206                                    NestedNameSpecifier *Qualifier,
2207                                    NamedDecl *FoundDecl,
2208                                    NamedDecl *Member) {
2209  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2210  if (!RD)
2211    return Owned(From);
2212
2213  QualType DestRecordType;
2214  QualType DestType;
2215  QualType FromRecordType;
2216  QualType FromType = From->getType();
2217  bool PointerConversions = false;
2218  if (isa<FieldDecl>(Member)) {
2219    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2220
2221    if (FromType->getAs<PointerType>()) {
2222      DestType = Context.getPointerType(DestRecordType);
2223      FromRecordType = FromType->getPointeeType();
2224      PointerConversions = true;
2225    } else {
2226      DestType = DestRecordType;
2227      FromRecordType = FromType;
2228    }
2229  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2230    if (Method->isStatic())
2231      return Owned(From);
2232
2233    DestType = Method->getThisType(Context);
2234    DestRecordType = DestType->getPointeeType();
2235
2236    if (FromType->getAs<PointerType>()) {
2237      FromRecordType = FromType->getPointeeType();
2238      PointerConversions = true;
2239    } else {
2240      FromRecordType = FromType;
2241      DestType = DestRecordType;
2242    }
2243  } else {
2244    // No conversion necessary.
2245    return Owned(From);
2246  }
2247
2248  if (DestType->isDependentType() || FromType->isDependentType())
2249    return Owned(From);
2250
2251  // If the unqualified types are the same, no conversion is necessary.
2252  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2253    return Owned(From);
2254
2255  SourceRange FromRange = From->getSourceRange();
2256  SourceLocation FromLoc = FromRange.getBegin();
2257
2258  ExprValueKind VK = From->getValueKind();
2259
2260  // C++ [class.member.lookup]p8:
2261  //   [...] Ambiguities can often be resolved by qualifying a name with its
2262  //   class name.
2263  //
2264  // If the member was a qualified name and the qualified referred to a
2265  // specific base subobject type, we'll cast to that intermediate type
2266  // first and then to the object in which the member is declared. That allows
2267  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2268  //
2269  //   class Base { public: int x; };
2270  //   class Derived1 : public Base { };
2271  //   class Derived2 : public Base { };
2272  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2273  //
2274  //   void VeryDerived::f() {
2275  //     x = 17; // error: ambiguous base subobjects
2276  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2277  //   }
2278  if (Qualifier) {
2279    QualType QType = QualType(Qualifier->getAsType(), 0);
2280    assert(!QType.isNull() && "lookup done with dependent qualifier?");
2281    assert(QType->isRecordType() && "lookup done with non-record type");
2282
2283    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2284
2285    // In C++98, the qualifier type doesn't actually have to be a base
2286    // type of the object type, in which case we just ignore it.
2287    // Otherwise build the appropriate casts.
2288    if (IsDerivedFrom(FromRecordType, QRecordType)) {
2289      CXXCastPath BasePath;
2290      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2291                                       FromLoc, FromRange, &BasePath))
2292        return ExprError();
2293
2294      if (PointerConversions)
2295        QType = Context.getPointerType(QType);
2296      From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2297                               VK, &BasePath).take();
2298
2299      FromType = QType;
2300      FromRecordType = QRecordType;
2301
2302      // If the qualifier type was the same as the destination type,
2303      // we're done.
2304      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2305        return Owned(From);
2306    }
2307  }
2308
2309  bool IgnoreAccess = false;
2310
2311  // If we actually found the member through a using declaration, cast
2312  // down to the using declaration's type.
2313  //
2314  // Pointer equality is fine here because only one declaration of a
2315  // class ever has member declarations.
2316  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2317    assert(isa<UsingShadowDecl>(FoundDecl));
2318    QualType URecordType = Context.getTypeDeclType(
2319                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2320
2321    // We only need to do this if the naming-class to declaring-class
2322    // conversion is non-trivial.
2323    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2324      assert(IsDerivedFrom(FromRecordType, URecordType));
2325      CXXCastPath BasePath;
2326      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2327                                       FromLoc, FromRange, &BasePath))
2328        return ExprError();
2329
2330      QualType UType = URecordType;
2331      if (PointerConversions)
2332        UType = Context.getPointerType(UType);
2333      From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2334                               VK, &BasePath).take();
2335      FromType = UType;
2336      FromRecordType = URecordType;
2337    }
2338
2339    // We don't do access control for the conversion from the
2340    // declaring class to the true declaring class.
2341    IgnoreAccess = true;
2342  }
2343
2344  CXXCastPath BasePath;
2345  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2346                                   FromLoc, FromRange, &BasePath,
2347                                   IgnoreAccess))
2348    return ExprError();
2349
2350  return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2351                           VK, &BasePath);
2352}
2353
2354bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2355                                      const LookupResult &R,
2356                                      bool HasTrailingLParen) {
2357  // Only when used directly as the postfix-expression of a call.
2358  if (!HasTrailingLParen)
2359    return false;
2360
2361  // Never if a scope specifier was provided.
2362  if (SS.isSet())
2363    return false;
2364
2365  // Only in C++ or ObjC++.
2366  if (!getLangOpts().CPlusPlus)
2367    return false;
2368
2369  // Turn off ADL when we find certain kinds of declarations during
2370  // normal lookup:
2371  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2372    NamedDecl *D = *I;
2373
2374    // C++0x [basic.lookup.argdep]p3:
2375    //     -- a declaration of a class member
2376    // Since using decls preserve this property, we check this on the
2377    // original decl.
2378    if (D->isCXXClassMember())
2379      return false;
2380
2381    // C++0x [basic.lookup.argdep]p3:
2382    //     -- a block-scope function declaration that is not a
2383    //        using-declaration
2384    // NOTE: we also trigger this for function templates (in fact, we
2385    // don't check the decl type at all, since all other decl types
2386    // turn off ADL anyway).
2387    if (isa<UsingShadowDecl>(D))
2388      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2389    else if (D->getDeclContext()->isFunctionOrMethod())
2390      return false;
2391
2392    // C++0x [basic.lookup.argdep]p3:
2393    //     -- a declaration that is neither a function or a function
2394    //        template
2395    // And also for builtin functions.
2396    if (isa<FunctionDecl>(D)) {
2397      FunctionDecl *FDecl = cast<FunctionDecl>(D);
2398
2399      // But also builtin functions.
2400      if (FDecl->getBuiltinID() && FDecl->isImplicit())
2401        return false;
2402    } else if (!isa<FunctionTemplateDecl>(D))
2403      return false;
2404  }
2405
2406  return true;
2407}
2408
2409
2410/// Diagnoses obvious problems with the use of the given declaration
2411/// as an expression.  This is only actually called for lookups that
2412/// were not overloaded, and it doesn't promise that the declaration
2413/// will in fact be used.
2414static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2415  if (isa<TypedefNameDecl>(D)) {
2416    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2417    return true;
2418  }
2419
2420  if (isa<ObjCInterfaceDecl>(D)) {
2421    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2422    return true;
2423  }
2424
2425  if (isa<NamespaceDecl>(D)) {
2426    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2427    return true;
2428  }
2429
2430  return false;
2431}
2432
2433ExprResult
2434Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2435                               LookupResult &R,
2436                               bool NeedsADL) {
2437  // If this is a single, fully-resolved result and we don't need ADL,
2438  // just build an ordinary singleton decl ref.
2439  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2440    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
2441                                    R.getRepresentativeDecl());
2442
2443  // We only need to check the declaration if there's exactly one
2444  // result, because in the overloaded case the results can only be
2445  // functions and function templates.
2446  if (R.isSingleResult() &&
2447      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2448    return ExprError();
2449
2450  // Otherwise, just build an unresolved lookup expression.  Suppress
2451  // any lookup-related diagnostics; we'll hash these out later, when
2452  // we've picked a target.
2453  R.suppressDiagnostics();
2454
2455  UnresolvedLookupExpr *ULE
2456    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2457                                   SS.getWithLocInContext(Context),
2458                                   R.getLookupNameInfo(),
2459                                   NeedsADL, R.isOverloadedResult(),
2460                                   R.begin(), R.end());
2461
2462  return Owned(ULE);
2463}
2464
2465/// \brief Complete semantic analysis for a reference to the given declaration.
2466ExprResult
2467Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2468                               const DeclarationNameInfo &NameInfo,
2469                               NamedDecl *D, NamedDecl *FoundD) {
2470  assert(D && "Cannot refer to a NULL declaration");
2471  assert(!isa<FunctionTemplateDecl>(D) &&
2472         "Cannot refer unambiguously to a function template");
2473
2474  SourceLocation Loc = NameInfo.getLoc();
2475  if (CheckDeclInExpr(*this, Loc, D))
2476    return ExprError();
2477
2478  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2479    // Specifically diagnose references to class templates that are missing
2480    // a template argument list.
2481    Diag(Loc, diag::err_template_decl_ref)
2482      << Template << SS.getRange();
2483    Diag(Template->getLocation(), diag::note_template_decl_here);
2484    return ExprError();
2485  }
2486
2487  // Make sure that we're referring to a value.
2488  ValueDecl *VD = dyn_cast<ValueDecl>(D);
2489  if (!VD) {
2490    Diag(Loc, diag::err_ref_non_value)
2491      << D << SS.getRange();
2492    Diag(D->getLocation(), diag::note_declared_at);
2493    return ExprError();
2494  }
2495
2496  // Check whether this declaration can be used. Note that we suppress
2497  // this check when we're going to perform argument-dependent lookup
2498  // on this function name, because this might not be the function
2499  // that overload resolution actually selects.
2500  if (DiagnoseUseOfDecl(VD, Loc))
2501    return ExprError();
2502
2503  // Only create DeclRefExpr's for valid Decl's.
2504  if (VD->isInvalidDecl())
2505    return ExprError();
2506
2507  // Handle members of anonymous structs and unions.  If we got here,
2508  // and the reference is to a class member indirect field, then this
2509  // must be the subject of a pointer-to-member expression.
2510  if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2511    if (!indirectField->isCXXClassMember())
2512      return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2513                                                      indirectField);
2514
2515  {
2516    QualType type = VD->getType();
2517    ExprValueKind valueKind = VK_RValue;
2518
2519    switch (D->getKind()) {
2520    // Ignore all the non-ValueDecl kinds.
2521#define ABSTRACT_DECL(kind)
2522#define VALUE(type, base)
2523#define DECL(type, base) \
2524    case Decl::type:
2525#include "clang/AST/DeclNodes.inc"
2526      llvm_unreachable("invalid value decl kind");
2527
2528    // These shouldn't make it here.
2529    case Decl::ObjCAtDefsField:
2530    case Decl::ObjCIvar:
2531      llvm_unreachable("forming non-member reference to ivar?");
2532
2533    // Enum constants are always r-values and never references.
2534    // Unresolved using declarations are dependent.
2535    case Decl::EnumConstant:
2536    case Decl::UnresolvedUsingValue:
2537      valueKind = VK_RValue;
2538      break;
2539
2540    // Fields and indirect fields that got here must be for
2541    // pointer-to-member expressions; we just call them l-values for
2542    // internal consistency, because this subexpression doesn't really
2543    // exist in the high-level semantics.
2544    case Decl::Field:
2545    case Decl::IndirectField:
2546      assert(getLangOpts().CPlusPlus &&
2547             "building reference to field in C?");
2548
2549      // These can't have reference type in well-formed programs, but
2550      // for internal consistency we do this anyway.
2551      type = type.getNonReferenceType();
2552      valueKind = VK_LValue;
2553      break;
2554
2555    // Non-type template parameters are either l-values or r-values
2556    // depending on the type.
2557    case Decl::NonTypeTemplateParm: {
2558      if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2559        type = reftype->getPointeeType();
2560        valueKind = VK_LValue; // even if the parameter is an r-value reference
2561        break;
2562      }
2563
2564      // For non-references, we need to strip qualifiers just in case
2565      // the template parameter was declared as 'const int' or whatever.
2566      valueKind = VK_RValue;
2567      type = type.getUnqualifiedType();
2568      break;
2569    }
2570
2571    case Decl::Var:
2572      // In C, "extern void blah;" is valid and is an r-value.
2573      if (!getLangOpts().CPlusPlus &&
2574          !type.hasQualifiers() &&
2575          type->isVoidType()) {
2576        valueKind = VK_RValue;
2577        break;
2578      }
2579      // fallthrough
2580
2581    case Decl::ImplicitParam:
2582    case Decl::ParmVar: {
2583      // These are always l-values.
2584      valueKind = VK_LValue;
2585      type = type.getNonReferenceType();
2586
2587      // FIXME: Does the addition of const really only apply in
2588      // potentially-evaluated contexts? Since the variable isn't actually
2589      // captured in an unevaluated context, it seems that the answer is no.
2590      if (!isUnevaluatedContext()) {
2591        QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2592        if (!CapturedType.isNull())
2593          type = CapturedType;
2594      }
2595
2596      break;
2597    }
2598
2599    case Decl::Function: {
2600      if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
2601        if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
2602          type = Context.BuiltinFnTy;
2603          valueKind = VK_RValue;
2604          break;
2605        }
2606      }
2607
2608      const FunctionType *fty = type->castAs<FunctionType>();
2609
2610      // If we're referring to a function with an __unknown_anytype
2611      // result type, make the entire expression __unknown_anytype.
2612      if (fty->getResultType() == Context.UnknownAnyTy) {
2613        type = Context.UnknownAnyTy;
2614        valueKind = VK_RValue;
2615        break;
2616      }
2617
2618      // Functions are l-values in C++.
2619      if (getLangOpts().CPlusPlus) {
2620        valueKind = VK_LValue;
2621        break;
2622      }
2623
2624      // C99 DR 316 says that, if a function type comes from a
2625      // function definition (without a prototype), that type is only
2626      // used for checking compatibility. Therefore, when referencing
2627      // the function, we pretend that we don't have the full function
2628      // type.
2629      if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2630          isa<FunctionProtoType>(fty))
2631        type = Context.getFunctionNoProtoType(fty->getResultType(),
2632                                              fty->getExtInfo());
2633
2634      // Functions are r-values in C.
2635      valueKind = VK_RValue;
2636      break;
2637    }
2638
2639    case Decl::CXXMethod:
2640      // If we're referring to a method with an __unknown_anytype
2641      // result type, make the entire expression __unknown_anytype.
2642      // This should only be possible with a type written directly.
2643      if (const FunctionProtoType *proto
2644            = dyn_cast<FunctionProtoType>(VD->getType()))
2645        if (proto->getResultType() == Context.UnknownAnyTy) {
2646          type = Context.UnknownAnyTy;
2647          valueKind = VK_RValue;
2648          break;
2649        }
2650
2651      // C++ methods are l-values if static, r-values if non-static.
2652      if (cast<CXXMethodDecl>(VD)->isStatic()) {
2653        valueKind = VK_LValue;
2654        break;
2655      }
2656      // fallthrough
2657
2658    case Decl::CXXConversion:
2659    case Decl::CXXDestructor:
2660    case Decl::CXXConstructor:
2661      valueKind = VK_RValue;
2662      break;
2663    }
2664
2665    return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD);
2666  }
2667}
2668
2669ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2670  PredefinedExpr::IdentType IT;
2671
2672  switch (Kind) {
2673  default: llvm_unreachable("Unknown simple primary expr!");
2674  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2675  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2676  case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
2677  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2678  }
2679
2680  // Pre-defined identifiers are of type char[x], where x is the length of the
2681  // string.
2682
2683  Decl *currentDecl = getCurFunctionOrMethodDecl();
2684  // Blocks and lambdas can occur at global scope. Don't emit a warning.
2685  if (!currentDecl) {
2686    if (const BlockScopeInfo *BSI = getCurBlock())
2687      currentDecl = BSI->TheDecl;
2688    else if (const LambdaScopeInfo *LSI = getCurLambda())
2689      currentDecl = LSI->CallOperator;
2690  }
2691
2692  if (!currentDecl) {
2693    Diag(Loc, diag::ext_predef_outside_function);
2694    currentDecl = Context.getTranslationUnitDecl();
2695  }
2696
2697  QualType ResTy;
2698  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2699    ResTy = Context.DependentTy;
2700  } else {
2701    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2702
2703    llvm::APInt LengthI(32, Length + 1);
2704    if (IT == PredefinedExpr::LFunction)
2705      ResTy = Context.WCharTy.withConst();
2706    else
2707      ResTy = Context.CharTy.withConst();
2708    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2709  }
2710  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2711}
2712
2713ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
2714  SmallString<16> CharBuffer;
2715  bool Invalid = false;
2716  StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2717  if (Invalid)
2718    return ExprError();
2719
2720  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2721                            PP, Tok.getKind());
2722  if (Literal.hadError())
2723    return ExprError();
2724
2725  QualType Ty;
2726  if (Literal.isWide())
2727    Ty = Context.WCharTy; // L'x' -> wchar_t in C and C++.
2728  else if (Literal.isUTF16())
2729    Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
2730  else if (Literal.isUTF32())
2731    Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
2732  else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
2733    Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
2734  else
2735    Ty = Context.CharTy;  // 'x' -> char in C++
2736
2737  CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
2738  if (Literal.isWide())
2739    Kind = CharacterLiteral::Wide;
2740  else if (Literal.isUTF16())
2741    Kind = CharacterLiteral::UTF16;
2742  else if (Literal.isUTF32())
2743    Kind = CharacterLiteral::UTF32;
2744
2745  Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
2746                                             Tok.getLocation());
2747
2748  if (Literal.getUDSuffix().empty())
2749    return Owned(Lit);
2750
2751  // We're building a user-defined literal.
2752  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2753  SourceLocation UDSuffixLoc =
2754    getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2755
2756  // Make sure we're allowed user-defined literals here.
2757  if (!UDLScope)
2758    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
2759
2760  // C++11 [lex.ext]p6: The literal L is treated as a call of the form
2761  //   operator "" X (ch)
2762  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
2763                                        llvm::makeArrayRef(&Lit, 1),
2764                                        Tok.getLocation());
2765}
2766
2767ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
2768  unsigned IntSize = Context.getTargetInfo().getIntWidth();
2769  return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
2770                                      Context.IntTy, Loc));
2771}
2772
2773static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
2774                                  QualType Ty, SourceLocation Loc) {
2775  const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
2776
2777  using llvm::APFloat;
2778  APFloat Val(Format);
2779
2780  APFloat::opStatus result = Literal.GetFloatValue(Val);
2781
2782  // Overflow is always an error, but underflow is only an error if
2783  // we underflowed to zero (APFloat reports denormals as underflow).
2784  if ((result & APFloat::opOverflow) ||
2785      ((result & APFloat::opUnderflow) && Val.isZero())) {
2786    unsigned diagnostic;
2787    SmallString<20> buffer;
2788    if (result & APFloat::opOverflow) {
2789      diagnostic = diag::warn_float_overflow;
2790      APFloat::getLargest(Format).toString(buffer);
2791    } else {
2792      diagnostic = diag::warn_float_underflow;
2793      APFloat::getSmallest(Format).toString(buffer);
2794    }
2795
2796    S.Diag(Loc, diagnostic)
2797      << Ty
2798      << StringRef(buffer.data(), buffer.size());
2799  }
2800
2801  bool isExact = (result == APFloat::opOK);
2802  return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
2803}
2804
2805ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
2806  // Fast path for a single digit (which is quite common).  A single digit
2807  // cannot have a trigraph, escaped newline, radix prefix, or suffix.
2808  if (Tok.getLength() == 1) {
2809    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2810    return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
2811  }
2812
2813  SmallString<128> SpellingBuffer;
2814  // NumericLiteralParser wants to overread by one character.  Add padding to
2815  // the buffer in case the token is copied to the buffer.  If getSpelling()
2816  // returns a StringRef to the memory buffer, it should have a null char at
2817  // the EOF, so it is also safe.
2818  SpellingBuffer.resize(Tok.getLength() + 1);
2819
2820  // Get the spelling of the token, which eliminates trigraphs, etc.
2821  bool Invalid = false;
2822  StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
2823  if (Invalid)
2824    return ExprError();
2825
2826  NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
2827  if (Literal.hadError)
2828    return ExprError();
2829
2830  if (Literal.hasUDSuffix()) {
2831    // We're building a user-defined literal.
2832    IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2833    SourceLocation UDSuffixLoc =
2834      getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2835
2836    // Make sure we're allowed user-defined literals here.
2837    if (!UDLScope)
2838      return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
2839
2840    QualType CookedTy;
2841    if (Literal.isFloatingLiteral()) {
2842      // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
2843      // long double, the literal is treated as a call of the form
2844      //   operator "" X (f L)
2845      CookedTy = Context.LongDoubleTy;
2846    } else {
2847      // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
2848      // unsigned long long, the literal is treated as a call of the form
2849      //   operator "" X (n ULL)
2850      CookedTy = Context.UnsignedLongLongTy;
2851    }
2852
2853    DeclarationName OpName =
2854      Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2855    DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2856    OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2857
2858    // Perform literal operator lookup to determine if we're building a raw
2859    // literal or a cooked one.
2860    LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2861    switch (LookupLiteralOperator(UDLScope, R, llvm::makeArrayRef(&CookedTy, 1),
2862                                  /*AllowRawAndTemplate*/true)) {
2863    case LOLR_Error:
2864      return ExprError();
2865
2866    case LOLR_Cooked: {
2867      Expr *Lit;
2868      if (Literal.isFloatingLiteral()) {
2869        Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
2870      } else {
2871        llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
2872        if (Literal.GetIntegerValue(ResultVal))
2873          Diag(Tok.getLocation(), diag::warn_integer_too_large);
2874        Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
2875                                     Tok.getLocation());
2876      }
2877      return BuildLiteralOperatorCall(R, OpNameInfo,
2878                                      llvm::makeArrayRef(&Lit, 1),
2879                                      Tok.getLocation());
2880    }
2881
2882    case LOLR_Raw: {
2883      // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
2884      // literal is treated as a call of the form
2885      //   operator "" X ("n")
2886      SourceLocation TokLoc = Tok.getLocation();
2887      unsigned Length = Literal.getUDSuffixOffset();
2888      QualType StrTy = Context.getConstantArrayType(
2889          Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
2890          ArrayType::Normal, 0);
2891      Expr *Lit = StringLiteral::Create(
2892          Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
2893          /*Pascal*/false, StrTy, &TokLoc, 1);
2894      return BuildLiteralOperatorCall(R, OpNameInfo,
2895                                      llvm::makeArrayRef(&Lit, 1), TokLoc);
2896    }
2897
2898    case LOLR_Template:
2899      // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
2900      // template), L is treated as a call fo the form
2901      //   operator "" X <'c1', 'c2', ... 'ck'>()
2902      // where n is the source character sequence c1 c2 ... ck.
2903      TemplateArgumentListInfo ExplicitArgs;
2904      unsigned CharBits = Context.getIntWidth(Context.CharTy);
2905      bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
2906      llvm::APSInt Value(CharBits, CharIsUnsigned);
2907      for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
2908        Value = TokSpelling[I];
2909        TemplateArgument Arg(Context, Value, Context.CharTy);
2910        TemplateArgumentLocInfo ArgInfo;
2911        ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2912      }
2913      return BuildLiteralOperatorCall(R, OpNameInfo, ArrayRef<Expr*>(),
2914                                      Tok.getLocation(), &ExplicitArgs);
2915    }
2916
2917    llvm_unreachable("unexpected literal operator lookup result");
2918  }
2919
2920  Expr *Res;
2921
2922  if (Literal.isFloatingLiteral()) {
2923    QualType Ty;
2924    if (Literal.isFloat)
2925      Ty = Context.FloatTy;
2926    else if (!Literal.isLong)
2927      Ty = Context.DoubleTy;
2928    else
2929      Ty = Context.LongDoubleTy;
2930
2931    Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
2932
2933    if (Ty == Context.DoubleTy) {
2934      if (getLangOpts().SinglePrecisionConstants) {
2935        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2936      } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
2937        Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
2938        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2939      }
2940    }
2941  } else if (!Literal.isIntegerLiteral()) {
2942    return ExprError();
2943  } else {
2944    QualType Ty;
2945
2946    // 'long long' is a C99 or C++11 feature.
2947    if (!getLangOpts().C99 && Literal.isLongLong) {
2948      if (getLangOpts().CPlusPlus)
2949        Diag(Tok.getLocation(),
2950             getLangOpts().CPlusPlus11 ?
2951             diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
2952      else
2953        Diag(Tok.getLocation(), diag::ext_c99_longlong);
2954    }
2955
2956    // Get the value in the widest-possible width.
2957    unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
2958    // The microsoft literal suffix extensions support 128-bit literals, which
2959    // may be wider than [u]intmax_t.
2960    // FIXME: Actually, they don't. We seem to have accidentally invented the
2961    //        i128 suffix.
2962    if (Literal.isMicrosoftInteger && MaxWidth < 128 &&
2963        PP.getTargetInfo().hasInt128Type())
2964      MaxWidth = 128;
2965    llvm::APInt ResultVal(MaxWidth, 0);
2966
2967    if (Literal.GetIntegerValue(ResultVal)) {
2968      // If this value didn't fit into uintmax_t, warn and force to ull.
2969      Diag(Tok.getLocation(), diag::warn_integer_too_large);
2970      Ty = Context.UnsignedLongLongTy;
2971      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2972             "long long is not intmax_t?");
2973    } else {
2974      // If this value fits into a ULL, try to figure out what else it fits into
2975      // according to the rules of C99 6.4.4.1p5.
2976
2977      // Octal, Hexadecimal, and integers with a U suffix are allowed to
2978      // be an unsigned int.
2979      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2980
2981      // Check from smallest to largest, picking the smallest type we can.
2982      unsigned Width = 0;
2983      if (!Literal.isLong && !Literal.isLongLong) {
2984        // Are int/unsigned possibilities?
2985        unsigned IntSize = Context.getTargetInfo().getIntWidth();
2986
2987        // Does it fit in a unsigned int?
2988        if (ResultVal.isIntN(IntSize)) {
2989          // Does it fit in a signed int?
2990          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2991            Ty = Context.IntTy;
2992          else if (AllowUnsigned)
2993            Ty = Context.UnsignedIntTy;
2994          Width = IntSize;
2995        }
2996      }
2997
2998      // Are long/unsigned long possibilities?
2999      if (Ty.isNull() && !Literal.isLongLong) {
3000        unsigned LongSize = Context.getTargetInfo().getLongWidth();
3001
3002        // Does it fit in a unsigned long?
3003        if (ResultVal.isIntN(LongSize)) {
3004          // Does it fit in a signed long?
3005          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3006            Ty = Context.LongTy;
3007          else if (AllowUnsigned)
3008            Ty = Context.UnsignedLongTy;
3009          Width = LongSize;
3010        }
3011      }
3012
3013      // Check long long if needed.
3014      if (Ty.isNull()) {
3015        unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3016
3017        // Does it fit in a unsigned long long?
3018        if (ResultVal.isIntN(LongLongSize)) {
3019          // Does it fit in a signed long long?
3020          // To be compatible with MSVC, hex integer literals ending with the
3021          // LL or i64 suffix are always signed in Microsoft mode.
3022          if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3023              (getLangOpts().MicrosoftExt && Literal.isLongLong)))
3024            Ty = Context.LongLongTy;
3025          else if (AllowUnsigned)
3026            Ty = Context.UnsignedLongLongTy;
3027          Width = LongLongSize;
3028        }
3029      }
3030
3031      // If it doesn't fit in unsigned long long, and we're using Microsoft
3032      // extensions, then its a 128-bit integer literal.
3033      if (Ty.isNull() && Literal.isMicrosoftInteger &&
3034          PP.getTargetInfo().hasInt128Type()) {
3035        if (Literal.isUnsigned)
3036          Ty = Context.UnsignedInt128Ty;
3037        else
3038          Ty = Context.Int128Ty;
3039        Width = 128;
3040      }
3041
3042      // If we still couldn't decide a type, we probably have something that
3043      // does not fit in a signed long long, but has no U suffix.
3044      if (Ty.isNull()) {
3045        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
3046        Ty = Context.UnsignedLongLongTy;
3047        Width = Context.getTargetInfo().getLongLongWidth();
3048      }
3049
3050      if (ResultVal.getBitWidth() != Width)
3051        ResultVal = ResultVal.trunc(Width);
3052    }
3053    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
3054  }
3055
3056  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
3057  if (Literal.isImaginary)
3058    Res = new (Context) ImaginaryLiteral(Res,
3059                                        Context.getComplexType(Res->getType()));
3060
3061  return Owned(Res);
3062}
3063
3064ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
3065  assert((E != 0) && "ActOnParenExpr() missing expr");
3066  return Owned(new (Context) ParenExpr(L, R, E));
3067}
3068
3069static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
3070                                         SourceLocation Loc,
3071                                         SourceRange ArgRange) {
3072  // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
3073  // scalar or vector data type argument..."
3074  // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
3075  // type (C99 6.2.5p18) or void.
3076  if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
3077    S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
3078      << T << ArgRange;
3079    return true;
3080  }
3081
3082  assert((T->isVoidType() || !T->isIncompleteType()) &&
3083         "Scalar types should always be complete");
3084  return false;
3085}
3086
3087static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
3088                                           SourceLocation Loc,
3089                                           SourceRange ArgRange,
3090                                           UnaryExprOrTypeTrait TraitKind) {
3091  // C99 6.5.3.4p1:
3092  if (T->isFunctionType() &&
3093      (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
3094    // sizeof(function)/alignof(function) is allowed as an extension.
3095    S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
3096      << TraitKind << ArgRange;
3097    return false;
3098  }
3099
3100  // Allow sizeof(void)/alignof(void) as an extension.
3101  if (T->isVoidType()) {
3102    S.Diag(Loc, diag::ext_sizeof_alignof_void_type) << TraitKind << ArgRange;
3103    return false;
3104  }
3105
3106  return true;
3107}
3108
3109static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
3110                                             SourceLocation Loc,
3111                                             SourceRange ArgRange,
3112                                             UnaryExprOrTypeTrait TraitKind) {
3113  // Reject sizeof(interface) and sizeof(interface<proto>) if the
3114  // runtime doesn't allow it.
3115  if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
3116    S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
3117      << T << (TraitKind == UETT_SizeOf)
3118      << ArgRange;
3119    return true;
3120  }
3121
3122  return false;
3123}
3124
3125/// \brief Check whether E is a pointer from a decayed array type (the decayed
3126/// pointer type is equal to T) and emit a warning if it is.
3127static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
3128                                     Expr *E) {
3129  // Don't warn if the operation changed the type.
3130  if (T != E->getType())
3131    return;
3132
3133  // Now look for array decays.
3134  ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
3135  if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
3136    return;
3137
3138  S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
3139                                             << ICE->getType()
3140                                             << ICE->getSubExpr()->getType();
3141}
3142
3143/// \brief Check the constrains on expression operands to unary type expression
3144/// and type traits.
3145///
3146/// Completes any types necessary and validates the constraints on the operand
3147/// expression. The logic mostly mirrors the type-based overload, but may modify
3148/// the expression as it completes the type for that expression through template
3149/// instantiation, etc.
3150bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
3151                                            UnaryExprOrTypeTrait ExprKind) {
3152  QualType ExprTy = E->getType();
3153
3154  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
3155  //   the result is the size of the referenced type."
3156  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
3157  //   result shall be the alignment of the referenced type."
3158  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
3159    ExprTy = Ref->getPointeeType();
3160
3161  if (ExprKind == UETT_VecStep)
3162    return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
3163                                        E->getSourceRange());
3164
3165  // Whitelist some types as extensions
3166  if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
3167                                      E->getSourceRange(), ExprKind))
3168    return false;
3169
3170  if (RequireCompleteExprType(E,
3171                              diag::err_sizeof_alignof_incomplete_type,
3172                              ExprKind, E->getSourceRange()))
3173    return true;
3174
3175  // Completeing the expression's type may have changed it.
3176  ExprTy = E->getType();
3177  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
3178    ExprTy = Ref->getPointeeType();
3179
3180  if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
3181                                       E->getSourceRange(), ExprKind))
3182    return true;
3183
3184  if (ExprKind == UETT_SizeOf) {
3185    if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3186      if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
3187        QualType OType = PVD->getOriginalType();
3188        QualType Type = PVD->getType();
3189        if (Type->isPointerType() && OType->isArrayType()) {
3190          Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
3191            << Type << OType;
3192          Diag(PVD->getLocation(), diag::note_declared_at);
3193        }
3194      }
3195    }
3196
3197    // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
3198    // decays into a pointer and returns an unintended result. This is most
3199    // likely a typo for "sizeof(array) op x".
3200    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
3201      warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3202                               BO->getLHS());
3203      warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3204                               BO->getRHS());
3205    }
3206  }
3207
3208  return false;
3209}
3210
3211/// \brief Check the constraints on operands to unary expression and type
3212/// traits.
3213///
3214/// This will complete any types necessary, and validate the various constraints
3215/// on those operands.
3216///
3217/// The UsualUnaryConversions() function is *not* called by this routine.
3218/// C99 6.3.2.1p[2-4] all state:
3219///   Except when it is the operand of the sizeof operator ...
3220///
3221/// C++ [expr.sizeof]p4
3222///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3223///   standard conversions are not applied to the operand of sizeof.
3224///
3225/// This policy is followed for all of the unary trait expressions.
3226bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
3227                                            SourceLocation OpLoc,
3228                                            SourceRange ExprRange,
3229                                            UnaryExprOrTypeTrait ExprKind) {
3230  if (ExprType->isDependentType())
3231    return false;
3232
3233  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
3234  //   the result is the size of the referenced type."
3235  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
3236  //   result shall be the alignment of the referenced type."
3237  if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3238    ExprType = Ref->getPointeeType();
3239
3240  if (ExprKind == UETT_VecStep)
3241    return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3242
3243  // Whitelist some types as extensions
3244  if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3245                                      ExprKind))
3246    return false;
3247
3248  if (RequireCompleteType(OpLoc, ExprType,
3249                          diag::err_sizeof_alignof_incomplete_type,
3250                          ExprKind, ExprRange))
3251    return true;
3252
3253  if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3254                                       ExprKind))
3255    return true;
3256
3257  return false;
3258}
3259
3260static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3261  E = E->IgnoreParens();
3262
3263  // alignof decl is always ok.
3264  if (isa<DeclRefExpr>(E))
3265    return false;
3266
3267  // Cannot know anything else if the expression is dependent.
3268  if (E->isTypeDependent())
3269    return false;
3270
3271  if (E->getBitField()) {
3272    S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
3273       << 1 << E->getSourceRange();
3274    return true;
3275  }
3276
3277  // Alignment of a field access is always okay, so long as it isn't a
3278  // bit-field.
3279  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
3280    if (isa<FieldDecl>(ME->getMemberDecl()))
3281      return false;
3282
3283  return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3284}
3285
3286bool Sema::CheckVecStepExpr(Expr *E) {
3287  E = E->IgnoreParens();
3288
3289  // Cannot know anything else if the expression is dependent.
3290  if (E->isTypeDependent())
3291    return false;
3292
3293  return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3294}
3295
3296/// \brief Build a sizeof or alignof expression given a type operand.
3297ExprResult
3298Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3299                                     SourceLocation OpLoc,
3300                                     UnaryExprOrTypeTrait ExprKind,
3301                                     SourceRange R) {
3302  if (!TInfo)
3303    return ExprError();
3304
3305  QualType T = TInfo->getType();
3306
3307  if (!T->isDependentType() &&
3308      CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3309    return ExprError();
3310
3311  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3312  return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
3313                                                      Context.getSizeType(),
3314                                                      OpLoc, R.getEnd()));
3315}
3316
3317/// \brief Build a sizeof or alignof expression given an expression
3318/// operand.
3319ExprResult
3320Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
3321                                     UnaryExprOrTypeTrait ExprKind) {
3322  ExprResult PE = CheckPlaceholderExpr(E);
3323  if (PE.isInvalid())
3324    return ExprError();
3325
3326  E = PE.get();
3327
3328  // Verify that the operand is valid.
3329  bool isInvalid = false;
3330  if (E->isTypeDependent()) {
3331    // Delay type-checking for type-dependent expressions.
3332  } else if (ExprKind == UETT_AlignOf) {
3333    isInvalid = CheckAlignOfExpr(*this, E);
3334  } else if (ExprKind == UETT_VecStep) {
3335    isInvalid = CheckVecStepExpr(E);
3336  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
3337    Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
3338    isInvalid = true;
3339  } else {
3340    isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3341  }
3342
3343  if (isInvalid)
3344    return ExprError();
3345
3346  if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
3347    PE = TransformToPotentiallyEvaluated(E);
3348    if (PE.isInvalid()) return ExprError();
3349    E = PE.take();
3350  }
3351
3352  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3353  return Owned(new (Context) UnaryExprOrTypeTraitExpr(
3354      ExprKind, E, Context.getSizeType(), OpLoc,
3355      E->getSourceRange().getEnd()));
3356}
3357
3358/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3359/// expr and the same for @c alignof and @c __alignof
3360/// Note that the ArgRange is invalid if isType is false.
3361ExprResult
3362Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3363                                    UnaryExprOrTypeTrait ExprKind, bool IsType,
3364                                    void *TyOrEx, const SourceRange &ArgRange) {
3365  // If error parsing type, ignore.
3366  if (TyOrEx == 0) return ExprError();
3367
3368  if (IsType) {
3369    TypeSourceInfo *TInfo;
3370    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3371    return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3372  }
3373
3374  Expr *ArgEx = (Expr *)TyOrEx;
3375  ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3376  return Result;
3377}
3378
3379static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3380                                     bool IsReal) {
3381  if (V.get()->isTypeDependent())
3382    return S.Context.DependentTy;
3383
3384  // _Real and _Imag are only l-values for normal l-values.
3385  if (V.get()->getObjectKind() != OK_Ordinary) {
3386    V = S.DefaultLvalueConversion(V.take());
3387    if (V.isInvalid())
3388      return QualType();
3389  }
3390
3391  // These operators return the element type of a complex type.
3392  if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3393    return CT->getElementType();
3394
3395  // Otherwise they pass through real integer and floating point types here.
3396  if (V.get()->getType()->isArithmeticType())
3397    return V.get()->getType();
3398
3399  // Test for placeholders.
3400  ExprResult PR = S.CheckPlaceholderExpr(V.get());
3401  if (PR.isInvalid()) return QualType();
3402  if (PR.get() != V.get()) {
3403    V = PR;
3404    return CheckRealImagOperand(S, V, Loc, IsReal);
3405  }
3406
3407  // Reject anything else.
3408  S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3409    << (IsReal ? "__real" : "__imag");
3410  return QualType();
3411}
3412
3413
3414
3415ExprResult
3416Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3417                          tok::TokenKind Kind, Expr *Input) {
3418  UnaryOperatorKind Opc;
3419  switch (Kind) {
3420  default: llvm_unreachable("Unknown unary op!");
3421  case tok::plusplus:   Opc = UO_PostInc; break;
3422  case tok::minusminus: Opc = UO_PostDec; break;
3423  }
3424
3425  // Since this might is a postfix expression, get rid of ParenListExprs.
3426  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3427  if (Result.isInvalid()) return ExprError();
3428  Input = Result.take();
3429
3430  return BuildUnaryOp(S, OpLoc, Opc, Input);
3431}
3432
3433/// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
3434///
3435/// \return true on error
3436static bool checkArithmeticOnObjCPointer(Sema &S,
3437                                         SourceLocation opLoc,
3438                                         Expr *op) {
3439  assert(op->getType()->isObjCObjectPointerType());
3440  if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic())
3441    return false;
3442
3443  S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
3444    << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
3445    << op->getSourceRange();
3446  return true;
3447}
3448
3449ExprResult
3450Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
3451                              Expr *idx, SourceLocation rbLoc) {
3452  // Since this might be a postfix expression, get rid of ParenListExprs.
3453  if (isa<ParenListExpr>(base)) {
3454    ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
3455    if (result.isInvalid()) return ExprError();
3456    base = result.take();
3457  }
3458
3459  // Handle any non-overload placeholder types in the base and index
3460  // expressions.  We can't handle overloads here because the other
3461  // operand might be an overloadable type, in which case the overload
3462  // resolution for the operator overload should get the first crack
3463  // at the overload.
3464  if (base->getType()->isNonOverloadPlaceholderType()) {
3465    ExprResult result = CheckPlaceholderExpr(base);
3466    if (result.isInvalid()) return ExprError();
3467    base = result.take();
3468  }
3469  if (idx->getType()->isNonOverloadPlaceholderType()) {
3470    ExprResult result = CheckPlaceholderExpr(idx);
3471    if (result.isInvalid()) return ExprError();
3472    idx = result.take();
3473  }
3474
3475  // Build an unanalyzed expression if either operand is type-dependent.
3476  if (getLangOpts().CPlusPlus &&
3477      (base->isTypeDependent() || idx->isTypeDependent())) {
3478    return Owned(new (Context) ArraySubscriptExpr(base, idx,
3479                                                  Context.DependentTy,
3480                                                  VK_LValue, OK_Ordinary,
3481                                                  rbLoc));
3482  }
3483
3484  // Use C++ overloaded-operator rules if either operand has record
3485  // type.  The spec says to do this if either type is *overloadable*,
3486  // but enum types can't declare subscript operators or conversion
3487  // operators, so there's nothing interesting for overload resolution
3488  // to do if there aren't any record types involved.
3489  //
3490  // ObjC pointers have their own subscripting logic that is not tied
3491  // to overload resolution and so should not take this path.
3492  if (getLangOpts().CPlusPlus &&
3493      (base->getType()->isRecordType() ||
3494       (!base->getType()->isObjCObjectPointerType() &&
3495        idx->getType()->isRecordType()))) {
3496    return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
3497  }
3498
3499  return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
3500}
3501
3502ExprResult
3503Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3504                                      Expr *Idx, SourceLocation RLoc) {
3505  Expr *LHSExp = Base;
3506  Expr *RHSExp = Idx;
3507
3508  // Perform default conversions.
3509  if (!LHSExp->getType()->getAs<VectorType>()) {
3510    ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3511    if (Result.isInvalid())
3512      return ExprError();
3513    LHSExp = Result.take();
3514  }
3515  ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3516  if (Result.isInvalid())
3517    return ExprError();
3518  RHSExp = Result.take();
3519
3520  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3521  ExprValueKind VK = VK_LValue;
3522  ExprObjectKind OK = OK_Ordinary;
3523
3524  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3525  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3526  // in the subscript position. As a result, we need to derive the array base
3527  // and index from the expression types.
3528  Expr *BaseExpr, *IndexExpr;
3529  QualType ResultType;
3530  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3531    BaseExpr = LHSExp;
3532    IndexExpr = RHSExp;
3533    ResultType = Context.DependentTy;
3534  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3535    BaseExpr = LHSExp;
3536    IndexExpr = RHSExp;
3537    ResultType = PTy->getPointeeType();
3538  } else if (const ObjCObjectPointerType *PTy =
3539               LHSTy->getAs<ObjCObjectPointerType>()) {
3540    BaseExpr = LHSExp;
3541    IndexExpr = RHSExp;
3542
3543    // Use custom logic if this should be the pseudo-object subscript
3544    // expression.
3545    if (!LangOpts.ObjCRuntime.isSubscriptPointerArithmetic())
3546      return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
3547
3548    ResultType = PTy->getPointeeType();
3549    if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3550      Diag(LLoc, diag::err_subscript_nonfragile_interface)
3551        << ResultType << BaseExpr->getSourceRange();
3552      return ExprError();
3553    }
3554  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3555     // Handle the uncommon case of "123[Ptr]".
3556    BaseExpr = RHSExp;
3557    IndexExpr = LHSExp;
3558    ResultType = PTy->getPointeeType();
3559  } else if (const ObjCObjectPointerType *PTy =
3560               RHSTy->getAs<ObjCObjectPointerType>()) {
3561     // Handle the uncommon case of "123[Ptr]".
3562    BaseExpr = RHSExp;
3563    IndexExpr = LHSExp;
3564    ResultType = PTy->getPointeeType();
3565    if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3566      Diag(LLoc, diag::err_subscript_nonfragile_interface)
3567        << ResultType << BaseExpr->getSourceRange();
3568      return ExprError();
3569    }
3570  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3571    BaseExpr = LHSExp;    // vectors: V[123]
3572    IndexExpr = RHSExp;
3573    VK = LHSExp->getValueKind();
3574    if (VK != VK_RValue)
3575      OK = OK_VectorComponent;
3576
3577    // FIXME: need to deal with const...
3578    ResultType = VTy->getElementType();
3579  } else if (LHSTy->isArrayType()) {
3580    // If we see an array that wasn't promoted by
3581    // DefaultFunctionArrayLvalueConversion, it must be an array that
3582    // wasn't promoted because of the C90 rule that doesn't
3583    // allow promoting non-lvalue arrays.  Warn, then
3584    // force the promotion here.
3585    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3586        LHSExp->getSourceRange();
3587    LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3588                               CK_ArrayToPointerDecay).take();
3589    LHSTy = LHSExp->getType();
3590
3591    BaseExpr = LHSExp;
3592    IndexExpr = RHSExp;
3593    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3594  } else if (RHSTy->isArrayType()) {
3595    // Same as previous, except for 123[f().a] case
3596    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3597        RHSExp->getSourceRange();
3598    RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3599                               CK_ArrayToPointerDecay).take();
3600    RHSTy = RHSExp->getType();
3601
3602    BaseExpr = RHSExp;
3603    IndexExpr = LHSExp;
3604    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3605  } else {
3606    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3607       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3608  }
3609  // C99 6.5.2.1p1
3610  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3611    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3612                     << IndexExpr->getSourceRange());
3613
3614  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3615       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3616         && !IndexExpr->isTypeDependent())
3617    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3618
3619  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3620  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3621  // type. Note that Functions are not objects, and that (in C99 parlance)
3622  // incomplete types are not object types.
3623  if (ResultType->isFunctionType()) {
3624    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3625      << ResultType << BaseExpr->getSourceRange();
3626    return ExprError();
3627  }
3628
3629  if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
3630    // GNU extension: subscripting on pointer to void
3631    Diag(LLoc, diag::ext_gnu_subscript_void_type)
3632      << BaseExpr->getSourceRange();
3633
3634    // C forbids expressions of unqualified void type from being l-values.
3635    // See IsCForbiddenLValueType.
3636    if (!ResultType.hasQualifiers()) VK = VK_RValue;
3637  } else if (!ResultType->isDependentType() &&
3638      RequireCompleteType(LLoc, ResultType,
3639                          diag::err_subscript_incomplete_type, BaseExpr))
3640    return ExprError();
3641
3642  assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3643         !ResultType.isCForbiddenLValueType());
3644
3645  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3646                                                ResultType, VK, OK, RLoc));
3647}
3648
3649ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3650                                        FunctionDecl *FD,
3651                                        ParmVarDecl *Param) {
3652  if (Param->hasUnparsedDefaultArg()) {
3653    Diag(CallLoc,
3654         diag::err_use_of_default_argument_to_function_declared_later) <<
3655      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3656    Diag(UnparsedDefaultArgLocs[Param],
3657         diag::note_default_argument_declared_here);
3658    return ExprError();
3659  }
3660
3661  if (Param->hasUninstantiatedDefaultArg()) {
3662    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3663
3664    EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
3665                                                 Param);
3666
3667    // Instantiate the expression.
3668    MultiLevelTemplateArgumentList ArgList
3669      = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3670
3671    std::pair<const TemplateArgument *, unsigned> Innermost
3672      = ArgList.getInnermost();
3673    InstantiatingTemplate Inst(*this, CallLoc, Param,
3674                               ArrayRef<TemplateArgument>(Innermost.first,
3675                                                          Innermost.second));
3676    if (Inst)
3677      return ExprError();
3678
3679    ExprResult Result;
3680    {
3681      // C++ [dcl.fct.default]p5:
3682      //   The names in the [default argument] expression are bound, and
3683      //   the semantic constraints are checked, at the point where the
3684      //   default argument expression appears.
3685      ContextRAII SavedContext(*this, FD);
3686      LocalInstantiationScope Local(*this);
3687      Result = SubstExpr(UninstExpr, ArgList);
3688    }
3689    if (Result.isInvalid())
3690      return ExprError();
3691
3692    // Check the expression as an initializer for the parameter.
3693    InitializedEntity Entity
3694      = InitializedEntity::InitializeParameter(Context, Param);
3695    InitializationKind Kind
3696      = InitializationKind::CreateCopy(Param->getLocation(),
3697             /*FIXME:EqualLoc*/UninstExpr->getLocStart());
3698    Expr *ResultE = Result.takeAs<Expr>();
3699
3700    InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3701    Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
3702    if (Result.isInvalid())
3703      return ExprError();
3704
3705    Expr *Arg = Result.takeAs<Expr>();
3706    CheckCompletedExpr(Arg, Param->getOuterLocStart());
3707    // Build the default argument expression.
3708    return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg));
3709  }
3710
3711  // If the default expression creates temporaries, we need to
3712  // push them to the current stack of expression temporaries so they'll
3713  // be properly destroyed.
3714  // FIXME: We should really be rebuilding the default argument with new
3715  // bound temporaries; see the comment in PR5810.
3716  // We don't need to do that with block decls, though, because
3717  // blocks in default argument expression can never capture anything.
3718  if (isa<ExprWithCleanups>(Param->getInit())) {
3719    // Set the "needs cleanups" bit regardless of whether there are
3720    // any explicit objects.
3721    ExprNeedsCleanups = true;
3722
3723    // Append all the objects to the cleanup list.  Right now, this
3724    // should always be a no-op, because blocks in default argument
3725    // expressions should never be able to capture anything.
3726    assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
3727           "default argument expression has capturing blocks?");
3728  }
3729
3730  // We already type-checked the argument, so we know it works.
3731  // Just mark all of the declarations in this potentially-evaluated expression
3732  // as being "referenced".
3733  MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
3734                                   /*SkipLocalVariables=*/true);
3735  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3736}
3737
3738
3739Sema::VariadicCallType
3740Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
3741                          Expr *Fn) {
3742  if (Proto && Proto->isVariadic()) {
3743    if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
3744      return VariadicConstructor;
3745    else if (Fn && Fn->getType()->isBlockPointerType())
3746      return VariadicBlock;
3747    else if (FDecl) {
3748      if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3749        if (Method->isInstance())
3750          return VariadicMethod;
3751    }
3752    return VariadicFunction;
3753  }
3754  return VariadicDoesNotApply;
3755}
3756
3757/// ConvertArgumentsForCall - Converts the arguments specified in
3758/// Args/NumArgs to the parameter types of the function FDecl with
3759/// function prototype Proto. Call is the call expression itself, and
3760/// Fn is the function expression. For a C++ member function, this
3761/// routine does not attempt to convert the object argument. Returns
3762/// true if the call is ill-formed.
3763bool
3764Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3765                              FunctionDecl *FDecl,
3766                              const FunctionProtoType *Proto,
3767                              Expr **Args, unsigned NumArgs,
3768                              SourceLocation RParenLoc,
3769                              bool IsExecConfig) {
3770  // Bail out early if calling a builtin with custom typechecking.
3771  // We don't need to do this in the
3772  if (FDecl)
3773    if (unsigned ID = FDecl->getBuiltinID())
3774      if (Context.BuiltinInfo.hasCustomTypechecking(ID))
3775        return false;
3776
3777  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3778  // assignment, to the types of the corresponding parameter, ...
3779  unsigned NumArgsInProto = Proto->getNumArgs();
3780  bool Invalid = false;
3781  unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
3782  unsigned FnKind = Fn->getType()->isBlockPointerType()
3783                       ? 1 /* block */
3784                       : (IsExecConfig ? 3 /* kernel function (exec config) */
3785                                       : 0 /* function */);
3786
3787  // If too few arguments are available (and we don't have default
3788  // arguments for the remaining parameters), don't make the call.
3789  if (NumArgs < NumArgsInProto) {
3790    if (NumArgs < MinArgs) {
3791      if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3792        Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3793                          ? diag::err_typecheck_call_too_few_args_one
3794                          : diag::err_typecheck_call_too_few_args_at_least_one)
3795          << FnKind
3796          << FDecl->getParamDecl(0) << Fn->getSourceRange();
3797      else
3798        Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3799                          ? diag::err_typecheck_call_too_few_args
3800                          : diag::err_typecheck_call_too_few_args_at_least)
3801          << FnKind
3802          << MinArgs << NumArgs << Fn->getSourceRange();
3803
3804      // Emit the location of the prototype.
3805      if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3806        Diag(FDecl->getLocStart(), diag::note_callee_decl)
3807          << FDecl;
3808
3809      return true;
3810    }
3811    Call->setNumArgs(Context, NumArgsInProto);
3812  }
3813
3814  // If too many are passed and not variadic, error on the extras and drop
3815  // them.
3816  if (NumArgs > NumArgsInProto) {
3817    if (!Proto->isVariadic()) {
3818      if (NumArgsInProto == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3819        Diag(Args[NumArgsInProto]->getLocStart(),
3820             MinArgs == NumArgsInProto
3821               ? diag::err_typecheck_call_too_many_args_one
3822               : diag::err_typecheck_call_too_many_args_at_most_one)
3823          << FnKind
3824          << FDecl->getParamDecl(0) << NumArgs << Fn->getSourceRange()
3825          << SourceRange(Args[NumArgsInProto]->getLocStart(),
3826                         Args[NumArgs-1]->getLocEnd());
3827      else
3828        Diag(Args[NumArgsInProto]->getLocStart(),
3829             MinArgs == NumArgsInProto
3830               ? diag::err_typecheck_call_too_many_args
3831               : diag::err_typecheck_call_too_many_args_at_most)
3832          << FnKind
3833          << NumArgsInProto << NumArgs << Fn->getSourceRange()
3834          << SourceRange(Args[NumArgsInProto]->getLocStart(),
3835                         Args[NumArgs-1]->getLocEnd());
3836
3837      // Emit the location of the prototype.
3838      if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3839        Diag(FDecl->getLocStart(), diag::note_callee_decl)
3840          << FDecl;
3841
3842      // This deletes the extra arguments.
3843      Call->setNumArgs(Context, NumArgsInProto);
3844      return true;
3845    }
3846  }
3847  SmallVector<Expr *, 8> AllArgs;
3848  VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
3849
3850  Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
3851                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3852  if (Invalid)
3853    return true;
3854  unsigned TotalNumArgs = AllArgs.size();
3855  for (unsigned i = 0; i < TotalNumArgs; ++i)
3856    Call->setArg(i, AllArgs[i]);
3857
3858  return false;
3859}
3860
3861bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3862                                  FunctionDecl *FDecl,
3863                                  const FunctionProtoType *Proto,
3864                                  unsigned FirstProtoArg,
3865                                  Expr **Args, unsigned NumArgs,
3866                                  SmallVector<Expr *, 8> &AllArgs,
3867                                  VariadicCallType CallType,
3868                                  bool AllowExplicit,
3869                                  bool IsListInitialization) {
3870  unsigned NumArgsInProto = Proto->getNumArgs();
3871  unsigned NumArgsToCheck = NumArgs;
3872  bool Invalid = false;
3873  if (NumArgs != NumArgsInProto)
3874    // Use default arguments for missing arguments
3875    NumArgsToCheck = NumArgsInProto;
3876  unsigned ArgIx = 0;
3877  // Continue to check argument types (even if we have too few/many args).
3878  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3879    QualType ProtoArgType = Proto->getArgType(i);
3880
3881    Expr *Arg;
3882    ParmVarDecl *Param;
3883    if (ArgIx < NumArgs) {
3884      Arg = Args[ArgIx++];
3885
3886      if (RequireCompleteType(Arg->getLocStart(),
3887                              ProtoArgType,
3888                              diag::err_call_incomplete_argument, Arg))
3889        return true;
3890
3891      // Pass the argument
3892      Param = 0;
3893      if (FDecl && i < FDecl->getNumParams())
3894        Param = FDecl->getParamDecl(i);
3895
3896      // Strip the unbridged-cast placeholder expression off, if applicable.
3897      if (Arg->getType() == Context.ARCUnbridgedCastTy &&
3898          FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
3899          (!Param || !Param->hasAttr<CFConsumedAttr>()))
3900        Arg = stripARCUnbridgedCast(Arg);
3901
3902      InitializedEntity Entity = Param ?
3903          InitializedEntity::InitializeParameter(Context, Param, ProtoArgType)
3904        : InitializedEntity::InitializeParameter(Context, ProtoArgType,
3905                                                 Proto->isArgConsumed(i));
3906      ExprResult ArgE = PerformCopyInitialization(Entity,
3907                                                  SourceLocation(),
3908                                                  Owned(Arg),
3909                                                  IsListInitialization,
3910                                                  AllowExplicit);
3911      if (ArgE.isInvalid())
3912        return true;
3913
3914      Arg = ArgE.takeAs<Expr>();
3915    } else {
3916      assert(FDecl && "can't use default arguments without a known callee");
3917      Param = FDecl->getParamDecl(i);
3918
3919      ExprResult ArgExpr =
3920        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3921      if (ArgExpr.isInvalid())
3922        return true;
3923
3924      Arg = ArgExpr.takeAs<Expr>();
3925    }
3926
3927    // Check for array bounds violations for each argument to the call. This
3928    // check only triggers warnings when the argument isn't a more complex Expr
3929    // with its own checking, such as a BinaryOperator.
3930    CheckArrayAccess(Arg);
3931
3932    // Check for violations of C99 static array rules (C99 6.7.5.3p7).
3933    CheckStaticArrayArgument(CallLoc, Param, Arg);
3934
3935    AllArgs.push_back(Arg);
3936  }
3937
3938  // If this is a variadic call, handle args passed through "...".
3939  if (CallType != VariadicDoesNotApply) {
3940    // Assume that extern "C" functions with variadic arguments that
3941    // return __unknown_anytype aren't *really* variadic.
3942    if (Proto->getResultType() == Context.UnknownAnyTy &&
3943        FDecl && FDecl->isExternC()) {
3944      for (unsigned i = ArgIx; i != NumArgs; ++i) {
3945        QualType paramType; // ignored
3946        ExprResult arg = checkUnknownAnyArg(CallLoc, Args[i], paramType);
3947        Invalid |= arg.isInvalid();
3948        AllArgs.push_back(arg.take());
3949      }
3950
3951    // Otherwise do argument promotion, (C99 6.5.2.2p7).
3952    } else {
3953      for (unsigned i = ArgIx; i != NumArgs; ++i) {
3954        ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
3955                                                          FDecl);
3956        Invalid |= Arg.isInvalid();
3957        AllArgs.push_back(Arg.take());
3958      }
3959    }
3960
3961    // Check for array bounds violations.
3962    for (unsigned i = ArgIx; i != NumArgs; ++i)
3963      CheckArrayAccess(Args[i]);
3964  }
3965  return Invalid;
3966}
3967
3968static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
3969  TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
3970  if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
3971    S.Diag(PVD->getLocation(), diag::note_callee_static_array)
3972      << ATL.getLocalSourceRange();
3973}
3974
3975/// CheckStaticArrayArgument - If the given argument corresponds to a static
3976/// array parameter, check that it is non-null, and that if it is formed by
3977/// array-to-pointer decay, the underlying array is sufficiently large.
3978///
3979/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
3980/// array type derivation, then for each call to the function, the value of the
3981/// corresponding actual argument shall provide access to the first element of
3982/// an array with at least as many elements as specified by the size expression.
3983void
3984Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
3985                               ParmVarDecl *Param,
3986                               const Expr *ArgExpr) {
3987  // Static array parameters are not supported in C++.
3988  if (!Param || getLangOpts().CPlusPlus)
3989    return;
3990
3991  QualType OrigTy = Param->getOriginalType();
3992
3993  const ArrayType *AT = Context.getAsArrayType(OrigTy);
3994  if (!AT || AT->getSizeModifier() != ArrayType::Static)
3995    return;
3996
3997  if (ArgExpr->isNullPointerConstant(Context,
3998                                     Expr::NPC_NeverValueDependent)) {
3999    Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
4000    DiagnoseCalleeStaticArrayParam(*this, Param);
4001    return;
4002  }
4003
4004  const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
4005  if (!CAT)
4006    return;
4007
4008  const ConstantArrayType *ArgCAT =
4009    Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
4010  if (!ArgCAT)
4011    return;
4012
4013  if (ArgCAT->getSize().ult(CAT->getSize())) {
4014    Diag(CallLoc, diag::warn_static_array_too_small)
4015      << ArgExpr->getSourceRange()
4016      << (unsigned) ArgCAT->getSize().getZExtValue()
4017      << (unsigned) CAT->getSize().getZExtValue();
4018    DiagnoseCalleeStaticArrayParam(*this, Param);
4019  }
4020}
4021
4022/// Given a function expression of unknown-any type, try to rebuild it
4023/// to have a function type.
4024static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
4025
4026/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
4027/// This provides the location of the left/right parens and a list of comma
4028/// locations.
4029ExprResult
4030Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
4031                    MultiExprArg ArgExprs, SourceLocation RParenLoc,
4032                    Expr *ExecConfig, bool IsExecConfig) {
4033  // Since this might be a postfix expression, get rid of ParenListExprs.
4034  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
4035  if (Result.isInvalid()) return ExprError();
4036  Fn = Result.take();
4037
4038  if (getLangOpts().CPlusPlus) {
4039    // If this is a pseudo-destructor expression, build the call immediately.
4040    if (isa<CXXPseudoDestructorExpr>(Fn)) {
4041      if (!ArgExprs.empty()) {
4042        // Pseudo-destructor calls should not have any arguments.
4043        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
4044          << FixItHint::CreateRemoval(
4045                                    SourceRange(ArgExprs[0]->getLocStart(),
4046                                                ArgExprs.back()->getLocEnd()));
4047      }
4048
4049      return Owned(new (Context) CallExpr(Context, Fn, MultiExprArg(),
4050                                          Context.VoidTy, VK_RValue,
4051                                          RParenLoc));
4052    }
4053
4054    // Determine whether this is a dependent call inside a C++ template,
4055    // in which case we won't do any semantic analysis now.
4056    // FIXME: Will need to cache the results of name lookup (including ADL) in
4057    // Fn.
4058    bool Dependent = false;
4059    if (Fn->isTypeDependent())
4060      Dependent = true;
4061    else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
4062      Dependent = true;
4063
4064    if (Dependent) {
4065      if (ExecConfig) {
4066        return Owned(new (Context) CUDAKernelCallExpr(
4067            Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
4068            Context.DependentTy, VK_RValue, RParenLoc));
4069      } else {
4070        return Owned(new (Context) CallExpr(Context, Fn, ArgExprs,
4071                                            Context.DependentTy, VK_RValue,
4072                                            RParenLoc));
4073      }
4074    }
4075
4076    // Determine whether this is a call to an object (C++ [over.call.object]).
4077    if (Fn->getType()->isRecordType())
4078      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc,
4079                                                ArgExprs.data(),
4080                                                ArgExprs.size(), RParenLoc));
4081
4082    if (Fn->getType() == Context.UnknownAnyTy) {
4083      ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4084      if (result.isInvalid()) return ExprError();
4085      Fn = result.take();
4086    }
4087
4088    if (Fn->getType() == Context.BoundMemberTy) {
4089      return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs.data(),
4090                                       ArgExprs.size(), RParenLoc);
4091    }
4092  }
4093
4094  // Check for overloaded calls.  This can happen even in C due to extensions.
4095  if (Fn->getType() == Context.OverloadTy) {
4096    OverloadExpr::FindResult find = OverloadExpr::find(Fn);
4097
4098    // We aren't supposed to apply this logic for if there's an '&' involved.
4099    if (!find.HasFormOfMemberPointer) {
4100      OverloadExpr *ovl = find.Expression;
4101      if (isa<UnresolvedLookupExpr>(ovl)) {
4102        UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
4103        return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs.data(),
4104                                       ArgExprs.size(), RParenLoc, ExecConfig);
4105      } else {
4106        return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs.data(),
4107                                         ArgExprs.size(), RParenLoc);
4108      }
4109    }
4110  }
4111
4112  // If we're directly calling a function, get the appropriate declaration.
4113  if (Fn->getType() == Context.UnknownAnyTy) {
4114    ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4115    if (result.isInvalid()) return ExprError();
4116    Fn = result.take();
4117  }
4118
4119  Expr *NakedFn = Fn->IgnoreParens();
4120
4121  NamedDecl *NDecl = 0;
4122  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
4123    if (UnOp->getOpcode() == UO_AddrOf)
4124      NakedFn = UnOp->getSubExpr()->IgnoreParens();
4125
4126  if (isa<DeclRefExpr>(NakedFn))
4127    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
4128  else if (isa<MemberExpr>(NakedFn))
4129    NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
4130
4131  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs.data(),
4132                               ArgExprs.size(), RParenLoc, ExecConfig,
4133                               IsExecConfig);
4134}
4135
4136ExprResult
4137Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
4138                              MultiExprArg ExecConfig, SourceLocation GGGLoc) {
4139  FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
4140  if (!ConfigDecl)
4141    return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
4142                          << "cudaConfigureCall");
4143  QualType ConfigQTy = ConfigDecl->getType();
4144
4145  DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
4146      ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
4147  MarkFunctionReferenced(LLLLoc, ConfigDecl);
4148
4149  return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
4150                       /*IsExecConfig=*/true);
4151}
4152
4153/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
4154///
4155/// __builtin_astype( value, dst type )
4156///
4157ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
4158                                 SourceLocation BuiltinLoc,
4159                                 SourceLocation RParenLoc) {
4160  ExprValueKind VK = VK_RValue;
4161  ExprObjectKind OK = OK_Ordinary;
4162  QualType DstTy = GetTypeFromParser(ParsedDestTy);
4163  QualType SrcTy = E->getType();
4164  if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
4165    return ExprError(Diag(BuiltinLoc,
4166                          diag::err_invalid_astype_of_different_size)
4167                     << DstTy
4168                     << SrcTy
4169                     << E->getSourceRange());
4170  return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
4171               RParenLoc));
4172}
4173
4174/// BuildResolvedCallExpr - Build a call to a resolved expression,
4175/// i.e. an expression not of \p OverloadTy.  The expression should
4176/// unary-convert to an expression of function-pointer or
4177/// block-pointer type.
4178///
4179/// \param NDecl the declaration being called, if available
4180ExprResult
4181Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
4182                            SourceLocation LParenLoc,
4183                            Expr **Args, unsigned NumArgs,
4184                            SourceLocation RParenLoc,
4185                            Expr *Config, bool IsExecConfig) {
4186  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
4187  unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
4188
4189  // Promote the function operand.
4190  // We special-case function promotion here because we only allow promoting
4191  // builtin functions to function pointers in the callee of a call.
4192  ExprResult Result;
4193  if (BuiltinID &&
4194      Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
4195    Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
4196                               CK_BuiltinFnToFnPtr).take();
4197  } else {
4198    Result = UsualUnaryConversions(Fn);
4199  }
4200  if (Result.isInvalid())
4201    return ExprError();
4202  Fn = Result.take();
4203
4204  // Make the call expr early, before semantic checks.  This guarantees cleanup
4205  // of arguments and function on error.
4206  CallExpr *TheCall;
4207  if (Config)
4208    TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
4209                                               cast<CallExpr>(Config),
4210                                               llvm::makeArrayRef(Args,NumArgs),
4211                                               Context.BoolTy,
4212                                               VK_RValue,
4213                                               RParenLoc);
4214  else
4215    TheCall = new (Context) CallExpr(Context, Fn,
4216                                     llvm::makeArrayRef(Args, NumArgs),
4217                                     Context.BoolTy,
4218                                     VK_RValue,
4219                                     RParenLoc);
4220
4221  // Bail out early if calling a builtin with custom typechecking.
4222  if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
4223    return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4224
4225 retry:
4226  const FunctionType *FuncT;
4227  if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
4228    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
4229    // have type pointer to function".
4230    FuncT = PT->getPointeeType()->getAs<FunctionType>();
4231    if (FuncT == 0)
4232      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4233                         << Fn->getType() << Fn->getSourceRange());
4234  } else if (const BlockPointerType *BPT =
4235               Fn->getType()->getAs<BlockPointerType>()) {
4236    FuncT = BPT->getPointeeType()->castAs<FunctionType>();
4237  } else {
4238    // Handle calls to expressions of unknown-any type.
4239    if (Fn->getType() == Context.UnknownAnyTy) {
4240      ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
4241      if (rewrite.isInvalid()) return ExprError();
4242      Fn = rewrite.take();
4243      TheCall->setCallee(Fn);
4244      goto retry;
4245    }
4246
4247    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4248      << Fn->getType() << Fn->getSourceRange());
4249  }
4250
4251  if (getLangOpts().CUDA) {
4252    if (Config) {
4253      // CUDA: Kernel calls must be to global functions
4254      if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
4255        return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
4256            << FDecl->getName() << Fn->getSourceRange());
4257
4258      // CUDA: Kernel function must have 'void' return type
4259      if (!FuncT->getResultType()->isVoidType())
4260        return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
4261            << Fn->getType() << Fn->getSourceRange());
4262    } else {
4263      // CUDA: Calls to global functions must be configured
4264      if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
4265        return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
4266            << FDecl->getName() << Fn->getSourceRange());
4267    }
4268  }
4269
4270  // Check for a valid return type
4271  if (CheckCallReturnType(FuncT->getResultType(),
4272                          Fn->getLocStart(), TheCall,
4273                          FDecl))
4274    return ExprError();
4275
4276  // We know the result type of the call, set it.
4277  TheCall->setType(FuncT->getCallResultType(Context));
4278  TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
4279
4280  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
4281  if (Proto) {
4282    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
4283                                RParenLoc, IsExecConfig))
4284      return ExprError();
4285  } else {
4286    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
4287
4288    if (FDecl) {
4289      // Check if we have too few/too many template arguments, based
4290      // on our knowledge of the function definition.
4291      const FunctionDecl *Def = 0;
4292      if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
4293        Proto = Def->getType()->getAs<FunctionProtoType>();
4294        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
4295          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
4296            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
4297      }
4298
4299      // If the function we're calling isn't a function prototype, but we have
4300      // a function prototype from a prior declaratiom, use that prototype.
4301      if (!FDecl->hasPrototype())
4302        Proto = FDecl->getType()->getAs<FunctionProtoType>();
4303    }
4304
4305    // Promote the arguments (C99 6.5.2.2p6).
4306    for (unsigned i = 0; i != NumArgs; i++) {
4307      Expr *Arg = Args[i];
4308
4309      if (Proto && i < Proto->getNumArgs()) {
4310        InitializedEntity Entity
4311          = InitializedEntity::InitializeParameter(Context,
4312                                                   Proto->getArgType(i),
4313                                                   Proto->isArgConsumed(i));
4314        ExprResult ArgE = PerformCopyInitialization(Entity,
4315                                                    SourceLocation(),
4316                                                    Owned(Arg));
4317        if (ArgE.isInvalid())
4318          return true;
4319
4320        Arg = ArgE.takeAs<Expr>();
4321
4322      } else {
4323        ExprResult ArgE = DefaultArgumentPromotion(Arg);
4324
4325        if (ArgE.isInvalid())
4326          return true;
4327
4328        Arg = ArgE.takeAs<Expr>();
4329      }
4330
4331      if (RequireCompleteType(Arg->getLocStart(),
4332                              Arg->getType(),
4333                              diag::err_call_incomplete_argument, Arg))
4334        return ExprError();
4335
4336      TheCall->setArg(i, Arg);
4337    }
4338  }
4339
4340  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4341    if (!Method->isStatic())
4342      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
4343        << Fn->getSourceRange());
4344
4345  // Check for sentinels
4346  if (NDecl)
4347    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
4348
4349  // Do special checking on direct calls to functions.
4350  if (FDecl) {
4351    if (CheckFunctionCall(FDecl, TheCall, Proto))
4352      return ExprError();
4353
4354    if (BuiltinID)
4355      return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4356  } else if (NDecl) {
4357    if (CheckBlockCall(NDecl, TheCall, Proto))
4358      return ExprError();
4359  }
4360
4361  return MaybeBindToTemporary(TheCall);
4362}
4363
4364ExprResult
4365Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
4366                           SourceLocation RParenLoc, Expr *InitExpr) {
4367  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
4368  // FIXME: put back this assert when initializers are worked out.
4369  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
4370
4371  TypeSourceInfo *TInfo;
4372  QualType literalType = GetTypeFromParser(Ty, &TInfo);
4373  if (!TInfo)
4374    TInfo = Context.getTrivialTypeSourceInfo(literalType);
4375
4376  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
4377}
4378
4379ExprResult
4380Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
4381                               SourceLocation RParenLoc, Expr *LiteralExpr) {
4382  QualType literalType = TInfo->getType();
4383
4384  if (literalType->isArrayType()) {
4385    if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
4386          diag::err_illegal_decl_array_incomplete_type,
4387          SourceRange(LParenLoc,
4388                      LiteralExpr->getSourceRange().getEnd())))
4389      return ExprError();
4390    if (literalType->isVariableArrayType())
4391      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
4392        << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
4393  } else if (!literalType->isDependentType() &&
4394             RequireCompleteType(LParenLoc, literalType,
4395               diag::err_typecheck_decl_incomplete_type,
4396               SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
4397    return ExprError();
4398
4399  InitializedEntity Entity
4400    = InitializedEntity::InitializeTemporary(literalType);
4401  InitializationKind Kind
4402    = InitializationKind::CreateCStyleCast(LParenLoc,
4403                                           SourceRange(LParenLoc, RParenLoc),
4404                                           /*InitList=*/true);
4405  InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
4406  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
4407                                      &literalType);
4408  if (Result.isInvalid())
4409    return ExprError();
4410  LiteralExpr = Result.get();
4411
4412  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4413  if (isFileScope) { // 6.5.2.5p3
4414    if (CheckForConstantInitializer(LiteralExpr, literalType))
4415      return ExprError();
4416  }
4417
4418  // In C, compound literals are l-values for some reason.
4419  ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
4420
4421  return MaybeBindToTemporary(
4422           new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
4423                                             VK, LiteralExpr, isFileScope));
4424}
4425
4426ExprResult
4427Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
4428                    SourceLocation RBraceLoc) {
4429  // Immediately handle non-overload placeholders.  Overloads can be
4430  // resolved contextually, but everything else here can't.
4431  for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
4432    if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
4433      ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
4434
4435      // Ignore failures; dropping the entire initializer list because
4436      // of one failure would be terrible for indexing/etc.
4437      if (result.isInvalid()) continue;
4438
4439      InitArgList[I] = result.take();
4440    }
4441  }
4442
4443  // Semantic analysis for initializers is done by ActOnDeclarator() and
4444  // CheckInitializer() - it requires knowledge of the object being intialized.
4445
4446  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
4447                                               RBraceLoc);
4448  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4449  return Owned(E);
4450}
4451
4452/// Do an explicit extend of the given block pointer if we're in ARC.
4453static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4454  assert(E.get()->getType()->isBlockPointerType());
4455  assert(E.get()->isRValue());
4456
4457  // Only do this in an r-value context.
4458  if (!S.getLangOpts().ObjCAutoRefCount) return;
4459
4460  E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
4461                               CK_ARCExtendBlockObject, E.get(),
4462                               /*base path*/ 0, VK_RValue);
4463  S.ExprNeedsCleanups = true;
4464}
4465
4466/// Prepare a conversion of the given expression to an ObjC object
4467/// pointer type.
4468CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
4469  QualType type = E.get()->getType();
4470  if (type->isObjCObjectPointerType()) {
4471    return CK_BitCast;
4472  } else if (type->isBlockPointerType()) {
4473    maybeExtendBlockObject(*this, E);
4474    return CK_BlockPointerToObjCPointerCast;
4475  } else {
4476    assert(type->isPointerType());
4477    return CK_CPointerToObjCPointerCast;
4478  }
4479}
4480
4481/// Prepares for a scalar cast, performing all the necessary stages
4482/// except the final cast and returning the kind required.
4483CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
4484  // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4485  // Also, callers should have filtered out the invalid cases with
4486  // pointers.  Everything else should be possible.
4487
4488  QualType SrcTy = Src.get()->getType();
4489  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
4490    return CK_NoOp;
4491
4492  switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
4493  case Type::STK_MemberPointer:
4494    llvm_unreachable("member pointer type in C");
4495
4496  case Type::STK_CPointer:
4497  case Type::STK_BlockPointer:
4498  case Type::STK_ObjCObjectPointer:
4499    switch (DestTy->getScalarTypeKind()) {
4500    case Type::STK_CPointer:
4501      return CK_BitCast;
4502    case Type::STK_BlockPointer:
4503      return (SrcKind == Type::STK_BlockPointer
4504                ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
4505    case Type::STK_ObjCObjectPointer:
4506      if (SrcKind == Type::STK_ObjCObjectPointer)
4507        return CK_BitCast;
4508      if (SrcKind == Type::STK_CPointer)
4509        return CK_CPointerToObjCPointerCast;
4510      maybeExtendBlockObject(*this, Src);
4511      return CK_BlockPointerToObjCPointerCast;
4512    case Type::STK_Bool:
4513      return CK_PointerToBoolean;
4514    case Type::STK_Integral:
4515      return CK_PointerToIntegral;
4516    case Type::STK_Floating:
4517    case Type::STK_FloatingComplex:
4518    case Type::STK_IntegralComplex:
4519    case Type::STK_MemberPointer:
4520      llvm_unreachable("illegal cast from pointer");
4521    }
4522    llvm_unreachable("Should have returned before this");
4523
4524  case Type::STK_Bool: // casting from bool is like casting from an integer
4525  case Type::STK_Integral:
4526    switch (DestTy->getScalarTypeKind()) {
4527    case Type::STK_CPointer:
4528    case Type::STK_ObjCObjectPointer:
4529    case Type::STK_BlockPointer:
4530      if (Src.get()->isNullPointerConstant(Context,
4531                                           Expr::NPC_ValueDependentIsNull))
4532        return CK_NullToPointer;
4533      return CK_IntegralToPointer;
4534    case Type::STK_Bool:
4535      return CK_IntegralToBoolean;
4536    case Type::STK_Integral:
4537      return CK_IntegralCast;
4538    case Type::STK_Floating:
4539      return CK_IntegralToFloating;
4540    case Type::STK_IntegralComplex:
4541      Src = ImpCastExprToType(Src.take(),
4542                              DestTy->castAs<ComplexType>()->getElementType(),
4543                              CK_IntegralCast);
4544      return CK_IntegralRealToComplex;
4545    case Type::STK_FloatingComplex:
4546      Src = ImpCastExprToType(Src.take(),
4547                              DestTy->castAs<ComplexType>()->getElementType(),
4548                              CK_IntegralToFloating);
4549      return CK_FloatingRealToComplex;
4550    case Type::STK_MemberPointer:
4551      llvm_unreachable("member pointer type in C");
4552    }
4553    llvm_unreachable("Should have returned before this");
4554
4555  case Type::STK_Floating:
4556    switch (DestTy->getScalarTypeKind()) {
4557    case Type::STK_Floating:
4558      return CK_FloatingCast;
4559    case Type::STK_Bool:
4560      return CK_FloatingToBoolean;
4561    case Type::STK_Integral:
4562      return CK_FloatingToIntegral;
4563    case Type::STK_FloatingComplex:
4564      Src = ImpCastExprToType(Src.take(),
4565                              DestTy->castAs<ComplexType>()->getElementType(),
4566                              CK_FloatingCast);
4567      return CK_FloatingRealToComplex;
4568    case Type::STK_IntegralComplex:
4569      Src = ImpCastExprToType(Src.take(),
4570                              DestTy->castAs<ComplexType>()->getElementType(),
4571                              CK_FloatingToIntegral);
4572      return CK_IntegralRealToComplex;
4573    case Type::STK_CPointer:
4574    case Type::STK_ObjCObjectPointer:
4575    case Type::STK_BlockPointer:
4576      llvm_unreachable("valid float->pointer cast?");
4577    case Type::STK_MemberPointer:
4578      llvm_unreachable("member pointer type in C");
4579    }
4580    llvm_unreachable("Should have returned before this");
4581
4582  case Type::STK_FloatingComplex:
4583    switch (DestTy->getScalarTypeKind()) {
4584    case Type::STK_FloatingComplex:
4585      return CK_FloatingComplexCast;
4586    case Type::STK_IntegralComplex:
4587      return CK_FloatingComplexToIntegralComplex;
4588    case Type::STK_Floating: {
4589      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4590      if (Context.hasSameType(ET, DestTy))
4591        return CK_FloatingComplexToReal;
4592      Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
4593      return CK_FloatingCast;
4594    }
4595    case Type::STK_Bool:
4596      return CK_FloatingComplexToBoolean;
4597    case Type::STK_Integral:
4598      Src = ImpCastExprToType(Src.take(),
4599                              SrcTy->castAs<ComplexType>()->getElementType(),
4600                              CK_FloatingComplexToReal);
4601      return CK_FloatingToIntegral;
4602    case Type::STK_CPointer:
4603    case Type::STK_ObjCObjectPointer:
4604    case Type::STK_BlockPointer:
4605      llvm_unreachable("valid complex float->pointer cast?");
4606    case Type::STK_MemberPointer:
4607      llvm_unreachable("member pointer type in C");
4608    }
4609    llvm_unreachable("Should have returned before this");
4610
4611  case Type::STK_IntegralComplex:
4612    switch (DestTy->getScalarTypeKind()) {
4613    case Type::STK_FloatingComplex:
4614      return CK_IntegralComplexToFloatingComplex;
4615    case Type::STK_IntegralComplex:
4616      return CK_IntegralComplexCast;
4617    case Type::STK_Integral: {
4618      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4619      if (Context.hasSameType(ET, DestTy))
4620        return CK_IntegralComplexToReal;
4621      Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
4622      return CK_IntegralCast;
4623    }
4624    case Type::STK_Bool:
4625      return CK_IntegralComplexToBoolean;
4626    case Type::STK_Floating:
4627      Src = ImpCastExprToType(Src.take(),
4628                              SrcTy->castAs<ComplexType>()->getElementType(),
4629                              CK_IntegralComplexToReal);
4630      return CK_IntegralToFloating;
4631    case Type::STK_CPointer:
4632    case Type::STK_ObjCObjectPointer:
4633    case Type::STK_BlockPointer:
4634      llvm_unreachable("valid complex int->pointer cast?");
4635    case Type::STK_MemberPointer:
4636      llvm_unreachable("member pointer type in C");
4637    }
4638    llvm_unreachable("Should have returned before this");
4639  }
4640
4641  llvm_unreachable("Unhandled scalar cast");
4642}
4643
4644bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4645                           CastKind &Kind) {
4646  assert(VectorTy->isVectorType() && "Not a vector type!");
4647
4648  if (Ty->isVectorType() || Ty->isIntegerType()) {
4649    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4650      return Diag(R.getBegin(),
4651                  Ty->isVectorType() ?
4652                  diag::err_invalid_conversion_between_vectors :
4653                  diag::err_invalid_conversion_between_vector_and_integer)
4654        << VectorTy << Ty << R;
4655  } else
4656    return Diag(R.getBegin(),
4657                diag::err_invalid_conversion_between_vector_and_scalar)
4658      << VectorTy << Ty << R;
4659
4660  Kind = CK_BitCast;
4661  return false;
4662}
4663
4664ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
4665                                    Expr *CastExpr, CastKind &Kind) {
4666  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4667
4668  QualType SrcTy = CastExpr->getType();
4669
4670  // If SrcTy is a VectorType, the total size must match to explicitly cast to
4671  // an ExtVectorType.
4672  // In OpenCL, casts between vectors of different types are not allowed.
4673  // (See OpenCL 6.2).
4674  if (SrcTy->isVectorType()) {
4675    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
4676        || (getLangOpts().OpenCL &&
4677            (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
4678      Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4679        << DestTy << SrcTy << R;
4680      return ExprError();
4681    }
4682    Kind = CK_BitCast;
4683    return Owned(CastExpr);
4684  }
4685
4686  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
4687  // conversion will take place first from scalar to elt type, and then
4688  // splat from elt type to vector.
4689  if (SrcTy->isPointerType())
4690    return Diag(R.getBegin(),
4691                diag::err_invalid_conversion_between_vector_and_scalar)
4692      << DestTy << SrcTy << R;
4693
4694  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4695  ExprResult CastExprRes = Owned(CastExpr);
4696  CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
4697  if (CastExprRes.isInvalid())
4698    return ExprError();
4699  CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
4700
4701  Kind = CK_VectorSplat;
4702  return Owned(CastExpr);
4703}
4704
4705ExprResult
4706Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
4707                    Declarator &D, ParsedType &Ty,
4708                    SourceLocation RParenLoc, Expr *CastExpr) {
4709  assert(!D.isInvalidType() && (CastExpr != 0) &&
4710         "ActOnCastExpr(): missing type or expr");
4711
4712  TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
4713  if (D.isInvalidType())
4714    return ExprError();
4715
4716  if (getLangOpts().CPlusPlus) {
4717    // Check that there are no default arguments (C++ only).
4718    CheckExtraCXXDefaultArguments(D);
4719  }
4720
4721  checkUnusedDeclAttributes(D);
4722
4723  QualType castType = castTInfo->getType();
4724  Ty = CreateParsedType(castType, castTInfo);
4725
4726  bool isVectorLiteral = false;
4727
4728  // Check for an altivec or OpenCL literal,
4729  // i.e. all the elements are integer constants.
4730  ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
4731  ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
4732  if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
4733       && castType->isVectorType() && (PE || PLE)) {
4734    if (PLE && PLE->getNumExprs() == 0) {
4735      Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
4736      return ExprError();
4737    }
4738    if (PE || PLE->getNumExprs() == 1) {
4739      Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
4740      if (!E->getType()->isVectorType())
4741        isVectorLiteral = true;
4742    }
4743    else
4744      isVectorLiteral = true;
4745  }
4746
4747  // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
4748  // then handle it as such.
4749  if (isVectorLiteral)
4750    return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
4751
4752  // If the Expr being casted is a ParenListExpr, handle it specially.
4753  // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4754  // sequence of BinOp comma operators.
4755  if (isa<ParenListExpr>(CastExpr)) {
4756    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
4757    if (Result.isInvalid()) return ExprError();
4758    CastExpr = Result.take();
4759  }
4760
4761  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
4762}
4763
4764ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
4765                                    SourceLocation RParenLoc, Expr *E,
4766                                    TypeSourceInfo *TInfo) {
4767  assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
4768         "Expected paren or paren list expression");
4769
4770  Expr **exprs;
4771  unsigned numExprs;
4772  Expr *subExpr;
4773  SourceLocation LiteralLParenLoc, LiteralRParenLoc;
4774  if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
4775    LiteralLParenLoc = PE->getLParenLoc();
4776    LiteralRParenLoc = PE->getRParenLoc();
4777    exprs = PE->getExprs();
4778    numExprs = PE->getNumExprs();
4779  } else { // isa<ParenExpr> by assertion at function entrance
4780    LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
4781    LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
4782    subExpr = cast<ParenExpr>(E)->getSubExpr();
4783    exprs = &subExpr;
4784    numExprs = 1;
4785  }
4786
4787  QualType Ty = TInfo->getType();
4788  assert(Ty->isVectorType() && "Expected vector type");
4789
4790  SmallVector<Expr *, 8> initExprs;
4791  const VectorType *VTy = Ty->getAs<VectorType>();
4792  unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
4793
4794  // '(...)' form of vector initialization in AltiVec: the number of
4795  // initializers must be one or must match the size of the vector.
4796  // If a single value is specified in the initializer then it will be
4797  // replicated to all the components of the vector
4798  if (VTy->getVectorKind() == VectorType::AltiVecVector) {
4799    // The number of initializers must be one or must match the size of the
4800    // vector. If a single value is specified in the initializer then it will
4801    // be replicated to all the components of the vector
4802    if (numExprs == 1) {
4803      QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4804      ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4805      if (Literal.isInvalid())
4806        return ExprError();
4807      Literal = ImpCastExprToType(Literal.take(), ElemTy,
4808                                  PrepareScalarCast(Literal, ElemTy));
4809      return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4810    }
4811    else if (numExprs < numElems) {
4812      Diag(E->getExprLoc(),
4813           diag::err_incorrect_number_of_vector_initializers);
4814      return ExprError();
4815    }
4816    else
4817      initExprs.append(exprs, exprs + numExprs);
4818  }
4819  else {
4820    // For OpenCL, when the number of initializers is a single value,
4821    // it will be replicated to all components of the vector.
4822    if (getLangOpts().OpenCL &&
4823        VTy->getVectorKind() == VectorType::GenericVector &&
4824        numExprs == 1) {
4825        QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4826        ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4827        if (Literal.isInvalid())
4828          return ExprError();
4829        Literal = ImpCastExprToType(Literal.take(), ElemTy,
4830                                    PrepareScalarCast(Literal, ElemTy));
4831        return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4832    }
4833
4834    initExprs.append(exprs, exprs + numExprs);
4835  }
4836  // FIXME: This means that pretty-printing the final AST will produce curly
4837  // braces instead of the original commas.
4838  InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
4839                                                   initExprs, LiteralRParenLoc);
4840  initE->setType(Ty);
4841  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
4842}
4843
4844/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
4845/// the ParenListExpr into a sequence of comma binary operators.
4846ExprResult
4847Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
4848  ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
4849  if (!E)
4850    return Owned(OrigExpr);
4851
4852  ExprResult Result(E->getExpr(0));
4853
4854  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4855    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4856                        E->getExpr(i));
4857
4858  if (Result.isInvalid()) return ExprError();
4859
4860  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4861}
4862
4863ExprResult Sema::ActOnParenListExpr(SourceLocation L,
4864                                    SourceLocation R,
4865                                    MultiExprArg Val) {
4866  Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
4867  return Owned(expr);
4868}
4869
4870/// \brief Emit a specialized diagnostic when one expression is a null pointer
4871/// constant and the other is not a pointer.  Returns true if a diagnostic is
4872/// emitted.
4873bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
4874                                      SourceLocation QuestionLoc) {
4875  Expr *NullExpr = LHSExpr;
4876  Expr *NonPointerExpr = RHSExpr;
4877  Expr::NullPointerConstantKind NullKind =
4878      NullExpr->isNullPointerConstant(Context,
4879                                      Expr::NPC_ValueDependentIsNotNull);
4880
4881  if (NullKind == Expr::NPCK_NotNull) {
4882    NullExpr = RHSExpr;
4883    NonPointerExpr = LHSExpr;
4884    NullKind =
4885        NullExpr->isNullPointerConstant(Context,
4886                                        Expr::NPC_ValueDependentIsNotNull);
4887  }
4888
4889  if (NullKind == Expr::NPCK_NotNull)
4890    return false;
4891
4892  if (NullKind == Expr::NPCK_ZeroExpression)
4893    return false;
4894
4895  if (NullKind == Expr::NPCK_ZeroLiteral) {
4896    // In this case, check to make sure that we got here from a "NULL"
4897    // string in the source code.
4898    NullExpr = NullExpr->IgnoreParenImpCasts();
4899    SourceLocation loc = NullExpr->getExprLoc();
4900    if (!findMacroSpelling(loc, "NULL"))
4901      return false;
4902  }
4903
4904  int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
4905  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
4906      << NonPointerExpr->getType() << DiagType
4907      << NonPointerExpr->getSourceRange();
4908  return true;
4909}
4910
4911/// \brief Return false if the condition expression is valid, true otherwise.
4912static bool checkCondition(Sema &S, Expr *Cond) {
4913  QualType CondTy = Cond->getType();
4914
4915  // C99 6.5.15p2
4916  if (CondTy->isScalarType()) return false;
4917
4918  // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4919  if (S.getLangOpts().OpenCL && CondTy->isVectorType())
4920    return false;
4921
4922  // Emit the proper error message.
4923  S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
4924                              diag::err_typecheck_cond_expect_scalar :
4925                              diag::err_typecheck_cond_expect_scalar_or_vector)
4926    << CondTy;
4927  return true;
4928}
4929
4930/// \brief Return false if the two expressions can be converted to a vector,
4931/// true otherwise
4932static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
4933                                                    ExprResult &RHS,
4934                                                    QualType CondTy) {
4935  // Both operands should be of scalar type.
4936  if (!LHS.get()->getType()->isScalarType()) {
4937    S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4938      << CondTy;
4939    return true;
4940  }
4941  if (!RHS.get()->getType()->isScalarType()) {
4942    S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4943      << CondTy;
4944    return true;
4945  }
4946
4947  // Implicity convert these scalars to the type of the condition.
4948  LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
4949  RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
4950  return false;
4951}
4952
4953/// \brief Handle when one or both operands are void type.
4954static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
4955                                         ExprResult &RHS) {
4956    Expr *LHSExpr = LHS.get();
4957    Expr *RHSExpr = RHS.get();
4958
4959    if (!LHSExpr->getType()->isVoidType())
4960      S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4961        << RHSExpr->getSourceRange();
4962    if (!RHSExpr->getType()->isVoidType())
4963      S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4964        << LHSExpr->getSourceRange();
4965    LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
4966    RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
4967    return S.Context.VoidTy;
4968}
4969
4970/// \brief Return false if the NullExpr can be promoted to PointerTy,
4971/// true otherwise.
4972static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
4973                                        QualType PointerTy) {
4974  if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
4975      !NullExpr.get()->isNullPointerConstant(S.Context,
4976                                            Expr::NPC_ValueDependentIsNull))
4977    return true;
4978
4979  NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
4980  return false;
4981}
4982
4983/// \brief Checks compatibility between two pointers and return the resulting
4984/// type.
4985static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
4986                                                     ExprResult &RHS,
4987                                                     SourceLocation Loc) {
4988  QualType LHSTy = LHS.get()->getType();
4989  QualType RHSTy = RHS.get()->getType();
4990
4991  if (S.Context.hasSameType(LHSTy, RHSTy)) {
4992    // Two identical pointers types are always compatible.
4993    return LHSTy;
4994  }
4995
4996  QualType lhptee, rhptee;
4997
4998  // Get the pointee types.
4999  if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
5000    lhptee = LHSBTy->getPointeeType();
5001    rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
5002  } else {
5003    lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
5004    rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
5005  }
5006
5007  // C99 6.5.15p6: If both operands are pointers to compatible types or to
5008  // differently qualified versions of compatible types, the result type is
5009  // a pointer to an appropriately qualified version of the composite
5010  // type.
5011
5012  // Only CVR-qualifiers exist in the standard, and the differently-qualified
5013  // clause doesn't make sense for our extensions. E.g. address space 2 should
5014  // be incompatible with address space 3: they may live on different devices or
5015  // anything.
5016  Qualifiers lhQual = lhptee.getQualifiers();
5017  Qualifiers rhQual = rhptee.getQualifiers();
5018
5019  unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
5020  lhQual.removeCVRQualifiers();
5021  rhQual.removeCVRQualifiers();
5022
5023  lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
5024  rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
5025
5026  QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
5027
5028  if (CompositeTy.isNull()) {
5029    S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
5030      << LHSTy << RHSTy << LHS.get()->getSourceRange()
5031      << RHS.get()->getSourceRange();
5032    // In this situation, we assume void* type. No especially good
5033    // reason, but this is what gcc does, and we do have to pick
5034    // to get a consistent AST.
5035    QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
5036    LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
5037    RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
5038    return incompatTy;
5039  }
5040
5041  // The pointer types are compatible.
5042  QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
5043  ResultTy = S.Context.getPointerType(ResultTy);
5044
5045  LHS = S.ImpCastExprToType(LHS.take(), ResultTy, CK_BitCast);
5046  RHS = S.ImpCastExprToType(RHS.take(), ResultTy, CK_BitCast);
5047  return ResultTy;
5048}
5049
5050/// \brief Return the resulting type when the operands are both block pointers.
5051static QualType checkConditionalBlockPointerCompatibility(Sema &S,
5052                                                          ExprResult &LHS,
5053                                                          ExprResult &RHS,
5054                                                          SourceLocation Loc) {
5055  QualType LHSTy = LHS.get()->getType();
5056  QualType RHSTy = RHS.get()->getType();
5057
5058  if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
5059    if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
5060      QualType destType = S.Context.getPointerType(S.Context.VoidTy);
5061      LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5062      RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5063      return destType;
5064    }
5065    S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
5066      << LHSTy << RHSTy << LHS.get()->getSourceRange()
5067      << RHS.get()->getSourceRange();
5068    return QualType();
5069  }
5070
5071  // We have 2 block pointer types.
5072  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
5073}
5074
5075/// \brief Return the resulting type when the operands are both pointers.
5076static QualType
5077checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
5078                                            ExprResult &RHS,
5079                                            SourceLocation Loc) {
5080  // get the pointer types
5081  QualType LHSTy = LHS.get()->getType();
5082  QualType RHSTy = RHS.get()->getType();
5083
5084  // get the "pointed to" types
5085  QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5086  QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5087
5088  // ignore qualifiers on void (C99 6.5.15p3, clause 6)
5089  if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
5090    // Figure out necessary qualifiers (C99 6.5.15p6)
5091    QualType destPointee
5092      = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5093    QualType destType = S.Context.getPointerType(destPointee);
5094    // Add qualifiers if necessary.
5095    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
5096    // Promote to void*.
5097    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5098    return destType;
5099  }
5100  if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
5101    QualType destPointee
5102      = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5103    QualType destType = S.Context.getPointerType(destPointee);
5104    // Add qualifiers if necessary.
5105    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
5106    // Promote to void*.
5107    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5108    return destType;
5109  }
5110
5111  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
5112}
5113
5114/// \brief Return false if the first expression is not an integer and the second
5115/// expression is not a pointer, true otherwise.
5116static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
5117                                        Expr* PointerExpr, SourceLocation Loc,
5118                                        bool IsIntFirstExpr) {
5119  if (!PointerExpr->getType()->isPointerType() ||
5120      !Int.get()->getType()->isIntegerType())
5121    return false;
5122
5123  Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
5124  Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
5125
5126  S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
5127    << Expr1->getType() << Expr2->getType()
5128    << Expr1->getSourceRange() << Expr2->getSourceRange();
5129  Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
5130                            CK_IntegralToPointer);
5131  return true;
5132}
5133
5134/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
5135/// In that case, LHS = cond.
5136/// C99 6.5.15
5137QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
5138                                        ExprResult &RHS, ExprValueKind &VK,
5139                                        ExprObjectKind &OK,
5140                                        SourceLocation QuestionLoc) {
5141
5142  ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
5143  if (!LHSResult.isUsable()) return QualType();
5144  LHS = LHSResult;
5145
5146  ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
5147  if (!RHSResult.isUsable()) return QualType();
5148  RHS = RHSResult;
5149
5150  // C++ is sufficiently different to merit its own checker.
5151  if (getLangOpts().CPlusPlus)
5152    return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
5153
5154  VK = VK_RValue;
5155  OK = OK_Ordinary;
5156
5157  Cond = UsualUnaryConversions(Cond.take());
5158  if (Cond.isInvalid())
5159    return QualType();
5160  LHS = UsualUnaryConversions(LHS.take());
5161  if (LHS.isInvalid())
5162    return QualType();
5163  RHS = UsualUnaryConversions(RHS.take());
5164  if (RHS.isInvalid())
5165    return QualType();
5166
5167  QualType CondTy = Cond.get()->getType();
5168  QualType LHSTy = LHS.get()->getType();
5169  QualType RHSTy = RHS.get()->getType();
5170
5171  // first, check the condition.
5172  if (checkCondition(*this, Cond.get()))
5173    return QualType();
5174
5175  // Now check the two expressions.
5176  if (LHSTy->isVectorType() || RHSTy->isVectorType())
5177    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
5178
5179  // OpenCL: If the condition is a vector, and both operands are scalar,
5180  // attempt to implicity convert them to the vector type to act like the
5181  // built in select.
5182  if (getLangOpts().OpenCL && CondTy->isVectorType())
5183    if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
5184      return QualType();
5185
5186  // If both operands have arithmetic type, do the usual arithmetic conversions
5187  // to find a common type: C99 6.5.15p3,5.
5188  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
5189    UsualArithmeticConversions(LHS, RHS);
5190    if (LHS.isInvalid() || RHS.isInvalid())
5191      return QualType();
5192    return LHS.get()->getType();
5193  }
5194
5195  // If both operands are the same structure or union type, the result is that
5196  // type.
5197  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
5198    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
5199      if (LHSRT->getDecl() == RHSRT->getDecl())
5200        // "If both the operands have structure or union type, the result has
5201        // that type."  This implies that CV qualifiers are dropped.
5202        return LHSTy.getUnqualifiedType();
5203    // FIXME: Type of conditional expression must be complete in C mode.
5204  }
5205
5206  // C99 6.5.15p5: "If both operands have void type, the result has void type."
5207  // The following || allows only one side to be void (a GCC-ism).
5208  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
5209    return checkConditionalVoidType(*this, LHS, RHS);
5210  }
5211
5212  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
5213  // the type of the other operand."
5214  if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
5215  if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
5216
5217  // All objective-c pointer type analysis is done here.
5218  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
5219                                                        QuestionLoc);
5220  if (LHS.isInvalid() || RHS.isInvalid())
5221    return QualType();
5222  if (!compositeType.isNull())
5223    return compositeType;
5224
5225
5226  // Handle block pointer types.
5227  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
5228    return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
5229                                                     QuestionLoc);
5230
5231  // Check constraints for C object pointers types (C99 6.5.15p3,6).
5232  if (LHSTy->isPointerType() && RHSTy->isPointerType())
5233    return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
5234                                                       QuestionLoc);
5235
5236  // GCC compatibility: soften pointer/integer mismatch.  Note that
5237  // null pointers have been filtered out by this point.
5238  if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
5239      /*isIntFirstExpr=*/true))
5240    return RHSTy;
5241  if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
5242      /*isIntFirstExpr=*/false))
5243    return LHSTy;
5244
5245  // Emit a better diagnostic if one of the expressions is a null pointer
5246  // constant and the other is not a pointer type. In this case, the user most
5247  // likely forgot to take the address of the other expression.
5248  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5249    return QualType();
5250
5251  // Otherwise, the operands are not compatible.
5252  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5253    << LHSTy << RHSTy << LHS.get()->getSourceRange()
5254    << RHS.get()->getSourceRange();
5255  return QualType();
5256}
5257
5258/// FindCompositeObjCPointerType - Helper method to find composite type of
5259/// two objective-c pointer types of the two input expressions.
5260QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
5261                                            SourceLocation QuestionLoc) {
5262  QualType LHSTy = LHS.get()->getType();
5263  QualType RHSTy = RHS.get()->getType();
5264
5265  // Handle things like Class and struct objc_class*.  Here we case the result
5266  // to the pseudo-builtin, because that will be implicitly cast back to the
5267  // redefinition type if an attempt is made to access its fields.
5268  if (LHSTy->isObjCClassType() &&
5269      (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
5270    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5271    return LHSTy;
5272  }
5273  if (RHSTy->isObjCClassType() &&
5274      (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
5275    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5276    return RHSTy;
5277  }
5278  // And the same for struct objc_object* / id
5279  if (LHSTy->isObjCIdType() &&
5280      (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
5281    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5282    return LHSTy;
5283  }
5284  if (RHSTy->isObjCIdType() &&
5285      (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
5286    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5287    return RHSTy;
5288  }
5289  // And the same for struct objc_selector* / SEL
5290  if (Context.isObjCSelType(LHSTy) &&
5291      (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
5292    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
5293    return LHSTy;
5294  }
5295  if (Context.isObjCSelType(RHSTy) &&
5296      (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
5297    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
5298    return RHSTy;
5299  }
5300  // Check constraints for Objective-C object pointers types.
5301  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
5302
5303    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
5304      // Two identical object pointer types are always compatible.
5305      return LHSTy;
5306    }
5307    const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
5308    const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
5309    QualType compositeType = LHSTy;
5310
5311    // If both operands are interfaces and either operand can be
5312    // assigned to the other, use that type as the composite
5313    // type. This allows
5314    //   xxx ? (A*) a : (B*) b
5315    // where B is a subclass of A.
5316    //
5317    // Additionally, as for assignment, if either type is 'id'
5318    // allow silent coercion. Finally, if the types are
5319    // incompatible then make sure to use 'id' as the composite
5320    // type so the result is acceptable for sending messages to.
5321
5322    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
5323    // It could return the composite type.
5324    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
5325      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
5326    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
5327      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
5328    } else if ((LHSTy->isObjCQualifiedIdType() ||
5329                RHSTy->isObjCQualifiedIdType()) &&
5330               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
5331      // Need to handle "id<xx>" explicitly.
5332      // GCC allows qualified id and any Objective-C type to devolve to
5333      // id. Currently localizing to here until clear this should be
5334      // part of ObjCQualifiedIdTypesAreCompatible.
5335      compositeType = Context.getObjCIdType();
5336    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
5337      compositeType = Context.getObjCIdType();
5338    } else if (!(compositeType =
5339                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
5340      ;
5341    else {
5342      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
5343      << LHSTy << RHSTy
5344      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5345      QualType incompatTy = Context.getObjCIdType();
5346      LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
5347      RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
5348      return incompatTy;
5349    }
5350    // The object pointer types are compatible.
5351    LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
5352    RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
5353    return compositeType;
5354  }
5355  // Check Objective-C object pointer types and 'void *'
5356  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
5357    if (getLangOpts().ObjCAutoRefCount) {
5358      // ARC forbids the implicit conversion of object pointers to 'void *',
5359      // so these types are not compatible.
5360      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5361          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5362      LHS = RHS = true;
5363      return QualType();
5364    }
5365    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5366    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5367    QualType destPointee
5368    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5369    QualType destType = Context.getPointerType(destPointee);
5370    // Add qualifiers if necessary.
5371    LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
5372    // Promote to void*.
5373    RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5374    return destType;
5375  }
5376  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
5377    if (getLangOpts().ObjCAutoRefCount) {
5378      // ARC forbids the implicit conversion of object pointers to 'void *',
5379      // so these types are not compatible.
5380      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5381          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5382      LHS = RHS = true;
5383      return QualType();
5384    }
5385    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5386    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5387    QualType destPointee
5388    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5389    QualType destType = Context.getPointerType(destPointee);
5390    // Add qualifiers if necessary.
5391    RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
5392    // Promote to void*.
5393    LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5394    return destType;
5395  }
5396  return QualType();
5397}
5398
5399/// SuggestParentheses - Emit a note with a fixit hint that wraps
5400/// ParenRange in parentheses.
5401static void SuggestParentheses(Sema &Self, SourceLocation Loc,
5402                               const PartialDiagnostic &Note,
5403                               SourceRange ParenRange) {
5404  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
5405  if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
5406      EndLoc.isValid()) {
5407    Self.Diag(Loc, Note)
5408      << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
5409      << FixItHint::CreateInsertion(EndLoc, ")");
5410  } else {
5411    // We can't display the parentheses, so just show the bare note.
5412    Self.Diag(Loc, Note) << ParenRange;
5413  }
5414}
5415
5416static bool IsArithmeticOp(BinaryOperatorKind Opc) {
5417  return Opc >= BO_Mul && Opc <= BO_Shr;
5418}
5419
5420/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
5421/// expression, either using a built-in or overloaded operator,
5422/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
5423/// expression.
5424static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
5425                                   Expr **RHSExprs) {
5426  // Don't strip parenthesis: we should not warn if E is in parenthesis.
5427  E = E->IgnoreImpCasts();
5428  E = E->IgnoreConversionOperator();
5429  E = E->IgnoreImpCasts();
5430
5431  // Built-in binary operator.
5432  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
5433    if (IsArithmeticOp(OP->getOpcode())) {
5434      *Opcode = OP->getOpcode();
5435      *RHSExprs = OP->getRHS();
5436      return true;
5437    }
5438  }
5439
5440  // Overloaded operator.
5441  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
5442    if (Call->getNumArgs() != 2)
5443      return false;
5444
5445    // Make sure this is really a binary operator that is safe to pass into
5446    // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
5447    OverloadedOperatorKind OO = Call->getOperator();
5448    if (OO < OO_Plus || OO > OO_Arrow ||
5449        OO == OO_PlusPlus || OO == OO_MinusMinus)
5450      return false;
5451
5452    BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
5453    if (IsArithmeticOp(OpKind)) {
5454      *Opcode = OpKind;
5455      *RHSExprs = Call->getArg(1);
5456      return true;
5457    }
5458  }
5459
5460  return false;
5461}
5462
5463static bool IsLogicOp(BinaryOperatorKind Opc) {
5464  return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
5465}
5466
5467/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
5468/// or is a logical expression such as (x==y) which has int type, but is
5469/// commonly interpreted as boolean.
5470static bool ExprLooksBoolean(Expr *E) {
5471  E = E->IgnoreParenImpCasts();
5472
5473  if (E->getType()->isBooleanType())
5474    return true;
5475  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
5476    return IsLogicOp(OP->getOpcode());
5477  if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
5478    return OP->getOpcode() == UO_LNot;
5479
5480  return false;
5481}
5482
5483/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
5484/// and binary operator are mixed in a way that suggests the programmer assumed
5485/// the conditional operator has higher precedence, for example:
5486/// "int x = a + someBinaryCondition ? 1 : 2".
5487static void DiagnoseConditionalPrecedence(Sema &Self,
5488                                          SourceLocation OpLoc,
5489                                          Expr *Condition,
5490                                          Expr *LHSExpr,
5491                                          Expr *RHSExpr) {
5492  BinaryOperatorKind CondOpcode;
5493  Expr *CondRHS;
5494
5495  if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
5496    return;
5497  if (!ExprLooksBoolean(CondRHS))
5498    return;
5499
5500  // The condition is an arithmetic binary expression, with a right-
5501  // hand side that looks boolean, so warn.
5502
5503  Self.Diag(OpLoc, diag::warn_precedence_conditional)
5504      << Condition->getSourceRange()
5505      << BinaryOperator::getOpcodeStr(CondOpcode);
5506
5507  SuggestParentheses(Self, OpLoc,
5508    Self.PDiag(diag::note_precedence_silence)
5509      << BinaryOperator::getOpcodeStr(CondOpcode),
5510    SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
5511
5512  SuggestParentheses(Self, OpLoc,
5513    Self.PDiag(diag::note_precedence_conditional_first),
5514    SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
5515}
5516
5517/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
5518/// in the case of a the GNU conditional expr extension.
5519ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5520                                    SourceLocation ColonLoc,
5521                                    Expr *CondExpr, Expr *LHSExpr,
5522                                    Expr *RHSExpr) {
5523  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5524  // was the condition.
5525  OpaqueValueExpr *opaqueValue = 0;
5526  Expr *commonExpr = 0;
5527  if (LHSExpr == 0) {
5528    commonExpr = CondExpr;
5529
5530    // We usually want to apply unary conversions *before* saving, except
5531    // in the special case of a C++ l-value conditional.
5532    if (!(getLangOpts().CPlusPlus
5533          && !commonExpr->isTypeDependent()
5534          && commonExpr->getValueKind() == RHSExpr->getValueKind()
5535          && commonExpr->isGLValue()
5536          && commonExpr->isOrdinaryOrBitFieldObject()
5537          && RHSExpr->isOrdinaryOrBitFieldObject()
5538          && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
5539      ExprResult commonRes = UsualUnaryConversions(commonExpr);
5540      if (commonRes.isInvalid())
5541        return ExprError();
5542      commonExpr = commonRes.take();
5543    }
5544
5545    opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
5546                                                commonExpr->getType(),
5547                                                commonExpr->getValueKind(),
5548                                                commonExpr->getObjectKind(),
5549                                                commonExpr);
5550    LHSExpr = CondExpr = opaqueValue;
5551  }
5552
5553  ExprValueKind VK = VK_RValue;
5554  ExprObjectKind OK = OK_Ordinary;
5555  ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
5556  QualType result = CheckConditionalOperands(Cond, LHS, RHS,
5557                                             VK, OK, QuestionLoc);
5558  if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
5559      RHS.isInvalid())
5560    return ExprError();
5561
5562  DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
5563                                RHS.get());
5564
5565  if (!commonExpr)
5566    return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
5567                                                   LHS.take(), ColonLoc,
5568                                                   RHS.take(), result, VK, OK));
5569
5570  return Owned(new (Context)
5571    BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
5572                              RHS.take(), QuestionLoc, ColonLoc, result, VK,
5573                              OK));
5574}
5575
5576// checkPointerTypesForAssignment - This is a very tricky routine (despite
5577// being closely modeled after the C99 spec:-). The odd characteristic of this
5578// routine is it effectively iqnores the qualifiers on the top level pointee.
5579// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5580// FIXME: add a couple examples in this comment.
5581static Sema::AssignConvertType
5582checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
5583  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5584  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5585
5586  // get the "pointed to" type (ignoring qualifiers at the top level)
5587  const Type *lhptee, *rhptee;
5588  Qualifiers lhq, rhq;
5589  llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
5590  llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
5591
5592  Sema::AssignConvertType ConvTy = Sema::Compatible;
5593
5594  // C99 6.5.16.1p1: This following citation is common to constraints
5595  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5596  // qualifiers of the type *pointed to* by the right;
5597  Qualifiers lq;
5598
5599  // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
5600  if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
5601      lhq.compatiblyIncludesObjCLifetime(rhq)) {
5602    // Ignore lifetime for further calculation.
5603    lhq.removeObjCLifetime();
5604    rhq.removeObjCLifetime();
5605  }
5606
5607  if (!lhq.compatiblyIncludes(rhq)) {
5608    // Treat address-space mismatches as fatal.  TODO: address subspaces
5609    if (lhq.getAddressSpace() != rhq.getAddressSpace())
5610      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5611
5612    // It's okay to add or remove GC or lifetime qualifiers when converting to
5613    // and from void*.
5614    else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
5615                        .compatiblyIncludes(
5616                                rhq.withoutObjCGCAttr().withoutObjCLifetime())
5617             && (lhptee->isVoidType() || rhptee->isVoidType()))
5618      ; // keep old
5619
5620    // Treat lifetime mismatches as fatal.
5621    else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
5622      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5623
5624    // For GCC compatibility, other qualifier mismatches are treated
5625    // as still compatible in C.
5626    else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5627  }
5628
5629  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5630  // incomplete type and the other is a pointer to a qualified or unqualified
5631  // version of void...
5632  if (lhptee->isVoidType()) {
5633    if (rhptee->isIncompleteOrObjectType())
5634      return ConvTy;
5635
5636    // As an extension, we allow cast to/from void* to function pointer.
5637    assert(rhptee->isFunctionType());
5638    return Sema::FunctionVoidPointer;
5639  }
5640
5641  if (rhptee->isVoidType()) {
5642    if (lhptee->isIncompleteOrObjectType())
5643      return ConvTy;
5644
5645    // As an extension, we allow cast to/from void* to function pointer.
5646    assert(lhptee->isFunctionType());
5647    return Sema::FunctionVoidPointer;
5648  }
5649
5650  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5651  // unqualified versions of compatible types, ...
5652  QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
5653  if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
5654    // Check if the pointee types are compatible ignoring the sign.
5655    // We explicitly check for char so that we catch "char" vs
5656    // "unsigned char" on systems where "char" is unsigned.
5657    if (lhptee->isCharType())
5658      ltrans = S.Context.UnsignedCharTy;
5659    else if (lhptee->hasSignedIntegerRepresentation())
5660      ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
5661
5662    if (rhptee->isCharType())
5663      rtrans = S.Context.UnsignedCharTy;
5664    else if (rhptee->hasSignedIntegerRepresentation())
5665      rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
5666
5667    if (ltrans == rtrans) {
5668      // Types are compatible ignoring the sign. Qualifier incompatibility
5669      // takes priority over sign incompatibility because the sign
5670      // warning can be disabled.
5671      if (ConvTy != Sema::Compatible)
5672        return ConvTy;
5673
5674      return Sema::IncompatiblePointerSign;
5675    }
5676
5677    // If we are a multi-level pointer, it's possible that our issue is simply
5678    // one of qualification - e.g. char ** -> const char ** is not allowed. If
5679    // the eventual target type is the same and the pointers have the same
5680    // level of indirection, this must be the issue.
5681    if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
5682      do {
5683        lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
5684        rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
5685      } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
5686
5687      if (lhptee == rhptee)
5688        return Sema::IncompatibleNestedPointerQualifiers;
5689    }
5690
5691    // General pointer incompatibility takes priority over qualifiers.
5692    return Sema::IncompatiblePointer;
5693  }
5694  if (!S.getLangOpts().CPlusPlus &&
5695      S.IsNoReturnConversion(ltrans, rtrans, ltrans))
5696    return Sema::IncompatiblePointer;
5697  return ConvTy;
5698}
5699
5700/// checkBlockPointerTypesForAssignment - This routine determines whether two
5701/// block pointer types are compatible or whether a block and normal pointer
5702/// are compatible. It is more restrict than comparing two function pointer
5703// types.
5704static Sema::AssignConvertType
5705checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
5706                                    QualType RHSType) {
5707  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5708  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5709
5710  QualType lhptee, rhptee;
5711
5712  // get the "pointed to" type (ignoring qualifiers at the top level)
5713  lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
5714  rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
5715
5716  // In C++, the types have to match exactly.
5717  if (S.getLangOpts().CPlusPlus)
5718    return Sema::IncompatibleBlockPointer;
5719
5720  Sema::AssignConvertType ConvTy = Sema::Compatible;
5721
5722  // For blocks we enforce that qualifiers are identical.
5723  if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
5724    ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5725
5726  if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
5727    return Sema::IncompatibleBlockPointer;
5728
5729  return ConvTy;
5730}
5731
5732/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
5733/// for assignment compatibility.
5734static Sema::AssignConvertType
5735checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
5736                                   QualType RHSType) {
5737  assert(LHSType.isCanonical() && "LHS was not canonicalized!");
5738  assert(RHSType.isCanonical() && "RHS was not canonicalized!");
5739
5740  if (LHSType->isObjCBuiltinType()) {
5741    // Class is not compatible with ObjC object pointers.
5742    if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
5743        !RHSType->isObjCQualifiedClassType())
5744      return Sema::IncompatiblePointer;
5745    return Sema::Compatible;
5746  }
5747  if (RHSType->isObjCBuiltinType()) {
5748    if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
5749        !LHSType->isObjCQualifiedClassType())
5750      return Sema::IncompatiblePointer;
5751    return Sema::Compatible;
5752  }
5753  QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5754  QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5755
5756  if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
5757      // make an exception for id<P>
5758      !LHSType->isObjCQualifiedIdType())
5759    return Sema::CompatiblePointerDiscardsQualifiers;
5760
5761  if (S.Context.typesAreCompatible(LHSType, RHSType))
5762    return Sema::Compatible;
5763  if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
5764    return Sema::IncompatibleObjCQualifiedId;
5765  return Sema::IncompatiblePointer;
5766}
5767
5768Sema::AssignConvertType
5769Sema::CheckAssignmentConstraints(SourceLocation Loc,
5770                                 QualType LHSType, QualType RHSType) {
5771  // Fake up an opaque expression.  We don't actually care about what
5772  // cast operations are required, so if CheckAssignmentConstraints
5773  // adds casts to this they'll be wasted, but fortunately that doesn't
5774  // usually happen on valid code.
5775  OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
5776  ExprResult RHSPtr = &RHSExpr;
5777  CastKind K = CK_Invalid;
5778
5779  return CheckAssignmentConstraints(LHSType, RHSPtr, K);
5780}
5781
5782/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5783/// has code to accommodate several GCC extensions when type checking
5784/// pointers. Here are some objectionable examples that GCC considers warnings:
5785///
5786///  int a, *pint;
5787///  short *pshort;
5788///  struct foo *pfoo;
5789///
5790///  pint = pshort; // warning: assignment from incompatible pointer type
5791///  a = pint; // warning: assignment makes integer from pointer without a cast
5792///  pint = a; // warning: assignment makes pointer from integer without a cast
5793///  pint = pfoo; // warning: assignment from incompatible pointer type
5794///
5795/// As a result, the code for dealing with pointers is more complex than the
5796/// C99 spec dictates.
5797///
5798/// Sets 'Kind' for any result kind except Incompatible.
5799Sema::AssignConvertType
5800Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5801                                 CastKind &Kind) {
5802  QualType RHSType = RHS.get()->getType();
5803  QualType OrigLHSType = LHSType;
5804
5805  // Get canonical types.  We're not formatting these types, just comparing
5806  // them.
5807  LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
5808  RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
5809
5810  // Common case: no conversion required.
5811  if (LHSType == RHSType) {
5812    Kind = CK_NoOp;
5813    return Compatible;
5814  }
5815
5816  // If we have an atomic type, try a non-atomic assignment, then just add an
5817  // atomic qualification step.
5818  if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
5819    Sema::AssignConvertType result =
5820      CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
5821    if (result != Compatible)
5822      return result;
5823    if (Kind != CK_NoOp)
5824      RHS = ImpCastExprToType(RHS.take(), AtomicTy->getValueType(), Kind);
5825    Kind = CK_NonAtomicToAtomic;
5826    return Compatible;
5827  }
5828
5829  // If the left-hand side is a reference type, then we are in a
5830  // (rare!) case where we've allowed the use of references in C,
5831  // e.g., as a parameter type in a built-in function. In this case,
5832  // just make sure that the type referenced is compatible with the
5833  // right-hand side type. The caller is responsible for adjusting
5834  // LHSType so that the resulting expression does not have reference
5835  // type.
5836  if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
5837    if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
5838      Kind = CK_LValueBitCast;
5839      return Compatible;
5840    }
5841    return Incompatible;
5842  }
5843
5844  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5845  // to the same ExtVector type.
5846  if (LHSType->isExtVectorType()) {
5847    if (RHSType->isExtVectorType())
5848      return Incompatible;
5849    if (RHSType->isArithmeticType()) {
5850      // CK_VectorSplat does T -> vector T, so first cast to the
5851      // element type.
5852      QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
5853      if (elType != RHSType) {
5854        Kind = PrepareScalarCast(RHS, elType);
5855        RHS = ImpCastExprToType(RHS.take(), elType, Kind);
5856      }
5857      Kind = CK_VectorSplat;
5858      return Compatible;
5859    }
5860  }
5861
5862  // Conversions to or from vector type.
5863  if (LHSType->isVectorType() || RHSType->isVectorType()) {
5864    if (LHSType->isVectorType() && RHSType->isVectorType()) {
5865      // Allow assignments of an AltiVec vector type to an equivalent GCC
5866      // vector type and vice versa
5867      if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5868        Kind = CK_BitCast;
5869        return Compatible;
5870      }
5871
5872      // If we are allowing lax vector conversions, and LHS and RHS are both
5873      // vectors, the total size only needs to be the same. This is a bitcast;
5874      // no bits are changed but the result type is different.
5875      if (getLangOpts().LaxVectorConversions &&
5876          (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
5877        Kind = CK_BitCast;
5878        return IncompatibleVectors;
5879      }
5880    }
5881    return Incompatible;
5882  }
5883
5884  // Arithmetic conversions.
5885  if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
5886      !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
5887    Kind = PrepareScalarCast(RHS, LHSType);
5888    return Compatible;
5889  }
5890
5891  // Conversions to normal pointers.
5892  if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
5893    // U* -> T*
5894    if (isa<PointerType>(RHSType)) {
5895      Kind = CK_BitCast;
5896      return checkPointerTypesForAssignment(*this, LHSType, RHSType);
5897    }
5898
5899    // int -> T*
5900    if (RHSType->isIntegerType()) {
5901      Kind = CK_IntegralToPointer; // FIXME: null?
5902      return IntToPointer;
5903    }
5904
5905    // C pointers are not compatible with ObjC object pointers,
5906    // with two exceptions:
5907    if (isa<ObjCObjectPointerType>(RHSType)) {
5908      //  - conversions to void*
5909      if (LHSPointer->getPointeeType()->isVoidType()) {
5910        Kind = CK_BitCast;
5911        return Compatible;
5912      }
5913
5914      //  - conversions from 'Class' to the redefinition type
5915      if (RHSType->isObjCClassType() &&
5916          Context.hasSameType(LHSType,
5917                              Context.getObjCClassRedefinitionType())) {
5918        Kind = CK_BitCast;
5919        return Compatible;
5920      }
5921
5922      Kind = CK_BitCast;
5923      return IncompatiblePointer;
5924    }
5925
5926    // U^ -> void*
5927    if (RHSType->getAs<BlockPointerType>()) {
5928      if (LHSPointer->getPointeeType()->isVoidType()) {
5929        Kind = CK_BitCast;
5930        return Compatible;
5931      }
5932    }
5933
5934    return Incompatible;
5935  }
5936
5937  // Conversions to block pointers.
5938  if (isa<BlockPointerType>(LHSType)) {
5939    // U^ -> T^
5940    if (RHSType->isBlockPointerType()) {
5941      Kind = CK_BitCast;
5942      return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
5943    }
5944
5945    // int or null -> T^
5946    if (RHSType->isIntegerType()) {
5947      Kind = CK_IntegralToPointer; // FIXME: null
5948      return IntToBlockPointer;
5949    }
5950
5951    // id -> T^
5952    if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
5953      Kind = CK_AnyPointerToBlockPointerCast;
5954      return Compatible;
5955    }
5956
5957    // void* -> T^
5958    if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
5959      if (RHSPT->getPointeeType()->isVoidType()) {
5960        Kind = CK_AnyPointerToBlockPointerCast;
5961        return Compatible;
5962      }
5963
5964    return Incompatible;
5965  }
5966
5967  // Conversions to Objective-C pointers.
5968  if (isa<ObjCObjectPointerType>(LHSType)) {
5969    // A* -> B*
5970    if (RHSType->isObjCObjectPointerType()) {
5971      Kind = CK_BitCast;
5972      Sema::AssignConvertType result =
5973        checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
5974      if (getLangOpts().ObjCAutoRefCount &&
5975          result == Compatible &&
5976          !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
5977        result = IncompatibleObjCWeakRef;
5978      return result;
5979    }
5980
5981    // int or null -> A*
5982    if (RHSType->isIntegerType()) {
5983      Kind = CK_IntegralToPointer; // FIXME: null
5984      return IntToPointer;
5985    }
5986
5987    // In general, C pointers are not compatible with ObjC object pointers,
5988    // with two exceptions:
5989    if (isa<PointerType>(RHSType)) {
5990      Kind = CK_CPointerToObjCPointerCast;
5991
5992      //  - conversions from 'void*'
5993      if (RHSType->isVoidPointerType()) {
5994        return Compatible;
5995      }
5996
5997      //  - conversions to 'Class' from its redefinition type
5998      if (LHSType->isObjCClassType() &&
5999          Context.hasSameType(RHSType,
6000                              Context.getObjCClassRedefinitionType())) {
6001        return Compatible;
6002      }
6003
6004      return IncompatiblePointer;
6005    }
6006
6007    // T^ -> A*
6008    if (RHSType->isBlockPointerType()) {
6009      maybeExtendBlockObject(*this, RHS);
6010      Kind = CK_BlockPointerToObjCPointerCast;
6011      return Compatible;
6012    }
6013
6014    return Incompatible;
6015  }
6016
6017  // Conversions from pointers that are not covered by the above.
6018  if (isa<PointerType>(RHSType)) {
6019    // T* -> _Bool
6020    if (LHSType == Context.BoolTy) {
6021      Kind = CK_PointerToBoolean;
6022      return Compatible;
6023    }
6024
6025    // T* -> int
6026    if (LHSType->isIntegerType()) {
6027      Kind = CK_PointerToIntegral;
6028      return PointerToInt;
6029    }
6030
6031    return Incompatible;
6032  }
6033
6034  // Conversions from Objective-C pointers that are not covered by the above.
6035  if (isa<ObjCObjectPointerType>(RHSType)) {
6036    // T* -> _Bool
6037    if (LHSType == Context.BoolTy) {
6038      Kind = CK_PointerToBoolean;
6039      return Compatible;
6040    }
6041
6042    // T* -> int
6043    if (LHSType->isIntegerType()) {
6044      Kind = CK_PointerToIntegral;
6045      return PointerToInt;
6046    }
6047
6048    return Incompatible;
6049  }
6050
6051  // struct A -> struct B
6052  if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
6053    if (Context.typesAreCompatible(LHSType, RHSType)) {
6054      Kind = CK_NoOp;
6055      return Compatible;
6056    }
6057  }
6058
6059  return Incompatible;
6060}
6061
6062/// \brief Constructs a transparent union from an expression that is
6063/// used to initialize the transparent union.
6064static void ConstructTransparentUnion(Sema &S, ASTContext &C,
6065                                      ExprResult &EResult, QualType UnionType,
6066                                      FieldDecl *Field) {
6067  // Build an initializer list that designates the appropriate member
6068  // of the transparent union.
6069  Expr *E = EResult.take();
6070  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
6071                                                   E, SourceLocation());
6072  Initializer->setType(UnionType);
6073  Initializer->setInitializedFieldInUnion(Field);
6074
6075  // Build a compound literal constructing a value of the transparent
6076  // union type from this initializer list.
6077  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
6078  EResult = S.Owned(
6079    new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
6080                                VK_RValue, Initializer, false));
6081}
6082
6083Sema::AssignConvertType
6084Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
6085                                               ExprResult &RHS) {
6086  QualType RHSType = RHS.get()->getType();
6087
6088  // If the ArgType is a Union type, we want to handle a potential
6089  // transparent_union GCC extension.
6090  const RecordType *UT = ArgType->getAsUnionType();
6091  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
6092    return Incompatible;
6093
6094  // The field to initialize within the transparent union.
6095  RecordDecl *UD = UT->getDecl();
6096  FieldDecl *InitField = 0;
6097  // It's compatible if the expression matches any of the fields.
6098  for (RecordDecl::field_iterator it = UD->field_begin(),
6099         itend = UD->field_end();
6100       it != itend; ++it) {
6101    if (it->getType()->isPointerType()) {
6102      // If the transparent union contains a pointer type, we allow:
6103      // 1) void pointer
6104      // 2) null pointer constant
6105      if (RHSType->isPointerType())
6106        if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
6107          RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
6108          InitField = *it;
6109          break;
6110        }
6111
6112      if (RHS.get()->isNullPointerConstant(Context,
6113                                           Expr::NPC_ValueDependentIsNull)) {
6114        RHS = ImpCastExprToType(RHS.take(), it->getType(),
6115                                CK_NullToPointer);
6116        InitField = *it;
6117        break;
6118      }
6119    }
6120
6121    CastKind Kind = CK_Invalid;
6122    if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
6123          == Compatible) {
6124      RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
6125      InitField = *it;
6126      break;
6127    }
6128  }
6129
6130  if (!InitField)
6131    return Incompatible;
6132
6133  ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
6134  return Compatible;
6135}
6136
6137Sema::AssignConvertType
6138Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
6139                                       bool Diagnose) {
6140  if (getLangOpts().CPlusPlus) {
6141    if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
6142      // C++ 5.17p3: If the left operand is not of class type, the
6143      // expression is implicitly converted (C++ 4) to the
6144      // cv-unqualified type of the left operand.
6145      ExprResult Res;
6146      if (Diagnose) {
6147        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6148                                        AA_Assigning);
6149      } else {
6150        ImplicitConversionSequence ICS =
6151            TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6152                                  /*SuppressUserConversions=*/false,
6153                                  /*AllowExplicit=*/false,
6154                                  /*InOverloadResolution=*/false,
6155                                  /*CStyle=*/false,
6156                                  /*AllowObjCWritebackConversion=*/false);
6157        if (ICS.isFailure())
6158          return Incompatible;
6159        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6160                                        ICS, AA_Assigning);
6161      }
6162      if (Res.isInvalid())
6163        return Incompatible;
6164      Sema::AssignConvertType result = Compatible;
6165      if (getLangOpts().ObjCAutoRefCount &&
6166          !CheckObjCARCUnavailableWeakConversion(LHSType,
6167                                                 RHS.get()->getType()))
6168        result = IncompatibleObjCWeakRef;
6169      RHS = Res;
6170      return result;
6171    }
6172
6173    // FIXME: Currently, we fall through and treat C++ classes like C
6174    // structures.
6175    // FIXME: We also fall through for atomics; not sure what should
6176    // happen there, though.
6177  }
6178
6179  // C99 6.5.16.1p1: the left operand is a pointer and the right is
6180  // a null pointer constant.
6181  if ((LHSType->isPointerType() ||
6182       LHSType->isObjCObjectPointerType() ||
6183       LHSType->isBlockPointerType())
6184      && RHS.get()->isNullPointerConstant(Context,
6185                                          Expr::NPC_ValueDependentIsNull)) {
6186    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
6187    return Compatible;
6188  }
6189
6190  // This check seems unnatural, however it is necessary to ensure the proper
6191  // conversion of functions/arrays. If the conversion were done for all
6192  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
6193  // expressions that suppress this implicit conversion (&, sizeof).
6194  //
6195  // Suppress this for references: C++ 8.5.3p5.
6196  if (!LHSType->isReferenceType()) {
6197    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
6198    if (RHS.isInvalid())
6199      return Incompatible;
6200  }
6201
6202  CastKind Kind = CK_Invalid;
6203  Sema::AssignConvertType result =
6204    CheckAssignmentConstraints(LHSType, RHS, Kind);
6205
6206  // C99 6.5.16.1p2: The value of the right operand is converted to the
6207  // type of the assignment expression.
6208  // CheckAssignmentConstraints allows the left-hand side to be a reference,
6209  // so that we can use references in built-in functions even in C.
6210  // The getNonReferenceType() call makes sure that the resulting expression
6211  // does not have reference type.
6212  if (result != Incompatible && RHS.get()->getType() != LHSType)
6213    RHS = ImpCastExprToType(RHS.take(),
6214                            LHSType.getNonLValueExprType(Context), Kind);
6215  return result;
6216}
6217
6218QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
6219                               ExprResult &RHS) {
6220  Diag(Loc, diag::err_typecheck_invalid_operands)
6221    << LHS.get()->getType() << RHS.get()->getType()
6222    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6223  return QualType();
6224}
6225
6226QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
6227                                   SourceLocation Loc, bool IsCompAssign) {
6228  if (!IsCompAssign) {
6229    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
6230    if (LHS.isInvalid())
6231      return QualType();
6232  }
6233  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
6234  if (RHS.isInvalid())
6235    return QualType();
6236
6237  // For conversion purposes, we ignore any qualifiers.
6238  // For example, "const float" and "float" are equivalent.
6239  QualType LHSType =
6240    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
6241  QualType RHSType =
6242    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
6243
6244  // If the vector types are identical, return.
6245  if (LHSType == RHSType)
6246    return LHSType;
6247
6248  // Handle the case of equivalent AltiVec and GCC vector types
6249  if (LHSType->isVectorType() && RHSType->isVectorType() &&
6250      Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6251    if (LHSType->isExtVectorType()) {
6252      RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6253      return LHSType;
6254    }
6255
6256    if (!IsCompAssign)
6257      LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6258    return RHSType;
6259  }
6260
6261  if (getLangOpts().LaxVectorConversions &&
6262      Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
6263    // If we are allowing lax vector conversions, and LHS and RHS are both
6264    // vectors, the total size only needs to be the same. This is a
6265    // bitcast; no bits are changed but the result type is different.
6266    // FIXME: Should we really be allowing this?
6267    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6268    return LHSType;
6269  }
6270
6271  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
6272  // swap back (so that we don't reverse the inputs to a subtract, for instance.
6273  bool swapped = false;
6274  if (RHSType->isExtVectorType() && !IsCompAssign) {
6275    swapped = true;
6276    std::swap(RHS, LHS);
6277    std::swap(RHSType, LHSType);
6278  }
6279
6280  // Handle the case of an ext vector and scalar.
6281  if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
6282    QualType EltTy = LV->getElementType();
6283    if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
6284      int order = Context.getIntegerTypeOrder(EltTy, RHSType);
6285      if (order > 0)
6286        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
6287      if (order >= 0) {
6288        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6289        if (swapped) std::swap(RHS, LHS);
6290        return LHSType;
6291      }
6292    }
6293    if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
6294        RHSType->isRealFloatingType()) {
6295      int order = Context.getFloatingTypeOrder(EltTy, RHSType);
6296      if (order > 0)
6297        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
6298      if (order >= 0) {
6299        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6300        if (swapped) std::swap(RHS, LHS);
6301        return LHSType;
6302      }
6303    }
6304  }
6305
6306  // Vectors of different size or scalar and non-ext-vector are errors.
6307  if (swapped) std::swap(RHS, LHS);
6308  Diag(Loc, diag::err_typecheck_vector_not_convertable)
6309    << LHS.get()->getType() << RHS.get()->getType()
6310    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6311  return QualType();
6312}
6313
6314// checkArithmeticNull - Detect when a NULL constant is used improperly in an
6315// expression.  These are mainly cases where the null pointer is used as an
6316// integer instead of a pointer.
6317static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
6318                                SourceLocation Loc, bool IsCompare) {
6319  // The canonical way to check for a GNU null is with isNullPointerConstant,
6320  // but we use a bit of a hack here for speed; this is a relatively
6321  // hot path, and isNullPointerConstant is slow.
6322  bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
6323  bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
6324
6325  QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
6326
6327  // Avoid analyzing cases where the result will either be invalid (and
6328  // diagnosed as such) or entirely valid and not something to warn about.
6329  if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
6330      NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
6331    return;
6332
6333  // Comparison operations would not make sense with a null pointer no matter
6334  // what the other expression is.
6335  if (!IsCompare) {
6336    S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
6337        << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
6338        << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
6339    return;
6340  }
6341
6342  // The rest of the operations only make sense with a null pointer
6343  // if the other expression is a pointer.
6344  if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
6345      NonNullType->canDecayToPointerType())
6346    return;
6347
6348  S.Diag(Loc, diag::warn_null_in_comparison_operation)
6349      << LHSNull /* LHS is NULL */ << NonNullType
6350      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6351}
6352
6353QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
6354                                           SourceLocation Loc,
6355                                           bool IsCompAssign, bool IsDiv) {
6356  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6357
6358  if (LHS.get()->getType()->isVectorType() ||
6359      RHS.get()->getType()->isVectorType())
6360    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6361
6362  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6363  if (LHS.isInvalid() || RHS.isInvalid())
6364    return QualType();
6365
6366
6367  if (compType.isNull() || !compType->isArithmeticType())
6368    return InvalidOperands(Loc, LHS, RHS);
6369
6370  // Check for division by zero.
6371  if (IsDiv &&
6372      RHS.get()->isNullPointerConstant(Context,
6373                                       Expr::NPC_ValueDependentIsNotNull))
6374    DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
6375                                          << RHS.get()->getSourceRange());
6376
6377  return compType;
6378}
6379
6380QualType Sema::CheckRemainderOperands(
6381  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
6382  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6383
6384  if (LHS.get()->getType()->isVectorType() ||
6385      RHS.get()->getType()->isVectorType()) {
6386    if (LHS.get()->getType()->hasIntegerRepresentation() &&
6387        RHS.get()->getType()->hasIntegerRepresentation())
6388      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6389    return InvalidOperands(Loc, LHS, RHS);
6390  }
6391
6392  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6393  if (LHS.isInvalid() || RHS.isInvalid())
6394    return QualType();
6395
6396  if (compType.isNull() || !compType->isIntegerType())
6397    return InvalidOperands(Loc, LHS, RHS);
6398
6399  // Check for remainder by zero.
6400  if (RHS.get()->isNullPointerConstant(Context,
6401                                       Expr::NPC_ValueDependentIsNotNull))
6402    DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
6403                                 << RHS.get()->getSourceRange());
6404
6405  return compType;
6406}
6407
6408/// \brief Diagnose invalid arithmetic on two void pointers.
6409static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
6410                                                Expr *LHSExpr, Expr *RHSExpr) {
6411  S.Diag(Loc, S.getLangOpts().CPlusPlus
6412                ? diag::err_typecheck_pointer_arith_void_type
6413                : diag::ext_gnu_void_ptr)
6414    << 1 /* two pointers */ << LHSExpr->getSourceRange()
6415                            << RHSExpr->getSourceRange();
6416}
6417
6418/// \brief Diagnose invalid arithmetic on a void pointer.
6419static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
6420                                            Expr *Pointer) {
6421  S.Diag(Loc, S.getLangOpts().CPlusPlus
6422                ? diag::err_typecheck_pointer_arith_void_type
6423                : diag::ext_gnu_void_ptr)
6424    << 0 /* one pointer */ << Pointer->getSourceRange();
6425}
6426
6427/// \brief Diagnose invalid arithmetic on two function pointers.
6428static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
6429                                                    Expr *LHS, Expr *RHS) {
6430  assert(LHS->getType()->isAnyPointerType());
6431  assert(RHS->getType()->isAnyPointerType());
6432  S.Diag(Loc, S.getLangOpts().CPlusPlus
6433                ? diag::err_typecheck_pointer_arith_function_type
6434                : diag::ext_gnu_ptr_func_arith)
6435    << 1 /* two pointers */ << LHS->getType()->getPointeeType()
6436    // We only show the second type if it differs from the first.
6437    << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
6438                                                   RHS->getType())
6439    << RHS->getType()->getPointeeType()
6440    << LHS->getSourceRange() << RHS->getSourceRange();
6441}
6442
6443/// \brief Diagnose invalid arithmetic on a function pointer.
6444static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
6445                                                Expr *Pointer) {
6446  assert(Pointer->getType()->isAnyPointerType());
6447  S.Diag(Loc, S.getLangOpts().CPlusPlus
6448                ? diag::err_typecheck_pointer_arith_function_type
6449                : diag::ext_gnu_ptr_func_arith)
6450    << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
6451    << 0 /* one pointer, so only one type */
6452    << Pointer->getSourceRange();
6453}
6454
6455/// \brief Emit error if Operand is incomplete pointer type
6456///
6457/// \returns True if pointer has incomplete type
6458static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
6459                                                 Expr *Operand) {
6460  assert(Operand->getType()->isAnyPointerType() &&
6461         !Operand->getType()->isDependentType());
6462  QualType PointeeTy = Operand->getType()->getPointeeType();
6463  return S.RequireCompleteType(Loc, PointeeTy,
6464                               diag::err_typecheck_arithmetic_incomplete_type,
6465                               PointeeTy, Operand->getSourceRange());
6466}
6467
6468/// \brief Check the validity of an arithmetic pointer operand.
6469///
6470/// If the operand has pointer type, this code will check for pointer types
6471/// which are invalid in arithmetic operations. These will be diagnosed
6472/// appropriately, including whether or not the use is supported as an
6473/// extension.
6474///
6475/// \returns True when the operand is valid to use (even if as an extension).
6476static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
6477                                            Expr *Operand) {
6478  if (!Operand->getType()->isAnyPointerType()) return true;
6479
6480  QualType PointeeTy = Operand->getType()->getPointeeType();
6481  if (PointeeTy->isVoidType()) {
6482    diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
6483    return !S.getLangOpts().CPlusPlus;
6484  }
6485  if (PointeeTy->isFunctionType()) {
6486    diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
6487    return !S.getLangOpts().CPlusPlus;
6488  }
6489
6490  if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
6491
6492  return true;
6493}
6494
6495/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
6496/// operands.
6497///
6498/// This routine will diagnose any invalid arithmetic on pointer operands much
6499/// like \see checkArithmeticOpPointerOperand. However, it has special logic
6500/// for emitting a single diagnostic even for operations where both LHS and RHS
6501/// are (potentially problematic) pointers.
6502///
6503/// \returns True when the operand is valid to use (even if as an extension).
6504static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
6505                                                Expr *LHSExpr, Expr *RHSExpr) {
6506  bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
6507  bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
6508  if (!isLHSPointer && !isRHSPointer) return true;
6509
6510  QualType LHSPointeeTy, RHSPointeeTy;
6511  if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
6512  if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
6513
6514  // Check for arithmetic on pointers to incomplete types.
6515  bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
6516  bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
6517  if (isLHSVoidPtr || isRHSVoidPtr) {
6518    if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
6519    else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
6520    else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
6521
6522    return !S.getLangOpts().CPlusPlus;
6523  }
6524
6525  bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
6526  bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
6527  if (isLHSFuncPtr || isRHSFuncPtr) {
6528    if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
6529    else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
6530                                                                RHSExpr);
6531    else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
6532
6533    return !S.getLangOpts().CPlusPlus;
6534  }
6535
6536  if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
6537    return false;
6538  if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
6539    return false;
6540
6541  return true;
6542}
6543
6544/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
6545/// literal.
6546static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
6547                                  Expr *LHSExpr, Expr *RHSExpr) {
6548  StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
6549  Expr* IndexExpr = RHSExpr;
6550  if (!StrExpr) {
6551    StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
6552    IndexExpr = LHSExpr;
6553  }
6554
6555  bool IsStringPlusInt = StrExpr &&
6556      IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
6557  if (!IsStringPlusInt)
6558    return;
6559
6560  llvm::APSInt index;
6561  if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
6562    unsigned StrLenWithNull = StrExpr->getLength() + 1;
6563    if (index.isNonNegative() &&
6564        index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
6565                              index.isUnsigned()))
6566      return;
6567  }
6568
6569  SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
6570  Self.Diag(OpLoc, diag::warn_string_plus_int)
6571      << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
6572
6573  // Only print a fixit for "str" + int, not for int + "str".
6574  if (IndexExpr == RHSExpr) {
6575    SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
6576    Self.Diag(OpLoc, diag::note_string_plus_int_silence)
6577        << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
6578        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
6579        << FixItHint::CreateInsertion(EndLoc, "]");
6580  } else
6581    Self.Diag(OpLoc, diag::note_string_plus_int_silence);
6582}
6583
6584/// \brief Emit error when two pointers are incompatible.
6585static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
6586                                           Expr *LHSExpr, Expr *RHSExpr) {
6587  assert(LHSExpr->getType()->isAnyPointerType());
6588  assert(RHSExpr->getType()->isAnyPointerType());
6589  S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
6590    << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
6591    << RHSExpr->getSourceRange();
6592}
6593
6594QualType Sema::CheckAdditionOperands( // C99 6.5.6
6595    ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
6596    QualType* CompLHSTy) {
6597  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6598
6599  if (LHS.get()->getType()->isVectorType() ||
6600      RHS.get()->getType()->isVectorType()) {
6601    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6602    if (CompLHSTy) *CompLHSTy = compType;
6603    return compType;
6604  }
6605
6606  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6607  if (LHS.isInvalid() || RHS.isInvalid())
6608    return QualType();
6609
6610  // Diagnose "string literal" '+' int.
6611  if (Opc == BO_Add)
6612    diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
6613
6614  // handle the common case first (both operands are arithmetic).
6615  if (!compType.isNull() && compType->isArithmeticType()) {
6616    if (CompLHSTy) *CompLHSTy = compType;
6617    return compType;
6618  }
6619
6620  // Type-checking.  Ultimately the pointer's going to be in PExp;
6621  // note that we bias towards the LHS being the pointer.
6622  Expr *PExp = LHS.get(), *IExp = RHS.get();
6623
6624  bool isObjCPointer;
6625  if (PExp->getType()->isPointerType()) {
6626    isObjCPointer = false;
6627  } else if (PExp->getType()->isObjCObjectPointerType()) {
6628    isObjCPointer = true;
6629  } else {
6630    std::swap(PExp, IExp);
6631    if (PExp->getType()->isPointerType()) {
6632      isObjCPointer = false;
6633    } else if (PExp->getType()->isObjCObjectPointerType()) {
6634      isObjCPointer = true;
6635    } else {
6636      return InvalidOperands(Loc, LHS, RHS);
6637    }
6638  }
6639  assert(PExp->getType()->isAnyPointerType());
6640
6641  if (!IExp->getType()->isIntegerType())
6642    return InvalidOperands(Loc, LHS, RHS);
6643
6644  if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
6645    return QualType();
6646
6647  if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
6648    return QualType();
6649
6650  // Check array bounds for pointer arithemtic
6651  CheckArrayAccess(PExp, IExp);
6652
6653  if (CompLHSTy) {
6654    QualType LHSTy = Context.isPromotableBitField(LHS.get());
6655    if (LHSTy.isNull()) {
6656      LHSTy = LHS.get()->getType();
6657      if (LHSTy->isPromotableIntegerType())
6658        LHSTy = Context.getPromotedIntegerType(LHSTy);
6659    }
6660    *CompLHSTy = LHSTy;
6661  }
6662
6663  return PExp->getType();
6664}
6665
6666// C99 6.5.6
6667QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
6668                                        SourceLocation Loc,
6669                                        QualType* CompLHSTy) {
6670  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6671
6672  if (LHS.get()->getType()->isVectorType() ||
6673      RHS.get()->getType()->isVectorType()) {
6674    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6675    if (CompLHSTy) *CompLHSTy = compType;
6676    return compType;
6677  }
6678
6679  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6680  if (LHS.isInvalid() || RHS.isInvalid())
6681    return QualType();
6682
6683  // Enforce type constraints: C99 6.5.6p3.
6684
6685  // Handle the common case first (both operands are arithmetic).
6686  if (!compType.isNull() && compType->isArithmeticType()) {
6687    if (CompLHSTy) *CompLHSTy = compType;
6688    return compType;
6689  }
6690
6691  // Either ptr - int   or   ptr - ptr.
6692  if (LHS.get()->getType()->isAnyPointerType()) {
6693    QualType lpointee = LHS.get()->getType()->getPointeeType();
6694
6695    // Diagnose bad cases where we step over interface counts.
6696    if (LHS.get()->getType()->isObjCObjectPointerType() &&
6697        checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
6698      return QualType();
6699
6700    // The result type of a pointer-int computation is the pointer type.
6701    if (RHS.get()->getType()->isIntegerType()) {
6702      if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
6703        return QualType();
6704
6705      // Check array bounds for pointer arithemtic
6706      CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
6707                       /*AllowOnePastEnd*/true, /*IndexNegated*/true);
6708
6709      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6710      return LHS.get()->getType();
6711    }
6712
6713    // Handle pointer-pointer subtractions.
6714    if (const PointerType *RHSPTy
6715          = RHS.get()->getType()->getAs<PointerType>()) {
6716      QualType rpointee = RHSPTy->getPointeeType();
6717
6718      if (getLangOpts().CPlusPlus) {
6719        // Pointee types must be the same: C++ [expr.add]
6720        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
6721          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6722        }
6723      } else {
6724        // Pointee types must be compatible C99 6.5.6p3
6725        if (!Context.typesAreCompatible(
6726                Context.getCanonicalType(lpointee).getUnqualifiedType(),
6727                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
6728          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6729          return QualType();
6730        }
6731      }
6732
6733      if (!checkArithmeticBinOpPointerOperands(*this, Loc,
6734                                               LHS.get(), RHS.get()))
6735        return QualType();
6736
6737      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6738      return Context.getPointerDiffType();
6739    }
6740  }
6741
6742  return InvalidOperands(Loc, LHS, RHS);
6743}
6744
6745static bool isScopedEnumerationType(QualType T) {
6746  if (const EnumType *ET = dyn_cast<EnumType>(T))
6747    return ET->getDecl()->isScoped();
6748  return false;
6749}
6750
6751static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
6752                                   SourceLocation Loc, unsigned Opc,
6753                                   QualType LHSType) {
6754  // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
6755  // so skip remaining warnings as we don't want to modify values within Sema.
6756  if (S.getLangOpts().OpenCL)
6757    return;
6758
6759  llvm::APSInt Right;
6760  // Check right/shifter operand
6761  if (RHS.get()->isValueDependent() ||
6762      !RHS.get()->isIntegerConstantExpr(Right, S.Context))
6763    return;
6764
6765  if (Right.isNegative()) {
6766    S.DiagRuntimeBehavior(Loc, RHS.get(),
6767                          S.PDiag(diag::warn_shift_negative)
6768                            << RHS.get()->getSourceRange());
6769    return;
6770  }
6771  llvm::APInt LeftBits(Right.getBitWidth(),
6772                       S.Context.getTypeSize(LHS.get()->getType()));
6773  if (Right.uge(LeftBits)) {
6774    S.DiagRuntimeBehavior(Loc, RHS.get(),
6775                          S.PDiag(diag::warn_shift_gt_typewidth)
6776                            << RHS.get()->getSourceRange());
6777    return;
6778  }
6779  if (Opc != BO_Shl)
6780    return;
6781
6782  // When left shifting an ICE which is signed, we can check for overflow which
6783  // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
6784  // integers have defined behavior modulo one more than the maximum value
6785  // representable in the result type, so never warn for those.
6786  llvm::APSInt Left;
6787  if (LHS.get()->isValueDependent() ||
6788      !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
6789      LHSType->hasUnsignedIntegerRepresentation())
6790    return;
6791  llvm::APInt ResultBits =
6792      static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
6793  if (LeftBits.uge(ResultBits))
6794    return;
6795  llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
6796  Result = Result.shl(Right);
6797
6798  // Print the bit representation of the signed integer as an unsigned
6799  // hexadecimal number.
6800  SmallString<40> HexResult;
6801  Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
6802
6803  // If we are only missing a sign bit, this is less likely to result in actual
6804  // bugs -- if the result is cast back to an unsigned type, it will have the
6805  // expected value. Thus we place this behind a different warning that can be
6806  // turned off separately if needed.
6807  if (LeftBits == ResultBits - 1) {
6808    S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
6809        << HexResult.str() << LHSType
6810        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6811    return;
6812  }
6813
6814  S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
6815    << HexResult.str() << Result.getMinSignedBits() << LHSType
6816    << Left.getBitWidth() << LHS.get()->getSourceRange()
6817    << RHS.get()->getSourceRange();
6818}
6819
6820// C99 6.5.7
6821QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
6822                                  SourceLocation Loc, unsigned Opc,
6823                                  bool IsCompAssign) {
6824  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6825
6826  // C99 6.5.7p2: Each of the operands shall have integer type.
6827  if (!LHS.get()->getType()->hasIntegerRepresentation() ||
6828      !RHS.get()->getType()->hasIntegerRepresentation())
6829    return InvalidOperands(Loc, LHS, RHS);
6830
6831  // C++0x: Don't allow scoped enums. FIXME: Use something better than
6832  // hasIntegerRepresentation() above instead of this.
6833  if (isScopedEnumerationType(LHS.get()->getType()) ||
6834      isScopedEnumerationType(RHS.get()->getType())) {
6835    return InvalidOperands(Loc, LHS, RHS);
6836  }
6837
6838  // Vector shifts promote their scalar inputs to vector type.
6839  if (LHS.get()->getType()->isVectorType() ||
6840      RHS.get()->getType()->isVectorType())
6841    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6842
6843  // Shifts don't perform usual arithmetic conversions, they just do integer
6844  // promotions on each operand. C99 6.5.7p3
6845
6846  // For the LHS, do usual unary conversions, but then reset them away
6847  // if this is a compound assignment.
6848  ExprResult OldLHS = LHS;
6849  LHS = UsualUnaryConversions(LHS.take());
6850  if (LHS.isInvalid())
6851    return QualType();
6852  QualType LHSType = LHS.get()->getType();
6853  if (IsCompAssign) LHS = OldLHS;
6854
6855  // The RHS is simpler.
6856  RHS = UsualUnaryConversions(RHS.take());
6857  if (RHS.isInvalid())
6858    return QualType();
6859
6860  // Sanity-check shift operands
6861  DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
6862
6863  // "The type of the result is that of the promoted left operand."
6864  return LHSType;
6865}
6866
6867static bool IsWithinTemplateSpecialization(Decl *D) {
6868  if (DeclContext *DC = D->getDeclContext()) {
6869    if (isa<ClassTemplateSpecializationDecl>(DC))
6870      return true;
6871    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
6872      return FD->isFunctionTemplateSpecialization();
6873  }
6874  return false;
6875}
6876
6877/// If two different enums are compared, raise a warning.
6878static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
6879                                Expr *RHS) {
6880  QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
6881  QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
6882
6883  const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
6884  if (!LHSEnumType)
6885    return;
6886  const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
6887  if (!RHSEnumType)
6888    return;
6889
6890  // Ignore anonymous enums.
6891  if (!LHSEnumType->getDecl()->getIdentifier())
6892    return;
6893  if (!RHSEnumType->getDecl()->getIdentifier())
6894    return;
6895
6896  if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
6897    return;
6898
6899  S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
6900      << LHSStrippedType << RHSStrippedType
6901      << LHS->getSourceRange() << RHS->getSourceRange();
6902}
6903
6904/// \brief Diagnose bad pointer comparisons.
6905static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
6906                                              ExprResult &LHS, ExprResult &RHS,
6907                                              bool IsError) {
6908  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
6909                      : diag::ext_typecheck_comparison_of_distinct_pointers)
6910    << LHS.get()->getType() << RHS.get()->getType()
6911    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6912}
6913
6914/// \brief Returns false if the pointers are converted to a composite type,
6915/// true otherwise.
6916static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
6917                                           ExprResult &LHS, ExprResult &RHS) {
6918  // C++ [expr.rel]p2:
6919  //   [...] Pointer conversions (4.10) and qualification
6920  //   conversions (4.4) are performed on pointer operands (or on
6921  //   a pointer operand and a null pointer constant) to bring
6922  //   them to their composite pointer type. [...]
6923  //
6924  // C++ [expr.eq]p1 uses the same notion for (in)equality
6925  // comparisons of pointers.
6926
6927  // C++ [expr.eq]p2:
6928  //   In addition, pointers to members can be compared, or a pointer to
6929  //   member and a null pointer constant. Pointer to member conversions
6930  //   (4.11) and qualification conversions (4.4) are performed to bring
6931  //   them to a common type. If one operand is a null pointer constant,
6932  //   the common type is the type of the other operand. Otherwise, the
6933  //   common type is a pointer to member type similar (4.4) to the type
6934  //   of one of the operands, with a cv-qualification signature (4.4)
6935  //   that is the union of the cv-qualification signatures of the operand
6936  //   types.
6937
6938  QualType LHSType = LHS.get()->getType();
6939  QualType RHSType = RHS.get()->getType();
6940  assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
6941         (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
6942
6943  bool NonStandardCompositeType = false;
6944  bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
6945  QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
6946  if (T.isNull()) {
6947    diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
6948    return true;
6949  }
6950
6951  if (NonStandardCompositeType)
6952    S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6953      << LHSType << RHSType << T << LHS.get()->getSourceRange()
6954      << RHS.get()->getSourceRange();
6955
6956  LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
6957  RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
6958  return false;
6959}
6960
6961static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
6962                                                    ExprResult &LHS,
6963                                                    ExprResult &RHS,
6964                                                    bool IsError) {
6965  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
6966                      : diag::ext_typecheck_comparison_of_fptr_to_void)
6967    << LHS.get()->getType() << RHS.get()->getType()
6968    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6969}
6970
6971static bool isObjCObjectLiteral(ExprResult &E) {
6972  switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
6973  case Stmt::ObjCArrayLiteralClass:
6974  case Stmt::ObjCDictionaryLiteralClass:
6975  case Stmt::ObjCStringLiteralClass:
6976  case Stmt::ObjCBoxedExprClass:
6977    return true;
6978  default:
6979    // Note that ObjCBoolLiteral is NOT an object literal!
6980    return false;
6981  }
6982}
6983
6984static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
6985  const ObjCObjectPointerType *Type =
6986    LHS->getType()->getAs<ObjCObjectPointerType>();
6987
6988  // If this is not actually an Objective-C object, bail out.
6989  if (!Type)
6990    return false;
6991
6992  // Get the LHS object's interface type.
6993  QualType InterfaceType = Type->getPointeeType();
6994  if (const ObjCObjectType *iQFaceTy =
6995      InterfaceType->getAsObjCQualifiedInterfaceType())
6996    InterfaceType = iQFaceTy->getBaseType();
6997
6998  // If the RHS isn't an Objective-C object, bail out.
6999  if (!RHS->getType()->isObjCObjectPointerType())
7000    return false;
7001
7002  // Try to find the -isEqual: method.
7003  Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
7004  ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
7005                                                      InterfaceType,
7006                                                      /*instance=*/true);
7007  if (!Method) {
7008    if (Type->isObjCIdType()) {
7009      // For 'id', just check the global pool.
7010      Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
7011                                                  /*receiverId=*/true,
7012                                                  /*warn=*/false);
7013    } else {
7014      // Check protocols.
7015      Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
7016                                             /*instance=*/true);
7017    }
7018  }
7019
7020  if (!Method)
7021    return false;
7022
7023  QualType T = Method->param_begin()[0]->getType();
7024  if (!T->isObjCObjectPointerType())
7025    return false;
7026
7027  QualType R = Method->getResultType();
7028  if (!R->isScalarType())
7029    return false;
7030
7031  return true;
7032}
7033
7034Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
7035  FromE = FromE->IgnoreParenImpCasts();
7036  switch (FromE->getStmtClass()) {
7037    default:
7038      break;
7039    case Stmt::ObjCStringLiteralClass:
7040      // "string literal"
7041      return LK_String;
7042    case Stmt::ObjCArrayLiteralClass:
7043      // "array literal"
7044      return LK_Array;
7045    case Stmt::ObjCDictionaryLiteralClass:
7046      // "dictionary literal"
7047      return LK_Dictionary;
7048    case Stmt::BlockExprClass:
7049      return LK_Block;
7050    case Stmt::ObjCBoxedExprClass: {
7051      Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
7052      switch (Inner->getStmtClass()) {
7053        case Stmt::IntegerLiteralClass:
7054        case Stmt::FloatingLiteralClass:
7055        case Stmt::CharacterLiteralClass:
7056        case Stmt::ObjCBoolLiteralExprClass:
7057        case Stmt::CXXBoolLiteralExprClass:
7058          // "numeric literal"
7059          return LK_Numeric;
7060        case Stmt::ImplicitCastExprClass: {
7061          CastKind CK = cast<CastExpr>(Inner)->getCastKind();
7062          // Boolean literals can be represented by implicit casts.
7063          if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
7064            return LK_Numeric;
7065          break;
7066        }
7067        default:
7068          break;
7069      }
7070      return LK_Boxed;
7071    }
7072  }
7073  return LK_None;
7074}
7075
7076static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
7077                                          ExprResult &LHS, ExprResult &RHS,
7078                                          BinaryOperator::Opcode Opc){
7079  Expr *Literal;
7080  Expr *Other;
7081  if (isObjCObjectLiteral(LHS)) {
7082    Literal = LHS.get();
7083    Other = RHS.get();
7084  } else {
7085    Literal = RHS.get();
7086    Other = LHS.get();
7087  }
7088
7089  // Don't warn on comparisons against nil.
7090  Other = Other->IgnoreParenCasts();
7091  if (Other->isNullPointerConstant(S.getASTContext(),
7092                                   Expr::NPC_ValueDependentIsNotNull))
7093    return;
7094
7095  // This should be kept in sync with warn_objc_literal_comparison.
7096  // LK_String should always be after the other literals, since it has its own
7097  // warning flag.
7098  Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
7099  assert(LiteralKind != Sema::LK_Block);
7100  if (LiteralKind == Sema::LK_None) {
7101    llvm_unreachable("Unknown Objective-C object literal kind");
7102  }
7103
7104  if (LiteralKind == Sema::LK_String)
7105    S.Diag(Loc, diag::warn_objc_string_literal_comparison)
7106      << Literal->getSourceRange();
7107  else
7108    S.Diag(Loc, diag::warn_objc_literal_comparison)
7109      << LiteralKind << Literal->getSourceRange();
7110
7111  if (BinaryOperator::isEqualityOp(Opc) &&
7112      hasIsEqualMethod(S, LHS.get(), RHS.get())) {
7113    SourceLocation Start = LHS.get()->getLocStart();
7114    SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
7115    CharSourceRange OpRange =
7116      CharSourceRange::getCharRange(Loc, S.PP.getLocForEndOfToken(Loc));
7117
7118    S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
7119      << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
7120      << FixItHint::CreateReplacement(OpRange, " isEqual:")
7121      << FixItHint::CreateInsertion(End, "]");
7122  }
7123}
7124
7125// C99 6.5.8, C++ [expr.rel]
7126QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
7127                                    SourceLocation Loc, unsigned OpaqueOpc,
7128                                    bool IsRelational) {
7129  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
7130
7131  BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
7132
7133  // Handle vector comparisons separately.
7134  if (LHS.get()->getType()->isVectorType() ||
7135      RHS.get()->getType()->isVectorType())
7136    return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
7137
7138  QualType LHSType = LHS.get()->getType();
7139  QualType RHSType = RHS.get()->getType();
7140
7141  Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
7142  Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
7143
7144  checkEnumComparison(*this, Loc, LHS.get(), RHS.get());
7145
7146  if (!LHSType->hasFloatingRepresentation() &&
7147      !(LHSType->isBlockPointerType() && IsRelational) &&
7148      !LHS.get()->getLocStart().isMacroID() &&
7149      !RHS.get()->getLocStart().isMacroID()) {
7150    // For non-floating point types, check for self-comparisons of the form
7151    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
7152    // often indicate logic errors in the program.
7153    //
7154    // NOTE: Don't warn about comparison expressions resulting from macro
7155    // expansion. Also don't warn about comparisons which are only self
7156    // comparisons within a template specialization. The warnings should catch
7157    // obvious cases in the definition of the template anyways. The idea is to
7158    // warn when the typed comparison operator will always evaluate to the same
7159    // result.
7160    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
7161      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
7162        if (DRL->getDecl() == DRR->getDecl() &&
7163            !IsWithinTemplateSpecialization(DRL->getDecl())) {
7164          DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
7165                              << 0 // self-
7166                              << (Opc == BO_EQ
7167                                  || Opc == BO_LE
7168                                  || Opc == BO_GE));
7169        } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
7170                   !DRL->getDecl()->getType()->isReferenceType() &&
7171                   !DRR->getDecl()->getType()->isReferenceType()) {
7172            // what is it always going to eval to?
7173            char always_evals_to;
7174            switch(Opc) {
7175            case BO_EQ: // e.g. array1 == array2
7176              always_evals_to = 0; // false
7177              break;
7178            case BO_NE: // e.g. array1 != array2
7179              always_evals_to = 1; // true
7180              break;
7181            default:
7182              // best we can say is 'a constant'
7183              always_evals_to = 2; // e.g. array1 <= array2
7184              break;
7185            }
7186            DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
7187                                << 1 // array
7188                                << always_evals_to);
7189        }
7190      }
7191    }
7192
7193    if (isa<CastExpr>(LHSStripped))
7194      LHSStripped = LHSStripped->IgnoreParenCasts();
7195    if (isa<CastExpr>(RHSStripped))
7196      RHSStripped = RHSStripped->IgnoreParenCasts();
7197
7198    // Warn about comparisons against a string constant (unless the other
7199    // operand is null), the user probably wants strcmp.
7200    Expr *literalString = 0;
7201    Expr *literalStringStripped = 0;
7202    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
7203        !RHSStripped->isNullPointerConstant(Context,
7204                                            Expr::NPC_ValueDependentIsNull)) {
7205      literalString = LHS.get();
7206      literalStringStripped = LHSStripped;
7207    } else if ((isa<StringLiteral>(RHSStripped) ||
7208                isa<ObjCEncodeExpr>(RHSStripped)) &&
7209               !LHSStripped->isNullPointerConstant(Context,
7210                                            Expr::NPC_ValueDependentIsNull)) {
7211      literalString = RHS.get();
7212      literalStringStripped = RHSStripped;
7213    }
7214
7215    if (literalString) {
7216      std::string resultComparison;
7217      switch (Opc) {
7218      case BO_LT: resultComparison = ") < 0"; break;
7219      case BO_GT: resultComparison = ") > 0"; break;
7220      case BO_LE: resultComparison = ") <= 0"; break;
7221      case BO_GE: resultComparison = ") >= 0"; break;
7222      case BO_EQ: resultComparison = ") == 0"; break;
7223      case BO_NE: resultComparison = ") != 0"; break;
7224      default: llvm_unreachable("Invalid comparison operator");
7225      }
7226
7227      DiagRuntimeBehavior(Loc, 0,
7228        PDiag(diag::warn_stringcompare)
7229          << isa<ObjCEncodeExpr>(literalStringStripped)
7230          << literalString->getSourceRange());
7231    }
7232  }
7233
7234  // C99 6.5.8p3 / C99 6.5.9p4
7235  if (LHS.get()->getType()->isArithmeticType() &&
7236      RHS.get()->getType()->isArithmeticType()) {
7237    UsualArithmeticConversions(LHS, RHS);
7238    if (LHS.isInvalid() || RHS.isInvalid())
7239      return QualType();
7240  }
7241  else {
7242    LHS = UsualUnaryConversions(LHS.take());
7243    if (LHS.isInvalid())
7244      return QualType();
7245
7246    RHS = UsualUnaryConversions(RHS.take());
7247    if (RHS.isInvalid())
7248      return QualType();
7249  }
7250
7251  LHSType = LHS.get()->getType();
7252  RHSType = RHS.get()->getType();
7253
7254  // The result of comparisons is 'bool' in C++, 'int' in C.
7255  QualType ResultTy = Context.getLogicalOperationType();
7256
7257  if (IsRelational) {
7258    if (LHSType->isRealType() && RHSType->isRealType())
7259      return ResultTy;
7260  } else {
7261    // Check for comparisons of floating point operands using != and ==.
7262    if (LHSType->hasFloatingRepresentation())
7263      CheckFloatComparison(Loc, LHS.get(), RHS.get());
7264
7265    if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
7266      return ResultTy;
7267  }
7268
7269  bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
7270                                              Expr::NPC_ValueDependentIsNull);
7271  bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
7272                                              Expr::NPC_ValueDependentIsNull);
7273
7274  // All of the following pointer-related warnings are GCC extensions, except
7275  // when handling null pointer constants.
7276  if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
7277    QualType LCanPointeeTy =
7278      LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7279    QualType RCanPointeeTy =
7280      RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7281
7282    if (getLangOpts().CPlusPlus) {
7283      if (LCanPointeeTy == RCanPointeeTy)
7284        return ResultTy;
7285      if (!IsRelational &&
7286          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7287        // Valid unless comparison between non-null pointer and function pointer
7288        // This is a gcc extension compatibility comparison.
7289        // In a SFINAE context, we treat this as a hard error to maintain
7290        // conformance with the C++ standard.
7291        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7292            && !LHSIsNull && !RHSIsNull) {
7293          diagnoseFunctionPointerToVoidComparison(
7294              *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
7295
7296          if (isSFINAEContext())
7297            return QualType();
7298
7299          RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7300          return ResultTy;
7301        }
7302      }
7303
7304      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7305        return QualType();
7306      else
7307        return ResultTy;
7308    }
7309    // C99 6.5.9p2 and C99 6.5.8p2
7310    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
7311                                   RCanPointeeTy.getUnqualifiedType())) {
7312      // Valid unless a relational comparison of function pointers
7313      if (IsRelational && LCanPointeeTy->isFunctionType()) {
7314        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
7315          << LHSType << RHSType << LHS.get()->getSourceRange()
7316          << RHS.get()->getSourceRange();
7317      }
7318    } else if (!IsRelational &&
7319               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7320      // Valid unless comparison between non-null pointer and function pointer
7321      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7322          && !LHSIsNull && !RHSIsNull)
7323        diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
7324                                                /*isError*/false);
7325    } else {
7326      // Invalid
7327      diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
7328    }
7329    if (LCanPointeeTy != RCanPointeeTy) {
7330      if (LHSIsNull && !RHSIsNull)
7331        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7332      else
7333        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7334    }
7335    return ResultTy;
7336  }
7337
7338  if (getLangOpts().CPlusPlus) {
7339    // Comparison of nullptr_t with itself.
7340    if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
7341      return ResultTy;
7342
7343    // Comparison of pointers with null pointer constants and equality
7344    // comparisons of member pointers to null pointer constants.
7345    if (RHSIsNull &&
7346        ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
7347         (!IsRelational &&
7348          (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
7349      RHS = ImpCastExprToType(RHS.take(), LHSType,
7350                        LHSType->isMemberPointerType()
7351                          ? CK_NullToMemberPointer
7352                          : CK_NullToPointer);
7353      return ResultTy;
7354    }
7355    if (LHSIsNull &&
7356        ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
7357         (!IsRelational &&
7358          (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
7359      LHS = ImpCastExprToType(LHS.take(), RHSType,
7360                        RHSType->isMemberPointerType()
7361                          ? CK_NullToMemberPointer
7362                          : CK_NullToPointer);
7363      return ResultTy;
7364    }
7365
7366    // Comparison of member pointers.
7367    if (!IsRelational &&
7368        LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
7369      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7370        return QualType();
7371      else
7372        return ResultTy;
7373    }
7374
7375    // Handle scoped enumeration types specifically, since they don't promote
7376    // to integers.
7377    if (LHS.get()->getType()->isEnumeralType() &&
7378        Context.hasSameUnqualifiedType(LHS.get()->getType(),
7379                                       RHS.get()->getType()))
7380      return ResultTy;
7381  }
7382
7383  // Handle block pointer types.
7384  if (!IsRelational && LHSType->isBlockPointerType() &&
7385      RHSType->isBlockPointerType()) {
7386    QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
7387    QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
7388
7389    if (!LHSIsNull && !RHSIsNull &&
7390        !Context.typesAreCompatible(lpointee, rpointee)) {
7391      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7392        << LHSType << RHSType << LHS.get()->getSourceRange()
7393        << RHS.get()->getSourceRange();
7394    }
7395    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7396    return ResultTy;
7397  }
7398
7399  // Allow block pointers to be compared with null pointer constants.
7400  if (!IsRelational
7401      && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
7402          || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
7403    if (!LHSIsNull && !RHSIsNull) {
7404      if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
7405             ->getPointeeType()->isVoidType())
7406            || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
7407                ->getPointeeType()->isVoidType())))
7408        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7409          << LHSType << RHSType << LHS.get()->getSourceRange()
7410          << RHS.get()->getSourceRange();
7411    }
7412    if (LHSIsNull && !RHSIsNull)
7413      LHS = ImpCastExprToType(LHS.take(), RHSType,
7414                              RHSType->isPointerType() ? CK_BitCast
7415                                : CK_AnyPointerToBlockPointerCast);
7416    else
7417      RHS = ImpCastExprToType(RHS.take(), LHSType,
7418                              LHSType->isPointerType() ? CK_BitCast
7419                                : CK_AnyPointerToBlockPointerCast);
7420    return ResultTy;
7421  }
7422
7423  if (LHSType->isObjCObjectPointerType() ||
7424      RHSType->isObjCObjectPointerType()) {
7425    const PointerType *LPT = LHSType->getAs<PointerType>();
7426    const PointerType *RPT = RHSType->getAs<PointerType>();
7427    if (LPT || RPT) {
7428      bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
7429      bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
7430
7431      if (!LPtrToVoid && !RPtrToVoid &&
7432          !Context.typesAreCompatible(LHSType, RHSType)) {
7433        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7434                                          /*isError*/false);
7435      }
7436      if (LHSIsNull && !RHSIsNull)
7437        LHS = ImpCastExprToType(LHS.take(), RHSType,
7438                                RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7439      else
7440        RHS = ImpCastExprToType(RHS.take(), LHSType,
7441                                LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7442      return ResultTy;
7443    }
7444    if (LHSType->isObjCObjectPointerType() &&
7445        RHSType->isObjCObjectPointerType()) {
7446      if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
7447        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7448                                          /*isError*/false);
7449      if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
7450        diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
7451
7452      if (LHSIsNull && !RHSIsNull)
7453        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7454      else
7455        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7456      return ResultTy;
7457    }
7458  }
7459  if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
7460      (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
7461    unsigned DiagID = 0;
7462    bool isError = false;
7463    if (LangOpts.DebuggerSupport) {
7464      // Under a debugger, allow the comparison of pointers to integers,
7465      // since users tend to want to compare addresses.
7466    } else if ((LHSIsNull && LHSType->isIntegerType()) ||
7467        (RHSIsNull && RHSType->isIntegerType())) {
7468      if (IsRelational && !getLangOpts().CPlusPlus)
7469        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
7470    } else if (IsRelational && !getLangOpts().CPlusPlus)
7471      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
7472    else if (getLangOpts().CPlusPlus) {
7473      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
7474      isError = true;
7475    } else
7476      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
7477
7478    if (DiagID) {
7479      Diag(Loc, DiagID)
7480        << LHSType << RHSType << LHS.get()->getSourceRange()
7481        << RHS.get()->getSourceRange();
7482      if (isError)
7483        return QualType();
7484    }
7485
7486    if (LHSType->isIntegerType())
7487      LHS = ImpCastExprToType(LHS.take(), RHSType,
7488                        LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7489    else
7490      RHS = ImpCastExprToType(RHS.take(), LHSType,
7491                        RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7492    return ResultTy;
7493  }
7494
7495  // Handle block pointers.
7496  if (!IsRelational && RHSIsNull
7497      && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
7498    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
7499    return ResultTy;
7500  }
7501  if (!IsRelational && LHSIsNull
7502      && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
7503    LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
7504    return ResultTy;
7505  }
7506
7507  return InvalidOperands(Loc, LHS, RHS);
7508}
7509
7510
7511// Return a signed type that is of identical size and number of elements.
7512// For floating point vectors, return an integer type of identical size
7513// and number of elements.
7514QualType Sema::GetSignedVectorType(QualType V) {
7515  const VectorType *VTy = V->getAs<VectorType>();
7516  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
7517  if (TypeSize == Context.getTypeSize(Context.CharTy))
7518    return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
7519  else if (TypeSize == Context.getTypeSize(Context.ShortTy))
7520    return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
7521  else if (TypeSize == Context.getTypeSize(Context.IntTy))
7522    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
7523  else if (TypeSize == Context.getTypeSize(Context.LongTy))
7524    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
7525  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
7526         "Unhandled vector element size in vector compare");
7527  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
7528}
7529
7530/// CheckVectorCompareOperands - vector comparisons are a clang extension that
7531/// operates on extended vector types.  Instead of producing an IntTy result,
7532/// like a scalar comparison, a vector comparison produces a vector of integer
7533/// types.
7534QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
7535                                          SourceLocation Loc,
7536                                          bool IsRelational) {
7537  // Check to make sure we're operating on vectors of the same type and width,
7538  // Allowing one side to be a scalar of element type.
7539  QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
7540  if (vType.isNull())
7541    return vType;
7542
7543  QualType LHSType = LHS.get()->getType();
7544
7545  // If AltiVec, the comparison results in a numeric type, i.e.
7546  // bool for C++, int for C
7547  if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
7548    return Context.getLogicalOperationType();
7549
7550  // For non-floating point types, check for self-comparisons of the form
7551  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
7552  // often indicate logic errors in the program.
7553  if (!LHSType->hasFloatingRepresentation()) {
7554    if (DeclRefExpr* DRL
7555          = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
7556      if (DeclRefExpr* DRR
7557            = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
7558        if (DRL->getDecl() == DRR->getDecl())
7559          DiagRuntimeBehavior(Loc, 0,
7560                              PDiag(diag::warn_comparison_always)
7561                                << 0 // self-
7562                                << 2 // "a constant"
7563                              );
7564  }
7565
7566  // Check for comparisons of floating point operands using != and ==.
7567  if (!IsRelational && LHSType->hasFloatingRepresentation()) {
7568    assert (RHS.get()->getType()->hasFloatingRepresentation());
7569    CheckFloatComparison(Loc, LHS.get(), RHS.get());
7570  }
7571
7572  // Return a signed type for the vector.
7573  return GetSignedVectorType(LHSType);
7574}
7575
7576QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
7577                                          SourceLocation Loc) {
7578  // Ensure that either both operands are of the same vector type, or
7579  // one operand is of a vector type and the other is of its element type.
7580  QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
7581  if (vType.isNull())
7582    return InvalidOperands(Loc, LHS, RHS);
7583  if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
7584      vType->hasFloatingRepresentation())
7585    return InvalidOperands(Loc, LHS, RHS);
7586
7587  return GetSignedVectorType(LHS.get()->getType());
7588}
7589
7590inline QualType Sema::CheckBitwiseOperands(
7591  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
7592  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7593
7594  if (LHS.get()->getType()->isVectorType() ||
7595      RHS.get()->getType()->isVectorType()) {
7596    if (LHS.get()->getType()->hasIntegerRepresentation() &&
7597        RHS.get()->getType()->hasIntegerRepresentation())
7598      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7599
7600    return InvalidOperands(Loc, LHS, RHS);
7601  }
7602
7603  ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
7604  QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
7605                                                 IsCompAssign);
7606  if (LHSResult.isInvalid() || RHSResult.isInvalid())
7607    return QualType();
7608  LHS = LHSResult.take();
7609  RHS = RHSResult.take();
7610
7611  if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
7612    return compType;
7613  return InvalidOperands(Loc, LHS, RHS);
7614}
7615
7616inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
7617  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
7618
7619  // Check vector operands differently.
7620  if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
7621    return CheckVectorLogicalOperands(LHS, RHS, Loc);
7622
7623  // Diagnose cases where the user write a logical and/or but probably meant a
7624  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
7625  // is a constant.
7626  if (LHS.get()->getType()->isIntegerType() &&
7627      !LHS.get()->getType()->isBooleanType() &&
7628      RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
7629      // Don't warn in macros or template instantiations.
7630      !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
7631    // If the RHS can be constant folded, and if it constant folds to something
7632    // that isn't 0 or 1 (which indicate a potential logical operation that
7633    // happened to fold to true/false) then warn.
7634    // Parens on the RHS are ignored.
7635    llvm::APSInt Result;
7636    if (RHS.get()->EvaluateAsInt(Result, Context))
7637      if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
7638          (Result != 0 && Result != 1)) {
7639        Diag(Loc, diag::warn_logical_instead_of_bitwise)
7640          << RHS.get()->getSourceRange()
7641          << (Opc == BO_LAnd ? "&&" : "||");
7642        // Suggest replacing the logical operator with the bitwise version
7643        Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
7644            << (Opc == BO_LAnd ? "&" : "|")
7645            << FixItHint::CreateReplacement(SourceRange(
7646                Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
7647                                                getLangOpts())),
7648                                            Opc == BO_LAnd ? "&" : "|");
7649        if (Opc == BO_LAnd)
7650          // Suggest replacing "Foo() && kNonZero" with "Foo()"
7651          Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
7652              << FixItHint::CreateRemoval(
7653                  SourceRange(
7654                      Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
7655                                                 0, getSourceManager(),
7656                                                 getLangOpts()),
7657                      RHS.get()->getLocEnd()));
7658      }
7659  }
7660
7661  if (!Context.getLangOpts().CPlusPlus) {
7662    // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
7663    // not operate on the built-in scalar and vector float types.
7664    if (Context.getLangOpts().OpenCL &&
7665        Context.getLangOpts().OpenCLVersion < 120) {
7666      if (LHS.get()->getType()->isFloatingType() ||
7667          RHS.get()->getType()->isFloatingType())
7668        return InvalidOperands(Loc, LHS, RHS);
7669    }
7670
7671    LHS = UsualUnaryConversions(LHS.take());
7672    if (LHS.isInvalid())
7673      return QualType();
7674
7675    RHS = UsualUnaryConversions(RHS.take());
7676    if (RHS.isInvalid())
7677      return QualType();
7678
7679    if (!LHS.get()->getType()->isScalarType() ||
7680        !RHS.get()->getType()->isScalarType())
7681      return InvalidOperands(Loc, LHS, RHS);
7682
7683    return Context.IntTy;
7684  }
7685
7686  // The following is safe because we only use this method for
7687  // non-overloadable operands.
7688
7689  // C++ [expr.log.and]p1
7690  // C++ [expr.log.or]p1
7691  // The operands are both contextually converted to type bool.
7692  ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
7693  if (LHSRes.isInvalid())
7694    return InvalidOperands(Loc, LHS, RHS);
7695  LHS = LHSRes;
7696
7697  ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
7698  if (RHSRes.isInvalid())
7699    return InvalidOperands(Loc, LHS, RHS);
7700  RHS = RHSRes;
7701
7702  // C++ [expr.log.and]p2
7703  // C++ [expr.log.or]p2
7704  // The result is a bool.
7705  return Context.BoolTy;
7706}
7707
7708/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
7709/// is a read-only property; return true if so. A readonly property expression
7710/// depends on various declarations and thus must be treated specially.
7711///
7712static bool IsReadonlyProperty(Expr *E, Sema &S) {
7713  const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
7714  if (!PropExpr) return false;
7715  if (PropExpr->isImplicitProperty()) return false;
7716
7717  ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
7718  QualType BaseType = PropExpr->isSuperReceiver() ?
7719                            PropExpr->getSuperReceiverType() :
7720                            PropExpr->getBase()->getType();
7721
7722  if (const ObjCObjectPointerType *OPT =
7723      BaseType->getAsObjCInterfacePointerType())
7724    if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
7725      if (S.isPropertyReadonly(PDecl, IFace))
7726        return true;
7727  return false;
7728}
7729
7730static bool IsReadonlyMessage(Expr *E, Sema &S) {
7731  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
7732  if (!ME) return false;
7733  if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
7734  ObjCMessageExpr *Base =
7735    dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
7736  if (!Base) return false;
7737  return Base->getMethodDecl() != 0;
7738}
7739
7740/// Is the given expression (which must be 'const') a reference to a
7741/// variable which was originally non-const, but which has become
7742/// 'const' due to being captured within a block?
7743enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
7744static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
7745  assert(E->isLValue() && E->getType().isConstQualified());
7746  E = E->IgnoreParens();
7747
7748  // Must be a reference to a declaration from an enclosing scope.
7749  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
7750  if (!DRE) return NCCK_None;
7751  if (!DRE->refersToEnclosingLocal()) return NCCK_None;
7752
7753  // The declaration must be a variable which is not declared 'const'.
7754  VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
7755  if (!var) return NCCK_None;
7756  if (var->getType().isConstQualified()) return NCCK_None;
7757  assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
7758
7759  // Decide whether the first capture was for a block or a lambda.
7760  DeclContext *DC = S.CurContext;
7761  while (DC->getParent() != var->getDeclContext())
7762    DC = DC->getParent();
7763  return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
7764}
7765
7766/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
7767/// emit an error and return true.  If so, return false.
7768static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
7769  assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
7770  SourceLocation OrigLoc = Loc;
7771  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
7772                                                              &Loc);
7773  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
7774    IsLV = Expr::MLV_ReadonlyProperty;
7775  else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
7776    IsLV = Expr::MLV_InvalidMessageExpression;
7777  if (IsLV == Expr::MLV_Valid)
7778    return false;
7779
7780  unsigned Diag = 0;
7781  bool NeedType = false;
7782  switch (IsLV) { // C99 6.5.16p2
7783  case Expr::MLV_ConstQualified:
7784    Diag = diag::err_typecheck_assign_const;
7785
7786    // Use a specialized diagnostic when we're assigning to an object
7787    // from an enclosing function or block.
7788    if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
7789      if (NCCK == NCCK_Block)
7790        Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
7791      else
7792        Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
7793      break;
7794    }
7795
7796    // In ARC, use some specialized diagnostics for occasions where we
7797    // infer 'const'.  These are always pseudo-strong variables.
7798    if (S.getLangOpts().ObjCAutoRefCount) {
7799      DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
7800      if (declRef && isa<VarDecl>(declRef->getDecl())) {
7801        VarDecl *var = cast<VarDecl>(declRef->getDecl());
7802
7803        // Use the normal diagnostic if it's pseudo-__strong but the
7804        // user actually wrote 'const'.
7805        if (var->isARCPseudoStrong() &&
7806            (!var->getTypeSourceInfo() ||
7807             !var->getTypeSourceInfo()->getType().isConstQualified())) {
7808          // There are two pseudo-strong cases:
7809          //  - self
7810          ObjCMethodDecl *method = S.getCurMethodDecl();
7811          if (method && var == method->getSelfDecl())
7812            Diag = method->isClassMethod()
7813              ? diag::err_typecheck_arc_assign_self_class_method
7814              : diag::err_typecheck_arc_assign_self;
7815
7816          //  - fast enumeration variables
7817          else
7818            Diag = diag::err_typecheck_arr_assign_enumeration;
7819
7820          SourceRange Assign;
7821          if (Loc != OrigLoc)
7822            Assign = SourceRange(OrigLoc, OrigLoc);
7823          S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7824          // We need to preserve the AST regardless, so migration tool
7825          // can do its job.
7826          return false;
7827        }
7828      }
7829    }
7830
7831    break;
7832  case Expr::MLV_ArrayType:
7833  case Expr::MLV_ArrayTemporary:
7834    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
7835    NeedType = true;
7836    break;
7837  case Expr::MLV_NotObjectType:
7838    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
7839    NeedType = true;
7840    break;
7841  case Expr::MLV_LValueCast:
7842    Diag = diag::err_typecheck_lvalue_casts_not_supported;
7843    break;
7844  case Expr::MLV_Valid:
7845    llvm_unreachable("did not take early return for MLV_Valid");
7846  case Expr::MLV_InvalidExpression:
7847  case Expr::MLV_MemberFunction:
7848  case Expr::MLV_ClassTemporary:
7849    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
7850    break;
7851  case Expr::MLV_IncompleteType:
7852  case Expr::MLV_IncompleteVoidType:
7853    return S.RequireCompleteType(Loc, E->getType(),
7854             diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
7855  case Expr::MLV_DuplicateVectorComponents:
7856    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
7857    break;
7858  case Expr::MLV_ReadonlyProperty:
7859  case Expr::MLV_NoSetterProperty:
7860    llvm_unreachable("readonly properties should be processed differently");
7861  case Expr::MLV_InvalidMessageExpression:
7862    Diag = diag::error_readonly_message_assignment;
7863    break;
7864  case Expr::MLV_SubObjCPropertySetting:
7865    Diag = diag::error_no_subobject_property_setting;
7866    break;
7867  }
7868
7869  SourceRange Assign;
7870  if (Loc != OrigLoc)
7871    Assign = SourceRange(OrigLoc, OrigLoc);
7872  if (NeedType)
7873    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
7874  else
7875    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7876  return true;
7877}
7878
7879static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
7880                                         SourceLocation Loc,
7881                                         Sema &Sema) {
7882  // C / C++ fields
7883  MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
7884  MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
7885  if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
7886    if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
7887      Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
7888  }
7889
7890  // Objective-C instance variables
7891  ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
7892  ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
7893  if (OL && OR && OL->getDecl() == OR->getDecl()) {
7894    DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
7895    DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
7896    if (RL && RR && RL->getDecl() == RR->getDecl())
7897      Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
7898  }
7899}
7900
7901// C99 6.5.16.1
7902QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
7903                                       SourceLocation Loc,
7904                                       QualType CompoundType) {
7905  assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
7906
7907  // Verify that LHS is a modifiable lvalue, and emit error if not.
7908  if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
7909    return QualType();
7910
7911  QualType LHSType = LHSExpr->getType();
7912  QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
7913                                             CompoundType;
7914  AssignConvertType ConvTy;
7915  if (CompoundType.isNull()) {
7916    Expr *RHSCheck = RHS.get();
7917
7918    CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
7919
7920    QualType LHSTy(LHSType);
7921    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
7922    if (RHS.isInvalid())
7923      return QualType();
7924    // Special case of NSObject attributes on c-style pointer types.
7925    if (ConvTy == IncompatiblePointer &&
7926        ((Context.isObjCNSObjectType(LHSType) &&
7927          RHSType->isObjCObjectPointerType()) ||
7928         (Context.isObjCNSObjectType(RHSType) &&
7929          LHSType->isObjCObjectPointerType())))
7930      ConvTy = Compatible;
7931
7932    if (ConvTy == Compatible &&
7933        LHSType->isObjCObjectType())
7934        Diag(Loc, diag::err_objc_object_assignment)
7935          << LHSType;
7936
7937    // If the RHS is a unary plus or minus, check to see if they = and + are
7938    // right next to each other.  If so, the user may have typo'd "x =+ 4"
7939    // instead of "x += 4".
7940    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
7941      RHSCheck = ICE->getSubExpr();
7942    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
7943      if ((UO->getOpcode() == UO_Plus ||
7944           UO->getOpcode() == UO_Minus) &&
7945          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
7946          // Only if the two operators are exactly adjacent.
7947          Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
7948          // And there is a space or other character before the subexpr of the
7949          // unary +/-.  We don't want to warn on "x=-1".
7950          Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
7951          UO->getSubExpr()->getLocStart().isFileID()) {
7952        Diag(Loc, diag::warn_not_compound_assign)
7953          << (UO->getOpcode() == UO_Plus ? "+" : "-")
7954          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
7955      }
7956    }
7957
7958    if (ConvTy == Compatible) {
7959      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
7960        // Warn about retain cycles where a block captures the LHS, but
7961        // not if the LHS is a simple variable into which the block is
7962        // being stored...unless that variable can be captured by reference!
7963        const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
7964        const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
7965        if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
7966          checkRetainCycles(LHSExpr, RHS.get());
7967
7968        // It is safe to assign a weak reference into a strong variable.
7969        // Although this code can still have problems:
7970        //   id x = self.weakProp;
7971        //   id y = self.weakProp;
7972        // we do not warn to warn spuriously when 'x' and 'y' are on separate
7973        // paths through the function. This should be revisited if
7974        // -Wrepeated-use-of-weak is made flow-sensitive.
7975        DiagnosticsEngine::Level Level =
7976          Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7977                                   RHS.get()->getLocStart());
7978        if (Level != DiagnosticsEngine::Ignored)
7979          getCurFunction()->markSafeWeakUse(RHS.get());
7980
7981      } else if (getLangOpts().ObjCAutoRefCount) {
7982        checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
7983      }
7984    }
7985  } else {
7986    // Compound assignment "x += y"
7987    ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
7988  }
7989
7990  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
7991                               RHS.get(), AA_Assigning))
7992    return QualType();
7993
7994  CheckForNullPointerDereference(*this, LHSExpr);
7995
7996  // C99 6.5.16p3: The type of an assignment expression is the type of the
7997  // left operand unless the left operand has qualified type, in which case
7998  // it is the unqualified version of the type of the left operand.
7999  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
8000  // is converted to the type of the assignment expression (above).
8001  // C++ 5.17p1: the type of the assignment expression is that of its left
8002  // operand.
8003  return (getLangOpts().CPlusPlus
8004          ? LHSType : LHSType.getUnqualifiedType());
8005}
8006
8007// C99 6.5.17
8008static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
8009                                   SourceLocation Loc) {
8010  LHS = S.CheckPlaceholderExpr(LHS.take());
8011  RHS = S.CheckPlaceholderExpr(RHS.take());
8012  if (LHS.isInvalid() || RHS.isInvalid())
8013    return QualType();
8014
8015  // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
8016  // operands, but not unary promotions.
8017  // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
8018
8019  // So we treat the LHS as a ignored value, and in C++ we allow the
8020  // containing site to determine what should be done with the RHS.
8021  LHS = S.IgnoredValueConversions(LHS.take());
8022  if (LHS.isInvalid())
8023    return QualType();
8024
8025  S.DiagnoseUnusedExprResult(LHS.get());
8026
8027  if (!S.getLangOpts().CPlusPlus) {
8028    RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
8029    if (RHS.isInvalid())
8030      return QualType();
8031    if (!RHS.get()->getType()->isVoidType())
8032      S.RequireCompleteType(Loc, RHS.get()->getType(),
8033                            diag::err_incomplete_type);
8034  }
8035
8036  return RHS.get()->getType();
8037}
8038
8039/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
8040/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
8041static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
8042                                               ExprValueKind &VK,
8043                                               SourceLocation OpLoc,
8044                                               bool IsInc, bool IsPrefix) {
8045  if (Op->isTypeDependent())
8046    return S.Context.DependentTy;
8047
8048  QualType ResType = Op->getType();
8049  // Atomic types can be used for increment / decrement where the non-atomic
8050  // versions can, so ignore the _Atomic() specifier for the purpose of
8051  // checking.
8052  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
8053    ResType = ResAtomicType->getValueType();
8054
8055  assert(!ResType.isNull() && "no type for increment/decrement expression");
8056
8057  if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
8058    // Decrement of bool is not allowed.
8059    if (!IsInc) {
8060      S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
8061      return QualType();
8062    }
8063    // Increment of bool sets it to true, but is deprecated.
8064    S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
8065  } else if (ResType->isRealType()) {
8066    // OK!
8067  } else if (ResType->isPointerType()) {
8068    // C99 6.5.2.4p2, 6.5.6p2
8069    if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
8070      return QualType();
8071  } else if (ResType->isObjCObjectPointerType()) {
8072    // On modern runtimes, ObjC pointer arithmetic is forbidden.
8073    // Otherwise, we just need a complete type.
8074    if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
8075        checkArithmeticOnObjCPointer(S, OpLoc, Op))
8076      return QualType();
8077  } else if (ResType->isAnyComplexType()) {
8078    // C99 does not support ++/-- on complex types, we allow as an extension.
8079    S.Diag(OpLoc, diag::ext_integer_increment_complex)
8080      << ResType << Op->getSourceRange();
8081  } else if (ResType->isPlaceholderType()) {
8082    ExprResult PR = S.CheckPlaceholderExpr(Op);
8083    if (PR.isInvalid()) return QualType();
8084    return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
8085                                          IsInc, IsPrefix);
8086  } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
8087    // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
8088  } else {
8089    S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
8090      << ResType << int(IsInc) << Op->getSourceRange();
8091    return QualType();
8092  }
8093  // At this point, we know we have a real, complex or pointer type.
8094  // Now make sure the operand is a modifiable lvalue.
8095  if (CheckForModifiableLvalue(Op, OpLoc, S))
8096    return QualType();
8097  // In C++, a prefix increment is the same type as the operand. Otherwise
8098  // (in C or with postfix), the increment is the unqualified type of the
8099  // operand.
8100  if (IsPrefix && S.getLangOpts().CPlusPlus) {
8101    VK = VK_LValue;
8102    return ResType;
8103  } else {
8104    VK = VK_RValue;
8105    return ResType.getUnqualifiedType();
8106  }
8107}
8108
8109
8110/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
8111/// This routine allows us to typecheck complex/recursive expressions
8112/// where the declaration is needed for type checking. We only need to
8113/// handle cases when the expression references a function designator
8114/// or is an lvalue. Here are some examples:
8115///  - &(x) => x
8116///  - &*****f => f for f a function designator.
8117///  - &s.xx => s
8118///  - &s.zz[1].yy -> s, if zz is an array
8119///  - *(x + 1) -> x, if x is an array
8120///  - &"123"[2] -> 0
8121///  - & __real__ x -> x
8122static ValueDecl *getPrimaryDecl(Expr *E) {
8123  switch (E->getStmtClass()) {
8124  case Stmt::DeclRefExprClass:
8125    return cast<DeclRefExpr>(E)->getDecl();
8126  case Stmt::MemberExprClass:
8127    // If this is an arrow operator, the address is an offset from
8128    // the base's value, so the object the base refers to is
8129    // irrelevant.
8130    if (cast<MemberExpr>(E)->isArrow())
8131      return 0;
8132    // Otherwise, the expression refers to a part of the base
8133    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
8134  case Stmt::ArraySubscriptExprClass: {
8135    // FIXME: This code shouldn't be necessary!  We should catch the implicit
8136    // promotion of register arrays earlier.
8137    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
8138    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
8139      if (ICE->getSubExpr()->getType()->isArrayType())
8140        return getPrimaryDecl(ICE->getSubExpr());
8141    }
8142    return 0;
8143  }
8144  case Stmt::UnaryOperatorClass: {
8145    UnaryOperator *UO = cast<UnaryOperator>(E);
8146
8147    switch(UO->getOpcode()) {
8148    case UO_Real:
8149    case UO_Imag:
8150    case UO_Extension:
8151      return getPrimaryDecl(UO->getSubExpr());
8152    default:
8153      return 0;
8154    }
8155  }
8156  case Stmt::ParenExprClass:
8157    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
8158  case Stmt::ImplicitCastExprClass:
8159    // If the result of an implicit cast is an l-value, we care about
8160    // the sub-expression; otherwise, the result here doesn't matter.
8161    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
8162  default:
8163    return 0;
8164  }
8165}
8166
8167namespace {
8168  enum {
8169    AO_Bit_Field = 0,
8170    AO_Vector_Element = 1,
8171    AO_Property_Expansion = 2,
8172    AO_Register_Variable = 3,
8173    AO_No_Error = 4
8174  };
8175}
8176/// \brief Diagnose invalid operand for address of operations.
8177///
8178/// \param Type The type of operand which cannot have its address taken.
8179static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
8180                                         Expr *E, unsigned Type) {
8181  S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
8182}
8183
8184/// CheckAddressOfOperand - The operand of & must be either a function
8185/// designator or an lvalue designating an object. If it is an lvalue, the
8186/// object cannot be declared with storage class register or be a bit field.
8187/// Note: The usual conversions are *not* applied to the operand of the &
8188/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
8189/// In C++, the operand might be an overloaded function name, in which case
8190/// we allow the '&' but retain the overloaded-function type.
8191static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp,
8192                                      SourceLocation OpLoc) {
8193  if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
8194    if (PTy->getKind() == BuiltinType::Overload) {
8195      if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) {
8196        assert(cast<UnaryOperator>(OrigOp.get()->IgnoreParens())->getOpcode()
8197                 == UO_AddrOf);
8198        S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
8199          << OrigOp.get()->getSourceRange();
8200        return QualType();
8201      }
8202
8203      return S.Context.OverloadTy;
8204    }
8205
8206    if (PTy->getKind() == BuiltinType::UnknownAny)
8207      return S.Context.UnknownAnyTy;
8208
8209    if (PTy->getKind() == BuiltinType::BoundMember) {
8210      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8211        << OrigOp.get()->getSourceRange();
8212      return QualType();
8213    }
8214
8215    OrigOp = S.CheckPlaceholderExpr(OrigOp.take());
8216    if (OrigOp.isInvalid()) return QualType();
8217  }
8218
8219  if (OrigOp.get()->isTypeDependent())
8220    return S.Context.DependentTy;
8221
8222  assert(!OrigOp.get()->getType()->isPlaceholderType());
8223
8224  // Make sure to ignore parentheses in subsequent checks
8225  Expr *op = OrigOp.get()->IgnoreParens();
8226
8227  if (S.getLangOpts().C99) {
8228    // Implement C99-only parts of addressof rules.
8229    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
8230      if (uOp->getOpcode() == UO_Deref)
8231        // Per C99 6.5.3.2, the address of a deref always returns a valid result
8232        // (assuming the deref expression is valid).
8233        return uOp->getSubExpr()->getType();
8234    }
8235    // Technically, there should be a check for array subscript
8236    // expressions here, but the result of one is always an lvalue anyway.
8237  }
8238  ValueDecl *dcl = getPrimaryDecl(op);
8239  Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
8240  unsigned AddressOfError = AO_No_Error;
8241
8242  if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
8243    bool sfinae = (bool)S.isSFINAEContext();
8244    S.Diag(OpLoc, S.isSFINAEContext() ? diag::err_typecheck_addrof_temporary
8245                         : diag::ext_typecheck_addrof_temporary)
8246      << op->getType() << op->getSourceRange();
8247    if (sfinae)
8248      return QualType();
8249  } else if (isa<ObjCSelectorExpr>(op)) {
8250    return S.Context.getPointerType(op->getType());
8251  } else if (lval == Expr::LV_MemberFunction) {
8252    // If it's an instance method, make a member pointer.
8253    // The expression must have exactly the form &A::foo.
8254
8255    // If the underlying expression isn't a decl ref, give up.
8256    if (!isa<DeclRefExpr>(op)) {
8257      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8258        << OrigOp.get()->getSourceRange();
8259      return QualType();
8260    }
8261    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
8262    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
8263
8264    // The id-expression was parenthesized.
8265    if (OrigOp.get() != DRE) {
8266      S.Diag(OpLoc, diag::err_parens_pointer_member_function)
8267        << OrigOp.get()->getSourceRange();
8268
8269    // The method was named without a qualifier.
8270    } else if (!DRE->getQualifier()) {
8271      if (MD->getParent()->getName().empty())
8272        S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
8273          << op->getSourceRange();
8274      else {
8275        SmallString<32> Str;
8276        StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
8277        S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
8278          << op->getSourceRange()
8279          << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
8280      }
8281    }
8282
8283    return S.Context.getMemberPointerType(op->getType(),
8284              S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
8285  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
8286    // C99 6.5.3.2p1
8287    // The operand must be either an l-value or a function designator
8288    if (!op->getType()->isFunctionType()) {
8289      // Use a special diagnostic for loads from property references.
8290      if (isa<PseudoObjectExpr>(op)) {
8291        AddressOfError = AO_Property_Expansion;
8292      } else {
8293        S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
8294          << op->getType() << op->getSourceRange();
8295        return QualType();
8296      }
8297    }
8298  } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
8299    // The operand cannot be a bit-field
8300    AddressOfError = AO_Bit_Field;
8301  } else if (op->getObjectKind() == OK_VectorComponent) {
8302    // The operand cannot be an element of a vector
8303    AddressOfError = AO_Vector_Element;
8304  } else if (dcl) { // C99 6.5.3.2p1
8305    // We have an lvalue with a decl. Make sure the decl is not declared
8306    // with the register storage-class specifier.
8307    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
8308      // in C++ it is not error to take address of a register
8309      // variable (c++03 7.1.1P3)
8310      if (vd->getStorageClass() == SC_Register &&
8311          !S.getLangOpts().CPlusPlus) {
8312        AddressOfError = AO_Register_Variable;
8313      }
8314    } else if (isa<FunctionTemplateDecl>(dcl)) {
8315      return S.Context.OverloadTy;
8316    } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
8317      // Okay: we can take the address of a field.
8318      // Could be a pointer to member, though, if there is an explicit
8319      // scope qualifier for the class.
8320      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
8321        DeclContext *Ctx = dcl->getDeclContext();
8322        if (Ctx && Ctx->isRecord()) {
8323          if (dcl->getType()->isReferenceType()) {
8324            S.Diag(OpLoc,
8325                   diag::err_cannot_form_pointer_to_member_of_reference_type)
8326              << dcl->getDeclName() << dcl->getType();
8327            return QualType();
8328          }
8329
8330          while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
8331            Ctx = Ctx->getParent();
8332          return S.Context.getMemberPointerType(op->getType(),
8333                S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
8334        }
8335      }
8336    } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
8337      llvm_unreachable("Unknown/unexpected decl type");
8338  }
8339
8340  if (AddressOfError != AO_No_Error) {
8341    diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
8342    return QualType();
8343  }
8344
8345  if (lval == Expr::LV_IncompleteVoidType) {
8346    // Taking the address of a void variable is technically illegal, but we
8347    // allow it in cases which are otherwise valid.
8348    // Example: "extern void x; void* y = &x;".
8349    S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
8350  }
8351
8352  // If the operand has type "type", the result has type "pointer to type".
8353  if (op->getType()->isObjCObjectType())
8354    return S.Context.getObjCObjectPointerType(op->getType());
8355  return S.Context.getPointerType(op->getType());
8356}
8357
8358/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
8359static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
8360                                        SourceLocation OpLoc) {
8361  if (Op->isTypeDependent())
8362    return S.Context.DependentTy;
8363
8364  ExprResult ConvResult = S.UsualUnaryConversions(Op);
8365  if (ConvResult.isInvalid())
8366    return QualType();
8367  Op = ConvResult.take();
8368  QualType OpTy = Op->getType();
8369  QualType Result;
8370
8371  if (isa<CXXReinterpretCastExpr>(Op)) {
8372    QualType OpOrigType = Op->IgnoreParenCasts()->getType();
8373    S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
8374                                     Op->getSourceRange());
8375  }
8376
8377  // Note that per both C89 and C99, indirection is always legal, even if OpTy
8378  // is an incomplete type or void.  It would be possible to warn about
8379  // dereferencing a void pointer, but it's completely well-defined, and such a
8380  // warning is unlikely to catch any mistakes.
8381  if (const PointerType *PT = OpTy->getAs<PointerType>())
8382    Result = PT->getPointeeType();
8383  else if (const ObjCObjectPointerType *OPT =
8384             OpTy->getAs<ObjCObjectPointerType>())
8385    Result = OPT->getPointeeType();
8386  else {
8387    ExprResult PR = S.CheckPlaceholderExpr(Op);
8388    if (PR.isInvalid()) return QualType();
8389    if (PR.take() != Op)
8390      return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
8391  }
8392
8393  if (Result.isNull()) {
8394    S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
8395      << OpTy << Op->getSourceRange();
8396    return QualType();
8397  }
8398
8399  // Dereferences are usually l-values...
8400  VK = VK_LValue;
8401
8402  // ...except that certain expressions are never l-values in C.
8403  if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
8404    VK = VK_RValue;
8405
8406  return Result;
8407}
8408
8409static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
8410  tok::TokenKind Kind) {
8411  BinaryOperatorKind Opc;
8412  switch (Kind) {
8413  default: llvm_unreachable("Unknown binop!");
8414  case tok::periodstar:           Opc = BO_PtrMemD; break;
8415  case tok::arrowstar:            Opc = BO_PtrMemI; break;
8416  case tok::star:                 Opc = BO_Mul; break;
8417  case tok::slash:                Opc = BO_Div; break;
8418  case tok::percent:              Opc = BO_Rem; break;
8419  case tok::plus:                 Opc = BO_Add; break;
8420  case tok::minus:                Opc = BO_Sub; break;
8421  case tok::lessless:             Opc = BO_Shl; break;
8422  case tok::greatergreater:       Opc = BO_Shr; break;
8423  case tok::lessequal:            Opc = BO_LE; break;
8424  case tok::less:                 Opc = BO_LT; break;
8425  case tok::greaterequal:         Opc = BO_GE; break;
8426  case tok::greater:              Opc = BO_GT; break;
8427  case tok::exclaimequal:         Opc = BO_NE; break;
8428  case tok::equalequal:           Opc = BO_EQ; break;
8429  case tok::amp:                  Opc = BO_And; break;
8430  case tok::caret:                Opc = BO_Xor; break;
8431  case tok::pipe:                 Opc = BO_Or; break;
8432  case tok::ampamp:               Opc = BO_LAnd; break;
8433  case tok::pipepipe:             Opc = BO_LOr; break;
8434  case tok::equal:                Opc = BO_Assign; break;
8435  case tok::starequal:            Opc = BO_MulAssign; break;
8436  case tok::slashequal:           Opc = BO_DivAssign; break;
8437  case tok::percentequal:         Opc = BO_RemAssign; break;
8438  case tok::plusequal:            Opc = BO_AddAssign; break;
8439  case tok::minusequal:           Opc = BO_SubAssign; break;
8440  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
8441  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
8442  case tok::ampequal:             Opc = BO_AndAssign; break;
8443  case tok::caretequal:           Opc = BO_XorAssign; break;
8444  case tok::pipeequal:            Opc = BO_OrAssign; break;
8445  case tok::comma:                Opc = BO_Comma; break;
8446  }
8447  return Opc;
8448}
8449
8450static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
8451  tok::TokenKind Kind) {
8452  UnaryOperatorKind Opc;
8453  switch (Kind) {
8454  default: llvm_unreachable("Unknown unary op!");
8455  case tok::plusplus:     Opc = UO_PreInc; break;
8456  case tok::minusminus:   Opc = UO_PreDec; break;
8457  case tok::amp:          Opc = UO_AddrOf; break;
8458  case tok::star:         Opc = UO_Deref; break;
8459  case tok::plus:         Opc = UO_Plus; break;
8460  case tok::minus:        Opc = UO_Minus; break;
8461  case tok::tilde:        Opc = UO_Not; break;
8462  case tok::exclaim:      Opc = UO_LNot; break;
8463  case tok::kw___real:    Opc = UO_Real; break;
8464  case tok::kw___imag:    Opc = UO_Imag; break;
8465  case tok::kw___extension__: Opc = UO_Extension; break;
8466  }
8467  return Opc;
8468}
8469
8470/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
8471/// This warning is only emitted for builtin assignment operations. It is also
8472/// suppressed in the event of macro expansions.
8473static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
8474                                   SourceLocation OpLoc) {
8475  if (!S.ActiveTemplateInstantiations.empty())
8476    return;
8477  if (OpLoc.isInvalid() || OpLoc.isMacroID())
8478    return;
8479  LHSExpr = LHSExpr->IgnoreParenImpCasts();
8480  RHSExpr = RHSExpr->IgnoreParenImpCasts();
8481  const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
8482  const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
8483  if (!LHSDeclRef || !RHSDeclRef ||
8484      LHSDeclRef->getLocation().isMacroID() ||
8485      RHSDeclRef->getLocation().isMacroID())
8486    return;
8487  const ValueDecl *LHSDecl =
8488    cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
8489  const ValueDecl *RHSDecl =
8490    cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
8491  if (LHSDecl != RHSDecl)
8492    return;
8493  if (LHSDecl->getType().isVolatileQualified())
8494    return;
8495  if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
8496    if (RefTy->getPointeeType().isVolatileQualified())
8497      return;
8498
8499  S.Diag(OpLoc, diag::warn_self_assignment)
8500      << LHSDeclRef->getType()
8501      << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
8502}
8503
8504/// CreateBuiltinBinOp - Creates a new built-in binary operation with
8505/// operator @p Opc at location @c TokLoc. This routine only supports
8506/// built-in operations; ActOnBinOp handles overloaded operators.
8507ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
8508                                    BinaryOperatorKind Opc,
8509                                    Expr *LHSExpr, Expr *RHSExpr) {
8510  if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
8511    // The syntax only allows initializer lists on the RHS of assignment,
8512    // so we don't need to worry about accepting invalid code for
8513    // non-assignment operators.
8514    // C++11 5.17p9:
8515    //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
8516    //   of x = {} is x = T().
8517    InitializationKind Kind =
8518        InitializationKind::CreateDirectList(RHSExpr->getLocStart());
8519    InitializedEntity Entity =
8520        InitializedEntity::InitializeTemporary(LHSExpr->getType());
8521    InitializationSequence InitSeq(*this, Entity, Kind, &RHSExpr, 1);
8522    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
8523    if (Init.isInvalid())
8524      return Init;
8525    RHSExpr = Init.take();
8526  }
8527
8528  ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
8529  QualType ResultTy;     // Result type of the binary operator.
8530  // The following two variables are used for compound assignment operators
8531  QualType CompLHSTy;    // Type of LHS after promotions for computation
8532  QualType CompResultTy; // Type of computation result
8533  ExprValueKind VK = VK_RValue;
8534  ExprObjectKind OK = OK_Ordinary;
8535
8536  switch (Opc) {
8537  case BO_Assign:
8538    ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
8539    if (getLangOpts().CPlusPlus &&
8540        LHS.get()->getObjectKind() != OK_ObjCProperty) {
8541      VK = LHS.get()->getValueKind();
8542      OK = LHS.get()->getObjectKind();
8543    }
8544    if (!ResultTy.isNull())
8545      DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
8546    break;
8547  case BO_PtrMemD:
8548  case BO_PtrMemI:
8549    ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
8550                                            Opc == BO_PtrMemI);
8551    break;
8552  case BO_Mul:
8553  case BO_Div:
8554    ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
8555                                           Opc == BO_Div);
8556    break;
8557  case BO_Rem:
8558    ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
8559    break;
8560  case BO_Add:
8561    ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
8562    break;
8563  case BO_Sub:
8564    ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
8565    break;
8566  case BO_Shl:
8567  case BO_Shr:
8568    ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
8569    break;
8570  case BO_LE:
8571  case BO_LT:
8572  case BO_GE:
8573  case BO_GT:
8574    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
8575    break;
8576  case BO_EQ:
8577  case BO_NE:
8578    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
8579    break;
8580  case BO_And:
8581  case BO_Xor:
8582  case BO_Or:
8583    ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
8584    break;
8585  case BO_LAnd:
8586  case BO_LOr:
8587    ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
8588    break;
8589  case BO_MulAssign:
8590  case BO_DivAssign:
8591    CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
8592                                               Opc == BO_DivAssign);
8593    CompLHSTy = CompResultTy;
8594    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8595      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8596    break;
8597  case BO_RemAssign:
8598    CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
8599    CompLHSTy = CompResultTy;
8600    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8601      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8602    break;
8603  case BO_AddAssign:
8604    CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
8605    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8606      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8607    break;
8608  case BO_SubAssign:
8609    CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
8610    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8611      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8612    break;
8613  case BO_ShlAssign:
8614  case BO_ShrAssign:
8615    CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
8616    CompLHSTy = CompResultTy;
8617    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8618      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8619    break;
8620  case BO_AndAssign:
8621  case BO_XorAssign:
8622  case BO_OrAssign:
8623    CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
8624    CompLHSTy = CompResultTy;
8625    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8626      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8627    break;
8628  case BO_Comma:
8629    ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
8630    if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
8631      VK = RHS.get()->getValueKind();
8632      OK = RHS.get()->getObjectKind();
8633    }
8634    break;
8635  }
8636  if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
8637    return ExprError();
8638
8639  // Check for array bounds violations for both sides of the BinaryOperator
8640  CheckArrayAccess(LHS.get());
8641  CheckArrayAccess(RHS.get());
8642
8643  if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
8644    NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
8645                                                 &Context.Idents.get("object_setClass"),
8646                                                 SourceLocation(), LookupOrdinaryName);
8647    if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
8648      SourceLocation RHSLocEnd = PP.getLocForEndOfToken(RHS.get()->getLocEnd());
8649      Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) <<
8650      FixItHint::CreateInsertion(LHS.get()->getLocStart(), "object_setClass(") <<
8651      FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), ",") <<
8652      FixItHint::CreateInsertion(RHSLocEnd, ")");
8653    }
8654    else
8655      Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
8656  }
8657  else if (const ObjCIvarRefExpr *OIRE =
8658           dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
8659    DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
8660
8661  if (CompResultTy.isNull())
8662    return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
8663                                              ResultTy, VK, OK, OpLoc,
8664                                              FPFeatures.fp_contract));
8665  if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
8666      OK_ObjCProperty) {
8667    VK = VK_LValue;
8668    OK = LHS.get()->getObjectKind();
8669  }
8670  return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
8671                                                    ResultTy, VK, OK, CompLHSTy,
8672                                                    CompResultTy, OpLoc,
8673                                                    FPFeatures.fp_contract));
8674}
8675
8676/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
8677/// operators are mixed in a way that suggests that the programmer forgot that
8678/// comparison operators have higher precedence. The most typical example of
8679/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
8680static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
8681                                      SourceLocation OpLoc, Expr *LHSExpr,
8682                                      Expr *RHSExpr) {
8683  BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
8684  BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
8685
8686  // Check that one of the sides is a comparison operator.
8687  bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
8688  bool isRightComp = RHSBO && RHSBO->isComparisonOp();
8689  if (!isLeftComp && !isRightComp)
8690    return;
8691
8692  // Bitwise operations are sometimes used as eager logical ops.
8693  // Don't diagnose this.
8694  bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
8695  bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
8696  if ((isLeftComp || isLeftBitwise) && (isRightComp || isRightBitwise))
8697    return;
8698
8699  SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
8700                                                   OpLoc)
8701                                     : SourceRange(OpLoc, RHSExpr->getLocEnd());
8702  StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
8703  SourceRange ParensRange = isLeftComp ?
8704      SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
8705    : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocStart());
8706
8707  Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
8708    << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
8709  SuggestParentheses(Self, OpLoc,
8710    Self.PDiag(diag::note_precedence_silence) << OpStr,
8711    (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
8712  SuggestParentheses(Self, OpLoc,
8713    Self.PDiag(diag::note_precedence_bitwise_first)
8714      << BinaryOperator::getOpcodeStr(Opc),
8715    ParensRange);
8716}
8717
8718/// \brief It accepts a '&' expr that is inside a '|' one.
8719/// Emit a diagnostic together with a fixit hint that wraps the '&' expression
8720/// in parentheses.
8721static void
8722EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
8723                                       BinaryOperator *Bop) {
8724  assert(Bop->getOpcode() == BO_And);
8725  Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
8726      << Bop->getSourceRange() << OpLoc;
8727  SuggestParentheses(Self, Bop->getOperatorLoc(),
8728    Self.PDiag(diag::note_precedence_silence)
8729      << Bop->getOpcodeStr(),
8730    Bop->getSourceRange());
8731}
8732
8733/// \brief It accepts a '&&' expr that is inside a '||' one.
8734/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
8735/// in parentheses.
8736static void
8737EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
8738                                       BinaryOperator *Bop) {
8739  assert(Bop->getOpcode() == BO_LAnd);
8740  Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
8741      << Bop->getSourceRange() << OpLoc;
8742  SuggestParentheses(Self, Bop->getOperatorLoc(),
8743    Self.PDiag(diag::note_precedence_silence)
8744      << Bop->getOpcodeStr(),
8745    Bop->getSourceRange());
8746}
8747
8748/// \brief Returns true if the given expression can be evaluated as a constant
8749/// 'true'.
8750static bool EvaluatesAsTrue(Sema &S, Expr *E) {
8751  bool Res;
8752  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
8753}
8754
8755/// \brief Returns true if the given expression can be evaluated as a constant
8756/// 'false'.
8757static bool EvaluatesAsFalse(Sema &S, Expr *E) {
8758  bool Res;
8759  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
8760}
8761
8762/// \brief Look for '&&' in the left hand of a '||' expr.
8763static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
8764                                             Expr *LHSExpr, Expr *RHSExpr) {
8765  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
8766    if (Bop->getOpcode() == BO_LAnd) {
8767      // If it's "a && b || 0" don't warn since the precedence doesn't matter.
8768      if (EvaluatesAsFalse(S, RHSExpr))
8769        return;
8770      // If it's "1 && a || b" don't warn since the precedence doesn't matter.
8771      if (!EvaluatesAsTrue(S, Bop->getLHS()))
8772        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8773    } else if (Bop->getOpcode() == BO_LOr) {
8774      if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
8775        // If it's "a || b && 1 || c" we didn't warn earlier for
8776        // "a || b && 1", but warn now.
8777        if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
8778          return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
8779      }
8780    }
8781  }
8782}
8783
8784/// \brief Look for '&&' in the right hand of a '||' expr.
8785static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
8786                                             Expr *LHSExpr, Expr *RHSExpr) {
8787  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
8788    if (Bop->getOpcode() == BO_LAnd) {
8789      // If it's "0 || a && b" don't warn since the precedence doesn't matter.
8790      if (EvaluatesAsFalse(S, LHSExpr))
8791        return;
8792      // If it's "a || b && 1" don't warn since the precedence doesn't matter.
8793      if (!EvaluatesAsTrue(S, Bop->getRHS()))
8794        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8795    }
8796  }
8797}
8798
8799/// \brief Look for '&' in the left or right hand of a '|' expr.
8800static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
8801                                             Expr *OrArg) {
8802  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
8803    if (Bop->getOpcode() == BO_And)
8804      return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
8805  }
8806}
8807
8808static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
8809                                    Expr *SubExpr, StringRef Shift) {
8810  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
8811    if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
8812      StringRef Op = Bop->getOpcodeStr();
8813      S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
8814          << Bop->getSourceRange() << OpLoc << Shift << Op;
8815      SuggestParentheses(S, Bop->getOperatorLoc(),
8816          S.PDiag(diag::note_precedence_silence) << Op,
8817          Bop->getSourceRange());
8818    }
8819  }
8820}
8821
8822/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
8823/// precedence.
8824static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
8825                                    SourceLocation OpLoc, Expr *LHSExpr,
8826                                    Expr *RHSExpr){
8827  // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
8828  if (BinaryOperator::isBitwiseOp(Opc))
8829    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
8830
8831  // Diagnose "arg1 & arg2 | arg3"
8832  if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8833    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
8834    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
8835  }
8836
8837  // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
8838  // We don't warn for 'assert(a || b && "bad")' since this is safe.
8839  if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8840    DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
8841    DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
8842  }
8843
8844  if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
8845      || Opc == BO_Shr) {
8846    StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
8847    DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
8848    DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
8849  }
8850}
8851
8852// Binary Operators.  'Tok' is the token for the operator.
8853ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
8854                            tok::TokenKind Kind,
8855                            Expr *LHSExpr, Expr *RHSExpr) {
8856  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
8857  assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
8858  assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
8859
8860  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
8861  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
8862
8863  return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
8864}
8865
8866/// Build an overloaded binary operator expression in the given scope.
8867static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
8868                                       BinaryOperatorKind Opc,
8869                                       Expr *LHS, Expr *RHS) {
8870  // Find all of the overloaded operators visible from this
8871  // point. We perform both an operator-name lookup from the local
8872  // scope and an argument-dependent lookup based on the types of
8873  // the arguments.
8874  UnresolvedSet<16> Functions;
8875  OverloadedOperatorKind OverOp
8876    = BinaryOperator::getOverloadedOperator(Opc);
8877  if (Sc && OverOp != OO_None)
8878    S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
8879                                   RHS->getType(), Functions);
8880
8881  // Build the (potentially-overloaded, potentially-dependent)
8882  // binary operation.
8883  return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
8884}
8885
8886ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
8887                            BinaryOperatorKind Opc,
8888                            Expr *LHSExpr, Expr *RHSExpr) {
8889  // We want to end up calling one of checkPseudoObjectAssignment
8890  // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
8891  // both expressions are overloadable or either is type-dependent),
8892  // or CreateBuiltinBinOp (in any other case).  We also want to get
8893  // any placeholder types out of the way.
8894
8895  // Handle pseudo-objects in the LHS.
8896  if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
8897    // Assignments with a pseudo-object l-value need special analysis.
8898    if (pty->getKind() == BuiltinType::PseudoObject &&
8899        BinaryOperator::isAssignmentOp(Opc))
8900      return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
8901
8902    // Don't resolve overloads if the other type is overloadable.
8903    if (pty->getKind() == BuiltinType::Overload) {
8904      // We can't actually test that if we still have a placeholder,
8905      // though.  Fortunately, none of the exceptions we see in that
8906      // code below are valid when the LHS is an overload set.  Note
8907      // that an overload set can be dependently-typed, but it never
8908      // instantiates to having an overloadable type.
8909      ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8910      if (resolvedRHS.isInvalid()) return ExprError();
8911      RHSExpr = resolvedRHS.take();
8912
8913      if (RHSExpr->isTypeDependent() ||
8914          RHSExpr->getType()->isOverloadableType())
8915        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8916    }
8917
8918    ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
8919    if (LHS.isInvalid()) return ExprError();
8920    LHSExpr = LHS.take();
8921  }
8922
8923  // Handle pseudo-objects in the RHS.
8924  if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
8925    // An overload in the RHS can potentially be resolved by the type
8926    // being assigned to.
8927    if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
8928      if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8929        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8930
8931      if (LHSExpr->getType()->isOverloadableType())
8932        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8933
8934      return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8935    }
8936
8937    // Don't resolve overloads if the other type is overloadable.
8938    if (pty->getKind() == BuiltinType::Overload &&
8939        LHSExpr->getType()->isOverloadableType())
8940      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8941
8942    ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8943    if (!resolvedRHS.isUsable()) return ExprError();
8944    RHSExpr = resolvedRHS.take();
8945  }
8946
8947  if (getLangOpts().CPlusPlus) {
8948    // If either expression is type-dependent, always build an
8949    // overloaded op.
8950    if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8951      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8952
8953    // Otherwise, build an overloaded op if either expression has an
8954    // overloadable type.
8955    if (LHSExpr->getType()->isOverloadableType() ||
8956        RHSExpr->getType()->isOverloadableType())
8957      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8958  }
8959
8960  // Build a built-in binary operation.
8961  return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8962}
8963
8964ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
8965                                      UnaryOperatorKind Opc,
8966                                      Expr *InputExpr) {
8967  ExprResult Input = Owned(InputExpr);
8968  ExprValueKind VK = VK_RValue;
8969  ExprObjectKind OK = OK_Ordinary;
8970  QualType resultType;
8971  switch (Opc) {
8972  case UO_PreInc:
8973  case UO_PreDec:
8974  case UO_PostInc:
8975  case UO_PostDec:
8976    resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
8977                                                Opc == UO_PreInc ||
8978                                                Opc == UO_PostInc,
8979                                                Opc == UO_PreInc ||
8980                                                Opc == UO_PreDec);
8981    break;
8982  case UO_AddrOf:
8983    resultType = CheckAddressOfOperand(*this, Input, OpLoc);
8984    break;
8985  case UO_Deref: {
8986    Input = DefaultFunctionArrayLvalueConversion(Input.take());
8987    if (Input.isInvalid()) return ExprError();
8988    resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
8989    break;
8990  }
8991  case UO_Plus:
8992  case UO_Minus:
8993    Input = UsualUnaryConversions(Input.take());
8994    if (Input.isInvalid()) return ExprError();
8995    resultType = Input.get()->getType();
8996    if (resultType->isDependentType())
8997      break;
8998    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
8999        resultType->isVectorType())
9000      break;
9001    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6-7
9002             resultType->isEnumeralType())
9003      break;
9004    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
9005             Opc == UO_Plus &&
9006             resultType->isPointerType())
9007      break;
9008
9009    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9010      << resultType << Input.get()->getSourceRange());
9011
9012  case UO_Not: // bitwise complement
9013    Input = UsualUnaryConversions(Input.take());
9014    if (Input.isInvalid())
9015      return ExprError();
9016    resultType = Input.get()->getType();
9017    if (resultType->isDependentType())
9018      break;
9019    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
9020    if (resultType->isComplexType() || resultType->isComplexIntegerType())
9021      // C99 does not support '~' for complex conjugation.
9022      Diag(OpLoc, diag::ext_integer_complement_complex)
9023          << resultType << Input.get()->getSourceRange();
9024    else if (resultType->hasIntegerRepresentation())
9025      break;
9026    else if (resultType->isExtVectorType()) {
9027      if (Context.getLangOpts().OpenCL) {
9028        // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
9029        // on vector float types.
9030        QualType T = resultType->getAs<ExtVectorType>()->getElementType();
9031        if (!T->isIntegerType())
9032          return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9033                           << resultType << Input.get()->getSourceRange());
9034      }
9035      break;
9036    } else {
9037      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9038                       << resultType << Input.get()->getSourceRange());
9039    }
9040    break;
9041
9042  case UO_LNot: // logical negation
9043    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
9044    Input = DefaultFunctionArrayLvalueConversion(Input.take());
9045    if (Input.isInvalid()) return ExprError();
9046    resultType = Input.get()->getType();
9047
9048    // Though we still have to promote half FP to float...
9049    if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
9050      Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
9051      resultType = Context.FloatTy;
9052    }
9053
9054    if (resultType->isDependentType())
9055      break;
9056    if (resultType->isScalarType()) {
9057      // C99 6.5.3.3p1: ok, fallthrough;
9058      if (Context.getLangOpts().CPlusPlus) {
9059        // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
9060        // operand contextually converted to bool.
9061        Input = ImpCastExprToType(Input.take(), Context.BoolTy,
9062                                  ScalarTypeToBooleanCastKind(resultType));
9063      } else if (Context.getLangOpts().OpenCL &&
9064                 Context.getLangOpts().OpenCLVersion < 120) {
9065        // OpenCL v1.1 6.3.h: The logical operator not (!) does not
9066        // operate on scalar float types.
9067        if (!resultType->isIntegerType())
9068          return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9069                           << resultType << Input.get()->getSourceRange());
9070      }
9071    } else if (resultType->isExtVectorType()) {
9072      if (Context.getLangOpts().OpenCL &&
9073          Context.getLangOpts().OpenCLVersion < 120) {
9074        // OpenCL v1.1 6.3.h: The logical operator not (!) does not
9075        // operate on vector float types.
9076        QualType T = resultType->getAs<ExtVectorType>()->getElementType();
9077        if (!T->isIntegerType())
9078          return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9079                           << resultType << Input.get()->getSourceRange());
9080      }
9081      // Vector logical not returns the signed variant of the operand type.
9082      resultType = GetSignedVectorType(resultType);
9083      break;
9084    } else {
9085      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9086        << resultType << Input.get()->getSourceRange());
9087    }
9088
9089    // LNot always has type int. C99 6.5.3.3p5.
9090    // In C++, it's bool. C++ 5.3.1p8
9091    resultType = Context.getLogicalOperationType();
9092    break;
9093  case UO_Real:
9094  case UO_Imag:
9095    resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
9096    // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
9097    // complex l-values to ordinary l-values and all other values to r-values.
9098    if (Input.isInvalid()) return ExprError();
9099    if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
9100      if (Input.get()->getValueKind() != VK_RValue &&
9101          Input.get()->getObjectKind() == OK_Ordinary)
9102        VK = Input.get()->getValueKind();
9103    } else if (!getLangOpts().CPlusPlus) {
9104      // In C, a volatile scalar is read by __imag. In C++, it is not.
9105      Input = DefaultLvalueConversion(Input.take());
9106    }
9107    break;
9108  case UO_Extension:
9109    resultType = Input.get()->getType();
9110    VK = Input.get()->getValueKind();
9111    OK = Input.get()->getObjectKind();
9112    break;
9113  }
9114  if (resultType.isNull() || Input.isInvalid())
9115    return ExprError();
9116
9117  // Check for array bounds violations in the operand of the UnaryOperator,
9118  // except for the '*' and '&' operators that have to be handled specially
9119  // by CheckArrayAccess (as there are special cases like &array[arraysize]
9120  // that are explicitly defined as valid by the standard).
9121  if (Opc != UO_AddrOf && Opc != UO_Deref)
9122    CheckArrayAccess(Input.get());
9123
9124  return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
9125                                           VK, OK, OpLoc));
9126}
9127
9128/// \brief Determine whether the given expression is a qualified member
9129/// access expression, of a form that could be turned into a pointer to member
9130/// with the address-of operator.
9131static bool isQualifiedMemberAccess(Expr *E) {
9132  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
9133    if (!DRE->getQualifier())
9134      return false;
9135
9136    ValueDecl *VD = DRE->getDecl();
9137    if (!VD->isCXXClassMember())
9138      return false;
9139
9140    if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
9141      return true;
9142    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
9143      return Method->isInstance();
9144
9145    return false;
9146  }
9147
9148  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
9149    if (!ULE->getQualifier())
9150      return false;
9151
9152    for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
9153                                           DEnd = ULE->decls_end();
9154         D != DEnd; ++D) {
9155      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
9156        if (Method->isInstance())
9157          return true;
9158      } else {
9159        // Overload set does not contain methods.
9160        break;
9161      }
9162    }
9163
9164    return false;
9165  }
9166
9167  return false;
9168}
9169
9170ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
9171                              UnaryOperatorKind Opc, Expr *Input) {
9172  // First things first: handle placeholders so that the
9173  // overloaded-operator check considers the right type.
9174  if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
9175    // Increment and decrement of pseudo-object references.
9176    if (pty->getKind() == BuiltinType::PseudoObject &&
9177        UnaryOperator::isIncrementDecrementOp(Opc))
9178      return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
9179
9180    // extension is always a builtin operator.
9181    if (Opc == UO_Extension)
9182      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9183
9184    // & gets special logic for several kinds of placeholder.
9185    // The builtin code knows what to do.
9186    if (Opc == UO_AddrOf &&
9187        (pty->getKind() == BuiltinType::Overload ||
9188         pty->getKind() == BuiltinType::UnknownAny ||
9189         pty->getKind() == BuiltinType::BoundMember))
9190      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9191
9192    // Anything else needs to be handled now.
9193    ExprResult Result = CheckPlaceholderExpr(Input);
9194    if (Result.isInvalid()) return ExprError();
9195    Input = Result.take();
9196  }
9197
9198  if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
9199      UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
9200      !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
9201    // Find all of the overloaded operators visible from this
9202    // point. We perform both an operator-name lookup from the local
9203    // scope and an argument-dependent lookup based on the types of
9204    // the arguments.
9205    UnresolvedSet<16> Functions;
9206    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
9207    if (S && OverOp != OO_None)
9208      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
9209                                   Functions);
9210
9211    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
9212  }
9213
9214  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9215}
9216
9217// Unary Operators.  'Tok' is the token for the operator.
9218ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
9219                              tok::TokenKind Op, Expr *Input) {
9220  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
9221}
9222
9223/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
9224ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
9225                                LabelDecl *TheDecl) {
9226  TheDecl->setUsed();
9227  // Create the AST node.  The address of a label always has type 'void*'.
9228  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
9229                                       Context.getPointerType(Context.VoidTy)));
9230}
9231
9232/// Given the last statement in a statement-expression, check whether
9233/// the result is a producing expression (like a call to an
9234/// ns_returns_retained function) and, if so, rebuild it to hoist the
9235/// release out of the full-expression.  Otherwise, return null.
9236/// Cannot fail.
9237static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
9238  // Should always be wrapped with one of these.
9239  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
9240  if (!cleanups) return 0;
9241
9242  ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
9243  if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
9244    return 0;
9245
9246  // Splice out the cast.  This shouldn't modify any interesting
9247  // features of the statement.
9248  Expr *producer = cast->getSubExpr();
9249  assert(producer->getType() == cast->getType());
9250  assert(producer->getValueKind() == cast->getValueKind());
9251  cleanups->setSubExpr(producer);
9252  return cleanups;
9253}
9254
9255void Sema::ActOnStartStmtExpr() {
9256  PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
9257}
9258
9259void Sema::ActOnStmtExprError() {
9260  // Note that function is also called by TreeTransform when leaving a
9261  // StmtExpr scope without rebuilding anything.
9262
9263  DiscardCleanupsInEvaluationContext();
9264  PopExpressionEvaluationContext();
9265}
9266
9267ExprResult
9268Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
9269                    SourceLocation RPLoc) { // "({..})"
9270  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
9271  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
9272
9273  if (hasAnyUnrecoverableErrorsInThisFunction())
9274    DiscardCleanupsInEvaluationContext();
9275  assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
9276  PopExpressionEvaluationContext();
9277
9278  bool isFileScope
9279    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
9280  if (isFileScope)
9281    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
9282
9283  // FIXME: there are a variety of strange constraints to enforce here, for
9284  // example, it is not possible to goto into a stmt expression apparently.
9285  // More semantic analysis is needed.
9286
9287  // If there are sub stmts in the compound stmt, take the type of the last one
9288  // as the type of the stmtexpr.
9289  QualType Ty = Context.VoidTy;
9290  bool StmtExprMayBindToTemp = false;
9291  if (!Compound->body_empty()) {
9292    Stmt *LastStmt = Compound->body_back();
9293    LabelStmt *LastLabelStmt = 0;
9294    // If LastStmt is a label, skip down through into the body.
9295    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
9296      LastLabelStmt = Label;
9297      LastStmt = Label->getSubStmt();
9298    }
9299
9300    if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
9301      // Do function/array conversion on the last expression, but not
9302      // lvalue-to-rvalue.  However, initialize an unqualified type.
9303      ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
9304      if (LastExpr.isInvalid())
9305        return ExprError();
9306      Ty = LastExpr.get()->getType().getUnqualifiedType();
9307
9308      if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
9309        // In ARC, if the final expression ends in a consume, splice
9310        // the consume out and bind it later.  In the alternate case
9311        // (when dealing with a retainable type), the result
9312        // initialization will create a produce.  In both cases the
9313        // result will be +1, and we'll need to balance that out with
9314        // a bind.
9315        if (Expr *rebuiltLastStmt
9316              = maybeRebuildARCConsumingStmt(LastExpr.get())) {
9317          LastExpr = rebuiltLastStmt;
9318        } else {
9319          LastExpr = PerformCopyInitialization(
9320                            InitializedEntity::InitializeResult(LPLoc,
9321                                                                Ty,
9322                                                                false),
9323                                                   SourceLocation(),
9324                                               LastExpr);
9325        }
9326
9327        if (LastExpr.isInvalid())
9328          return ExprError();
9329        if (LastExpr.get() != 0) {
9330          if (!LastLabelStmt)
9331            Compound->setLastStmt(LastExpr.take());
9332          else
9333            LastLabelStmt->setSubStmt(LastExpr.take());
9334          StmtExprMayBindToTemp = true;
9335        }
9336      }
9337    }
9338  }
9339
9340  // FIXME: Check that expression type is complete/non-abstract; statement
9341  // expressions are not lvalues.
9342  Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
9343  if (StmtExprMayBindToTemp)
9344    return MaybeBindToTemporary(ResStmtExpr);
9345  return Owned(ResStmtExpr);
9346}
9347
9348ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
9349                                      TypeSourceInfo *TInfo,
9350                                      OffsetOfComponent *CompPtr,
9351                                      unsigned NumComponents,
9352                                      SourceLocation RParenLoc) {
9353  QualType ArgTy = TInfo->getType();
9354  bool Dependent = ArgTy->isDependentType();
9355  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
9356
9357  // We must have at least one component that refers to the type, and the first
9358  // one is known to be a field designator.  Verify that the ArgTy represents
9359  // a struct/union/class.
9360  if (!Dependent && !ArgTy->isRecordType())
9361    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
9362                       << ArgTy << TypeRange);
9363
9364  // Type must be complete per C99 7.17p3 because a declaring a variable
9365  // with an incomplete type would be ill-formed.
9366  if (!Dependent
9367      && RequireCompleteType(BuiltinLoc, ArgTy,
9368                             diag::err_offsetof_incomplete_type, TypeRange))
9369    return ExprError();
9370
9371  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
9372  // GCC extension, diagnose them.
9373  // FIXME: This diagnostic isn't actually visible because the location is in
9374  // a system header!
9375  if (NumComponents != 1)
9376    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
9377      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
9378
9379  bool DidWarnAboutNonPOD = false;
9380  QualType CurrentType = ArgTy;
9381  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
9382  SmallVector<OffsetOfNode, 4> Comps;
9383  SmallVector<Expr*, 4> Exprs;
9384  for (unsigned i = 0; i != NumComponents; ++i) {
9385    const OffsetOfComponent &OC = CompPtr[i];
9386    if (OC.isBrackets) {
9387      // Offset of an array sub-field.  TODO: Should we allow vector elements?
9388      if (!CurrentType->isDependentType()) {
9389        const ArrayType *AT = Context.getAsArrayType(CurrentType);
9390        if(!AT)
9391          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
9392                           << CurrentType);
9393        CurrentType = AT->getElementType();
9394      } else
9395        CurrentType = Context.DependentTy;
9396
9397      ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
9398      if (IdxRval.isInvalid())
9399        return ExprError();
9400      Expr *Idx = IdxRval.take();
9401
9402      // The expression must be an integral expression.
9403      // FIXME: An integral constant expression?
9404      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
9405          !Idx->getType()->isIntegerType())
9406        return ExprError(Diag(Idx->getLocStart(),
9407                              diag::err_typecheck_subscript_not_integer)
9408                         << Idx->getSourceRange());
9409
9410      // Record this array index.
9411      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
9412      Exprs.push_back(Idx);
9413      continue;
9414    }
9415
9416    // Offset of a field.
9417    if (CurrentType->isDependentType()) {
9418      // We have the offset of a field, but we can't look into the dependent
9419      // type. Just record the identifier of the field.
9420      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
9421      CurrentType = Context.DependentTy;
9422      continue;
9423    }
9424
9425    // We need to have a complete type to look into.
9426    if (RequireCompleteType(OC.LocStart, CurrentType,
9427                            diag::err_offsetof_incomplete_type))
9428      return ExprError();
9429
9430    // Look for the designated field.
9431    const RecordType *RC = CurrentType->getAs<RecordType>();
9432    if (!RC)
9433      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
9434                       << CurrentType);
9435    RecordDecl *RD = RC->getDecl();
9436
9437    // C++ [lib.support.types]p5:
9438    //   The macro offsetof accepts a restricted set of type arguments in this
9439    //   International Standard. type shall be a POD structure or a POD union
9440    //   (clause 9).
9441    // C++11 [support.types]p4:
9442    //   If type is not a standard-layout class (Clause 9), the results are
9443    //   undefined.
9444    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
9445      bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
9446      unsigned DiagID =
9447        LangOpts.CPlusPlus11? diag::warn_offsetof_non_standardlayout_type
9448                            : diag::warn_offsetof_non_pod_type;
9449
9450      if (!IsSafe && !DidWarnAboutNonPOD &&
9451          DiagRuntimeBehavior(BuiltinLoc, 0,
9452                              PDiag(DiagID)
9453                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
9454                              << CurrentType))
9455        DidWarnAboutNonPOD = true;
9456    }
9457
9458    // Look for the field.
9459    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
9460    LookupQualifiedName(R, RD);
9461    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
9462    IndirectFieldDecl *IndirectMemberDecl = 0;
9463    if (!MemberDecl) {
9464      if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
9465        MemberDecl = IndirectMemberDecl->getAnonField();
9466    }
9467
9468    if (!MemberDecl)
9469      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
9470                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
9471                                                              OC.LocEnd));
9472
9473    // C99 7.17p3:
9474    //   (If the specified member is a bit-field, the behavior is undefined.)
9475    //
9476    // We diagnose this as an error.
9477    if (MemberDecl->isBitField()) {
9478      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
9479        << MemberDecl->getDeclName()
9480        << SourceRange(BuiltinLoc, RParenLoc);
9481      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
9482      return ExprError();
9483    }
9484
9485    RecordDecl *Parent = MemberDecl->getParent();
9486    if (IndirectMemberDecl)
9487      Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
9488
9489    // If the member was found in a base class, introduce OffsetOfNodes for
9490    // the base class indirections.
9491    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
9492                       /*DetectVirtual=*/false);
9493    if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
9494      CXXBasePath &Path = Paths.front();
9495      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
9496           B != BEnd; ++B)
9497        Comps.push_back(OffsetOfNode(B->Base));
9498    }
9499
9500    if (IndirectMemberDecl) {
9501      for (IndirectFieldDecl::chain_iterator FI =
9502           IndirectMemberDecl->chain_begin(),
9503           FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
9504        assert(isa<FieldDecl>(*FI));
9505        Comps.push_back(OffsetOfNode(OC.LocStart,
9506                                     cast<FieldDecl>(*FI), OC.LocEnd));
9507      }
9508    } else
9509      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
9510
9511    CurrentType = MemberDecl->getType().getNonReferenceType();
9512  }
9513
9514  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
9515                                    TInfo, Comps, Exprs, RParenLoc));
9516}
9517
9518ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
9519                                      SourceLocation BuiltinLoc,
9520                                      SourceLocation TypeLoc,
9521                                      ParsedType ParsedArgTy,
9522                                      OffsetOfComponent *CompPtr,
9523                                      unsigned NumComponents,
9524                                      SourceLocation RParenLoc) {
9525
9526  TypeSourceInfo *ArgTInfo;
9527  QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
9528  if (ArgTy.isNull())
9529    return ExprError();
9530
9531  if (!ArgTInfo)
9532    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
9533
9534  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
9535                              RParenLoc);
9536}
9537
9538
9539ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
9540                                 Expr *CondExpr,
9541                                 Expr *LHSExpr, Expr *RHSExpr,
9542                                 SourceLocation RPLoc) {
9543  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
9544
9545  ExprValueKind VK = VK_RValue;
9546  ExprObjectKind OK = OK_Ordinary;
9547  QualType resType;
9548  bool ValueDependent = false;
9549  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
9550    resType = Context.DependentTy;
9551    ValueDependent = true;
9552  } else {
9553    // The conditional expression is required to be a constant expression.
9554    llvm::APSInt condEval(32);
9555    ExprResult CondICE
9556      = VerifyIntegerConstantExpression(CondExpr, &condEval,
9557          diag::err_typecheck_choose_expr_requires_constant, false);
9558    if (CondICE.isInvalid())
9559      return ExprError();
9560    CondExpr = CondICE.take();
9561
9562    // If the condition is > zero, then the AST type is the same as the LSHExpr.
9563    Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
9564
9565    resType = ActiveExpr->getType();
9566    ValueDependent = ActiveExpr->isValueDependent();
9567    VK = ActiveExpr->getValueKind();
9568    OK = ActiveExpr->getObjectKind();
9569  }
9570
9571  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
9572                                        resType, VK, OK, RPLoc,
9573                                        resType->isDependentType(),
9574                                        ValueDependent));
9575}
9576
9577//===----------------------------------------------------------------------===//
9578// Clang Extensions.
9579//===----------------------------------------------------------------------===//
9580
9581/// ActOnBlockStart - This callback is invoked when a block literal is started.
9582void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
9583  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
9584  PushBlockScope(CurScope, Block);
9585  CurContext->addDecl(Block);
9586  if (CurScope)
9587    PushDeclContext(CurScope, Block);
9588  else
9589    CurContext = Block;
9590
9591  getCurBlock()->HasImplicitReturnType = true;
9592
9593  // Enter a new evaluation context to insulate the block from any
9594  // cleanups from the enclosing full-expression.
9595  PushExpressionEvaluationContext(PotentiallyEvaluated);
9596}
9597
9598void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
9599                               Scope *CurScope) {
9600  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
9601  assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
9602  BlockScopeInfo *CurBlock = getCurBlock();
9603
9604  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
9605  QualType T = Sig->getType();
9606
9607  // FIXME: We should allow unexpanded parameter packs here, but that would,
9608  // in turn, make the block expression contain unexpanded parameter packs.
9609  if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
9610    // Drop the parameters.
9611    FunctionProtoType::ExtProtoInfo EPI;
9612    EPI.HasTrailingReturn = false;
9613    EPI.TypeQuals |= DeclSpec::TQ_const;
9614    T = Context.getFunctionType(Context.DependentTy, ArrayRef<QualType>(), EPI);
9615    Sig = Context.getTrivialTypeSourceInfo(T);
9616  }
9617
9618  // GetTypeForDeclarator always produces a function type for a block
9619  // literal signature.  Furthermore, it is always a FunctionProtoType
9620  // unless the function was written with a typedef.
9621  assert(T->isFunctionType() &&
9622         "GetTypeForDeclarator made a non-function block signature");
9623
9624  // Look for an explicit signature in that function type.
9625  FunctionProtoTypeLoc ExplicitSignature;
9626
9627  TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
9628  if ((ExplicitSignature = tmp.getAs<FunctionProtoTypeLoc>())) {
9629
9630    // Check whether that explicit signature was synthesized by
9631    // GetTypeForDeclarator.  If so, don't save that as part of the
9632    // written signature.
9633    if (ExplicitSignature.getLocalRangeBegin() ==
9634        ExplicitSignature.getLocalRangeEnd()) {
9635      // This would be much cheaper if we stored TypeLocs instead of
9636      // TypeSourceInfos.
9637      TypeLoc Result = ExplicitSignature.getResultLoc();
9638      unsigned Size = Result.getFullDataSize();
9639      Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
9640      Sig->getTypeLoc().initializeFullCopy(Result, Size);
9641
9642      ExplicitSignature = FunctionProtoTypeLoc();
9643    }
9644  }
9645
9646  CurBlock->TheDecl->setSignatureAsWritten(Sig);
9647  CurBlock->FunctionType = T;
9648
9649  const FunctionType *Fn = T->getAs<FunctionType>();
9650  QualType RetTy = Fn->getResultType();
9651  bool isVariadic =
9652    (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
9653
9654  CurBlock->TheDecl->setIsVariadic(isVariadic);
9655
9656  // Don't allow returning a objc interface by value.
9657  if (RetTy->isObjCObjectType()) {
9658    Diag(ParamInfo.getLocStart(),
9659         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
9660    return;
9661  }
9662
9663  // Context.DependentTy is used as a placeholder for a missing block
9664  // return type.  TODO:  what should we do with declarators like:
9665  //   ^ * { ... }
9666  // If the answer is "apply template argument deduction"....
9667  if (RetTy != Context.DependentTy) {
9668    CurBlock->ReturnType = RetTy;
9669    CurBlock->TheDecl->setBlockMissingReturnType(false);
9670    CurBlock->HasImplicitReturnType = false;
9671  }
9672
9673  // Push block parameters from the declarator if we had them.
9674  SmallVector<ParmVarDecl*, 8> Params;
9675  if (ExplicitSignature) {
9676    for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
9677      ParmVarDecl *Param = ExplicitSignature.getArg(I);
9678      if (Param->getIdentifier() == 0 &&
9679          !Param->isImplicit() &&
9680          !Param->isInvalidDecl() &&
9681          !getLangOpts().CPlusPlus)
9682        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
9683      Params.push_back(Param);
9684    }
9685
9686  // Fake up parameter variables if we have a typedef, like
9687  //   ^ fntype { ... }
9688  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
9689    for (FunctionProtoType::arg_type_iterator
9690           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
9691      ParmVarDecl *Param =
9692        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
9693                                   ParamInfo.getLocStart(),
9694                                   *I);
9695      Params.push_back(Param);
9696    }
9697  }
9698
9699  // Set the parameters on the block decl.
9700  if (!Params.empty()) {
9701    CurBlock->TheDecl->setParams(Params);
9702    CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
9703                             CurBlock->TheDecl->param_end(),
9704                             /*CheckParameterNames=*/false);
9705  }
9706
9707  // Finally we can process decl attributes.
9708  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
9709
9710  // Put the parameter variables in scope.  We can bail out immediately
9711  // if we don't have any.
9712  if (Params.empty())
9713    return;
9714
9715  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
9716         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
9717    (*AI)->setOwningFunction(CurBlock->TheDecl);
9718
9719    // If this has an identifier, add it to the scope stack.
9720    if ((*AI)->getIdentifier()) {
9721      CheckShadow(CurBlock->TheScope, *AI);
9722
9723      PushOnScopeChains(*AI, CurBlock->TheScope);
9724    }
9725  }
9726}
9727
9728/// ActOnBlockError - If there is an error parsing a block, this callback
9729/// is invoked to pop the information about the block from the action impl.
9730void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
9731  // Leave the expression-evaluation context.
9732  DiscardCleanupsInEvaluationContext();
9733  PopExpressionEvaluationContext();
9734
9735  // Pop off CurBlock, handle nested blocks.
9736  PopDeclContext();
9737  PopFunctionScopeInfo();
9738}
9739
9740/// ActOnBlockStmtExpr - This is called when the body of a block statement
9741/// literal was successfully completed.  ^(int x){...}
9742ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
9743                                    Stmt *Body, Scope *CurScope) {
9744  // If blocks are disabled, emit an error.
9745  if (!LangOpts.Blocks)
9746    Diag(CaretLoc, diag::err_blocks_disable);
9747
9748  // Leave the expression-evaluation context.
9749  if (hasAnyUnrecoverableErrorsInThisFunction())
9750    DiscardCleanupsInEvaluationContext();
9751  assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
9752  PopExpressionEvaluationContext();
9753
9754  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
9755
9756  if (BSI->HasImplicitReturnType)
9757    deduceClosureReturnType(*BSI);
9758
9759  PopDeclContext();
9760
9761  QualType RetTy = Context.VoidTy;
9762  if (!BSI->ReturnType.isNull())
9763    RetTy = BSI->ReturnType;
9764
9765  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
9766  QualType BlockTy;
9767
9768  // Set the captured variables on the block.
9769  // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
9770  SmallVector<BlockDecl::Capture, 4> Captures;
9771  for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
9772    CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
9773    if (Cap.isThisCapture())
9774      continue;
9775    BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
9776                              Cap.isNested(), Cap.getCopyExpr());
9777    Captures.push_back(NewCap);
9778  }
9779  BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
9780                            BSI->CXXThisCaptureIndex != 0);
9781
9782  // If the user wrote a function type in some form, try to use that.
9783  if (!BSI->FunctionType.isNull()) {
9784    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
9785
9786    FunctionType::ExtInfo Ext = FTy->getExtInfo();
9787    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
9788
9789    // Turn protoless block types into nullary block types.
9790    if (isa<FunctionNoProtoType>(FTy)) {
9791      FunctionProtoType::ExtProtoInfo EPI;
9792      EPI.ExtInfo = Ext;
9793      BlockTy = Context.getFunctionType(RetTy, ArrayRef<QualType>(), EPI);
9794
9795    // Otherwise, if we don't need to change anything about the function type,
9796    // preserve its sugar structure.
9797    } else if (FTy->getResultType() == RetTy &&
9798               (!NoReturn || FTy->getNoReturnAttr())) {
9799      BlockTy = BSI->FunctionType;
9800
9801    // Otherwise, make the minimal modifications to the function type.
9802    } else {
9803      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
9804      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9805      EPI.TypeQuals = 0; // FIXME: silently?
9806      EPI.ExtInfo = Ext;
9807      BlockTy =
9808        Context.getFunctionType(RetTy,
9809                                ArrayRef<QualType>(FPT->arg_type_begin(),
9810                                                   FPT->getNumArgs()),
9811                                EPI);
9812    }
9813
9814  // If we don't have a function type, just build one from nothing.
9815  } else {
9816    FunctionProtoType::ExtProtoInfo EPI;
9817    EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
9818    BlockTy = Context.getFunctionType(RetTy, ArrayRef<QualType>(), EPI);
9819  }
9820
9821  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
9822                           BSI->TheDecl->param_end());
9823  BlockTy = Context.getBlockPointerType(BlockTy);
9824
9825  // If needed, diagnose invalid gotos and switches in the block.
9826  if (getCurFunction()->NeedsScopeChecking() &&
9827      !hasAnyUnrecoverableErrorsInThisFunction() &&
9828      !PP.isCodeCompletionEnabled())
9829    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
9830
9831  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
9832
9833  // Try to apply the named return value optimization. We have to check again
9834  // if we can do this, though, because blocks keep return statements around
9835  // to deduce an implicit return type.
9836  if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
9837      !BSI->TheDecl->isDependentContext())
9838    computeNRVO(Body, getCurBlock());
9839
9840  BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
9841  const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
9842  PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
9843
9844  // If the block isn't obviously global, i.e. it captures anything at
9845  // all, then we need to do a few things in the surrounding context:
9846  if (Result->getBlockDecl()->hasCaptures()) {
9847    // First, this expression has a new cleanup object.
9848    ExprCleanupObjects.push_back(Result->getBlockDecl());
9849    ExprNeedsCleanups = true;
9850
9851    // It also gets a branch-protected scope if any of the captured
9852    // variables needs destruction.
9853    for (BlockDecl::capture_const_iterator
9854           ci = Result->getBlockDecl()->capture_begin(),
9855           ce = Result->getBlockDecl()->capture_end(); ci != ce; ++ci) {
9856      const VarDecl *var = ci->getVariable();
9857      if (var->getType().isDestructedType() != QualType::DK_none) {
9858        getCurFunction()->setHasBranchProtectedScope();
9859        break;
9860      }
9861    }
9862  }
9863
9864  return Owned(Result);
9865}
9866
9867ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
9868                                        Expr *E, ParsedType Ty,
9869                                        SourceLocation RPLoc) {
9870  TypeSourceInfo *TInfo;
9871  GetTypeFromParser(Ty, &TInfo);
9872  return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
9873}
9874
9875ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
9876                                Expr *E, TypeSourceInfo *TInfo,
9877                                SourceLocation RPLoc) {
9878  Expr *OrigExpr = E;
9879
9880  // Get the va_list type
9881  QualType VaListType = Context.getBuiltinVaListType();
9882  if (VaListType->isArrayType()) {
9883    // Deal with implicit array decay; for example, on x86-64,
9884    // va_list is an array, but it's supposed to decay to
9885    // a pointer for va_arg.
9886    VaListType = Context.getArrayDecayedType(VaListType);
9887    // Make sure the input expression also decays appropriately.
9888    ExprResult Result = UsualUnaryConversions(E);
9889    if (Result.isInvalid())
9890      return ExprError();
9891    E = Result.take();
9892  } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
9893    // If va_list is a record type and we are compiling in C++ mode,
9894    // check the argument using reference binding.
9895    InitializedEntity Entity
9896      = InitializedEntity::InitializeParameter(Context,
9897          Context.getLValueReferenceType(VaListType), false);
9898    ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
9899    if (Init.isInvalid())
9900      return ExprError();
9901    E = Init.takeAs<Expr>();
9902  } else {
9903    // Otherwise, the va_list argument must be an l-value because
9904    // it is modified by va_arg.
9905    if (!E->isTypeDependent() &&
9906        CheckForModifiableLvalue(E, BuiltinLoc, *this))
9907      return ExprError();
9908  }
9909
9910  if (!E->isTypeDependent() &&
9911      !Context.hasSameType(VaListType, E->getType())) {
9912    return ExprError(Diag(E->getLocStart(),
9913                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
9914      << OrigExpr->getType() << E->getSourceRange());
9915  }
9916
9917  if (!TInfo->getType()->isDependentType()) {
9918    if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
9919                            diag::err_second_parameter_to_va_arg_incomplete,
9920                            TInfo->getTypeLoc()))
9921      return ExprError();
9922
9923    if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
9924                               TInfo->getType(),
9925                               diag::err_second_parameter_to_va_arg_abstract,
9926                               TInfo->getTypeLoc()))
9927      return ExprError();
9928
9929    if (!TInfo->getType().isPODType(Context)) {
9930      Diag(TInfo->getTypeLoc().getBeginLoc(),
9931           TInfo->getType()->isObjCLifetimeType()
9932             ? diag::warn_second_parameter_to_va_arg_ownership_qualified
9933             : diag::warn_second_parameter_to_va_arg_not_pod)
9934        << TInfo->getType()
9935        << TInfo->getTypeLoc().getSourceRange();
9936    }
9937
9938    // Check for va_arg where arguments of the given type will be promoted
9939    // (i.e. this va_arg is guaranteed to have undefined behavior).
9940    QualType PromoteType;
9941    if (TInfo->getType()->isPromotableIntegerType()) {
9942      PromoteType = Context.getPromotedIntegerType(TInfo->getType());
9943      if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
9944        PromoteType = QualType();
9945    }
9946    if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
9947      PromoteType = Context.DoubleTy;
9948    if (!PromoteType.isNull())
9949      DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
9950                  PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
9951                          << TInfo->getType()
9952                          << PromoteType
9953                          << TInfo->getTypeLoc().getSourceRange());
9954  }
9955
9956  QualType T = TInfo->getType().getNonLValueExprType(Context);
9957  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
9958}
9959
9960ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
9961  // The type of __null will be int or long, depending on the size of
9962  // pointers on the target.
9963  QualType Ty;
9964  unsigned pw = Context.getTargetInfo().getPointerWidth(0);
9965  if (pw == Context.getTargetInfo().getIntWidth())
9966    Ty = Context.IntTy;
9967  else if (pw == Context.getTargetInfo().getLongWidth())
9968    Ty = Context.LongTy;
9969  else if (pw == Context.getTargetInfo().getLongLongWidth())
9970    Ty = Context.LongLongTy;
9971  else {
9972    llvm_unreachable("I don't know size of pointer!");
9973  }
9974
9975  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
9976}
9977
9978static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
9979                                           Expr *SrcExpr, FixItHint &Hint) {
9980  if (!SemaRef.getLangOpts().ObjC1)
9981    return;
9982
9983  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
9984  if (!PT)
9985    return;
9986
9987  // Check if the destination is of type 'id'.
9988  if (!PT->isObjCIdType()) {
9989    // Check if the destination is the 'NSString' interface.
9990    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
9991    if (!ID || !ID->getIdentifier()->isStr("NSString"))
9992      return;
9993  }
9994
9995  // Ignore any parens, implicit casts (should only be
9996  // array-to-pointer decays), and not-so-opaque values.  The last is
9997  // important for making this trigger for property assignments.
9998  SrcExpr = SrcExpr->IgnoreParenImpCasts();
9999  if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
10000    if (OV->getSourceExpr())
10001      SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
10002
10003  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
10004  if (!SL || !SL->isAscii())
10005    return;
10006
10007  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
10008}
10009
10010bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
10011                                    SourceLocation Loc,
10012                                    QualType DstType, QualType SrcType,
10013                                    Expr *SrcExpr, AssignmentAction Action,
10014                                    bool *Complained) {
10015  if (Complained)
10016    *Complained = false;
10017
10018  // Decode the result (notice that AST's are still created for extensions).
10019  bool CheckInferredResultType = false;
10020  bool isInvalid = false;
10021  unsigned DiagKind = 0;
10022  FixItHint Hint;
10023  ConversionFixItGenerator ConvHints;
10024  bool MayHaveConvFixit = false;
10025  bool MayHaveFunctionDiff = false;
10026
10027  switch (ConvTy) {
10028  case Compatible:
10029      DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
10030      return false;
10031
10032  case PointerToInt:
10033    DiagKind = diag::ext_typecheck_convert_pointer_int;
10034    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
10035    MayHaveConvFixit = true;
10036    break;
10037  case IntToPointer:
10038    DiagKind = diag::ext_typecheck_convert_int_pointer;
10039    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
10040    MayHaveConvFixit = true;
10041    break;
10042  case IncompatiblePointer:
10043    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
10044    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
10045    CheckInferredResultType = DstType->isObjCObjectPointerType() &&
10046      SrcType->isObjCObjectPointerType();
10047    if (Hint.isNull() && !CheckInferredResultType) {
10048      ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
10049    }
10050    MayHaveConvFixit = true;
10051    break;
10052  case IncompatiblePointerSign:
10053    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
10054    break;
10055  case FunctionVoidPointer:
10056    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
10057    break;
10058  case IncompatiblePointerDiscardsQualifiers: {
10059    // Perform array-to-pointer decay if necessary.
10060    if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
10061
10062    Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
10063    Qualifiers rhq = DstType->getPointeeType().getQualifiers();
10064    if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
10065      DiagKind = diag::err_typecheck_incompatible_address_space;
10066      break;
10067
10068
10069    } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
10070      DiagKind = diag::err_typecheck_incompatible_ownership;
10071      break;
10072    }
10073
10074    llvm_unreachable("unknown error case for discarding qualifiers!");
10075    // fallthrough
10076  }
10077  case CompatiblePointerDiscardsQualifiers:
10078    // If the qualifiers lost were because we were applying the
10079    // (deprecated) C++ conversion from a string literal to a char*
10080    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
10081    // Ideally, this check would be performed in
10082    // checkPointerTypesForAssignment. However, that would require a
10083    // bit of refactoring (so that the second argument is an
10084    // expression, rather than a type), which should be done as part
10085    // of a larger effort to fix checkPointerTypesForAssignment for
10086    // C++ semantics.
10087    if (getLangOpts().CPlusPlus &&
10088        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
10089      return false;
10090    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
10091    break;
10092  case IncompatibleNestedPointerQualifiers:
10093    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
10094    break;
10095  case IntToBlockPointer:
10096    DiagKind = diag::err_int_to_block_pointer;
10097    break;
10098  case IncompatibleBlockPointer:
10099    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
10100    break;
10101  case IncompatibleObjCQualifiedId:
10102    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
10103    // it can give a more specific diagnostic.
10104    DiagKind = diag::warn_incompatible_qualified_id;
10105    break;
10106  case IncompatibleVectors:
10107    DiagKind = diag::warn_incompatible_vectors;
10108    break;
10109  case IncompatibleObjCWeakRef:
10110    DiagKind = diag::err_arc_weak_unavailable_assign;
10111    break;
10112  case Incompatible:
10113    DiagKind = diag::err_typecheck_convert_incompatible;
10114    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
10115    MayHaveConvFixit = true;
10116    isInvalid = true;
10117    MayHaveFunctionDiff = true;
10118    break;
10119  }
10120
10121  QualType FirstType, SecondType;
10122  switch (Action) {
10123  case AA_Assigning:
10124  case AA_Initializing:
10125    // The destination type comes first.
10126    FirstType = DstType;
10127    SecondType = SrcType;
10128    break;
10129
10130  case AA_Returning:
10131  case AA_Passing:
10132  case AA_Converting:
10133  case AA_Sending:
10134  case AA_Casting:
10135    // The source type comes first.
10136    FirstType = SrcType;
10137    SecondType = DstType;
10138    break;
10139  }
10140
10141  PartialDiagnostic FDiag = PDiag(DiagKind);
10142  FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
10143
10144  // If we can fix the conversion, suggest the FixIts.
10145  assert(ConvHints.isNull() || Hint.isNull());
10146  if (!ConvHints.isNull()) {
10147    for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
10148         HE = ConvHints.Hints.end(); HI != HE; ++HI)
10149      FDiag << *HI;
10150  } else {
10151    FDiag << Hint;
10152  }
10153  if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
10154
10155  if (MayHaveFunctionDiff)
10156    HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
10157
10158  Diag(Loc, FDiag);
10159
10160  if (SecondType == Context.OverloadTy)
10161    NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
10162                              FirstType);
10163
10164  if (CheckInferredResultType)
10165    EmitRelatedResultTypeNote(SrcExpr);
10166
10167  if (Action == AA_Returning && ConvTy == IncompatiblePointer)
10168    EmitRelatedResultTypeNoteForReturn(DstType);
10169
10170  if (Complained)
10171    *Complained = true;
10172  return isInvalid;
10173}
10174
10175ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
10176                                                 llvm::APSInt *Result) {
10177  class SimpleICEDiagnoser : public VerifyICEDiagnoser {
10178  public:
10179    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
10180      S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
10181    }
10182  } Diagnoser;
10183
10184  return VerifyIntegerConstantExpression(E, Result, Diagnoser);
10185}
10186
10187ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
10188                                                 llvm::APSInt *Result,
10189                                                 unsigned DiagID,
10190                                                 bool AllowFold) {
10191  class IDDiagnoser : public VerifyICEDiagnoser {
10192    unsigned DiagID;
10193
10194  public:
10195    IDDiagnoser(unsigned DiagID)
10196      : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
10197
10198    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
10199      S.Diag(Loc, DiagID) << SR;
10200    }
10201  } Diagnoser(DiagID);
10202
10203  return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
10204}
10205
10206void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
10207                                            SourceRange SR) {
10208  S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
10209}
10210
10211ExprResult
10212Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
10213                                      VerifyICEDiagnoser &Diagnoser,
10214                                      bool AllowFold) {
10215  SourceLocation DiagLoc = E->getLocStart();
10216
10217  if (getLangOpts().CPlusPlus11) {
10218    // C++11 [expr.const]p5:
10219    //   If an expression of literal class type is used in a context where an
10220    //   integral constant expression is required, then that class type shall
10221    //   have a single non-explicit conversion function to an integral or
10222    //   unscoped enumeration type
10223    ExprResult Converted;
10224    if (!Diagnoser.Suppress) {
10225      class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
10226      public:
10227        CXX11ConvertDiagnoser() : ICEConvertDiagnoser(false, true) { }
10228
10229        virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
10230                                                 QualType T) {
10231          return S.Diag(Loc, diag::err_ice_not_integral) << T;
10232        }
10233
10234        virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
10235                                                     SourceLocation Loc,
10236                                                     QualType T) {
10237          return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
10238        }
10239
10240        virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
10241                                                       SourceLocation Loc,
10242                                                       QualType T,
10243                                                       QualType ConvTy) {
10244          return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
10245        }
10246
10247        virtual DiagnosticBuilder noteExplicitConv(Sema &S,
10248                                                   CXXConversionDecl *Conv,
10249                                                   QualType ConvTy) {
10250          return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
10251                   << ConvTy->isEnumeralType() << ConvTy;
10252        }
10253
10254        virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
10255                                                    QualType T) {
10256          return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
10257        }
10258
10259        virtual DiagnosticBuilder noteAmbiguous(Sema &S,
10260                                                CXXConversionDecl *Conv,
10261                                                QualType ConvTy) {
10262          return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
10263                   << ConvTy->isEnumeralType() << ConvTy;
10264        }
10265
10266        virtual DiagnosticBuilder diagnoseConversion(Sema &S,
10267                                                     SourceLocation Loc,
10268                                                     QualType T,
10269                                                     QualType ConvTy) {
10270          return DiagnosticBuilder::getEmpty();
10271        }
10272      } ConvertDiagnoser;
10273
10274      Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
10275                                                     ConvertDiagnoser,
10276                                             /*AllowScopedEnumerations*/ false);
10277    } else {
10278      // The caller wants to silently enquire whether this is an ICE. Don't
10279      // produce any diagnostics if it isn't.
10280      class SilentICEConvertDiagnoser : public ICEConvertDiagnoser {
10281      public:
10282        SilentICEConvertDiagnoser() : ICEConvertDiagnoser(true, true) { }
10283
10284        virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
10285                                                 QualType T) {
10286          return DiagnosticBuilder::getEmpty();
10287        }
10288
10289        virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
10290                                                     SourceLocation Loc,
10291                                                     QualType T) {
10292          return DiagnosticBuilder::getEmpty();
10293        }
10294
10295        virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
10296                                                       SourceLocation Loc,
10297                                                       QualType T,
10298                                                       QualType ConvTy) {
10299          return DiagnosticBuilder::getEmpty();
10300        }
10301
10302        virtual DiagnosticBuilder noteExplicitConv(Sema &S,
10303                                                   CXXConversionDecl *Conv,
10304                                                   QualType ConvTy) {
10305          return DiagnosticBuilder::getEmpty();
10306        }
10307
10308        virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
10309                                                    QualType T) {
10310          return DiagnosticBuilder::getEmpty();
10311        }
10312
10313        virtual DiagnosticBuilder noteAmbiguous(Sema &S,
10314                                                CXXConversionDecl *Conv,
10315                                                QualType ConvTy) {
10316          return DiagnosticBuilder::getEmpty();
10317        }
10318
10319        virtual DiagnosticBuilder diagnoseConversion(Sema &S,
10320                                                     SourceLocation Loc,
10321                                                     QualType T,
10322                                                     QualType ConvTy) {
10323          return DiagnosticBuilder::getEmpty();
10324        }
10325      } ConvertDiagnoser;
10326
10327      Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
10328                                                     ConvertDiagnoser, false);
10329    }
10330    if (Converted.isInvalid())
10331      return Converted;
10332    E = Converted.take();
10333    if (!E->getType()->isIntegralOrUnscopedEnumerationType())
10334      return ExprError();
10335  } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
10336    // An ICE must be of integral or unscoped enumeration type.
10337    if (!Diagnoser.Suppress)
10338      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
10339    return ExprError();
10340  }
10341
10342  // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
10343  // in the non-ICE case.
10344  if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
10345    if (Result)
10346      *Result = E->EvaluateKnownConstInt(Context);
10347    return Owned(E);
10348  }
10349
10350  Expr::EvalResult EvalResult;
10351  SmallVector<PartialDiagnosticAt, 8> Notes;
10352  EvalResult.Diag = &Notes;
10353
10354  // Try to evaluate the expression, and produce diagnostics explaining why it's
10355  // not a constant expression as a side-effect.
10356  bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
10357                EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
10358
10359  // In C++11, we can rely on diagnostics being produced for any expression
10360  // which is not a constant expression. If no diagnostics were produced, then
10361  // this is a constant expression.
10362  if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
10363    if (Result)
10364      *Result = EvalResult.Val.getInt();
10365    return Owned(E);
10366  }
10367
10368  // If our only note is the usual "invalid subexpression" note, just point
10369  // the caret at its location rather than producing an essentially
10370  // redundant note.
10371  if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
10372        diag::note_invalid_subexpr_in_const_expr) {
10373    DiagLoc = Notes[0].first;
10374    Notes.clear();
10375  }
10376
10377  if (!Folded || !AllowFold) {
10378    if (!Diagnoser.Suppress) {
10379      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
10380      for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10381        Diag(Notes[I].first, Notes[I].second);
10382    }
10383
10384    return ExprError();
10385  }
10386
10387  Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
10388  for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10389    Diag(Notes[I].first, Notes[I].second);
10390
10391  if (Result)
10392    *Result = EvalResult.Val.getInt();
10393  return Owned(E);
10394}
10395
10396namespace {
10397  // Handle the case where we conclude a expression which we speculatively
10398  // considered to be unevaluated is actually evaluated.
10399  class TransformToPE : public TreeTransform<TransformToPE> {
10400    typedef TreeTransform<TransformToPE> BaseTransform;
10401
10402  public:
10403    TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
10404
10405    // Make sure we redo semantic analysis
10406    bool AlwaysRebuild() { return true; }
10407
10408    // Make sure we handle LabelStmts correctly.
10409    // FIXME: This does the right thing, but maybe we need a more general
10410    // fix to TreeTransform?
10411    StmtResult TransformLabelStmt(LabelStmt *S) {
10412      S->getDecl()->setStmt(0);
10413      return BaseTransform::TransformLabelStmt(S);
10414    }
10415
10416    // We need to special-case DeclRefExprs referring to FieldDecls which
10417    // are not part of a member pointer formation; normal TreeTransforming
10418    // doesn't catch this case because of the way we represent them in the AST.
10419    // FIXME: This is a bit ugly; is it really the best way to handle this
10420    // case?
10421    //
10422    // Error on DeclRefExprs referring to FieldDecls.
10423    ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
10424      if (isa<FieldDecl>(E->getDecl()) &&
10425          !SemaRef.isUnevaluatedContext())
10426        return SemaRef.Diag(E->getLocation(),
10427                            diag::err_invalid_non_static_member_use)
10428            << E->getDecl() << E->getSourceRange();
10429
10430      return BaseTransform::TransformDeclRefExpr(E);
10431    }
10432
10433    // Exception: filter out member pointer formation
10434    ExprResult TransformUnaryOperator(UnaryOperator *E) {
10435      if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
10436        return E;
10437
10438      return BaseTransform::TransformUnaryOperator(E);
10439    }
10440
10441    ExprResult TransformLambdaExpr(LambdaExpr *E) {
10442      // Lambdas never need to be transformed.
10443      return E;
10444    }
10445  };
10446}
10447
10448ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
10449  assert(ExprEvalContexts.back().Context == Unevaluated &&
10450         "Should only transform unevaluated expressions");
10451  ExprEvalContexts.back().Context =
10452      ExprEvalContexts[ExprEvalContexts.size()-2].Context;
10453  if (ExprEvalContexts.back().Context == Unevaluated)
10454    return E;
10455  return TransformToPE(*this).TransformExpr(E);
10456}
10457
10458void
10459Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
10460                                      Decl *LambdaContextDecl,
10461                                      bool IsDecltype) {
10462  ExprEvalContexts.push_back(
10463             ExpressionEvaluationContextRecord(NewContext,
10464                                               ExprCleanupObjects.size(),
10465                                               ExprNeedsCleanups,
10466                                               LambdaContextDecl,
10467                                               IsDecltype));
10468  ExprNeedsCleanups = false;
10469  if (!MaybeODRUseExprs.empty())
10470    std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
10471}
10472
10473void
10474Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
10475                                      ReuseLambdaContextDecl_t,
10476                                      bool IsDecltype) {
10477  Decl *LambdaContextDecl = ExprEvalContexts.back().LambdaContextDecl;
10478  PushExpressionEvaluationContext(NewContext, LambdaContextDecl, IsDecltype);
10479}
10480
10481void Sema::PopExpressionEvaluationContext() {
10482  ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
10483
10484  if (!Rec.Lambdas.empty()) {
10485    if (Rec.Context == Unevaluated) {
10486      // C++11 [expr.prim.lambda]p2:
10487      //   A lambda-expression shall not appear in an unevaluated operand
10488      //   (Clause 5).
10489      for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
10490        Diag(Rec.Lambdas[I]->getLocStart(),
10491             diag::err_lambda_unevaluated_operand);
10492    } else {
10493      // Mark the capture expressions odr-used. This was deferred
10494      // during lambda expression creation.
10495      for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
10496        LambdaExpr *Lambda = Rec.Lambdas[I];
10497        for (LambdaExpr::capture_init_iterator
10498                  C = Lambda->capture_init_begin(),
10499               CEnd = Lambda->capture_init_end();
10500             C != CEnd; ++C) {
10501          MarkDeclarationsReferencedInExpr(*C);
10502        }
10503      }
10504    }
10505  }
10506
10507  // When are coming out of an unevaluated context, clear out any
10508  // temporaries that we may have created as part of the evaluation of
10509  // the expression in that context: they aren't relevant because they
10510  // will never be constructed.
10511  if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) {
10512    ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
10513                             ExprCleanupObjects.end());
10514    ExprNeedsCleanups = Rec.ParentNeedsCleanups;
10515    CleanupVarDeclMarking();
10516    std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
10517  // Otherwise, merge the contexts together.
10518  } else {
10519    ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
10520    MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
10521                            Rec.SavedMaybeODRUseExprs.end());
10522  }
10523
10524  // Pop the current expression evaluation context off the stack.
10525  ExprEvalContexts.pop_back();
10526}
10527
10528void Sema::DiscardCleanupsInEvaluationContext() {
10529  ExprCleanupObjects.erase(
10530         ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
10531         ExprCleanupObjects.end());
10532  ExprNeedsCleanups = false;
10533  MaybeODRUseExprs.clear();
10534}
10535
10536ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
10537  if (!E->getType()->isVariablyModifiedType())
10538    return E;
10539  return TransformToPotentiallyEvaluated(E);
10540}
10541
10542static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
10543  // Do not mark anything as "used" within a dependent context; wait for
10544  // an instantiation.
10545  if (SemaRef.CurContext->isDependentContext())
10546    return false;
10547
10548  switch (SemaRef.ExprEvalContexts.back().Context) {
10549    case Sema::Unevaluated:
10550      // We are in an expression that is not potentially evaluated; do nothing.
10551      // (Depending on how you read the standard, we actually do need to do
10552      // something here for null pointer constants, but the standard's
10553      // definition of a null pointer constant is completely crazy.)
10554      return false;
10555
10556    case Sema::ConstantEvaluated:
10557    case Sema::PotentiallyEvaluated:
10558      // We are in a potentially evaluated expression (or a constant-expression
10559      // in C++03); we need to do implicit template instantiation, implicitly
10560      // define class members, and mark most declarations as used.
10561      return true;
10562
10563    case Sema::PotentiallyEvaluatedIfUsed:
10564      // Referenced declarations will only be used if the construct in the
10565      // containing expression is used.
10566      return false;
10567  }
10568  llvm_unreachable("Invalid context");
10569}
10570
10571/// \brief Mark a function referenced, and check whether it is odr-used
10572/// (C++ [basic.def.odr]p2, C99 6.9p3)
10573void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
10574  assert(Func && "No function?");
10575
10576  Func->setReferenced();
10577
10578  // C++11 [basic.def.odr]p3:
10579  //   A function whose name appears as a potentially-evaluated expression is
10580  //   odr-used if it is the unique lookup result or the selected member of a
10581  //   set of overloaded functions [...].
10582  //
10583  // We (incorrectly) mark overload resolution as an unevaluated context, so we
10584  // can just check that here. Skip the rest of this function if we've already
10585  // marked the function as used.
10586  if (Func->isUsed(false) || !IsPotentiallyEvaluatedContext(*this)) {
10587    // C++11 [temp.inst]p3:
10588    //   Unless a function template specialization has been explicitly
10589    //   instantiated or explicitly specialized, the function template
10590    //   specialization is implicitly instantiated when the specialization is
10591    //   referenced in a context that requires a function definition to exist.
10592    //
10593    // We consider constexpr function templates to be referenced in a context
10594    // that requires a definition to exist whenever they are referenced.
10595    //
10596    // FIXME: This instantiates constexpr functions too frequently. If this is
10597    // really an unevaluated context (and we're not just in the definition of a
10598    // function template or overload resolution or other cases which we
10599    // incorrectly consider to be unevaluated contexts), and we're not in a
10600    // subexpression which we actually need to evaluate (for instance, a
10601    // template argument, array bound or an expression in a braced-init-list),
10602    // we are not permitted to instantiate this constexpr function definition.
10603    //
10604    // FIXME: This also implicitly defines special members too frequently. They
10605    // are only supposed to be implicitly defined if they are odr-used, but they
10606    // are not odr-used from constant expressions in unevaluated contexts.
10607    // However, they cannot be referenced if they are deleted, and they are
10608    // deleted whenever the implicit definition of the special member would
10609    // fail.
10610    if (!Func->isConstexpr() || Func->getBody())
10611      return;
10612    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
10613    if (!Func->isImplicitlyInstantiable() && (!MD || MD->isUserProvided()))
10614      return;
10615  }
10616
10617  // Note that this declaration has been used.
10618  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
10619    if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
10620      if (Constructor->isDefaultConstructor()) {
10621        if (Constructor->isTrivial())
10622          return;
10623        if (!Constructor->isUsed(false))
10624          DefineImplicitDefaultConstructor(Loc, Constructor);
10625      } else if (Constructor->isCopyConstructor()) {
10626        if (!Constructor->isUsed(false))
10627          DefineImplicitCopyConstructor(Loc, Constructor);
10628      } else if (Constructor->isMoveConstructor()) {
10629        if (!Constructor->isUsed(false))
10630          DefineImplicitMoveConstructor(Loc, Constructor);
10631      }
10632    } else if (Constructor->getInheritedConstructor()) {
10633      if (!Constructor->isUsed(false))
10634        DefineInheritingConstructor(Loc, Constructor);
10635    }
10636
10637    MarkVTableUsed(Loc, Constructor->getParent());
10638  } else if (CXXDestructorDecl *Destructor =
10639                 dyn_cast<CXXDestructorDecl>(Func)) {
10640    if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
10641        !Destructor->isUsed(false))
10642      DefineImplicitDestructor(Loc, Destructor);
10643    if (Destructor->isVirtual())
10644      MarkVTableUsed(Loc, Destructor->getParent());
10645  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
10646    if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
10647        MethodDecl->isOverloadedOperator() &&
10648        MethodDecl->getOverloadedOperator() == OO_Equal) {
10649      if (!MethodDecl->isUsed(false)) {
10650        if (MethodDecl->isCopyAssignmentOperator())
10651          DefineImplicitCopyAssignment(Loc, MethodDecl);
10652        else
10653          DefineImplicitMoveAssignment(Loc, MethodDecl);
10654      }
10655    } else if (isa<CXXConversionDecl>(MethodDecl) &&
10656               MethodDecl->getParent()->isLambda()) {
10657      CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
10658      if (Conversion->isLambdaToBlockPointerConversion())
10659        DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
10660      else
10661        DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
10662    } else if (MethodDecl->isVirtual())
10663      MarkVTableUsed(Loc, MethodDecl->getParent());
10664  }
10665
10666  // Recursive functions should be marked when used from another function.
10667  // FIXME: Is this really right?
10668  if (CurContext == Func) return;
10669
10670  // Resolve the exception specification for any function which is
10671  // used: CodeGen will need it.
10672  const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
10673  if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
10674    ResolveExceptionSpec(Loc, FPT);
10675
10676  // Implicit instantiation of function templates and member functions of
10677  // class templates.
10678  if (Func->isImplicitlyInstantiable()) {
10679    bool AlreadyInstantiated = false;
10680    SourceLocation PointOfInstantiation = Loc;
10681    if (FunctionTemplateSpecializationInfo *SpecInfo
10682                              = Func->getTemplateSpecializationInfo()) {
10683      if (SpecInfo->getPointOfInstantiation().isInvalid())
10684        SpecInfo->setPointOfInstantiation(Loc);
10685      else if (SpecInfo->getTemplateSpecializationKind()
10686                 == TSK_ImplicitInstantiation) {
10687        AlreadyInstantiated = true;
10688        PointOfInstantiation = SpecInfo->getPointOfInstantiation();
10689      }
10690    } else if (MemberSpecializationInfo *MSInfo
10691                                = Func->getMemberSpecializationInfo()) {
10692      if (MSInfo->getPointOfInstantiation().isInvalid())
10693        MSInfo->setPointOfInstantiation(Loc);
10694      else if (MSInfo->getTemplateSpecializationKind()
10695                 == TSK_ImplicitInstantiation) {
10696        AlreadyInstantiated = true;
10697        PointOfInstantiation = MSInfo->getPointOfInstantiation();
10698      }
10699    }
10700
10701    if (!AlreadyInstantiated || Func->isConstexpr()) {
10702      if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
10703          cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass())
10704        PendingLocalImplicitInstantiations.push_back(
10705            std::make_pair(Func, PointOfInstantiation));
10706      else if (Func->isConstexpr())
10707        // Do not defer instantiations of constexpr functions, to avoid the
10708        // expression evaluator needing to call back into Sema if it sees a
10709        // call to such a function.
10710        InstantiateFunctionDefinition(PointOfInstantiation, Func);
10711      else {
10712        PendingInstantiations.push_back(std::make_pair(Func,
10713                                                       PointOfInstantiation));
10714        // Notify the consumer that a function was implicitly instantiated.
10715        Consumer.HandleCXXImplicitFunctionInstantiation(Func);
10716      }
10717    }
10718  } else {
10719    // Walk redefinitions, as some of them may be instantiable.
10720    for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
10721         e(Func->redecls_end()); i != e; ++i) {
10722      if (!i->isUsed(false) && i->isImplicitlyInstantiable())
10723        MarkFunctionReferenced(Loc, *i);
10724    }
10725  }
10726
10727  // Keep track of used but undefined functions.
10728  if (!Func->isDefined()) {
10729    if (mightHaveNonExternalLinkage(Func))
10730      UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
10731    else if (Func->getMostRecentDecl()->isInlined() &&
10732             (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
10733             !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
10734      UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
10735  }
10736
10737  // Normally the must current decl is marked used while processing the use and
10738  // any subsequent decls are marked used by decl merging. This fails with
10739  // template instantiation since marking can happen at the end of the file
10740  // and, because of the two phase lookup, this function is called with at
10741  // decl in the middle of a decl chain. We loop to maintain the invariant
10742  // that once a decl is used, all decls after it are also used.
10743  for (FunctionDecl *F = Func->getMostRecentDecl();; F = F->getPreviousDecl()) {
10744    F->setUsed(true);
10745    if (F == Func)
10746      break;
10747  }
10748}
10749
10750static void
10751diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
10752                                   VarDecl *var, DeclContext *DC) {
10753  DeclContext *VarDC = var->getDeclContext();
10754
10755  //  If the parameter still belongs to the translation unit, then
10756  //  we're actually just using one parameter in the declaration of
10757  //  the next.
10758  if (isa<ParmVarDecl>(var) &&
10759      isa<TranslationUnitDecl>(VarDC))
10760    return;
10761
10762  // For C code, don't diagnose about capture if we're not actually in code
10763  // right now; it's impossible to write a non-constant expression outside of
10764  // function context, so we'll get other (more useful) diagnostics later.
10765  //
10766  // For C++, things get a bit more nasty... it would be nice to suppress this
10767  // diagnostic for certain cases like using a local variable in an array bound
10768  // for a member of a local class, but the correct predicate is not obvious.
10769  if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
10770    return;
10771
10772  if (isa<CXXMethodDecl>(VarDC) &&
10773      cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
10774    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
10775      << var->getIdentifier();
10776  } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
10777    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
10778      << var->getIdentifier() << fn->getDeclName();
10779  } else if (isa<BlockDecl>(VarDC)) {
10780    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
10781      << var->getIdentifier();
10782  } else {
10783    // FIXME: Is there any other context where a local variable can be
10784    // declared?
10785    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
10786      << var->getIdentifier();
10787  }
10788
10789  S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
10790    << var->getIdentifier();
10791
10792  // FIXME: Add additional diagnostic info about class etc. which prevents
10793  // capture.
10794}
10795
10796/// \brief Capture the given variable in the given lambda expression.
10797static ExprResult captureInLambda(Sema &S, LambdaScopeInfo *LSI,
10798                                  VarDecl *Var, QualType FieldType,
10799                                  QualType DeclRefType,
10800                                  SourceLocation Loc,
10801                                  bool RefersToEnclosingLocal) {
10802  CXXRecordDecl *Lambda = LSI->Lambda;
10803
10804  // Build the non-static data member.
10805  FieldDecl *Field
10806    = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
10807                        S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
10808                        0, false, ICIS_NoInit);
10809  Field->setImplicit(true);
10810  Field->setAccess(AS_private);
10811  Lambda->addDecl(Field);
10812
10813  // C++11 [expr.prim.lambda]p21:
10814  //   When the lambda-expression is evaluated, the entities that
10815  //   are captured by copy are used to direct-initialize each
10816  //   corresponding non-static data member of the resulting closure
10817  //   object. (For array members, the array elements are
10818  //   direct-initialized in increasing subscript order.) These
10819  //   initializations are performed in the (unspecified) order in
10820  //   which the non-static data members are declared.
10821
10822  // Introduce a new evaluation context for the initialization, so
10823  // that temporaries introduced as part of the capture are retained
10824  // to be re-"exported" from the lambda expression itself.
10825  EnterExpressionEvaluationContext scope(S, Sema::PotentiallyEvaluated);
10826
10827  // C++ [expr.prim.labda]p12:
10828  //   An entity captured by a lambda-expression is odr-used (3.2) in
10829  //   the scope containing the lambda-expression.
10830  Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
10831                                          DeclRefType, VK_LValue, Loc);
10832  Var->setReferenced(true);
10833  Var->setUsed(true);
10834
10835  // When the field has array type, create index variables for each
10836  // dimension of the array. We use these index variables to subscript
10837  // the source array, and other clients (e.g., CodeGen) will perform
10838  // the necessary iteration with these index variables.
10839  SmallVector<VarDecl *, 4> IndexVariables;
10840  QualType BaseType = FieldType;
10841  QualType SizeType = S.Context.getSizeType();
10842  LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
10843  while (const ConstantArrayType *Array
10844                        = S.Context.getAsConstantArrayType(BaseType)) {
10845    // Create the iteration variable for this array index.
10846    IdentifierInfo *IterationVarName = 0;
10847    {
10848      SmallString<8> Str;
10849      llvm::raw_svector_ostream OS(Str);
10850      OS << "__i" << IndexVariables.size();
10851      IterationVarName = &S.Context.Idents.get(OS.str());
10852    }
10853    VarDecl *IterationVar
10854      = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
10855                        IterationVarName, SizeType,
10856                        S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
10857                        SC_None);
10858    IndexVariables.push_back(IterationVar);
10859    LSI->ArrayIndexVars.push_back(IterationVar);
10860
10861    // Create a reference to the iteration variable.
10862    ExprResult IterationVarRef
10863      = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
10864    assert(!IterationVarRef.isInvalid() &&
10865           "Reference to invented variable cannot fail!");
10866    IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
10867    assert(!IterationVarRef.isInvalid() &&
10868           "Conversion of invented variable cannot fail!");
10869
10870    // Subscript the array with this iteration variable.
10871    ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
10872                             Ref, Loc, IterationVarRef.take(), Loc);
10873    if (Subscript.isInvalid()) {
10874      S.CleanupVarDeclMarking();
10875      S.DiscardCleanupsInEvaluationContext();
10876      return ExprError();
10877    }
10878
10879    Ref = Subscript.take();
10880    BaseType = Array->getElementType();
10881  }
10882
10883  // Construct the entity that we will be initializing. For an array, this
10884  // will be first element in the array, which may require several levels
10885  // of array-subscript entities.
10886  SmallVector<InitializedEntity, 4> Entities;
10887  Entities.reserve(1 + IndexVariables.size());
10888  Entities.push_back(
10889    InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
10890  for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
10891    Entities.push_back(InitializedEntity::InitializeElement(S.Context,
10892                                                            0,
10893                                                            Entities.back()));
10894
10895  InitializationKind InitKind
10896    = InitializationKind::CreateDirect(Loc, Loc, Loc);
10897  InitializationSequence Init(S, Entities.back(), InitKind, &Ref, 1);
10898  ExprResult Result(true);
10899  if (!Init.Diagnose(S, Entities.back(), InitKind, &Ref, 1))
10900    Result = Init.Perform(S, Entities.back(), InitKind, Ref);
10901
10902  // If this initialization requires any cleanups (e.g., due to a
10903  // default argument to a copy constructor), note that for the
10904  // lambda.
10905  if (S.ExprNeedsCleanups)
10906    LSI->ExprNeedsCleanups = true;
10907
10908  // Exit the expression evaluation context used for the capture.
10909  S.CleanupVarDeclMarking();
10910  S.DiscardCleanupsInEvaluationContext();
10911  return Result;
10912}
10913
10914bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10915                              TryCaptureKind Kind, SourceLocation EllipsisLoc,
10916                              bool BuildAndDiagnose,
10917                              QualType &CaptureType,
10918                              QualType &DeclRefType) {
10919  bool Nested = false;
10920
10921  DeclContext *DC = CurContext;
10922  if (Var->getDeclContext() == DC) return true;
10923  if (!Var->hasLocalStorage()) return true;
10924
10925  bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
10926
10927  // Walk up the stack to determine whether we can capture the variable,
10928  // performing the "simple" checks that don't depend on type. We stop when
10929  // we've either hit the declared scope of the variable or find an existing
10930  // capture of that variable.
10931  CaptureType = Var->getType();
10932  DeclRefType = CaptureType.getNonReferenceType();
10933  bool Explicit = (Kind != TryCapture_Implicit);
10934  unsigned FunctionScopesIndex = FunctionScopes.size() - 1;
10935  do {
10936    // Only block literals and lambda expressions can capture; other
10937    // scopes don't work.
10938    DeclContext *ParentDC;
10939    if (isa<BlockDecl>(DC))
10940      ParentDC = DC->getParent();
10941    else if (isa<CXXMethodDecl>(DC) &&
10942             cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
10943             cast<CXXRecordDecl>(DC->getParent())->isLambda())
10944      ParentDC = DC->getParent()->getParent();
10945    else {
10946      if (BuildAndDiagnose)
10947        diagnoseUncapturableValueReference(*this, Loc, Var, DC);
10948      return true;
10949    }
10950
10951    CapturingScopeInfo *CSI =
10952      cast<CapturingScopeInfo>(FunctionScopes[FunctionScopesIndex]);
10953
10954    // Check whether we've already captured it.
10955    if (CSI->CaptureMap.count(Var)) {
10956      // If we found a capture, any subcaptures are nested.
10957      Nested = true;
10958
10959      // Retrieve the capture type for this variable.
10960      CaptureType = CSI->getCapture(Var).getCaptureType();
10961
10962      // Compute the type of an expression that refers to this variable.
10963      DeclRefType = CaptureType.getNonReferenceType();
10964
10965      const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
10966      if (Cap.isCopyCapture() &&
10967          !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
10968        DeclRefType.addConst();
10969      break;
10970    }
10971
10972    bool IsBlock = isa<BlockScopeInfo>(CSI);
10973    bool IsLambda = !IsBlock;
10974
10975    // Lambdas are not allowed to capture unnamed variables
10976    // (e.g. anonymous unions).
10977    // FIXME: The C++11 rule don't actually state this explicitly, but I'm
10978    // assuming that's the intent.
10979    if (IsLambda && !Var->getDeclName()) {
10980      if (BuildAndDiagnose) {
10981        Diag(Loc, diag::err_lambda_capture_anonymous_var);
10982        Diag(Var->getLocation(), diag::note_declared_at);
10983      }
10984      return true;
10985    }
10986
10987    // Prohibit variably-modified types; they're difficult to deal with.
10988    if (Var->getType()->isVariablyModifiedType()) {
10989      if (BuildAndDiagnose) {
10990        if (IsBlock)
10991          Diag(Loc, diag::err_ref_vm_type);
10992        else
10993          Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
10994        Diag(Var->getLocation(), diag::note_previous_decl)
10995          << Var->getDeclName();
10996      }
10997      return true;
10998    }
10999    // Prohibit structs with flexible array members too.
11000    // We cannot capture what is in the tail end of the struct.
11001    if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
11002      if (VTTy->getDecl()->hasFlexibleArrayMember()) {
11003        if (BuildAndDiagnose) {
11004          if (IsBlock)
11005            Diag(Loc, diag::err_ref_flexarray_type);
11006          else
11007            Diag(Loc, diag::err_lambda_capture_flexarray_type)
11008              << Var->getDeclName();
11009          Diag(Var->getLocation(), diag::note_previous_decl)
11010            << Var->getDeclName();
11011        }
11012        return true;
11013      }
11014    }
11015    // Lambdas are not allowed to capture __block variables; they don't
11016    // support the expected semantics.
11017    if (IsLambda && HasBlocksAttr) {
11018      if (BuildAndDiagnose) {
11019        Diag(Loc, diag::err_lambda_capture_block)
11020          << Var->getDeclName();
11021        Diag(Var->getLocation(), diag::note_previous_decl)
11022          << Var->getDeclName();
11023      }
11024      return true;
11025    }
11026
11027    if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
11028      // No capture-default
11029      if (BuildAndDiagnose) {
11030        Diag(Loc, diag::err_lambda_impcap) << Var->getDeclName();
11031        Diag(Var->getLocation(), diag::note_previous_decl)
11032          << Var->getDeclName();
11033        Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
11034             diag::note_lambda_decl);
11035      }
11036      return true;
11037    }
11038
11039    FunctionScopesIndex--;
11040    DC = ParentDC;
11041    Explicit = false;
11042  } while (!Var->getDeclContext()->Equals(DC));
11043
11044  // Walk back down the scope stack, computing the type of the capture at
11045  // each step, checking type-specific requirements, and adding captures if
11046  // requested.
11047  for (unsigned I = ++FunctionScopesIndex, N = FunctionScopes.size(); I != N;
11048       ++I) {
11049    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
11050
11051    // Compute the type of the capture and of a reference to the capture within
11052    // this scope.
11053    if (isa<BlockScopeInfo>(CSI)) {
11054      Expr *CopyExpr = 0;
11055      bool ByRef = false;
11056
11057      // Blocks are not allowed to capture arrays.
11058      if (CaptureType->isArrayType()) {
11059        if (BuildAndDiagnose) {
11060          Diag(Loc, diag::err_ref_array_type);
11061          Diag(Var->getLocation(), diag::note_previous_decl)
11062          << Var->getDeclName();
11063        }
11064        return true;
11065      }
11066
11067      // Forbid the block-capture of autoreleasing variables.
11068      if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
11069        if (BuildAndDiagnose) {
11070          Diag(Loc, diag::err_arc_autoreleasing_capture)
11071            << /*block*/ 0;
11072          Diag(Var->getLocation(), diag::note_previous_decl)
11073            << Var->getDeclName();
11074        }
11075        return true;
11076      }
11077
11078      if (HasBlocksAttr || CaptureType->isReferenceType()) {
11079        // Block capture by reference does not change the capture or
11080        // declaration reference types.
11081        ByRef = true;
11082      } else {
11083        // Block capture by copy introduces 'const'.
11084        CaptureType = CaptureType.getNonReferenceType().withConst();
11085        DeclRefType = CaptureType;
11086
11087        if (getLangOpts().CPlusPlus && BuildAndDiagnose) {
11088          if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
11089            // The capture logic needs the destructor, so make sure we mark it.
11090            // Usually this is unnecessary because most local variables have
11091            // their destructors marked at declaration time, but parameters are
11092            // an exception because it's technically only the call site that
11093            // actually requires the destructor.
11094            if (isa<ParmVarDecl>(Var))
11095              FinalizeVarWithDestructor(Var, Record);
11096
11097            // Enter a new evaluation context to insulate the copy
11098            // full-expression.
11099            EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
11100
11101            // According to the blocks spec, the capture of a variable from
11102            // the stack requires a const copy constructor.  This is not true
11103            // of the copy/move done to move a __block variable to the heap.
11104            Expr *DeclRef = new (Context) DeclRefExpr(Var, Nested,
11105                                                      DeclRefType.withConst(),
11106                                                      VK_LValue, Loc);
11107
11108            ExprResult Result
11109              = PerformCopyInitialization(
11110                  InitializedEntity::InitializeBlock(Var->getLocation(),
11111                                                     CaptureType, false),
11112                  Loc, Owned(DeclRef));
11113
11114            // Build a full-expression copy expression if initialization
11115            // succeeded and used a non-trivial constructor.  Recover from
11116            // errors by pretending that the copy isn't necessary.
11117            if (!Result.isInvalid() &&
11118                !cast<CXXConstructExpr>(Result.get())->getConstructor()
11119                   ->isTrivial()) {
11120              Result = MaybeCreateExprWithCleanups(Result);
11121              CopyExpr = Result.take();
11122            }
11123          }
11124        }
11125      }
11126
11127      // Actually capture the variable.
11128      if (BuildAndDiagnose)
11129        CSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
11130                        SourceLocation(), CaptureType, CopyExpr);
11131      Nested = true;
11132      continue;
11133    }
11134
11135    LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
11136
11137    // Determine whether we are capturing by reference or by value.
11138    bool ByRef = false;
11139    if (I == N - 1 && Kind != TryCapture_Implicit) {
11140      ByRef = (Kind == TryCapture_ExplicitByRef);
11141    } else {
11142      ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
11143    }
11144
11145    // Compute the type of the field that will capture this variable.
11146    if (ByRef) {
11147      // C++11 [expr.prim.lambda]p15:
11148      //   An entity is captured by reference if it is implicitly or
11149      //   explicitly captured but not captured by copy. It is
11150      //   unspecified whether additional unnamed non-static data
11151      //   members are declared in the closure type for entities
11152      //   captured by reference.
11153      //
11154      // FIXME: It is not clear whether we want to build an lvalue reference
11155      // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
11156      // to do the former, while EDG does the latter. Core issue 1249 will
11157      // clarify, but for now we follow GCC because it's a more permissive and
11158      // easily defensible position.
11159      CaptureType = Context.getLValueReferenceType(DeclRefType);
11160    } else {
11161      // C++11 [expr.prim.lambda]p14:
11162      //   For each entity captured by copy, an unnamed non-static
11163      //   data member is declared in the closure type. The
11164      //   declaration order of these members is unspecified. The type
11165      //   of such a data member is the type of the corresponding
11166      //   captured entity if the entity is not a reference to an
11167      //   object, or the referenced type otherwise. [Note: If the
11168      //   captured entity is a reference to a function, the
11169      //   corresponding data member is also a reference to a
11170      //   function. - end note ]
11171      if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
11172        if (!RefType->getPointeeType()->isFunctionType())
11173          CaptureType = RefType->getPointeeType();
11174      }
11175
11176      // Forbid the lambda copy-capture of autoreleasing variables.
11177      if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
11178        if (BuildAndDiagnose) {
11179          Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
11180          Diag(Var->getLocation(), diag::note_previous_decl)
11181            << Var->getDeclName();
11182        }
11183        return true;
11184      }
11185    }
11186
11187    // Capture this variable in the lambda.
11188    Expr *CopyExpr = 0;
11189    if (BuildAndDiagnose) {
11190      ExprResult Result = captureInLambda(*this, LSI, Var, CaptureType,
11191                                          DeclRefType, Loc,
11192                                          Nested);
11193      if (!Result.isInvalid())
11194        CopyExpr = Result.take();
11195    }
11196
11197    // Compute the type of a reference to this captured variable.
11198    if (ByRef)
11199      DeclRefType = CaptureType.getNonReferenceType();
11200    else {
11201      // C++ [expr.prim.lambda]p5:
11202      //   The closure type for a lambda-expression has a public inline
11203      //   function call operator [...]. This function call operator is
11204      //   declared const (9.3.1) if and only if the lambda-expression’s
11205      //   parameter-declaration-clause is not followed by mutable.
11206      DeclRefType = CaptureType.getNonReferenceType();
11207      if (!LSI->Mutable && !CaptureType->isReferenceType())
11208        DeclRefType.addConst();
11209    }
11210
11211    // Add the capture.
11212    if (BuildAndDiagnose)
11213      CSI->addCapture(Var, /*IsBlock=*/false, ByRef, Nested, Loc,
11214                      EllipsisLoc, CaptureType, CopyExpr);
11215    Nested = true;
11216  }
11217
11218  return false;
11219}
11220
11221bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
11222                              TryCaptureKind Kind, SourceLocation EllipsisLoc) {
11223  QualType CaptureType;
11224  QualType DeclRefType;
11225  return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
11226                            /*BuildAndDiagnose=*/true, CaptureType,
11227                            DeclRefType);
11228}
11229
11230QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
11231  QualType CaptureType;
11232  QualType DeclRefType;
11233
11234  // Determine whether we can capture this variable.
11235  if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
11236                         /*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
11237    return QualType();
11238
11239  return DeclRefType;
11240}
11241
11242static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
11243                               SourceLocation Loc) {
11244  // Keep track of used but undefined variables.
11245  // FIXME: We shouldn't suppress this warning for static data members.
11246  if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
11247      Var->getLinkage() != ExternalLinkage &&
11248      !(Var->isStaticDataMember() && Var->hasInit())) {
11249    SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
11250    if (old.isInvalid()) old = Loc;
11251  }
11252
11253  SemaRef.tryCaptureVariable(Var, Loc);
11254
11255  Var->setUsed(true);
11256}
11257
11258void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
11259  // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
11260  // an object that satisfies the requirements for appearing in a
11261  // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
11262  // is immediately applied."  This function handles the lvalue-to-rvalue
11263  // conversion part.
11264  MaybeODRUseExprs.erase(E->IgnoreParens());
11265}
11266
11267ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
11268  if (!Res.isUsable())
11269    return Res;
11270
11271  // If a constant-expression is a reference to a variable where we delay
11272  // deciding whether it is an odr-use, just assume we will apply the
11273  // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
11274  // (a non-type template argument), we have special handling anyway.
11275  UpdateMarkingForLValueToRValue(Res.get());
11276  return Res;
11277}
11278
11279void Sema::CleanupVarDeclMarking() {
11280  for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
11281                                        e = MaybeODRUseExprs.end();
11282       i != e; ++i) {
11283    VarDecl *Var;
11284    SourceLocation Loc;
11285    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
11286      Var = cast<VarDecl>(DRE->getDecl());
11287      Loc = DRE->getLocation();
11288    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
11289      Var = cast<VarDecl>(ME->getMemberDecl());
11290      Loc = ME->getMemberLoc();
11291    } else {
11292      llvm_unreachable("Unexpcted expression");
11293    }
11294
11295    MarkVarDeclODRUsed(*this, Var, Loc);
11296  }
11297
11298  MaybeODRUseExprs.clear();
11299}
11300
11301// Mark a VarDecl referenced, and perform the necessary handling to compute
11302// odr-uses.
11303static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
11304                                    VarDecl *Var, Expr *E) {
11305  Var->setReferenced();
11306
11307  if (!IsPotentiallyEvaluatedContext(SemaRef))
11308    return;
11309
11310  // Implicit instantiation of static data members of class templates.
11311  if (Var->isStaticDataMember() && Var->getInstantiatedFromStaticDataMember()) {
11312    MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
11313    assert(MSInfo && "Missing member specialization information?");
11314    bool AlreadyInstantiated = !MSInfo->getPointOfInstantiation().isInvalid();
11315    if (MSInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation &&
11316        (!AlreadyInstantiated ||
11317         Var->isUsableInConstantExpressions(SemaRef.Context))) {
11318      if (!AlreadyInstantiated) {
11319        // This is a modification of an existing AST node. Notify listeners.
11320        if (ASTMutationListener *L = SemaRef.getASTMutationListener())
11321          L->StaticDataMemberInstantiated(Var);
11322        MSInfo->setPointOfInstantiation(Loc);
11323      }
11324      SourceLocation PointOfInstantiation = MSInfo->getPointOfInstantiation();
11325      if (Var->isUsableInConstantExpressions(SemaRef.Context))
11326        // Do not defer instantiations of variables which could be used in a
11327        // constant expression.
11328        SemaRef.InstantiateStaticDataMemberDefinition(PointOfInstantiation,Var);
11329      else
11330        SemaRef.PendingInstantiations.push_back(
11331            std::make_pair(Var, PointOfInstantiation));
11332    }
11333  }
11334
11335  // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
11336  // the requirements for appearing in a constant expression (5.19) and, if
11337  // it is an object, the lvalue-to-rvalue conversion (4.1)
11338  // is immediately applied."  We check the first part here, and
11339  // Sema::UpdateMarkingForLValueToRValue deals with the second part.
11340  // Note that we use the C++11 definition everywhere because nothing in
11341  // C++03 depends on whether we get the C++03 version correct. The second
11342  // part does not apply to references, since they are not objects.
11343  const VarDecl *DefVD;
11344  if (E && !isa<ParmVarDecl>(Var) &&
11345      Var->isUsableInConstantExpressions(SemaRef.Context) &&
11346      Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE()) {
11347    if (!Var->getType()->isReferenceType())
11348      SemaRef.MaybeODRUseExprs.insert(E);
11349  } else
11350    MarkVarDeclODRUsed(SemaRef, Var, Loc);
11351}
11352
11353/// \brief Mark a variable referenced, and check whether it is odr-used
11354/// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
11355/// used directly for normal expressions referring to VarDecl.
11356void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
11357  DoMarkVarDeclReferenced(*this, Loc, Var, 0);
11358}
11359
11360static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
11361                               Decl *D, Expr *E, bool OdrUse) {
11362  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
11363    DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
11364    return;
11365  }
11366
11367  SemaRef.MarkAnyDeclReferenced(Loc, D, OdrUse);
11368
11369  // If this is a call to a method via a cast, also mark the method in the
11370  // derived class used in case codegen can devirtualize the call.
11371  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
11372  if (!ME)
11373    return;
11374  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
11375  if (!MD)
11376    return;
11377  const Expr *Base = ME->getBase();
11378  const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
11379  if (!MostDerivedClassDecl)
11380    return;
11381  CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
11382  if (!DM || DM->isPure())
11383    return;
11384  SemaRef.MarkAnyDeclReferenced(Loc, DM, OdrUse);
11385}
11386
11387/// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
11388void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
11389  // TODO: update this with DR# once a defect report is filed.
11390  // C++11 defect. The address of a pure member should not be an ODR use, even
11391  // if it's a qualified reference.
11392  bool OdrUse = true;
11393  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
11394    if (Method->isVirtual())
11395      OdrUse = false;
11396  MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
11397}
11398
11399/// \brief Perform reference-marking and odr-use handling for a MemberExpr.
11400void Sema::MarkMemberReferenced(MemberExpr *E) {
11401  // C++11 [basic.def.odr]p2:
11402  //   A non-overloaded function whose name appears as a potentially-evaluated
11403  //   expression or a member of a set of candidate functions, if selected by
11404  //   overload resolution when referred to from a potentially-evaluated
11405  //   expression, is odr-used, unless it is a pure virtual function and its
11406  //   name is not explicitly qualified.
11407  bool OdrUse = true;
11408  if (!E->hasQualifier()) {
11409    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
11410      if (Method->isPure())
11411        OdrUse = false;
11412  }
11413  SourceLocation Loc = E->getMemberLoc().isValid() ?
11414                            E->getMemberLoc() : E->getLocStart();
11415  MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, OdrUse);
11416}
11417
11418/// \brief Perform marking for a reference to an arbitrary declaration.  It
11419/// marks the declaration referenced, and performs odr-use checking for functions
11420/// and variables. This method should not be used when building an normal
11421/// expression which refers to a variable.
11422void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool OdrUse) {
11423  if (OdrUse) {
11424    if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
11425      MarkVariableReferenced(Loc, VD);
11426      return;
11427    }
11428    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
11429      MarkFunctionReferenced(Loc, FD);
11430      return;
11431    }
11432  }
11433  D->setReferenced();
11434}
11435
11436namespace {
11437  // Mark all of the declarations referenced
11438  // FIXME: Not fully implemented yet! We need to have a better understanding
11439  // of when we're entering
11440  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
11441    Sema &S;
11442    SourceLocation Loc;
11443
11444  public:
11445    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
11446
11447    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
11448
11449    bool TraverseTemplateArgument(const TemplateArgument &Arg);
11450    bool TraverseRecordType(RecordType *T);
11451  };
11452}
11453
11454bool MarkReferencedDecls::TraverseTemplateArgument(
11455  const TemplateArgument &Arg) {
11456  if (Arg.getKind() == TemplateArgument::Declaration) {
11457    if (Decl *D = Arg.getAsDecl())
11458      S.MarkAnyDeclReferenced(Loc, D, true);
11459  }
11460
11461  return Inherited::TraverseTemplateArgument(Arg);
11462}
11463
11464bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
11465  if (ClassTemplateSpecializationDecl *Spec
11466                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
11467    const TemplateArgumentList &Args = Spec->getTemplateArgs();
11468    return TraverseTemplateArguments(Args.data(), Args.size());
11469  }
11470
11471  return true;
11472}
11473
11474void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
11475  MarkReferencedDecls Marker(*this, Loc);
11476  Marker.TraverseType(Context.getCanonicalType(T));
11477}
11478
11479namespace {
11480  /// \brief Helper class that marks all of the declarations referenced by
11481  /// potentially-evaluated subexpressions as "referenced".
11482  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
11483    Sema &S;
11484    bool SkipLocalVariables;
11485
11486  public:
11487    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
11488
11489    EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
11490      : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
11491
11492    void VisitDeclRefExpr(DeclRefExpr *E) {
11493      // If we were asked not to visit local variables, don't.
11494      if (SkipLocalVariables) {
11495        if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
11496          if (VD->hasLocalStorage())
11497            return;
11498      }
11499
11500      S.MarkDeclRefReferenced(E);
11501    }
11502
11503    void VisitMemberExpr(MemberExpr *E) {
11504      S.MarkMemberReferenced(E);
11505      Inherited::VisitMemberExpr(E);
11506    }
11507
11508    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
11509      S.MarkFunctionReferenced(E->getLocStart(),
11510            const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
11511      Visit(E->getSubExpr());
11512    }
11513
11514    void VisitCXXNewExpr(CXXNewExpr *E) {
11515      if (E->getOperatorNew())
11516        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
11517      if (E->getOperatorDelete())
11518        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11519      Inherited::VisitCXXNewExpr(E);
11520    }
11521
11522    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
11523      if (E->getOperatorDelete())
11524        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11525      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
11526      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
11527        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
11528        S.MarkFunctionReferenced(E->getLocStart(),
11529                                    S.LookupDestructor(Record));
11530      }
11531
11532      Inherited::VisitCXXDeleteExpr(E);
11533    }
11534
11535    void VisitCXXConstructExpr(CXXConstructExpr *E) {
11536      S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
11537      Inherited::VisitCXXConstructExpr(E);
11538    }
11539
11540    void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
11541      Visit(E->getExpr());
11542    }
11543
11544    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11545      Inherited::VisitImplicitCastExpr(E);
11546
11547      if (E->getCastKind() == CK_LValueToRValue)
11548        S.UpdateMarkingForLValueToRValue(E->getSubExpr());
11549    }
11550  };
11551}
11552
11553/// \brief Mark any declarations that appear within this expression or any
11554/// potentially-evaluated subexpressions as "referenced".
11555///
11556/// \param SkipLocalVariables If true, don't mark local variables as
11557/// 'referenced'.
11558void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
11559                                            bool SkipLocalVariables) {
11560  EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
11561}
11562
11563/// \brief Emit a diagnostic that describes an effect on the run-time behavior
11564/// of the program being compiled.
11565///
11566/// This routine emits the given diagnostic when the code currently being
11567/// type-checked is "potentially evaluated", meaning that there is a
11568/// possibility that the code will actually be executable. Code in sizeof()
11569/// expressions, code used only during overload resolution, etc., are not
11570/// potentially evaluated. This routine will suppress such diagnostics or,
11571/// in the absolutely nutty case of potentially potentially evaluated
11572/// expressions (C++ typeid), queue the diagnostic to potentially emit it
11573/// later.
11574///
11575/// This routine should be used for all diagnostics that describe the run-time
11576/// behavior of a program, such as passing a non-POD value through an ellipsis.
11577/// Failure to do so will likely result in spurious diagnostics or failures
11578/// during overload resolution or within sizeof/alignof/typeof/typeid.
11579bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
11580                               const PartialDiagnostic &PD) {
11581  switch (ExprEvalContexts.back().Context) {
11582  case Unevaluated:
11583    // The argument will never be evaluated, so don't complain.
11584    break;
11585
11586  case ConstantEvaluated:
11587    // Relevant diagnostics should be produced by constant evaluation.
11588    break;
11589
11590  case PotentiallyEvaluated:
11591  case PotentiallyEvaluatedIfUsed:
11592    if (Statement && getCurFunctionOrMethodDecl()) {
11593      FunctionScopes.back()->PossiblyUnreachableDiags.
11594        push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
11595    }
11596    else
11597      Diag(Loc, PD);
11598
11599    return true;
11600  }
11601
11602  return false;
11603}
11604
11605bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
11606                               CallExpr *CE, FunctionDecl *FD) {
11607  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
11608    return false;
11609
11610  // If we're inside a decltype's expression, don't check for a valid return
11611  // type or construct temporaries until we know whether this is the last call.
11612  if (ExprEvalContexts.back().IsDecltype) {
11613    ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
11614    return false;
11615  }
11616
11617  class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
11618    FunctionDecl *FD;
11619    CallExpr *CE;
11620
11621  public:
11622    CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
11623      : FD(FD), CE(CE) { }
11624
11625    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
11626      if (!FD) {
11627        S.Diag(Loc, diag::err_call_incomplete_return)
11628          << T << CE->getSourceRange();
11629        return;
11630      }
11631
11632      S.Diag(Loc, diag::err_call_function_incomplete_return)
11633        << CE->getSourceRange() << FD->getDeclName() << T;
11634      S.Diag(FD->getLocation(),
11635             diag::note_function_with_incomplete_return_type_declared_here)
11636        << FD->getDeclName();
11637    }
11638  } Diagnoser(FD, CE);
11639
11640  if (RequireCompleteType(Loc, ReturnType, Diagnoser))
11641    return true;
11642
11643  return false;
11644}
11645
11646// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
11647// will prevent this condition from triggering, which is what we want.
11648void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
11649  SourceLocation Loc;
11650
11651  unsigned diagnostic = diag::warn_condition_is_assignment;
11652  bool IsOrAssign = false;
11653
11654  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
11655    if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
11656      return;
11657
11658    IsOrAssign = Op->getOpcode() == BO_OrAssign;
11659
11660    // Greylist some idioms by putting them into a warning subcategory.
11661    if (ObjCMessageExpr *ME
11662          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
11663      Selector Sel = ME->getSelector();
11664
11665      // self = [<foo> init...]
11666      if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
11667        diagnostic = diag::warn_condition_is_idiomatic_assignment;
11668
11669      // <foo> = [<bar> nextObject]
11670      else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
11671        diagnostic = diag::warn_condition_is_idiomatic_assignment;
11672    }
11673
11674    Loc = Op->getOperatorLoc();
11675  } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
11676    if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
11677      return;
11678
11679    IsOrAssign = Op->getOperator() == OO_PipeEqual;
11680    Loc = Op->getOperatorLoc();
11681  } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
11682    return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
11683  else {
11684    // Not an assignment.
11685    return;
11686  }
11687
11688  Diag(Loc, diagnostic) << E->getSourceRange();
11689
11690  SourceLocation Open = E->getLocStart();
11691  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
11692  Diag(Loc, diag::note_condition_assign_silence)
11693        << FixItHint::CreateInsertion(Open, "(")
11694        << FixItHint::CreateInsertion(Close, ")");
11695
11696  if (IsOrAssign)
11697    Diag(Loc, diag::note_condition_or_assign_to_comparison)
11698      << FixItHint::CreateReplacement(Loc, "!=");
11699  else
11700    Diag(Loc, diag::note_condition_assign_to_comparison)
11701      << FixItHint::CreateReplacement(Loc, "==");
11702}
11703
11704/// \brief Redundant parentheses over an equality comparison can indicate
11705/// that the user intended an assignment used as condition.
11706void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
11707  // Don't warn if the parens came from a macro.
11708  SourceLocation parenLoc = ParenE->getLocStart();
11709  if (parenLoc.isInvalid() || parenLoc.isMacroID())
11710    return;
11711  // Don't warn for dependent expressions.
11712  if (ParenE->isTypeDependent())
11713    return;
11714
11715  Expr *E = ParenE->IgnoreParens();
11716
11717  if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
11718    if (opE->getOpcode() == BO_EQ &&
11719        opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
11720                                                           == Expr::MLV_Valid) {
11721      SourceLocation Loc = opE->getOperatorLoc();
11722
11723      Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
11724      SourceRange ParenERange = ParenE->getSourceRange();
11725      Diag(Loc, diag::note_equality_comparison_silence)
11726        << FixItHint::CreateRemoval(ParenERange.getBegin())
11727        << FixItHint::CreateRemoval(ParenERange.getEnd());
11728      Diag(Loc, diag::note_equality_comparison_to_assign)
11729        << FixItHint::CreateReplacement(Loc, "=");
11730    }
11731}
11732
11733ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
11734  DiagnoseAssignmentAsCondition(E);
11735  if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
11736    DiagnoseEqualityWithExtraParens(parenE);
11737
11738  ExprResult result = CheckPlaceholderExpr(E);
11739  if (result.isInvalid()) return ExprError();
11740  E = result.take();
11741
11742  if (!E->isTypeDependent()) {
11743    if (getLangOpts().CPlusPlus)
11744      return CheckCXXBooleanCondition(E); // C++ 6.4p4
11745
11746    ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
11747    if (ERes.isInvalid())
11748      return ExprError();
11749    E = ERes.take();
11750
11751    QualType T = E->getType();
11752    if (!T->isScalarType()) { // C99 6.8.4.1p1
11753      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
11754        << T << E->getSourceRange();
11755      return ExprError();
11756    }
11757  }
11758
11759  return Owned(E);
11760}
11761
11762ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
11763                                       Expr *SubExpr) {
11764  if (!SubExpr)
11765    return ExprError();
11766
11767  return CheckBooleanCondition(SubExpr, Loc);
11768}
11769
11770namespace {
11771  /// A visitor for rebuilding a call to an __unknown_any expression
11772  /// to have an appropriate type.
11773  struct RebuildUnknownAnyFunction
11774    : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
11775
11776    Sema &S;
11777
11778    RebuildUnknownAnyFunction(Sema &S) : S(S) {}
11779
11780    ExprResult VisitStmt(Stmt *S) {
11781      llvm_unreachable("unexpected statement!");
11782    }
11783
11784    ExprResult VisitExpr(Expr *E) {
11785      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
11786        << E->getSourceRange();
11787      return ExprError();
11788    }
11789
11790    /// Rebuild an expression which simply semantically wraps another
11791    /// expression which it shares the type and value kind of.
11792    template <class T> ExprResult rebuildSugarExpr(T *E) {
11793      ExprResult SubResult = Visit(E->getSubExpr());
11794      if (SubResult.isInvalid()) return ExprError();
11795
11796      Expr *SubExpr = SubResult.take();
11797      E->setSubExpr(SubExpr);
11798      E->setType(SubExpr->getType());
11799      E->setValueKind(SubExpr->getValueKind());
11800      assert(E->getObjectKind() == OK_Ordinary);
11801      return E;
11802    }
11803
11804    ExprResult VisitParenExpr(ParenExpr *E) {
11805      return rebuildSugarExpr(E);
11806    }
11807
11808    ExprResult VisitUnaryExtension(UnaryOperator *E) {
11809      return rebuildSugarExpr(E);
11810    }
11811
11812    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11813      ExprResult SubResult = Visit(E->getSubExpr());
11814      if (SubResult.isInvalid()) return ExprError();
11815
11816      Expr *SubExpr = SubResult.take();
11817      E->setSubExpr(SubExpr);
11818      E->setType(S.Context.getPointerType(SubExpr->getType()));
11819      assert(E->getValueKind() == VK_RValue);
11820      assert(E->getObjectKind() == OK_Ordinary);
11821      return E;
11822    }
11823
11824    ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
11825      if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
11826
11827      E->setType(VD->getType());
11828
11829      assert(E->getValueKind() == VK_RValue);
11830      if (S.getLangOpts().CPlusPlus &&
11831          !(isa<CXXMethodDecl>(VD) &&
11832            cast<CXXMethodDecl>(VD)->isInstance()))
11833        E->setValueKind(VK_LValue);
11834
11835      return E;
11836    }
11837
11838    ExprResult VisitMemberExpr(MemberExpr *E) {
11839      return resolveDecl(E, E->getMemberDecl());
11840    }
11841
11842    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11843      return resolveDecl(E, E->getDecl());
11844    }
11845  };
11846}
11847
11848/// Given a function expression of unknown-any type, try to rebuild it
11849/// to have a function type.
11850static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
11851  ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
11852  if (Result.isInvalid()) return ExprError();
11853  return S.DefaultFunctionArrayConversion(Result.take());
11854}
11855
11856namespace {
11857  /// A visitor for rebuilding an expression of type __unknown_anytype
11858  /// into one which resolves the type directly on the referring
11859  /// expression.  Strict preservation of the original source
11860  /// structure is not a goal.
11861  struct RebuildUnknownAnyExpr
11862    : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
11863
11864    Sema &S;
11865
11866    /// The current destination type.
11867    QualType DestType;
11868
11869    RebuildUnknownAnyExpr(Sema &S, QualType CastType)
11870      : S(S), DestType(CastType) {}
11871
11872    ExprResult VisitStmt(Stmt *S) {
11873      llvm_unreachable("unexpected statement!");
11874    }
11875
11876    ExprResult VisitExpr(Expr *E) {
11877      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11878        << E->getSourceRange();
11879      return ExprError();
11880    }
11881
11882    ExprResult VisitCallExpr(CallExpr *E);
11883    ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
11884
11885    /// Rebuild an expression which simply semantically wraps another
11886    /// expression which it shares the type and value kind of.
11887    template <class T> ExprResult rebuildSugarExpr(T *E) {
11888      ExprResult SubResult = Visit(E->getSubExpr());
11889      if (SubResult.isInvalid()) return ExprError();
11890      Expr *SubExpr = SubResult.take();
11891      E->setSubExpr(SubExpr);
11892      E->setType(SubExpr->getType());
11893      E->setValueKind(SubExpr->getValueKind());
11894      assert(E->getObjectKind() == OK_Ordinary);
11895      return E;
11896    }
11897
11898    ExprResult VisitParenExpr(ParenExpr *E) {
11899      return rebuildSugarExpr(E);
11900    }
11901
11902    ExprResult VisitUnaryExtension(UnaryOperator *E) {
11903      return rebuildSugarExpr(E);
11904    }
11905
11906    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11907      const PointerType *Ptr = DestType->getAs<PointerType>();
11908      if (!Ptr) {
11909        S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
11910          << E->getSourceRange();
11911        return ExprError();
11912      }
11913      assert(E->getValueKind() == VK_RValue);
11914      assert(E->getObjectKind() == OK_Ordinary);
11915      E->setType(DestType);
11916
11917      // Build the sub-expression as if it were an object of the pointee type.
11918      DestType = Ptr->getPointeeType();
11919      ExprResult SubResult = Visit(E->getSubExpr());
11920      if (SubResult.isInvalid()) return ExprError();
11921      E->setSubExpr(SubResult.take());
11922      return E;
11923    }
11924
11925    ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
11926
11927    ExprResult resolveDecl(Expr *E, ValueDecl *VD);
11928
11929    ExprResult VisitMemberExpr(MemberExpr *E) {
11930      return resolveDecl(E, E->getMemberDecl());
11931    }
11932
11933    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11934      return resolveDecl(E, E->getDecl());
11935    }
11936  };
11937}
11938
11939/// Rebuilds a call expression which yielded __unknown_anytype.
11940ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
11941  Expr *CalleeExpr = E->getCallee();
11942
11943  enum FnKind {
11944    FK_MemberFunction,
11945    FK_FunctionPointer,
11946    FK_BlockPointer
11947  };
11948
11949  FnKind Kind;
11950  QualType CalleeType = CalleeExpr->getType();
11951  if (CalleeType == S.Context.BoundMemberTy) {
11952    assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
11953    Kind = FK_MemberFunction;
11954    CalleeType = Expr::findBoundMemberType(CalleeExpr);
11955  } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
11956    CalleeType = Ptr->getPointeeType();
11957    Kind = FK_FunctionPointer;
11958  } else {
11959    CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
11960    Kind = FK_BlockPointer;
11961  }
11962  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
11963
11964  // Verify that this is a legal result type of a function.
11965  if (DestType->isArrayType() || DestType->isFunctionType()) {
11966    unsigned diagID = diag::err_func_returning_array_function;
11967    if (Kind == FK_BlockPointer)
11968      diagID = diag::err_block_returning_array_function;
11969
11970    S.Diag(E->getExprLoc(), diagID)
11971      << DestType->isFunctionType() << DestType;
11972    return ExprError();
11973  }
11974
11975  // Otherwise, go ahead and set DestType as the call's result.
11976  E->setType(DestType.getNonLValueExprType(S.Context));
11977  E->setValueKind(Expr::getValueKindForType(DestType));
11978  assert(E->getObjectKind() == OK_Ordinary);
11979
11980  // Rebuild the function type, replacing the result type with DestType.
11981  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
11982    DestType =
11983      S.Context.getFunctionType(DestType,
11984                                ArrayRef<QualType>(Proto->arg_type_begin(),
11985                                                   Proto->getNumArgs()),
11986                                Proto->getExtProtoInfo());
11987  else
11988    DestType = S.Context.getFunctionNoProtoType(DestType,
11989                                                FnType->getExtInfo());
11990
11991  // Rebuild the appropriate pointer-to-function type.
11992  switch (Kind) {
11993  case FK_MemberFunction:
11994    // Nothing to do.
11995    break;
11996
11997  case FK_FunctionPointer:
11998    DestType = S.Context.getPointerType(DestType);
11999    break;
12000
12001  case FK_BlockPointer:
12002    DestType = S.Context.getBlockPointerType(DestType);
12003    break;
12004  }
12005
12006  // Finally, we can recurse.
12007  ExprResult CalleeResult = Visit(CalleeExpr);
12008  if (!CalleeResult.isUsable()) return ExprError();
12009  E->setCallee(CalleeResult.take());
12010
12011  // Bind a temporary if necessary.
12012  return S.MaybeBindToTemporary(E);
12013}
12014
12015ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
12016  // Verify that this is a legal result type of a call.
12017  if (DestType->isArrayType() || DestType->isFunctionType()) {
12018    S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
12019      << DestType->isFunctionType() << DestType;
12020    return ExprError();
12021  }
12022
12023  // Rewrite the method result type if available.
12024  if (ObjCMethodDecl *Method = E->getMethodDecl()) {
12025    assert(Method->getResultType() == S.Context.UnknownAnyTy);
12026    Method->setResultType(DestType);
12027  }
12028
12029  // Change the type of the message.
12030  E->setType(DestType.getNonReferenceType());
12031  E->setValueKind(Expr::getValueKindForType(DestType));
12032
12033  return S.MaybeBindToTemporary(E);
12034}
12035
12036ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
12037  // The only case we should ever see here is a function-to-pointer decay.
12038  if (E->getCastKind() == CK_FunctionToPointerDecay) {
12039    assert(E->getValueKind() == VK_RValue);
12040    assert(E->getObjectKind() == OK_Ordinary);
12041
12042    E->setType(DestType);
12043
12044    // Rebuild the sub-expression as the pointee (function) type.
12045    DestType = DestType->castAs<PointerType>()->getPointeeType();
12046
12047    ExprResult Result = Visit(E->getSubExpr());
12048    if (!Result.isUsable()) return ExprError();
12049
12050    E->setSubExpr(Result.take());
12051    return S.Owned(E);
12052  } else if (E->getCastKind() == CK_LValueToRValue) {
12053    assert(E->getValueKind() == VK_RValue);
12054    assert(E->getObjectKind() == OK_Ordinary);
12055
12056    assert(isa<BlockPointerType>(E->getType()));
12057
12058    E->setType(DestType);
12059
12060    // The sub-expression has to be a lvalue reference, so rebuild it as such.
12061    DestType = S.Context.getLValueReferenceType(DestType);
12062
12063    ExprResult Result = Visit(E->getSubExpr());
12064    if (!Result.isUsable()) return ExprError();
12065
12066    E->setSubExpr(Result.take());
12067    return S.Owned(E);
12068  } else {
12069    llvm_unreachable("Unhandled cast type!");
12070  }
12071}
12072
12073ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
12074  ExprValueKind ValueKind = VK_LValue;
12075  QualType Type = DestType;
12076
12077  // We know how to make this work for certain kinds of decls:
12078
12079  //  - functions
12080  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
12081    if (const PointerType *Ptr = Type->getAs<PointerType>()) {
12082      DestType = Ptr->getPointeeType();
12083      ExprResult Result = resolveDecl(E, VD);
12084      if (Result.isInvalid()) return ExprError();
12085      return S.ImpCastExprToType(Result.take(), Type,
12086                                 CK_FunctionToPointerDecay, VK_RValue);
12087    }
12088
12089    if (!Type->isFunctionType()) {
12090      S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
12091        << VD << E->getSourceRange();
12092      return ExprError();
12093    }
12094
12095    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
12096      if (MD->isInstance()) {
12097        ValueKind = VK_RValue;
12098        Type = S.Context.BoundMemberTy;
12099      }
12100
12101    // Function references aren't l-values in C.
12102    if (!S.getLangOpts().CPlusPlus)
12103      ValueKind = VK_RValue;
12104
12105  //  - variables
12106  } else if (isa<VarDecl>(VD)) {
12107    if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
12108      Type = RefTy->getPointeeType();
12109    } else if (Type->isFunctionType()) {
12110      S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
12111        << VD << E->getSourceRange();
12112      return ExprError();
12113    }
12114
12115  //  - nothing else
12116  } else {
12117    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
12118      << VD << E->getSourceRange();
12119    return ExprError();
12120  }
12121
12122  VD->setType(DestType);
12123  E->setType(Type);
12124  E->setValueKind(ValueKind);
12125  return S.Owned(E);
12126}
12127
12128/// Check a cast of an unknown-any type.  We intentionally only
12129/// trigger this for C-style casts.
12130ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
12131                                     Expr *CastExpr, CastKind &CastKind,
12132                                     ExprValueKind &VK, CXXCastPath &Path) {
12133  // Rewrite the casted expression from scratch.
12134  ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
12135  if (!result.isUsable()) return ExprError();
12136
12137  CastExpr = result.take();
12138  VK = CastExpr->getValueKind();
12139  CastKind = CK_NoOp;
12140
12141  return CastExpr;
12142}
12143
12144ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
12145  return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
12146}
12147
12148ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
12149                                    Expr *arg, QualType &paramType) {
12150  // If the syntactic form of the argument is not an explicit cast of
12151  // any sort, just do default argument promotion.
12152  ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
12153  if (!castArg) {
12154    ExprResult result = DefaultArgumentPromotion(arg);
12155    if (result.isInvalid()) return ExprError();
12156    paramType = result.get()->getType();
12157    return result;
12158  }
12159
12160  // Otherwise, use the type that was written in the explicit cast.
12161  assert(!arg->hasPlaceholderType());
12162  paramType = castArg->getTypeAsWritten();
12163
12164  // Copy-initialize a parameter of that type.
12165  InitializedEntity entity =
12166    InitializedEntity::InitializeParameter(Context, paramType,
12167                                           /*consumed*/ false);
12168  return PerformCopyInitialization(entity, callLoc, Owned(arg));
12169}
12170
12171static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
12172  Expr *orig = E;
12173  unsigned diagID = diag::err_uncasted_use_of_unknown_any;
12174  while (true) {
12175    E = E->IgnoreParenImpCasts();
12176    if (CallExpr *call = dyn_cast<CallExpr>(E)) {
12177      E = call->getCallee();
12178      diagID = diag::err_uncasted_call_of_unknown_any;
12179    } else {
12180      break;
12181    }
12182  }
12183
12184  SourceLocation loc;
12185  NamedDecl *d;
12186  if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
12187    loc = ref->getLocation();
12188    d = ref->getDecl();
12189  } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
12190    loc = mem->getMemberLoc();
12191    d = mem->getMemberDecl();
12192  } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
12193    diagID = diag::err_uncasted_call_of_unknown_any;
12194    loc = msg->getSelectorStartLoc();
12195    d = msg->getMethodDecl();
12196    if (!d) {
12197      S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
12198        << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
12199        << orig->getSourceRange();
12200      return ExprError();
12201    }
12202  } else {
12203    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
12204      << E->getSourceRange();
12205    return ExprError();
12206  }
12207
12208  S.Diag(loc, diagID) << d << orig->getSourceRange();
12209
12210  // Never recoverable.
12211  return ExprError();
12212}
12213
12214/// Check for operands with placeholder types and complain if found.
12215/// Returns true if there was an error and no recovery was possible.
12216ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
12217  const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
12218  if (!placeholderType) return Owned(E);
12219
12220  switch (placeholderType->getKind()) {
12221
12222  // Overloaded expressions.
12223  case BuiltinType::Overload: {
12224    // Try to resolve a single function template specialization.
12225    // This is obligatory.
12226    ExprResult result = Owned(E);
12227    if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
12228      return result;
12229
12230    // If that failed, try to recover with a call.
12231    } else {
12232      tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
12233                           /*complain*/ true);
12234      return result;
12235    }
12236  }
12237
12238  // Bound member functions.
12239  case BuiltinType::BoundMember: {
12240    ExprResult result = Owned(E);
12241    tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
12242                         /*complain*/ true);
12243    return result;
12244  }
12245
12246  // ARC unbridged casts.
12247  case BuiltinType::ARCUnbridgedCast: {
12248    Expr *realCast = stripARCUnbridgedCast(E);
12249    diagnoseARCUnbridgedCast(realCast);
12250    return Owned(realCast);
12251  }
12252
12253  // Expressions of unknown type.
12254  case BuiltinType::UnknownAny:
12255    return diagnoseUnknownAnyExpr(*this, E);
12256
12257  // Pseudo-objects.
12258  case BuiltinType::PseudoObject:
12259    return checkPseudoObjectRValue(E);
12260
12261  case BuiltinType::BuiltinFn:
12262    Diag(E->getLocStart(), diag::err_builtin_fn_use);
12263    return ExprError();
12264
12265  // Everything else should be impossible.
12266#define BUILTIN_TYPE(Id, SingletonId) \
12267  case BuiltinType::Id:
12268#define PLACEHOLDER_TYPE(Id, SingletonId)
12269#include "clang/AST/BuiltinTypes.def"
12270    break;
12271  }
12272
12273  llvm_unreachable("invalid placeholder type!");
12274}
12275
12276bool Sema::CheckCaseExpression(Expr *E) {
12277  if (E->isTypeDependent())
12278    return true;
12279  if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
12280    return E->getType()->isIntegralOrEnumerationType();
12281  return false;
12282}
12283
12284/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
12285ExprResult
12286Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
12287  assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
12288         "Unknown Objective-C Boolean value!");
12289  QualType BoolT = Context.ObjCBuiltinBoolTy;
12290  if (!Context.getBOOLDecl()) {
12291    LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
12292                        Sema::LookupOrdinaryName);
12293    if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
12294      NamedDecl *ND = Result.getFoundDecl();
12295      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
12296        Context.setBOOLDecl(TD);
12297    }
12298  }
12299  if (Context.getBOOLDecl())
12300    BoolT = Context.getBOOLType();
12301  return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
12302                                        BoolT, OpLoc));
12303}
12304