SemaExpr.cpp revision d6a9427b13d3f1d5762de2d683268821c7853fdd
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "AnalysisBasedWarnings.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/LiteralSupport.h"
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Parse/DeclSpec.h"
33#include "clang/Parse/Designator.h"
34#include "clang/Parse/Scope.h"
35#include "clang/Parse/Template.h"
36using namespace clang;
37
38
39/// \brief Determine whether the use of this declaration is valid, and
40/// emit any corresponding diagnostics.
41///
42/// This routine diagnoses various problems with referencing
43/// declarations that can occur when using a declaration. For example,
44/// it might warn if a deprecated or unavailable declaration is being
45/// used, or produce an error (and return true) if a C++0x deleted
46/// function is being used.
47///
48/// If IgnoreDeprecated is set to true, this should not want about deprecated
49/// decls.
50///
51/// \returns true if there was an error (this declaration cannot be
52/// referenced), false otherwise.
53///
54bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
55  // See if the decl is deprecated.
56  if (D->getAttr<DeprecatedAttr>()) {
57    EmitDeprecationWarning(D, Loc);
58  }
59
60  // See if the decl is unavailable
61  if (D->getAttr<UnavailableAttr>()) {
62    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
63    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
64  }
65
66  // See if this is a deleted function.
67  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
68    if (FD->isDeleted()) {
69      Diag(Loc, diag::err_deleted_function_use);
70      Diag(D->getLocation(), diag::note_unavailable_here) << true;
71      return true;
72    }
73  }
74
75  return false;
76}
77
78/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
79/// (and other functions in future), which have been declared with sentinel
80/// attribute. It warns if call does not have the sentinel argument.
81///
82void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
83                                 Expr **Args, unsigned NumArgs) {
84  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
85  if (!attr)
86    return;
87
88  // FIXME: In C++0x, if any of the arguments are parameter pack
89  // expansions, we can't check for the sentinel now.
90  int sentinelPos = attr->getSentinel();
91  int nullPos = attr->getNullPos();
92
93  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
94  // base class. Then we won't be needing two versions of the same code.
95  unsigned int i = 0;
96  bool warnNotEnoughArgs = false;
97  int isMethod = 0;
98  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
99    // skip over named parameters.
100    ObjCMethodDecl::param_iterator P, E = MD->param_end();
101    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
102      if (nullPos)
103        --nullPos;
104      else
105        ++i;
106    }
107    warnNotEnoughArgs = (P != E || i >= NumArgs);
108    isMethod = 1;
109  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
110    // skip over named parameters.
111    ObjCMethodDecl::param_iterator P, E = FD->param_end();
112    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
113      if (nullPos)
114        --nullPos;
115      else
116        ++i;
117    }
118    warnNotEnoughArgs = (P != E || i >= NumArgs);
119  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
120    // block or function pointer call.
121    QualType Ty = V->getType();
122    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
123      const FunctionType *FT = Ty->isFunctionPointerType()
124      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
125      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
126      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
127        unsigned NumArgsInProto = Proto->getNumArgs();
128        unsigned k;
129        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
130          if (nullPos)
131            --nullPos;
132          else
133            ++i;
134        }
135        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
136      }
137      if (Ty->isBlockPointerType())
138        isMethod = 2;
139    } else
140      return;
141  } else
142    return;
143
144  if (warnNotEnoughArgs) {
145    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
146    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
147    return;
148  }
149  int sentinel = i;
150  while (sentinelPos > 0 && i < NumArgs-1) {
151    --sentinelPos;
152    ++i;
153  }
154  if (sentinelPos > 0) {
155    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
156    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
157    return;
158  }
159  while (i < NumArgs-1) {
160    ++i;
161    ++sentinel;
162  }
163  Expr *sentinelExpr = Args[sentinel];
164  if (!sentinelExpr) return;
165  if (sentinelExpr->isTypeDependent()) return;
166  if (sentinelExpr->isValueDependent()) return;
167  if (sentinelExpr->getType()->isPointerType() &&
168      sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
169                                            Expr::NPC_ValueDependentIsNull))
170    return;
171
172  // Unfortunately, __null has type 'int'.
173  if (isa<GNUNullExpr>(sentinelExpr)) return;
174
175  Diag(Loc, diag::warn_missing_sentinel) << isMethod;
176  Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
177}
178
179SourceRange Sema::getExprRange(ExprTy *E) const {
180  Expr *Ex = (Expr *)E;
181  return Ex? Ex->getSourceRange() : SourceRange();
182}
183
184//===----------------------------------------------------------------------===//
185//  Standard Promotions and Conversions
186//===----------------------------------------------------------------------===//
187
188/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
189void Sema::DefaultFunctionArrayConversion(Expr *&E) {
190  QualType Ty = E->getType();
191  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
192
193  if (Ty->isFunctionType())
194    ImpCastExprToType(E, Context.getPointerType(Ty),
195                      CastExpr::CK_FunctionToPointerDecay);
196  else if (Ty->isArrayType()) {
197    // In C90 mode, arrays only promote to pointers if the array expression is
198    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
199    // type 'array of type' is converted to an expression that has type 'pointer
200    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
201    // that has type 'array of type' ...".  The relevant change is "an lvalue"
202    // (C90) to "an expression" (C99).
203    //
204    // C++ 4.2p1:
205    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
206    // T" can be converted to an rvalue of type "pointer to T".
207    //
208    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
209        E->isLvalue(Context) == Expr::LV_Valid)
210      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
211                        CastExpr::CK_ArrayToPointerDecay);
212  }
213}
214
215void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
216  DefaultFunctionArrayConversion(E);
217
218  QualType Ty = E->getType();
219  assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type");
220  if (!Ty->isDependentType() && Ty.hasQualifiers() &&
221      (!getLangOptions().CPlusPlus || !Ty->isRecordType()) &&
222      E->isLvalue(Context) == Expr::LV_Valid) {
223    // C++ [conv.lval]p1:
224    //   [...] If T is a non-class type, the type of the rvalue is the
225    //   cv-unqualified version of T. Otherwise, the type of the
226    //   rvalue is T
227    //
228    // C99 6.3.2.1p2:
229    //   If the lvalue has qualified type, the value has the unqualified
230    //   version of the type of the lvalue; otherwise, the value has the
231    //   type of the lvalue.
232    ImpCastExprToType(E, Ty.getUnqualifiedType(), CastExpr::CK_NoOp);
233  }
234}
235
236
237/// UsualUnaryConversions - Performs various conversions that are common to most
238/// operators (C99 6.3). The conversions of array and function types are
239/// sometimes surpressed. For example, the array->pointer conversion doesn't
240/// apply if the array is an argument to the sizeof or address (&) operators.
241/// In these instances, this routine should *not* be called.
242Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
243  QualType Ty = Expr->getType();
244  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
245
246  // C99 6.3.1.1p2:
247  //
248  //   The following may be used in an expression wherever an int or
249  //   unsigned int may be used:
250  //     - an object or expression with an integer type whose integer
251  //       conversion rank is less than or equal to the rank of int
252  //       and unsigned int.
253  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
254  //
255  //   If an int can represent all values of the original type, the
256  //   value is converted to an int; otherwise, it is converted to an
257  //   unsigned int. These are called the integer promotions. All
258  //   other types are unchanged by the integer promotions.
259  QualType PTy = Context.isPromotableBitField(Expr);
260  if (!PTy.isNull()) {
261    ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
262    return Expr;
263  }
264  if (Ty->isPromotableIntegerType()) {
265    QualType PT = Context.getPromotedIntegerType(Ty);
266    ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
267    return Expr;
268  }
269
270  DefaultFunctionArrayLvalueConversion(Expr);
271  return Expr;
272}
273
274/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
275/// do not have a prototype. Arguments that have type float are promoted to
276/// double. All other argument types are converted by UsualUnaryConversions().
277void Sema::DefaultArgumentPromotion(Expr *&Expr) {
278  QualType Ty = Expr->getType();
279  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
280
281  // If this is a 'float' (CVR qualified or typedef) promote to double.
282  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
283    return ImpCastExprToType(Expr, Context.DoubleTy,
284                             CastExpr::CK_FloatingCast);
285
286  UsualUnaryConversions(Expr);
287}
288
289/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
290/// will warn if the resulting type is not a POD type, and rejects ObjC
291/// interfaces passed by value.  This returns true if the argument type is
292/// completely illegal.
293bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT,
294                                            FunctionDecl *FDecl) {
295  DefaultArgumentPromotion(Expr);
296
297  // __builtin_va_start takes the second argument as a "varargs" argument, but
298  // it doesn't actually do anything with it.  It doesn't need to be non-pod
299  // etc.
300  if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
301    return false;
302
303  if (Expr->getType()->isObjCObjectType() &&
304      DiagRuntimeBehavior(Expr->getLocStart(),
305        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
306          << Expr->getType() << CT))
307    return true;
308
309  if (!Expr->getType()->isPODType() &&
310      DiagRuntimeBehavior(Expr->getLocStart(),
311                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
312                            << Expr->getType() << CT))
313    return true;
314
315  return false;
316}
317
318
319/// UsualArithmeticConversions - Performs various conversions that are common to
320/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
321/// routine returns the first non-arithmetic type found. The client is
322/// responsible for emitting appropriate error diagnostics.
323/// FIXME: verify the conversion rules for "complex int" are consistent with
324/// GCC.
325QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
326                                          bool isCompAssign) {
327  if (!isCompAssign)
328    UsualUnaryConversions(lhsExpr);
329
330  UsualUnaryConversions(rhsExpr);
331
332  // For conversion purposes, we ignore any qualifiers.
333  // For example, "const float" and "float" are equivalent.
334  QualType lhs =
335    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
336  QualType rhs =
337    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
338
339  // If both types are identical, no conversion is needed.
340  if (lhs == rhs)
341    return lhs;
342
343  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
344  // The caller can deal with this (e.g. pointer + int).
345  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
346    return lhs;
347
348  // Perform bitfield promotions.
349  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
350  if (!LHSBitfieldPromoteTy.isNull())
351    lhs = LHSBitfieldPromoteTy;
352  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
353  if (!RHSBitfieldPromoteTy.isNull())
354    rhs = RHSBitfieldPromoteTy;
355
356  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
357  if (!isCompAssign)
358    ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
359  ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
360  return destType;
361}
362
363//===----------------------------------------------------------------------===//
364//  Semantic Analysis for various Expression Types
365//===----------------------------------------------------------------------===//
366
367
368/// ActOnStringLiteral - The specified tokens were lexed as pasted string
369/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
370/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
371/// multiple tokens.  However, the common case is that StringToks points to one
372/// string.
373///
374Action::OwningExprResult
375Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
376  assert(NumStringToks && "Must have at least one string!");
377
378  StringLiteralParser Literal(StringToks, NumStringToks, PP);
379  if (Literal.hadError)
380    return ExprError();
381
382  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
383  for (unsigned i = 0; i != NumStringToks; ++i)
384    StringTokLocs.push_back(StringToks[i].getLocation());
385
386  QualType StrTy = Context.CharTy;
387  if (Literal.AnyWide) StrTy = Context.getWCharType();
388  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
389
390  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
391  if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings )
392    StrTy.addConst();
393
394  // Get an array type for the string, according to C99 6.4.5.  This includes
395  // the nul terminator character as well as the string length for pascal
396  // strings.
397  StrTy = Context.getConstantArrayType(StrTy,
398                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
399                                       ArrayType::Normal, 0);
400
401  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
402  return Owned(StringLiteral::Create(Context, Literal.GetString(),
403                                     Literal.GetStringLength(),
404                                     Literal.AnyWide, StrTy,
405                                     &StringTokLocs[0],
406                                     StringTokLocs.size()));
407}
408
409/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
410/// CurBlock to VD should cause it to be snapshotted (as we do for auto
411/// variables defined outside the block) or false if this is not needed (e.g.
412/// for values inside the block or for globals).
413///
414/// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records
415/// up-to-date.
416///
417static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock,
418                                              ValueDecl *VD) {
419  // If the value is defined inside the block, we couldn't snapshot it even if
420  // we wanted to.
421  if (CurBlock->TheDecl == VD->getDeclContext())
422    return false;
423
424  // If this is an enum constant or function, it is constant, don't snapshot.
425  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
426    return false;
427
428  // If this is a reference to an extern, static, or global variable, no need to
429  // snapshot it.
430  // FIXME: What about 'const' variables in C++?
431  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
432    if (!Var->hasLocalStorage())
433      return false;
434
435  // Blocks that have these can't be constant.
436  CurBlock->hasBlockDeclRefExprs = true;
437
438  // If we have nested blocks, the decl may be declared in an outer block (in
439  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
440  // be defined outside all of the current blocks (in which case the blocks do
441  // all get the bit).  Walk the nesting chain.
442  for (unsigned I = S.FunctionScopes.size() - 1; I; --I) {
443    BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]);
444
445    if (!NextBlock)
446      continue;
447
448    // If we found the defining block for the variable, don't mark the block as
449    // having a reference outside it.
450    if (NextBlock->TheDecl == VD->getDeclContext())
451      break;
452
453    // Otherwise, the DeclRef from the inner block causes the outer one to need
454    // a snapshot as well.
455    NextBlock->hasBlockDeclRefExprs = true;
456  }
457
458  return true;
459}
460
461
462
463/// BuildDeclRefExpr - Build a DeclRefExpr.
464Sema::OwningExprResult
465Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
466                       const CXXScopeSpec *SS) {
467  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
468    Diag(Loc,
469         diag::err_auto_variable_cannot_appear_in_own_initializer)
470      << D->getDeclName();
471    return ExprError();
472  }
473
474  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
475    if (isa<NonTypeTemplateParmDecl>(VD)) {
476      // Non-type template parameters can be referenced anywhere they are
477      // visible.
478    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
479      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
480        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
481          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
482            << D->getIdentifier() << FD->getDeclName();
483          Diag(D->getLocation(), diag::note_local_variable_declared_here)
484            << D->getIdentifier();
485          return ExprError();
486        }
487      }
488    }
489  }
490
491  MarkDeclarationReferenced(Loc, D);
492
493  return Owned(DeclRefExpr::Create(Context,
494                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
495                                   SS? SS->getRange() : SourceRange(),
496                                   D, Loc, Ty));
497}
498
499/// \brief Given a field that represents a member of an anonymous
500/// struct/union, build the path from that field's context to the
501/// actual member.
502///
503/// Construct the sequence of field member references we'll have to
504/// perform to get to the field in the anonymous union/struct. The
505/// list of members is built from the field outward, so traverse it
506/// backwards to go from an object in the current context to the field
507/// we found.
508///
509/// \returns The variable from which the field access should begin,
510/// for an anonymous struct/union that is not a member of another
511/// class. Otherwise, returns NULL.
512VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
513                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
514  assert(Field->getDeclContext()->isRecord() &&
515         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
516         && "Field must be stored inside an anonymous struct or union");
517
518  Path.push_back(Field);
519  VarDecl *BaseObject = 0;
520  DeclContext *Ctx = Field->getDeclContext();
521  do {
522    RecordDecl *Record = cast<RecordDecl>(Ctx);
523    ValueDecl *AnonObject = Record->getAnonymousStructOrUnionObject();
524    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
525      Path.push_back(AnonField);
526    else {
527      BaseObject = cast<VarDecl>(AnonObject);
528      break;
529    }
530    Ctx = Ctx->getParent();
531  } while (Ctx->isRecord() &&
532           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
533
534  return BaseObject;
535}
536
537Sema::OwningExprResult
538Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
539                                               FieldDecl *Field,
540                                               Expr *BaseObjectExpr,
541                                               SourceLocation OpLoc) {
542  llvm::SmallVector<FieldDecl *, 4> AnonFields;
543  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
544                                                            AnonFields);
545
546  // Build the expression that refers to the base object, from
547  // which we will build a sequence of member references to each
548  // of the anonymous union objects and, eventually, the field we
549  // found via name lookup.
550  bool BaseObjectIsPointer = false;
551  Qualifiers BaseQuals;
552  if (BaseObject) {
553    // BaseObject is an anonymous struct/union variable (and is,
554    // therefore, not part of another non-anonymous record).
555    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
556    MarkDeclarationReferenced(Loc, BaseObject);
557    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
558                                               SourceLocation());
559    BaseQuals
560      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
561  } else if (BaseObjectExpr) {
562    // The caller provided the base object expression. Determine
563    // whether its a pointer and whether it adds any qualifiers to the
564    // anonymous struct/union fields we're looking into.
565    QualType ObjectType = BaseObjectExpr->getType();
566    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
567      BaseObjectIsPointer = true;
568      ObjectType = ObjectPtr->getPointeeType();
569    }
570    BaseQuals
571      = Context.getCanonicalType(ObjectType).getQualifiers();
572  } else {
573    // We've found a member of an anonymous struct/union that is
574    // inside a non-anonymous struct/union, so in a well-formed
575    // program our base object expression is "this".
576    DeclContext *DC = getFunctionLevelDeclContext();
577    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
578      if (!MD->isStatic()) {
579        QualType AnonFieldType
580          = Context.getTagDeclType(
581                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
582        QualType ThisType = Context.getTagDeclType(MD->getParent());
583        if ((Context.getCanonicalType(AnonFieldType)
584               == Context.getCanonicalType(ThisType)) ||
585            IsDerivedFrom(ThisType, AnonFieldType)) {
586          // Our base object expression is "this".
587          BaseObjectExpr = new (Context) CXXThisExpr(Loc,
588                                                     MD->getThisType(Context),
589                                                     /*isImplicit=*/true);
590          BaseObjectIsPointer = true;
591        }
592      } else {
593        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
594          << Field->getDeclName());
595      }
596      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
597    }
598
599    if (!BaseObjectExpr)
600      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
601        << Field->getDeclName());
602  }
603
604  // Build the implicit member references to the field of the
605  // anonymous struct/union.
606  Expr *Result = BaseObjectExpr;
607  Qualifiers ResultQuals = BaseQuals;
608  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
609         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
610       FI != FIEnd; ++FI) {
611    QualType MemberType = (*FI)->getType();
612    Qualifiers MemberTypeQuals =
613      Context.getCanonicalType(MemberType).getQualifiers();
614
615    // CVR attributes from the base are picked up by members,
616    // except that 'mutable' members don't pick up 'const'.
617    if ((*FI)->isMutable())
618      ResultQuals.removeConst();
619
620    // GC attributes are never picked up by members.
621    ResultQuals.removeObjCGCAttr();
622
623    // TR 18037 does not allow fields to be declared with address spaces.
624    assert(!MemberTypeQuals.hasAddressSpace());
625
626    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
627    if (NewQuals != MemberTypeQuals)
628      MemberType = Context.getQualifiedType(MemberType, NewQuals);
629
630    MarkDeclarationReferenced(Loc, *FI);
631    PerformObjectMemberConversion(Result, /*FIXME:Qualifier=*/0, *FI, *FI);
632    // FIXME: Might this end up being a qualified name?
633    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
634                                      OpLoc, MemberType);
635    BaseObjectIsPointer = false;
636    ResultQuals = NewQuals;
637  }
638
639  return Owned(Result);
640}
641
642/// Decomposes the given name into a DeclarationName, its location, and
643/// possibly a list of template arguments.
644///
645/// If this produces template arguments, it is permitted to call
646/// DecomposeTemplateName.
647///
648/// This actually loses a lot of source location information for
649/// non-standard name kinds; we should consider preserving that in
650/// some way.
651static void DecomposeUnqualifiedId(Sema &SemaRef,
652                                   const UnqualifiedId &Id,
653                                   TemplateArgumentListInfo &Buffer,
654                                   DeclarationName &Name,
655                                   SourceLocation &NameLoc,
656                             const TemplateArgumentListInfo *&TemplateArgs) {
657  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
658    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
659    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
660
661    ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
662                                       Id.TemplateId->getTemplateArgs(),
663                                       Id.TemplateId->NumArgs);
664    SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
665    TemplateArgsPtr.release();
666
667    TemplateName TName =
668      Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
669
670    Name = SemaRef.Context.getNameForTemplate(TName);
671    NameLoc = Id.TemplateId->TemplateNameLoc;
672    TemplateArgs = &Buffer;
673  } else {
674    Name = SemaRef.GetNameFromUnqualifiedId(Id);
675    NameLoc = Id.StartLocation;
676    TemplateArgs = 0;
677  }
678}
679
680/// Decompose the given template name into a list of lookup results.
681///
682/// The unqualified ID must name a non-dependent template, which can
683/// be more easily tested by checking whether DecomposeUnqualifiedId
684/// found template arguments.
685static void DecomposeTemplateName(LookupResult &R, const UnqualifiedId &Id) {
686  assert(Id.getKind() == UnqualifiedId::IK_TemplateId);
687  TemplateName TName =
688    Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
689
690  if (TemplateDecl *TD = TName.getAsTemplateDecl())
691    R.addDecl(TD);
692  else if (OverloadedTemplateStorage *OT = TName.getAsOverloadedTemplate())
693    for (OverloadedTemplateStorage::iterator I = OT->begin(), E = OT->end();
694           I != E; ++I)
695      R.addDecl(*I);
696
697  R.resolveKind();
698}
699
700/// Determines whether the given record is "fully-formed" at the given
701/// location, i.e. whether a qualified lookup into it is assured of
702/// getting consistent results already.
703static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
704  if (!Record->hasDefinition())
705    return false;
706
707  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
708         E = Record->bases_end(); I != E; ++I) {
709    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
710    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
711    if (!BaseRT) return false;
712
713    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
714    if (!BaseRecord->hasDefinition() ||
715        !IsFullyFormedScope(SemaRef, BaseRecord))
716      return false;
717  }
718
719  return true;
720}
721
722/// Determines whether we can lookup this id-expression now or whether
723/// we have to wait until template instantiation is complete.
724static bool IsDependentIdExpression(Sema &SemaRef, const CXXScopeSpec &SS) {
725  DeclContext *DC = SemaRef.computeDeclContext(SS, false);
726
727  // If the qualifier scope isn't computable, it's definitely dependent.
728  if (!DC) return true;
729
730  // If the qualifier scope doesn't name a record, we can always look into it.
731  if (!isa<CXXRecordDecl>(DC)) return false;
732
733  // We can't look into record types unless they're fully-formed.
734  if (!IsFullyFormedScope(SemaRef, cast<CXXRecordDecl>(DC))) return true;
735
736  return false;
737}
738
739/// Determines if the given class is provably not derived from all of
740/// the prospective base classes.
741static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
742                                     CXXRecordDecl *Record,
743                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
744  if (Bases.count(Record->getCanonicalDecl()))
745    return false;
746
747  RecordDecl *RD = Record->getDefinition();
748  if (!RD) return false;
749  Record = cast<CXXRecordDecl>(RD);
750
751  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
752         E = Record->bases_end(); I != E; ++I) {
753    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
754    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
755    if (!BaseRT) return false;
756
757    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
758    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
759      return false;
760  }
761
762  return true;
763}
764
765enum IMAKind {
766  /// The reference is definitely not an instance member access.
767  IMA_Static,
768
769  /// The reference may be an implicit instance member access.
770  IMA_Mixed,
771
772  /// The reference may be to an instance member, but it is invalid if
773  /// so, because the context is not an instance method.
774  IMA_Mixed_StaticContext,
775
776  /// The reference may be to an instance member, but it is invalid if
777  /// so, because the context is from an unrelated class.
778  IMA_Mixed_Unrelated,
779
780  /// The reference is definitely an implicit instance member access.
781  IMA_Instance,
782
783  /// The reference may be to an unresolved using declaration.
784  IMA_Unresolved,
785
786  /// The reference may be to an unresolved using declaration and the
787  /// context is not an instance method.
788  IMA_Unresolved_StaticContext,
789
790  /// The reference is to a member of an anonymous structure in a
791  /// non-class context.
792  IMA_AnonymousMember,
793
794  /// All possible referrents are instance members and the current
795  /// context is not an instance method.
796  IMA_Error_StaticContext,
797
798  /// All possible referrents are instance members of an unrelated
799  /// class.
800  IMA_Error_Unrelated
801};
802
803/// The given lookup names class member(s) and is not being used for
804/// an address-of-member expression.  Classify the type of access
805/// according to whether it's possible that this reference names an
806/// instance member.  This is best-effort; it is okay to
807/// conservatively answer "yes", in which case some errors will simply
808/// not be caught until template-instantiation.
809static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
810                                            const LookupResult &R) {
811  assert(!R.empty() && (*R.begin())->isCXXClassMember());
812
813  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
814  bool isStaticContext =
815    (!isa<CXXMethodDecl>(DC) ||
816     cast<CXXMethodDecl>(DC)->isStatic());
817
818  if (R.isUnresolvableResult())
819    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
820
821  // Collect all the declaring classes of instance members we find.
822  bool hasNonInstance = false;
823  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
824  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
825    NamedDecl *D = *I;
826    if (D->isCXXInstanceMember()) {
827      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
828
829      // If this is a member of an anonymous record, move out to the
830      // innermost non-anonymous struct or union.  If there isn't one,
831      // that's a special case.
832      while (R->isAnonymousStructOrUnion()) {
833        R = dyn_cast<CXXRecordDecl>(R->getParent());
834        if (!R) return IMA_AnonymousMember;
835      }
836      Classes.insert(R->getCanonicalDecl());
837    }
838    else
839      hasNonInstance = true;
840  }
841
842  // If we didn't find any instance members, it can't be an implicit
843  // member reference.
844  if (Classes.empty())
845    return IMA_Static;
846
847  // If the current context is not an instance method, it can't be
848  // an implicit member reference.
849  if (isStaticContext)
850    return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
851
852  // If we can prove that the current context is unrelated to all the
853  // declaring classes, it can't be an implicit member reference (in
854  // which case it's an error if any of those members are selected).
855  if (IsProvablyNotDerivedFrom(SemaRef,
856                               cast<CXXMethodDecl>(DC)->getParent(),
857                               Classes))
858    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
859
860  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
861}
862
863/// Diagnose a reference to a field with no object available.
864static void DiagnoseInstanceReference(Sema &SemaRef,
865                                      const CXXScopeSpec &SS,
866                                      const LookupResult &R) {
867  SourceLocation Loc = R.getNameLoc();
868  SourceRange Range(Loc);
869  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
870
871  if (R.getAsSingle<FieldDecl>()) {
872    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
873      if (MD->isStatic()) {
874        // "invalid use of member 'x' in static member function"
875        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
876          << Range << R.getLookupName();
877        return;
878      }
879    }
880
881    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
882      << R.getLookupName() << Range;
883    return;
884  }
885
886  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
887}
888
889/// Diagnose an empty lookup.
890///
891/// \return false if new lookup candidates were found
892bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS,
893                               LookupResult &R, CorrectTypoContext CTC) {
894  DeclarationName Name = R.getLookupName();
895
896  unsigned diagnostic = diag::err_undeclared_var_use;
897  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
898  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
899      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
900      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
901    diagnostic = diag::err_undeclared_use;
902    diagnostic_suggest = diag::err_undeclared_use_suggest;
903  }
904
905  // If the original lookup was an unqualified lookup, fake an
906  // unqualified lookup.  This is useful when (for example) the
907  // original lookup would not have found something because it was a
908  // dependent name.
909  for (DeclContext *DC = SS.isEmpty()? CurContext : 0;
910       DC; DC = DC->getParent()) {
911    if (isa<CXXRecordDecl>(DC)) {
912      LookupQualifiedName(R, DC);
913
914      if (!R.empty()) {
915        // Don't give errors about ambiguities in this lookup.
916        R.suppressDiagnostics();
917
918        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
919        bool isInstance = CurMethod &&
920                          CurMethod->isInstance() &&
921                          DC == CurMethod->getParent();
922
923        // Give a code modification hint to insert 'this->'.
924        // TODO: fixit for inserting 'Base<T>::' in the other cases.
925        // Actually quite difficult!
926        if (isInstance)
927          Diag(R.getNameLoc(), diagnostic) << Name
928            << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
929        else
930          Diag(R.getNameLoc(), diagnostic) << Name;
931
932        // Do we really want to note all of these?
933        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
934          Diag((*I)->getLocation(), diag::note_dependent_var_use);
935
936        // Tell the callee to try to recover.
937        return false;
938      }
939    }
940  }
941
942  // We didn't find anything, so try to correct for a typo.
943  DeclarationName Corrected;
944  if (S && (Corrected = CorrectTypo(R, S, &SS, false, CTC))) {
945    if (!R.empty()) {
946      if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
947        if (SS.isEmpty())
948          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
949            << FixItHint::CreateReplacement(R.getNameLoc(),
950                                            R.getLookupName().getAsString());
951        else
952          Diag(R.getNameLoc(), diag::err_no_member_suggest)
953            << Name << computeDeclContext(SS, false) << R.getLookupName()
954            << SS.getRange()
955            << FixItHint::CreateReplacement(R.getNameLoc(),
956                                            R.getLookupName().getAsString());
957        if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
958          Diag(ND->getLocation(), diag::note_previous_decl)
959            << ND->getDeclName();
960
961        // Tell the callee to try to recover.
962        return false;
963      }
964
965      if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
966        // FIXME: If we ended up with a typo for a type name or
967        // Objective-C class name, we're in trouble because the parser
968        // is in the wrong place to recover. Suggest the typo
969        // correction, but don't make it a fix-it since we're not going
970        // to recover well anyway.
971        if (SS.isEmpty())
972          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
973        else
974          Diag(R.getNameLoc(), diag::err_no_member_suggest)
975            << Name << computeDeclContext(SS, false) << R.getLookupName()
976            << SS.getRange();
977
978        // Don't try to recover; it won't work.
979        return true;
980      }
981    } else {
982      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
983      // because we aren't able to recover.
984      if (SS.isEmpty())
985        Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected;
986      else
987        Diag(R.getNameLoc(), diag::err_no_member_suggest)
988        << Name << computeDeclContext(SS, false) << Corrected
989        << SS.getRange();
990      return true;
991    }
992    R.clear();
993  }
994
995  // Emit a special diagnostic for failed member lookups.
996  // FIXME: computing the declaration context might fail here (?)
997  if (!SS.isEmpty()) {
998    Diag(R.getNameLoc(), diag::err_no_member)
999      << Name << computeDeclContext(SS, false)
1000      << SS.getRange();
1001    return true;
1002  }
1003
1004  // Give up, we can't recover.
1005  Diag(R.getNameLoc(), diagnostic) << Name;
1006  return true;
1007}
1008
1009Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
1010                                               CXXScopeSpec &SS,
1011                                               UnqualifiedId &Id,
1012                                               bool HasTrailingLParen,
1013                                               bool isAddressOfOperand) {
1014  assert(!(isAddressOfOperand && HasTrailingLParen) &&
1015         "cannot be direct & operand and have a trailing lparen");
1016
1017  if (SS.isInvalid())
1018    return ExprError();
1019
1020  TemplateArgumentListInfo TemplateArgsBuffer;
1021
1022  // Decompose the UnqualifiedId into the following data.
1023  DeclarationName Name;
1024  SourceLocation NameLoc;
1025  const TemplateArgumentListInfo *TemplateArgs;
1026  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
1027                         Name, NameLoc, TemplateArgs);
1028
1029  IdentifierInfo *II = Name.getAsIdentifierInfo();
1030
1031  // C++ [temp.dep.expr]p3:
1032  //   An id-expression is type-dependent if it contains:
1033  //     -- an identifier that was declared with a dependent type,
1034  //        (note: handled after lookup)
1035  //     -- a template-id that is dependent,
1036  //        (note: handled in BuildTemplateIdExpr)
1037  //     -- a conversion-function-id that specifies a dependent type,
1038  //     -- a nested-name-specifier that contains a class-name that
1039  //        names a dependent type.
1040  // Determine whether this is a member of an unknown specialization;
1041  // we need to handle these differently.
1042  if ((Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1043       Name.getCXXNameType()->isDependentType()) ||
1044      (SS.isSet() && IsDependentIdExpression(*this, SS))) {
1045    return ActOnDependentIdExpression(SS, Name, NameLoc,
1046                                      isAddressOfOperand,
1047                                      TemplateArgs);
1048  }
1049
1050  // Perform the required lookup.
1051  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1052  if (TemplateArgs) {
1053    // Lookup the template name again to correctly establish the context in
1054    // which it was found. This is really unfortunate as we already did the
1055    // lookup to determine that it was a template name in the first place. If
1056    // this becomes a performance hit, we can work harder to preserve those
1057    // results until we get here but it's likely not worth it.
1058    bool MemberOfUnknownSpecialization;
1059    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1060                       MemberOfUnknownSpecialization);
1061  } else {
1062    bool IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1063    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1064
1065    // If this reference is in an Objective-C method, then we need to do
1066    // some special Objective-C lookup, too.
1067    if (IvarLookupFollowUp) {
1068      OwningExprResult E(LookupInObjCMethod(R, S, II, true));
1069      if (E.isInvalid())
1070        return ExprError();
1071
1072      Expr *Ex = E.takeAs<Expr>();
1073      if (Ex) return Owned(Ex);
1074    }
1075  }
1076
1077  if (R.isAmbiguous())
1078    return ExprError();
1079
1080  // Determine whether this name might be a candidate for
1081  // argument-dependent lookup.
1082  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1083
1084  if (R.empty() && !ADL) {
1085    // Otherwise, this could be an implicitly declared function reference (legal
1086    // in C90, extension in C99, forbidden in C++).
1087    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1088      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1089      if (D) R.addDecl(D);
1090    }
1091
1092    // If this name wasn't predeclared and if this is not a function
1093    // call, diagnose the problem.
1094    if (R.empty()) {
1095      if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
1096        return ExprError();
1097
1098      assert(!R.empty() &&
1099             "DiagnoseEmptyLookup returned false but added no results");
1100
1101      // If we found an Objective-C instance variable, let
1102      // LookupInObjCMethod build the appropriate expression to
1103      // reference the ivar.
1104      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1105        R.clear();
1106        OwningExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1107        assert(E.isInvalid() || E.get());
1108        return move(E);
1109      }
1110    }
1111  }
1112
1113  // This is guaranteed from this point on.
1114  assert(!R.empty() || ADL);
1115
1116  if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
1117    // Warn about constructs like:
1118    //   if (void *X = foo()) { ... } else { X }.
1119    // In the else block, the pointer is always false.
1120    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
1121      Scope *CheckS = S;
1122      while (CheckS && CheckS->getControlParent()) {
1123        if ((CheckS->getFlags() & Scope::ElseScope) &&
1124            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
1125          ExprError(Diag(NameLoc, diag::warn_value_always_zero)
1126            << Var->getDeclName()
1127            << (Var->getType()->isPointerType() ? 2 :
1128                Var->getType()->isBooleanType() ? 1 : 0));
1129          break;
1130        }
1131
1132        // Move to the parent of this scope.
1133        CheckS = CheckS->getParent();
1134      }
1135    }
1136  } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
1137    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1138      // C99 DR 316 says that, if a function type comes from a
1139      // function definition (without a prototype), that type is only
1140      // used for checking compatibility. Therefore, when referencing
1141      // the function, we pretend that we don't have the full function
1142      // type.
1143      if (DiagnoseUseOfDecl(Func, NameLoc))
1144        return ExprError();
1145
1146      QualType T = Func->getType();
1147      QualType NoProtoType = T;
1148      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
1149        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType(),
1150                                                     Proto->getExtInfo());
1151      return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
1152    }
1153  }
1154
1155  // Check whether this might be a C++ implicit instance member access.
1156  // C++ [expr.prim.general]p6:
1157  //   Within the definition of a non-static member function, an
1158  //   identifier that names a non-static member is transformed to a
1159  //   class member access expression.
1160  // But note that &SomeClass::foo is grammatically distinct, even
1161  // though we don't parse it that way.
1162  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1163    bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty());
1164    if (!isAbstractMemberPointer)
1165      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
1166  }
1167
1168  if (TemplateArgs)
1169    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
1170
1171  return BuildDeclarationNameExpr(SS, R, ADL);
1172}
1173
1174/// Builds an expression which might be an implicit member expression.
1175Sema::OwningExprResult
1176Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
1177                                      LookupResult &R,
1178                                const TemplateArgumentListInfo *TemplateArgs) {
1179  switch (ClassifyImplicitMemberAccess(*this, R)) {
1180  case IMA_Instance:
1181    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
1182
1183  case IMA_AnonymousMember:
1184    assert(R.isSingleResult());
1185    return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
1186                                                    R.getAsSingle<FieldDecl>());
1187
1188  case IMA_Mixed:
1189  case IMA_Mixed_Unrelated:
1190  case IMA_Unresolved:
1191    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
1192
1193  case IMA_Static:
1194  case IMA_Mixed_StaticContext:
1195  case IMA_Unresolved_StaticContext:
1196    if (TemplateArgs)
1197      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
1198    return BuildDeclarationNameExpr(SS, R, false);
1199
1200  case IMA_Error_StaticContext:
1201  case IMA_Error_Unrelated:
1202    DiagnoseInstanceReference(*this, SS, R);
1203    return ExprError();
1204  }
1205
1206  llvm_unreachable("unexpected instance member access kind");
1207  return ExprError();
1208}
1209
1210/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1211/// declaration name, generally during template instantiation.
1212/// There's a large number of things which don't need to be done along
1213/// this path.
1214Sema::OwningExprResult
1215Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1216                                        DeclarationName Name,
1217                                        SourceLocation NameLoc) {
1218  DeclContext *DC;
1219  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1220    return BuildDependentDeclRefExpr(SS, Name, NameLoc, 0);
1221
1222  if (RequireCompleteDeclContext(SS, DC))
1223    return ExprError();
1224
1225  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1226  LookupQualifiedName(R, DC);
1227
1228  if (R.isAmbiguous())
1229    return ExprError();
1230
1231  if (R.empty()) {
1232    Diag(NameLoc, diag::err_no_member) << Name << DC << SS.getRange();
1233    return ExprError();
1234  }
1235
1236  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1237}
1238
1239/// LookupInObjCMethod - The parser has read a name in, and Sema has
1240/// detected that we're currently inside an ObjC method.  Perform some
1241/// additional lookup.
1242///
1243/// Ideally, most of this would be done by lookup, but there's
1244/// actually quite a lot of extra work involved.
1245///
1246/// Returns a null sentinel to indicate trivial success.
1247Sema::OwningExprResult
1248Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1249                         IdentifierInfo *II, bool AllowBuiltinCreation) {
1250  SourceLocation Loc = Lookup.getNameLoc();
1251  ObjCMethodDecl *CurMethod = getCurMethodDecl();
1252
1253  // There are two cases to handle here.  1) scoped lookup could have failed,
1254  // in which case we should look for an ivar.  2) scoped lookup could have
1255  // found a decl, but that decl is outside the current instance method (i.e.
1256  // a global variable).  In these two cases, we do a lookup for an ivar with
1257  // this name, if the lookup sucedes, we replace it our current decl.
1258
1259  // If we're in a class method, we don't normally want to look for
1260  // ivars.  But if we don't find anything else, and there's an
1261  // ivar, that's an error.
1262  bool IsClassMethod = CurMethod->isClassMethod();
1263
1264  bool LookForIvars;
1265  if (Lookup.empty())
1266    LookForIvars = true;
1267  else if (IsClassMethod)
1268    LookForIvars = false;
1269  else
1270    LookForIvars = (Lookup.isSingleResult() &&
1271                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1272  ObjCInterfaceDecl *IFace = 0;
1273  if (LookForIvars) {
1274    IFace = CurMethod->getClassInterface();
1275    ObjCInterfaceDecl *ClassDeclared;
1276    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1277      // Diagnose using an ivar in a class method.
1278      if (IsClassMethod)
1279        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1280                         << IV->getDeclName());
1281
1282      // If we're referencing an invalid decl, just return this as a silent
1283      // error node.  The error diagnostic was already emitted on the decl.
1284      if (IV->isInvalidDecl())
1285        return ExprError();
1286
1287      // Check if referencing a field with __attribute__((deprecated)).
1288      if (DiagnoseUseOfDecl(IV, Loc))
1289        return ExprError();
1290
1291      // Diagnose the use of an ivar outside of the declaring class.
1292      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1293          ClassDeclared != IFace)
1294        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1295
1296      // FIXME: This should use a new expr for a direct reference, don't
1297      // turn this into Self->ivar, just return a BareIVarExpr or something.
1298      IdentifierInfo &II = Context.Idents.get("self");
1299      UnqualifiedId SelfName;
1300      SelfName.setIdentifier(&II, SourceLocation());
1301      CXXScopeSpec SelfScopeSpec;
1302      OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
1303                                                    SelfName, false, false);
1304      MarkDeclarationReferenced(Loc, IV);
1305      return Owned(new (Context)
1306                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1307                                   SelfExpr.takeAs<Expr>(), true, true));
1308    }
1309  } else if (CurMethod->isInstanceMethod()) {
1310    // We should warn if a local variable hides an ivar.
1311    ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
1312    ObjCInterfaceDecl *ClassDeclared;
1313    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1314      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1315          IFace == ClassDeclared)
1316        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1317    }
1318  }
1319
1320  if (Lookup.empty() && II && AllowBuiltinCreation) {
1321    // FIXME. Consolidate this with similar code in LookupName.
1322    if (unsigned BuiltinID = II->getBuiltinID()) {
1323      if (!(getLangOptions().CPlusPlus &&
1324            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1325        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1326                                           S, Lookup.isForRedeclaration(),
1327                                           Lookup.getNameLoc());
1328        if (D) Lookup.addDecl(D);
1329      }
1330    }
1331  }
1332  // Sentinel value saying that we didn't do anything special.
1333  return Owned((Expr*) 0);
1334}
1335
1336/// \brief Cast a base object to a member's actual type.
1337///
1338/// Logically this happens in three phases:
1339///
1340/// * First we cast from the base type to the naming class.
1341///   The naming class is the class into which we were looking
1342///   when we found the member;  it's the qualifier type if a
1343///   qualifier was provided, and otherwise it's the base type.
1344///
1345/// * Next we cast from the naming class to the declaring class.
1346///   If the member we found was brought into a class's scope by
1347///   a using declaration, this is that class;  otherwise it's
1348///   the class declaring the member.
1349///
1350/// * Finally we cast from the declaring class to the "true"
1351///   declaring class of the member.  This conversion does not
1352///   obey access control.
1353bool
1354Sema::PerformObjectMemberConversion(Expr *&From,
1355                                    NestedNameSpecifier *Qualifier,
1356                                    NamedDecl *FoundDecl,
1357                                    NamedDecl *Member) {
1358  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
1359  if (!RD)
1360    return false;
1361
1362  QualType DestRecordType;
1363  QualType DestType;
1364  QualType FromRecordType;
1365  QualType FromType = From->getType();
1366  bool PointerConversions = false;
1367  if (isa<FieldDecl>(Member)) {
1368    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
1369
1370    if (FromType->getAs<PointerType>()) {
1371      DestType = Context.getPointerType(DestRecordType);
1372      FromRecordType = FromType->getPointeeType();
1373      PointerConversions = true;
1374    } else {
1375      DestType = DestRecordType;
1376      FromRecordType = FromType;
1377    }
1378  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
1379    if (Method->isStatic())
1380      return false;
1381
1382    DestType = Method->getThisType(Context);
1383    DestRecordType = DestType->getPointeeType();
1384
1385    if (FromType->getAs<PointerType>()) {
1386      FromRecordType = FromType->getPointeeType();
1387      PointerConversions = true;
1388    } else {
1389      FromRecordType = FromType;
1390      DestType = DestRecordType;
1391    }
1392  } else {
1393    // No conversion necessary.
1394    return false;
1395  }
1396
1397  if (DestType->isDependentType() || FromType->isDependentType())
1398    return false;
1399
1400  // If the unqualified types are the same, no conversion is necessary.
1401  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1402    return false;
1403
1404  SourceRange FromRange = From->getSourceRange();
1405  SourceLocation FromLoc = FromRange.getBegin();
1406
1407  bool isLvalue
1408    = (From->isLvalue(Context) == Expr::LV_Valid) && !PointerConversions;
1409
1410  // C++ [class.member.lookup]p8:
1411  //   [...] Ambiguities can often be resolved by qualifying a name with its
1412  //   class name.
1413  //
1414  // If the member was a qualified name and the qualified referred to a
1415  // specific base subobject type, we'll cast to that intermediate type
1416  // first and then to the object in which the member is declared. That allows
1417  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1418  //
1419  //   class Base { public: int x; };
1420  //   class Derived1 : public Base { };
1421  //   class Derived2 : public Base { };
1422  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
1423  //
1424  //   void VeryDerived::f() {
1425  //     x = 17; // error: ambiguous base subobjects
1426  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
1427  //   }
1428  if (Qualifier) {
1429    QualType QType = QualType(Qualifier->getAsType(), 0);
1430    assert(!QType.isNull() && "lookup done with dependent qualifier?");
1431    assert(QType->isRecordType() && "lookup done with non-record type");
1432
1433    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
1434
1435    // In C++98, the qualifier type doesn't actually have to be a base
1436    // type of the object type, in which case we just ignore it.
1437    // Otherwise build the appropriate casts.
1438    if (IsDerivedFrom(FromRecordType, QRecordType)) {
1439      CXXBaseSpecifierArray BasePath;
1440      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
1441                                       FromLoc, FromRange, &BasePath))
1442        return true;
1443
1444      if (PointerConversions)
1445        QType = Context.getPointerType(QType);
1446      ImpCastExprToType(From, QType, CastExpr::CK_UncheckedDerivedToBase,
1447                        isLvalue, BasePath);
1448
1449      FromType = QType;
1450      FromRecordType = QRecordType;
1451
1452      // If the qualifier type was the same as the destination type,
1453      // we're done.
1454      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1455        return false;
1456    }
1457  }
1458
1459  bool IgnoreAccess = false;
1460
1461  // If we actually found the member through a using declaration, cast
1462  // down to the using declaration's type.
1463  //
1464  // Pointer equality is fine here because only one declaration of a
1465  // class ever has member declarations.
1466  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
1467    assert(isa<UsingShadowDecl>(FoundDecl));
1468    QualType URecordType = Context.getTypeDeclType(
1469                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
1470
1471    // We only need to do this if the naming-class to declaring-class
1472    // conversion is non-trivial.
1473    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
1474      assert(IsDerivedFrom(FromRecordType, URecordType));
1475      CXXBaseSpecifierArray BasePath;
1476      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
1477                                       FromLoc, FromRange, &BasePath))
1478        return true;
1479
1480      QualType UType = URecordType;
1481      if (PointerConversions)
1482        UType = Context.getPointerType(UType);
1483      ImpCastExprToType(From, UType, CastExpr::CK_UncheckedDerivedToBase,
1484                        isLvalue, BasePath);
1485      FromType = UType;
1486      FromRecordType = URecordType;
1487    }
1488
1489    // We don't do access control for the conversion from the
1490    // declaring class to the true declaring class.
1491    IgnoreAccess = true;
1492  }
1493
1494  CXXBaseSpecifierArray BasePath;
1495  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
1496                                   FromLoc, FromRange, &BasePath,
1497                                   IgnoreAccess))
1498    return true;
1499
1500  ImpCastExprToType(From, DestType, CastExpr::CK_UncheckedDerivedToBase,
1501                    isLvalue, BasePath);
1502  return false;
1503}
1504
1505/// \brief Build a MemberExpr AST node.
1506static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
1507                                   const CXXScopeSpec &SS, ValueDecl *Member,
1508                                   DeclAccessPair FoundDecl,
1509                                   SourceLocation Loc, QualType Ty,
1510                          const TemplateArgumentListInfo *TemplateArgs = 0) {
1511  NestedNameSpecifier *Qualifier = 0;
1512  SourceRange QualifierRange;
1513  if (SS.isSet()) {
1514    Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
1515    QualifierRange = SS.getRange();
1516  }
1517
1518  return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
1519                            Member, FoundDecl, Loc, TemplateArgs, Ty);
1520}
1521
1522/// Builds an implicit member access expression.  The current context
1523/// is known to be an instance method, and the given unqualified lookup
1524/// set is known to contain only instance members, at least one of which
1525/// is from an appropriate type.
1526Sema::OwningExprResult
1527Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1528                              LookupResult &R,
1529                              const TemplateArgumentListInfo *TemplateArgs,
1530                              bool IsKnownInstance) {
1531  assert(!R.empty() && !R.isAmbiguous());
1532
1533  SourceLocation Loc = R.getNameLoc();
1534
1535  // We may have found a field within an anonymous union or struct
1536  // (C++ [class.union]).
1537  // FIXME: This needs to happen post-isImplicitMemberReference?
1538  // FIXME: template-ids inside anonymous structs?
1539  if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
1540    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1541      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1542
1543  // If this is known to be an instance access, go ahead and build a
1544  // 'this' expression now.
1545  DeclContext *DC = getFunctionLevelDeclContext();
1546  QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
1547  Expr *This = 0; // null signifies implicit access
1548  if (IsKnownInstance) {
1549    SourceLocation Loc = R.getNameLoc();
1550    if (SS.getRange().isValid())
1551      Loc = SS.getRange().getBegin();
1552    This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
1553  }
1554
1555  return BuildMemberReferenceExpr(ExprArg(*this, This), ThisType,
1556                                  /*OpLoc*/ SourceLocation(),
1557                                  /*IsArrow*/ true,
1558                                  SS,
1559                                  /*FirstQualifierInScope*/ 0,
1560                                  R, TemplateArgs);
1561}
1562
1563bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
1564                                      const LookupResult &R,
1565                                      bool HasTrailingLParen) {
1566  // Only when used directly as the postfix-expression of a call.
1567  if (!HasTrailingLParen)
1568    return false;
1569
1570  // Never if a scope specifier was provided.
1571  if (SS.isSet())
1572    return false;
1573
1574  // Only in C++ or ObjC++.
1575  if (!getLangOptions().CPlusPlus)
1576    return false;
1577
1578  // Turn off ADL when we find certain kinds of declarations during
1579  // normal lookup:
1580  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1581    NamedDecl *D = *I;
1582
1583    // C++0x [basic.lookup.argdep]p3:
1584    //     -- a declaration of a class member
1585    // Since using decls preserve this property, we check this on the
1586    // original decl.
1587    if (D->isCXXClassMember())
1588      return false;
1589
1590    // C++0x [basic.lookup.argdep]p3:
1591    //     -- a block-scope function declaration that is not a
1592    //        using-declaration
1593    // NOTE: we also trigger this for function templates (in fact, we
1594    // don't check the decl type at all, since all other decl types
1595    // turn off ADL anyway).
1596    if (isa<UsingShadowDecl>(D))
1597      D = cast<UsingShadowDecl>(D)->getTargetDecl();
1598    else if (D->getDeclContext()->isFunctionOrMethod())
1599      return false;
1600
1601    // C++0x [basic.lookup.argdep]p3:
1602    //     -- a declaration that is neither a function or a function
1603    //        template
1604    // And also for builtin functions.
1605    if (isa<FunctionDecl>(D)) {
1606      FunctionDecl *FDecl = cast<FunctionDecl>(D);
1607
1608      // But also builtin functions.
1609      if (FDecl->getBuiltinID() && FDecl->isImplicit())
1610        return false;
1611    } else if (!isa<FunctionTemplateDecl>(D))
1612      return false;
1613  }
1614
1615  return true;
1616}
1617
1618
1619/// Diagnoses obvious problems with the use of the given declaration
1620/// as an expression.  This is only actually called for lookups that
1621/// were not overloaded, and it doesn't promise that the declaration
1622/// will in fact be used.
1623static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
1624  if (isa<TypedefDecl>(D)) {
1625    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
1626    return true;
1627  }
1628
1629  if (isa<ObjCInterfaceDecl>(D)) {
1630    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
1631    return true;
1632  }
1633
1634  if (isa<NamespaceDecl>(D)) {
1635    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
1636    return true;
1637  }
1638
1639  return false;
1640}
1641
1642Sema::OwningExprResult
1643Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1644                               LookupResult &R,
1645                               bool NeedsADL) {
1646  // If this is a single, fully-resolved result and we don't need ADL,
1647  // just build an ordinary singleton decl ref.
1648  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
1649    return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl());
1650
1651  // We only need to check the declaration if there's exactly one
1652  // result, because in the overloaded case the results can only be
1653  // functions and function templates.
1654  if (R.isSingleResult() &&
1655      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
1656    return ExprError();
1657
1658  // Otherwise, just build an unresolved lookup expression.  Suppress
1659  // any lookup-related diagnostics; we'll hash these out later, when
1660  // we've picked a target.
1661  R.suppressDiagnostics();
1662
1663  bool Dependent
1664    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
1665  UnresolvedLookupExpr *ULE
1666    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1667                                   (NestedNameSpecifier*) SS.getScopeRep(),
1668                                   SS.getRange(),
1669                                   R.getLookupName(), R.getNameLoc(),
1670                                   NeedsADL, R.isOverloadedResult(),
1671                                   R.begin(), R.end());
1672
1673  return Owned(ULE);
1674}
1675
1676
1677/// \brief Complete semantic analysis for a reference to the given declaration.
1678Sema::OwningExprResult
1679Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1680                               SourceLocation Loc, NamedDecl *D) {
1681  assert(D && "Cannot refer to a NULL declaration");
1682  assert(!isa<FunctionTemplateDecl>(D) &&
1683         "Cannot refer unambiguously to a function template");
1684
1685  if (CheckDeclInExpr(*this, Loc, D))
1686    return ExprError();
1687
1688  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
1689    // Specifically diagnose references to class templates that are missing
1690    // a template argument list.
1691    Diag(Loc, diag::err_template_decl_ref)
1692      << Template << SS.getRange();
1693    Diag(Template->getLocation(), diag::note_template_decl_here);
1694    return ExprError();
1695  }
1696
1697  // Make sure that we're referring to a value.
1698  ValueDecl *VD = dyn_cast<ValueDecl>(D);
1699  if (!VD) {
1700    Diag(Loc, diag::err_ref_non_value)
1701      << D << SS.getRange();
1702    Diag(D->getLocation(), diag::note_declared_at);
1703    return ExprError();
1704  }
1705
1706  // Check whether this declaration can be used. Note that we suppress
1707  // this check when we're going to perform argument-dependent lookup
1708  // on this function name, because this might not be the function
1709  // that overload resolution actually selects.
1710  if (DiagnoseUseOfDecl(VD, Loc))
1711    return ExprError();
1712
1713  // Only create DeclRefExpr's for valid Decl's.
1714  if (VD->isInvalidDecl())
1715    return ExprError();
1716
1717  // If the identifier reference is inside a block, and it refers to a value
1718  // that is outside the block, create a BlockDeclRefExpr instead of a
1719  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1720  // the block is formed.
1721  //
1722  // We do not do this for things like enum constants, global variables, etc,
1723  // as they do not get snapshotted.
1724  //
1725  if (getCurBlock() &&
1726      ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) {
1727    if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
1728      Diag(Loc, diag::err_ref_vm_type);
1729      Diag(D->getLocation(), diag::note_declared_at);
1730      return ExprError();
1731    }
1732
1733    if (VD->getType()->isArrayType()) {
1734      Diag(Loc, diag::err_ref_array_type);
1735      Diag(D->getLocation(), diag::note_declared_at);
1736      return ExprError();
1737    }
1738
1739    MarkDeclarationReferenced(Loc, VD);
1740    QualType ExprTy = VD->getType().getNonReferenceType();
1741    // The BlocksAttr indicates the variable is bound by-reference.
1742    if (VD->getAttr<BlocksAttr>())
1743      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1744    // This is to record that a 'const' was actually synthesize and added.
1745    bool constAdded = !ExprTy.isConstQualified();
1746    // Variable will be bound by-copy, make it const within the closure.
1747
1748    ExprTy.addConst();
1749    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1750                                                constAdded));
1751  }
1752  // If this reference is not in a block or if the referenced variable is
1753  // within the block, create a normal DeclRefExpr.
1754
1755  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, &SS);
1756}
1757
1758Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1759                                                 tok::TokenKind Kind) {
1760  PredefinedExpr::IdentType IT;
1761
1762  switch (Kind) {
1763  default: assert(0 && "Unknown simple primary expr!");
1764  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1765  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1766  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1767  }
1768
1769  // Pre-defined identifiers are of type char[x], where x is the length of the
1770  // string.
1771
1772  Decl *currentDecl = getCurFunctionOrMethodDecl();
1773  if (!currentDecl) {
1774    Diag(Loc, diag::ext_predef_outside_function);
1775    currentDecl = Context.getTranslationUnitDecl();
1776  }
1777
1778  QualType ResTy;
1779  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1780    ResTy = Context.DependentTy;
1781  } else {
1782    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
1783
1784    llvm::APInt LengthI(32, Length + 1);
1785    ResTy = Context.CharTy.withConst();
1786    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1787  }
1788  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1789}
1790
1791Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1792  llvm::SmallString<16> CharBuffer;
1793  bool Invalid = false;
1794  llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
1795  if (Invalid)
1796    return ExprError();
1797
1798  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
1799                            PP);
1800  if (Literal.hadError())
1801    return ExprError();
1802
1803  QualType Ty;
1804  if (!getLangOptions().CPlusPlus)
1805    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
1806  else if (Literal.isWide())
1807    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
1808  else if (Literal.isMultiChar())
1809    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
1810  else
1811    Ty = Context.CharTy;  // 'x' -> char in C++
1812
1813  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1814                                              Literal.isWide(),
1815                                              Ty, Tok.getLocation()));
1816}
1817
1818Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1819  // Fast path for a single digit (which is quite common).  A single digit
1820  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1821  if (Tok.getLength() == 1) {
1822    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1823    unsigned IntSize = Context.Target.getIntWidth();
1824    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1825                    Context.IntTy, Tok.getLocation()));
1826  }
1827
1828  llvm::SmallString<512> IntegerBuffer;
1829  // Add padding so that NumericLiteralParser can overread by one character.
1830  IntegerBuffer.resize(Tok.getLength()+1);
1831  const char *ThisTokBegin = &IntegerBuffer[0];
1832
1833  // Get the spelling of the token, which eliminates trigraphs, etc.
1834  bool Invalid = false;
1835  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
1836  if (Invalid)
1837    return ExprError();
1838
1839  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1840                               Tok.getLocation(), PP);
1841  if (Literal.hadError)
1842    return ExprError();
1843
1844  Expr *Res;
1845
1846  if (Literal.isFloatingLiteral()) {
1847    QualType Ty;
1848    if (Literal.isFloat)
1849      Ty = Context.FloatTy;
1850    else if (!Literal.isLong)
1851      Ty = Context.DoubleTy;
1852    else
1853      Ty = Context.LongDoubleTy;
1854
1855    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1856
1857    using llvm::APFloat;
1858    APFloat Val(Format);
1859
1860    APFloat::opStatus result = Literal.GetFloatValue(Val);
1861
1862    // Overflow is always an error, but underflow is only an error if
1863    // we underflowed to zero (APFloat reports denormals as underflow).
1864    if ((result & APFloat::opOverflow) ||
1865        ((result & APFloat::opUnderflow) && Val.isZero())) {
1866      unsigned diagnostic;
1867      llvm::SmallString<20> buffer;
1868      if (result & APFloat::opOverflow) {
1869        diagnostic = diag::warn_float_overflow;
1870        APFloat::getLargest(Format).toString(buffer);
1871      } else {
1872        diagnostic = diag::warn_float_underflow;
1873        APFloat::getSmallest(Format).toString(buffer);
1874      }
1875
1876      Diag(Tok.getLocation(), diagnostic)
1877        << Ty
1878        << llvm::StringRef(buffer.data(), buffer.size());
1879    }
1880
1881    bool isExact = (result == APFloat::opOK);
1882    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1883
1884  } else if (!Literal.isIntegerLiteral()) {
1885    return ExprError();
1886  } else {
1887    QualType Ty;
1888
1889    // long long is a C99 feature.
1890    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1891        Literal.isLongLong)
1892      Diag(Tok.getLocation(), diag::ext_longlong);
1893
1894    // Get the value in the widest-possible width.
1895    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1896
1897    if (Literal.GetIntegerValue(ResultVal)) {
1898      // If this value didn't fit into uintmax_t, warn and force to ull.
1899      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1900      Ty = Context.UnsignedLongLongTy;
1901      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1902             "long long is not intmax_t?");
1903    } else {
1904      // If this value fits into a ULL, try to figure out what else it fits into
1905      // according to the rules of C99 6.4.4.1p5.
1906
1907      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1908      // be an unsigned int.
1909      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1910
1911      // Check from smallest to largest, picking the smallest type we can.
1912      unsigned Width = 0;
1913      if (!Literal.isLong && !Literal.isLongLong) {
1914        // Are int/unsigned possibilities?
1915        unsigned IntSize = Context.Target.getIntWidth();
1916
1917        // Does it fit in a unsigned int?
1918        if (ResultVal.isIntN(IntSize)) {
1919          // Does it fit in a signed int?
1920          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1921            Ty = Context.IntTy;
1922          else if (AllowUnsigned)
1923            Ty = Context.UnsignedIntTy;
1924          Width = IntSize;
1925        }
1926      }
1927
1928      // Are long/unsigned long possibilities?
1929      if (Ty.isNull() && !Literal.isLongLong) {
1930        unsigned LongSize = Context.Target.getLongWidth();
1931
1932        // Does it fit in a unsigned long?
1933        if (ResultVal.isIntN(LongSize)) {
1934          // Does it fit in a signed long?
1935          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1936            Ty = Context.LongTy;
1937          else if (AllowUnsigned)
1938            Ty = Context.UnsignedLongTy;
1939          Width = LongSize;
1940        }
1941      }
1942
1943      // Finally, check long long if needed.
1944      if (Ty.isNull()) {
1945        unsigned LongLongSize = Context.Target.getLongLongWidth();
1946
1947        // Does it fit in a unsigned long long?
1948        if (ResultVal.isIntN(LongLongSize)) {
1949          // Does it fit in a signed long long?
1950          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1951            Ty = Context.LongLongTy;
1952          else if (AllowUnsigned)
1953            Ty = Context.UnsignedLongLongTy;
1954          Width = LongLongSize;
1955        }
1956      }
1957
1958      // If we still couldn't decide a type, we probably have something that
1959      // does not fit in a signed long long, but has no U suffix.
1960      if (Ty.isNull()) {
1961        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1962        Ty = Context.UnsignedLongLongTy;
1963        Width = Context.Target.getLongLongWidth();
1964      }
1965
1966      if (ResultVal.getBitWidth() != Width)
1967        ResultVal.trunc(Width);
1968    }
1969    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1970  }
1971
1972  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1973  if (Literal.isImaginary)
1974    Res = new (Context) ImaginaryLiteral(Res,
1975                                        Context.getComplexType(Res->getType()));
1976
1977  return Owned(Res);
1978}
1979
1980Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1981                                              SourceLocation R, ExprArg Val) {
1982  Expr *E = Val.takeAs<Expr>();
1983  assert((E != 0) && "ActOnParenExpr() missing expr");
1984  return Owned(new (Context) ParenExpr(L, R, E));
1985}
1986
1987/// The UsualUnaryConversions() function is *not* called by this routine.
1988/// See C99 6.3.2.1p[2-4] for more details.
1989bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1990                                     SourceLocation OpLoc,
1991                                     const SourceRange &ExprRange,
1992                                     bool isSizeof) {
1993  if (exprType->isDependentType())
1994    return false;
1995
1996  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1997  //   the result is the size of the referenced type."
1998  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
1999  //   result shall be the alignment of the referenced type."
2000  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
2001    exprType = Ref->getPointeeType();
2002
2003  // C99 6.5.3.4p1:
2004  if (exprType->isFunctionType()) {
2005    // alignof(function) is allowed as an extension.
2006    if (isSizeof)
2007      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
2008    return false;
2009  }
2010
2011  // Allow sizeof(void)/alignof(void) as an extension.
2012  if (exprType->isVoidType()) {
2013    Diag(OpLoc, diag::ext_sizeof_void_type)
2014      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
2015    return false;
2016  }
2017
2018  if (RequireCompleteType(OpLoc, exprType,
2019                          PDiag(diag::err_sizeof_alignof_incomplete_type)
2020                          << int(!isSizeof) << ExprRange))
2021    return true;
2022
2023  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2024  if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) {
2025    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
2026      << exprType << isSizeof << ExprRange;
2027    return true;
2028  }
2029
2030  return false;
2031}
2032
2033bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
2034                            const SourceRange &ExprRange) {
2035  E = E->IgnoreParens();
2036
2037  // alignof decl is always ok.
2038  if (isa<DeclRefExpr>(E))
2039    return false;
2040
2041  // Cannot know anything else if the expression is dependent.
2042  if (E->isTypeDependent())
2043    return false;
2044
2045  if (E->getBitField()) {
2046    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
2047    return true;
2048  }
2049
2050  // Alignment of a field access is always okay, so long as it isn't a
2051  // bit-field.
2052  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2053    if (isa<FieldDecl>(ME->getMemberDecl()))
2054      return false;
2055
2056  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
2057}
2058
2059/// \brief Build a sizeof or alignof expression given a type operand.
2060Action::OwningExprResult
2061Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
2062                              SourceLocation OpLoc,
2063                              bool isSizeOf, SourceRange R) {
2064  if (!TInfo)
2065    return ExprError();
2066
2067  QualType T = TInfo->getType();
2068
2069  if (!T->isDependentType() &&
2070      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
2071    return ExprError();
2072
2073  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2074  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
2075                                               Context.getSizeType(), OpLoc,
2076                                               R.getEnd()));
2077}
2078
2079/// \brief Build a sizeof or alignof expression given an expression
2080/// operand.
2081Action::OwningExprResult
2082Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
2083                              bool isSizeOf, SourceRange R) {
2084  // Verify that the operand is valid.
2085  bool isInvalid = false;
2086  if (E->isTypeDependent()) {
2087    // Delay type-checking for type-dependent expressions.
2088  } else if (!isSizeOf) {
2089    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
2090  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
2091    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
2092    isInvalid = true;
2093  } else {
2094    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
2095  }
2096
2097  if (isInvalid)
2098    return ExprError();
2099
2100  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2101  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
2102                                               Context.getSizeType(), OpLoc,
2103                                               R.getEnd()));
2104}
2105
2106/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
2107/// the same for @c alignof and @c __alignof
2108/// Note that the ArgRange is invalid if isType is false.
2109Action::OwningExprResult
2110Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
2111                             void *TyOrEx, const SourceRange &ArgRange) {
2112  // If error parsing type, ignore.
2113  if (TyOrEx == 0) return ExprError();
2114
2115  if (isType) {
2116    TypeSourceInfo *TInfo;
2117    (void) GetTypeFromParser(TyOrEx, &TInfo);
2118    return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
2119  }
2120
2121  Expr *ArgEx = (Expr *)TyOrEx;
2122  Action::OwningExprResult Result
2123    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
2124
2125  if (Result.isInvalid())
2126    DeleteExpr(ArgEx);
2127
2128  return move(Result);
2129}
2130
2131QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
2132  if (V->isTypeDependent())
2133    return Context.DependentTy;
2134
2135  // These operators return the element type of a complex type.
2136  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
2137    return CT->getElementType();
2138
2139  // Otherwise they pass through real integer and floating point types here.
2140  if (V->getType()->isArithmeticType())
2141    return V->getType();
2142
2143  // Reject anything else.
2144  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
2145    << (isReal ? "__real" : "__imag");
2146  return QualType();
2147}
2148
2149
2150
2151Action::OwningExprResult
2152Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
2153                          tok::TokenKind Kind, ExprArg Input) {
2154  UnaryOperator::Opcode Opc;
2155  switch (Kind) {
2156  default: assert(0 && "Unknown unary op!");
2157  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
2158  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
2159  }
2160
2161  return BuildUnaryOp(S, OpLoc, Opc, move(Input));
2162}
2163
2164Action::OwningExprResult
2165Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
2166                              ExprArg Idx, SourceLocation RLoc) {
2167  // Since this might be a postfix expression, get rid of ParenListExprs.
2168  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
2169
2170  Expr *LHSExp = static_cast<Expr*>(Base.get()),
2171       *RHSExp = static_cast<Expr*>(Idx.get());
2172
2173  if (getLangOptions().CPlusPlus &&
2174      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
2175    Base.release();
2176    Idx.release();
2177    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2178                                                  Context.DependentTy, RLoc));
2179  }
2180
2181  if (getLangOptions().CPlusPlus &&
2182      (LHSExp->getType()->isRecordType() ||
2183       LHSExp->getType()->isEnumeralType() ||
2184       RHSExp->getType()->isRecordType() ||
2185       RHSExp->getType()->isEnumeralType())) {
2186    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
2187  }
2188
2189  return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
2190}
2191
2192
2193Action::OwningExprResult
2194Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
2195                                     ExprArg Idx, SourceLocation RLoc) {
2196  Expr *LHSExp = static_cast<Expr*>(Base.get());
2197  Expr *RHSExp = static_cast<Expr*>(Idx.get());
2198
2199  // Perform default conversions.
2200  if (!LHSExp->getType()->getAs<VectorType>())
2201      DefaultFunctionArrayLvalueConversion(LHSExp);
2202  DefaultFunctionArrayLvalueConversion(RHSExp);
2203
2204  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
2205
2206  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
2207  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
2208  // in the subscript position. As a result, we need to derive the array base
2209  // and index from the expression types.
2210  Expr *BaseExpr, *IndexExpr;
2211  QualType ResultType;
2212  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
2213    BaseExpr = LHSExp;
2214    IndexExpr = RHSExp;
2215    ResultType = Context.DependentTy;
2216  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
2217    BaseExpr = LHSExp;
2218    IndexExpr = RHSExp;
2219    ResultType = PTy->getPointeeType();
2220  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
2221     // Handle the uncommon case of "123[Ptr]".
2222    BaseExpr = RHSExp;
2223    IndexExpr = LHSExp;
2224    ResultType = PTy->getPointeeType();
2225  } else if (const ObjCObjectPointerType *PTy =
2226               LHSTy->getAs<ObjCObjectPointerType>()) {
2227    BaseExpr = LHSExp;
2228    IndexExpr = RHSExp;
2229    ResultType = PTy->getPointeeType();
2230  } else if (const ObjCObjectPointerType *PTy =
2231               RHSTy->getAs<ObjCObjectPointerType>()) {
2232     // Handle the uncommon case of "123[Ptr]".
2233    BaseExpr = RHSExp;
2234    IndexExpr = LHSExp;
2235    ResultType = PTy->getPointeeType();
2236  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
2237    BaseExpr = LHSExp;    // vectors: V[123]
2238    IndexExpr = RHSExp;
2239
2240    // FIXME: need to deal with const...
2241    ResultType = VTy->getElementType();
2242  } else if (LHSTy->isArrayType()) {
2243    // If we see an array that wasn't promoted by
2244    // DefaultFunctionArrayLvalueConversion, it must be an array that
2245    // wasn't promoted because of the C90 rule that doesn't
2246    // allow promoting non-lvalue arrays.  Warn, then
2247    // force the promotion here.
2248    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2249        LHSExp->getSourceRange();
2250    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
2251                      CastExpr::CK_ArrayToPointerDecay);
2252    LHSTy = LHSExp->getType();
2253
2254    BaseExpr = LHSExp;
2255    IndexExpr = RHSExp;
2256    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
2257  } else if (RHSTy->isArrayType()) {
2258    // Same as previous, except for 123[f().a] case
2259    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2260        RHSExp->getSourceRange();
2261    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
2262                      CastExpr::CK_ArrayToPointerDecay);
2263    RHSTy = RHSExp->getType();
2264
2265    BaseExpr = RHSExp;
2266    IndexExpr = LHSExp;
2267    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
2268  } else {
2269    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
2270       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
2271  }
2272  // C99 6.5.2.1p1
2273  if (!(IndexExpr->getType()->isIntegerType() &&
2274        IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
2275    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
2276                     << IndexExpr->getSourceRange());
2277
2278  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
2279       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
2280         && !IndexExpr->isTypeDependent())
2281    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
2282
2283  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
2284  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
2285  // type. Note that Functions are not objects, and that (in C99 parlance)
2286  // incomplete types are not object types.
2287  if (ResultType->isFunctionType()) {
2288    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
2289      << ResultType << BaseExpr->getSourceRange();
2290    return ExprError();
2291  }
2292
2293  if (!ResultType->isDependentType() &&
2294      RequireCompleteType(LLoc, ResultType,
2295                          PDiag(diag::err_subscript_incomplete_type)
2296                            << BaseExpr->getSourceRange()))
2297    return ExprError();
2298
2299  // Diagnose bad cases where we step over interface counts.
2300  if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
2301    Diag(LLoc, diag::err_subscript_nonfragile_interface)
2302      << ResultType << BaseExpr->getSourceRange();
2303    return ExprError();
2304  }
2305
2306  Base.release();
2307  Idx.release();
2308  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2309                                                ResultType, RLoc));
2310}
2311
2312QualType Sema::
2313CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
2314                        const IdentifierInfo *CompName,
2315                        SourceLocation CompLoc) {
2316  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
2317  // see FIXME there.
2318  //
2319  // FIXME: This logic can be greatly simplified by splitting it along
2320  // halving/not halving and reworking the component checking.
2321  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
2322
2323  // The vector accessor can't exceed the number of elements.
2324  const char *compStr = CompName->getNameStart();
2325
2326  // This flag determines whether or not the component is one of the four
2327  // special names that indicate a subset of exactly half the elements are
2328  // to be selected.
2329  bool HalvingSwizzle = false;
2330
2331  // This flag determines whether or not CompName has an 's' char prefix,
2332  // indicating that it is a string of hex values to be used as vector indices.
2333  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
2334
2335  // Check that we've found one of the special components, or that the component
2336  // names must come from the same set.
2337  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
2338      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
2339    HalvingSwizzle = true;
2340  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
2341    do
2342      compStr++;
2343    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
2344  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
2345    do
2346      compStr++;
2347    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
2348  }
2349
2350  if (!HalvingSwizzle && *compStr) {
2351    // We didn't get to the end of the string. This means the component names
2352    // didn't come from the same set *or* we encountered an illegal name.
2353    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
2354      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
2355    return QualType();
2356  }
2357
2358  // Ensure no component accessor exceeds the width of the vector type it
2359  // operates on.
2360  if (!HalvingSwizzle) {
2361    compStr = CompName->getNameStart();
2362
2363    if (HexSwizzle)
2364      compStr++;
2365
2366    while (*compStr) {
2367      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
2368        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
2369          << baseType << SourceRange(CompLoc);
2370        return QualType();
2371      }
2372    }
2373  }
2374
2375  // The component accessor looks fine - now we need to compute the actual type.
2376  // The vector type is implied by the component accessor. For example,
2377  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
2378  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
2379  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
2380  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
2381                                     : CompName->getLength();
2382  if (HexSwizzle)
2383    CompSize--;
2384
2385  if (CompSize == 1)
2386    return vecType->getElementType();
2387
2388  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
2389  // Now look up the TypeDefDecl from the vector type. Without this,
2390  // diagostics look bad. We want extended vector types to appear built-in.
2391  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
2392    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
2393      return Context.getTypedefType(ExtVectorDecls[i]);
2394  }
2395  return VT; // should never get here (a typedef type should always be found).
2396}
2397
2398static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
2399                                                IdentifierInfo *Member,
2400                                                const Selector &Sel,
2401                                                ASTContext &Context) {
2402
2403  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
2404    return PD;
2405  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
2406    return OMD;
2407
2408  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
2409       E = PDecl->protocol_end(); I != E; ++I) {
2410    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
2411                                                     Context))
2412      return D;
2413  }
2414  return 0;
2415}
2416
2417static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
2418                                IdentifierInfo *Member,
2419                                const Selector &Sel,
2420                                ASTContext &Context) {
2421  // Check protocols on qualified interfaces.
2422  Decl *GDecl = 0;
2423  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2424       E = QIdTy->qual_end(); I != E; ++I) {
2425    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2426      GDecl = PD;
2427      break;
2428    }
2429    // Also must look for a getter name which uses property syntax.
2430    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
2431      GDecl = OMD;
2432      break;
2433    }
2434  }
2435  if (!GDecl) {
2436    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2437         E = QIdTy->qual_end(); I != E; ++I) {
2438      // Search in the protocol-qualifier list of current protocol.
2439      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2440      if (GDecl)
2441        return GDecl;
2442    }
2443  }
2444  return GDecl;
2445}
2446
2447Sema::OwningExprResult
2448Sema::ActOnDependentMemberExpr(ExprArg Base, QualType BaseType,
2449                               bool IsArrow, SourceLocation OpLoc,
2450                               const CXXScopeSpec &SS,
2451                               NamedDecl *FirstQualifierInScope,
2452                               DeclarationName Name, SourceLocation NameLoc,
2453                               const TemplateArgumentListInfo *TemplateArgs) {
2454  Expr *BaseExpr = Base.takeAs<Expr>();
2455
2456  // Even in dependent contexts, try to diagnose base expressions with
2457  // obviously wrong types, e.g.:
2458  //
2459  // T* t;
2460  // t.f;
2461  //
2462  // In Obj-C++, however, the above expression is valid, since it could be
2463  // accessing the 'f' property if T is an Obj-C interface. The extra check
2464  // allows this, while still reporting an error if T is a struct pointer.
2465  if (!IsArrow) {
2466    const PointerType *PT = BaseType->getAs<PointerType>();
2467    if (PT && (!getLangOptions().ObjC1 ||
2468               PT->getPointeeType()->isRecordType())) {
2469      assert(BaseExpr && "cannot happen with implicit member accesses");
2470      Diag(NameLoc, diag::err_typecheck_member_reference_struct_union)
2471        << BaseType << BaseExpr->getSourceRange();
2472      return ExprError();
2473    }
2474  }
2475
2476  assert(BaseType->isDependentType() || Name.isDependentName() ||
2477         isDependentScopeSpecifier(SS));
2478
2479  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2480  // must have pointer type, and the accessed type is the pointee.
2481  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
2482                                                   IsArrow, OpLoc,
2483                 static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2484                                                   SS.getRange(),
2485                                                   FirstQualifierInScope,
2486                                                   Name, NameLoc,
2487                                                   TemplateArgs));
2488}
2489
2490/// We know that the given qualified member reference points only to
2491/// declarations which do not belong to the static type of the base
2492/// expression.  Diagnose the problem.
2493static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
2494                                             Expr *BaseExpr,
2495                                             QualType BaseType,
2496                                             const CXXScopeSpec &SS,
2497                                             const LookupResult &R) {
2498  // If this is an implicit member access, use a different set of
2499  // diagnostics.
2500  if (!BaseExpr)
2501    return DiagnoseInstanceReference(SemaRef, SS, R);
2502
2503  SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_of_unrelated)
2504    << SS.getRange() << R.getRepresentativeDecl() << BaseType;
2505}
2506
2507// Check whether the declarations we found through a nested-name
2508// specifier in a member expression are actually members of the base
2509// type.  The restriction here is:
2510//
2511//   C++ [expr.ref]p2:
2512//     ... In these cases, the id-expression shall name a
2513//     member of the class or of one of its base classes.
2514//
2515// So it's perfectly legitimate for the nested-name specifier to name
2516// an unrelated class, and for us to find an overload set including
2517// decls from classes which are not superclasses, as long as the decl
2518// we actually pick through overload resolution is from a superclass.
2519bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
2520                                         QualType BaseType,
2521                                         const CXXScopeSpec &SS,
2522                                         const LookupResult &R) {
2523  const RecordType *BaseRT = BaseType->getAs<RecordType>();
2524  if (!BaseRT) {
2525    // We can't check this yet because the base type is still
2526    // dependent.
2527    assert(BaseType->isDependentType());
2528    return false;
2529  }
2530  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
2531
2532  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2533    // If this is an implicit member reference and we find a
2534    // non-instance member, it's not an error.
2535    if (!BaseExpr && !(*I)->isCXXInstanceMember())
2536      return false;
2537
2538    // Note that we use the DC of the decl, not the underlying decl.
2539    CXXRecordDecl *RecordD = cast<CXXRecordDecl>((*I)->getDeclContext());
2540    while (RecordD->isAnonymousStructOrUnion())
2541      RecordD = cast<CXXRecordDecl>(RecordD->getParent());
2542
2543    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
2544    MemberRecord.insert(RecordD->getCanonicalDecl());
2545
2546    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
2547      return false;
2548  }
2549
2550  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
2551  return true;
2552}
2553
2554static bool
2555LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
2556                         SourceRange BaseRange, const RecordType *RTy,
2557                         SourceLocation OpLoc, CXXScopeSpec &SS) {
2558  RecordDecl *RDecl = RTy->getDecl();
2559  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
2560                              SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
2561                                    << BaseRange))
2562    return true;
2563
2564  DeclContext *DC = RDecl;
2565  if (SS.isSet()) {
2566    // If the member name was a qualified-id, look into the
2567    // nested-name-specifier.
2568    DC = SemaRef.computeDeclContext(SS, false);
2569
2570    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
2571      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
2572        << SS.getRange() << DC;
2573      return true;
2574    }
2575
2576    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2577
2578    if (!isa<TypeDecl>(DC)) {
2579      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
2580        << DC << SS.getRange();
2581      return true;
2582    }
2583  }
2584
2585  // The record definition is complete, now look up the member.
2586  SemaRef.LookupQualifiedName(R, DC);
2587
2588  if (!R.empty())
2589    return false;
2590
2591  // We didn't find anything with the given name, so try to correct
2592  // for typos.
2593  DeclarationName Name = R.getLookupName();
2594  if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
2595      !R.empty() &&
2596      (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
2597    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
2598      << Name << DC << R.getLookupName() << SS.getRange()
2599      << FixItHint::CreateReplacement(R.getNameLoc(),
2600                                      R.getLookupName().getAsString());
2601    if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
2602      SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
2603        << ND->getDeclName();
2604    return false;
2605  } else {
2606    R.clear();
2607  }
2608
2609  return false;
2610}
2611
2612Sema::OwningExprResult
2613Sema::BuildMemberReferenceExpr(ExprArg BaseArg, QualType BaseType,
2614                               SourceLocation OpLoc, bool IsArrow,
2615                               CXXScopeSpec &SS,
2616                               NamedDecl *FirstQualifierInScope,
2617                               DeclarationName Name, SourceLocation NameLoc,
2618                               const TemplateArgumentListInfo *TemplateArgs) {
2619  Expr *Base = BaseArg.takeAs<Expr>();
2620
2621  if (BaseType->isDependentType() ||
2622      (SS.isSet() && isDependentScopeSpecifier(SS)))
2623    return ActOnDependentMemberExpr(ExprArg(*this, Base), BaseType,
2624                                    IsArrow, OpLoc,
2625                                    SS, FirstQualifierInScope,
2626                                    Name, NameLoc,
2627                                    TemplateArgs);
2628
2629  LookupResult R(*this, Name, NameLoc, LookupMemberName);
2630
2631  // Implicit member accesses.
2632  if (!Base) {
2633    QualType RecordTy = BaseType;
2634    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
2635    if (LookupMemberExprInRecord(*this, R, SourceRange(),
2636                                 RecordTy->getAs<RecordType>(),
2637                                 OpLoc, SS))
2638      return ExprError();
2639
2640  // Explicit member accesses.
2641  } else {
2642    OwningExprResult Result =
2643      LookupMemberExpr(R, Base, IsArrow, OpLoc,
2644                       SS, /*ObjCImpDecl*/ DeclPtrTy());
2645
2646    if (Result.isInvalid()) {
2647      Owned(Base);
2648      return ExprError();
2649    }
2650
2651    if (Result.get())
2652      return move(Result);
2653
2654    // LookupMemberExpr can modify Base, and thus change BaseType
2655    BaseType = Base->getType();
2656  }
2657
2658  return BuildMemberReferenceExpr(ExprArg(*this, Base), BaseType,
2659                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
2660                                  R, TemplateArgs);
2661}
2662
2663Sema::OwningExprResult
2664Sema::BuildMemberReferenceExpr(ExprArg Base, QualType BaseExprType,
2665                               SourceLocation OpLoc, bool IsArrow,
2666                               const CXXScopeSpec &SS,
2667                               NamedDecl *FirstQualifierInScope,
2668                               LookupResult &R,
2669                         const TemplateArgumentListInfo *TemplateArgs,
2670                               bool SuppressQualifierCheck) {
2671  Expr *BaseExpr = Base.takeAs<Expr>();
2672  QualType BaseType = BaseExprType;
2673  if (IsArrow) {
2674    assert(BaseType->isPointerType());
2675    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
2676  }
2677  R.setBaseObjectType(BaseType);
2678
2679  NestedNameSpecifier *Qualifier =
2680    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2681  DeclarationName MemberName = R.getLookupName();
2682  SourceLocation MemberLoc = R.getNameLoc();
2683
2684  if (R.isAmbiguous())
2685    return ExprError();
2686
2687  if (R.empty()) {
2688    // Rederive where we looked up.
2689    DeclContext *DC = (SS.isSet()
2690                       ? computeDeclContext(SS, false)
2691                       : BaseType->getAs<RecordType>()->getDecl());
2692
2693    Diag(R.getNameLoc(), diag::err_no_member)
2694      << MemberName << DC
2695      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
2696    return ExprError();
2697  }
2698
2699  // Diagnose lookups that find only declarations from a non-base
2700  // type.  This is possible for either qualified lookups (which may
2701  // have been qualified with an unrelated type) or implicit member
2702  // expressions (which were found with unqualified lookup and thus
2703  // may have come from an enclosing scope).  Note that it's okay for
2704  // lookup to find declarations from a non-base type as long as those
2705  // aren't the ones picked by overload resolution.
2706  if ((SS.isSet() || !BaseExpr ||
2707       (isa<CXXThisExpr>(BaseExpr) &&
2708        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
2709      !SuppressQualifierCheck &&
2710      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
2711    return ExprError();
2712
2713  // Construct an unresolved result if we in fact got an unresolved
2714  // result.
2715  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
2716    bool Dependent =
2717      BaseExprType->isDependentType() ||
2718      R.isUnresolvableResult() ||
2719      OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
2720
2721    // Suppress any lookup-related diagnostics; we'll do these when we
2722    // pick a member.
2723    R.suppressDiagnostics();
2724
2725    UnresolvedMemberExpr *MemExpr
2726      = UnresolvedMemberExpr::Create(Context, Dependent,
2727                                     R.isUnresolvableResult(),
2728                                     BaseExpr, BaseExprType,
2729                                     IsArrow, OpLoc,
2730                                     Qualifier, SS.getRange(),
2731                                     MemberName, MemberLoc,
2732                                     TemplateArgs, R.begin(), R.end());
2733
2734    return Owned(MemExpr);
2735  }
2736
2737  assert(R.isSingleResult());
2738  DeclAccessPair FoundDecl = R.begin().getPair();
2739  NamedDecl *MemberDecl = R.getFoundDecl();
2740
2741  // FIXME: diagnose the presence of template arguments now.
2742
2743  // If the decl being referenced had an error, return an error for this
2744  // sub-expr without emitting another error, in order to avoid cascading
2745  // error cases.
2746  if (MemberDecl->isInvalidDecl())
2747    return ExprError();
2748
2749  // Handle the implicit-member-access case.
2750  if (!BaseExpr) {
2751    // If this is not an instance member, convert to a non-member access.
2752    if (!MemberDecl->isCXXInstanceMember())
2753      return BuildDeclarationNameExpr(SS, R.getNameLoc(), MemberDecl);
2754
2755    SourceLocation Loc = R.getNameLoc();
2756    if (SS.getRange().isValid())
2757      Loc = SS.getRange().getBegin();
2758    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
2759  }
2760
2761  bool ShouldCheckUse = true;
2762  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2763    // Don't diagnose the use of a virtual member function unless it's
2764    // explicitly qualified.
2765    if (MD->isVirtual() && !SS.isSet())
2766      ShouldCheckUse = false;
2767  }
2768
2769  // Check the use of this member.
2770  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
2771    Owned(BaseExpr);
2772    return ExprError();
2773  }
2774
2775  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2776    // We may have found a field within an anonymous union or struct
2777    // (C++ [class.union]).
2778    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
2779        !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
2780      return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2781                                                      BaseExpr, OpLoc);
2782
2783    // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2784    QualType MemberType = FD->getType();
2785    if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2786      MemberType = Ref->getPointeeType();
2787    else {
2788      Qualifiers BaseQuals = BaseType.getQualifiers();
2789      BaseQuals.removeObjCGCAttr();
2790      if (FD->isMutable()) BaseQuals.removeConst();
2791
2792      Qualifiers MemberQuals
2793        = Context.getCanonicalType(MemberType).getQualifiers();
2794
2795      Qualifiers Combined = BaseQuals + MemberQuals;
2796      if (Combined != MemberQuals)
2797        MemberType = Context.getQualifiedType(MemberType, Combined);
2798    }
2799
2800    MarkDeclarationReferenced(MemberLoc, FD);
2801    if (PerformObjectMemberConversion(BaseExpr, Qualifier, FoundDecl, FD))
2802      return ExprError();
2803    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2804                                 FD, FoundDecl, MemberLoc, MemberType));
2805  }
2806
2807  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2808    MarkDeclarationReferenced(MemberLoc, Var);
2809    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2810                                 Var, FoundDecl, MemberLoc,
2811                                 Var->getType().getNonReferenceType()));
2812  }
2813
2814  if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2815    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2816    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2817                                 MemberFn, FoundDecl, MemberLoc,
2818                                 MemberFn->getType()));
2819  }
2820
2821  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2822    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2823    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2824                                 Enum, FoundDecl, MemberLoc, Enum->getType()));
2825  }
2826
2827  Owned(BaseExpr);
2828
2829  // We found something that we didn't expect. Complain.
2830  if (isa<TypeDecl>(MemberDecl))
2831    Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2832      << MemberName << BaseType << int(IsArrow);
2833  else
2834    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
2835      << MemberName << BaseType << int(IsArrow);
2836
2837  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
2838    << MemberName;
2839  R.suppressDiagnostics();
2840  return ExprError();
2841}
2842
2843/// Look up the given member of the given non-type-dependent
2844/// expression.  This can return in one of two ways:
2845///  * If it returns a sentinel null-but-valid result, the caller will
2846///    assume that lookup was performed and the results written into
2847///    the provided structure.  It will take over from there.
2848///  * Otherwise, the returned expression will be produced in place of
2849///    an ordinary member expression.
2850///
2851/// The ObjCImpDecl bit is a gross hack that will need to be properly
2852/// fixed for ObjC++.
2853Sema::OwningExprResult
2854Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
2855                       bool &IsArrow, SourceLocation OpLoc,
2856                       CXXScopeSpec &SS,
2857                       DeclPtrTy ObjCImpDecl) {
2858  assert(BaseExpr && "no base expression");
2859
2860  // Perform default conversions.
2861  DefaultFunctionArrayConversion(BaseExpr);
2862
2863  QualType BaseType = BaseExpr->getType();
2864  assert(!BaseType->isDependentType());
2865
2866  DeclarationName MemberName = R.getLookupName();
2867  SourceLocation MemberLoc = R.getNameLoc();
2868
2869  // If the user is trying to apply -> or . to a function pointer
2870  // type, it's probably because they forgot parentheses to call that
2871  // function. Suggest the addition of those parentheses, build the
2872  // call, and continue on.
2873  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
2874    if (const FunctionProtoType *Fun
2875          = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
2876      QualType ResultTy = Fun->getResultType();
2877      if (Fun->getNumArgs() == 0 &&
2878          ((!IsArrow && ResultTy->isRecordType()) ||
2879           (IsArrow && ResultTy->isPointerType() &&
2880            ResultTy->getAs<PointerType>()->getPointeeType()
2881                                                          ->isRecordType()))) {
2882        SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2883        Diag(Loc, diag::err_member_reference_needs_call)
2884          << QualType(Fun, 0)
2885          << FixItHint::CreateInsertion(Loc, "()");
2886
2887        OwningExprResult NewBase
2888          = ActOnCallExpr(0, ExprArg(*this, BaseExpr), Loc,
2889                          MultiExprArg(*this, 0, 0), 0, Loc);
2890        if (NewBase.isInvalid())
2891          return ExprError();
2892
2893        BaseExpr = NewBase.takeAs<Expr>();
2894        DefaultFunctionArrayConversion(BaseExpr);
2895        BaseType = BaseExpr->getType();
2896      }
2897    }
2898  }
2899
2900  // If this is an Objective-C pseudo-builtin and a definition is provided then
2901  // use that.
2902  if (BaseType->isObjCIdType()) {
2903    if (IsArrow) {
2904      // Handle the following exceptional case PObj->isa.
2905      if (const ObjCObjectPointerType *OPT =
2906          BaseType->getAs<ObjCObjectPointerType>()) {
2907        if (OPT->getObjectType()->isObjCId() &&
2908            MemberName.getAsIdentifierInfo()->isStr("isa"))
2909          return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
2910                                                 Context.getObjCClassType()));
2911      }
2912    }
2913    // We have an 'id' type. Rather than fall through, we check if this
2914    // is a reference to 'isa'.
2915    if (BaseType != Context.ObjCIdRedefinitionType) {
2916      BaseType = Context.ObjCIdRedefinitionType;
2917      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2918    }
2919  }
2920
2921  // If this is an Objective-C pseudo-builtin and a definition is provided then
2922  // use that.
2923  if (Context.isObjCSelType(BaseType)) {
2924    // We have an 'SEL' type. Rather than fall through, we check if this
2925    // is a reference to 'sel_id'.
2926    if (BaseType != Context.ObjCSelRedefinitionType) {
2927      BaseType = Context.ObjCSelRedefinitionType;
2928      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2929    }
2930  }
2931
2932  assert(!BaseType.isNull() && "no type for member expression");
2933
2934  // Handle properties on ObjC 'Class' types.
2935  if (!IsArrow && BaseType->isObjCClassType()) {
2936    // Also must look for a getter name which uses property syntax.
2937    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2938    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2939    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2940      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2941      ObjCMethodDecl *Getter;
2942      // FIXME: need to also look locally in the implementation.
2943      if ((Getter = IFace->lookupClassMethod(Sel))) {
2944        // Check the use of this method.
2945        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2946          return ExprError();
2947      }
2948      // If we found a getter then this may be a valid dot-reference, we
2949      // will look for the matching setter, in case it is needed.
2950      Selector SetterSel =
2951      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2952                                         PP.getSelectorTable(), Member);
2953      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2954      if (!Setter) {
2955        // If this reference is in an @implementation, also check for 'private'
2956        // methods.
2957        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
2958      }
2959      // Look through local category implementations associated with the class.
2960      if (!Setter)
2961        Setter = IFace->getCategoryClassMethod(SetterSel);
2962
2963      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2964        return ExprError();
2965
2966      if (Getter || Setter) {
2967        QualType PType;
2968
2969        if (Getter)
2970          PType = Getter->getResultType();
2971        else
2972          // Get the expression type from Setter's incoming parameter.
2973          PType = (*(Setter->param_end() -1))->getType();
2974        // FIXME: we must check that the setter has property type.
2975        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
2976                                                  PType,
2977                                                  Setter, MemberLoc, BaseExpr));
2978      }
2979      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2980                       << MemberName << BaseType);
2981    }
2982  }
2983
2984  if (BaseType->isObjCClassType() &&
2985      BaseType != Context.ObjCClassRedefinitionType) {
2986    BaseType = Context.ObjCClassRedefinitionType;
2987    ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2988  }
2989
2990  if (IsArrow) {
2991    if (const PointerType *PT = BaseType->getAs<PointerType>())
2992      BaseType = PT->getPointeeType();
2993    else if (BaseType->isObjCObjectPointerType())
2994      ;
2995    else if (BaseType->isRecordType()) {
2996      // Recover from arrow accesses to records, e.g.:
2997      //   struct MyRecord foo;
2998      //   foo->bar
2999      // This is actually well-formed in C++ if MyRecord has an
3000      // overloaded operator->, but that should have been dealt with
3001      // by now.
3002      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3003        << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3004        << FixItHint::CreateReplacement(OpLoc, ".");
3005      IsArrow = false;
3006    } else {
3007      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
3008        << BaseType << BaseExpr->getSourceRange();
3009      return ExprError();
3010    }
3011  } else {
3012    // Recover from dot accesses to pointers, e.g.:
3013    //   type *foo;
3014    //   foo.bar
3015    // This is actually well-formed in two cases:
3016    //   - 'type' is an Objective C type
3017    //   - 'bar' is a pseudo-destructor name which happens to refer to
3018    //     the appropriate pointer type
3019    if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
3020      const PointerType *PT = BaseType->getAs<PointerType>();
3021      if (PT && PT->getPointeeType()->isRecordType()) {
3022        Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3023          << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3024          << FixItHint::CreateReplacement(OpLoc, "->");
3025        BaseType = PT->getPointeeType();
3026        IsArrow = true;
3027      }
3028    }
3029  }
3030
3031  // Handle field access to simple records.
3032  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
3033    if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
3034                                 RTy, OpLoc, SS))
3035      return ExprError();
3036    return Owned((Expr*) 0);
3037  }
3038
3039  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
3040  // (*Obj).ivar.
3041  if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
3042      (!IsArrow && BaseType->isObjCObjectType())) {
3043    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
3044    ObjCInterfaceDecl *IDecl =
3045      OPT ? OPT->getInterfaceDecl()
3046          : BaseType->getAs<ObjCObjectType>()->getInterface();
3047    if (IDecl) {
3048      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3049
3050      ObjCInterfaceDecl *ClassDeclared;
3051      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
3052
3053      if (!IV) {
3054        // Attempt to correct for typos in ivar names.
3055        LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
3056                         LookupMemberName);
3057        if (CorrectTypo(Res, 0, 0, IDecl, false, CTC_MemberLookup) &&
3058            (IV = Res.getAsSingle<ObjCIvarDecl>())) {
3059          Diag(R.getNameLoc(),
3060               diag::err_typecheck_member_reference_ivar_suggest)
3061            << IDecl->getDeclName() << MemberName << IV->getDeclName()
3062            << FixItHint::CreateReplacement(R.getNameLoc(),
3063                                            IV->getNameAsString());
3064          Diag(IV->getLocation(), diag::note_previous_decl)
3065            << IV->getDeclName();
3066        }
3067      }
3068
3069      if (IV) {
3070        // If the decl being referenced had an error, return an error for this
3071        // sub-expr without emitting another error, in order to avoid cascading
3072        // error cases.
3073        if (IV->isInvalidDecl())
3074          return ExprError();
3075
3076        // Check whether we can reference this field.
3077        if (DiagnoseUseOfDecl(IV, MemberLoc))
3078          return ExprError();
3079        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
3080            IV->getAccessControl() != ObjCIvarDecl::Package) {
3081          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
3082          if (ObjCMethodDecl *MD = getCurMethodDecl())
3083            ClassOfMethodDecl =  MD->getClassInterface();
3084          else if (ObjCImpDecl && getCurFunctionDecl()) {
3085            // Case of a c-function declared inside an objc implementation.
3086            // FIXME: For a c-style function nested inside an objc implementation
3087            // class, there is no implementation context available, so we pass
3088            // down the context as argument to this routine. Ideally, this context
3089            // need be passed down in the AST node and somehow calculated from the
3090            // AST for a function decl.
3091            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
3092            if (ObjCImplementationDecl *IMPD =
3093                dyn_cast<ObjCImplementationDecl>(ImplDecl))
3094              ClassOfMethodDecl = IMPD->getClassInterface();
3095            else if (ObjCCategoryImplDecl* CatImplClass =
3096                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
3097              ClassOfMethodDecl = CatImplClass->getClassInterface();
3098          }
3099
3100          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
3101            if (ClassDeclared != IDecl ||
3102                ClassOfMethodDecl != ClassDeclared)
3103              Diag(MemberLoc, diag::error_private_ivar_access)
3104                << IV->getDeclName();
3105          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
3106            // @protected
3107            Diag(MemberLoc, diag::error_protected_ivar_access)
3108              << IV->getDeclName();
3109        }
3110
3111        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
3112                                                   MemberLoc, BaseExpr,
3113                                                   IsArrow));
3114      }
3115      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
3116                         << IDecl->getDeclName() << MemberName
3117                         << BaseExpr->getSourceRange());
3118    }
3119  }
3120  // Handle properties on 'id' and qualified "id".
3121  if (!IsArrow && (BaseType->isObjCIdType() ||
3122                   BaseType->isObjCQualifiedIdType())) {
3123    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
3124    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3125
3126    // Check protocols on qualified interfaces.
3127    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3128    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
3129      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
3130        // Check the use of this declaration
3131        if (DiagnoseUseOfDecl(PD, MemberLoc))
3132          return ExprError();
3133
3134        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3135                                                       MemberLoc, BaseExpr));
3136      }
3137      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
3138        // Check the use of this method.
3139        if (DiagnoseUseOfDecl(OMD, MemberLoc))
3140          return ExprError();
3141
3142        return Owned(ObjCMessageExpr::Create(Context,
3143                                     OMD->getResultType().getNonReferenceType(),
3144                                             OpLoc, BaseExpr, Sel,
3145                                             OMD, NULL, 0, MemberLoc));
3146      }
3147    }
3148
3149    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3150                       << MemberName << BaseType);
3151  }
3152
3153  // Handle Objective-C property access, which is "Obj.property" where Obj is a
3154  // pointer to a (potentially qualified) interface type.
3155  if (!IsArrow)
3156    if (const ObjCObjectPointerType *OPT =
3157          BaseType->getAsObjCInterfacePointerType())
3158      return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc);
3159
3160  // Handle the following exceptional case (*Obj).isa.
3161  if (!IsArrow &&
3162      BaseType->isObjCObjectType() &&
3163      BaseType->getAs<ObjCObjectType>()->isObjCId() &&
3164      MemberName.getAsIdentifierInfo()->isStr("isa"))
3165    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
3166                                           Context.getObjCClassType()));
3167
3168  // Handle 'field access' to vectors, such as 'V.xx'.
3169  if (BaseType->isExtVectorType()) {
3170    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3171    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
3172    if (ret.isNull())
3173      return ExprError();
3174    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
3175                                                    MemberLoc));
3176  }
3177
3178  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
3179    << BaseType << BaseExpr->getSourceRange();
3180
3181  return ExprError();
3182}
3183
3184/// The main callback when the parser finds something like
3185///   expression . [nested-name-specifier] identifier
3186///   expression -> [nested-name-specifier] identifier
3187/// where 'identifier' encompasses a fairly broad spectrum of
3188/// possibilities, including destructor and operator references.
3189///
3190/// \param OpKind either tok::arrow or tok::period
3191/// \param HasTrailingLParen whether the next token is '(', which
3192///   is used to diagnose mis-uses of special members that can
3193///   only be called
3194/// \param ObjCImpDecl the current ObjC @implementation decl;
3195///   this is an ugly hack around the fact that ObjC @implementations
3196///   aren't properly put in the context chain
3197Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg BaseArg,
3198                                                   SourceLocation OpLoc,
3199                                                   tok::TokenKind OpKind,
3200                                                   CXXScopeSpec &SS,
3201                                                   UnqualifiedId &Id,
3202                                                   DeclPtrTy ObjCImpDecl,
3203                                                   bool HasTrailingLParen) {
3204  if (SS.isSet() && SS.isInvalid())
3205    return ExprError();
3206
3207  TemplateArgumentListInfo TemplateArgsBuffer;
3208
3209  // Decompose the name into its component parts.
3210  DeclarationName Name;
3211  SourceLocation NameLoc;
3212  const TemplateArgumentListInfo *TemplateArgs;
3213  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
3214                         Name, NameLoc, TemplateArgs);
3215
3216  bool IsArrow = (OpKind == tok::arrow);
3217
3218  NamedDecl *FirstQualifierInScope
3219    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
3220                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
3221
3222  // This is a postfix expression, so get rid of ParenListExprs.
3223  BaseArg = MaybeConvertParenListExprToParenExpr(S, move(BaseArg));
3224
3225  Expr *Base = BaseArg.takeAs<Expr>();
3226  OwningExprResult Result(*this);
3227  if (Base->getType()->isDependentType() || Name.isDependentName() ||
3228      isDependentScopeSpecifier(SS)) {
3229    Result = ActOnDependentMemberExpr(ExprArg(*this, Base), Base->getType(),
3230                                      IsArrow, OpLoc,
3231                                      SS, FirstQualifierInScope,
3232                                      Name, NameLoc,
3233                                      TemplateArgs);
3234  } else {
3235    LookupResult R(*this, Name, NameLoc, LookupMemberName);
3236    if (TemplateArgs) {
3237      // Re-use the lookup done for the template name.
3238      DecomposeTemplateName(R, Id);
3239
3240      // Re-derive the naming class.
3241      if (SS.isSet()) {
3242        NestedNameSpecifier *Qualifier
3243        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3244        if (const Type *Ty = Qualifier->getAsType())
3245          if (CXXRecordDecl *NamingClass = Ty->getAsCXXRecordDecl())
3246            R.setNamingClass(NamingClass);
3247      } else {
3248        QualType BaseType = Base->getType();
3249        if (const PointerType *Ptr = BaseType->getAs<PointerType>())
3250          BaseType = Ptr->getPointeeType();
3251        if (CXXRecordDecl *NamingClass = BaseType->getAsCXXRecordDecl())
3252          R.setNamingClass(NamingClass);
3253      }
3254    } else {
3255      Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
3256                                SS, ObjCImpDecl);
3257
3258      if (Result.isInvalid()) {
3259        Owned(Base);
3260        return ExprError();
3261      }
3262
3263      if (Result.get()) {
3264        // The only way a reference to a destructor can be used is to
3265        // immediately call it, which falls into this case.  If the
3266        // next token is not a '(', produce a diagnostic and build the
3267        // call now.
3268        if (!HasTrailingLParen &&
3269            Id.getKind() == UnqualifiedId::IK_DestructorName)
3270          return DiagnoseDtorReference(NameLoc, move(Result));
3271
3272        return move(Result);
3273      }
3274    }
3275
3276    Result = BuildMemberReferenceExpr(ExprArg(*this, Base), Base->getType(),
3277                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
3278                                      R, TemplateArgs);
3279  }
3280
3281  return move(Result);
3282}
3283
3284Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3285                                                    FunctionDecl *FD,
3286                                                    ParmVarDecl *Param) {
3287  if (Param->hasUnparsedDefaultArg()) {
3288    Diag (CallLoc,
3289          diag::err_use_of_default_argument_to_function_declared_later) <<
3290      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3291    Diag(UnparsedDefaultArgLocs[Param],
3292          diag::note_default_argument_declared_here);
3293  } else {
3294    if (Param->hasUninstantiatedDefaultArg()) {
3295      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3296
3297      // Instantiate the expression.
3298      MultiLevelTemplateArgumentList ArgList
3299        = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3300
3301      InstantiatingTemplate Inst(*this, CallLoc, Param,
3302                                 ArgList.getInnermost().getFlatArgumentList(),
3303                                 ArgList.getInnermost().flat_size());
3304
3305      OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
3306      if (Result.isInvalid())
3307        return ExprError();
3308
3309      // Check the expression as an initializer for the parameter.
3310      InitializedEntity Entity
3311        = InitializedEntity::InitializeParameter(Param);
3312      InitializationKind Kind
3313        = InitializationKind::CreateCopy(Param->getLocation(),
3314               /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
3315      Expr *ResultE = Result.takeAs<Expr>();
3316
3317      InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3318      Result = InitSeq.Perform(*this, Entity, Kind,
3319                               MultiExprArg(*this, (void**)&ResultE, 1));
3320      if (Result.isInvalid())
3321        return ExprError();
3322
3323      // Build the default argument expression.
3324      return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3325                                             Result.takeAs<Expr>()));
3326    }
3327
3328    // If the default expression creates temporaries, we need to
3329    // push them to the current stack of expression temporaries so they'll
3330    // be properly destroyed.
3331    // FIXME: We should really be rebuilding the default argument with new
3332    // bound temporaries; see the comment in PR5810.
3333    for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i)
3334      ExprTemporaries.push_back(Param->getDefaultArgTemporary(i));
3335  }
3336
3337  // We already type-checked the argument, so we know it works.
3338  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3339}
3340
3341/// ConvertArgumentsForCall - Converts the arguments specified in
3342/// Args/NumArgs to the parameter types of the function FDecl with
3343/// function prototype Proto. Call is the call expression itself, and
3344/// Fn is the function expression. For a C++ member function, this
3345/// routine does not attempt to convert the object argument. Returns
3346/// true if the call is ill-formed.
3347bool
3348Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3349                              FunctionDecl *FDecl,
3350                              const FunctionProtoType *Proto,
3351                              Expr **Args, unsigned NumArgs,
3352                              SourceLocation RParenLoc) {
3353  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3354  // assignment, to the types of the corresponding parameter, ...
3355  unsigned NumArgsInProto = Proto->getNumArgs();
3356  bool Invalid = false;
3357
3358  // If too few arguments are available (and we don't have default
3359  // arguments for the remaining parameters), don't make the call.
3360  if (NumArgs < NumArgsInProto) {
3361    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
3362      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3363        << Fn->getType()->isBlockPointerType()
3364        << NumArgsInProto << NumArgs << Fn->getSourceRange();
3365    Call->setNumArgs(Context, NumArgsInProto);
3366  }
3367
3368  // If too many are passed and not variadic, error on the extras and drop
3369  // them.
3370  if (NumArgs > NumArgsInProto) {
3371    if (!Proto->isVariadic()) {
3372      Diag(Args[NumArgsInProto]->getLocStart(),
3373           diag::err_typecheck_call_too_many_args)
3374        << Fn->getType()->isBlockPointerType()
3375        << NumArgsInProto << NumArgs << Fn->getSourceRange()
3376        << SourceRange(Args[NumArgsInProto]->getLocStart(),
3377                       Args[NumArgs-1]->getLocEnd());
3378      // This deletes the extra arguments.
3379      Call->setNumArgs(Context, NumArgsInProto);
3380      return true;
3381    }
3382  }
3383  llvm::SmallVector<Expr *, 8> AllArgs;
3384  VariadicCallType CallType =
3385    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3386  if (Fn->getType()->isBlockPointerType())
3387    CallType = VariadicBlock; // Block
3388  else if (isa<MemberExpr>(Fn))
3389    CallType = VariadicMethod;
3390  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
3391                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3392  if (Invalid)
3393    return true;
3394  unsigned TotalNumArgs = AllArgs.size();
3395  for (unsigned i = 0; i < TotalNumArgs; ++i)
3396    Call->setArg(i, AllArgs[i]);
3397
3398  return false;
3399}
3400
3401bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3402                                  FunctionDecl *FDecl,
3403                                  const FunctionProtoType *Proto,
3404                                  unsigned FirstProtoArg,
3405                                  Expr **Args, unsigned NumArgs,
3406                                  llvm::SmallVector<Expr *, 8> &AllArgs,
3407                                  VariadicCallType CallType) {
3408  unsigned NumArgsInProto = Proto->getNumArgs();
3409  unsigned NumArgsToCheck = NumArgs;
3410  bool Invalid = false;
3411  if (NumArgs != NumArgsInProto)
3412    // Use default arguments for missing arguments
3413    NumArgsToCheck = NumArgsInProto;
3414  unsigned ArgIx = 0;
3415  // Continue to check argument types (even if we have too few/many args).
3416  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3417    QualType ProtoArgType = Proto->getArgType(i);
3418
3419    Expr *Arg;
3420    if (ArgIx < NumArgs) {
3421      Arg = Args[ArgIx++];
3422
3423      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3424                              ProtoArgType,
3425                              PDiag(diag::err_call_incomplete_argument)
3426                              << Arg->getSourceRange()))
3427        return true;
3428
3429      // Pass the argument
3430      ParmVarDecl *Param = 0;
3431      if (FDecl && i < FDecl->getNumParams())
3432        Param = FDecl->getParamDecl(i);
3433
3434
3435      InitializedEntity Entity =
3436        Param? InitializedEntity::InitializeParameter(Param)
3437             : InitializedEntity::InitializeParameter(ProtoArgType);
3438      OwningExprResult ArgE = PerformCopyInitialization(Entity,
3439                                                        SourceLocation(),
3440                                                        Owned(Arg));
3441      if (ArgE.isInvalid())
3442        return true;
3443
3444      Arg = ArgE.takeAs<Expr>();
3445    } else {
3446      ParmVarDecl *Param = FDecl->getParamDecl(i);
3447
3448      OwningExprResult ArgExpr =
3449        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3450      if (ArgExpr.isInvalid())
3451        return true;
3452
3453      Arg = ArgExpr.takeAs<Expr>();
3454    }
3455    AllArgs.push_back(Arg);
3456  }
3457
3458  // If this is a variadic call, handle args passed through "...".
3459  if (CallType != VariadicDoesNotApply) {
3460    // Promote the arguments (C99 6.5.2.2p7).
3461    for (unsigned i = ArgIx; i != NumArgs; ++i) {
3462      Expr *Arg = Args[i];
3463      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType, FDecl);
3464      AllArgs.push_back(Arg);
3465    }
3466  }
3467  return Invalid;
3468}
3469
3470/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3471/// This provides the location of the left/right parens and a list of comma
3472/// locations.
3473Action::OwningExprResult
3474Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
3475                    MultiExprArg args,
3476                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
3477  unsigned NumArgs = args.size();
3478
3479  // Since this might be a postfix expression, get rid of ParenListExprs.
3480  fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
3481
3482  Expr *Fn = fn.takeAs<Expr>();
3483  Expr **Args = reinterpret_cast<Expr**>(args.release());
3484  assert(Fn && "no function call expression");
3485
3486  if (getLangOptions().CPlusPlus) {
3487    // If this is a pseudo-destructor expression, build the call immediately.
3488    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3489      if (NumArgs > 0) {
3490        // Pseudo-destructor calls should not have any arguments.
3491        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3492          << FixItHint::CreateRemoval(
3493                                    SourceRange(Args[0]->getLocStart(),
3494                                                Args[NumArgs-1]->getLocEnd()));
3495
3496        for (unsigned I = 0; I != NumArgs; ++I)
3497          Args[I]->Destroy(Context);
3498
3499        NumArgs = 0;
3500      }
3501
3502      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3503                                          RParenLoc));
3504    }
3505
3506    // Determine whether this is a dependent call inside a C++ template,
3507    // in which case we won't do any semantic analysis now.
3508    // FIXME: Will need to cache the results of name lookup (including ADL) in
3509    // Fn.
3510    bool Dependent = false;
3511    if (Fn->isTypeDependent())
3512      Dependent = true;
3513    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
3514      Dependent = true;
3515
3516    if (Dependent)
3517      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3518                                          Context.DependentTy, RParenLoc));
3519
3520    // Determine whether this is a call to an object (C++ [over.call.object]).
3521    if (Fn->getType()->isRecordType())
3522      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3523                                                CommaLocs, RParenLoc));
3524
3525    Expr *NakedFn = Fn->IgnoreParens();
3526
3527    // Determine whether this is a call to an unresolved member function.
3528    if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
3529      // If lookup was unresolved but not dependent (i.e. didn't find
3530      // an unresolved using declaration), it has to be an overloaded
3531      // function set, which means it must contain either multiple
3532      // declarations (all methods or method templates) or a single
3533      // method template.
3534      assert((MemE->getNumDecls() > 1) ||
3535             isa<FunctionTemplateDecl>(
3536                                 (*MemE->decls_begin())->getUnderlyingDecl()));
3537      (void)MemE;
3538
3539      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3540                                       CommaLocs, RParenLoc);
3541    }
3542
3543    // Determine whether this is a call to a member function.
3544    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
3545      NamedDecl *MemDecl = MemExpr->getMemberDecl();
3546      if (isa<CXXMethodDecl>(MemDecl))
3547        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3548                                         CommaLocs, RParenLoc);
3549    }
3550
3551    // Determine whether this is a call to a pointer-to-member function.
3552    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
3553      if (BO->getOpcode() == BinaryOperator::PtrMemD ||
3554          BO->getOpcode() == BinaryOperator::PtrMemI) {
3555        if (const FunctionProtoType *FPT
3556                                = BO->getType()->getAs<FunctionProtoType>()) {
3557          QualType ResultTy = FPT->getResultType().getNonReferenceType();
3558
3559          ExprOwningPtr<CXXMemberCallExpr>
3560            TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
3561                                                          NumArgs, ResultTy,
3562                                                          RParenLoc));
3563
3564          if (CheckCallReturnType(FPT->getResultType(),
3565                                  BO->getRHS()->getSourceRange().getBegin(),
3566                                  TheCall.get(), 0))
3567            return ExprError();
3568
3569          if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
3570                                      RParenLoc))
3571            return ExprError();
3572
3573          return Owned(MaybeBindToTemporary(TheCall.release()).release());
3574        }
3575        return ExprError(Diag(Fn->getLocStart(),
3576                              diag::err_typecheck_call_not_function)
3577                              << Fn->getType() << Fn->getSourceRange());
3578      }
3579    }
3580  }
3581
3582  // If we're directly calling a function, get the appropriate declaration.
3583  // Also, in C++, keep track of whether we should perform argument-dependent
3584  // lookup and whether there were any explicitly-specified template arguments.
3585
3586  Expr *NakedFn = Fn->IgnoreParens();
3587  if (isa<UnresolvedLookupExpr>(NakedFn)) {
3588    UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
3589    return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
3590                                   CommaLocs, RParenLoc);
3591  }
3592
3593  NamedDecl *NDecl = 0;
3594  if (isa<DeclRefExpr>(NakedFn))
3595    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3596
3597  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
3598}
3599
3600/// BuildResolvedCallExpr - Build a call to a resolved expression,
3601/// i.e. an expression not of \p OverloadTy.  The expression should
3602/// unary-convert to an expression of function-pointer or
3603/// block-pointer type.
3604///
3605/// \param NDecl the declaration being called, if available
3606Sema::OwningExprResult
3607Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3608                            SourceLocation LParenLoc,
3609                            Expr **Args, unsigned NumArgs,
3610                            SourceLocation RParenLoc) {
3611  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3612
3613  // Promote the function operand.
3614  UsualUnaryConversions(Fn);
3615
3616  // Make the call expr early, before semantic checks.  This guarantees cleanup
3617  // of arguments and function on error.
3618  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
3619                                                               Args, NumArgs,
3620                                                               Context.BoolTy,
3621                                                               RParenLoc));
3622
3623  const FunctionType *FuncT;
3624  if (!Fn->getType()->isBlockPointerType()) {
3625    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3626    // have type pointer to function".
3627    const PointerType *PT = Fn->getType()->getAs<PointerType>();
3628    if (PT == 0)
3629      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3630        << Fn->getType() << Fn->getSourceRange());
3631    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3632  } else { // This is a block call.
3633    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
3634                getAs<FunctionType>();
3635  }
3636  if (FuncT == 0)
3637    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3638      << Fn->getType() << Fn->getSourceRange());
3639
3640  // Check for a valid return type
3641  if (CheckCallReturnType(FuncT->getResultType(),
3642                          Fn->getSourceRange().getBegin(), TheCall.get(),
3643                          FDecl))
3644    return ExprError();
3645
3646  // We know the result type of the call, set it.
3647  TheCall->setType(FuncT->getResultType().getNonReferenceType());
3648
3649  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3650    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
3651                                RParenLoc))
3652      return ExprError();
3653  } else {
3654    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3655
3656    if (FDecl) {
3657      // Check if we have too few/too many template arguments, based
3658      // on our knowledge of the function definition.
3659      const FunctionDecl *Def = 0;
3660      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
3661        const FunctionProtoType *Proto =
3662            Def->getType()->getAs<FunctionProtoType>();
3663        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
3664          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3665            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3666        }
3667      }
3668    }
3669
3670    // Promote the arguments (C99 6.5.2.2p6).
3671    for (unsigned i = 0; i != NumArgs; i++) {
3672      Expr *Arg = Args[i];
3673      DefaultArgumentPromotion(Arg);
3674      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3675                              Arg->getType(),
3676                              PDiag(diag::err_call_incomplete_argument)
3677                                << Arg->getSourceRange()))
3678        return ExprError();
3679      TheCall->setArg(i, Arg);
3680    }
3681  }
3682
3683  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3684    if (!Method->isStatic())
3685      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3686        << Fn->getSourceRange());
3687
3688  // Check for sentinels
3689  if (NDecl)
3690    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3691
3692  // Do special checking on direct calls to functions.
3693  if (FDecl) {
3694    if (CheckFunctionCall(FDecl, TheCall.get()))
3695      return ExprError();
3696
3697    if (unsigned BuiltinID = FDecl->getBuiltinID())
3698      return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
3699  } else if (NDecl) {
3700    if (CheckBlockCall(NDecl, TheCall.get()))
3701      return ExprError();
3702  }
3703
3704  return MaybeBindToTemporary(TheCall.take());
3705}
3706
3707Action::OwningExprResult
3708Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
3709                           SourceLocation RParenLoc, ExprArg InitExpr) {
3710  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3711  // FIXME: put back this assert when initializers are worked out.
3712  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3713
3714  TypeSourceInfo *TInfo;
3715  QualType literalType = GetTypeFromParser(Ty, &TInfo);
3716  if (!TInfo)
3717    TInfo = Context.getTrivialTypeSourceInfo(literalType);
3718
3719  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, move(InitExpr));
3720}
3721
3722Action::OwningExprResult
3723Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3724                               SourceLocation RParenLoc, ExprArg InitExpr) {
3725  QualType literalType = TInfo->getType();
3726  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
3727
3728  if (literalType->isArrayType()) {
3729    if (literalType->isVariableArrayType())
3730      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3731        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3732  } else if (!literalType->isDependentType() &&
3733             RequireCompleteType(LParenLoc, literalType,
3734                      PDiag(diag::err_typecheck_decl_incomplete_type)
3735                        << SourceRange(LParenLoc,
3736                                       literalExpr->getSourceRange().getEnd())))
3737    return ExprError();
3738
3739  InitializedEntity Entity
3740    = InitializedEntity::InitializeTemporary(literalType);
3741  InitializationKind Kind
3742    = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
3743                                     /*IsCStyleCast=*/true);
3744  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
3745  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3746                                   MultiExprArg(*this, (void**)&literalExpr, 1),
3747                                            &literalType);
3748  if (Result.isInvalid())
3749    return ExprError();
3750  InitExpr.release();
3751  literalExpr = static_cast<Expr*>(Result.get());
3752
3753  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3754  if (isFileScope) { // 6.5.2.5p3
3755    if (CheckForConstantInitializer(literalExpr, literalType))
3756      return ExprError();
3757  }
3758
3759  Result.release();
3760
3761  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
3762                                                 literalExpr, isFileScope));
3763}
3764
3765Action::OwningExprResult
3766Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3767                    SourceLocation RBraceLoc) {
3768  unsigned NumInit = initlist.size();
3769  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
3770
3771  // Semantic analysis for initializers is done by ActOnDeclarator() and
3772  // CheckInitializer() - it requires knowledge of the object being intialized.
3773
3774  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
3775                                               NumInit, RBraceLoc);
3776  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3777  return Owned(E);
3778}
3779
3780static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
3781                                            QualType SrcTy, QualType DestTy) {
3782  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
3783    return CastExpr::CK_NoOp;
3784
3785  if (SrcTy->hasPointerRepresentation()) {
3786    if (DestTy->hasPointerRepresentation())
3787      return DestTy->isObjCObjectPointerType() ?
3788                CastExpr::CK_AnyPointerToObjCPointerCast :
3789                CastExpr::CK_BitCast;
3790    if (DestTy->isIntegerType())
3791      return CastExpr::CK_PointerToIntegral;
3792  }
3793
3794  if (SrcTy->isIntegerType()) {
3795    if (DestTy->isIntegerType())
3796      return CastExpr::CK_IntegralCast;
3797    if (DestTy->hasPointerRepresentation())
3798      return CastExpr::CK_IntegralToPointer;
3799    if (DestTy->isRealFloatingType())
3800      return CastExpr::CK_IntegralToFloating;
3801  }
3802
3803  if (SrcTy->isRealFloatingType()) {
3804    if (DestTy->isRealFloatingType())
3805      return CastExpr::CK_FloatingCast;
3806    if (DestTy->isIntegerType())
3807      return CastExpr::CK_FloatingToIntegral;
3808  }
3809
3810  // FIXME: Assert here.
3811  // assert(false && "Unhandled cast combination!");
3812  return CastExpr::CK_Unknown;
3813}
3814
3815/// CheckCastTypes - Check type constraints for casting between types.
3816bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3817                          CastExpr::CastKind& Kind,
3818                          CXXBaseSpecifierArray &BasePath,
3819                          bool FunctionalStyle) {
3820  if (getLangOptions().CPlusPlus)
3821    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, BasePath,
3822                              FunctionalStyle);
3823
3824  DefaultFunctionArrayLvalueConversion(castExpr);
3825
3826  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3827  // type needs to be scalar.
3828  if (castType->isVoidType()) {
3829    // Cast to void allows any expr type.
3830    Kind = CastExpr::CK_ToVoid;
3831    return false;
3832  }
3833
3834  if (!castType->isScalarType() && !castType->isVectorType()) {
3835    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
3836        (castType->isStructureType() || castType->isUnionType())) {
3837      // GCC struct/union extension: allow cast to self.
3838      // FIXME: Check that the cast destination type is complete.
3839      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3840        << castType << castExpr->getSourceRange();
3841      Kind = CastExpr::CK_NoOp;
3842      return false;
3843    }
3844
3845    if (castType->isUnionType()) {
3846      // GCC cast to union extension
3847      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3848      RecordDecl::field_iterator Field, FieldEnd;
3849      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3850           Field != FieldEnd; ++Field) {
3851        if (Context.hasSameUnqualifiedType(Field->getType(),
3852                                           castExpr->getType())) {
3853          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3854            << castExpr->getSourceRange();
3855          break;
3856        }
3857      }
3858      if (Field == FieldEnd)
3859        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3860          << castExpr->getType() << castExpr->getSourceRange();
3861      Kind = CastExpr::CK_ToUnion;
3862      return false;
3863    }
3864
3865    // Reject any other conversions to non-scalar types.
3866    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3867      << castType << castExpr->getSourceRange();
3868  }
3869
3870  if (!castExpr->getType()->isScalarType() &&
3871      !castExpr->getType()->isVectorType()) {
3872    return Diag(castExpr->getLocStart(),
3873                diag::err_typecheck_expect_scalar_operand)
3874      << castExpr->getType() << castExpr->getSourceRange();
3875  }
3876
3877  if (castType->isExtVectorType())
3878    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
3879
3880  if (castType->isVectorType())
3881    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
3882  if (castExpr->getType()->isVectorType())
3883    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
3884
3885  if (isa<ObjCSelectorExpr>(castExpr))
3886    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3887
3888  if (!castType->isArithmeticType()) {
3889    QualType castExprType = castExpr->getType();
3890    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
3891      return Diag(castExpr->getLocStart(),
3892                  diag::err_cast_pointer_from_non_pointer_int)
3893        << castExprType << castExpr->getSourceRange();
3894  } else if (!castExpr->getType()->isArithmeticType()) {
3895    if (!castType->isIntegralType() && castType->isArithmeticType())
3896      return Diag(castExpr->getLocStart(),
3897                  diag::err_cast_pointer_to_non_pointer_int)
3898        << castType << castExpr->getSourceRange();
3899  }
3900
3901  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
3902  return false;
3903}
3904
3905bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
3906                           CastExpr::CastKind &Kind) {
3907  assert(VectorTy->isVectorType() && "Not a vector type!");
3908
3909  if (Ty->isVectorType() || Ty->isIntegerType()) {
3910    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
3911      return Diag(R.getBegin(),
3912                  Ty->isVectorType() ?
3913                  diag::err_invalid_conversion_between_vectors :
3914                  diag::err_invalid_conversion_between_vector_and_integer)
3915        << VectorTy << Ty << R;
3916  } else
3917    return Diag(R.getBegin(),
3918                diag::err_invalid_conversion_between_vector_and_scalar)
3919      << VectorTy << Ty << R;
3920
3921  Kind = CastExpr::CK_BitCast;
3922  return false;
3923}
3924
3925bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
3926                              CastExpr::CastKind &Kind) {
3927  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
3928
3929  QualType SrcTy = CastExpr->getType();
3930
3931  // If SrcTy is a VectorType, the total size must match to explicitly cast to
3932  // an ExtVectorType.
3933  if (SrcTy->isVectorType()) {
3934    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
3935      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
3936        << DestTy << SrcTy << R;
3937    Kind = CastExpr::CK_BitCast;
3938    return false;
3939  }
3940
3941  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
3942  // conversion will take place first from scalar to elt type, and then
3943  // splat from elt type to vector.
3944  if (SrcTy->isPointerType())
3945    return Diag(R.getBegin(),
3946                diag::err_invalid_conversion_between_vector_and_scalar)
3947      << DestTy << SrcTy << R;
3948
3949  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
3950  ImpCastExprToType(CastExpr, DestElemTy,
3951                    getScalarCastKind(Context, SrcTy, DestElemTy));
3952
3953  Kind = CastExpr::CK_VectorSplat;
3954  return false;
3955}
3956
3957Action::OwningExprResult
3958Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
3959                    SourceLocation RParenLoc, ExprArg Op) {
3960  assert((Ty != 0) && (Op.get() != 0) &&
3961         "ActOnCastExpr(): missing type or expr");
3962
3963  TypeSourceInfo *castTInfo;
3964  QualType castType = GetTypeFromParser(Ty, &castTInfo);
3965  if (!castTInfo)
3966    castTInfo = Context.getTrivialTypeSourceInfo(castType);
3967
3968  // If the Expr being casted is a ParenListExpr, handle it specially.
3969  Expr *castExpr = (Expr *)Op.get();
3970  if (isa<ParenListExpr>(castExpr))
3971    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),
3972                                    castTInfo);
3973
3974  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, move(Op));
3975}
3976
3977Action::OwningExprResult
3978Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
3979                          SourceLocation RParenLoc, ExprArg Op) {
3980  Expr *castExpr = static_cast<Expr*>(Op.get());
3981
3982  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
3983  CXXBaseSpecifierArray BasePath;
3984  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
3985                     Kind, BasePath))
3986    return ExprError();
3987
3988  Op.release();
3989  return Owned(new (Context) CStyleCastExpr(Ty->getType().getNonReferenceType(),
3990                                            Kind, castExpr, BasePath, Ty,
3991                                            LParenLoc, RParenLoc));
3992}
3993
3994/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
3995/// of comma binary operators.
3996Action::OwningExprResult
3997Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
3998  Expr *expr = EA.takeAs<Expr>();
3999  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
4000  if (!E)
4001    return Owned(expr);
4002
4003  OwningExprResult Result(*this, E->getExpr(0));
4004
4005  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4006    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
4007                        Owned(E->getExpr(i)));
4008
4009  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
4010}
4011
4012Action::OwningExprResult
4013Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
4014                               SourceLocation RParenLoc, ExprArg Op,
4015                               TypeSourceInfo *TInfo) {
4016  ParenListExpr *PE = (ParenListExpr *)Op.get();
4017  QualType Ty = TInfo->getType();
4018
4019  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
4020  // then handle it as such.
4021  if (getLangOptions().AltiVec && Ty->isVectorType()) {
4022    if (PE->getNumExprs() == 0) {
4023      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
4024      return ExprError();
4025    }
4026
4027    llvm::SmallVector<Expr *, 8> initExprs;
4028    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
4029      initExprs.push_back(PE->getExpr(i));
4030
4031    // FIXME: This means that pretty-printing the final AST will produce curly
4032    // braces instead of the original commas.
4033    Op.release();
4034    InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc,
4035                                                 &initExprs[0],
4036                                                 initExprs.size(), RParenLoc);
4037    E->setType(Ty);
4038    return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, Owned(E));
4039  } else {
4040    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4041    // sequence of BinOp comma operators.
4042    Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
4043    return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, move(Op));
4044  }
4045}
4046
4047Action::OwningExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
4048                                                  SourceLocation R,
4049                                                  MultiExprArg Val,
4050                                                  TypeTy *TypeOfCast) {
4051  unsigned nexprs = Val.size();
4052  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4053  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4054  Expr *expr;
4055  if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
4056    expr = new (Context) ParenExpr(L, R, exprs[0]);
4057  else
4058    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4059  return Owned(expr);
4060}
4061
4062/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
4063/// In that case, lhs = cond.
4064/// C99 6.5.15
4065QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
4066                                        SourceLocation QuestionLoc) {
4067  // C++ is sufficiently different to merit its own checker.
4068  if (getLangOptions().CPlusPlus)
4069    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
4070
4071  UsualUnaryConversions(Cond);
4072  UsualUnaryConversions(LHS);
4073  UsualUnaryConversions(RHS);
4074  QualType CondTy = Cond->getType();
4075  QualType LHSTy = LHS->getType();
4076  QualType RHSTy = RHS->getType();
4077
4078  // first, check the condition.
4079  if (!CondTy->isScalarType()) { // C99 6.5.15p2
4080    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4081      << CondTy;
4082    return QualType();
4083  }
4084
4085  // Now check the two expressions.
4086  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4087    return CheckVectorOperands(QuestionLoc, LHS, RHS);
4088
4089  // If both operands have arithmetic type, do the usual arithmetic conversions
4090  // to find a common type: C99 6.5.15p3,5.
4091  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4092    UsualArithmeticConversions(LHS, RHS);
4093    return LHS->getType();
4094  }
4095
4096  // If both operands are the same structure or union type, the result is that
4097  // type.
4098  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4099    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4100      if (LHSRT->getDecl() == RHSRT->getDecl())
4101        // "If both the operands have structure or union type, the result has
4102        // that type."  This implies that CV qualifiers are dropped.
4103        return LHSTy.getUnqualifiedType();
4104    // FIXME: Type of conditional expression must be complete in C mode.
4105  }
4106
4107  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4108  // The following || allows only one side to be void (a GCC-ism).
4109  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4110    if (!LHSTy->isVoidType())
4111      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4112        << RHS->getSourceRange();
4113    if (!RHSTy->isVoidType())
4114      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4115        << LHS->getSourceRange();
4116    ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
4117    ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
4118    return Context.VoidTy;
4119  }
4120  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4121  // the type of the other operand."
4122  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
4123      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4124    // promote the null to a pointer.
4125    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
4126    return LHSTy;
4127  }
4128  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
4129      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4130    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
4131    return RHSTy;
4132  }
4133
4134  // All objective-c pointer type analysis is done here.
4135  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4136                                                        QuestionLoc);
4137  if (!compositeType.isNull())
4138    return compositeType;
4139
4140
4141  // Handle block pointer types.
4142  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
4143    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4144      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4145        QualType destType = Context.getPointerType(Context.VoidTy);
4146        ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4147        ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4148        return destType;
4149      }
4150      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4151      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4152      return QualType();
4153    }
4154    // We have 2 block pointer types.
4155    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4156      // Two identical block pointer types are always compatible.
4157      return LHSTy;
4158    }
4159    // The block pointer types aren't identical, continue checking.
4160    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
4161    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
4162
4163    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4164                                    rhptee.getUnqualifiedType())) {
4165      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4166      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4167      // In this situation, we assume void* type. No especially good
4168      // reason, but this is what gcc does, and we do have to pick
4169      // to get a consistent AST.
4170      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4171      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4172      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4173      return incompatTy;
4174    }
4175    // The block pointer types are compatible.
4176    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4177    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4178    return LHSTy;
4179  }
4180
4181  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4182  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4183    // get the "pointed to" types
4184    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4185    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4186
4187    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4188    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4189      // Figure out necessary qualifiers (C99 6.5.15p6)
4190      QualType destPointee
4191        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4192      QualType destType = Context.getPointerType(destPointee);
4193      // Add qualifiers if necessary.
4194      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4195      // Promote to void*.
4196      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4197      return destType;
4198    }
4199    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4200      QualType destPointee
4201        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4202      QualType destType = Context.getPointerType(destPointee);
4203      // Add qualifiers if necessary.
4204      ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4205      // Promote to void*.
4206      ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4207      return destType;
4208    }
4209
4210    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4211      // Two identical pointer types are always compatible.
4212      return LHSTy;
4213    }
4214    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4215                                    rhptee.getUnqualifiedType())) {
4216      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4217        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4218      // In this situation, we assume void* type. No especially good
4219      // reason, but this is what gcc does, and we do have to pick
4220      // to get a consistent AST.
4221      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4222      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4223      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4224      return incompatTy;
4225    }
4226    // The pointer types are compatible.
4227    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
4228    // differently qualified versions of compatible types, the result type is
4229    // a pointer to an appropriately qualified version of the *composite*
4230    // type.
4231    // FIXME: Need to calculate the composite type.
4232    // FIXME: Need to add qualifiers
4233    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4234    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4235    return LHSTy;
4236  }
4237
4238  // GCC compatibility: soften pointer/integer mismatch.
4239  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
4240    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4241      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4242    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
4243    return RHSTy;
4244  }
4245  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
4246    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4247      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4248    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
4249    return LHSTy;
4250  }
4251
4252  // Otherwise, the operands are not compatible.
4253  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4254    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4255  return QualType();
4256}
4257
4258/// FindCompositeObjCPointerType - Helper method to find composite type of
4259/// two objective-c pointer types of the two input expressions.
4260QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
4261                                        SourceLocation QuestionLoc) {
4262  QualType LHSTy = LHS->getType();
4263  QualType RHSTy = RHS->getType();
4264
4265  // Handle things like Class and struct objc_class*.  Here we case the result
4266  // to the pseudo-builtin, because that will be implicitly cast back to the
4267  // redefinition type if an attempt is made to access its fields.
4268  if (LHSTy->isObjCClassType() &&
4269      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4270    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4271    return LHSTy;
4272  }
4273  if (RHSTy->isObjCClassType() &&
4274      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4275    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4276    return RHSTy;
4277  }
4278  // And the same for struct objc_object* / id
4279  if (LHSTy->isObjCIdType() &&
4280      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4281    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4282    return LHSTy;
4283  }
4284  if (RHSTy->isObjCIdType() &&
4285      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4286    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4287    return RHSTy;
4288  }
4289  // And the same for struct objc_selector* / SEL
4290  if (Context.isObjCSelType(LHSTy) &&
4291      (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4292    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4293    return LHSTy;
4294  }
4295  if (Context.isObjCSelType(RHSTy) &&
4296      (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4297    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4298    return RHSTy;
4299  }
4300  // Check constraints for Objective-C object pointers types.
4301  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4302
4303    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4304      // Two identical object pointer types are always compatible.
4305      return LHSTy;
4306    }
4307    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
4308    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
4309    QualType compositeType = LHSTy;
4310
4311    // If both operands are interfaces and either operand can be
4312    // assigned to the other, use that type as the composite
4313    // type. This allows
4314    //   xxx ? (A*) a : (B*) b
4315    // where B is a subclass of A.
4316    //
4317    // Additionally, as for assignment, if either type is 'id'
4318    // allow silent coercion. Finally, if the types are
4319    // incompatible then make sure to use 'id' as the composite
4320    // type so the result is acceptable for sending messages to.
4321
4322    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4323    // It could return the composite type.
4324    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4325      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4326    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4327      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4328    } else if ((LHSTy->isObjCQualifiedIdType() ||
4329                RHSTy->isObjCQualifiedIdType()) &&
4330               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4331      // Need to handle "id<xx>" explicitly.
4332      // GCC allows qualified id and any Objective-C type to devolve to
4333      // id. Currently localizing to here until clear this should be
4334      // part of ObjCQualifiedIdTypesAreCompatible.
4335      compositeType = Context.getObjCIdType();
4336    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4337      compositeType = Context.getObjCIdType();
4338    } else if (!(compositeType =
4339                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4340      ;
4341    else {
4342      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4343      << LHSTy << RHSTy
4344      << LHS->getSourceRange() << RHS->getSourceRange();
4345      QualType incompatTy = Context.getObjCIdType();
4346      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4347      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4348      return incompatTy;
4349    }
4350    // The object pointer types are compatible.
4351    ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
4352    ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
4353    return compositeType;
4354  }
4355  // Check Objective-C object pointer types and 'void *'
4356  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4357    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4358    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4359    QualType destPointee
4360    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4361    QualType destType = Context.getPointerType(destPointee);
4362    // Add qualifiers if necessary.
4363    ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4364    // Promote to void*.
4365    ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4366    return destType;
4367  }
4368  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4369    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4370    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4371    QualType destPointee
4372    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4373    QualType destType = Context.getPointerType(destPointee);
4374    // Add qualifiers if necessary.
4375    ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4376    // Promote to void*.
4377    ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4378    return destType;
4379  }
4380  return QualType();
4381}
4382
4383/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
4384/// in the case of a the GNU conditional expr extension.
4385Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
4386                                                  SourceLocation ColonLoc,
4387                                                  ExprArg Cond, ExprArg LHS,
4388                                                  ExprArg RHS) {
4389  Expr *CondExpr = (Expr *) Cond.get();
4390  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
4391
4392  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
4393  // was the condition.
4394  bool isLHSNull = LHSExpr == 0;
4395  if (isLHSNull)
4396    LHSExpr = CondExpr;
4397
4398  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
4399                                             RHSExpr, QuestionLoc);
4400  if (result.isNull())
4401    return ExprError();
4402
4403  Cond.release();
4404  LHS.release();
4405  RHS.release();
4406  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
4407                                                 isLHSNull ? 0 : LHSExpr,
4408                                                 ColonLoc, RHSExpr, result));
4409}
4410
4411// CheckPointerTypesForAssignment - This is a very tricky routine (despite
4412// being closely modeled after the C99 spec:-). The odd characteristic of this
4413// routine is it effectively iqnores the qualifiers on the top level pointee.
4414// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
4415// FIXME: add a couple examples in this comment.
4416Sema::AssignConvertType
4417Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4418  QualType lhptee, rhptee;
4419
4420  if ((lhsType->isObjCClassType() &&
4421       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4422     (rhsType->isObjCClassType() &&
4423       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4424      return Compatible;
4425  }
4426
4427  // get the "pointed to" type (ignoring qualifiers at the top level)
4428  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
4429  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
4430
4431  // make sure we operate on the canonical type
4432  lhptee = Context.getCanonicalType(lhptee);
4433  rhptee = Context.getCanonicalType(rhptee);
4434
4435  AssignConvertType ConvTy = Compatible;
4436
4437  // C99 6.5.16.1p1: This following citation is common to constraints
4438  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
4439  // qualifiers of the type *pointed to* by the right;
4440  // FIXME: Handle ExtQualType
4441  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4442    ConvTy = CompatiblePointerDiscardsQualifiers;
4443
4444  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
4445  // incomplete type and the other is a pointer to a qualified or unqualified
4446  // version of void...
4447  if (lhptee->isVoidType()) {
4448    if (rhptee->isIncompleteOrObjectType())
4449      return ConvTy;
4450
4451    // As an extension, we allow cast to/from void* to function pointer.
4452    assert(rhptee->isFunctionType());
4453    return FunctionVoidPointer;
4454  }
4455
4456  if (rhptee->isVoidType()) {
4457    if (lhptee->isIncompleteOrObjectType())
4458      return ConvTy;
4459
4460    // As an extension, we allow cast to/from void* to function pointer.
4461    assert(lhptee->isFunctionType());
4462    return FunctionVoidPointer;
4463  }
4464  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
4465  // unqualified versions of compatible types, ...
4466  lhptee = lhptee.getUnqualifiedType();
4467  rhptee = rhptee.getUnqualifiedType();
4468  if (!Context.typesAreCompatible(lhptee, rhptee)) {
4469    // Check if the pointee types are compatible ignoring the sign.
4470    // We explicitly check for char so that we catch "char" vs
4471    // "unsigned char" on systems where "char" is unsigned.
4472    if (lhptee->isCharType())
4473      lhptee = Context.UnsignedCharTy;
4474    else if (lhptee->isSignedIntegerType())
4475      lhptee = Context.getCorrespondingUnsignedType(lhptee);
4476
4477    if (rhptee->isCharType())
4478      rhptee = Context.UnsignedCharTy;
4479    else if (rhptee->isSignedIntegerType())
4480      rhptee = Context.getCorrespondingUnsignedType(rhptee);
4481
4482    if (lhptee == rhptee) {
4483      // Types are compatible ignoring the sign. Qualifier incompatibility
4484      // takes priority over sign incompatibility because the sign
4485      // warning can be disabled.
4486      if (ConvTy != Compatible)
4487        return ConvTy;
4488      return IncompatiblePointerSign;
4489    }
4490
4491    // If we are a multi-level pointer, it's possible that our issue is simply
4492    // one of qualification - e.g. char ** -> const char ** is not allowed. If
4493    // the eventual target type is the same and the pointers have the same
4494    // level of indirection, this must be the issue.
4495    if (lhptee->isPointerType() && rhptee->isPointerType()) {
4496      do {
4497        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
4498        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
4499
4500        lhptee = Context.getCanonicalType(lhptee);
4501        rhptee = Context.getCanonicalType(rhptee);
4502      } while (lhptee->isPointerType() && rhptee->isPointerType());
4503
4504      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
4505        return IncompatibleNestedPointerQualifiers;
4506    }
4507
4508    // General pointer incompatibility takes priority over qualifiers.
4509    return IncompatiblePointer;
4510  }
4511  return ConvTy;
4512}
4513
4514/// CheckBlockPointerTypesForAssignment - This routine determines whether two
4515/// block pointer types are compatible or whether a block and normal pointer
4516/// are compatible. It is more restrict than comparing two function pointer
4517// types.
4518Sema::AssignConvertType
4519Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
4520                                          QualType rhsType) {
4521  QualType lhptee, rhptee;
4522
4523  // get the "pointed to" type (ignoring qualifiers at the top level)
4524  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
4525  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
4526
4527  // make sure we operate on the canonical type
4528  lhptee = Context.getCanonicalType(lhptee);
4529  rhptee = Context.getCanonicalType(rhptee);
4530
4531  AssignConvertType ConvTy = Compatible;
4532
4533  // For blocks we enforce that qualifiers are identical.
4534  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
4535    ConvTy = CompatiblePointerDiscardsQualifiers;
4536
4537  if (!getLangOptions().CPlusPlus) {
4538    if (!Context.typesAreBlockPointerCompatible(lhsType, rhsType))
4539      return IncompatibleBlockPointer;
4540  }
4541  else if (!Context.typesAreCompatible(lhptee, rhptee))
4542    return IncompatibleBlockPointer;
4543  return ConvTy;
4544}
4545
4546/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
4547/// for assignment compatibility.
4548Sema::AssignConvertType
4549Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4550  if (lhsType->isObjCBuiltinType()) {
4551    // Class is not compatible with ObjC object pointers.
4552    if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
4553        !rhsType->isObjCQualifiedClassType())
4554      return IncompatiblePointer;
4555    return Compatible;
4556  }
4557  if (rhsType->isObjCBuiltinType()) {
4558    // Class is not compatible with ObjC object pointers.
4559    if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
4560        !lhsType->isObjCQualifiedClassType())
4561      return IncompatiblePointer;
4562    return Compatible;
4563  }
4564  QualType lhptee =
4565  lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4566  QualType rhptee =
4567  rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4568  // make sure we operate on the canonical type
4569  lhptee = Context.getCanonicalType(lhptee);
4570  rhptee = Context.getCanonicalType(rhptee);
4571  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4572    return CompatiblePointerDiscardsQualifiers;
4573
4574  if (Context.typesAreCompatible(lhsType, rhsType))
4575    return Compatible;
4576  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
4577    return IncompatibleObjCQualifiedId;
4578  return IncompatiblePointer;
4579}
4580
4581/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
4582/// has code to accommodate several GCC extensions when type checking
4583/// pointers. Here are some objectionable examples that GCC considers warnings:
4584///
4585///  int a, *pint;
4586///  short *pshort;
4587///  struct foo *pfoo;
4588///
4589///  pint = pshort; // warning: assignment from incompatible pointer type
4590///  a = pint; // warning: assignment makes integer from pointer without a cast
4591///  pint = a; // warning: assignment makes pointer from integer without a cast
4592///  pint = pfoo; // warning: assignment from incompatible pointer type
4593///
4594/// As a result, the code for dealing with pointers is more complex than the
4595/// C99 spec dictates.
4596///
4597Sema::AssignConvertType
4598Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
4599  // Get canonical types.  We're not formatting these types, just comparing
4600  // them.
4601  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
4602  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
4603
4604  if (lhsType == rhsType)
4605    return Compatible; // Common case: fast path an exact match.
4606
4607  if ((lhsType->isObjCClassType() &&
4608       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4609     (rhsType->isObjCClassType() &&
4610       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4611      return Compatible;
4612  }
4613
4614  // If the left-hand side is a reference type, then we are in a
4615  // (rare!) case where we've allowed the use of references in C,
4616  // e.g., as a parameter type in a built-in function. In this case,
4617  // just make sure that the type referenced is compatible with the
4618  // right-hand side type. The caller is responsible for adjusting
4619  // lhsType so that the resulting expression does not have reference
4620  // type.
4621  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
4622    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
4623      return Compatible;
4624    return Incompatible;
4625  }
4626  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
4627  // to the same ExtVector type.
4628  if (lhsType->isExtVectorType()) {
4629    if (rhsType->isExtVectorType())
4630      return lhsType == rhsType ? Compatible : Incompatible;
4631    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
4632      return Compatible;
4633  }
4634
4635  if (lhsType->isVectorType() || rhsType->isVectorType()) {
4636    // If we are allowing lax vector conversions, and LHS and RHS are both
4637    // vectors, the total size only needs to be the same. This is a bitcast;
4638    // no bits are changed but the result type is different.
4639    if (getLangOptions().LaxVectorConversions &&
4640        lhsType->isVectorType() && rhsType->isVectorType()) {
4641      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
4642        return IncompatibleVectors;
4643    }
4644    return Incompatible;
4645  }
4646
4647  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
4648    return Compatible;
4649
4650  if (isa<PointerType>(lhsType)) {
4651    if (rhsType->isIntegerType())
4652      return IntToPointer;
4653
4654    if (isa<PointerType>(rhsType))
4655      return CheckPointerTypesForAssignment(lhsType, rhsType);
4656
4657    // In general, C pointers are not compatible with ObjC object pointers.
4658    if (isa<ObjCObjectPointerType>(rhsType)) {
4659      if (lhsType->isVoidPointerType()) // an exception to the rule.
4660        return Compatible;
4661      return IncompatiblePointer;
4662    }
4663    if (rhsType->getAs<BlockPointerType>()) {
4664      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4665        return Compatible;
4666
4667      // Treat block pointers as objects.
4668      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
4669        return Compatible;
4670    }
4671    return Incompatible;
4672  }
4673
4674  if (isa<BlockPointerType>(lhsType)) {
4675    if (rhsType->isIntegerType())
4676      return IntToBlockPointer;
4677
4678    // Treat block pointers as objects.
4679    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
4680      return Compatible;
4681
4682    if (rhsType->isBlockPointerType())
4683      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
4684
4685    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4686      if (RHSPT->getPointeeType()->isVoidType())
4687        return Compatible;
4688    }
4689    return Incompatible;
4690  }
4691
4692  if (isa<ObjCObjectPointerType>(lhsType)) {
4693    if (rhsType->isIntegerType())
4694      return IntToPointer;
4695
4696    // In general, C pointers are not compatible with ObjC object pointers.
4697    if (isa<PointerType>(rhsType)) {
4698      if (rhsType->isVoidPointerType()) // an exception to the rule.
4699        return Compatible;
4700      return IncompatiblePointer;
4701    }
4702    if (rhsType->isObjCObjectPointerType()) {
4703      return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
4704    }
4705    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4706      if (RHSPT->getPointeeType()->isVoidType())
4707        return Compatible;
4708    }
4709    // Treat block pointers as objects.
4710    if (rhsType->isBlockPointerType())
4711      return Compatible;
4712    return Incompatible;
4713  }
4714  if (isa<PointerType>(rhsType)) {
4715    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4716    if (lhsType == Context.BoolTy)
4717      return Compatible;
4718
4719    if (lhsType->isIntegerType())
4720      return PointerToInt;
4721
4722    if (isa<PointerType>(lhsType))
4723      return CheckPointerTypesForAssignment(lhsType, rhsType);
4724
4725    if (isa<BlockPointerType>(lhsType) &&
4726        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4727      return Compatible;
4728    return Incompatible;
4729  }
4730  if (isa<ObjCObjectPointerType>(rhsType)) {
4731    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4732    if (lhsType == Context.BoolTy)
4733      return Compatible;
4734
4735    if (lhsType->isIntegerType())
4736      return PointerToInt;
4737
4738    // In general, C pointers are not compatible with ObjC object pointers.
4739    if (isa<PointerType>(lhsType)) {
4740      if (lhsType->isVoidPointerType()) // an exception to the rule.
4741        return Compatible;
4742      return IncompatiblePointer;
4743    }
4744    if (isa<BlockPointerType>(lhsType) &&
4745        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4746      return Compatible;
4747    return Incompatible;
4748  }
4749
4750  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
4751    if (Context.typesAreCompatible(lhsType, rhsType))
4752      return Compatible;
4753  }
4754  return Incompatible;
4755}
4756
4757/// \brief Constructs a transparent union from an expression that is
4758/// used to initialize the transparent union.
4759static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
4760                                      QualType UnionType, FieldDecl *Field) {
4761  // Build an initializer list that designates the appropriate member
4762  // of the transparent union.
4763  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
4764                                                   &E, 1,
4765                                                   SourceLocation());
4766  Initializer->setType(UnionType);
4767  Initializer->setInitializedFieldInUnion(Field);
4768
4769  // Build a compound literal constructing a value of the transparent
4770  // union type from this initializer list.
4771  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
4772  E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
4773                                  Initializer, false);
4774}
4775
4776Sema::AssignConvertType
4777Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
4778  QualType FromType = rExpr->getType();
4779
4780  // If the ArgType is a Union type, we want to handle a potential
4781  // transparent_union GCC extension.
4782  const RecordType *UT = ArgType->getAsUnionType();
4783  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
4784    return Incompatible;
4785
4786  // The field to initialize within the transparent union.
4787  RecordDecl *UD = UT->getDecl();
4788  FieldDecl *InitField = 0;
4789  // It's compatible if the expression matches any of the fields.
4790  for (RecordDecl::field_iterator it = UD->field_begin(),
4791         itend = UD->field_end();
4792       it != itend; ++it) {
4793    if (it->getType()->isPointerType()) {
4794      // If the transparent union contains a pointer type, we allow:
4795      // 1) void pointer
4796      // 2) null pointer constant
4797      if (FromType->isPointerType())
4798        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
4799          ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
4800          InitField = *it;
4801          break;
4802        }
4803
4804      if (rExpr->isNullPointerConstant(Context,
4805                                       Expr::NPC_ValueDependentIsNull)) {
4806        ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
4807        InitField = *it;
4808        break;
4809      }
4810    }
4811
4812    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
4813          == Compatible) {
4814      InitField = *it;
4815      break;
4816    }
4817  }
4818
4819  if (!InitField)
4820    return Incompatible;
4821
4822  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
4823  return Compatible;
4824}
4825
4826Sema::AssignConvertType
4827Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
4828  if (getLangOptions().CPlusPlus) {
4829    if (!lhsType->isRecordType()) {
4830      // C++ 5.17p3: If the left operand is not of class type, the
4831      // expression is implicitly converted (C++ 4) to the
4832      // cv-unqualified type of the left operand.
4833      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
4834                                    AA_Assigning))
4835        return Incompatible;
4836      return Compatible;
4837    }
4838
4839    // FIXME: Currently, we fall through and treat C++ classes like C
4840    // structures.
4841  }
4842
4843  // C99 6.5.16.1p1: the left operand is a pointer and the right is
4844  // a null pointer constant.
4845  if ((lhsType->isPointerType() ||
4846       lhsType->isObjCObjectPointerType() ||
4847       lhsType->isBlockPointerType())
4848      && rExpr->isNullPointerConstant(Context,
4849                                      Expr::NPC_ValueDependentIsNull)) {
4850    ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
4851    return Compatible;
4852  }
4853
4854  // This check seems unnatural, however it is necessary to ensure the proper
4855  // conversion of functions/arrays. If the conversion were done for all
4856  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
4857  // expressions that surpress this implicit conversion (&, sizeof).
4858  //
4859  // Suppress this for references: C++ 8.5.3p5.
4860  if (!lhsType->isReferenceType())
4861    DefaultFunctionArrayLvalueConversion(rExpr);
4862
4863  Sema::AssignConvertType result =
4864    CheckAssignmentConstraints(lhsType, rExpr->getType());
4865
4866  // C99 6.5.16.1p2: The value of the right operand is converted to the
4867  // type of the assignment expression.
4868  // CheckAssignmentConstraints allows the left-hand side to be a reference,
4869  // so that we can use references in built-in functions even in C.
4870  // The getNonReferenceType() call makes sure that the resulting expression
4871  // does not have reference type.
4872  if (result != Incompatible && rExpr->getType() != lhsType)
4873    ImpCastExprToType(rExpr, lhsType.getNonReferenceType(),
4874                      CastExpr::CK_Unknown);
4875  return result;
4876}
4877
4878QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4879  Diag(Loc, diag::err_typecheck_invalid_operands)
4880    << lex->getType() << rex->getType()
4881    << lex->getSourceRange() << rex->getSourceRange();
4882  return QualType();
4883}
4884
4885QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4886  // For conversion purposes, we ignore any qualifiers.
4887  // For example, "const float" and "float" are equivalent.
4888  QualType lhsType =
4889    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
4890  QualType rhsType =
4891    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
4892
4893  // If the vector types are identical, return.
4894  if (lhsType == rhsType)
4895    return lhsType;
4896
4897  // Handle the case of a vector & extvector type of the same size and element
4898  // type.  It would be nice if we only had one vector type someday.
4899  if (getLangOptions().LaxVectorConversions) {
4900    // FIXME: Should we warn here?
4901    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
4902      if (const VectorType *RV = rhsType->getAs<VectorType>())
4903        if (LV->getElementType() == RV->getElementType() &&
4904            LV->getNumElements() == RV->getNumElements()) {
4905          if (lhsType->isExtVectorType()) {
4906            ImpCastExprToType(rex, lhsType, CastExpr::CK_BitCast);
4907            return lhsType;
4908          }
4909
4910          ImpCastExprToType(lex, rhsType, CastExpr::CK_BitCast);
4911          return rhsType;
4912        }
4913    }
4914  }
4915
4916  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
4917  // swap back (so that we don't reverse the inputs to a subtract, for instance.
4918  bool swapped = false;
4919  if (rhsType->isExtVectorType()) {
4920    swapped = true;
4921    std::swap(rex, lex);
4922    std::swap(rhsType, lhsType);
4923  }
4924
4925  // Handle the case of an ext vector and scalar.
4926  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
4927    QualType EltTy = LV->getElementType();
4928    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
4929      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
4930        ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
4931        if (swapped) std::swap(rex, lex);
4932        return lhsType;
4933      }
4934    }
4935    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
4936        rhsType->isRealFloatingType()) {
4937      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
4938        ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
4939        if (swapped) std::swap(rex, lex);
4940        return lhsType;
4941      }
4942    }
4943  }
4944
4945  // Vectors of different size or scalar and non-ext-vector are errors.
4946  Diag(Loc, diag::err_typecheck_vector_not_convertable)
4947    << lex->getType() << rex->getType()
4948    << lex->getSourceRange() << rex->getSourceRange();
4949  return QualType();
4950}
4951
4952QualType Sema::CheckMultiplyDivideOperands(
4953  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
4954  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4955    return CheckVectorOperands(Loc, lex, rex);
4956
4957  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4958
4959  if (!lex->getType()->isArithmeticType() ||
4960      !rex->getType()->isArithmeticType())
4961    return InvalidOperands(Loc, lex, rex);
4962
4963  // Check for division by zero.
4964  if (isDiv &&
4965      rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
4966    DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
4967                                     << rex->getSourceRange());
4968
4969  return compType;
4970}
4971
4972QualType Sema::CheckRemainderOperands(
4973  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4974  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4975    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4976      return CheckVectorOperands(Loc, lex, rex);
4977    return InvalidOperands(Loc, lex, rex);
4978  }
4979
4980  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4981
4982  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
4983    return InvalidOperands(Loc, lex, rex);
4984
4985  // Check for remainder by zero.
4986  if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
4987    DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
4988                                 << rex->getSourceRange());
4989
4990  return compType;
4991}
4992
4993QualType Sema::CheckAdditionOperands( // C99 6.5.6
4994  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
4995  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4996    QualType compType = CheckVectorOperands(Loc, lex, rex);
4997    if (CompLHSTy) *CompLHSTy = compType;
4998    return compType;
4999  }
5000
5001  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5002
5003  // handle the common case first (both operands are arithmetic).
5004  if (lex->getType()->isArithmeticType() &&
5005      rex->getType()->isArithmeticType()) {
5006    if (CompLHSTy) *CompLHSTy = compType;
5007    return compType;
5008  }
5009
5010  // Put any potential pointer into PExp
5011  Expr* PExp = lex, *IExp = rex;
5012  if (IExp->getType()->isAnyPointerType())
5013    std::swap(PExp, IExp);
5014
5015  if (PExp->getType()->isAnyPointerType()) {
5016
5017    if (IExp->getType()->isIntegerType()) {
5018      QualType PointeeTy = PExp->getType()->getPointeeType();
5019
5020      // Check for arithmetic on pointers to incomplete types.
5021      if (PointeeTy->isVoidType()) {
5022        if (getLangOptions().CPlusPlus) {
5023          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5024            << lex->getSourceRange() << rex->getSourceRange();
5025          return QualType();
5026        }
5027
5028        // GNU extension: arithmetic on pointer to void
5029        Diag(Loc, diag::ext_gnu_void_ptr)
5030          << lex->getSourceRange() << rex->getSourceRange();
5031      } else if (PointeeTy->isFunctionType()) {
5032        if (getLangOptions().CPlusPlus) {
5033          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5034            << lex->getType() << lex->getSourceRange();
5035          return QualType();
5036        }
5037
5038        // GNU extension: arithmetic on pointer to function
5039        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5040          << lex->getType() << lex->getSourceRange();
5041      } else {
5042        // Check if we require a complete type.
5043        if (((PExp->getType()->isPointerType() &&
5044              !PExp->getType()->isDependentType()) ||
5045              PExp->getType()->isObjCObjectPointerType()) &&
5046             RequireCompleteType(Loc, PointeeTy,
5047                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5048                             << PExp->getSourceRange()
5049                             << PExp->getType()))
5050          return QualType();
5051      }
5052      // Diagnose bad cases where we step over interface counts.
5053      if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5054        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5055          << PointeeTy << PExp->getSourceRange();
5056        return QualType();
5057      }
5058
5059      if (CompLHSTy) {
5060        QualType LHSTy = Context.isPromotableBitField(lex);
5061        if (LHSTy.isNull()) {
5062          LHSTy = lex->getType();
5063          if (LHSTy->isPromotableIntegerType())
5064            LHSTy = Context.getPromotedIntegerType(LHSTy);
5065        }
5066        *CompLHSTy = LHSTy;
5067      }
5068      return PExp->getType();
5069    }
5070  }
5071
5072  return InvalidOperands(Loc, lex, rex);
5073}
5074
5075// C99 6.5.6
5076QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
5077                                        SourceLocation Loc, QualType* CompLHSTy) {
5078  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5079    QualType compType = CheckVectorOperands(Loc, lex, rex);
5080    if (CompLHSTy) *CompLHSTy = compType;
5081    return compType;
5082  }
5083
5084  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5085
5086  // Enforce type constraints: C99 6.5.6p3.
5087
5088  // Handle the common case first (both operands are arithmetic).
5089  if (lex->getType()->isArithmeticType()
5090      && rex->getType()->isArithmeticType()) {
5091    if (CompLHSTy) *CompLHSTy = compType;
5092    return compType;
5093  }
5094
5095  // Either ptr - int   or   ptr - ptr.
5096  if (lex->getType()->isAnyPointerType()) {
5097    QualType lpointee = lex->getType()->getPointeeType();
5098
5099    // The LHS must be an completely-defined object type.
5100
5101    bool ComplainAboutVoid = false;
5102    Expr *ComplainAboutFunc = 0;
5103    if (lpointee->isVoidType()) {
5104      if (getLangOptions().CPlusPlus) {
5105        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5106          << lex->getSourceRange() << rex->getSourceRange();
5107        return QualType();
5108      }
5109
5110      // GNU C extension: arithmetic on pointer to void
5111      ComplainAboutVoid = true;
5112    } else if (lpointee->isFunctionType()) {
5113      if (getLangOptions().CPlusPlus) {
5114        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5115          << lex->getType() << lex->getSourceRange();
5116        return QualType();
5117      }
5118
5119      // GNU C extension: arithmetic on pointer to function
5120      ComplainAboutFunc = lex;
5121    } else if (!lpointee->isDependentType() &&
5122               RequireCompleteType(Loc, lpointee,
5123                                   PDiag(diag::err_typecheck_sub_ptr_object)
5124                                     << lex->getSourceRange()
5125                                     << lex->getType()))
5126      return QualType();
5127
5128    // Diagnose bad cases where we step over interface counts.
5129    if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5130      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5131        << lpointee << lex->getSourceRange();
5132      return QualType();
5133    }
5134
5135    // The result type of a pointer-int computation is the pointer type.
5136    if (rex->getType()->isIntegerType()) {
5137      if (ComplainAboutVoid)
5138        Diag(Loc, diag::ext_gnu_void_ptr)
5139          << lex->getSourceRange() << rex->getSourceRange();
5140      if (ComplainAboutFunc)
5141        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5142          << ComplainAboutFunc->getType()
5143          << ComplainAboutFunc->getSourceRange();
5144
5145      if (CompLHSTy) *CompLHSTy = lex->getType();
5146      return lex->getType();
5147    }
5148
5149    // Handle pointer-pointer subtractions.
5150    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
5151      QualType rpointee = RHSPTy->getPointeeType();
5152
5153      // RHS must be a completely-type object type.
5154      // Handle the GNU void* extension.
5155      if (rpointee->isVoidType()) {
5156        if (getLangOptions().CPlusPlus) {
5157          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5158            << lex->getSourceRange() << rex->getSourceRange();
5159          return QualType();
5160        }
5161
5162        ComplainAboutVoid = true;
5163      } else if (rpointee->isFunctionType()) {
5164        if (getLangOptions().CPlusPlus) {
5165          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5166            << rex->getType() << rex->getSourceRange();
5167          return QualType();
5168        }
5169
5170        // GNU extension: arithmetic on pointer to function
5171        if (!ComplainAboutFunc)
5172          ComplainAboutFunc = rex;
5173      } else if (!rpointee->isDependentType() &&
5174                 RequireCompleteType(Loc, rpointee,
5175                                     PDiag(diag::err_typecheck_sub_ptr_object)
5176                                       << rex->getSourceRange()
5177                                       << rex->getType()))
5178        return QualType();
5179
5180      if (getLangOptions().CPlusPlus) {
5181        // Pointee types must be the same: C++ [expr.add]
5182        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
5183          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5184            << lex->getType() << rex->getType()
5185            << lex->getSourceRange() << rex->getSourceRange();
5186          return QualType();
5187        }
5188      } else {
5189        // Pointee types must be compatible C99 6.5.6p3
5190        if (!Context.typesAreCompatible(
5191                Context.getCanonicalType(lpointee).getUnqualifiedType(),
5192                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
5193          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5194            << lex->getType() << rex->getType()
5195            << lex->getSourceRange() << rex->getSourceRange();
5196          return QualType();
5197        }
5198      }
5199
5200      if (ComplainAboutVoid)
5201        Diag(Loc, diag::ext_gnu_void_ptr)
5202          << lex->getSourceRange() << rex->getSourceRange();
5203      if (ComplainAboutFunc)
5204        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5205          << ComplainAboutFunc->getType()
5206          << ComplainAboutFunc->getSourceRange();
5207
5208      if (CompLHSTy) *CompLHSTy = lex->getType();
5209      return Context.getPointerDiffType();
5210    }
5211  }
5212
5213  return InvalidOperands(Loc, lex, rex);
5214}
5215
5216// C99 6.5.7
5217QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5218                                  bool isCompAssign) {
5219  // C99 6.5.7p2: Each of the operands shall have integer type.
5220  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
5221    return InvalidOperands(Loc, lex, rex);
5222
5223  // Vector shifts promote their scalar inputs to vector type.
5224  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5225    return CheckVectorOperands(Loc, lex, rex);
5226
5227  // Shifts don't perform usual arithmetic conversions, they just do integer
5228  // promotions on each operand. C99 6.5.7p3
5229  QualType LHSTy = Context.isPromotableBitField(lex);
5230  if (LHSTy.isNull()) {
5231    LHSTy = lex->getType();
5232    if (LHSTy->isPromotableIntegerType())
5233      LHSTy = Context.getPromotedIntegerType(LHSTy);
5234  }
5235  if (!isCompAssign)
5236    ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
5237
5238  UsualUnaryConversions(rex);
5239
5240  // Sanity-check shift operands
5241  llvm::APSInt Right;
5242  // Check right/shifter operand
5243  if (!rex->isValueDependent() &&
5244      rex->isIntegerConstantExpr(Right, Context)) {
5245    if (Right.isNegative())
5246      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
5247    else {
5248      llvm::APInt LeftBits(Right.getBitWidth(),
5249                          Context.getTypeSize(lex->getType()));
5250      if (Right.uge(LeftBits))
5251        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
5252    }
5253  }
5254
5255  // "The type of the result is that of the promoted left operand."
5256  return LHSTy;
5257}
5258
5259// C99 6.5.8, C++ [expr.rel]
5260QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5261                                    unsigned OpaqueOpc, bool isRelational) {
5262  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
5263
5264  // Handle vector comparisons separately.
5265  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5266    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
5267
5268  // C99 6.5.8p3 / C99 6.5.9p4
5269  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
5270    UsualArithmeticConversions(lex, rex);
5271  else {
5272    UsualUnaryConversions(lex);
5273    UsualUnaryConversions(rex);
5274  }
5275  QualType lType = lex->getType();
5276  QualType rType = rex->getType();
5277
5278  if (!lType->isFloatingType()
5279      && !(lType->isBlockPointerType() && isRelational)) {
5280    // For non-floating point types, check for self-comparisons of the form
5281    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5282    // often indicate logic errors in the program.
5283    // NOTE: Don't warn about comparisons of enum constants. These can arise
5284    //  from macro expansions, and are usually quite deliberate.
5285    Expr *LHSStripped = lex->IgnoreParens();
5286    Expr *RHSStripped = rex->IgnoreParens();
5287    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
5288      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
5289        if (DRL->getDecl() == DRR->getDecl() &&
5290            !isa<EnumConstantDecl>(DRL->getDecl()))
5291          DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison));
5292
5293    if (isa<CastExpr>(LHSStripped))
5294      LHSStripped = LHSStripped->IgnoreParenCasts();
5295    if (isa<CastExpr>(RHSStripped))
5296      RHSStripped = RHSStripped->IgnoreParenCasts();
5297
5298    // Warn about comparisons against a string constant (unless the other
5299    // operand is null), the user probably wants strcmp.
5300    Expr *literalString = 0;
5301    Expr *literalStringStripped = 0;
5302    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
5303        !RHSStripped->isNullPointerConstant(Context,
5304                                            Expr::NPC_ValueDependentIsNull)) {
5305      literalString = lex;
5306      literalStringStripped = LHSStripped;
5307    } else if ((isa<StringLiteral>(RHSStripped) ||
5308                isa<ObjCEncodeExpr>(RHSStripped)) &&
5309               !LHSStripped->isNullPointerConstant(Context,
5310                                            Expr::NPC_ValueDependentIsNull)) {
5311      literalString = rex;
5312      literalStringStripped = RHSStripped;
5313    }
5314
5315    if (literalString) {
5316      std::string resultComparison;
5317      switch (Opc) {
5318      case BinaryOperator::LT: resultComparison = ") < 0"; break;
5319      case BinaryOperator::GT: resultComparison = ") > 0"; break;
5320      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
5321      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
5322      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
5323      case BinaryOperator::NE: resultComparison = ") != 0"; break;
5324      default: assert(false && "Invalid comparison operator");
5325      }
5326
5327      DiagRuntimeBehavior(Loc,
5328        PDiag(diag::warn_stringcompare)
5329          << isa<ObjCEncodeExpr>(literalStringStripped)
5330          << literalString->getSourceRange());
5331    }
5332  }
5333
5334  // The result of comparisons is 'bool' in C++, 'int' in C.
5335  QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
5336
5337  if (isRelational) {
5338    if (lType->isRealType() && rType->isRealType())
5339      return ResultTy;
5340  } else {
5341    // Check for comparisons of floating point operands using != and ==.
5342    if (lType->isFloatingType() && rType->isFloatingType())
5343      CheckFloatComparison(Loc,lex,rex);
5344
5345    if (lType->isArithmeticType() && rType->isArithmeticType())
5346      return ResultTy;
5347  }
5348
5349  bool LHSIsNull = lex->isNullPointerConstant(Context,
5350                                              Expr::NPC_ValueDependentIsNull);
5351  bool RHSIsNull = rex->isNullPointerConstant(Context,
5352                                              Expr::NPC_ValueDependentIsNull);
5353
5354  // All of the following pointer related warnings are GCC extensions, except
5355  // when handling null pointer constants. One day, we can consider making them
5356  // errors (when -pedantic-errors is enabled).
5357  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
5358    QualType LCanPointeeTy =
5359      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
5360    QualType RCanPointeeTy =
5361      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
5362
5363    if (getLangOptions().CPlusPlus) {
5364      if (LCanPointeeTy == RCanPointeeTy)
5365        return ResultTy;
5366      if (!isRelational &&
5367          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5368        // Valid unless comparison between non-null pointer and function pointer
5369        // This is a gcc extension compatibility comparison.
5370        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5371            && !LHSIsNull && !RHSIsNull) {
5372          Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5373            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5374          ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5375          return ResultTy;
5376        }
5377      }
5378      // C++ [expr.rel]p2:
5379      //   [...] Pointer conversions (4.10) and qualification
5380      //   conversions (4.4) are performed on pointer operands (or on
5381      //   a pointer operand and a null pointer constant) to bring
5382      //   them to their composite pointer type. [...]
5383      //
5384      // C++ [expr.eq]p1 uses the same notion for (in)equality
5385      // comparisons of pointers.
5386      bool NonStandardCompositeType = false;
5387      QualType T = FindCompositePointerType(Loc, lex, rex,
5388                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5389      if (T.isNull()) {
5390        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5391          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5392        return QualType();
5393      } else if (NonStandardCompositeType) {
5394        Diag(Loc,
5395             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5396          << lType << rType << T
5397          << lex->getSourceRange() << rex->getSourceRange();
5398      }
5399
5400      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5401      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5402      return ResultTy;
5403    }
5404    // C99 6.5.9p2 and C99 6.5.8p2
5405    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
5406                                   RCanPointeeTy.getUnqualifiedType())) {
5407      // Valid unless a relational comparison of function pointers
5408      if (isRelational && LCanPointeeTy->isFunctionType()) {
5409        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
5410          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5411      }
5412    } else if (!isRelational &&
5413               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5414      // Valid unless comparison between non-null pointer and function pointer
5415      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5416          && !LHSIsNull && !RHSIsNull) {
5417        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5418          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5419      }
5420    } else {
5421      // Invalid
5422      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5423        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5424    }
5425    if (LCanPointeeTy != RCanPointeeTy)
5426      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5427    return ResultTy;
5428  }
5429
5430  if (getLangOptions().CPlusPlus) {
5431    // Comparison of pointers with null pointer constants and equality
5432    // comparisons of member pointers to null pointer constants.
5433    if (RHSIsNull &&
5434        (lType->isPointerType() ||
5435         (!isRelational && lType->isMemberPointerType()))) {
5436      ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
5437      return ResultTy;
5438    }
5439    if (LHSIsNull &&
5440        (rType->isPointerType() ||
5441         (!isRelational && rType->isMemberPointerType()))) {
5442      ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
5443      return ResultTy;
5444    }
5445
5446    // Comparison of member pointers.
5447    if (!isRelational &&
5448        lType->isMemberPointerType() && rType->isMemberPointerType()) {
5449      // C++ [expr.eq]p2:
5450      //   In addition, pointers to members can be compared, or a pointer to
5451      //   member and a null pointer constant. Pointer to member conversions
5452      //   (4.11) and qualification conversions (4.4) are performed to bring
5453      //   them to a common type. If one operand is a null pointer constant,
5454      //   the common type is the type of the other operand. Otherwise, the
5455      //   common type is a pointer to member type similar (4.4) to the type
5456      //   of one of the operands, with a cv-qualification signature (4.4)
5457      //   that is the union of the cv-qualification signatures of the operand
5458      //   types.
5459      bool NonStandardCompositeType = false;
5460      QualType T = FindCompositePointerType(Loc, lex, rex,
5461                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5462      if (T.isNull()) {
5463        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5464          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5465        return QualType();
5466      } else if (NonStandardCompositeType) {
5467        Diag(Loc,
5468             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5469          << lType << rType << T
5470          << lex->getSourceRange() << rex->getSourceRange();
5471      }
5472
5473      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5474      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5475      return ResultTy;
5476    }
5477
5478    // Comparison of nullptr_t with itself.
5479    if (lType->isNullPtrType() && rType->isNullPtrType())
5480      return ResultTy;
5481  }
5482
5483  // Handle block pointer types.
5484  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
5485    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
5486    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
5487
5488    if (!LHSIsNull && !RHSIsNull &&
5489        !Context.typesAreCompatible(lpointee, rpointee)) {
5490      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5491        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5492    }
5493    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5494    return ResultTy;
5495  }
5496  // Allow block pointers to be compared with null pointer constants.
5497  if (!isRelational
5498      && ((lType->isBlockPointerType() && rType->isPointerType())
5499          || (lType->isPointerType() && rType->isBlockPointerType()))) {
5500    if (!LHSIsNull && !RHSIsNull) {
5501      if (!((rType->isPointerType() && rType->getAs<PointerType>()
5502             ->getPointeeType()->isVoidType())
5503            || (lType->isPointerType() && lType->getAs<PointerType>()
5504                ->getPointeeType()->isVoidType())))
5505        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5506          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5507    }
5508    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5509    return ResultTy;
5510  }
5511
5512  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
5513    if (lType->isPointerType() || rType->isPointerType()) {
5514      const PointerType *LPT = lType->getAs<PointerType>();
5515      const PointerType *RPT = rType->getAs<PointerType>();
5516      bool LPtrToVoid = LPT ?
5517        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
5518      bool RPtrToVoid = RPT ?
5519        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
5520
5521      if (!LPtrToVoid && !RPtrToVoid &&
5522          !Context.typesAreCompatible(lType, rType)) {
5523        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5524          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5525      }
5526      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5527      return ResultTy;
5528    }
5529    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
5530      if (!Context.areComparableObjCPointerTypes(lType, rType))
5531        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5532          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5533      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5534      return ResultTy;
5535    }
5536  }
5537  if (lType->isAnyPointerType() && rType->isIntegerType()) {
5538    unsigned DiagID = 0;
5539    if (RHSIsNull) {
5540      if (isRelational)
5541        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5542    } else if (isRelational)
5543      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5544    else
5545      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5546
5547    if (DiagID) {
5548      Diag(Loc, DiagID)
5549        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5550    }
5551    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5552    return ResultTy;
5553  }
5554  if (lType->isIntegerType() && rType->isAnyPointerType()) {
5555    unsigned DiagID = 0;
5556    if (LHSIsNull) {
5557      if (isRelational)
5558        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5559    } else if (isRelational)
5560      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5561    else
5562      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5563
5564    if (DiagID) {
5565      Diag(Loc, DiagID)
5566        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5567    }
5568    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5569    return ResultTy;
5570  }
5571  // Handle block pointers.
5572  if (!isRelational && RHSIsNull
5573      && lType->isBlockPointerType() && rType->isIntegerType()) {
5574    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5575    return ResultTy;
5576  }
5577  if (!isRelational && LHSIsNull
5578      && lType->isIntegerType() && rType->isBlockPointerType()) {
5579    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5580    return ResultTy;
5581  }
5582  return InvalidOperands(Loc, lex, rex);
5583}
5584
5585/// CheckVectorCompareOperands - vector comparisons are a clang extension that
5586/// operates on extended vector types.  Instead of producing an IntTy result,
5587/// like a scalar comparison, a vector comparison produces a vector of integer
5588/// types.
5589QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
5590                                          SourceLocation Loc,
5591                                          bool isRelational) {
5592  // Check to make sure we're operating on vectors of the same type and width,
5593  // Allowing one side to be a scalar of element type.
5594  QualType vType = CheckVectorOperands(Loc, lex, rex);
5595  if (vType.isNull())
5596    return vType;
5597
5598  QualType lType = lex->getType();
5599  QualType rType = rex->getType();
5600
5601  // For non-floating point types, check for self-comparisons of the form
5602  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5603  // often indicate logic errors in the program.
5604  if (!lType->isFloatingType()) {
5605    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
5606      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
5607        if (DRL->getDecl() == DRR->getDecl())
5608          DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison));
5609  }
5610
5611  // Check for comparisons of floating point operands using != and ==.
5612  if (!isRelational && lType->isFloatingType()) {
5613    assert (rType->isFloatingType());
5614    CheckFloatComparison(Loc,lex,rex);
5615  }
5616
5617  // Return the type for the comparison, which is the same as vector type for
5618  // integer vectors, or an integer type of identical size and number of
5619  // elements for floating point vectors.
5620  if (lType->isIntegerType())
5621    return lType;
5622
5623  const VectorType *VTy = lType->getAs<VectorType>();
5624  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
5625  if (TypeSize == Context.getTypeSize(Context.IntTy))
5626    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
5627  if (TypeSize == Context.getTypeSize(Context.LongTy))
5628    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
5629
5630  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
5631         "Unhandled vector element size in vector compare");
5632  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
5633}
5634
5635inline QualType Sema::CheckBitwiseOperands(
5636  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5637  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5638    return CheckVectorOperands(Loc, lex, rex);
5639
5640  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5641
5642  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
5643    return compType;
5644  return InvalidOperands(Loc, lex, rex);
5645}
5646
5647inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
5648  Expr *&lex, Expr *&rex, SourceLocation Loc) {
5649  if (!Context.getLangOptions().CPlusPlus) {
5650    UsualUnaryConversions(lex);
5651    UsualUnaryConversions(rex);
5652
5653    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
5654      return InvalidOperands(Loc, lex, rex);
5655
5656    return Context.IntTy;
5657  }
5658
5659  // C++ [expr.log.and]p1
5660  // C++ [expr.log.or]p1
5661  // The operands are both implicitly converted to type bool (clause 4).
5662  StandardConversionSequence LHS;
5663  if (!IsStandardConversion(lex, Context.BoolTy,
5664                            /*InOverloadResolution=*/false, LHS))
5665    return InvalidOperands(Loc, lex, rex);
5666
5667  if (PerformImplicitConversion(lex, Context.BoolTy, LHS,
5668                                AA_Passing, /*IgnoreBaseAccess=*/false))
5669    return InvalidOperands(Loc, lex, rex);
5670
5671  StandardConversionSequence RHS;
5672  if (!IsStandardConversion(rex, Context.BoolTy,
5673                            /*InOverloadResolution=*/false, RHS))
5674    return InvalidOperands(Loc, lex, rex);
5675
5676  if (PerformImplicitConversion(rex, Context.BoolTy, RHS,
5677                                AA_Passing, /*IgnoreBaseAccess=*/false))
5678    return InvalidOperands(Loc, lex, rex);
5679
5680  // C++ [expr.log.and]p2
5681  // C++ [expr.log.or]p2
5682  // The result is a bool.
5683  return Context.BoolTy;
5684}
5685
5686/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
5687/// is a read-only property; return true if so. A readonly property expression
5688/// depends on various declarations and thus must be treated specially.
5689///
5690static bool IsReadonlyProperty(Expr *E, Sema &S) {
5691  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
5692    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
5693    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
5694      QualType BaseType = PropExpr->getBase()->getType();
5695      if (const ObjCObjectPointerType *OPT =
5696            BaseType->getAsObjCInterfacePointerType())
5697        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
5698          if (S.isPropertyReadonly(PDecl, IFace))
5699            return true;
5700    }
5701  }
5702  return false;
5703}
5704
5705/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
5706/// emit an error and return true.  If so, return false.
5707static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
5708  SourceLocation OrigLoc = Loc;
5709  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
5710                                                              &Loc);
5711  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
5712    IsLV = Expr::MLV_ReadonlyProperty;
5713  if (IsLV == Expr::MLV_Valid)
5714    return false;
5715
5716  unsigned Diag = 0;
5717  bool NeedType = false;
5718  switch (IsLV) { // C99 6.5.16p2
5719  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
5720  case Expr::MLV_ArrayType:
5721    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
5722    NeedType = true;
5723    break;
5724  case Expr::MLV_NotObjectType:
5725    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
5726    NeedType = true;
5727    break;
5728  case Expr::MLV_LValueCast:
5729    Diag = diag::err_typecheck_lvalue_casts_not_supported;
5730    break;
5731  case Expr::MLV_Valid:
5732    llvm_unreachable("did not take early return for MLV_Valid");
5733  case Expr::MLV_InvalidExpression:
5734  case Expr::MLV_MemberFunction:
5735  case Expr::MLV_ClassTemporary:
5736    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
5737    break;
5738  case Expr::MLV_IncompleteType:
5739  case Expr::MLV_IncompleteVoidType:
5740    return S.RequireCompleteType(Loc, E->getType(),
5741              S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
5742                  << E->getSourceRange());
5743  case Expr::MLV_DuplicateVectorComponents:
5744    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
5745    break;
5746  case Expr::MLV_NotBlockQualified:
5747    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
5748    break;
5749  case Expr::MLV_ReadonlyProperty:
5750    Diag = diag::error_readonly_property_assignment;
5751    break;
5752  case Expr::MLV_NoSetterProperty:
5753    Diag = diag::error_nosetter_property_assignment;
5754    break;
5755  case Expr::MLV_SubObjCPropertySetting:
5756    Diag = diag::error_no_subobject_property_setting;
5757    break;
5758  }
5759
5760  SourceRange Assign;
5761  if (Loc != OrigLoc)
5762    Assign = SourceRange(OrigLoc, OrigLoc);
5763  if (NeedType)
5764    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
5765  else
5766    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
5767  return true;
5768}
5769
5770
5771
5772// C99 6.5.16.1
5773QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
5774                                       SourceLocation Loc,
5775                                       QualType CompoundType) {
5776  // Verify that LHS is a modifiable lvalue, and emit error if not.
5777  if (CheckForModifiableLvalue(LHS, Loc, *this))
5778    return QualType();
5779
5780  QualType LHSType = LHS->getType();
5781  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
5782
5783  AssignConvertType ConvTy;
5784  if (CompoundType.isNull()) {
5785    // Simple assignment "x = y".
5786    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
5787    // Special case of NSObject attributes on c-style pointer types.
5788    if (ConvTy == IncompatiblePointer &&
5789        ((Context.isObjCNSObjectType(LHSType) &&
5790          RHSType->isObjCObjectPointerType()) ||
5791         (Context.isObjCNSObjectType(RHSType) &&
5792          LHSType->isObjCObjectPointerType())))
5793      ConvTy = Compatible;
5794
5795    // If the RHS is a unary plus or minus, check to see if they = and + are
5796    // right next to each other.  If so, the user may have typo'd "x =+ 4"
5797    // instead of "x += 4".
5798    Expr *RHSCheck = RHS;
5799    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
5800      RHSCheck = ICE->getSubExpr();
5801    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
5802      if ((UO->getOpcode() == UnaryOperator::Plus ||
5803           UO->getOpcode() == UnaryOperator::Minus) &&
5804          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
5805          // Only if the two operators are exactly adjacent.
5806          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
5807          // And there is a space or other character before the subexpr of the
5808          // unary +/-.  We don't want to warn on "x=-1".
5809          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
5810          UO->getSubExpr()->getLocStart().isFileID()) {
5811        Diag(Loc, diag::warn_not_compound_assign)
5812          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
5813          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
5814      }
5815    }
5816  } else {
5817    // Compound assignment "x += y"
5818    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
5819  }
5820
5821  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
5822                               RHS, AA_Assigning))
5823    return QualType();
5824
5825  // C99 6.5.16p3: The type of an assignment expression is the type of the
5826  // left operand unless the left operand has qualified type, in which case
5827  // it is the unqualified version of the type of the left operand.
5828  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
5829  // is converted to the type of the assignment expression (above).
5830  // C++ 5.17p1: the type of the assignment expression is that of its left
5831  // operand.
5832  return LHSType.getUnqualifiedType();
5833}
5834
5835// C99 6.5.17
5836QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
5837  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
5838  // C++ does not perform this conversion (C++ [expr.comma]p1).
5839  if (!getLangOptions().CPlusPlus)
5840    DefaultFunctionArrayLvalueConversion(RHS);
5841
5842  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
5843  // incomplete in C++).
5844
5845  return RHS->getType();
5846}
5847
5848/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
5849/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
5850QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
5851                                              bool isInc, bool isPrefix) {
5852  if (Op->isTypeDependent())
5853    return Context.DependentTy;
5854
5855  QualType ResType = Op->getType();
5856  assert(!ResType.isNull() && "no type for increment/decrement expression");
5857
5858  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
5859    // Decrement of bool is not allowed.
5860    if (!isInc) {
5861      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
5862      return QualType();
5863    }
5864    // Increment of bool sets it to true, but is deprecated.
5865    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
5866  } else if (ResType->isRealType()) {
5867    // OK!
5868  } else if (ResType->isAnyPointerType()) {
5869    QualType PointeeTy = ResType->getPointeeType();
5870
5871    // C99 6.5.2.4p2, 6.5.6p2
5872    if (PointeeTy->isVoidType()) {
5873      if (getLangOptions().CPlusPlus) {
5874        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
5875          << Op->getSourceRange();
5876        return QualType();
5877      }
5878
5879      // Pointer to void is a GNU extension in C.
5880      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
5881    } else if (PointeeTy->isFunctionType()) {
5882      if (getLangOptions().CPlusPlus) {
5883        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
5884          << Op->getType() << Op->getSourceRange();
5885        return QualType();
5886      }
5887
5888      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
5889        << ResType << Op->getSourceRange();
5890    } else if (RequireCompleteType(OpLoc, PointeeTy,
5891                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5892                             << Op->getSourceRange()
5893                             << ResType))
5894      return QualType();
5895    // Diagnose bad cases where we step over interface counts.
5896    else if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5897      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
5898        << PointeeTy << Op->getSourceRange();
5899      return QualType();
5900    }
5901  } else if (ResType->isAnyComplexType()) {
5902    // C99 does not support ++/-- on complex types, we allow as an extension.
5903    Diag(OpLoc, diag::ext_integer_increment_complex)
5904      << ResType << Op->getSourceRange();
5905  } else {
5906    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
5907      << ResType << int(isInc) << Op->getSourceRange();
5908    return QualType();
5909  }
5910  // At this point, we know we have a real, complex or pointer type.
5911  // Now make sure the operand is a modifiable lvalue.
5912  if (CheckForModifiableLvalue(Op, OpLoc, *this))
5913    return QualType();
5914  // In C++, a prefix increment is the same type as the operand. Otherwise
5915  // (in C or with postfix), the increment is the unqualified type of the
5916  // operand.
5917  return isPrefix && getLangOptions().CPlusPlus
5918    ? ResType : ResType.getUnqualifiedType();
5919}
5920
5921/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
5922/// This routine allows us to typecheck complex/recursive expressions
5923/// where the declaration is needed for type checking. We only need to
5924/// handle cases when the expression references a function designator
5925/// or is an lvalue. Here are some examples:
5926///  - &(x) => x
5927///  - &*****f => f for f a function designator.
5928///  - &s.xx => s
5929///  - &s.zz[1].yy -> s, if zz is an array
5930///  - *(x + 1) -> x, if x is an array
5931///  - &"123"[2] -> 0
5932///  - & __real__ x -> x
5933static NamedDecl *getPrimaryDecl(Expr *E) {
5934  switch (E->getStmtClass()) {
5935  case Stmt::DeclRefExprClass:
5936    return cast<DeclRefExpr>(E)->getDecl();
5937  case Stmt::MemberExprClass:
5938    // If this is an arrow operator, the address is an offset from
5939    // the base's value, so the object the base refers to is
5940    // irrelevant.
5941    if (cast<MemberExpr>(E)->isArrow())
5942      return 0;
5943    // Otherwise, the expression refers to a part of the base
5944    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
5945  case Stmt::ArraySubscriptExprClass: {
5946    // FIXME: This code shouldn't be necessary!  We should catch the implicit
5947    // promotion of register arrays earlier.
5948    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
5949    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
5950      if (ICE->getSubExpr()->getType()->isArrayType())
5951        return getPrimaryDecl(ICE->getSubExpr());
5952    }
5953    return 0;
5954  }
5955  case Stmt::UnaryOperatorClass: {
5956    UnaryOperator *UO = cast<UnaryOperator>(E);
5957
5958    switch(UO->getOpcode()) {
5959    case UnaryOperator::Real:
5960    case UnaryOperator::Imag:
5961    case UnaryOperator::Extension:
5962      return getPrimaryDecl(UO->getSubExpr());
5963    default:
5964      return 0;
5965    }
5966  }
5967  case Stmt::ParenExprClass:
5968    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
5969  case Stmt::ImplicitCastExprClass:
5970    // If the result of an implicit cast is an l-value, we care about
5971    // the sub-expression; otherwise, the result here doesn't matter.
5972    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
5973  default:
5974    return 0;
5975  }
5976}
5977
5978/// CheckAddressOfOperand - The operand of & must be either a function
5979/// designator or an lvalue designating an object. If it is an lvalue, the
5980/// object cannot be declared with storage class register or be a bit field.
5981/// Note: The usual conversions are *not* applied to the operand of the &
5982/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
5983/// In C++, the operand might be an overloaded function name, in which case
5984/// we allow the '&' but retain the overloaded-function type.
5985QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
5986  // Make sure to ignore parentheses in subsequent checks
5987  op = op->IgnoreParens();
5988
5989  if (op->isTypeDependent())
5990    return Context.DependentTy;
5991
5992  if (getLangOptions().C99) {
5993    // Implement C99-only parts of addressof rules.
5994    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
5995      if (uOp->getOpcode() == UnaryOperator::Deref)
5996        // Per C99 6.5.3.2, the address of a deref always returns a valid result
5997        // (assuming the deref expression is valid).
5998        return uOp->getSubExpr()->getType();
5999    }
6000    // Technically, there should be a check for array subscript
6001    // expressions here, but the result of one is always an lvalue anyway.
6002  }
6003  NamedDecl *dcl = getPrimaryDecl(op);
6004  Expr::isLvalueResult lval = op->isLvalue(Context);
6005
6006  MemberExpr *ME = dyn_cast<MemberExpr>(op);
6007  if (lval == Expr::LV_MemberFunction && ME &&
6008      isa<CXXMethodDecl>(ME->getMemberDecl())) {
6009    ValueDecl *dcl = cast<MemberExpr>(op)->getMemberDecl();
6010    // &f where f is a member of the current object, or &o.f, or &p->f
6011    // All these are not allowed, and we need to catch them before the dcl
6012    // branch of the if, below.
6013    Diag(OpLoc, diag::err_unqualified_pointer_member_function)
6014        << dcl;
6015    // FIXME: Improve this diagnostic and provide a fixit.
6016
6017    // Now recover by acting as if the function had been accessed qualified.
6018    return Context.getMemberPointerType(op->getType(),
6019                Context.getTypeDeclType(cast<RecordDecl>(dcl->getDeclContext()))
6020                       .getTypePtr());
6021  } else if (lval == Expr::LV_ClassTemporary) {
6022    Diag(OpLoc, isSFINAEContext()? diag::err_typecheck_addrof_class_temporary
6023                                 : diag::ext_typecheck_addrof_class_temporary)
6024      << op->getType() << op->getSourceRange();
6025    if (isSFINAEContext())
6026      return QualType();
6027  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
6028    // C99 6.5.3.2p1
6029    // The operand must be either an l-value or a function designator
6030    if (!op->getType()->isFunctionType()) {
6031      // FIXME: emit more specific diag...
6032      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
6033        << op->getSourceRange();
6034      return QualType();
6035    }
6036  } else if (op->getBitField()) { // C99 6.5.3.2p1
6037    // The operand cannot be a bit-field
6038    Diag(OpLoc, diag::err_typecheck_address_of)
6039      << "bit-field" << op->getSourceRange();
6040        return QualType();
6041  } else if (op->refersToVectorElement()) {
6042    // The operand cannot be an element of a vector
6043    Diag(OpLoc, diag::err_typecheck_address_of)
6044      << "vector element" << op->getSourceRange();
6045    return QualType();
6046  } else if (isa<ObjCPropertyRefExpr>(op)) {
6047    // cannot take address of a property expression.
6048    Diag(OpLoc, diag::err_typecheck_address_of)
6049      << "property expression" << op->getSourceRange();
6050    return QualType();
6051  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
6052    // FIXME: Can LHS ever be null here?
6053    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
6054      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
6055  } else if (isa<UnresolvedLookupExpr>(op)) {
6056    return Context.OverloadTy;
6057  } else if (dcl) { // C99 6.5.3.2p1
6058    // We have an lvalue with a decl. Make sure the decl is not declared
6059    // with the register storage-class specifier.
6060    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
6061      if (vd->getStorageClass() == VarDecl::Register) {
6062        Diag(OpLoc, diag::err_typecheck_address_of)
6063          << "register variable" << op->getSourceRange();
6064        return QualType();
6065      }
6066    } else if (isa<FunctionTemplateDecl>(dcl)) {
6067      return Context.OverloadTy;
6068    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
6069      // Okay: we can take the address of a field.
6070      // Could be a pointer to member, though, if there is an explicit
6071      // scope qualifier for the class.
6072      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
6073        DeclContext *Ctx = dcl->getDeclContext();
6074        if (Ctx && Ctx->isRecord()) {
6075          if (FD->getType()->isReferenceType()) {
6076            Diag(OpLoc,
6077                 diag::err_cannot_form_pointer_to_member_of_reference_type)
6078              << FD->getDeclName() << FD->getType();
6079            return QualType();
6080          }
6081
6082          return Context.getMemberPointerType(op->getType(),
6083                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
6084        }
6085      }
6086    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
6087      // Okay: we can take the address of a function.
6088      // As above.
6089      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
6090          MD->isInstance())
6091        return Context.getMemberPointerType(op->getType(),
6092              Context.getTypeDeclType(MD->getParent()).getTypePtr());
6093    } else if (!isa<FunctionDecl>(dcl))
6094      assert(0 && "Unknown/unexpected decl type");
6095  }
6096
6097  if (lval == Expr::LV_IncompleteVoidType) {
6098    // Taking the address of a void variable is technically illegal, but we
6099    // allow it in cases which are otherwise valid.
6100    // Example: "extern void x; void* y = &x;".
6101    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
6102  }
6103
6104  // If the operand has type "type", the result has type "pointer to type".
6105  return Context.getPointerType(op->getType());
6106}
6107
6108QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
6109  if (Op->isTypeDependent())
6110    return Context.DependentTy;
6111
6112  UsualUnaryConversions(Op);
6113  QualType Ty = Op->getType();
6114
6115  // Note that per both C89 and C99, this is always legal, even if ptype is an
6116  // incomplete type or void.  It would be possible to warn about dereferencing
6117  // a void pointer, but it's completely well-defined, and such a warning is
6118  // unlikely to catch any mistakes.
6119  if (const PointerType *PT = Ty->getAs<PointerType>())
6120    return PT->getPointeeType();
6121
6122  if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>())
6123    return OPT->getPointeeType();
6124
6125  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
6126    << Ty << Op->getSourceRange();
6127  return QualType();
6128}
6129
6130static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
6131  tok::TokenKind Kind) {
6132  BinaryOperator::Opcode Opc;
6133  switch (Kind) {
6134  default: assert(0 && "Unknown binop!");
6135  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
6136  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
6137  case tok::star:                 Opc = BinaryOperator::Mul; break;
6138  case tok::slash:                Opc = BinaryOperator::Div; break;
6139  case tok::percent:              Opc = BinaryOperator::Rem; break;
6140  case tok::plus:                 Opc = BinaryOperator::Add; break;
6141  case tok::minus:                Opc = BinaryOperator::Sub; break;
6142  case tok::lessless:             Opc = BinaryOperator::Shl; break;
6143  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
6144  case tok::lessequal:            Opc = BinaryOperator::LE; break;
6145  case tok::less:                 Opc = BinaryOperator::LT; break;
6146  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
6147  case tok::greater:              Opc = BinaryOperator::GT; break;
6148  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
6149  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
6150  case tok::amp:                  Opc = BinaryOperator::And; break;
6151  case tok::caret:                Opc = BinaryOperator::Xor; break;
6152  case tok::pipe:                 Opc = BinaryOperator::Or; break;
6153  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
6154  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
6155  case tok::equal:                Opc = BinaryOperator::Assign; break;
6156  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
6157  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
6158  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
6159  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
6160  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
6161  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
6162  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
6163  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
6164  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
6165  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
6166  case tok::comma:                Opc = BinaryOperator::Comma; break;
6167  }
6168  return Opc;
6169}
6170
6171static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
6172  tok::TokenKind Kind) {
6173  UnaryOperator::Opcode Opc;
6174  switch (Kind) {
6175  default: assert(0 && "Unknown unary op!");
6176  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
6177  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
6178  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
6179  case tok::star:         Opc = UnaryOperator::Deref; break;
6180  case tok::plus:         Opc = UnaryOperator::Plus; break;
6181  case tok::minus:        Opc = UnaryOperator::Minus; break;
6182  case tok::tilde:        Opc = UnaryOperator::Not; break;
6183  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
6184  case tok::kw___real:    Opc = UnaryOperator::Real; break;
6185  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
6186  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
6187  }
6188  return Opc;
6189}
6190
6191/// CreateBuiltinBinOp - Creates a new built-in binary operation with
6192/// operator @p Opc at location @c TokLoc. This routine only supports
6193/// built-in operations; ActOnBinOp handles overloaded operators.
6194Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
6195                                                  unsigned Op,
6196                                                  Expr *lhs, Expr *rhs) {
6197  QualType ResultTy;     // Result type of the binary operator.
6198  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
6199  // The following two variables are used for compound assignment operators
6200  QualType CompLHSTy;    // Type of LHS after promotions for computation
6201  QualType CompResultTy; // Type of computation result
6202
6203  switch (Opc) {
6204  case BinaryOperator::Assign:
6205    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
6206    break;
6207  case BinaryOperator::PtrMemD:
6208  case BinaryOperator::PtrMemI:
6209    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
6210                                            Opc == BinaryOperator::PtrMemI);
6211    break;
6212  case BinaryOperator::Mul:
6213  case BinaryOperator::Div:
6214    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
6215                                           Opc == BinaryOperator::Div);
6216    break;
6217  case BinaryOperator::Rem:
6218    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
6219    break;
6220  case BinaryOperator::Add:
6221    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
6222    break;
6223  case BinaryOperator::Sub:
6224    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
6225    break;
6226  case BinaryOperator::Shl:
6227  case BinaryOperator::Shr:
6228    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
6229    break;
6230  case BinaryOperator::LE:
6231  case BinaryOperator::LT:
6232  case BinaryOperator::GE:
6233  case BinaryOperator::GT:
6234    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
6235    break;
6236  case BinaryOperator::EQ:
6237  case BinaryOperator::NE:
6238    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
6239    break;
6240  case BinaryOperator::And:
6241  case BinaryOperator::Xor:
6242  case BinaryOperator::Or:
6243    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
6244    break;
6245  case BinaryOperator::LAnd:
6246  case BinaryOperator::LOr:
6247    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
6248    break;
6249  case BinaryOperator::MulAssign:
6250  case BinaryOperator::DivAssign:
6251    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
6252                                              Opc == BinaryOperator::DivAssign);
6253    CompLHSTy = CompResultTy;
6254    if (!CompResultTy.isNull())
6255      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6256    break;
6257  case BinaryOperator::RemAssign:
6258    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
6259    CompLHSTy = CompResultTy;
6260    if (!CompResultTy.isNull())
6261      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6262    break;
6263  case BinaryOperator::AddAssign:
6264    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6265    if (!CompResultTy.isNull())
6266      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6267    break;
6268  case BinaryOperator::SubAssign:
6269    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6270    if (!CompResultTy.isNull())
6271      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6272    break;
6273  case BinaryOperator::ShlAssign:
6274  case BinaryOperator::ShrAssign:
6275    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
6276    CompLHSTy = CompResultTy;
6277    if (!CompResultTy.isNull())
6278      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6279    break;
6280  case BinaryOperator::AndAssign:
6281  case BinaryOperator::XorAssign:
6282  case BinaryOperator::OrAssign:
6283    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
6284    CompLHSTy = CompResultTy;
6285    if (!CompResultTy.isNull())
6286      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6287    break;
6288  case BinaryOperator::Comma:
6289    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
6290    break;
6291  }
6292  if (ResultTy.isNull())
6293    return ExprError();
6294  if (CompResultTy.isNull())
6295    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
6296  else
6297    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
6298                                                      CompLHSTy, CompResultTy,
6299                                                      OpLoc));
6300}
6301
6302/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
6303/// ParenRange in parentheses.
6304static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6305                               const PartialDiagnostic &PD,
6306                               const PartialDiagnostic &FirstNote,
6307                               SourceRange FirstParenRange,
6308                               const PartialDiagnostic &SecondNote,
6309                               SourceRange SecondParenRange) {
6310  Self.Diag(Loc, PD);
6311
6312  if (!FirstNote.getDiagID())
6313    return;
6314
6315  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd());
6316  if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6317    // We can't display the parentheses, so just return.
6318    return;
6319  }
6320
6321  Self.Diag(Loc, FirstNote)
6322    << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(")
6323    << FixItHint::CreateInsertion(EndLoc, ")");
6324
6325  if (!SecondNote.getDiagID())
6326    return;
6327
6328  EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
6329  if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6330    // We can't display the parentheses, so just dig the
6331    // warning/error and return.
6332    Self.Diag(Loc, SecondNote);
6333    return;
6334  }
6335
6336  Self.Diag(Loc, SecondNote)
6337    << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(")
6338    << FixItHint::CreateInsertion(EndLoc, ")");
6339}
6340
6341/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
6342/// operators are mixed in a way that suggests that the programmer forgot that
6343/// comparison operators have higher precedence. The most typical example of
6344/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
6345static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6346                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
6347  typedef BinaryOperator BinOp;
6348  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
6349                rhsopc = static_cast<BinOp::Opcode>(-1);
6350  if (BinOp *BO = dyn_cast<BinOp>(lhs))
6351    lhsopc = BO->getOpcode();
6352  if (BinOp *BO = dyn_cast<BinOp>(rhs))
6353    rhsopc = BO->getOpcode();
6354
6355  // Subs are not binary operators.
6356  if (lhsopc == -1 && rhsopc == -1)
6357    return;
6358
6359  // Bitwise operations are sometimes used as eager logical ops.
6360  // Don't diagnose this.
6361  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
6362      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
6363    return;
6364
6365  if (BinOp::isComparisonOp(lhsopc))
6366    SuggestParentheses(Self, OpLoc,
6367      Self.PDiag(diag::warn_precedence_bitwise_rel)
6368          << SourceRange(lhs->getLocStart(), OpLoc)
6369          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
6370      Self.PDiag(diag::note_precedence_bitwise_first)
6371          << BinOp::getOpcodeStr(Opc),
6372      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()),
6373      Self.PDiag(diag::note_precedence_bitwise_silence)
6374          << BinOp::getOpcodeStr(lhsopc),
6375                       lhs->getSourceRange());
6376  else if (BinOp::isComparisonOp(rhsopc))
6377    SuggestParentheses(Self, OpLoc,
6378      Self.PDiag(diag::warn_precedence_bitwise_rel)
6379          << SourceRange(OpLoc, rhs->getLocEnd())
6380          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
6381      Self.PDiag(diag::note_precedence_bitwise_first)
6382        << BinOp::getOpcodeStr(Opc),
6383      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()),
6384      Self.PDiag(diag::note_precedence_bitwise_silence)
6385        << BinOp::getOpcodeStr(rhsopc),
6386                       rhs->getSourceRange());
6387}
6388
6389/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
6390/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
6391/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
6392static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6393                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
6394  if (BinaryOperator::isBitwiseOp(Opc))
6395    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
6396}
6397
6398// Binary Operators.  'Tok' is the token for the operator.
6399Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
6400                                          tok::TokenKind Kind,
6401                                          ExprArg LHS, ExprArg RHS) {
6402  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
6403  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
6404
6405  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
6406  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
6407
6408  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
6409  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
6410
6411  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
6412}
6413
6414Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
6415                                          BinaryOperator::Opcode Opc,
6416                                          Expr *lhs, Expr *rhs) {
6417  if (getLangOptions().CPlusPlus &&
6418      (lhs->getType()->isOverloadableType() ||
6419       rhs->getType()->isOverloadableType())) {
6420    // Find all of the overloaded operators visible from this
6421    // point. We perform both an operator-name lookup from the local
6422    // scope and an argument-dependent lookup based on the types of
6423    // the arguments.
6424    UnresolvedSet<16> Functions;
6425    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
6426    if (S && OverOp != OO_None)
6427      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
6428                                   Functions);
6429
6430    // Build the (potentially-overloaded, potentially-dependent)
6431    // binary operation.
6432    return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
6433  }
6434
6435  // Build a built-in binary operation.
6436  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
6437}
6438
6439Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
6440                                                    unsigned OpcIn,
6441                                                    ExprArg InputArg) {
6442  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
6443
6444  // FIXME: Input is modified below, but InputArg is not updated appropriately.
6445  Expr *Input = (Expr *)InputArg.get();
6446  QualType resultType;
6447  switch (Opc) {
6448  case UnaryOperator::OffsetOf:
6449    assert(false && "Invalid unary operator");
6450    break;
6451
6452  case UnaryOperator::PreInc:
6453  case UnaryOperator::PreDec:
6454  case UnaryOperator::PostInc:
6455  case UnaryOperator::PostDec:
6456    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
6457                                                Opc == UnaryOperator::PreInc ||
6458                                                Opc == UnaryOperator::PostInc,
6459                                                Opc == UnaryOperator::PreInc ||
6460                                                Opc == UnaryOperator::PreDec);
6461    break;
6462  case UnaryOperator::AddrOf:
6463    resultType = CheckAddressOfOperand(Input, OpLoc);
6464    break;
6465  case UnaryOperator::Deref:
6466    DefaultFunctionArrayLvalueConversion(Input);
6467    resultType = CheckIndirectionOperand(Input, OpLoc);
6468    break;
6469  case UnaryOperator::Plus:
6470  case UnaryOperator::Minus:
6471    UsualUnaryConversions(Input);
6472    resultType = Input->getType();
6473    if (resultType->isDependentType())
6474      break;
6475    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
6476      break;
6477    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
6478             resultType->isEnumeralType())
6479      break;
6480    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
6481             Opc == UnaryOperator::Plus &&
6482             resultType->isPointerType())
6483      break;
6484
6485    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6486      << resultType << Input->getSourceRange());
6487  case UnaryOperator::Not: // bitwise complement
6488    UsualUnaryConversions(Input);
6489    resultType = Input->getType();
6490    if (resultType->isDependentType())
6491      break;
6492    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
6493    if (resultType->isComplexType() || resultType->isComplexIntegerType())
6494      // C99 does not support '~' for complex conjugation.
6495      Diag(OpLoc, diag::ext_integer_complement_complex)
6496        << resultType << Input->getSourceRange();
6497    else if (!resultType->isIntegerType())
6498      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6499        << resultType << Input->getSourceRange());
6500    break;
6501  case UnaryOperator::LNot: // logical negation
6502    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
6503    DefaultFunctionArrayLvalueConversion(Input);
6504    resultType = Input->getType();
6505    if (resultType->isDependentType())
6506      break;
6507    if (!resultType->isScalarType()) // C99 6.5.3.3p1
6508      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6509        << resultType << Input->getSourceRange());
6510    // LNot always has type int. C99 6.5.3.3p5.
6511    // In C++, it's bool. C++ 5.3.1p8
6512    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
6513    break;
6514  case UnaryOperator::Real:
6515  case UnaryOperator::Imag:
6516    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
6517    break;
6518  case UnaryOperator::Extension:
6519    resultType = Input->getType();
6520    break;
6521  }
6522  if (resultType.isNull())
6523    return ExprError();
6524
6525  InputArg.release();
6526  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
6527}
6528
6529Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
6530                                            UnaryOperator::Opcode Opc,
6531                                            ExprArg input) {
6532  Expr *Input = (Expr*)input.get();
6533  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
6534      Opc != UnaryOperator::Extension) {
6535    // Find all of the overloaded operators visible from this
6536    // point. We perform both an operator-name lookup from the local
6537    // scope and an argument-dependent lookup based on the types of
6538    // the arguments.
6539    UnresolvedSet<16> Functions;
6540    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
6541    if (S && OverOp != OO_None)
6542      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
6543                                   Functions);
6544
6545    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
6546  }
6547
6548  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
6549}
6550
6551// Unary Operators.  'Tok' is the token for the operator.
6552Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
6553                                            tok::TokenKind Op, ExprArg input) {
6554  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input));
6555}
6556
6557/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
6558Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
6559                                            SourceLocation LabLoc,
6560                                            IdentifierInfo *LabelII) {
6561  // Look up the record for this label identifier.
6562  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
6563
6564  // If we haven't seen this label yet, create a forward reference. It
6565  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
6566  if (LabelDecl == 0)
6567    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
6568
6569  // Create the AST node.  The address of a label always has type 'void*'.
6570  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
6571                                       Context.getPointerType(Context.VoidTy)));
6572}
6573
6574Sema::OwningExprResult
6575Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
6576                    SourceLocation RPLoc) { // "({..})"
6577  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
6578  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
6579  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
6580
6581  bool isFileScope
6582    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
6583  if (isFileScope)
6584    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
6585
6586  // FIXME: there are a variety of strange constraints to enforce here, for
6587  // example, it is not possible to goto into a stmt expression apparently.
6588  // More semantic analysis is needed.
6589
6590  // If there are sub stmts in the compound stmt, take the type of the last one
6591  // as the type of the stmtexpr.
6592  QualType Ty = Context.VoidTy;
6593
6594  if (!Compound->body_empty()) {
6595    Stmt *LastStmt = Compound->body_back();
6596    // If LastStmt is a label, skip down through into the body.
6597    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
6598      LastStmt = Label->getSubStmt();
6599
6600    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
6601      Ty = LastExpr->getType();
6602  }
6603
6604  // FIXME: Check that expression type is complete/non-abstract; statement
6605  // expressions are not lvalues.
6606
6607  substmt.release();
6608  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
6609}
6610
6611Sema::OwningExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
6612                                                  TypeSourceInfo *TInfo,
6613                                                  OffsetOfComponent *CompPtr,
6614                                                  unsigned NumComponents,
6615                                                  SourceLocation RParenLoc) {
6616  QualType ArgTy = TInfo->getType();
6617  bool Dependent = ArgTy->isDependentType();
6618  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
6619
6620  // We must have at least one component that refers to the type, and the first
6621  // one is known to be a field designator.  Verify that the ArgTy represents
6622  // a struct/union/class.
6623  if (!Dependent && !ArgTy->isRecordType())
6624    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
6625                       << ArgTy << TypeRange);
6626
6627  // Type must be complete per C99 7.17p3 because a declaring a variable
6628  // with an incomplete type would be ill-formed.
6629  if (!Dependent
6630      && RequireCompleteType(BuiltinLoc, ArgTy,
6631                             PDiag(diag::err_offsetof_incomplete_type)
6632                               << TypeRange))
6633    return ExprError();
6634
6635  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
6636  // GCC extension, diagnose them.
6637  // FIXME: This diagnostic isn't actually visible because the location is in
6638  // a system header!
6639  if (NumComponents != 1)
6640    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
6641      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
6642
6643  bool DidWarnAboutNonPOD = false;
6644  QualType CurrentType = ArgTy;
6645  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
6646  llvm::SmallVector<OffsetOfNode, 4> Comps;
6647  llvm::SmallVector<Expr*, 4> Exprs;
6648  for (unsigned i = 0; i != NumComponents; ++i) {
6649    const OffsetOfComponent &OC = CompPtr[i];
6650    if (OC.isBrackets) {
6651      // Offset of an array sub-field.  TODO: Should we allow vector elements?
6652      if (!CurrentType->isDependentType()) {
6653        const ArrayType *AT = Context.getAsArrayType(CurrentType);
6654        if(!AT)
6655          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
6656                           << CurrentType);
6657        CurrentType = AT->getElementType();
6658      } else
6659        CurrentType = Context.DependentTy;
6660
6661      // The expression must be an integral expression.
6662      // FIXME: An integral constant expression?
6663      Expr *Idx = static_cast<Expr*>(OC.U.E);
6664      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
6665          !Idx->getType()->isIntegerType())
6666        return ExprError(Diag(Idx->getLocStart(),
6667                              diag::err_typecheck_subscript_not_integer)
6668                         << Idx->getSourceRange());
6669
6670      // Record this array index.
6671      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
6672      Exprs.push_back(Idx);
6673      continue;
6674    }
6675
6676    // Offset of a field.
6677    if (CurrentType->isDependentType()) {
6678      // We have the offset of a field, but we can't look into the dependent
6679      // type. Just record the identifier of the field.
6680      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
6681      CurrentType = Context.DependentTy;
6682      continue;
6683    }
6684
6685    // We need to have a complete type to look into.
6686    if (RequireCompleteType(OC.LocStart, CurrentType,
6687                            diag::err_offsetof_incomplete_type))
6688      return ExprError();
6689
6690    // Look for the designated field.
6691    const RecordType *RC = CurrentType->getAs<RecordType>();
6692    if (!RC)
6693      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
6694                       << CurrentType);
6695    RecordDecl *RD = RC->getDecl();
6696
6697    // C++ [lib.support.types]p5:
6698    //   The macro offsetof accepts a restricted set of type arguments in this
6699    //   International Standard. type shall be a POD structure or a POD union
6700    //   (clause 9).
6701    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6702      if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
6703          DiagRuntimeBehavior(BuiltinLoc,
6704                              PDiag(diag::warn_offsetof_non_pod_type)
6705                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
6706                              << CurrentType))
6707        DidWarnAboutNonPOD = true;
6708    }
6709
6710    // Look for the field.
6711    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
6712    LookupQualifiedName(R, RD);
6713    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
6714    if (!MemberDecl)
6715      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
6716                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
6717                                                              OC.LocEnd));
6718
6719    // C99 7.17p3:
6720    //   (If the specified member is a bit-field, the behavior is undefined.)
6721    //
6722    // We diagnose this as an error.
6723    if (MemberDecl->getBitWidth()) {
6724      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
6725        << MemberDecl->getDeclName()
6726        << SourceRange(BuiltinLoc, RParenLoc);
6727      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
6728      return ExprError();
6729    }
6730
6731    // If the member was found in a base class, introduce OffsetOfNodes for
6732    // the base class indirections.
6733    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
6734                       /*DetectVirtual=*/false);
6735    if (IsDerivedFrom(CurrentType,
6736                      Context.getTypeDeclType(MemberDecl->getParent()),
6737                      Paths)) {
6738      CXXBasePath &Path = Paths.front();
6739      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
6740           B != BEnd; ++B)
6741        Comps.push_back(OffsetOfNode(B->Base));
6742    }
6743
6744    if (cast<RecordDecl>(MemberDecl->getDeclContext())->
6745                                                isAnonymousStructOrUnion()) {
6746      llvm::SmallVector<FieldDecl*, 4> Path;
6747      BuildAnonymousStructUnionMemberPath(MemberDecl, Path);
6748      unsigned n = Path.size();
6749      for (int j = n - 1; j > -1; --j)
6750        Comps.push_back(OffsetOfNode(OC.LocStart, Path[j], OC.LocEnd));
6751    } else {
6752      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
6753    }
6754    CurrentType = MemberDecl->getType().getNonReferenceType();
6755  }
6756
6757  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
6758                                    TInfo, Comps.data(), Comps.size(),
6759                                    Exprs.data(), Exprs.size(), RParenLoc));
6760}
6761
6762Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
6763                                                  SourceLocation BuiltinLoc,
6764                                                  SourceLocation TypeLoc,
6765                                                  TypeTy *argty,
6766                                                  OffsetOfComponent *CompPtr,
6767                                                  unsigned NumComponents,
6768                                                  SourceLocation RPLoc) {
6769
6770  TypeSourceInfo *ArgTInfo;
6771  QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
6772  if (ArgTy.isNull())
6773    return ExprError();
6774
6775  if (getLangOptions().CPlusPlus) {
6776    if (!ArgTInfo)
6777      ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
6778
6779    return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
6780                                RPLoc);
6781  }
6782
6783  // FIXME: The code below is marked for death, once we have proper CodeGen
6784  // support for non-constant OffsetOf expressions.
6785
6786  bool Dependent = ArgTy->isDependentType();
6787
6788  // We must have at least one component that refers to the type, and the first
6789  // one is known to be a field designator.  Verify that the ArgTy represents
6790  // a struct/union/class.
6791  if (!Dependent && !ArgTy->isRecordType())
6792    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
6793
6794  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
6795  // with an incomplete type would be illegal.
6796
6797  // Otherwise, create a null pointer as the base, and iteratively process
6798  // the offsetof designators.
6799  QualType ArgTyPtr = Context.getPointerType(ArgTy);
6800  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
6801  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
6802                                    ArgTy, SourceLocation());
6803
6804  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
6805  // GCC extension, diagnose them.
6806  // FIXME: This diagnostic isn't actually visible because the location is in
6807  // a system header!
6808  if (NumComponents != 1)
6809    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
6810    << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
6811
6812  if (!Dependent) {
6813    bool DidWarnAboutNonPOD = false;
6814
6815    if (RequireCompleteType(TypeLoc, Res->getType(),
6816                            diag::err_offsetof_incomplete_type))
6817      return ExprError();
6818
6819    // FIXME: Dependent case loses a lot of information here. And probably
6820    // leaks like a sieve.
6821    for (unsigned i = 0; i != NumComponents; ++i) {
6822      const OffsetOfComponent &OC = CompPtr[i];
6823      if (OC.isBrackets) {
6824        // Offset of an array sub-field.  TODO: Should we allow vector elements?
6825        const ArrayType *AT = Context.getAsArrayType(Res->getType());
6826        if (!AT) {
6827          Res->Destroy(Context);
6828          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
6829                           << Res->getType());
6830        }
6831
6832        // FIXME: C++: Verify that operator[] isn't overloaded.
6833
6834        // Promote the array so it looks more like a normal array subscript
6835        // expression.
6836        DefaultFunctionArrayLvalueConversion(Res);
6837
6838        // C99 6.5.2.1p1
6839        Expr *Idx = static_cast<Expr*>(OC.U.E);
6840        // FIXME: Leaks Res
6841        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
6842          return ExprError(Diag(Idx->getLocStart(),
6843                                diag::err_typecheck_subscript_not_integer)
6844                           << Idx->getSourceRange());
6845
6846        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
6847                                               OC.LocEnd);
6848        continue;
6849      }
6850
6851      const RecordType *RC = Res->getType()->getAs<RecordType>();
6852      if (!RC) {
6853        Res->Destroy(Context);
6854        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
6855                         << Res->getType());
6856      }
6857
6858      // Get the decl corresponding to this.
6859      RecordDecl *RD = RC->getDecl();
6860      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6861        if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
6862            DiagRuntimeBehavior(BuiltinLoc,
6863                                PDiag(diag::warn_offsetof_non_pod_type)
6864                                << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
6865                                << Res->getType()))
6866          DidWarnAboutNonPOD = true;
6867      }
6868
6869      LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
6870      LookupQualifiedName(R, RD);
6871
6872      FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
6873      // FIXME: Leaks Res
6874      if (!MemberDecl)
6875        return ExprError(Diag(BuiltinLoc, diag::err_no_member)
6876                         << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
6877
6878      // C99 7.17p3:
6879      //   (If the specified member is a bit-field, the behavior is undefined.)
6880      //
6881      // We diagnose this as an error.
6882      if (MemberDecl->getBitWidth()) {
6883        Diag(OC.LocEnd, diag::err_offsetof_bitfield)
6884          << MemberDecl->getDeclName()
6885          << SourceRange(BuiltinLoc, RPLoc);
6886        Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
6887        return ExprError();
6888      }
6889
6890      // FIXME: C++: Verify that MemberDecl isn't a static field.
6891      // FIXME: Verify that MemberDecl isn't a bitfield.
6892      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
6893        Res = BuildAnonymousStructUnionMemberReference(
6894                                                       OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>();
6895      } else {
6896        PerformObjectMemberConversion(Res, /*Qualifier=*/0,
6897                                      *R.begin(), MemberDecl);
6898        // MemberDecl->getType() doesn't get the right qualifiers, but it
6899        // doesn't matter here.
6900        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
6901                                       MemberDecl->getType().getNonReferenceType());
6902      }
6903    }
6904  }
6905
6906  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
6907                                           Context.getSizeType(), BuiltinLoc));
6908}
6909
6910
6911Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
6912                                                      TypeTy *arg1,TypeTy *arg2,
6913                                                      SourceLocation RPLoc) {
6914  // FIXME: Preserve type source info.
6915  QualType argT1 = GetTypeFromParser(arg1);
6916  QualType argT2 = GetTypeFromParser(arg2);
6917
6918  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
6919
6920  if (getLangOptions().CPlusPlus) {
6921    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
6922      << SourceRange(BuiltinLoc, RPLoc);
6923    return ExprError();
6924  }
6925
6926  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
6927                                                 argT1, argT2, RPLoc));
6928}
6929
6930Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
6931                                             ExprArg cond,
6932                                             ExprArg expr1, ExprArg expr2,
6933                                             SourceLocation RPLoc) {
6934  Expr *CondExpr = static_cast<Expr*>(cond.get());
6935  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
6936  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
6937
6938  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
6939
6940  QualType resType;
6941  bool ValueDependent = false;
6942  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
6943    resType = Context.DependentTy;
6944    ValueDependent = true;
6945  } else {
6946    // The conditional expression is required to be a constant expression.
6947    llvm::APSInt condEval(32);
6948    SourceLocation ExpLoc;
6949    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
6950      return ExprError(Diag(ExpLoc,
6951                       diag::err_typecheck_choose_expr_requires_constant)
6952        << CondExpr->getSourceRange());
6953
6954    // If the condition is > zero, then the AST type is the same as the LSHExpr.
6955    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
6956    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
6957                                             : RHSExpr->isValueDependent();
6958  }
6959
6960  cond.release(); expr1.release(); expr2.release();
6961  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
6962                                        resType, RPLoc,
6963                                        resType->isDependentType(),
6964                                        ValueDependent));
6965}
6966
6967//===----------------------------------------------------------------------===//
6968// Clang Extensions.
6969//===----------------------------------------------------------------------===//
6970
6971/// ActOnBlockStart - This callback is invoked when a block literal is started.
6972void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
6973  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
6974  PushBlockScope(BlockScope, Block);
6975  CurContext->addDecl(Block);
6976  PushDeclContext(BlockScope, Block);
6977}
6978
6979void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
6980  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
6981  BlockScopeInfo *CurBlock = getCurBlock();
6982
6983  if (ParamInfo.getNumTypeObjects() == 0
6984      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
6985    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
6986    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
6987
6988    if (T->isArrayType()) {
6989      Diag(ParamInfo.getSourceRange().getBegin(),
6990           diag::err_block_returns_array);
6991      return;
6992    }
6993
6994    // The parameter list is optional, if there was none, assume ().
6995    if (!T->isFunctionType())
6996      T = Context.getFunctionType(T, 0, 0, false, 0, false, false, 0, 0,
6997                                  FunctionType::ExtInfo());
6998
6999    CurBlock->hasPrototype = true;
7000    CurBlock->isVariadic = false;
7001    // Check for a valid sentinel attribute on this block.
7002    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
7003      Diag(ParamInfo.getAttributes()->getLoc(),
7004           diag::warn_attribute_sentinel_not_variadic) << 1;
7005      // FIXME: remove the attribute.
7006    }
7007    QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType();
7008
7009    // Do not allow returning a objc interface by-value.
7010    if (RetTy->isObjCObjectType()) {
7011      Diag(ParamInfo.getSourceRange().getBegin(),
7012           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
7013      return;
7014    }
7015
7016    CurBlock->ReturnType = RetTy;
7017    return;
7018  }
7019
7020  // Analyze arguments to block.
7021  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
7022         "Not a function declarator!");
7023  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
7024
7025  CurBlock->hasPrototype = FTI.hasPrototype;
7026  CurBlock->isVariadic = true;
7027
7028  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
7029  // no arguments, not a function that takes a single void argument.
7030  if (FTI.hasPrototype &&
7031      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
7032     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
7033        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
7034    // empty arg list, don't push any params.
7035    CurBlock->isVariadic = false;
7036  } else if (FTI.hasPrototype) {
7037    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
7038      ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
7039      if (Param->getIdentifier() == 0 &&
7040          !Param->isImplicit() &&
7041          !Param->isInvalidDecl() &&
7042          !getLangOptions().CPlusPlus)
7043        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
7044      CurBlock->Params.push_back(Param);
7045    }
7046    CurBlock->isVariadic = FTI.isVariadic;
7047  }
7048  CurBlock->TheDecl->setParams(CurBlock->Params.data(),
7049                               CurBlock->Params.size());
7050  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
7051  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
7052
7053  bool ShouldCheckShadow =
7054    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
7055
7056  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
7057         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
7058    (*AI)->setOwningFunction(CurBlock->TheDecl);
7059
7060    // If this has an identifier, add it to the scope stack.
7061    if ((*AI)->getIdentifier()) {
7062      if (ShouldCheckShadow)
7063        CheckShadow(CurBlock->TheScope, *AI);
7064
7065      PushOnScopeChains(*AI, CurBlock->TheScope);
7066    }
7067  }
7068
7069  // Check for a valid sentinel attribute on this block.
7070  if (!CurBlock->isVariadic &&
7071      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
7072    Diag(ParamInfo.getAttributes()->getLoc(),
7073         diag::warn_attribute_sentinel_not_variadic) << 1;
7074    // FIXME: remove the attribute.
7075  }
7076
7077  // Analyze the return type.
7078  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
7079  QualType RetTy = T->getAs<FunctionType>()->getResultType();
7080
7081  // Do not allow returning a objc interface by-value.
7082  if (RetTy->isObjCObjectType()) {
7083    Diag(ParamInfo.getSourceRange().getBegin(),
7084         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
7085  } else if (!RetTy->isDependentType())
7086    CurBlock->ReturnType = RetTy;
7087}
7088
7089/// ActOnBlockError - If there is an error parsing a block, this callback
7090/// is invoked to pop the information about the block from the action impl.
7091void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
7092  // Pop off CurBlock, handle nested blocks.
7093  PopDeclContext();
7094  PopFunctionOrBlockScope();
7095  // FIXME: Delete the ParmVarDecl objects as well???
7096}
7097
7098/// ActOnBlockStmtExpr - This is called when the body of a block statement
7099/// literal was successfully completed.  ^(int x){...}
7100Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
7101                                                StmtArg body, Scope *CurScope) {
7102  // If blocks are disabled, emit an error.
7103  if (!LangOpts.Blocks)
7104    Diag(CaretLoc, diag::err_blocks_disable);
7105
7106  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
7107
7108  PopDeclContext();
7109
7110  QualType RetTy = Context.VoidTy;
7111  if (!BSI->ReturnType.isNull())
7112    RetTy = BSI->ReturnType;
7113
7114  llvm::SmallVector<QualType, 8> ArgTypes;
7115  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
7116    ArgTypes.push_back(BSI->Params[i]->getType());
7117
7118  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
7119  QualType BlockTy;
7120  if (!BSI->hasPrototype)
7121    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
7122                                FunctionType::ExtInfo(NoReturn, 0, CC_Default));
7123  else
7124    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
7125                                      BSI->isVariadic, 0, false, false, 0, 0,
7126                                FunctionType::ExtInfo(NoReturn, 0, CC_Default));
7127
7128  // FIXME: Check that return/parameter types are complete/non-abstract
7129  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
7130  BlockTy = Context.getBlockPointerType(BlockTy);
7131
7132  // If needed, diagnose invalid gotos and switches in the block.
7133  if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
7134    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
7135
7136  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
7137
7138  bool Good = true;
7139  // Check goto/label use.
7140  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
7141         I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
7142    LabelStmt *L = I->second;
7143
7144    // Verify that we have no forward references left.  If so, there was a goto
7145    // or address of a label taken, but no definition of it.
7146    if (L->getSubStmt() != 0)
7147      continue;
7148
7149    // Emit error.
7150    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
7151    Good = false;
7152  }
7153  if (!Good) {
7154    PopFunctionOrBlockScope();
7155    return ExprError();
7156  }
7157
7158  // Issue any analysis-based warnings.
7159  const sema::AnalysisBasedWarnings::Policy &WP =
7160    AnalysisWarnings.getDefaultPolicy();
7161  AnalysisWarnings.IssueWarnings(WP, BSI->TheDecl, BlockTy);
7162
7163  Expr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy,
7164                                         BSI->hasBlockDeclRefExprs);
7165  PopFunctionOrBlockScope();
7166  return Owned(Result);
7167}
7168
7169Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
7170                                        ExprArg expr, TypeTy *type,
7171                                        SourceLocation RPLoc) {
7172  QualType T = GetTypeFromParser(type);
7173  Expr *E = static_cast<Expr*>(expr.get());
7174  Expr *OrigExpr = E;
7175
7176  InitBuiltinVaListType();
7177
7178  // Get the va_list type
7179  QualType VaListType = Context.getBuiltinVaListType();
7180  if (VaListType->isArrayType()) {
7181    // Deal with implicit array decay; for example, on x86-64,
7182    // va_list is an array, but it's supposed to decay to
7183    // a pointer for va_arg.
7184    VaListType = Context.getArrayDecayedType(VaListType);
7185    // Make sure the input expression also decays appropriately.
7186    UsualUnaryConversions(E);
7187  } else {
7188    // Otherwise, the va_list argument must be an l-value because
7189    // it is modified by va_arg.
7190    if (!E->isTypeDependent() &&
7191        CheckForModifiableLvalue(E, BuiltinLoc, *this))
7192      return ExprError();
7193  }
7194
7195  if (!E->isTypeDependent() &&
7196      !Context.hasSameType(VaListType, E->getType())) {
7197    return ExprError(Diag(E->getLocStart(),
7198                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
7199      << OrigExpr->getType() << E->getSourceRange());
7200  }
7201
7202  // FIXME: Check that type is complete/non-abstract
7203  // FIXME: Warn if a non-POD type is passed in.
7204
7205  expr.release();
7206  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
7207                                       RPLoc));
7208}
7209
7210Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
7211  // The type of __null will be int or long, depending on the size of
7212  // pointers on the target.
7213  QualType Ty;
7214  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
7215    Ty = Context.IntTy;
7216  else
7217    Ty = Context.LongTy;
7218
7219  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
7220}
7221
7222static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
7223                                           Expr *SrcExpr, FixItHint &Hint) {
7224  if (!SemaRef.getLangOptions().ObjC1)
7225    return;
7226
7227  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
7228  if (!PT)
7229    return;
7230
7231  // Check if the destination is of type 'id'.
7232  if (!PT->isObjCIdType()) {
7233    // Check if the destination is the 'NSString' interface.
7234    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
7235    if (!ID || !ID->getIdentifier()->isStr("NSString"))
7236      return;
7237  }
7238
7239  // Strip off any parens and casts.
7240  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
7241  if (!SL || SL->isWide())
7242    return;
7243
7244  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
7245}
7246
7247bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
7248                                    SourceLocation Loc,
7249                                    QualType DstType, QualType SrcType,
7250                                    Expr *SrcExpr, AssignmentAction Action,
7251                                    bool *Complained) {
7252  if (Complained)
7253    *Complained = false;
7254
7255  // Decode the result (notice that AST's are still created for extensions).
7256  bool isInvalid = false;
7257  unsigned DiagKind;
7258  FixItHint Hint;
7259
7260  switch (ConvTy) {
7261  default: assert(0 && "Unknown conversion type");
7262  case Compatible: return false;
7263  case PointerToInt:
7264    DiagKind = diag::ext_typecheck_convert_pointer_int;
7265    break;
7266  case IntToPointer:
7267    DiagKind = diag::ext_typecheck_convert_int_pointer;
7268    break;
7269  case IncompatiblePointer:
7270    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
7271    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
7272    break;
7273  case IncompatiblePointerSign:
7274    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
7275    break;
7276  case FunctionVoidPointer:
7277    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
7278    break;
7279  case CompatiblePointerDiscardsQualifiers:
7280    // If the qualifiers lost were because we were applying the
7281    // (deprecated) C++ conversion from a string literal to a char*
7282    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
7283    // Ideally, this check would be performed in
7284    // CheckPointerTypesForAssignment. However, that would require a
7285    // bit of refactoring (so that the second argument is an
7286    // expression, rather than a type), which should be done as part
7287    // of a larger effort to fix CheckPointerTypesForAssignment for
7288    // C++ semantics.
7289    if (getLangOptions().CPlusPlus &&
7290        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
7291      return false;
7292    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
7293    break;
7294  case IncompatibleNestedPointerQualifiers:
7295    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
7296    break;
7297  case IntToBlockPointer:
7298    DiagKind = diag::err_int_to_block_pointer;
7299    break;
7300  case IncompatibleBlockPointer:
7301    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
7302    break;
7303  case IncompatibleObjCQualifiedId:
7304    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
7305    // it can give a more specific diagnostic.
7306    DiagKind = diag::warn_incompatible_qualified_id;
7307    break;
7308  case IncompatibleVectors:
7309    DiagKind = diag::warn_incompatible_vectors;
7310    break;
7311  case Incompatible:
7312    DiagKind = diag::err_typecheck_convert_incompatible;
7313    isInvalid = true;
7314    break;
7315  }
7316
7317  QualType FirstType, SecondType;
7318  switch (Action) {
7319  case AA_Assigning:
7320  case AA_Initializing:
7321    // The destination type comes first.
7322    FirstType = DstType;
7323    SecondType = SrcType;
7324    break;
7325
7326  case AA_Returning:
7327  case AA_Passing:
7328  case AA_Converting:
7329  case AA_Sending:
7330  case AA_Casting:
7331    // The source type comes first.
7332    FirstType = SrcType;
7333    SecondType = DstType;
7334    break;
7335  }
7336
7337  Diag(Loc, DiagKind) << FirstType << SecondType << Action
7338    << SrcExpr->getSourceRange() << Hint;
7339  if (Complained)
7340    *Complained = true;
7341  return isInvalid;
7342}
7343
7344bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
7345  llvm::APSInt ICEResult;
7346  if (E->isIntegerConstantExpr(ICEResult, Context)) {
7347    if (Result)
7348      *Result = ICEResult;
7349    return false;
7350  }
7351
7352  Expr::EvalResult EvalResult;
7353
7354  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
7355      EvalResult.HasSideEffects) {
7356    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
7357
7358    if (EvalResult.Diag) {
7359      // We only show the note if it's not the usual "invalid subexpression"
7360      // or if it's actually in a subexpression.
7361      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
7362          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
7363        Diag(EvalResult.DiagLoc, EvalResult.Diag);
7364    }
7365
7366    return true;
7367  }
7368
7369  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
7370    E->getSourceRange();
7371
7372  if (EvalResult.Diag &&
7373      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
7374    Diag(EvalResult.DiagLoc, EvalResult.Diag);
7375
7376  if (Result)
7377    *Result = EvalResult.Val.getInt();
7378  return false;
7379}
7380
7381void
7382Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
7383  ExprEvalContexts.push_back(
7384        ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
7385}
7386
7387void
7388Sema::PopExpressionEvaluationContext() {
7389  // Pop the current expression evaluation context off the stack.
7390  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
7391  ExprEvalContexts.pop_back();
7392
7393  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
7394    if (Rec.PotentiallyReferenced) {
7395      // Mark any remaining declarations in the current position of the stack
7396      // as "referenced". If they were not meant to be referenced, semantic
7397      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
7398      for (PotentiallyReferencedDecls::iterator
7399             I = Rec.PotentiallyReferenced->begin(),
7400             IEnd = Rec.PotentiallyReferenced->end();
7401           I != IEnd; ++I)
7402        MarkDeclarationReferenced(I->first, I->second);
7403    }
7404
7405    if (Rec.PotentiallyDiagnosed) {
7406      // Emit any pending diagnostics.
7407      for (PotentiallyEmittedDiagnostics::iterator
7408                I = Rec.PotentiallyDiagnosed->begin(),
7409             IEnd = Rec.PotentiallyDiagnosed->end();
7410           I != IEnd; ++I)
7411        Diag(I->first, I->second);
7412    }
7413  }
7414
7415  // When are coming out of an unevaluated context, clear out any
7416  // temporaries that we may have created as part of the evaluation of
7417  // the expression in that context: they aren't relevant because they
7418  // will never be constructed.
7419  if (Rec.Context == Unevaluated &&
7420      ExprTemporaries.size() > Rec.NumTemporaries)
7421    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
7422                          ExprTemporaries.end());
7423
7424  // Destroy the popped expression evaluation record.
7425  Rec.Destroy();
7426}
7427
7428/// \brief Note that the given declaration was referenced in the source code.
7429///
7430/// This routine should be invoke whenever a given declaration is referenced
7431/// in the source code, and where that reference occurred. If this declaration
7432/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
7433/// C99 6.9p3), then the declaration will be marked as used.
7434///
7435/// \param Loc the location where the declaration was referenced.
7436///
7437/// \param D the declaration that has been referenced by the source code.
7438void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
7439  assert(D && "No declaration?");
7440
7441  if (D->isUsed())
7442    return;
7443
7444  // Mark a parameter or variable declaration "used", regardless of whether we're in a
7445  // template or not. The reason for this is that unevaluated expressions
7446  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
7447  // -Wunused-parameters)
7448  if (isa<ParmVarDecl>(D) ||
7449      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
7450    D->setUsed(true);
7451    return;
7452  }
7453
7454  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
7455    return;
7456
7457  // Do not mark anything as "used" within a dependent context; wait for
7458  // an instantiation.
7459  if (CurContext->isDependentContext())
7460    return;
7461
7462  switch (ExprEvalContexts.back().Context) {
7463    case Unevaluated:
7464      // We are in an expression that is not potentially evaluated; do nothing.
7465      return;
7466
7467    case PotentiallyEvaluated:
7468      // We are in a potentially-evaluated expression, so this declaration is
7469      // "used"; handle this below.
7470      break;
7471
7472    case PotentiallyPotentiallyEvaluated:
7473      // We are in an expression that may be potentially evaluated; queue this
7474      // declaration reference until we know whether the expression is
7475      // potentially evaluated.
7476      ExprEvalContexts.back().addReferencedDecl(Loc, D);
7477      return;
7478  }
7479
7480  // Note that this declaration has been used.
7481  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
7482    unsigned TypeQuals;
7483    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
7484        if (!Constructor->isUsed())
7485          DefineImplicitDefaultConstructor(Loc, Constructor);
7486    } else if (Constructor->isImplicit() &&
7487               Constructor->isCopyConstructor(TypeQuals)) {
7488      if (!Constructor->isUsed())
7489        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
7490    }
7491
7492    MarkVTableUsed(Loc, Constructor->getParent());
7493  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
7494    if (Destructor->isImplicit() && !Destructor->isUsed())
7495      DefineImplicitDestructor(Loc, Destructor);
7496    if (Destructor->isVirtual())
7497      MarkVTableUsed(Loc, Destructor->getParent());
7498  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
7499    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
7500        MethodDecl->getOverloadedOperator() == OO_Equal) {
7501      if (!MethodDecl->isUsed())
7502        DefineImplicitCopyAssignment(Loc, MethodDecl);
7503    } else if (MethodDecl->isVirtual())
7504      MarkVTableUsed(Loc, MethodDecl->getParent());
7505  }
7506  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
7507    // Implicit instantiation of function templates and member functions of
7508    // class templates.
7509    if (Function->isImplicitlyInstantiable()) {
7510      bool AlreadyInstantiated = false;
7511      if (FunctionTemplateSpecializationInfo *SpecInfo
7512                                = Function->getTemplateSpecializationInfo()) {
7513        if (SpecInfo->getPointOfInstantiation().isInvalid())
7514          SpecInfo->setPointOfInstantiation(Loc);
7515        else if (SpecInfo->getTemplateSpecializationKind()
7516                   == TSK_ImplicitInstantiation)
7517          AlreadyInstantiated = true;
7518      } else if (MemberSpecializationInfo *MSInfo
7519                                  = Function->getMemberSpecializationInfo()) {
7520        if (MSInfo->getPointOfInstantiation().isInvalid())
7521          MSInfo->setPointOfInstantiation(Loc);
7522        else if (MSInfo->getTemplateSpecializationKind()
7523                   == TSK_ImplicitInstantiation)
7524          AlreadyInstantiated = true;
7525      }
7526
7527      if (!AlreadyInstantiated) {
7528        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
7529            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
7530          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
7531                                                                      Loc));
7532        else
7533          PendingImplicitInstantiations.push_back(std::make_pair(Function,
7534                                                                 Loc));
7535      }
7536    }
7537
7538    // FIXME: keep track of references to static functions
7539    Function->setUsed(true);
7540
7541    return;
7542  }
7543
7544  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
7545    // Implicit instantiation of static data members of class templates.
7546    if (Var->isStaticDataMember() &&
7547        Var->getInstantiatedFromStaticDataMember()) {
7548      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
7549      assert(MSInfo && "Missing member specialization information?");
7550      if (MSInfo->getPointOfInstantiation().isInvalid() &&
7551          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
7552        MSInfo->setPointOfInstantiation(Loc);
7553        PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
7554      }
7555    }
7556
7557    // FIXME: keep track of references to static data?
7558
7559    D->setUsed(true);
7560    return;
7561  }
7562}
7563
7564namespace {
7565  // Mark all of the declarations referenced
7566  // FIXME: Not fully implemented yet! We need to have a better understanding
7567  // of when we're entering
7568  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
7569    Sema &S;
7570    SourceLocation Loc;
7571
7572  public:
7573    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
7574
7575    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
7576
7577    bool VisitTemplateArgument(const TemplateArgument &Arg);
7578    bool VisitRecordType(RecordType *T);
7579  };
7580}
7581
7582bool MarkReferencedDecls::VisitTemplateArgument(const TemplateArgument &Arg) {
7583  if (Arg.getKind() == TemplateArgument::Declaration) {
7584    S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
7585  }
7586
7587  return Inherited::VisitTemplateArgument(Arg);
7588}
7589
7590bool MarkReferencedDecls::VisitRecordType(RecordType *T) {
7591  if (ClassTemplateSpecializationDecl *Spec
7592                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
7593    const TemplateArgumentList &Args = Spec->getTemplateArgs();
7594    return VisitTemplateArguments(Args.getFlatArgumentList(),
7595                                  Args.flat_size());
7596  }
7597
7598  return false;
7599}
7600
7601void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
7602  MarkReferencedDecls Marker(*this, Loc);
7603  Marker.Visit(Context.getCanonicalType(T));
7604}
7605
7606/// \brief Emit a diagnostic that describes an effect on the run-time behavior
7607/// of the program being compiled.
7608///
7609/// This routine emits the given diagnostic when the code currently being
7610/// type-checked is "potentially evaluated", meaning that there is a
7611/// possibility that the code will actually be executable. Code in sizeof()
7612/// expressions, code used only during overload resolution, etc., are not
7613/// potentially evaluated. This routine will suppress such diagnostics or,
7614/// in the absolutely nutty case of potentially potentially evaluated
7615/// expressions (C++ typeid), queue the diagnostic to potentially emit it
7616/// later.
7617///
7618/// This routine should be used for all diagnostics that describe the run-time
7619/// behavior of a program, such as passing a non-POD value through an ellipsis.
7620/// Failure to do so will likely result in spurious diagnostics or failures
7621/// during overload resolution or within sizeof/alignof/typeof/typeid.
7622bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
7623                               const PartialDiagnostic &PD) {
7624  switch (ExprEvalContexts.back().Context ) {
7625  case Unevaluated:
7626    // The argument will never be evaluated, so don't complain.
7627    break;
7628
7629  case PotentiallyEvaluated:
7630    Diag(Loc, PD);
7631    return true;
7632
7633  case PotentiallyPotentiallyEvaluated:
7634    ExprEvalContexts.back().addDiagnostic(Loc, PD);
7635    break;
7636  }
7637
7638  return false;
7639}
7640
7641bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
7642                               CallExpr *CE, FunctionDecl *FD) {
7643  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
7644    return false;
7645
7646  PartialDiagnostic Note =
7647    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
7648    << FD->getDeclName() : PDiag();
7649  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
7650
7651  if (RequireCompleteType(Loc, ReturnType,
7652                          FD ?
7653                          PDiag(diag::err_call_function_incomplete_return)
7654                            << CE->getSourceRange() << FD->getDeclName() :
7655                          PDiag(diag::err_call_incomplete_return)
7656                            << CE->getSourceRange(),
7657                          std::make_pair(NoteLoc, Note)))
7658    return true;
7659
7660  return false;
7661}
7662
7663// Diagnose the common s/=/==/ typo.  Note that adding parentheses
7664// will prevent this condition from triggering, which is what we want.
7665void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
7666  SourceLocation Loc;
7667
7668  unsigned diagnostic = diag::warn_condition_is_assignment;
7669
7670  if (isa<BinaryOperator>(E)) {
7671    BinaryOperator *Op = cast<BinaryOperator>(E);
7672    if (Op->getOpcode() != BinaryOperator::Assign)
7673      return;
7674
7675    // Greylist some idioms by putting them into a warning subcategory.
7676    if (ObjCMessageExpr *ME
7677          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
7678      Selector Sel = ME->getSelector();
7679
7680      // self = [<foo> init...]
7681      if (isSelfExpr(Op->getLHS())
7682          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
7683        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7684
7685      // <foo> = [<bar> nextObject]
7686      else if (Sel.isUnarySelector() &&
7687               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
7688        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7689    }
7690
7691    Loc = Op->getOperatorLoc();
7692  } else if (isa<CXXOperatorCallExpr>(E)) {
7693    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
7694    if (Op->getOperator() != OO_Equal)
7695      return;
7696
7697    Loc = Op->getOperatorLoc();
7698  } else {
7699    // Not an assignment.
7700    return;
7701  }
7702
7703  SourceLocation Open = E->getSourceRange().getBegin();
7704  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
7705
7706  Diag(Loc, diagnostic) << E->getSourceRange();
7707  Diag(Loc, diag::note_condition_assign_to_comparison)
7708    << FixItHint::CreateReplacement(Loc, "==");
7709  Diag(Loc, diag::note_condition_assign_silence)
7710    << FixItHint::CreateInsertion(Open, "(")
7711    << FixItHint::CreateInsertion(Close, ")");
7712}
7713
7714bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
7715  DiagnoseAssignmentAsCondition(E);
7716
7717  if (!E->isTypeDependent()) {
7718    DefaultFunctionArrayLvalueConversion(E);
7719
7720    QualType T = E->getType();
7721
7722    if (getLangOptions().CPlusPlus) {
7723      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
7724        return true;
7725    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
7726      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
7727        << T << E->getSourceRange();
7728      return true;
7729    }
7730  }
7731
7732  return false;
7733}
7734
7735Sema::OwningExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
7736                                                   ExprArg SubExpr) {
7737  Expr *Sub = SubExpr.takeAs<Expr>();
7738  if (!Sub)
7739    return ExprError();
7740
7741  if (CheckBooleanCondition(Sub, Loc)) {
7742    Sub->Destroy(Context);
7743    return ExprError();
7744  }
7745
7746  return Owned(Sub);
7747}
7748