SemaExpr.cpp revision de0a95b8662e0267a5bf81801e87477d67d74c17
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "AnalysisBasedWarnings.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/LiteralSupport.h"
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Parse/DeclSpec.h"
33#include "clang/Parse/Designator.h"
34#include "clang/Parse/Scope.h"
35#include "clang/Parse/Template.h"
36using namespace clang;
37
38
39/// \brief Determine whether the use of this declaration is valid, and
40/// emit any corresponding diagnostics.
41///
42/// This routine diagnoses various problems with referencing
43/// declarations that can occur when using a declaration. For example,
44/// it might warn if a deprecated or unavailable declaration is being
45/// used, or produce an error (and return true) if a C++0x deleted
46/// function is being used.
47///
48/// If IgnoreDeprecated is set to true, this should not want about deprecated
49/// decls.
50///
51/// \returns true if there was an error (this declaration cannot be
52/// referenced), false otherwise.
53///
54bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
55  // See if the decl is deprecated.
56  if (D->getAttr<DeprecatedAttr>()) {
57    EmitDeprecationWarning(D, Loc);
58  }
59
60  // See if the decl is unavailable
61  if (D->getAttr<UnavailableAttr>()) {
62    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
63    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
64  }
65
66  // See if this is a deleted function.
67  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
68    if (FD->isDeleted()) {
69      Diag(Loc, diag::err_deleted_function_use);
70      Diag(D->getLocation(), diag::note_unavailable_here) << true;
71      return true;
72    }
73  }
74
75  return false;
76}
77
78/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
79/// (and other functions in future), which have been declared with sentinel
80/// attribute. It warns if call does not have the sentinel argument.
81///
82void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
83                                 Expr **Args, unsigned NumArgs) {
84  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
85  if (!attr)
86    return;
87
88  // FIXME: In C++0x, if any of the arguments are parameter pack
89  // expansions, we can't check for the sentinel now.
90  int sentinelPos = attr->getSentinel();
91  int nullPos = attr->getNullPos();
92
93  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
94  // base class. Then we won't be needing two versions of the same code.
95  unsigned int i = 0;
96  bool warnNotEnoughArgs = false;
97  int isMethod = 0;
98  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
99    // skip over named parameters.
100    ObjCMethodDecl::param_iterator P, E = MD->param_end();
101    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
102      if (nullPos)
103        --nullPos;
104      else
105        ++i;
106    }
107    warnNotEnoughArgs = (P != E || i >= NumArgs);
108    isMethod = 1;
109  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
110    // skip over named parameters.
111    ObjCMethodDecl::param_iterator P, E = FD->param_end();
112    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
113      if (nullPos)
114        --nullPos;
115      else
116        ++i;
117    }
118    warnNotEnoughArgs = (P != E || i >= NumArgs);
119  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
120    // block or function pointer call.
121    QualType Ty = V->getType();
122    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
123      const FunctionType *FT = Ty->isFunctionPointerType()
124      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
125      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
126      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
127        unsigned NumArgsInProto = Proto->getNumArgs();
128        unsigned k;
129        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
130          if (nullPos)
131            --nullPos;
132          else
133            ++i;
134        }
135        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
136      }
137      if (Ty->isBlockPointerType())
138        isMethod = 2;
139    } else
140      return;
141  } else
142    return;
143
144  if (warnNotEnoughArgs) {
145    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
146    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
147    return;
148  }
149  int sentinel = i;
150  while (sentinelPos > 0 && i < NumArgs-1) {
151    --sentinelPos;
152    ++i;
153  }
154  if (sentinelPos > 0) {
155    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
156    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
157    return;
158  }
159  while (i < NumArgs-1) {
160    ++i;
161    ++sentinel;
162  }
163  Expr *sentinelExpr = Args[sentinel];
164  if (!sentinelExpr) return;
165  if (sentinelExpr->isTypeDependent()) return;
166  if (sentinelExpr->isValueDependent()) return;
167  if (sentinelExpr->getType()->isPointerType() &&
168      sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
169                                            Expr::NPC_ValueDependentIsNull))
170    return;
171
172  // Unfortunately, __null has type 'int'.
173  if (isa<GNUNullExpr>(sentinelExpr)) return;
174
175  Diag(Loc, diag::warn_missing_sentinel) << isMethod;
176  Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
177}
178
179SourceRange Sema::getExprRange(ExprTy *E) const {
180  Expr *Ex = (Expr *)E;
181  return Ex? Ex->getSourceRange() : SourceRange();
182}
183
184//===----------------------------------------------------------------------===//
185//  Standard Promotions and Conversions
186//===----------------------------------------------------------------------===//
187
188/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
189void Sema::DefaultFunctionArrayConversion(Expr *&E) {
190  QualType Ty = E->getType();
191  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
192
193  if (Ty->isFunctionType())
194    ImpCastExprToType(E, Context.getPointerType(Ty),
195                      CastExpr::CK_FunctionToPointerDecay);
196  else if (Ty->isArrayType()) {
197    // In C90 mode, arrays only promote to pointers if the array expression is
198    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
199    // type 'array of type' is converted to an expression that has type 'pointer
200    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
201    // that has type 'array of type' ...".  The relevant change is "an lvalue"
202    // (C90) to "an expression" (C99).
203    //
204    // C++ 4.2p1:
205    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
206    // T" can be converted to an rvalue of type "pointer to T".
207    //
208    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
209        E->isLvalue(Context) == Expr::LV_Valid)
210      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
211                        CastExpr::CK_ArrayToPointerDecay);
212  }
213}
214
215void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
216  DefaultFunctionArrayConversion(E);
217
218  QualType Ty = E->getType();
219  assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type");
220  if (!Ty->isDependentType() && Ty.hasQualifiers() &&
221      (!getLangOptions().CPlusPlus || !Ty->isRecordType()) &&
222      E->isLvalue(Context) == Expr::LV_Valid) {
223    // C++ [conv.lval]p1:
224    //   [...] If T is a non-class type, the type of the rvalue is the
225    //   cv-unqualified version of T. Otherwise, the type of the
226    //   rvalue is T
227    //
228    // C99 6.3.2.1p2:
229    //   If the lvalue has qualified type, the value has the unqualified
230    //   version of the type of the lvalue; otherwise, the value has the
231    //   type of the lvalue.
232    ImpCastExprToType(E, Ty.getUnqualifiedType(), CastExpr::CK_NoOp);
233  }
234}
235
236
237/// UsualUnaryConversions - Performs various conversions that are common to most
238/// operators (C99 6.3). The conversions of array and function types are
239/// sometimes surpressed. For example, the array->pointer conversion doesn't
240/// apply if the array is an argument to the sizeof or address (&) operators.
241/// In these instances, this routine should *not* be called.
242Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
243  QualType Ty = Expr->getType();
244  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
245
246  // C99 6.3.1.1p2:
247  //
248  //   The following may be used in an expression wherever an int or
249  //   unsigned int may be used:
250  //     - an object or expression with an integer type whose integer
251  //       conversion rank is less than or equal to the rank of int
252  //       and unsigned int.
253  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
254  //
255  //   If an int can represent all values of the original type, the
256  //   value is converted to an int; otherwise, it is converted to an
257  //   unsigned int. These are called the integer promotions. All
258  //   other types are unchanged by the integer promotions.
259  QualType PTy = Context.isPromotableBitField(Expr);
260  if (!PTy.isNull()) {
261    ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
262    return Expr;
263  }
264  if (Ty->isPromotableIntegerType()) {
265    QualType PT = Context.getPromotedIntegerType(Ty);
266    ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
267    return Expr;
268  }
269
270  DefaultFunctionArrayLvalueConversion(Expr);
271  return Expr;
272}
273
274/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
275/// do not have a prototype. Arguments that have type float are promoted to
276/// double. All other argument types are converted by UsualUnaryConversions().
277void Sema::DefaultArgumentPromotion(Expr *&Expr) {
278  QualType Ty = Expr->getType();
279  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
280
281  // If this is a 'float' (CVR qualified or typedef) promote to double.
282  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
283    return ImpCastExprToType(Expr, Context.DoubleTy,
284                             CastExpr::CK_FloatingCast);
285
286  UsualUnaryConversions(Expr);
287}
288
289/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
290/// will warn if the resulting type is not a POD type, and rejects ObjC
291/// interfaces passed by value.  This returns true if the argument type is
292/// completely illegal.
293bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT,
294                                            FunctionDecl *FDecl) {
295  DefaultArgumentPromotion(Expr);
296
297  // __builtin_va_start takes the second argument as a "varargs" argument, but
298  // it doesn't actually do anything with it.  It doesn't need to be non-pod
299  // etc.
300  if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
301    return false;
302
303  if (Expr->getType()->isObjCObjectType() &&
304      DiagRuntimeBehavior(Expr->getLocStart(),
305        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
306          << Expr->getType() << CT))
307    return true;
308
309  if (!Expr->getType()->isPODType() &&
310      DiagRuntimeBehavior(Expr->getLocStart(),
311                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
312                            << Expr->getType() << CT))
313    return true;
314
315  return false;
316}
317
318
319/// UsualArithmeticConversions - Performs various conversions that are common to
320/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
321/// routine returns the first non-arithmetic type found. The client is
322/// responsible for emitting appropriate error diagnostics.
323/// FIXME: verify the conversion rules for "complex int" are consistent with
324/// GCC.
325QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
326                                          bool isCompAssign) {
327  if (!isCompAssign)
328    UsualUnaryConversions(lhsExpr);
329
330  UsualUnaryConversions(rhsExpr);
331
332  // For conversion purposes, we ignore any qualifiers.
333  // For example, "const float" and "float" are equivalent.
334  QualType lhs =
335    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
336  QualType rhs =
337    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
338
339  // If both types are identical, no conversion is needed.
340  if (lhs == rhs)
341    return lhs;
342
343  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
344  // The caller can deal with this (e.g. pointer + int).
345  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
346    return lhs;
347
348  // Perform bitfield promotions.
349  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
350  if (!LHSBitfieldPromoteTy.isNull())
351    lhs = LHSBitfieldPromoteTy;
352  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
353  if (!RHSBitfieldPromoteTy.isNull())
354    rhs = RHSBitfieldPromoteTy;
355
356  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
357  if (!isCompAssign)
358    ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
359  ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
360  return destType;
361}
362
363//===----------------------------------------------------------------------===//
364//  Semantic Analysis for various Expression Types
365//===----------------------------------------------------------------------===//
366
367
368/// ActOnStringLiteral - The specified tokens were lexed as pasted string
369/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
370/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
371/// multiple tokens.  However, the common case is that StringToks points to one
372/// string.
373///
374Action::OwningExprResult
375Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
376  assert(NumStringToks && "Must have at least one string!");
377
378  StringLiteralParser Literal(StringToks, NumStringToks, PP);
379  if (Literal.hadError)
380    return ExprError();
381
382  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
383  for (unsigned i = 0; i != NumStringToks; ++i)
384    StringTokLocs.push_back(StringToks[i].getLocation());
385
386  QualType StrTy = Context.CharTy;
387  if (Literal.AnyWide) StrTy = Context.getWCharType();
388  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
389
390  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
391  if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
392    StrTy.addConst();
393
394  // Get an array type for the string, according to C99 6.4.5.  This includes
395  // the nul terminator character as well as the string length for pascal
396  // strings.
397  StrTy = Context.getConstantArrayType(StrTy,
398                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
399                                       ArrayType::Normal, 0);
400
401  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
402  return Owned(StringLiteral::Create(Context, Literal.GetString(),
403                                     Literal.GetStringLength(),
404                                     Literal.AnyWide, StrTy,
405                                     &StringTokLocs[0],
406                                     StringTokLocs.size()));
407}
408
409/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
410/// CurBlock to VD should cause it to be snapshotted (as we do for auto
411/// variables defined outside the block) or false if this is not needed (e.g.
412/// for values inside the block or for globals).
413///
414/// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records
415/// up-to-date.
416///
417static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock,
418                                              ValueDecl *VD) {
419  // If the value is defined inside the block, we couldn't snapshot it even if
420  // we wanted to.
421  if (CurBlock->TheDecl == VD->getDeclContext())
422    return false;
423
424  // If this is an enum constant or function, it is constant, don't snapshot.
425  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
426    return false;
427
428  // If this is a reference to an extern, static, or global variable, no need to
429  // snapshot it.
430  // FIXME: What about 'const' variables in C++?
431  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
432    if (!Var->hasLocalStorage())
433      return false;
434
435  // Blocks that have these can't be constant.
436  CurBlock->hasBlockDeclRefExprs = true;
437
438  // If we have nested blocks, the decl may be declared in an outer block (in
439  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
440  // be defined outside all of the current blocks (in which case the blocks do
441  // all get the bit).  Walk the nesting chain.
442  for (unsigned I = S.FunctionScopes.size() - 1; I; --I) {
443    BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]);
444
445    if (!NextBlock)
446      continue;
447
448    // If we found the defining block for the variable, don't mark the block as
449    // having a reference outside it.
450    if (NextBlock->TheDecl == VD->getDeclContext())
451      break;
452
453    // Otherwise, the DeclRef from the inner block causes the outer one to need
454    // a snapshot as well.
455    NextBlock->hasBlockDeclRefExprs = true;
456  }
457
458  return true;
459}
460
461
462
463/// BuildDeclRefExpr - Build a DeclRefExpr.
464Sema::OwningExprResult
465Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
466                       const CXXScopeSpec *SS) {
467  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
468    Diag(Loc,
469         diag::err_auto_variable_cannot_appear_in_own_initializer)
470      << D->getDeclName();
471    return ExprError();
472  }
473
474  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
475    if (isa<NonTypeTemplateParmDecl>(VD)) {
476      // Non-type template parameters can be referenced anywhere they are
477      // visible.
478    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
479      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
480        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
481          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
482            << D->getIdentifier() << FD->getDeclName();
483          Diag(D->getLocation(), diag::note_local_variable_declared_here)
484            << D->getIdentifier();
485          return ExprError();
486        }
487      }
488    }
489  }
490
491  MarkDeclarationReferenced(Loc, D);
492
493  return Owned(DeclRefExpr::Create(Context,
494                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
495                                   SS? SS->getRange() : SourceRange(),
496                                   D, Loc, Ty));
497}
498
499/// \brief Given a field that represents a member of an anonymous
500/// struct/union, build the path from that field's context to the
501/// actual member.
502///
503/// Construct the sequence of field member references we'll have to
504/// perform to get to the field in the anonymous union/struct. The
505/// list of members is built from the field outward, so traverse it
506/// backwards to go from an object in the current context to the field
507/// we found.
508///
509/// \returns The variable from which the field access should begin,
510/// for an anonymous struct/union that is not a member of another
511/// class. Otherwise, returns NULL.
512VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
513                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
514  assert(Field->getDeclContext()->isRecord() &&
515         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
516         && "Field must be stored inside an anonymous struct or union");
517
518  Path.push_back(Field);
519  VarDecl *BaseObject = 0;
520  DeclContext *Ctx = Field->getDeclContext();
521  do {
522    RecordDecl *Record = cast<RecordDecl>(Ctx);
523    ValueDecl *AnonObject = Record->getAnonymousStructOrUnionObject();
524    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
525      Path.push_back(AnonField);
526    else {
527      BaseObject = cast<VarDecl>(AnonObject);
528      break;
529    }
530    Ctx = Ctx->getParent();
531  } while (Ctx->isRecord() &&
532           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
533
534  return BaseObject;
535}
536
537Sema::OwningExprResult
538Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
539                                               FieldDecl *Field,
540                                               Expr *BaseObjectExpr,
541                                               SourceLocation OpLoc) {
542  llvm::SmallVector<FieldDecl *, 4> AnonFields;
543  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
544                                                            AnonFields);
545
546  // Build the expression that refers to the base object, from
547  // which we will build a sequence of member references to each
548  // of the anonymous union objects and, eventually, the field we
549  // found via name lookup.
550  bool BaseObjectIsPointer = false;
551  Qualifiers BaseQuals;
552  if (BaseObject) {
553    // BaseObject is an anonymous struct/union variable (and is,
554    // therefore, not part of another non-anonymous record).
555    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
556    MarkDeclarationReferenced(Loc, BaseObject);
557    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
558                                               SourceLocation());
559    BaseQuals
560      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
561  } else if (BaseObjectExpr) {
562    // The caller provided the base object expression. Determine
563    // whether its a pointer and whether it adds any qualifiers to the
564    // anonymous struct/union fields we're looking into.
565    QualType ObjectType = BaseObjectExpr->getType();
566    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
567      BaseObjectIsPointer = true;
568      ObjectType = ObjectPtr->getPointeeType();
569    }
570    BaseQuals
571      = Context.getCanonicalType(ObjectType).getQualifiers();
572  } else {
573    // We've found a member of an anonymous struct/union that is
574    // inside a non-anonymous struct/union, so in a well-formed
575    // program our base object expression is "this".
576    DeclContext *DC = getFunctionLevelDeclContext();
577    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
578      if (!MD->isStatic()) {
579        QualType AnonFieldType
580          = Context.getTagDeclType(
581                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
582        QualType ThisType = Context.getTagDeclType(MD->getParent());
583        if ((Context.getCanonicalType(AnonFieldType)
584               == Context.getCanonicalType(ThisType)) ||
585            IsDerivedFrom(ThisType, AnonFieldType)) {
586          // Our base object expression is "this".
587          BaseObjectExpr = new (Context) CXXThisExpr(Loc,
588                                                     MD->getThisType(Context),
589                                                     /*isImplicit=*/true);
590          BaseObjectIsPointer = true;
591        }
592      } else {
593        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
594          << Field->getDeclName());
595      }
596      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
597    }
598
599    if (!BaseObjectExpr)
600      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
601        << Field->getDeclName());
602  }
603
604  // Build the implicit member references to the field of the
605  // anonymous struct/union.
606  Expr *Result = BaseObjectExpr;
607  Qualifiers ResultQuals = BaseQuals;
608  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
609         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
610       FI != FIEnd; ++FI) {
611    QualType MemberType = (*FI)->getType();
612    Qualifiers MemberTypeQuals =
613      Context.getCanonicalType(MemberType).getQualifiers();
614
615    // CVR attributes from the base are picked up by members,
616    // except that 'mutable' members don't pick up 'const'.
617    if ((*FI)->isMutable())
618      ResultQuals.removeConst();
619
620    // GC attributes are never picked up by members.
621    ResultQuals.removeObjCGCAttr();
622
623    // TR 18037 does not allow fields to be declared with address spaces.
624    assert(!MemberTypeQuals.hasAddressSpace());
625
626    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
627    if (NewQuals != MemberTypeQuals)
628      MemberType = Context.getQualifiedType(MemberType, NewQuals);
629
630    MarkDeclarationReferenced(Loc, *FI);
631    PerformObjectMemberConversion(Result, /*FIXME:Qualifier=*/0, *FI, *FI);
632    // FIXME: Might this end up being a qualified name?
633    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
634                                      OpLoc, MemberType);
635    BaseObjectIsPointer = false;
636    ResultQuals = NewQuals;
637  }
638
639  return Owned(Result);
640}
641
642/// Decomposes the given name into a DeclarationName, its location, and
643/// possibly a list of template arguments.
644///
645/// If this produces template arguments, it is permitted to call
646/// DecomposeTemplateName.
647///
648/// This actually loses a lot of source location information for
649/// non-standard name kinds; we should consider preserving that in
650/// some way.
651static void DecomposeUnqualifiedId(Sema &SemaRef,
652                                   const UnqualifiedId &Id,
653                                   TemplateArgumentListInfo &Buffer,
654                                   DeclarationName &Name,
655                                   SourceLocation &NameLoc,
656                             const TemplateArgumentListInfo *&TemplateArgs) {
657  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
658    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
659    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
660
661    ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
662                                       Id.TemplateId->getTemplateArgs(),
663                                       Id.TemplateId->NumArgs);
664    SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
665    TemplateArgsPtr.release();
666
667    TemplateName TName =
668      Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
669
670    Name = SemaRef.Context.getNameForTemplate(TName);
671    NameLoc = Id.TemplateId->TemplateNameLoc;
672    TemplateArgs = &Buffer;
673  } else {
674    Name = SemaRef.GetNameFromUnqualifiedId(Id);
675    NameLoc = Id.StartLocation;
676    TemplateArgs = 0;
677  }
678}
679
680/// Determines whether the given record is "fully-formed" at the given
681/// location, i.e. whether a qualified lookup into it is assured of
682/// getting consistent results already.
683static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
684  if (!Record->hasDefinition())
685    return false;
686
687  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
688         E = Record->bases_end(); I != E; ++I) {
689    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
690    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
691    if (!BaseRT) return false;
692
693    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
694    if (!BaseRecord->hasDefinition() ||
695        !IsFullyFormedScope(SemaRef, BaseRecord))
696      return false;
697  }
698
699  return true;
700}
701
702/// Determines whether we can lookup this id-expression now or whether
703/// we have to wait until template instantiation is complete.
704static bool IsDependentIdExpression(Sema &SemaRef, const CXXScopeSpec &SS) {
705  DeclContext *DC = SemaRef.computeDeclContext(SS, false);
706
707  // If the qualifier scope isn't computable, it's definitely dependent.
708  if (!DC) return true;
709
710  // If the qualifier scope doesn't name a record, we can always look into it.
711  if (!isa<CXXRecordDecl>(DC)) return false;
712
713  // We can't look into record types unless they're fully-formed.
714  if (!IsFullyFormedScope(SemaRef, cast<CXXRecordDecl>(DC))) return true;
715
716  return false;
717}
718
719/// Determines if the given class is provably not derived from all of
720/// the prospective base classes.
721static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
722                                     CXXRecordDecl *Record,
723                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
724  if (Bases.count(Record->getCanonicalDecl()))
725    return false;
726
727  RecordDecl *RD = Record->getDefinition();
728  if (!RD) return false;
729  Record = cast<CXXRecordDecl>(RD);
730
731  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
732         E = Record->bases_end(); I != E; ++I) {
733    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
734    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
735    if (!BaseRT) return false;
736
737    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
738    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
739      return false;
740  }
741
742  return true;
743}
744
745enum IMAKind {
746  /// The reference is definitely not an instance member access.
747  IMA_Static,
748
749  /// The reference may be an implicit instance member access.
750  IMA_Mixed,
751
752  /// The reference may be to an instance member, but it is invalid if
753  /// so, because the context is not an instance method.
754  IMA_Mixed_StaticContext,
755
756  /// The reference may be to an instance member, but it is invalid if
757  /// so, because the context is from an unrelated class.
758  IMA_Mixed_Unrelated,
759
760  /// The reference is definitely an implicit instance member access.
761  IMA_Instance,
762
763  /// The reference may be to an unresolved using declaration.
764  IMA_Unresolved,
765
766  /// The reference may be to an unresolved using declaration and the
767  /// context is not an instance method.
768  IMA_Unresolved_StaticContext,
769
770  /// The reference is to a member of an anonymous structure in a
771  /// non-class context.
772  IMA_AnonymousMember,
773
774  /// All possible referrents are instance members and the current
775  /// context is not an instance method.
776  IMA_Error_StaticContext,
777
778  /// All possible referrents are instance members of an unrelated
779  /// class.
780  IMA_Error_Unrelated
781};
782
783/// The given lookup names class member(s) and is not being used for
784/// an address-of-member expression.  Classify the type of access
785/// according to whether it's possible that this reference names an
786/// instance member.  This is best-effort; it is okay to
787/// conservatively answer "yes", in which case some errors will simply
788/// not be caught until template-instantiation.
789static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
790                                            const LookupResult &R) {
791  assert(!R.empty() && (*R.begin())->isCXXClassMember());
792
793  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
794  bool isStaticContext =
795    (!isa<CXXMethodDecl>(DC) ||
796     cast<CXXMethodDecl>(DC)->isStatic());
797
798  if (R.isUnresolvableResult())
799    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
800
801  // Collect all the declaring classes of instance members we find.
802  bool hasNonInstance = false;
803  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
804  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
805    NamedDecl *D = *I;
806    if (D->isCXXInstanceMember()) {
807      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
808
809      // If this is a member of an anonymous record, move out to the
810      // innermost non-anonymous struct or union.  If there isn't one,
811      // that's a special case.
812      while (R->isAnonymousStructOrUnion()) {
813        R = dyn_cast<CXXRecordDecl>(R->getParent());
814        if (!R) return IMA_AnonymousMember;
815      }
816      Classes.insert(R->getCanonicalDecl());
817    }
818    else
819      hasNonInstance = true;
820  }
821
822  // If we didn't find any instance members, it can't be an implicit
823  // member reference.
824  if (Classes.empty())
825    return IMA_Static;
826
827  // If the current context is not an instance method, it can't be
828  // an implicit member reference.
829  if (isStaticContext)
830    return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
831
832  // If we can prove that the current context is unrelated to all the
833  // declaring classes, it can't be an implicit member reference (in
834  // which case it's an error if any of those members are selected).
835  if (IsProvablyNotDerivedFrom(SemaRef,
836                               cast<CXXMethodDecl>(DC)->getParent(),
837                               Classes))
838    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
839
840  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
841}
842
843/// Diagnose a reference to a field with no object available.
844static void DiagnoseInstanceReference(Sema &SemaRef,
845                                      const CXXScopeSpec &SS,
846                                      const LookupResult &R) {
847  SourceLocation Loc = R.getNameLoc();
848  SourceRange Range(Loc);
849  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
850
851  if (R.getAsSingle<FieldDecl>()) {
852    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
853      if (MD->isStatic()) {
854        // "invalid use of member 'x' in static member function"
855        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
856          << Range << R.getLookupName();
857        return;
858      }
859    }
860
861    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
862      << R.getLookupName() << Range;
863    return;
864  }
865
866  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
867}
868
869/// Diagnose an empty lookup.
870///
871/// \return false if new lookup candidates were found
872bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS,
873                               LookupResult &R, CorrectTypoContext CTC) {
874  DeclarationName Name = R.getLookupName();
875
876  unsigned diagnostic = diag::err_undeclared_var_use;
877  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
878  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
879      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
880      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
881    diagnostic = diag::err_undeclared_use;
882    diagnostic_suggest = diag::err_undeclared_use_suggest;
883  }
884
885  // If the original lookup was an unqualified lookup, fake an
886  // unqualified lookup.  This is useful when (for example) the
887  // original lookup would not have found something because it was a
888  // dependent name.
889  for (DeclContext *DC = SS.isEmpty()? CurContext : 0;
890       DC; DC = DC->getParent()) {
891    if (isa<CXXRecordDecl>(DC)) {
892      LookupQualifiedName(R, DC);
893
894      if (!R.empty()) {
895        // Don't give errors about ambiguities in this lookup.
896        R.suppressDiagnostics();
897
898        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
899        bool isInstance = CurMethod &&
900                          CurMethod->isInstance() &&
901                          DC == CurMethod->getParent();
902
903        // Give a code modification hint to insert 'this->'.
904        // TODO: fixit for inserting 'Base<T>::' in the other cases.
905        // Actually quite difficult!
906        if (isInstance)
907          Diag(R.getNameLoc(), diagnostic) << Name
908            << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
909        else
910          Diag(R.getNameLoc(), diagnostic) << Name;
911
912        // Do we really want to note all of these?
913        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
914          Diag((*I)->getLocation(), diag::note_dependent_var_use);
915
916        // Tell the callee to try to recover.
917        return false;
918      }
919    }
920  }
921
922  // We didn't find anything, so try to correct for a typo.
923  DeclarationName Corrected;
924  if (S && (Corrected = CorrectTypo(R, S, &SS, 0, false, CTC))) {
925    if (!R.empty()) {
926      if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
927        if (SS.isEmpty())
928          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
929            << FixItHint::CreateReplacement(R.getNameLoc(),
930                                            R.getLookupName().getAsString());
931        else
932          Diag(R.getNameLoc(), diag::err_no_member_suggest)
933            << Name << computeDeclContext(SS, false) << R.getLookupName()
934            << SS.getRange()
935            << FixItHint::CreateReplacement(R.getNameLoc(),
936                                            R.getLookupName().getAsString());
937        if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
938          Diag(ND->getLocation(), diag::note_previous_decl)
939            << ND->getDeclName();
940
941        // Tell the callee to try to recover.
942        return false;
943      }
944
945      if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
946        // FIXME: If we ended up with a typo for a type name or
947        // Objective-C class name, we're in trouble because the parser
948        // is in the wrong place to recover. Suggest the typo
949        // correction, but don't make it a fix-it since we're not going
950        // to recover well anyway.
951        if (SS.isEmpty())
952          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
953        else
954          Diag(R.getNameLoc(), diag::err_no_member_suggest)
955            << Name << computeDeclContext(SS, false) << R.getLookupName()
956            << SS.getRange();
957
958        // Don't try to recover; it won't work.
959        return true;
960      }
961    } else {
962      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
963      // because we aren't able to recover.
964      if (SS.isEmpty())
965        Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected;
966      else
967        Diag(R.getNameLoc(), diag::err_no_member_suggest)
968        << Name << computeDeclContext(SS, false) << Corrected
969        << SS.getRange();
970      return true;
971    }
972    R.clear();
973  }
974
975  // Emit a special diagnostic for failed member lookups.
976  // FIXME: computing the declaration context might fail here (?)
977  if (!SS.isEmpty()) {
978    Diag(R.getNameLoc(), diag::err_no_member)
979      << Name << computeDeclContext(SS, false)
980      << SS.getRange();
981    return true;
982  }
983
984  // Give up, we can't recover.
985  Diag(R.getNameLoc(), diagnostic) << Name;
986  return true;
987}
988
989Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
990                                               CXXScopeSpec &SS,
991                                               UnqualifiedId &Id,
992                                               bool HasTrailingLParen,
993                                               bool isAddressOfOperand) {
994  assert(!(isAddressOfOperand && HasTrailingLParen) &&
995         "cannot be direct & operand and have a trailing lparen");
996
997  if (SS.isInvalid())
998    return ExprError();
999
1000  TemplateArgumentListInfo TemplateArgsBuffer;
1001
1002  // Decompose the UnqualifiedId into the following data.
1003  DeclarationName Name;
1004  SourceLocation NameLoc;
1005  const TemplateArgumentListInfo *TemplateArgs;
1006  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
1007                         Name, NameLoc, TemplateArgs);
1008
1009  IdentifierInfo *II = Name.getAsIdentifierInfo();
1010
1011  // C++ [temp.dep.expr]p3:
1012  //   An id-expression is type-dependent if it contains:
1013  //     -- an identifier that was declared with a dependent type,
1014  //        (note: handled after lookup)
1015  //     -- a template-id that is dependent,
1016  //        (note: handled in BuildTemplateIdExpr)
1017  //     -- a conversion-function-id that specifies a dependent type,
1018  //     -- a nested-name-specifier that contains a class-name that
1019  //        names a dependent type.
1020  // Determine whether this is a member of an unknown specialization;
1021  // we need to handle these differently.
1022  if ((Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1023       Name.getCXXNameType()->isDependentType()) ||
1024      (SS.isSet() && IsDependentIdExpression(*this, SS))) {
1025    return ActOnDependentIdExpression(SS, Name, NameLoc,
1026                                      isAddressOfOperand,
1027                                      TemplateArgs);
1028  }
1029
1030  // Perform the required lookup.
1031  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1032  if (TemplateArgs) {
1033    // Lookup the template name again to correctly establish the context in
1034    // which it was found. This is really unfortunate as we already did the
1035    // lookup to determine that it was a template name in the first place. If
1036    // this becomes a performance hit, we can work harder to preserve those
1037    // results until we get here but it's likely not worth it.
1038    bool MemberOfUnknownSpecialization;
1039    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1040                       MemberOfUnknownSpecialization);
1041  } else {
1042    bool IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1043    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1044
1045    // If this reference is in an Objective-C method, then we need to do
1046    // some special Objective-C lookup, too.
1047    if (IvarLookupFollowUp) {
1048      OwningExprResult E(LookupInObjCMethod(R, S, II, true));
1049      if (E.isInvalid())
1050        return ExprError();
1051
1052      Expr *Ex = E.takeAs<Expr>();
1053      if (Ex) return Owned(Ex);
1054    }
1055  }
1056
1057  if (R.isAmbiguous())
1058    return ExprError();
1059
1060  // Determine whether this name might be a candidate for
1061  // argument-dependent lookup.
1062  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1063
1064  if (R.empty() && !ADL) {
1065    // Otherwise, this could be an implicitly declared function reference (legal
1066    // in C90, extension in C99, forbidden in C++).
1067    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1068      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1069      if (D) R.addDecl(D);
1070    }
1071
1072    // If this name wasn't predeclared and if this is not a function
1073    // call, diagnose the problem.
1074    if (R.empty()) {
1075      if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
1076        return ExprError();
1077
1078      assert(!R.empty() &&
1079             "DiagnoseEmptyLookup returned false but added no results");
1080
1081      // If we found an Objective-C instance variable, let
1082      // LookupInObjCMethod build the appropriate expression to
1083      // reference the ivar.
1084      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1085        R.clear();
1086        OwningExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1087        assert(E.isInvalid() || E.get());
1088        return move(E);
1089      }
1090    }
1091  }
1092
1093  // This is guaranteed from this point on.
1094  assert(!R.empty() || ADL);
1095
1096  if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
1097    // Warn about constructs like:
1098    //   if (void *X = foo()) { ... } else { X }.
1099    // In the else block, the pointer is always false.
1100    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
1101      Scope *CheckS = S;
1102      while (CheckS && CheckS->getControlParent()) {
1103        if ((CheckS->getFlags() & Scope::ElseScope) &&
1104            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
1105          ExprError(Diag(NameLoc, diag::warn_value_always_zero)
1106            << Var->getDeclName()
1107            << (Var->getType()->isPointerType() ? 2 :
1108                Var->getType()->isBooleanType() ? 1 : 0));
1109          break;
1110        }
1111
1112        // Move to the parent of this scope.
1113        CheckS = CheckS->getParent();
1114      }
1115    }
1116  } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
1117    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1118      // C99 DR 316 says that, if a function type comes from a
1119      // function definition (without a prototype), that type is only
1120      // used for checking compatibility. Therefore, when referencing
1121      // the function, we pretend that we don't have the full function
1122      // type.
1123      if (DiagnoseUseOfDecl(Func, NameLoc))
1124        return ExprError();
1125
1126      QualType T = Func->getType();
1127      QualType NoProtoType = T;
1128      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
1129        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType(),
1130                                                     Proto->getExtInfo());
1131      return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
1132    }
1133  }
1134
1135  // Check whether this might be a C++ implicit instance member access.
1136  // C++ [expr.prim.general]p6:
1137  //   Within the definition of a non-static member function, an
1138  //   identifier that names a non-static member is transformed to a
1139  //   class member access expression.
1140  // But note that &SomeClass::foo is grammatically distinct, even
1141  // though we don't parse it that way.
1142  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1143    bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty());
1144    if (!isAbstractMemberPointer)
1145      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
1146  }
1147
1148  if (TemplateArgs)
1149    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
1150
1151  return BuildDeclarationNameExpr(SS, R, ADL);
1152}
1153
1154/// Builds an expression which might be an implicit member expression.
1155Sema::OwningExprResult
1156Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
1157                                      LookupResult &R,
1158                                const TemplateArgumentListInfo *TemplateArgs) {
1159  switch (ClassifyImplicitMemberAccess(*this, R)) {
1160  case IMA_Instance:
1161    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
1162
1163  case IMA_AnonymousMember:
1164    assert(R.isSingleResult());
1165    return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
1166                                                    R.getAsSingle<FieldDecl>());
1167
1168  case IMA_Mixed:
1169  case IMA_Mixed_Unrelated:
1170  case IMA_Unresolved:
1171    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
1172
1173  case IMA_Static:
1174  case IMA_Mixed_StaticContext:
1175  case IMA_Unresolved_StaticContext:
1176    if (TemplateArgs)
1177      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
1178    return BuildDeclarationNameExpr(SS, R, false);
1179
1180  case IMA_Error_StaticContext:
1181  case IMA_Error_Unrelated:
1182    DiagnoseInstanceReference(*this, SS, R);
1183    return ExprError();
1184  }
1185
1186  llvm_unreachable("unexpected instance member access kind");
1187  return ExprError();
1188}
1189
1190/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1191/// declaration name, generally during template instantiation.
1192/// There's a large number of things which don't need to be done along
1193/// this path.
1194Sema::OwningExprResult
1195Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1196                                        DeclarationName Name,
1197                                        SourceLocation NameLoc) {
1198  DeclContext *DC;
1199  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1200    return BuildDependentDeclRefExpr(SS, Name, NameLoc, 0);
1201
1202  if (RequireCompleteDeclContext(SS, DC))
1203    return ExprError();
1204
1205  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1206  LookupQualifiedName(R, DC);
1207
1208  if (R.isAmbiguous())
1209    return ExprError();
1210
1211  if (R.empty()) {
1212    Diag(NameLoc, diag::err_no_member) << Name << DC << SS.getRange();
1213    return ExprError();
1214  }
1215
1216  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1217}
1218
1219/// LookupInObjCMethod - The parser has read a name in, and Sema has
1220/// detected that we're currently inside an ObjC method.  Perform some
1221/// additional lookup.
1222///
1223/// Ideally, most of this would be done by lookup, but there's
1224/// actually quite a lot of extra work involved.
1225///
1226/// Returns a null sentinel to indicate trivial success.
1227Sema::OwningExprResult
1228Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1229                         IdentifierInfo *II, bool AllowBuiltinCreation) {
1230  SourceLocation Loc = Lookup.getNameLoc();
1231  ObjCMethodDecl *CurMethod = getCurMethodDecl();
1232
1233  // There are two cases to handle here.  1) scoped lookup could have failed,
1234  // in which case we should look for an ivar.  2) scoped lookup could have
1235  // found a decl, but that decl is outside the current instance method (i.e.
1236  // a global variable).  In these two cases, we do a lookup for an ivar with
1237  // this name, if the lookup sucedes, we replace it our current decl.
1238
1239  // If we're in a class method, we don't normally want to look for
1240  // ivars.  But if we don't find anything else, and there's an
1241  // ivar, that's an error.
1242  bool IsClassMethod = CurMethod->isClassMethod();
1243
1244  bool LookForIvars;
1245  if (Lookup.empty())
1246    LookForIvars = true;
1247  else if (IsClassMethod)
1248    LookForIvars = false;
1249  else
1250    LookForIvars = (Lookup.isSingleResult() &&
1251                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1252  ObjCInterfaceDecl *IFace = 0;
1253  if (LookForIvars) {
1254    IFace = CurMethod->getClassInterface();
1255    ObjCInterfaceDecl *ClassDeclared;
1256    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1257      // Diagnose using an ivar in a class method.
1258      if (IsClassMethod)
1259        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1260                         << IV->getDeclName());
1261
1262      // If we're referencing an invalid decl, just return this as a silent
1263      // error node.  The error diagnostic was already emitted on the decl.
1264      if (IV->isInvalidDecl())
1265        return ExprError();
1266
1267      // Check if referencing a field with __attribute__((deprecated)).
1268      if (DiagnoseUseOfDecl(IV, Loc))
1269        return ExprError();
1270
1271      // Diagnose the use of an ivar outside of the declaring class.
1272      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1273          ClassDeclared != IFace)
1274        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1275
1276      // FIXME: This should use a new expr for a direct reference, don't
1277      // turn this into Self->ivar, just return a BareIVarExpr or something.
1278      IdentifierInfo &II = Context.Idents.get("self");
1279      UnqualifiedId SelfName;
1280      SelfName.setIdentifier(&II, SourceLocation());
1281      CXXScopeSpec SelfScopeSpec;
1282      OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
1283                                                    SelfName, false, false);
1284      MarkDeclarationReferenced(Loc, IV);
1285      return Owned(new (Context)
1286                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1287                                   SelfExpr.takeAs<Expr>(), true, true));
1288    }
1289  } else if (CurMethod->isInstanceMethod()) {
1290    // We should warn if a local variable hides an ivar.
1291    ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
1292    ObjCInterfaceDecl *ClassDeclared;
1293    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1294      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1295          IFace == ClassDeclared)
1296        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1297    }
1298  }
1299
1300  if (Lookup.empty() && II && AllowBuiltinCreation) {
1301    // FIXME. Consolidate this with similar code in LookupName.
1302    if (unsigned BuiltinID = II->getBuiltinID()) {
1303      if (!(getLangOptions().CPlusPlus &&
1304            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1305        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1306                                           S, Lookup.isForRedeclaration(),
1307                                           Lookup.getNameLoc());
1308        if (D) Lookup.addDecl(D);
1309      }
1310    }
1311  }
1312  // Sentinel value saying that we didn't do anything special.
1313  return Owned((Expr*) 0);
1314}
1315
1316/// \brief Cast a base object to a member's actual type.
1317///
1318/// Logically this happens in three phases:
1319///
1320/// * First we cast from the base type to the naming class.
1321///   The naming class is the class into which we were looking
1322///   when we found the member;  it's the qualifier type if a
1323///   qualifier was provided, and otherwise it's the base type.
1324///
1325/// * Next we cast from the naming class to the declaring class.
1326///   If the member we found was brought into a class's scope by
1327///   a using declaration, this is that class;  otherwise it's
1328///   the class declaring the member.
1329///
1330/// * Finally we cast from the declaring class to the "true"
1331///   declaring class of the member.  This conversion does not
1332///   obey access control.
1333bool
1334Sema::PerformObjectMemberConversion(Expr *&From,
1335                                    NestedNameSpecifier *Qualifier,
1336                                    NamedDecl *FoundDecl,
1337                                    NamedDecl *Member) {
1338  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
1339  if (!RD)
1340    return false;
1341
1342  QualType DestRecordType;
1343  QualType DestType;
1344  QualType FromRecordType;
1345  QualType FromType = From->getType();
1346  bool PointerConversions = false;
1347  if (isa<FieldDecl>(Member)) {
1348    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
1349
1350    if (FromType->getAs<PointerType>()) {
1351      DestType = Context.getPointerType(DestRecordType);
1352      FromRecordType = FromType->getPointeeType();
1353      PointerConversions = true;
1354    } else {
1355      DestType = DestRecordType;
1356      FromRecordType = FromType;
1357    }
1358  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
1359    if (Method->isStatic())
1360      return false;
1361
1362    DestType = Method->getThisType(Context);
1363    DestRecordType = DestType->getPointeeType();
1364
1365    if (FromType->getAs<PointerType>()) {
1366      FromRecordType = FromType->getPointeeType();
1367      PointerConversions = true;
1368    } else {
1369      FromRecordType = FromType;
1370      DestType = DestRecordType;
1371    }
1372  } else {
1373    // No conversion necessary.
1374    return false;
1375  }
1376
1377  if (DestType->isDependentType() || FromType->isDependentType())
1378    return false;
1379
1380  // If the unqualified types are the same, no conversion is necessary.
1381  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1382    return false;
1383
1384  SourceRange FromRange = From->getSourceRange();
1385  SourceLocation FromLoc = FromRange.getBegin();
1386
1387  bool isLvalue
1388    = (From->isLvalue(Context) == Expr::LV_Valid) && !PointerConversions;
1389
1390  // C++ [class.member.lookup]p8:
1391  //   [...] Ambiguities can often be resolved by qualifying a name with its
1392  //   class name.
1393  //
1394  // If the member was a qualified name and the qualified referred to a
1395  // specific base subobject type, we'll cast to that intermediate type
1396  // first and then to the object in which the member is declared. That allows
1397  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1398  //
1399  //   class Base { public: int x; };
1400  //   class Derived1 : public Base { };
1401  //   class Derived2 : public Base { };
1402  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
1403  //
1404  //   void VeryDerived::f() {
1405  //     x = 17; // error: ambiguous base subobjects
1406  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
1407  //   }
1408  if (Qualifier) {
1409    QualType QType = QualType(Qualifier->getAsType(), 0);
1410    assert(!QType.isNull() && "lookup done with dependent qualifier?");
1411    assert(QType->isRecordType() && "lookup done with non-record type");
1412
1413    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
1414
1415    // In C++98, the qualifier type doesn't actually have to be a base
1416    // type of the object type, in which case we just ignore it.
1417    // Otherwise build the appropriate casts.
1418    if (IsDerivedFrom(FromRecordType, QRecordType)) {
1419      CXXBaseSpecifierArray BasePath;
1420      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
1421                                       FromLoc, FromRange, &BasePath))
1422        return true;
1423
1424      if (PointerConversions)
1425        QType = Context.getPointerType(QType);
1426      ImpCastExprToType(From, QType, CastExpr::CK_UncheckedDerivedToBase,
1427                        isLvalue, BasePath);
1428
1429      FromType = QType;
1430      FromRecordType = QRecordType;
1431
1432      // If the qualifier type was the same as the destination type,
1433      // we're done.
1434      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1435        return false;
1436    }
1437  }
1438
1439  bool IgnoreAccess = false;
1440
1441  // If we actually found the member through a using declaration, cast
1442  // down to the using declaration's type.
1443  //
1444  // Pointer equality is fine here because only one declaration of a
1445  // class ever has member declarations.
1446  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
1447    assert(isa<UsingShadowDecl>(FoundDecl));
1448    QualType URecordType = Context.getTypeDeclType(
1449                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
1450
1451    // We only need to do this if the naming-class to declaring-class
1452    // conversion is non-trivial.
1453    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
1454      assert(IsDerivedFrom(FromRecordType, URecordType));
1455      CXXBaseSpecifierArray BasePath;
1456      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
1457                                       FromLoc, FromRange, &BasePath))
1458        return true;
1459
1460      QualType UType = URecordType;
1461      if (PointerConversions)
1462        UType = Context.getPointerType(UType);
1463      ImpCastExprToType(From, UType, CastExpr::CK_UncheckedDerivedToBase,
1464                        isLvalue, BasePath);
1465      FromType = UType;
1466      FromRecordType = URecordType;
1467    }
1468
1469    // We don't do access control for the conversion from the
1470    // declaring class to the true declaring class.
1471    IgnoreAccess = true;
1472  }
1473
1474  CXXBaseSpecifierArray BasePath;
1475  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
1476                                   FromLoc, FromRange, &BasePath,
1477                                   IgnoreAccess))
1478    return true;
1479
1480  ImpCastExprToType(From, DestType, CastExpr::CK_UncheckedDerivedToBase,
1481                    isLvalue, BasePath);
1482  return false;
1483}
1484
1485/// \brief Build a MemberExpr AST node.
1486static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
1487                                   const CXXScopeSpec &SS, ValueDecl *Member,
1488                                   DeclAccessPair FoundDecl,
1489                                   SourceLocation Loc, QualType Ty,
1490                          const TemplateArgumentListInfo *TemplateArgs = 0) {
1491  NestedNameSpecifier *Qualifier = 0;
1492  SourceRange QualifierRange;
1493  if (SS.isSet()) {
1494    Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
1495    QualifierRange = SS.getRange();
1496  }
1497
1498  return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
1499                            Member, FoundDecl, Loc, TemplateArgs, Ty);
1500}
1501
1502/// Builds an implicit member access expression.  The current context
1503/// is known to be an instance method, and the given unqualified lookup
1504/// set is known to contain only instance members, at least one of which
1505/// is from an appropriate type.
1506Sema::OwningExprResult
1507Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1508                              LookupResult &R,
1509                              const TemplateArgumentListInfo *TemplateArgs,
1510                              bool IsKnownInstance) {
1511  assert(!R.empty() && !R.isAmbiguous());
1512
1513  SourceLocation Loc = R.getNameLoc();
1514
1515  // We may have found a field within an anonymous union or struct
1516  // (C++ [class.union]).
1517  // FIXME: This needs to happen post-isImplicitMemberReference?
1518  // FIXME: template-ids inside anonymous structs?
1519  if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
1520    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1521      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1522
1523  // If this is known to be an instance access, go ahead and build a
1524  // 'this' expression now.
1525  DeclContext *DC = getFunctionLevelDeclContext();
1526  QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
1527  Expr *This = 0; // null signifies implicit access
1528  if (IsKnownInstance) {
1529    SourceLocation Loc = R.getNameLoc();
1530    if (SS.getRange().isValid())
1531      Loc = SS.getRange().getBegin();
1532    This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
1533  }
1534
1535  return BuildMemberReferenceExpr(ExprArg(*this, This), ThisType,
1536                                  /*OpLoc*/ SourceLocation(),
1537                                  /*IsArrow*/ true,
1538                                  SS,
1539                                  /*FirstQualifierInScope*/ 0,
1540                                  R, TemplateArgs);
1541}
1542
1543bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
1544                                      const LookupResult &R,
1545                                      bool HasTrailingLParen) {
1546  // Only when used directly as the postfix-expression of a call.
1547  if (!HasTrailingLParen)
1548    return false;
1549
1550  // Never if a scope specifier was provided.
1551  if (SS.isSet())
1552    return false;
1553
1554  // Only in C++ or ObjC++.
1555  if (!getLangOptions().CPlusPlus)
1556    return false;
1557
1558  // Turn off ADL when we find certain kinds of declarations during
1559  // normal lookup:
1560  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1561    NamedDecl *D = *I;
1562
1563    // C++0x [basic.lookup.argdep]p3:
1564    //     -- a declaration of a class member
1565    // Since using decls preserve this property, we check this on the
1566    // original decl.
1567    if (D->isCXXClassMember())
1568      return false;
1569
1570    // C++0x [basic.lookup.argdep]p3:
1571    //     -- a block-scope function declaration that is not a
1572    //        using-declaration
1573    // NOTE: we also trigger this for function templates (in fact, we
1574    // don't check the decl type at all, since all other decl types
1575    // turn off ADL anyway).
1576    if (isa<UsingShadowDecl>(D))
1577      D = cast<UsingShadowDecl>(D)->getTargetDecl();
1578    else if (D->getDeclContext()->isFunctionOrMethod())
1579      return false;
1580
1581    // C++0x [basic.lookup.argdep]p3:
1582    //     -- a declaration that is neither a function or a function
1583    //        template
1584    // And also for builtin functions.
1585    if (isa<FunctionDecl>(D)) {
1586      FunctionDecl *FDecl = cast<FunctionDecl>(D);
1587
1588      // But also builtin functions.
1589      if (FDecl->getBuiltinID() && FDecl->isImplicit())
1590        return false;
1591    } else if (!isa<FunctionTemplateDecl>(D))
1592      return false;
1593  }
1594
1595  return true;
1596}
1597
1598
1599/// Diagnoses obvious problems with the use of the given declaration
1600/// as an expression.  This is only actually called for lookups that
1601/// were not overloaded, and it doesn't promise that the declaration
1602/// will in fact be used.
1603static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
1604  if (isa<TypedefDecl>(D)) {
1605    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
1606    return true;
1607  }
1608
1609  if (isa<ObjCInterfaceDecl>(D)) {
1610    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
1611    return true;
1612  }
1613
1614  if (isa<NamespaceDecl>(D)) {
1615    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
1616    return true;
1617  }
1618
1619  return false;
1620}
1621
1622Sema::OwningExprResult
1623Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1624                               LookupResult &R,
1625                               bool NeedsADL) {
1626  // If this is a single, fully-resolved result and we don't need ADL,
1627  // just build an ordinary singleton decl ref.
1628  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
1629    return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl());
1630
1631  // We only need to check the declaration if there's exactly one
1632  // result, because in the overloaded case the results can only be
1633  // functions and function templates.
1634  if (R.isSingleResult() &&
1635      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
1636    return ExprError();
1637
1638  // Otherwise, just build an unresolved lookup expression.  Suppress
1639  // any lookup-related diagnostics; we'll hash these out later, when
1640  // we've picked a target.
1641  R.suppressDiagnostics();
1642
1643  bool Dependent
1644    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
1645  UnresolvedLookupExpr *ULE
1646    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1647                                   (NestedNameSpecifier*) SS.getScopeRep(),
1648                                   SS.getRange(),
1649                                   R.getLookupName(), R.getNameLoc(),
1650                                   NeedsADL, R.isOverloadedResult(),
1651                                   R.begin(), R.end());
1652
1653  return Owned(ULE);
1654}
1655
1656
1657/// \brief Complete semantic analysis for a reference to the given declaration.
1658Sema::OwningExprResult
1659Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1660                               SourceLocation Loc, NamedDecl *D) {
1661  assert(D && "Cannot refer to a NULL declaration");
1662  assert(!isa<FunctionTemplateDecl>(D) &&
1663         "Cannot refer unambiguously to a function template");
1664
1665  if (CheckDeclInExpr(*this, Loc, D))
1666    return ExprError();
1667
1668  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
1669    // Specifically diagnose references to class templates that are missing
1670    // a template argument list.
1671    Diag(Loc, diag::err_template_decl_ref)
1672      << Template << SS.getRange();
1673    Diag(Template->getLocation(), diag::note_template_decl_here);
1674    return ExprError();
1675  }
1676
1677  // Make sure that we're referring to a value.
1678  ValueDecl *VD = dyn_cast<ValueDecl>(D);
1679  if (!VD) {
1680    Diag(Loc, diag::err_ref_non_value)
1681      << D << SS.getRange();
1682    Diag(D->getLocation(), diag::note_declared_at);
1683    return ExprError();
1684  }
1685
1686  // Check whether this declaration can be used. Note that we suppress
1687  // this check when we're going to perform argument-dependent lookup
1688  // on this function name, because this might not be the function
1689  // that overload resolution actually selects.
1690  if (DiagnoseUseOfDecl(VD, Loc))
1691    return ExprError();
1692
1693  // Only create DeclRefExpr's for valid Decl's.
1694  if (VD->isInvalidDecl())
1695    return ExprError();
1696
1697  // If the identifier reference is inside a block, and it refers to a value
1698  // that is outside the block, create a BlockDeclRefExpr instead of a
1699  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1700  // the block is formed.
1701  //
1702  // We do not do this for things like enum constants, global variables, etc,
1703  // as they do not get snapshotted.
1704  //
1705  if (getCurBlock() &&
1706      ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) {
1707    if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
1708      Diag(Loc, diag::err_ref_vm_type);
1709      Diag(D->getLocation(), diag::note_declared_at);
1710      return ExprError();
1711    }
1712
1713    if (VD->getType()->isArrayType()) {
1714      Diag(Loc, diag::err_ref_array_type);
1715      Diag(D->getLocation(), diag::note_declared_at);
1716      return ExprError();
1717    }
1718
1719    MarkDeclarationReferenced(Loc, VD);
1720    QualType ExprTy = VD->getType().getNonReferenceType();
1721    // The BlocksAttr indicates the variable is bound by-reference.
1722    if (VD->getAttr<BlocksAttr>())
1723      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1724    // This is to record that a 'const' was actually synthesize and added.
1725    bool constAdded = !ExprTy.isConstQualified();
1726    // Variable will be bound by-copy, make it const within the closure.
1727
1728    ExprTy.addConst();
1729    BlockDeclRefExpr *BDRE = new (Context) BlockDeclRefExpr(VD,
1730                                                            ExprTy, Loc, false,
1731                                                            constAdded);
1732    QualType T = VD->getType();
1733    if (getLangOptions().CPlusPlus && !T->isDependentType() &&
1734        !T->isReferenceType()) {
1735      Expr *E = new (Context)
1736                  DeclRefExpr(const_cast<ValueDecl*>(BDRE->getDecl()), T,
1737                                         SourceLocation());
1738
1739      OwningExprResult Res = PerformCopyInitialization(
1740                      InitializedEntity::InitializeBlock(VD->getLocation(),
1741                                                         T, false),
1742                      SourceLocation(),
1743                      Owned(E));
1744      if (!Res.isInvalid()) {
1745        Res = MaybeCreateCXXExprWithTemporaries(move(Res));
1746        Expr *Init = Res.takeAs<Expr>();
1747        BDRE->setCopyConstructorExpr(Init);
1748      }
1749    }
1750    return Owned(BDRE);
1751  }
1752  // If this reference is not in a block or if the referenced variable is
1753  // within the block, create a normal DeclRefExpr.
1754
1755  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, &SS);
1756}
1757
1758Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1759                                                 tok::TokenKind Kind) {
1760  PredefinedExpr::IdentType IT;
1761
1762  switch (Kind) {
1763  default: assert(0 && "Unknown simple primary expr!");
1764  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1765  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1766  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1767  }
1768
1769  // Pre-defined identifiers are of type char[x], where x is the length of the
1770  // string.
1771
1772  Decl *currentDecl = getCurFunctionOrMethodDecl();
1773  if (!currentDecl) {
1774    Diag(Loc, diag::ext_predef_outside_function);
1775    currentDecl = Context.getTranslationUnitDecl();
1776  }
1777
1778  QualType ResTy;
1779  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1780    ResTy = Context.DependentTy;
1781  } else {
1782    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
1783
1784    llvm::APInt LengthI(32, Length + 1);
1785    ResTy = Context.CharTy.withConst();
1786    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1787  }
1788  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1789}
1790
1791Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1792  llvm::SmallString<16> CharBuffer;
1793  bool Invalid = false;
1794  llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
1795  if (Invalid)
1796    return ExprError();
1797
1798  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
1799                            PP);
1800  if (Literal.hadError())
1801    return ExprError();
1802
1803  QualType Ty;
1804  if (!getLangOptions().CPlusPlus)
1805    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
1806  else if (Literal.isWide())
1807    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
1808  else if (Literal.isMultiChar())
1809    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
1810  else
1811    Ty = Context.CharTy;  // 'x' -> char in C++
1812
1813  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1814                                              Literal.isWide(),
1815                                              Ty, Tok.getLocation()));
1816}
1817
1818Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1819  // Fast path for a single digit (which is quite common).  A single digit
1820  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1821  if (Tok.getLength() == 1) {
1822    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1823    unsigned IntSize = Context.Target.getIntWidth();
1824    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1825                    Context.IntTy, Tok.getLocation()));
1826  }
1827
1828  llvm::SmallString<512> IntegerBuffer;
1829  // Add padding so that NumericLiteralParser can overread by one character.
1830  IntegerBuffer.resize(Tok.getLength()+1);
1831  const char *ThisTokBegin = &IntegerBuffer[0];
1832
1833  // Get the spelling of the token, which eliminates trigraphs, etc.
1834  bool Invalid = false;
1835  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
1836  if (Invalid)
1837    return ExprError();
1838
1839  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1840                               Tok.getLocation(), PP);
1841  if (Literal.hadError)
1842    return ExprError();
1843
1844  Expr *Res;
1845
1846  if (Literal.isFloatingLiteral()) {
1847    QualType Ty;
1848    if (Literal.isFloat)
1849      Ty = Context.FloatTy;
1850    else if (!Literal.isLong)
1851      Ty = Context.DoubleTy;
1852    else
1853      Ty = Context.LongDoubleTy;
1854
1855    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1856
1857    using llvm::APFloat;
1858    APFloat Val(Format);
1859
1860    APFloat::opStatus result = Literal.GetFloatValue(Val);
1861
1862    // Overflow is always an error, but underflow is only an error if
1863    // we underflowed to zero (APFloat reports denormals as underflow).
1864    if ((result & APFloat::opOverflow) ||
1865        ((result & APFloat::opUnderflow) && Val.isZero())) {
1866      unsigned diagnostic;
1867      llvm::SmallString<20> buffer;
1868      if (result & APFloat::opOverflow) {
1869        diagnostic = diag::warn_float_overflow;
1870        APFloat::getLargest(Format).toString(buffer);
1871      } else {
1872        diagnostic = diag::warn_float_underflow;
1873        APFloat::getSmallest(Format).toString(buffer);
1874      }
1875
1876      Diag(Tok.getLocation(), diagnostic)
1877        << Ty
1878        << llvm::StringRef(buffer.data(), buffer.size());
1879    }
1880
1881    bool isExact = (result == APFloat::opOK);
1882    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1883
1884  } else if (!Literal.isIntegerLiteral()) {
1885    return ExprError();
1886  } else {
1887    QualType Ty;
1888
1889    // long long is a C99 feature.
1890    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1891        Literal.isLongLong)
1892      Diag(Tok.getLocation(), diag::ext_longlong);
1893
1894    // Get the value in the widest-possible width.
1895    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1896
1897    if (Literal.GetIntegerValue(ResultVal)) {
1898      // If this value didn't fit into uintmax_t, warn and force to ull.
1899      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1900      Ty = Context.UnsignedLongLongTy;
1901      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1902             "long long is not intmax_t?");
1903    } else {
1904      // If this value fits into a ULL, try to figure out what else it fits into
1905      // according to the rules of C99 6.4.4.1p5.
1906
1907      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1908      // be an unsigned int.
1909      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1910
1911      // Check from smallest to largest, picking the smallest type we can.
1912      unsigned Width = 0;
1913      if (!Literal.isLong && !Literal.isLongLong) {
1914        // Are int/unsigned possibilities?
1915        unsigned IntSize = Context.Target.getIntWidth();
1916
1917        // Does it fit in a unsigned int?
1918        if (ResultVal.isIntN(IntSize)) {
1919          // Does it fit in a signed int?
1920          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1921            Ty = Context.IntTy;
1922          else if (AllowUnsigned)
1923            Ty = Context.UnsignedIntTy;
1924          Width = IntSize;
1925        }
1926      }
1927
1928      // Are long/unsigned long possibilities?
1929      if (Ty.isNull() && !Literal.isLongLong) {
1930        unsigned LongSize = Context.Target.getLongWidth();
1931
1932        // Does it fit in a unsigned long?
1933        if (ResultVal.isIntN(LongSize)) {
1934          // Does it fit in a signed long?
1935          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1936            Ty = Context.LongTy;
1937          else if (AllowUnsigned)
1938            Ty = Context.UnsignedLongTy;
1939          Width = LongSize;
1940        }
1941      }
1942
1943      // Finally, check long long if needed.
1944      if (Ty.isNull()) {
1945        unsigned LongLongSize = Context.Target.getLongLongWidth();
1946
1947        // Does it fit in a unsigned long long?
1948        if (ResultVal.isIntN(LongLongSize)) {
1949          // Does it fit in a signed long long?
1950          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1951            Ty = Context.LongLongTy;
1952          else if (AllowUnsigned)
1953            Ty = Context.UnsignedLongLongTy;
1954          Width = LongLongSize;
1955        }
1956      }
1957
1958      // If we still couldn't decide a type, we probably have something that
1959      // does not fit in a signed long long, but has no U suffix.
1960      if (Ty.isNull()) {
1961        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1962        Ty = Context.UnsignedLongLongTy;
1963        Width = Context.Target.getLongLongWidth();
1964      }
1965
1966      if (ResultVal.getBitWidth() != Width)
1967        ResultVal.trunc(Width);
1968    }
1969    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1970  }
1971
1972  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1973  if (Literal.isImaginary)
1974    Res = new (Context) ImaginaryLiteral(Res,
1975                                        Context.getComplexType(Res->getType()));
1976
1977  return Owned(Res);
1978}
1979
1980Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1981                                              SourceLocation R, ExprArg Val) {
1982  Expr *E = Val.takeAs<Expr>();
1983  assert((E != 0) && "ActOnParenExpr() missing expr");
1984  return Owned(new (Context) ParenExpr(L, R, E));
1985}
1986
1987/// The UsualUnaryConversions() function is *not* called by this routine.
1988/// See C99 6.3.2.1p[2-4] for more details.
1989bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1990                                     SourceLocation OpLoc,
1991                                     const SourceRange &ExprRange,
1992                                     bool isSizeof) {
1993  if (exprType->isDependentType())
1994    return false;
1995
1996  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1997  //   the result is the size of the referenced type."
1998  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
1999  //   result shall be the alignment of the referenced type."
2000  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
2001    exprType = Ref->getPointeeType();
2002
2003  // C99 6.5.3.4p1:
2004  if (exprType->isFunctionType()) {
2005    // alignof(function) is allowed as an extension.
2006    if (isSizeof)
2007      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
2008    return false;
2009  }
2010
2011  // Allow sizeof(void)/alignof(void) as an extension.
2012  if (exprType->isVoidType()) {
2013    Diag(OpLoc, diag::ext_sizeof_void_type)
2014      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
2015    return false;
2016  }
2017
2018  if (RequireCompleteType(OpLoc, exprType,
2019                          PDiag(diag::err_sizeof_alignof_incomplete_type)
2020                          << int(!isSizeof) << ExprRange))
2021    return true;
2022
2023  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2024  if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) {
2025    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
2026      << exprType << isSizeof << ExprRange;
2027    return true;
2028  }
2029
2030  if (Context.hasSameUnqualifiedType(exprType, Context.OverloadTy)) {
2031    Diag(OpLoc, diag::err_sizeof_alignof_overloaded_function_type)
2032      << !isSizeof << ExprRange;
2033    return true;
2034  }
2035
2036  return false;
2037}
2038
2039bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
2040                            const SourceRange &ExprRange) {
2041  E = E->IgnoreParens();
2042
2043  // alignof decl is always ok.
2044  if (isa<DeclRefExpr>(E))
2045    return false;
2046
2047  // Cannot know anything else if the expression is dependent.
2048  if (E->isTypeDependent())
2049    return false;
2050
2051  if (E->getBitField()) {
2052    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
2053    return true;
2054  }
2055
2056  // Alignment of a field access is always okay, so long as it isn't a
2057  // bit-field.
2058  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2059    if (isa<FieldDecl>(ME->getMemberDecl()))
2060      return false;
2061
2062  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
2063}
2064
2065/// \brief Build a sizeof or alignof expression given a type operand.
2066Action::OwningExprResult
2067Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
2068                              SourceLocation OpLoc,
2069                              bool isSizeOf, SourceRange R) {
2070  if (!TInfo)
2071    return ExprError();
2072
2073  QualType T = TInfo->getType();
2074
2075  if (!T->isDependentType() &&
2076      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
2077    return ExprError();
2078
2079  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2080  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
2081                                               Context.getSizeType(), OpLoc,
2082                                               R.getEnd()));
2083}
2084
2085/// \brief Build a sizeof or alignof expression given an expression
2086/// operand.
2087Action::OwningExprResult
2088Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
2089                              bool isSizeOf, SourceRange R) {
2090  // Verify that the operand is valid.
2091  bool isInvalid = false;
2092  if (E->isTypeDependent()) {
2093    // Delay type-checking for type-dependent expressions.
2094  } else if (!isSizeOf) {
2095    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
2096  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
2097    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
2098    isInvalid = true;
2099  } else {
2100    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
2101  }
2102
2103  if (isInvalid)
2104    return ExprError();
2105
2106  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2107  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
2108                                               Context.getSizeType(), OpLoc,
2109                                               R.getEnd()));
2110}
2111
2112/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
2113/// the same for @c alignof and @c __alignof
2114/// Note that the ArgRange is invalid if isType is false.
2115Action::OwningExprResult
2116Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
2117                             void *TyOrEx, const SourceRange &ArgRange) {
2118  // If error parsing type, ignore.
2119  if (TyOrEx == 0) return ExprError();
2120
2121  if (isType) {
2122    TypeSourceInfo *TInfo;
2123    (void) GetTypeFromParser(TyOrEx, &TInfo);
2124    return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
2125  }
2126
2127  Expr *ArgEx = (Expr *)TyOrEx;
2128  Action::OwningExprResult Result
2129    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
2130
2131  if (Result.isInvalid())
2132    DeleteExpr(ArgEx);
2133
2134  return move(Result);
2135}
2136
2137QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
2138  if (V->isTypeDependent())
2139    return Context.DependentTy;
2140
2141  // These operators return the element type of a complex type.
2142  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
2143    return CT->getElementType();
2144
2145  // Otherwise they pass through real integer and floating point types here.
2146  if (V->getType()->isArithmeticType())
2147    return V->getType();
2148
2149  // Reject anything else.
2150  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
2151    << (isReal ? "__real" : "__imag");
2152  return QualType();
2153}
2154
2155
2156
2157Action::OwningExprResult
2158Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
2159                          tok::TokenKind Kind, ExprArg Input) {
2160  UnaryOperator::Opcode Opc;
2161  switch (Kind) {
2162  default: assert(0 && "Unknown unary op!");
2163  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
2164  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
2165  }
2166
2167  return BuildUnaryOp(S, OpLoc, Opc, move(Input));
2168}
2169
2170Action::OwningExprResult
2171Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
2172                              ExprArg Idx, SourceLocation RLoc) {
2173  // Since this might be a postfix expression, get rid of ParenListExprs.
2174  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
2175
2176  Expr *LHSExp = static_cast<Expr*>(Base.get()),
2177       *RHSExp = static_cast<Expr*>(Idx.get());
2178
2179  if (getLangOptions().CPlusPlus &&
2180      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
2181    Base.release();
2182    Idx.release();
2183    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2184                                                  Context.DependentTy, RLoc));
2185  }
2186
2187  if (getLangOptions().CPlusPlus &&
2188      (LHSExp->getType()->isRecordType() ||
2189       LHSExp->getType()->isEnumeralType() ||
2190       RHSExp->getType()->isRecordType() ||
2191       RHSExp->getType()->isEnumeralType())) {
2192    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
2193  }
2194
2195  return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
2196}
2197
2198
2199Action::OwningExprResult
2200Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
2201                                     ExprArg Idx, SourceLocation RLoc) {
2202  Expr *LHSExp = static_cast<Expr*>(Base.get());
2203  Expr *RHSExp = static_cast<Expr*>(Idx.get());
2204
2205  // Perform default conversions.
2206  if (!LHSExp->getType()->getAs<VectorType>())
2207      DefaultFunctionArrayLvalueConversion(LHSExp);
2208  DefaultFunctionArrayLvalueConversion(RHSExp);
2209
2210  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
2211
2212  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
2213  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
2214  // in the subscript position. As a result, we need to derive the array base
2215  // and index from the expression types.
2216  Expr *BaseExpr, *IndexExpr;
2217  QualType ResultType;
2218  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
2219    BaseExpr = LHSExp;
2220    IndexExpr = RHSExp;
2221    ResultType = Context.DependentTy;
2222  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
2223    BaseExpr = LHSExp;
2224    IndexExpr = RHSExp;
2225    ResultType = PTy->getPointeeType();
2226  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
2227     // Handle the uncommon case of "123[Ptr]".
2228    BaseExpr = RHSExp;
2229    IndexExpr = LHSExp;
2230    ResultType = PTy->getPointeeType();
2231  } else if (const ObjCObjectPointerType *PTy =
2232               LHSTy->getAs<ObjCObjectPointerType>()) {
2233    BaseExpr = LHSExp;
2234    IndexExpr = RHSExp;
2235    ResultType = PTy->getPointeeType();
2236  } else if (const ObjCObjectPointerType *PTy =
2237               RHSTy->getAs<ObjCObjectPointerType>()) {
2238     // Handle the uncommon case of "123[Ptr]".
2239    BaseExpr = RHSExp;
2240    IndexExpr = LHSExp;
2241    ResultType = PTy->getPointeeType();
2242  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
2243    BaseExpr = LHSExp;    // vectors: V[123]
2244    IndexExpr = RHSExp;
2245
2246    // FIXME: need to deal with const...
2247    ResultType = VTy->getElementType();
2248  } else if (LHSTy->isArrayType()) {
2249    // If we see an array that wasn't promoted by
2250    // DefaultFunctionArrayLvalueConversion, it must be an array that
2251    // wasn't promoted because of the C90 rule that doesn't
2252    // allow promoting non-lvalue arrays.  Warn, then
2253    // force the promotion here.
2254    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2255        LHSExp->getSourceRange();
2256    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
2257                      CastExpr::CK_ArrayToPointerDecay);
2258    LHSTy = LHSExp->getType();
2259
2260    BaseExpr = LHSExp;
2261    IndexExpr = RHSExp;
2262    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
2263  } else if (RHSTy->isArrayType()) {
2264    // Same as previous, except for 123[f().a] case
2265    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2266        RHSExp->getSourceRange();
2267    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
2268                      CastExpr::CK_ArrayToPointerDecay);
2269    RHSTy = RHSExp->getType();
2270
2271    BaseExpr = RHSExp;
2272    IndexExpr = LHSExp;
2273    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
2274  } else {
2275    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
2276       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
2277  }
2278  // C99 6.5.2.1p1
2279  if (!(IndexExpr->getType()->isIntegerType() &&
2280        IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
2281    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
2282                     << IndexExpr->getSourceRange());
2283
2284  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
2285       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
2286         && !IndexExpr->isTypeDependent())
2287    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
2288
2289  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
2290  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
2291  // type. Note that Functions are not objects, and that (in C99 parlance)
2292  // incomplete types are not object types.
2293  if (ResultType->isFunctionType()) {
2294    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
2295      << ResultType << BaseExpr->getSourceRange();
2296    return ExprError();
2297  }
2298
2299  if (!ResultType->isDependentType() &&
2300      RequireCompleteType(LLoc, ResultType,
2301                          PDiag(diag::err_subscript_incomplete_type)
2302                            << BaseExpr->getSourceRange()))
2303    return ExprError();
2304
2305  // Diagnose bad cases where we step over interface counts.
2306  if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
2307    Diag(LLoc, diag::err_subscript_nonfragile_interface)
2308      << ResultType << BaseExpr->getSourceRange();
2309    return ExprError();
2310  }
2311
2312  Base.release();
2313  Idx.release();
2314  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2315                                                ResultType, RLoc));
2316}
2317
2318QualType Sema::
2319CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
2320                        const IdentifierInfo *CompName,
2321                        SourceLocation CompLoc) {
2322  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
2323  // see FIXME there.
2324  //
2325  // FIXME: This logic can be greatly simplified by splitting it along
2326  // halving/not halving and reworking the component checking.
2327  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
2328
2329  // The vector accessor can't exceed the number of elements.
2330  const char *compStr = CompName->getNameStart();
2331
2332  // This flag determines whether or not the component is one of the four
2333  // special names that indicate a subset of exactly half the elements are
2334  // to be selected.
2335  bool HalvingSwizzle = false;
2336
2337  // This flag determines whether or not CompName has an 's' char prefix,
2338  // indicating that it is a string of hex values to be used as vector indices.
2339  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
2340
2341  // Check that we've found one of the special components, or that the component
2342  // names must come from the same set.
2343  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
2344      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
2345    HalvingSwizzle = true;
2346  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
2347    do
2348      compStr++;
2349    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
2350  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
2351    do
2352      compStr++;
2353    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
2354  }
2355
2356  if (!HalvingSwizzle && *compStr) {
2357    // We didn't get to the end of the string. This means the component names
2358    // didn't come from the same set *or* we encountered an illegal name.
2359    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
2360      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
2361    return QualType();
2362  }
2363
2364  // Ensure no component accessor exceeds the width of the vector type it
2365  // operates on.
2366  if (!HalvingSwizzle) {
2367    compStr = CompName->getNameStart();
2368
2369    if (HexSwizzle)
2370      compStr++;
2371
2372    while (*compStr) {
2373      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
2374        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
2375          << baseType << SourceRange(CompLoc);
2376        return QualType();
2377      }
2378    }
2379  }
2380
2381  // The component accessor looks fine - now we need to compute the actual type.
2382  // The vector type is implied by the component accessor. For example,
2383  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
2384  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
2385  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
2386  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
2387                                     : CompName->getLength();
2388  if (HexSwizzle)
2389    CompSize--;
2390
2391  if (CompSize == 1)
2392    return vecType->getElementType();
2393
2394  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
2395  // Now look up the TypeDefDecl from the vector type. Without this,
2396  // diagostics look bad. We want extended vector types to appear built-in.
2397  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
2398    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
2399      return Context.getTypedefType(ExtVectorDecls[i]);
2400  }
2401  return VT; // should never get here (a typedef type should always be found).
2402}
2403
2404static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
2405                                                IdentifierInfo *Member,
2406                                                const Selector &Sel,
2407                                                ASTContext &Context) {
2408
2409  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
2410    return PD;
2411  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
2412    return OMD;
2413
2414  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
2415       E = PDecl->protocol_end(); I != E; ++I) {
2416    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
2417                                                     Context))
2418      return D;
2419  }
2420  return 0;
2421}
2422
2423static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
2424                                IdentifierInfo *Member,
2425                                const Selector &Sel,
2426                                ASTContext &Context) {
2427  // Check protocols on qualified interfaces.
2428  Decl *GDecl = 0;
2429  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2430       E = QIdTy->qual_end(); I != E; ++I) {
2431    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2432      GDecl = PD;
2433      break;
2434    }
2435    // Also must look for a getter name which uses property syntax.
2436    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
2437      GDecl = OMD;
2438      break;
2439    }
2440  }
2441  if (!GDecl) {
2442    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2443         E = QIdTy->qual_end(); I != E; ++I) {
2444      // Search in the protocol-qualifier list of current protocol.
2445      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2446      if (GDecl)
2447        return GDecl;
2448    }
2449  }
2450  return GDecl;
2451}
2452
2453Sema::OwningExprResult
2454Sema::ActOnDependentMemberExpr(ExprArg Base, QualType BaseType,
2455                               bool IsArrow, SourceLocation OpLoc,
2456                               const CXXScopeSpec &SS,
2457                               NamedDecl *FirstQualifierInScope,
2458                               DeclarationName Name, SourceLocation NameLoc,
2459                               const TemplateArgumentListInfo *TemplateArgs) {
2460  Expr *BaseExpr = Base.takeAs<Expr>();
2461
2462  // Even in dependent contexts, try to diagnose base expressions with
2463  // obviously wrong types, e.g.:
2464  //
2465  // T* t;
2466  // t.f;
2467  //
2468  // In Obj-C++, however, the above expression is valid, since it could be
2469  // accessing the 'f' property if T is an Obj-C interface. The extra check
2470  // allows this, while still reporting an error if T is a struct pointer.
2471  if (!IsArrow) {
2472    const PointerType *PT = BaseType->getAs<PointerType>();
2473    if (PT && (!getLangOptions().ObjC1 ||
2474               PT->getPointeeType()->isRecordType())) {
2475      assert(BaseExpr && "cannot happen with implicit member accesses");
2476      Diag(NameLoc, diag::err_typecheck_member_reference_struct_union)
2477        << BaseType << BaseExpr->getSourceRange();
2478      return ExprError();
2479    }
2480  }
2481
2482  assert(BaseType->isDependentType() || Name.isDependentName() ||
2483         isDependentScopeSpecifier(SS));
2484
2485  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2486  // must have pointer type, and the accessed type is the pointee.
2487  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
2488                                                   IsArrow, OpLoc,
2489                 static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2490                                                   SS.getRange(),
2491                                                   FirstQualifierInScope,
2492                                                   Name, NameLoc,
2493                                                   TemplateArgs));
2494}
2495
2496/// We know that the given qualified member reference points only to
2497/// declarations which do not belong to the static type of the base
2498/// expression.  Diagnose the problem.
2499static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
2500                                             Expr *BaseExpr,
2501                                             QualType BaseType,
2502                                             const CXXScopeSpec &SS,
2503                                             const LookupResult &R) {
2504  // If this is an implicit member access, use a different set of
2505  // diagnostics.
2506  if (!BaseExpr)
2507    return DiagnoseInstanceReference(SemaRef, SS, R);
2508
2509  SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_of_unrelated)
2510    << SS.getRange() << R.getRepresentativeDecl() << BaseType;
2511}
2512
2513// Check whether the declarations we found through a nested-name
2514// specifier in a member expression are actually members of the base
2515// type.  The restriction here is:
2516//
2517//   C++ [expr.ref]p2:
2518//     ... In these cases, the id-expression shall name a
2519//     member of the class or of one of its base classes.
2520//
2521// So it's perfectly legitimate for the nested-name specifier to name
2522// an unrelated class, and for us to find an overload set including
2523// decls from classes which are not superclasses, as long as the decl
2524// we actually pick through overload resolution is from a superclass.
2525bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
2526                                         QualType BaseType,
2527                                         const CXXScopeSpec &SS,
2528                                         const LookupResult &R) {
2529  const RecordType *BaseRT = BaseType->getAs<RecordType>();
2530  if (!BaseRT) {
2531    // We can't check this yet because the base type is still
2532    // dependent.
2533    assert(BaseType->isDependentType());
2534    return false;
2535  }
2536  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
2537
2538  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2539    // If this is an implicit member reference and we find a
2540    // non-instance member, it's not an error.
2541    if (!BaseExpr && !(*I)->isCXXInstanceMember())
2542      return false;
2543
2544    // Note that we use the DC of the decl, not the underlying decl.
2545    CXXRecordDecl *RecordD = cast<CXXRecordDecl>((*I)->getDeclContext());
2546    while (RecordD->isAnonymousStructOrUnion())
2547      RecordD = cast<CXXRecordDecl>(RecordD->getParent());
2548
2549    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
2550    MemberRecord.insert(RecordD->getCanonicalDecl());
2551
2552    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
2553      return false;
2554  }
2555
2556  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
2557  return true;
2558}
2559
2560static bool
2561LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
2562                         SourceRange BaseRange, const RecordType *RTy,
2563                         SourceLocation OpLoc, CXXScopeSpec &SS,
2564                         bool HasTemplateArgs) {
2565  RecordDecl *RDecl = RTy->getDecl();
2566  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
2567                              SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
2568                                    << BaseRange))
2569    return true;
2570
2571  if (HasTemplateArgs) {
2572    // LookupTemplateName doesn't expect these both to exist simultaneously.
2573    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
2574
2575    bool MOUS;
2576    SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
2577    return false;
2578  }
2579
2580  DeclContext *DC = RDecl;
2581  if (SS.isSet()) {
2582    // If the member name was a qualified-id, look into the
2583    // nested-name-specifier.
2584    DC = SemaRef.computeDeclContext(SS, false);
2585
2586    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
2587      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
2588        << SS.getRange() << DC;
2589      return true;
2590    }
2591
2592    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2593
2594    if (!isa<TypeDecl>(DC)) {
2595      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
2596        << DC << SS.getRange();
2597      return true;
2598    }
2599  }
2600
2601  // The record definition is complete, now look up the member.
2602  SemaRef.LookupQualifiedName(R, DC);
2603
2604  if (!R.empty())
2605    return false;
2606
2607  // We didn't find anything with the given name, so try to correct
2608  // for typos.
2609  DeclarationName Name = R.getLookupName();
2610  if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
2611      !R.empty() &&
2612      (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
2613    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
2614      << Name << DC << R.getLookupName() << SS.getRange()
2615      << FixItHint::CreateReplacement(R.getNameLoc(),
2616                                      R.getLookupName().getAsString());
2617    if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
2618      SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
2619        << ND->getDeclName();
2620    return false;
2621  } else {
2622    R.clear();
2623    R.setLookupName(Name);
2624  }
2625
2626  return false;
2627}
2628
2629Sema::OwningExprResult
2630Sema::BuildMemberReferenceExpr(ExprArg BaseArg, QualType BaseType,
2631                               SourceLocation OpLoc, bool IsArrow,
2632                               CXXScopeSpec &SS,
2633                               NamedDecl *FirstQualifierInScope,
2634                               DeclarationName Name, SourceLocation NameLoc,
2635                               const TemplateArgumentListInfo *TemplateArgs) {
2636  Expr *Base = BaseArg.takeAs<Expr>();
2637
2638  if (BaseType->isDependentType() ||
2639      (SS.isSet() && isDependentScopeSpecifier(SS)))
2640    return ActOnDependentMemberExpr(ExprArg(*this, Base), BaseType,
2641                                    IsArrow, OpLoc,
2642                                    SS, FirstQualifierInScope,
2643                                    Name, NameLoc,
2644                                    TemplateArgs);
2645
2646  LookupResult R(*this, Name, NameLoc, LookupMemberName);
2647
2648  // Implicit member accesses.
2649  if (!Base) {
2650    QualType RecordTy = BaseType;
2651    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
2652    if (LookupMemberExprInRecord(*this, R, SourceRange(),
2653                                 RecordTy->getAs<RecordType>(),
2654                                 OpLoc, SS, TemplateArgs != 0))
2655      return ExprError();
2656
2657  // Explicit member accesses.
2658  } else {
2659    OwningExprResult Result =
2660      LookupMemberExpr(R, Base, IsArrow, OpLoc,
2661                       SS, /*ObjCImpDecl*/ DeclPtrTy(), TemplateArgs != 0);
2662
2663    if (Result.isInvalid()) {
2664      Owned(Base);
2665      return ExprError();
2666    }
2667
2668    if (Result.get())
2669      return move(Result);
2670
2671    // LookupMemberExpr can modify Base, and thus change BaseType
2672    BaseType = Base->getType();
2673  }
2674
2675  return BuildMemberReferenceExpr(ExprArg(*this, Base), BaseType,
2676                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
2677                                  R, TemplateArgs);
2678}
2679
2680Sema::OwningExprResult
2681Sema::BuildMemberReferenceExpr(ExprArg Base, QualType BaseExprType,
2682                               SourceLocation OpLoc, bool IsArrow,
2683                               const CXXScopeSpec &SS,
2684                               NamedDecl *FirstQualifierInScope,
2685                               LookupResult &R,
2686                         const TemplateArgumentListInfo *TemplateArgs,
2687                               bool SuppressQualifierCheck) {
2688  Expr *BaseExpr = Base.takeAs<Expr>();
2689  QualType BaseType = BaseExprType;
2690  if (IsArrow) {
2691    assert(BaseType->isPointerType());
2692    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
2693  }
2694  R.setBaseObjectType(BaseType);
2695
2696  NestedNameSpecifier *Qualifier =
2697    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2698  DeclarationName MemberName = R.getLookupName();
2699  SourceLocation MemberLoc = R.getNameLoc();
2700
2701  if (R.isAmbiguous())
2702    return ExprError();
2703
2704  if (R.empty()) {
2705    // Rederive where we looked up.
2706    DeclContext *DC = (SS.isSet()
2707                       ? computeDeclContext(SS, false)
2708                       : BaseType->getAs<RecordType>()->getDecl());
2709
2710    Diag(R.getNameLoc(), diag::err_no_member)
2711      << MemberName << DC
2712      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
2713    return ExprError();
2714  }
2715
2716  // Diagnose lookups that find only declarations from a non-base
2717  // type.  This is possible for either qualified lookups (which may
2718  // have been qualified with an unrelated type) or implicit member
2719  // expressions (which were found with unqualified lookup and thus
2720  // may have come from an enclosing scope).  Note that it's okay for
2721  // lookup to find declarations from a non-base type as long as those
2722  // aren't the ones picked by overload resolution.
2723  if ((SS.isSet() || !BaseExpr ||
2724       (isa<CXXThisExpr>(BaseExpr) &&
2725        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
2726      !SuppressQualifierCheck &&
2727      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
2728    return ExprError();
2729
2730  // Construct an unresolved result if we in fact got an unresolved
2731  // result.
2732  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
2733    bool Dependent =
2734      BaseExprType->isDependentType() ||
2735      R.isUnresolvableResult() ||
2736      OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
2737
2738    // Suppress any lookup-related diagnostics; we'll do these when we
2739    // pick a member.
2740    R.suppressDiagnostics();
2741
2742    UnresolvedMemberExpr *MemExpr
2743      = UnresolvedMemberExpr::Create(Context, Dependent,
2744                                     R.isUnresolvableResult(),
2745                                     BaseExpr, BaseExprType,
2746                                     IsArrow, OpLoc,
2747                                     Qualifier, SS.getRange(),
2748                                     MemberName, MemberLoc,
2749                                     TemplateArgs, R.begin(), R.end());
2750
2751    return Owned(MemExpr);
2752  }
2753
2754  assert(R.isSingleResult());
2755  DeclAccessPair FoundDecl = R.begin().getPair();
2756  NamedDecl *MemberDecl = R.getFoundDecl();
2757
2758  // FIXME: diagnose the presence of template arguments now.
2759
2760  // If the decl being referenced had an error, return an error for this
2761  // sub-expr without emitting another error, in order to avoid cascading
2762  // error cases.
2763  if (MemberDecl->isInvalidDecl())
2764    return ExprError();
2765
2766  // Handle the implicit-member-access case.
2767  if (!BaseExpr) {
2768    // If this is not an instance member, convert to a non-member access.
2769    if (!MemberDecl->isCXXInstanceMember())
2770      return BuildDeclarationNameExpr(SS, R.getNameLoc(), MemberDecl);
2771
2772    SourceLocation Loc = R.getNameLoc();
2773    if (SS.getRange().isValid())
2774      Loc = SS.getRange().getBegin();
2775    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
2776  }
2777
2778  bool ShouldCheckUse = true;
2779  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2780    // Don't diagnose the use of a virtual member function unless it's
2781    // explicitly qualified.
2782    if (MD->isVirtual() && !SS.isSet())
2783      ShouldCheckUse = false;
2784  }
2785
2786  // Check the use of this member.
2787  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
2788    Owned(BaseExpr);
2789    return ExprError();
2790  }
2791
2792  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2793    // We may have found a field within an anonymous union or struct
2794    // (C++ [class.union]).
2795    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
2796        !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
2797      return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2798                                                      BaseExpr, OpLoc);
2799
2800    // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2801    QualType MemberType = FD->getType();
2802    if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2803      MemberType = Ref->getPointeeType();
2804    else {
2805      Qualifiers BaseQuals = BaseType.getQualifiers();
2806      BaseQuals.removeObjCGCAttr();
2807      if (FD->isMutable()) BaseQuals.removeConst();
2808
2809      Qualifiers MemberQuals
2810        = Context.getCanonicalType(MemberType).getQualifiers();
2811
2812      Qualifiers Combined = BaseQuals + MemberQuals;
2813      if (Combined != MemberQuals)
2814        MemberType = Context.getQualifiedType(MemberType, Combined);
2815    }
2816
2817    MarkDeclarationReferenced(MemberLoc, FD);
2818    if (PerformObjectMemberConversion(BaseExpr, Qualifier, FoundDecl, FD))
2819      return ExprError();
2820    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2821                                 FD, FoundDecl, MemberLoc, MemberType));
2822  }
2823
2824  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2825    MarkDeclarationReferenced(MemberLoc, Var);
2826    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2827                                 Var, FoundDecl, MemberLoc,
2828                                 Var->getType().getNonReferenceType()));
2829  }
2830
2831  if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2832    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2833    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2834                                 MemberFn, FoundDecl, MemberLoc,
2835                                 MemberFn->getType()));
2836  }
2837
2838  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2839    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2840    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2841                                 Enum, FoundDecl, MemberLoc, Enum->getType()));
2842  }
2843
2844  Owned(BaseExpr);
2845
2846  // We found something that we didn't expect. Complain.
2847  if (isa<TypeDecl>(MemberDecl))
2848    Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2849      << MemberName << BaseType << int(IsArrow);
2850  else
2851    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
2852      << MemberName << BaseType << int(IsArrow);
2853
2854  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
2855    << MemberName;
2856  R.suppressDiagnostics();
2857  return ExprError();
2858}
2859
2860/// Look up the given member of the given non-type-dependent
2861/// expression.  This can return in one of two ways:
2862///  * If it returns a sentinel null-but-valid result, the caller will
2863///    assume that lookup was performed and the results written into
2864///    the provided structure.  It will take over from there.
2865///  * Otherwise, the returned expression will be produced in place of
2866///    an ordinary member expression.
2867///
2868/// The ObjCImpDecl bit is a gross hack that will need to be properly
2869/// fixed for ObjC++.
2870Sema::OwningExprResult
2871Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
2872                       bool &IsArrow, SourceLocation OpLoc,
2873                       CXXScopeSpec &SS,
2874                       DeclPtrTy ObjCImpDecl, bool HasTemplateArgs) {
2875  assert(BaseExpr && "no base expression");
2876
2877  // Perform default conversions.
2878  DefaultFunctionArrayConversion(BaseExpr);
2879
2880  QualType BaseType = BaseExpr->getType();
2881  assert(!BaseType->isDependentType());
2882
2883  DeclarationName MemberName = R.getLookupName();
2884  SourceLocation MemberLoc = R.getNameLoc();
2885
2886  // If the user is trying to apply -> or . to a function pointer
2887  // type, it's probably because they forgot parentheses to call that
2888  // function. Suggest the addition of those parentheses, build the
2889  // call, and continue on.
2890  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
2891    if (const FunctionProtoType *Fun
2892          = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
2893      QualType ResultTy = Fun->getResultType();
2894      if (Fun->getNumArgs() == 0 &&
2895          ((!IsArrow && ResultTy->isRecordType()) ||
2896           (IsArrow && ResultTy->isPointerType() &&
2897            ResultTy->getAs<PointerType>()->getPointeeType()
2898                                                          ->isRecordType()))) {
2899        SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2900        Diag(Loc, diag::err_member_reference_needs_call)
2901          << QualType(Fun, 0)
2902          << FixItHint::CreateInsertion(Loc, "()");
2903
2904        OwningExprResult NewBase
2905          = ActOnCallExpr(0, ExprArg(*this, BaseExpr), Loc,
2906                          MultiExprArg(*this, 0, 0), 0, Loc);
2907        BaseExpr = 0;
2908        if (NewBase.isInvalid())
2909          return ExprError();
2910
2911        BaseExpr = NewBase.takeAs<Expr>();
2912        DefaultFunctionArrayConversion(BaseExpr);
2913        BaseType = BaseExpr->getType();
2914      }
2915    }
2916  }
2917
2918  // If this is an Objective-C pseudo-builtin and a definition is provided then
2919  // use that.
2920  if (BaseType->isObjCIdType()) {
2921    if (IsArrow) {
2922      // Handle the following exceptional case PObj->isa.
2923      if (const ObjCObjectPointerType *OPT =
2924          BaseType->getAs<ObjCObjectPointerType>()) {
2925        if (OPT->getObjectType()->isObjCId() &&
2926            MemberName.getAsIdentifierInfo()->isStr("isa"))
2927          return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
2928                                                 Context.getObjCClassType()));
2929      }
2930    }
2931    // We have an 'id' type. Rather than fall through, we check if this
2932    // is a reference to 'isa'.
2933    if (BaseType != Context.ObjCIdRedefinitionType) {
2934      BaseType = Context.ObjCIdRedefinitionType;
2935      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2936    }
2937  }
2938
2939  // If this is an Objective-C pseudo-builtin and a definition is provided then
2940  // use that.
2941  if (Context.isObjCSelType(BaseType)) {
2942    // We have an 'SEL' type. Rather than fall through, we check if this
2943    // is a reference to 'sel_id'.
2944    if (BaseType != Context.ObjCSelRedefinitionType) {
2945      BaseType = Context.ObjCSelRedefinitionType;
2946      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2947    }
2948  }
2949
2950  assert(!BaseType.isNull() && "no type for member expression");
2951
2952  // Handle properties on ObjC 'Class' types.
2953  if (!IsArrow && BaseType->isObjCClassType()) {
2954    // Also must look for a getter name which uses property syntax.
2955    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2956    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2957    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2958      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2959      ObjCMethodDecl *Getter;
2960      // FIXME: need to also look locally in the implementation.
2961      if ((Getter = IFace->lookupClassMethod(Sel))) {
2962        // Check the use of this method.
2963        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2964          return ExprError();
2965      }
2966      // If we found a getter then this may be a valid dot-reference, we
2967      // will look for the matching setter, in case it is needed.
2968      Selector SetterSel =
2969      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2970                                         PP.getSelectorTable(), Member);
2971      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2972      if (!Setter) {
2973        // If this reference is in an @implementation, also check for 'private'
2974        // methods.
2975        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
2976      }
2977      // Look through local category implementations associated with the class.
2978      if (!Setter)
2979        Setter = IFace->getCategoryClassMethod(SetterSel);
2980
2981      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2982        return ExprError();
2983
2984      if (Getter || Setter) {
2985        QualType PType;
2986
2987        if (Getter)
2988          PType = Getter->getResultType();
2989        else
2990          // Get the expression type from Setter's incoming parameter.
2991          PType = (*(Setter->param_end() -1))->getType();
2992        // FIXME: we must check that the setter has property type.
2993        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
2994                                                  PType,
2995                                                  Setter, MemberLoc, BaseExpr));
2996      }
2997      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2998                       << MemberName << BaseType);
2999    }
3000  }
3001
3002  if (BaseType->isObjCClassType() &&
3003      BaseType != Context.ObjCClassRedefinitionType) {
3004    BaseType = Context.ObjCClassRedefinitionType;
3005    ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
3006  }
3007
3008  if (IsArrow) {
3009    if (const PointerType *PT = BaseType->getAs<PointerType>())
3010      BaseType = PT->getPointeeType();
3011    else if (BaseType->isObjCObjectPointerType())
3012      ;
3013    else if (BaseType->isRecordType()) {
3014      // Recover from arrow accesses to records, e.g.:
3015      //   struct MyRecord foo;
3016      //   foo->bar
3017      // This is actually well-formed in C++ if MyRecord has an
3018      // overloaded operator->, but that should have been dealt with
3019      // by now.
3020      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3021        << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3022        << FixItHint::CreateReplacement(OpLoc, ".");
3023      IsArrow = false;
3024    } else {
3025      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
3026        << BaseType << BaseExpr->getSourceRange();
3027      return ExprError();
3028    }
3029  } else {
3030    // Recover from dot accesses to pointers, e.g.:
3031    //   type *foo;
3032    //   foo.bar
3033    // This is actually well-formed in two cases:
3034    //   - 'type' is an Objective C type
3035    //   - 'bar' is a pseudo-destructor name which happens to refer to
3036    //     the appropriate pointer type
3037    if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
3038      const PointerType *PT = BaseType->getAs<PointerType>();
3039      if (PT && PT->getPointeeType()->isRecordType()) {
3040        Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3041          << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3042          << FixItHint::CreateReplacement(OpLoc, "->");
3043        BaseType = PT->getPointeeType();
3044        IsArrow = true;
3045      }
3046    }
3047  }
3048
3049  // Handle field access to simple records.
3050  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
3051    if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
3052                                 RTy, OpLoc, SS, HasTemplateArgs))
3053      return ExprError();
3054    return Owned((Expr*) 0);
3055  }
3056
3057  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
3058  // (*Obj).ivar.
3059  if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
3060      (!IsArrow && BaseType->isObjCObjectType())) {
3061    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
3062    ObjCInterfaceDecl *IDecl =
3063      OPT ? OPT->getInterfaceDecl()
3064          : BaseType->getAs<ObjCObjectType>()->getInterface();
3065    if (IDecl) {
3066      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3067
3068      ObjCInterfaceDecl *ClassDeclared;
3069      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
3070
3071      if (!IV) {
3072        // Attempt to correct for typos in ivar names.
3073        LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
3074                         LookupMemberName);
3075        if (CorrectTypo(Res, 0, 0, IDecl, false, CTC_MemberLookup) &&
3076            (IV = Res.getAsSingle<ObjCIvarDecl>())) {
3077          Diag(R.getNameLoc(),
3078               diag::err_typecheck_member_reference_ivar_suggest)
3079            << IDecl->getDeclName() << MemberName << IV->getDeclName()
3080            << FixItHint::CreateReplacement(R.getNameLoc(),
3081                                            IV->getNameAsString());
3082          Diag(IV->getLocation(), diag::note_previous_decl)
3083            << IV->getDeclName();
3084        } else {
3085          Res.clear();
3086          Res.setLookupName(Member);
3087        }
3088      }
3089
3090      if (IV) {
3091        // If the decl being referenced had an error, return an error for this
3092        // sub-expr without emitting another error, in order to avoid cascading
3093        // error cases.
3094        if (IV->isInvalidDecl())
3095          return ExprError();
3096
3097        // Check whether we can reference this field.
3098        if (DiagnoseUseOfDecl(IV, MemberLoc))
3099          return ExprError();
3100        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
3101            IV->getAccessControl() != ObjCIvarDecl::Package) {
3102          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
3103          if (ObjCMethodDecl *MD = getCurMethodDecl())
3104            ClassOfMethodDecl =  MD->getClassInterface();
3105          else if (ObjCImpDecl && getCurFunctionDecl()) {
3106            // Case of a c-function declared inside an objc implementation.
3107            // FIXME: For a c-style function nested inside an objc implementation
3108            // class, there is no implementation context available, so we pass
3109            // down the context as argument to this routine. Ideally, this context
3110            // need be passed down in the AST node and somehow calculated from the
3111            // AST for a function decl.
3112            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
3113            if (ObjCImplementationDecl *IMPD =
3114                dyn_cast<ObjCImplementationDecl>(ImplDecl))
3115              ClassOfMethodDecl = IMPD->getClassInterface();
3116            else if (ObjCCategoryImplDecl* CatImplClass =
3117                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
3118              ClassOfMethodDecl = CatImplClass->getClassInterface();
3119          }
3120
3121          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
3122            if (ClassDeclared != IDecl ||
3123                ClassOfMethodDecl != ClassDeclared)
3124              Diag(MemberLoc, diag::error_private_ivar_access)
3125                << IV->getDeclName();
3126          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
3127            // @protected
3128            Diag(MemberLoc, diag::error_protected_ivar_access)
3129              << IV->getDeclName();
3130        }
3131
3132        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
3133                                                   MemberLoc, BaseExpr,
3134                                                   IsArrow));
3135      }
3136      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
3137                         << IDecl->getDeclName() << MemberName
3138                         << BaseExpr->getSourceRange());
3139    }
3140  }
3141  // Handle properties on 'id' and qualified "id".
3142  if (!IsArrow && (BaseType->isObjCIdType() ||
3143                   BaseType->isObjCQualifiedIdType())) {
3144    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
3145    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3146
3147    // Check protocols on qualified interfaces.
3148    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3149    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
3150      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
3151        // Check the use of this declaration
3152        if (DiagnoseUseOfDecl(PD, MemberLoc))
3153          return ExprError();
3154
3155        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3156                                                       MemberLoc, BaseExpr));
3157      }
3158      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
3159        // Check the use of this method.
3160        if (DiagnoseUseOfDecl(OMD, MemberLoc))
3161          return ExprError();
3162
3163        return Owned(ObjCMessageExpr::Create(Context,
3164                                     OMD->getResultType().getNonReferenceType(),
3165                                             OpLoc, BaseExpr, Sel,
3166                                             OMD, NULL, 0, MemberLoc));
3167      }
3168    }
3169
3170    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3171                       << MemberName << BaseType);
3172  }
3173
3174  // Handle Objective-C property access, which is "Obj.property" where Obj is a
3175  // pointer to a (potentially qualified) interface type.
3176  if (!IsArrow)
3177    if (const ObjCObjectPointerType *OPT =
3178          BaseType->getAsObjCInterfacePointerType())
3179      return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc);
3180
3181  // Handle the following exceptional case (*Obj).isa.
3182  if (!IsArrow &&
3183      BaseType->isObjCObjectType() &&
3184      BaseType->getAs<ObjCObjectType>()->isObjCId() &&
3185      MemberName.getAsIdentifierInfo()->isStr("isa"))
3186    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
3187                                           Context.getObjCClassType()));
3188
3189  // Handle 'field access' to vectors, such as 'V.xx'.
3190  if (BaseType->isExtVectorType()) {
3191    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3192    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
3193    if (ret.isNull())
3194      return ExprError();
3195    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
3196                                                    MemberLoc));
3197  }
3198
3199  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
3200    << BaseType << BaseExpr->getSourceRange();
3201
3202  return ExprError();
3203}
3204
3205/// The main callback when the parser finds something like
3206///   expression . [nested-name-specifier] identifier
3207///   expression -> [nested-name-specifier] identifier
3208/// where 'identifier' encompasses a fairly broad spectrum of
3209/// possibilities, including destructor and operator references.
3210///
3211/// \param OpKind either tok::arrow or tok::period
3212/// \param HasTrailingLParen whether the next token is '(', which
3213///   is used to diagnose mis-uses of special members that can
3214///   only be called
3215/// \param ObjCImpDecl the current ObjC @implementation decl;
3216///   this is an ugly hack around the fact that ObjC @implementations
3217///   aren't properly put in the context chain
3218Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg BaseArg,
3219                                                   SourceLocation OpLoc,
3220                                                   tok::TokenKind OpKind,
3221                                                   CXXScopeSpec &SS,
3222                                                   UnqualifiedId &Id,
3223                                                   DeclPtrTy ObjCImpDecl,
3224                                                   bool HasTrailingLParen) {
3225  if (SS.isSet() && SS.isInvalid())
3226    return ExprError();
3227
3228  TemplateArgumentListInfo TemplateArgsBuffer;
3229
3230  // Decompose the name into its component parts.
3231  DeclarationName Name;
3232  SourceLocation NameLoc;
3233  const TemplateArgumentListInfo *TemplateArgs;
3234  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
3235                         Name, NameLoc, TemplateArgs);
3236
3237  bool IsArrow = (OpKind == tok::arrow);
3238
3239  NamedDecl *FirstQualifierInScope
3240    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
3241                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
3242
3243  // This is a postfix expression, so get rid of ParenListExprs.
3244  BaseArg = MaybeConvertParenListExprToParenExpr(S, move(BaseArg));
3245
3246  Expr *Base = BaseArg.takeAs<Expr>();
3247  OwningExprResult Result(*this);
3248  if (Base->getType()->isDependentType() || Name.isDependentName() ||
3249      isDependentScopeSpecifier(SS)) {
3250    Result = ActOnDependentMemberExpr(ExprArg(*this, Base), Base->getType(),
3251                                      IsArrow, OpLoc,
3252                                      SS, FirstQualifierInScope,
3253                                      Name, NameLoc,
3254                                      TemplateArgs);
3255  } else {
3256    LookupResult R(*this, Name, NameLoc, LookupMemberName);
3257    Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
3258                              SS, ObjCImpDecl, TemplateArgs != 0);
3259
3260    if (Result.isInvalid()) {
3261      Owned(Base);
3262      return ExprError();
3263    }
3264
3265    if (Result.get()) {
3266      // The only way a reference to a destructor can be used is to
3267      // immediately call it, which falls into this case.  If the
3268      // next token is not a '(', produce a diagnostic and build the
3269      // call now.
3270      if (!HasTrailingLParen &&
3271          Id.getKind() == UnqualifiedId::IK_DestructorName)
3272        return DiagnoseDtorReference(NameLoc, move(Result));
3273
3274      return move(Result);
3275    }
3276
3277    Result = BuildMemberReferenceExpr(ExprArg(*this, Base), Base->getType(),
3278                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
3279                                      R, TemplateArgs);
3280  }
3281
3282  return move(Result);
3283}
3284
3285Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3286                                                    FunctionDecl *FD,
3287                                                    ParmVarDecl *Param) {
3288  if (Param->hasUnparsedDefaultArg()) {
3289    Diag (CallLoc,
3290          diag::err_use_of_default_argument_to_function_declared_later) <<
3291      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3292    Diag(UnparsedDefaultArgLocs[Param],
3293          diag::note_default_argument_declared_here);
3294  } else {
3295    if (Param->hasUninstantiatedDefaultArg()) {
3296      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3297
3298      // Instantiate the expression.
3299      MultiLevelTemplateArgumentList ArgList
3300        = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3301
3302      InstantiatingTemplate Inst(*this, CallLoc, Param,
3303                                 ArgList.getInnermost().getFlatArgumentList(),
3304                                 ArgList.getInnermost().flat_size());
3305
3306      OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
3307      if (Result.isInvalid())
3308        return ExprError();
3309
3310      // Check the expression as an initializer for the parameter.
3311      InitializedEntity Entity
3312        = InitializedEntity::InitializeParameter(Param);
3313      InitializationKind Kind
3314        = InitializationKind::CreateCopy(Param->getLocation(),
3315               /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
3316      Expr *ResultE = Result.takeAs<Expr>();
3317
3318      InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3319      Result = InitSeq.Perform(*this, Entity, Kind,
3320                               MultiExprArg(*this, (void**)&ResultE, 1));
3321      if (Result.isInvalid())
3322        return ExprError();
3323
3324      // Build the default argument expression.
3325      return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3326                                             Result.takeAs<Expr>()));
3327    }
3328
3329    // If the default expression creates temporaries, we need to
3330    // push them to the current stack of expression temporaries so they'll
3331    // be properly destroyed.
3332    // FIXME: We should really be rebuilding the default argument with new
3333    // bound temporaries; see the comment in PR5810.
3334    for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i)
3335      ExprTemporaries.push_back(Param->getDefaultArgTemporary(i));
3336  }
3337
3338  // We already type-checked the argument, so we know it works.
3339  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3340}
3341
3342/// ConvertArgumentsForCall - Converts the arguments specified in
3343/// Args/NumArgs to the parameter types of the function FDecl with
3344/// function prototype Proto. Call is the call expression itself, and
3345/// Fn is the function expression. For a C++ member function, this
3346/// routine does not attempt to convert the object argument. Returns
3347/// true if the call is ill-formed.
3348bool
3349Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3350                              FunctionDecl *FDecl,
3351                              const FunctionProtoType *Proto,
3352                              Expr **Args, unsigned NumArgs,
3353                              SourceLocation RParenLoc) {
3354  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3355  // assignment, to the types of the corresponding parameter, ...
3356  unsigned NumArgsInProto = Proto->getNumArgs();
3357  bool Invalid = false;
3358
3359  // If too few arguments are available (and we don't have default
3360  // arguments for the remaining parameters), don't make the call.
3361  if (NumArgs < NumArgsInProto) {
3362    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
3363      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3364        << Fn->getType()->isBlockPointerType()
3365        << NumArgsInProto << NumArgs << Fn->getSourceRange();
3366    Call->setNumArgs(Context, NumArgsInProto);
3367  }
3368
3369  // If too many are passed and not variadic, error on the extras and drop
3370  // them.
3371  if (NumArgs > NumArgsInProto) {
3372    if (!Proto->isVariadic()) {
3373      Diag(Args[NumArgsInProto]->getLocStart(),
3374           diag::err_typecheck_call_too_many_args)
3375        << Fn->getType()->isBlockPointerType()
3376        << NumArgsInProto << NumArgs << Fn->getSourceRange()
3377        << SourceRange(Args[NumArgsInProto]->getLocStart(),
3378                       Args[NumArgs-1]->getLocEnd());
3379      // This deletes the extra arguments.
3380      Call->setNumArgs(Context, NumArgsInProto);
3381      return true;
3382    }
3383  }
3384  llvm::SmallVector<Expr *, 8> AllArgs;
3385  VariadicCallType CallType =
3386    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3387  if (Fn->getType()->isBlockPointerType())
3388    CallType = VariadicBlock; // Block
3389  else if (isa<MemberExpr>(Fn))
3390    CallType = VariadicMethod;
3391  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
3392                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3393  if (Invalid)
3394    return true;
3395  unsigned TotalNumArgs = AllArgs.size();
3396  for (unsigned i = 0; i < TotalNumArgs; ++i)
3397    Call->setArg(i, AllArgs[i]);
3398
3399  return false;
3400}
3401
3402bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3403                                  FunctionDecl *FDecl,
3404                                  const FunctionProtoType *Proto,
3405                                  unsigned FirstProtoArg,
3406                                  Expr **Args, unsigned NumArgs,
3407                                  llvm::SmallVector<Expr *, 8> &AllArgs,
3408                                  VariadicCallType CallType) {
3409  unsigned NumArgsInProto = Proto->getNumArgs();
3410  unsigned NumArgsToCheck = NumArgs;
3411  bool Invalid = false;
3412  if (NumArgs != NumArgsInProto)
3413    // Use default arguments for missing arguments
3414    NumArgsToCheck = NumArgsInProto;
3415  unsigned ArgIx = 0;
3416  // Continue to check argument types (even if we have too few/many args).
3417  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3418    QualType ProtoArgType = Proto->getArgType(i);
3419
3420    Expr *Arg;
3421    if (ArgIx < NumArgs) {
3422      Arg = Args[ArgIx++];
3423
3424      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3425                              ProtoArgType,
3426                              PDiag(diag::err_call_incomplete_argument)
3427                              << Arg->getSourceRange()))
3428        return true;
3429
3430      // Pass the argument
3431      ParmVarDecl *Param = 0;
3432      if (FDecl && i < FDecl->getNumParams())
3433        Param = FDecl->getParamDecl(i);
3434
3435
3436      InitializedEntity Entity =
3437        Param? InitializedEntity::InitializeParameter(Param)
3438             : InitializedEntity::InitializeParameter(ProtoArgType);
3439      OwningExprResult ArgE = PerformCopyInitialization(Entity,
3440                                                        SourceLocation(),
3441                                                        Owned(Arg));
3442      if (ArgE.isInvalid())
3443        return true;
3444
3445      Arg = ArgE.takeAs<Expr>();
3446    } else {
3447      ParmVarDecl *Param = FDecl->getParamDecl(i);
3448
3449      OwningExprResult ArgExpr =
3450        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3451      if (ArgExpr.isInvalid())
3452        return true;
3453
3454      Arg = ArgExpr.takeAs<Expr>();
3455    }
3456    AllArgs.push_back(Arg);
3457  }
3458
3459  // If this is a variadic call, handle args passed through "...".
3460  if (CallType != VariadicDoesNotApply) {
3461    // Promote the arguments (C99 6.5.2.2p7).
3462    for (unsigned i = ArgIx; i != NumArgs; ++i) {
3463      Expr *Arg = Args[i];
3464      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType, FDecl);
3465      AllArgs.push_back(Arg);
3466    }
3467  }
3468  return Invalid;
3469}
3470
3471/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3472/// This provides the location of the left/right parens and a list of comma
3473/// locations.
3474Action::OwningExprResult
3475Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
3476                    MultiExprArg args,
3477                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
3478  unsigned NumArgs = args.size();
3479
3480  // Since this might be a postfix expression, get rid of ParenListExprs.
3481  fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
3482
3483  Expr *Fn = fn.takeAs<Expr>();
3484  Expr **Args = reinterpret_cast<Expr**>(args.release());
3485  assert(Fn && "no function call expression");
3486
3487  if (getLangOptions().CPlusPlus) {
3488    // If this is a pseudo-destructor expression, build the call immediately.
3489    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3490      if (NumArgs > 0) {
3491        // Pseudo-destructor calls should not have any arguments.
3492        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3493          << FixItHint::CreateRemoval(
3494                                    SourceRange(Args[0]->getLocStart(),
3495                                                Args[NumArgs-1]->getLocEnd()));
3496
3497        for (unsigned I = 0; I != NumArgs; ++I)
3498          Args[I]->Destroy(Context);
3499
3500        NumArgs = 0;
3501      }
3502
3503      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3504                                          RParenLoc));
3505    }
3506
3507    // Determine whether this is a dependent call inside a C++ template,
3508    // in which case we won't do any semantic analysis now.
3509    // FIXME: Will need to cache the results of name lookup (including ADL) in
3510    // Fn.
3511    bool Dependent = false;
3512    if (Fn->isTypeDependent())
3513      Dependent = true;
3514    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
3515      Dependent = true;
3516
3517    if (Dependent)
3518      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3519                                          Context.DependentTy, RParenLoc));
3520
3521    // Determine whether this is a call to an object (C++ [over.call.object]).
3522    if (Fn->getType()->isRecordType())
3523      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3524                                                CommaLocs, RParenLoc));
3525
3526    Expr *NakedFn = Fn->IgnoreParens();
3527
3528    // Determine whether this is a call to an unresolved member function.
3529    if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
3530      // If lookup was unresolved but not dependent (i.e. didn't find
3531      // an unresolved using declaration), it has to be an overloaded
3532      // function set, which means it must contain either multiple
3533      // declarations (all methods or method templates) or a single
3534      // method template.
3535      assert((MemE->getNumDecls() > 1) ||
3536             isa<FunctionTemplateDecl>(
3537                                 (*MemE->decls_begin())->getUnderlyingDecl()));
3538      (void)MemE;
3539
3540      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3541                                       CommaLocs, RParenLoc);
3542    }
3543
3544    // Determine whether this is a call to a member function.
3545    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
3546      NamedDecl *MemDecl = MemExpr->getMemberDecl();
3547      if (isa<CXXMethodDecl>(MemDecl))
3548        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3549                                         CommaLocs, RParenLoc);
3550    }
3551
3552    // Determine whether this is a call to a pointer-to-member function.
3553    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
3554      if (BO->getOpcode() == BinaryOperator::PtrMemD ||
3555          BO->getOpcode() == BinaryOperator::PtrMemI) {
3556        if (const FunctionProtoType *FPT
3557                                = BO->getType()->getAs<FunctionProtoType>()) {
3558          QualType ResultTy = FPT->getResultType().getNonReferenceType();
3559
3560          ExprOwningPtr<CXXMemberCallExpr>
3561            TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
3562                                                          NumArgs, ResultTy,
3563                                                          RParenLoc));
3564
3565          if (CheckCallReturnType(FPT->getResultType(),
3566                                  BO->getRHS()->getSourceRange().getBegin(),
3567                                  TheCall.get(), 0))
3568            return ExprError();
3569
3570          if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
3571                                      RParenLoc))
3572            return ExprError();
3573
3574          return Owned(MaybeBindToTemporary(TheCall.release()).release());
3575        }
3576        return ExprError(Diag(Fn->getLocStart(),
3577                              diag::err_typecheck_call_not_function)
3578                              << Fn->getType() << Fn->getSourceRange());
3579      }
3580    }
3581  }
3582
3583  // If we're directly calling a function, get the appropriate declaration.
3584  // Also, in C++, keep track of whether we should perform argument-dependent
3585  // lookup and whether there were any explicitly-specified template arguments.
3586
3587  Expr *NakedFn = Fn->IgnoreParens();
3588  if (isa<UnresolvedLookupExpr>(NakedFn)) {
3589    UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
3590    return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
3591                                   CommaLocs, RParenLoc);
3592  }
3593
3594  NamedDecl *NDecl = 0;
3595  if (isa<DeclRefExpr>(NakedFn))
3596    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3597
3598  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
3599}
3600
3601/// BuildResolvedCallExpr - Build a call to a resolved expression,
3602/// i.e. an expression not of \p OverloadTy.  The expression should
3603/// unary-convert to an expression of function-pointer or
3604/// block-pointer type.
3605///
3606/// \param NDecl the declaration being called, if available
3607Sema::OwningExprResult
3608Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3609                            SourceLocation LParenLoc,
3610                            Expr **Args, unsigned NumArgs,
3611                            SourceLocation RParenLoc) {
3612  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3613
3614  // Promote the function operand.
3615  UsualUnaryConversions(Fn);
3616
3617  // Make the call expr early, before semantic checks.  This guarantees cleanup
3618  // of arguments and function on error.
3619  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
3620                                                               Args, NumArgs,
3621                                                               Context.BoolTy,
3622                                                               RParenLoc));
3623
3624  const FunctionType *FuncT;
3625  if (!Fn->getType()->isBlockPointerType()) {
3626    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3627    // have type pointer to function".
3628    const PointerType *PT = Fn->getType()->getAs<PointerType>();
3629    if (PT == 0)
3630      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3631        << Fn->getType() << Fn->getSourceRange());
3632    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3633  } else { // This is a block call.
3634    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
3635                getAs<FunctionType>();
3636  }
3637  if (FuncT == 0)
3638    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3639      << Fn->getType() << Fn->getSourceRange());
3640
3641  // Check for a valid return type
3642  if (CheckCallReturnType(FuncT->getResultType(),
3643                          Fn->getSourceRange().getBegin(), TheCall.get(),
3644                          FDecl))
3645    return ExprError();
3646
3647  // We know the result type of the call, set it.
3648  TheCall->setType(FuncT->getResultType().getNonReferenceType());
3649
3650  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3651    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
3652                                RParenLoc))
3653      return ExprError();
3654  } else {
3655    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3656
3657    if (FDecl) {
3658      // Check if we have too few/too many template arguments, based
3659      // on our knowledge of the function definition.
3660      const FunctionDecl *Def = 0;
3661      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
3662        const FunctionProtoType *Proto =
3663            Def->getType()->getAs<FunctionProtoType>();
3664        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
3665          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3666            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3667        }
3668      }
3669    }
3670
3671    // Promote the arguments (C99 6.5.2.2p6).
3672    for (unsigned i = 0; i != NumArgs; i++) {
3673      Expr *Arg = Args[i];
3674      DefaultArgumentPromotion(Arg);
3675      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3676                              Arg->getType(),
3677                              PDiag(diag::err_call_incomplete_argument)
3678                                << Arg->getSourceRange()))
3679        return ExprError();
3680      TheCall->setArg(i, Arg);
3681    }
3682  }
3683
3684  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3685    if (!Method->isStatic())
3686      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3687        << Fn->getSourceRange());
3688
3689  // Check for sentinels
3690  if (NDecl)
3691    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3692
3693  // Do special checking on direct calls to functions.
3694  if (FDecl) {
3695    if (CheckFunctionCall(FDecl, TheCall.get()))
3696      return ExprError();
3697
3698    if (unsigned BuiltinID = FDecl->getBuiltinID())
3699      return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
3700  } else if (NDecl) {
3701    if (CheckBlockCall(NDecl, TheCall.get()))
3702      return ExprError();
3703  }
3704
3705  return MaybeBindToTemporary(TheCall.take());
3706}
3707
3708Action::OwningExprResult
3709Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
3710                           SourceLocation RParenLoc, ExprArg InitExpr) {
3711  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3712  // FIXME: put back this assert when initializers are worked out.
3713  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3714
3715  TypeSourceInfo *TInfo;
3716  QualType literalType = GetTypeFromParser(Ty, &TInfo);
3717  if (!TInfo)
3718    TInfo = Context.getTrivialTypeSourceInfo(literalType);
3719
3720  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, move(InitExpr));
3721}
3722
3723Action::OwningExprResult
3724Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3725                               SourceLocation RParenLoc, ExprArg InitExpr) {
3726  QualType literalType = TInfo->getType();
3727  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
3728
3729  if (literalType->isArrayType()) {
3730    if (literalType->isVariableArrayType())
3731      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3732        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3733  } else if (!literalType->isDependentType() &&
3734             RequireCompleteType(LParenLoc, literalType,
3735                      PDiag(diag::err_typecheck_decl_incomplete_type)
3736                        << SourceRange(LParenLoc,
3737                                       literalExpr->getSourceRange().getEnd())))
3738    return ExprError();
3739
3740  InitializedEntity Entity
3741    = InitializedEntity::InitializeTemporary(literalType);
3742  InitializationKind Kind
3743    = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
3744                                     /*IsCStyleCast=*/true);
3745  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
3746  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3747                                   MultiExprArg(*this, (void**)&literalExpr, 1),
3748                                            &literalType);
3749  if (Result.isInvalid())
3750    return ExprError();
3751  InitExpr.release();
3752  literalExpr = static_cast<Expr*>(Result.get());
3753
3754  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3755  if (isFileScope) { // 6.5.2.5p3
3756    if (CheckForConstantInitializer(literalExpr, literalType))
3757      return ExprError();
3758  }
3759
3760  Result.release();
3761
3762  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
3763                                                 literalExpr, isFileScope));
3764}
3765
3766Action::OwningExprResult
3767Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3768                    SourceLocation RBraceLoc) {
3769  unsigned NumInit = initlist.size();
3770  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
3771
3772  // Semantic analysis for initializers is done by ActOnDeclarator() and
3773  // CheckInitializer() - it requires knowledge of the object being intialized.
3774
3775  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
3776                                               NumInit, RBraceLoc);
3777  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3778  return Owned(E);
3779}
3780
3781static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
3782                                            QualType SrcTy, QualType DestTy) {
3783  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
3784    return CastExpr::CK_NoOp;
3785
3786  if (SrcTy->hasPointerRepresentation()) {
3787    if (DestTy->hasPointerRepresentation())
3788      return DestTy->isObjCObjectPointerType() ?
3789                CastExpr::CK_AnyPointerToObjCPointerCast :
3790                CastExpr::CK_BitCast;
3791    if (DestTy->isIntegerType())
3792      return CastExpr::CK_PointerToIntegral;
3793  }
3794
3795  if (SrcTy->isIntegerType()) {
3796    if (DestTy->isIntegerType())
3797      return CastExpr::CK_IntegralCast;
3798    if (DestTy->hasPointerRepresentation())
3799      return CastExpr::CK_IntegralToPointer;
3800    if (DestTy->isRealFloatingType())
3801      return CastExpr::CK_IntegralToFloating;
3802  }
3803
3804  if (SrcTy->isRealFloatingType()) {
3805    if (DestTy->isRealFloatingType())
3806      return CastExpr::CK_FloatingCast;
3807    if (DestTy->isIntegerType())
3808      return CastExpr::CK_FloatingToIntegral;
3809  }
3810
3811  // FIXME: Assert here.
3812  // assert(false && "Unhandled cast combination!");
3813  return CastExpr::CK_Unknown;
3814}
3815
3816/// CheckCastTypes - Check type constraints for casting between types.
3817bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3818                          CastExpr::CastKind& Kind,
3819                          CXXBaseSpecifierArray &BasePath,
3820                          bool FunctionalStyle) {
3821  if (getLangOptions().CPlusPlus)
3822    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, BasePath,
3823                              FunctionalStyle);
3824
3825  DefaultFunctionArrayLvalueConversion(castExpr);
3826
3827  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3828  // type needs to be scalar.
3829  if (castType->isVoidType()) {
3830    // Cast to void allows any expr type.
3831    Kind = CastExpr::CK_ToVoid;
3832    return false;
3833  }
3834
3835  if (!castType->isScalarType() && !castType->isVectorType()) {
3836    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
3837        (castType->isStructureType() || castType->isUnionType())) {
3838      // GCC struct/union extension: allow cast to self.
3839      // FIXME: Check that the cast destination type is complete.
3840      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3841        << castType << castExpr->getSourceRange();
3842      Kind = CastExpr::CK_NoOp;
3843      return false;
3844    }
3845
3846    if (castType->isUnionType()) {
3847      // GCC cast to union extension
3848      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3849      RecordDecl::field_iterator Field, FieldEnd;
3850      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3851           Field != FieldEnd; ++Field) {
3852        if (Context.hasSameUnqualifiedType(Field->getType(),
3853                                           castExpr->getType())) {
3854          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3855            << castExpr->getSourceRange();
3856          break;
3857        }
3858      }
3859      if (Field == FieldEnd)
3860        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3861          << castExpr->getType() << castExpr->getSourceRange();
3862      Kind = CastExpr::CK_ToUnion;
3863      return false;
3864    }
3865
3866    // Reject any other conversions to non-scalar types.
3867    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3868      << castType << castExpr->getSourceRange();
3869  }
3870
3871  if (!castExpr->getType()->isScalarType() &&
3872      !castExpr->getType()->isVectorType()) {
3873    return Diag(castExpr->getLocStart(),
3874                diag::err_typecheck_expect_scalar_operand)
3875      << castExpr->getType() << castExpr->getSourceRange();
3876  }
3877
3878  if (castType->isExtVectorType())
3879    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
3880
3881  if (castType->isVectorType())
3882    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
3883  if (castExpr->getType()->isVectorType())
3884    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
3885
3886  if (isa<ObjCSelectorExpr>(castExpr))
3887    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3888
3889  if (!castType->isArithmeticType()) {
3890    QualType castExprType = castExpr->getType();
3891    if (!castExprType->isIntegralType(Context) &&
3892        castExprType->isArithmeticType())
3893      return Diag(castExpr->getLocStart(),
3894                  diag::err_cast_pointer_from_non_pointer_int)
3895        << castExprType << castExpr->getSourceRange();
3896  } else if (!castExpr->getType()->isArithmeticType()) {
3897    if (!castType->isIntegralType(Context) && castType->isArithmeticType())
3898      return Diag(castExpr->getLocStart(),
3899                  diag::err_cast_pointer_to_non_pointer_int)
3900        << castType << castExpr->getSourceRange();
3901  }
3902
3903  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
3904  return false;
3905}
3906
3907bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
3908                           CastExpr::CastKind &Kind) {
3909  assert(VectorTy->isVectorType() && "Not a vector type!");
3910
3911  if (Ty->isVectorType() || Ty->isIntegerType()) {
3912    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
3913      return Diag(R.getBegin(),
3914                  Ty->isVectorType() ?
3915                  diag::err_invalid_conversion_between_vectors :
3916                  diag::err_invalid_conversion_between_vector_and_integer)
3917        << VectorTy << Ty << R;
3918  } else
3919    return Diag(R.getBegin(),
3920                diag::err_invalid_conversion_between_vector_and_scalar)
3921      << VectorTy << Ty << R;
3922
3923  Kind = CastExpr::CK_BitCast;
3924  return false;
3925}
3926
3927bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
3928                              CastExpr::CastKind &Kind) {
3929  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
3930
3931  QualType SrcTy = CastExpr->getType();
3932
3933  // If SrcTy is a VectorType, the total size must match to explicitly cast to
3934  // an ExtVectorType.
3935  if (SrcTy->isVectorType()) {
3936    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
3937      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
3938        << DestTy << SrcTy << R;
3939    Kind = CastExpr::CK_BitCast;
3940    return false;
3941  }
3942
3943  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
3944  // conversion will take place first from scalar to elt type, and then
3945  // splat from elt type to vector.
3946  if (SrcTy->isPointerType())
3947    return Diag(R.getBegin(),
3948                diag::err_invalid_conversion_between_vector_and_scalar)
3949      << DestTy << SrcTy << R;
3950
3951  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
3952  ImpCastExprToType(CastExpr, DestElemTy,
3953                    getScalarCastKind(Context, SrcTy, DestElemTy));
3954
3955  Kind = CastExpr::CK_VectorSplat;
3956  return false;
3957}
3958
3959Action::OwningExprResult
3960Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
3961                    SourceLocation RParenLoc, ExprArg Op) {
3962  assert((Ty != 0) && (Op.get() != 0) &&
3963         "ActOnCastExpr(): missing type or expr");
3964
3965  TypeSourceInfo *castTInfo;
3966  QualType castType = GetTypeFromParser(Ty, &castTInfo);
3967  if (!castTInfo)
3968    castTInfo = Context.getTrivialTypeSourceInfo(castType);
3969
3970  // If the Expr being casted is a ParenListExpr, handle it specially.
3971  Expr *castExpr = (Expr *)Op.get();
3972  if (isa<ParenListExpr>(castExpr))
3973    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),
3974                                    castTInfo);
3975
3976  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, move(Op));
3977}
3978
3979Action::OwningExprResult
3980Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
3981                          SourceLocation RParenLoc, ExprArg Op) {
3982  Expr *castExpr = static_cast<Expr*>(Op.get());
3983
3984  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
3985  CXXBaseSpecifierArray BasePath;
3986  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
3987                     Kind, BasePath))
3988    return ExprError();
3989
3990  Op.release();
3991  return Owned(new (Context) CStyleCastExpr(Ty->getType().getNonReferenceType(),
3992                                            Kind, castExpr, BasePath, Ty,
3993                                            LParenLoc, RParenLoc));
3994}
3995
3996/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
3997/// of comma binary operators.
3998Action::OwningExprResult
3999Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
4000  Expr *expr = EA.takeAs<Expr>();
4001  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
4002  if (!E)
4003    return Owned(expr);
4004
4005  OwningExprResult Result(*this, E->getExpr(0));
4006
4007  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4008    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
4009                        Owned(E->getExpr(i)));
4010
4011  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
4012}
4013
4014Action::OwningExprResult
4015Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
4016                               SourceLocation RParenLoc, ExprArg Op,
4017                               TypeSourceInfo *TInfo) {
4018  ParenListExpr *PE = (ParenListExpr *)Op.get();
4019  QualType Ty = TInfo->getType();
4020
4021  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
4022  // then handle it as such.
4023  if (getLangOptions().AltiVec && Ty->isVectorType()) {
4024    if (PE->getNumExprs() == 0) {
4025      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
4026      return ExprError();
4027    }
4028
4029    llvm::SmallVector<Expr *, 8> initExprs;
4030    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
4031      initExprs.push_back(PE->getExpr(i));
4032
4033    // FIXME: This means that pretty-printing the final AST will produce curly
4034    // braces instead of the original commas.
4035    Op.release();
4036    InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc,
4037                                                 &initExprs[0],
4038                                                 initExprs.size(), RParenLoc);
4039    E->setType(Ty);
4040    return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, Owned(E));
4041  } else {
4042    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4043    // sequence of BinOp comma operators.
4044    Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
4045    return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, move(Op));
4046  }
4047}
4048
4049Action::OwningExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
4050                                                  SourceLocation R,
4051                                                  MultiExprArg Val,
4052                                                  TypeTy *TypeOfCast) {
4053  unsigned nexprs = Val.size();
4054  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4055  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4056  Expr *expr;
4057  if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
4058    expr = new (Context) ParenExpr(L, R, exprs[0]);
4059  else
4060    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4061  return Owned(expr);
4062}
4063
4064/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
4065/// In that case, lhs = cond.
4066/// C99 6.5.15
4067QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
4068                                        SourceLocation QuestionLoc) {
4069  // C++ is sufficiently different to merit its own checker.
4070  if (getLangOptions().CPlusPlus)
4071    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
4072
4073  UsualUnaryConversions(Cond);
4074  UsualUnaryConversions(LHS);
4075  UsualUnaryConversions(RHS);
4076  QualType CondTy = Cond->getType();
4077  QualType LHSTy = LHS->getType();
4078  QualType RHSTy = RHS->getType();
4079
4080  // first, check the condition.
4081  if (!CondTy->isScalarType()) { // C99 6.5.15p2
4082    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4083      << CondTy;
4084    return QualType();
4085  }
4086
4087  // Now check the two expressions.
4088  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4089    return CheckVectorOperands(QuestionLoc, LHS, RHS);
4090
4091  // If both operands have arithmetic type, do the usual arithmetic conversions
4092  // to find a common type: C99 6.5.15p3,5.
4093  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4094    UsualArithmeticConversions(LHS, RHS);
4095    return LHS->getType();
4096  }
4097
4098  // If both operands are the same structure or union type, the result is that
4099  // type.
4100  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4101    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4102      if (LHSRT->getDecl() == RHSRT->getDecl())
4103        // "If both the operands have structure or union type, the result has
4104        // that type."  This implies that CV qualifiers are dropped.
4105        return LHSTy.getUnqualifiedType();
4106    // FIXME: Type of conditional expression must be complete in C mode.
4107  }
4108
4109  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4110  // The following || allows only one side to be void (a GCC-ism).
4111  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4112    if (!LHSTy->isVoidType())
4113      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4114        << RHS->getSourceRange();
4115    if (!RHSTy->isVoidType())
4116      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4117        << LHS->getSourceRange();
4118    ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
4119    ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
4120    return Context.VoidTy;
4121  }
4122  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4123  // the type of the other operand."
4124  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
4125      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4126    // promote the null to a pointer.
4127    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
4128    return LHSTy;
4129  }
4130  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
4131      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4132    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
4133    return RHSTy;
4134  }
4135
4136  // All objective-c pointer type analysis is done here.
4137  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4138                                                        QuestionLoc);
4139  if (!compositeType.isNull())
4140    return compositeType;
4141
4142
4143  // Handle block pointer types.
4144  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
4145    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4146      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4147        QualType destType = Context.getPointerType(Context.VoidTy);
4148        ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4149        ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4150        return destType;
4151      }
4152      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4153      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4154      return QualType();
4155    }
4156    // We have 2 block pointer types.
4157    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4158      // Two identical block pointer types are always compatible.
4159      return LHSTy;
4160    }
4161    // The block pointer types aren't identical, continue checking.
4162    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
4163    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
4164
4165    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4166                                    rhptee.getUnqualifiedType())) {
4167      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4168      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4169      // In this situation, we assume void* type. No especially good
4170      // reason, but this is what gcc does, and we do have to pick
4171      // to get a consistent AST.
4172      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4173      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4174      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4175      return incompatTy;
4176    }
4177    // The block pointer types are compatible.
4178    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4179    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4180    return LHSTy;
4181  }
4182
4183  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4184  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4185    // get the "pointed to" types
4186    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4187    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4188
4189    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4190    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4191      // Figure out necessary qualifiers (C99 6.5.15p6)
4192      QualType destPointee
4193        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4194      QualType destType = Context.getPointerType(destPointee);
4195      // Add qualifiers if necessary.
4196      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4197      // Promote to void*.
4198      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4199      return destType;
4200    }
4201    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4202      QualType destPointee
4203        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4204      QualType destType = Context.getPointerType(destPointee);
4205      // Add qualifiers if necessary.
4206      ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4207      // Promote to void*.
4208      ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4209      return destType;
4210    }
4211
4212    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4213      // Two identical pointer types are always compatible.
4214      return LHSTy;
4215    }
4216    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4217                                    rhptee.getUnqualifiedType())) {
4218      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4219        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4220      // In this situation, we assume void* type. No especially good
4221      // reason, but this is what gcc does, and we do have to pick
4222      // to get a consistent AST.
4223      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4224      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4225      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4226      return incompatTy;
4227    }
4228    // The pointer types are compatible.
4229    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
4230    // differently qualified versions of compatible types, the result type is
4231    // a pointer to an appropriately qualified version of the *composite*
4232    // type.
4233    // FIXME: Need to calculate the composite type.
4234    // FIXME: Need to add qualifiers
4235    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4236    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4237    return LHSTy;
4238  }
4239
4240  // GCC compatibility: soften pointer/integer mismatch.
4241  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
4242    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4243      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4244    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
4245    return RHSTy;
4246  }
4247  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
4248    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4249      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4250    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
4251    return LHSTy;
4252  }
4253
4254  // Otherwise, the operands are not compatible.
4255  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4256    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4257  return QualType();
4258}
4259
4260/// FindCompositeObjCPointerType - Helper method to find composite type of
4261/// two objective-c pointer types of the two input expressions.
4262QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
4263                                        SourceLocation QuestionLoc) {
4264  QualType LHSTy = LHS->getType();
4265  QualType RHSTy = RHS->getType();
4266
4267  // Handle things like Class and struct objc_class*.  Here we case the result
4268  // to the pseudo-builtin, because that will be implicitly cast back to the
4269  // redefinition type if an attempt is made to access its fields.
4270  if (LHSTy->isObjCClassType() &&
4271      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4272    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4273    return LHSTy;
4274  }
4275  if (RHSTy->isObjCClassType() &&
4276      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4277    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4278    return RHSTy;
4279  }
4280  // And the same for struct objc_object* / id
4281  if (LHSTy->isObjCIdType() &&
4282      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4283    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4284    return LHSTy;
4285  }
4286  if (RHSTy->isObjCIdType() &&
4287      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4288    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4289    return RHSTy;
4290  }
4291  // And the same for struct objc_selector* / SEL
4292  if (Context.isObjCSelType(LHSTy) &&
4293      (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4294    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4295    return LHSTy;
4296  }
4297  if (Context.isObjCSelType(RHSTy) &&
4298      (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4299    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4300    return RHSTy;
4301  }
4302  // Check constraints for Objective-C object pointers types.
4303  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4304
4305    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4306      // Two identical object pointer types are always compatible.
4307      return LHSTy;
4308    }
4309    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
4310    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
4311    QualType compositeType = LHSTy;
4312
4313    // If both operands are interfaces and either operand can be
4314    // assigned to the other, use that type as the composite
4315    // type. This allows
4316    //   xxx ? (A*) a : (B*) b
4317    // where B is a subclass of A.
4318    //
4319    // Additionally, as for assignment, if either type is 'id'
4320    // allow silent coercion. Finally, if the types are
4321    // incompatible then make sure to use 'id' as the composite
4322    // type so the result is acceptable for sending messages to.
4323
4324    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4325    // It could return the composite type.
4326    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4327      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4328    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4329      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4330    } else if ((LHSTy->isObjCQualifiedIdType() ||
4331                RHSTy->isObjCQualifiedIdType()) &&
4332               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4333      // Need to handle "id<xx>" explicitly.
4334      // GCC allows qualified id and any Objective-C type to devolve to
4335      // id. Currently localizing to here until clear this should be
4336      // part of ObjCQualifiedIdTypesAreCompatible.
4337      compositeType = Context.getObjCIdType();
4338    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4339      compositeType = Context.getObjCIdType();
4340    } else if (!(compositeType =
4341                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4342      ;
4343    else {
4344      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4345      << LHSTy << RHSTy
4346      << LHS->getSourceRange() << RHS->getSourceRange();
4347      QualType incompatTy = Context.getObjCIdType();
4348      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4349      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4350      return incompatTy;
4351    }
4352    // The object pointer types are compatible.
4353    ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
4354    ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
4355    return compositeType;
4356  }
4357  // Check Objective-C object pointer types and 'void *'
4358  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4359    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4360    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4361    QualType destPointee
4362    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4363    QualType destType = Context.getPointerType(destPointee);
4364    // Add qualifiers if necessary.
4365    ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4366    // Promote to void*.
4367    ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4368    return destType;
4369  }
4370  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4371    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4372    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4373    QualType destPointee
4374    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4375    QualType destType = Context.getPointerType(destPointee);
4376    // Add qualifiers if necessary.
4377    ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4378    // Promote to void*.
4379    ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4380    return destType;
4381  }
4382  return QualType();
4383}
4384
4385/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
4386/// in the case of a the GNU conditional expr extension.
4387Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
4388                                                  SourceLocation ColonLoc,
4389                                                  ExprArg Cond, ExprArg LHS,
4390                                                  ExprArg RHS) {
4391  Expr *CondExpr = (Expr *) Cond.get();
4392  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
4393
4394  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
4395  // was the condition.
4396  bool isLHSNull = LHSExpr == 0;
4397  if (isLHSNull)
4398    LHSExpr = CondExpr;
4399
4400  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
4401                                             RHSExpr, QuestionLoc);
4402  if (result.isNull())
4403    return ExprError();
4404
4405  Cond.release();
4406  LHS.release();
4407  RHS.release();
4408  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
4409                                                 isLHSNull ? 0 : LHSExpr,
4410                                                 ColonLoc, RHSExpr, result));
4411}
4412
4413// CheckPointerTypesForAssignment - This is a very tricky routine (despite
4414// being closely modeled after the C99 spec:-). The odd characteristic of this
4415// routine is it effectively iqnores the qualifiers on the top level pointee.
4416// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
4417// FIXME: add a couple examples in this comment.
4418Sema::AssignConvertType
4419Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4420  QualType lhptee, rhptee;
4421
4422  if ((lhsType->isObjCClassType() &&
4423       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4424     (rhsType->isObjCClassType() &&
4425       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4426      return Compatible;
4427  }
4428
4429  // get the "pointed to" type (ignoring qualifiers at the top level)
4430  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
4431  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
4432
4433  // make sure we operate on the canonical type
4434  lhptee = Context.getCanonicalType(lhptee);
4435  rhptee = Context.getCanonicalType(rhptee);
4436
4437  AssignConvertType ConvTy = Compatible;
4438
4439  // C99 6.5.16.1p1: This following citation is common to constraints
4440  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
4441  // qualifiers of the type *pointed to* by the right;
4442  // FIXME: Handle ExtQualType
4443  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4444    ConvTy = CompatiblePointerDiscardsQualifiers;
4445
4446  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
4447  // incomplete type and the other is a pointer to a qualified or unqualified
4448  // version of void...
4449  if (lhptee->isVoidType()) {
4450    if (rhptee->isIncompleteOrObjectType())
4451      return ConvTy;
4452
4453    // As an extension, we allow cast to/from void* to function pointer.
4454    assert(rhptee->isFunctionType());
4455    return FunctionVoidPointer;
4456  }
4457
4458  if (rhptee->isVoidType()) {
4459    if (lhptee->isIncompleteOrObjectType())
4460      return ConvTy;
4461
4462    // As an extension, we allow cast to/from void* to function pointer.
4463    assert(lhptee->isFunctionType());
4464    return FunctionVoidPointer;
4465  }
4466  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
4467  // unqualified versions of compatible types, ...
4468  lhptee = lhptee.getUnqualifiedType();
4469  rhptee = rhptee.getUnqualifiedType();
4470  if (!Context.typesAreCompatible(lhptee, rhptee)) {
4471    // Check if the pointee types are compatible ignoring the sign.
4472    // We explicitly check for char so that we catch "char" vs
4473    // "unsigned char" on systems where "char" is unsigned.
4474    if (lhptee->isCharType())
4475      lhptee = Context.UnsignedCharTy;
4476    else if (lhptee->isSignedIntegerType())
4477      lhptee = Context.getCorrespondingUnsignedType(lhptee);
4478
4479    if (rhptee->isCharType())
4480      rhptee = Context.UnsignedCharTy;
4481    else if (rhptee->isSignedIntegerType())
4482      rhptee = Context.getCorrespondingUnsignedType(rhptee);
4483
4484    if (lhptee == rhptee) {
4485      // Types are compatible ignoring the sign. Qualifier incompatibility
4486      // takes priority over sign incompatibility because the sign
4487      // warning can be disabled.
4488      if (ConvTy != Compatible)
4489        return ConvTy;
4490      return IncompatiblePointerSign;
4491    }
4492
4493    // If we are a multi-level pointer, it's possible that our issue is simply
4494    // one of qualification - e.g. char ** -> const char ** is not allowed. If
4495    // the eventual target type is the same and the pointers have the same
4496    // level of indirection, this must be the issue.
4497    if (lhptee->isPointerType() && rhptee->isPointerType()) {
4498      do {
4499        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
4500        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
4501
4502        lhptee = Context.getCanonicalType(lhptee);
4503        rhptee = Context.getCanonicalType(rhptee);
4504      } while (lhptee->isPointerType() && rhptee->isPointerType());
4505
4506      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
4507        return IncompatibleNestedPointerQualifiers;
4508    }
4509
4510    // General pointer incompatibility takes priority over qualifiers.
4511    return IncompatiblePointer;
4512  }
4513  return ConvTy;
4514}
4515
4516/// CheckBlockPointerTypesForAssignment - This routine determines whether two
4517/// block pointer types are compatible or whether a block and normal pointer
4518/// are compatible. It is more restrict than comparing two function pointer
4519// types.
4520Sema::AssignConvertType
4521Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
4522                                          QualType rhsType) {
4523  QualType lhptee, rhptee;
4524
4525  // get the "pointed to" type (ignoring qualifiers at the top level)
4526  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
4527  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
4528
4529  // make sure we operate on the canonical type
4530  lhptee = Context.getCanonicalType(lhptee);
4531  rhptee = Context.getCanonicalType(rhptee);
4532
4533  AssignConvertType ConvTy = Compatible;
4534
4535  // For blocks we enforce that qualifiers are identical.
4536  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
4537    ConvTy = CompatiblePointerDiscardsQualifiers;
4538
4539  if (!getLangOptions().CPlusPlus) {
4540    if (!Context.typesAreBlockPointerCompatible(lhsType, rhsType))
4541      return IncompatibleBlockPointer;
4542  }
4543  else if (!Context.typesAreCompatible(lhptee, rhptee))
4544    return IncompatibleBlockPointer;
4545  return ConvTy;
4546}
4547
4548/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
4549/// for assignment compatibility.
4550Sema::AssignConvertType
4551Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4552  if (lhsType->isObjCBuiltinType()) {
4553    // Class is not compatible with ObjC object pointers.
4554    if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
4555        !rhsType->isObjCQualifiedClassType())
4556      return IncompatiblePointer;
4557    return Compatible;
4558  }
4559  if (rhsType->isObjCBuiltinType()) {
4560    // Class is not compatible with ObjC object pointers.
4561    if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
4562        !lhsType->isObjCQualifiedClassType())
4563      return IncompatiblePointer;
4564    return Compatible;
4565  }
4566  QualType lhptee =
4567  lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4568  QualType rhptee =
4569  rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4570  // make sure we operate on the canonical type
4571  lhptee = Context.getCanonicalType(lhptee);
4572  rhptee = Context.getCanonicalType(rhptee);
4573  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4574    return CompatiblePointerDiscardsQualifiers;
4575
4576  if (Context.typesAreCompatible(lhsType, rhsType))
4577    return Compatible;
4578  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
4579    return IncompatibleObjCQualifiedId;
4580  return IncompatiblePointer;
4581}
4582
4583/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
4584/// has code to accommodate several GCC extensions when type checking
4585/// pointers. Here are some objectionable examples that GCC considers warnings:
4586///
4587///  int a, *pint;
4588///  short *pshort;
4589///  struct foo *pfoo;
4590///
4591///  pint = pshort; // warning: assignment from incompatible pointer type
4592///  a = pint; // warning: assignment makes integer from pointer without a cast
4593///  pint = a; // warning: assignment makes pointer from integer without a cast
4594///  pint = pfoo; // warning: assignment from incompatible pointer type
4595///
4596/// As a result, the code for dealing with pointers is more complex than the
4597/// C99 spec dictates.
4598///
4599Sema::AssignConvertType
4600Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
4601  // Get canonical types.  We're not formatting these types, just comparing
4602  // them.
4603  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
4604  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
4605
4606  if (lhsType == rhsType)
4607    return Compatible; // Common case: fast path an exact match.
4608
4609  if ((lhsType->isObjCClassType() &&
4610       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4611     (rhsType->isObjCClassType() &&
4612       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4613      return Compatible;
4614  }
4615
4616  // If the left-hand side is a reference type, then we are in a
4617  // (rare!) case where we've allowed the use of references in C,
4618  // e.g., as a parameter type in a built-in function. In this case,
4619  // just make sure that the type referenced is compatible with the
4620  // right-hand side type. The caller is responsible for adjusting
4621  // lhsType so that the resulting expression does not have reference
4622  // type.
4623  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
4624    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
4625      return Compatible;
4626    return Incompatible;
4627  }
4628  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
4629  // to the same ExtVector type.
4630  if (lhsType->isExtVectorType()) {
4631    if (rhsType->isExtVectorType())
4632      return lhsType == rhsType ? Compatible : Incompatible;
4633    if (rhsType->isArithmeticType())
4634      return Compatible;
4635  }
4636
4637  if (lhsType->isVectorType() || rhsType->isVectorType()) {
4638    // If we are allowing lax vector conversions, and LHS and RHS are both
4639    // vectors, the total size only needs to be the same. This is a bitcast;
4640    // no bits are changed but the result type is different.
4641    if (getLangOptions().LaxVectorConversions &&
4642        lhsType->isVectorType() && rhsType->isVectorType()) {
4643      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
4644        return IncompatibleVectors;
4645    }
4646    return Incompatible;
4647  }
4648
4649  if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
4650      !(getLangOptions().CPlusPlus && lhsType->isEnumeralType()))
4651    return Compatible;
4652
4653  if (isa<PointerType>(lhsType)) {
4654    if (rhsType->isIntegerType())
4655      return IntToPointer;
4656
4657    if (isa<PointerType>(rhsType))
4658      return CheckPointerTypesForAssignment(lhsType, rhsType);
4659
4660    // In general, C pointers are not compatible with ObjC object pointers.
4661    if (isa<ObjCObjectPointerType>(rhsType)) {
4662      if (lhsType->isVoidPointerType()) // an exception to the rule.
4663        return Compatible;
4664      return IncompatiblePointer;
4665    }
4666    if (rhsType->getAs<BlockPointerType>()) {
4667      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4668        return Compatible;
4669
4670      // Treat block pointers as objects.
4671      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
4672        return Compatible;
4673    }
4674    return Incompatible;
4675  }
4676
4677  if (isa<BlockPointerType>(lhsType)) {
4678    if (rhsType->isIntegerType())
4679      return IntToBlockPointer;
4680
4681    // Treat block pointers as objects.
4682    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
4683      return Compatible;
4684
4685    if (rhsType->isBlockPointerType())
4686      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
4687
4688    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4689      if (RHSPT->getPointeeType()->isVoidType())
4690        return Compatible;
4691    }
4692    return Incompatible;
4693  }
4694
4695  if (isa<ObjCObjectPointerType>(lhsType)) {
4696    if (rhsType->isIntegerType())
4697      return IntToPointer;
4698
4699    // In general, C pointers are not compatible with ObjC object pointers.
4700    if (isa<PointerType>(rhsType)) {
4701      if (rhsType->isVoidPointerType()) // an exception to the rule.
4702        return Compatible;
4703      return IncompatiblePointer;
4704    }
4705    if (rhsType->isObjCObjectPointerType()) {
4706      return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
4707    }
4708    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4709      if (RHSPT->getPointeeType()->isVoidType())
4710        return Compatible;
4711    }
4712    // Treat block pointers as objects.
4713    if (rhsType->isBlockPointerType())
4714      return Compatible;
4715    return Incompatible;
4716  }
4717  if (isa<PointerType>(rhsType)) {
4718    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4719    if (lhsType == Context.BoolTy)
4720      return Compatible;
4721
4722    if (lhsType->isIntegerType())
4723      return PointerToInt;
4724
4725    if (isa<PointerType>(lhsType))
4726      return CheckPointerTypesForAssignment(lhsType, rhsType);
4727
4728    if (isa<BlockPointerType>(lhsType) &&
4729        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4730      return Compatible;
4731    return Incompatible;
4732  }
4733  if (isa<ObjCObjectPointerType>(rhsType)) {
4734    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4735    if (lhsType == Context.BoolTy)
4736      return Compatible;
4737
4738    if (lhsType->isIntegerType())
4739      return PointerToInt;
4740
4741    // In general, C pointers are not compatible with ObjC object pointers.
4742    if (isa<PointerType>(lhsType)) {
4743      if (lhsType->isVoidPointerType()) // an exception to the rule.
4744        return Compatible;
4745      return IncompatiblePointer;
4746    }
4747    if (isa<BlockPointerType>(lhsType) &&
4748        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4749      return Compatible;
4750    return Incompatible;
4751  }
4752
4753  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
4754    if (Context.typesAreCompatible(lhsType, rhsType))
4755      return Compatible;
4756  }
4757  return Incompatible;
4758}
4759
4760/// \brief Constructs a transparent union from an expression that is
4761/// used to initialize the transparent union.
4762static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
4763                                      QualType UnionType, FieldDecl *Field) {
4764  // Build an initializer list that designates the appropriate member
4765  // of the transparent union.
4766  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
4767                                                   &E, 1,
4768                                                   SourceLocation());
4769  Initializer->setType(UnionType);
4770  Initializer->setInitializedFieldInUnion(Field);
4771
4772  // Build a compound literal constructing a value of the transparent
4773  // union type from this initializer list.
4774  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
4775  E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
4776                                  Initializer, false);
4777}
4778
4779Sema::AssignConvertType
4780Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
4781  QualType FromType = rExpr->getType();
4782
4783  // If the ArgType is a Union type, we want to handle a potential
4784  // transparent_union GCC extension.
4785  const RecordType *UT = ArgType->getAsUnionType();
4786  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
4787    return Incompatible;
4788
4789  // The field to initialize within the transparent union.
4790  RecordDecl *UD = UT->getDecl();
4791  FieldDecl *InitField = 0;
4792  // It's compatible if the expression matches any of the fields.
4793  for (RecordDecl::field_iterator it = UD->field_begin(),
4794         itend = UD->field_end();
4795       it != itend; ++it) {
4796    if (it->getType()->isPointerType()) {
4797      // If the transparent union contains a pointer type, we allow:
4798      // 1) void pointer
4799      // 2) null pointer constant
4800      if (FromType->isPointerType())
4801        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
4802          ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
4803          InitField = *it;
4804          break;
4805        }
4806
4807      if (rExpr->isNullPointerConstant(Context,
4808                                       Expr::NPC_ValueDependentIsNull)) {
4809        ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
4810        InitField = *it;
4811        break;
4812      }
4813    }
4814
4815    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
4816          == Compatible) {
4817      InitField = *it;
4818      break;
4819    }
4820  }
4821
4822  if (!InitField)
4823    return Incompatible;
4824
4825  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
4826  return Compatible;
4827}
4828
4829Sema::AssignConvertType
4830Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
4831  if (getLangOptions().CPlusPlus) {
4832    if (!lhsType->isRecordType()) {
4833      // C++ 5.17p3: If the left operand is not of class type, the
4834      // expression is implicitly converted (C++ 4) to the
4835      // cv-unqualified type of the left operand.
4836      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
4837                                    AA_Assigning))
4838        return Incompatible;
4839      return Compatible;
4840    }
4841
4842    // FIXME: Currently, we fall through and treat C++ classes like C
4843    // structures.
4844  }
4845
4846  // C99 6.5.16.1p1: the left operand is a pointer and the right is
4847  // a null pointer constant.
4848  if ((lhsType->isPointerType() ||
4849       lhsType->isObjCObjectPointerType() ||
4850       lhsType->isBlockPointerType())
4851      && rExpr->isNullPointerConstant(Context,
4852                                      Expr::NPC_ValueDependentIsNull)) {
4853    ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
4854    return Compatible;
4855  }
4856
4857  // This check seems unnatural, however it is necessary to ensure the proper
4858  // conversion of functions/arrays. If the conversion were done for all
4859  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
4860  // expressions that surpress this implicit conversion (&, sizeof).
4861  //
4862  // Suppress this for references: C++ 8.5.3p5.
4863  if (!lhsType->isReferenceType())
4864    DefaultFunctionArrayLvalueConversion(rExpr);
4865
4866  Sema::AssignConvertType result =
4867    CheckAssignmentConstraints(lhsType, rExpr->getType());
4868
4869  // C99 6.5.16.1p2: The value of the right operand is converted to the
4870  // type of the assignment expression.
4871  // CheckAssignmentConstraints allows the left-hand side to be a reference,
4872  // so that we can use references in built-in functions even in C.
4873  // The getNonReferenceType() call makes sure that the resulting expression
4874  // does not have reference type.
4875  if (result != Incompatible && rExpr->getType() != lhsType)
4876    ImpCastExprToType(rExpr, lhsType.getNonReferenceType(),
4877                      CastExpr::CK_Unknown);
4878  return result;
4879}
4880
4881QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4882  Diag(Loc, diag::err_typecheck_invalid_operands)
4883    << lex->getType() << rex->getType()
4884    << lex->getSourceRange() << rex->getSourceRange();
4885  return QualType();
4886}
4887
4888QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4889  // For conversion purposes, we ignore any qualifiers.
4890  // For example, "const float" and "float" are equivalent.
4891  QualType lhsType =
4892    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
4893  QualType rhsType =
4894    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
4895
4896  // If the vector types are identical, return.
4897  if (lhsType == rhsType)
4898    return lhsType;
4899
4900  // Handle the case of a vector & extvector type of the same size and element
4901  // type.  It would be nice if we only had one vector type someday.
4902  if (getLangOptions().LaxVectorConversions) {
4903    // FIXME: Should we warn here?
4904    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
4905      if (const VectorType *RV = rhsType->getAs<VectorType>())
4906        if (LV->getElementType() == RV->getElementType() &&
4907            LV->getNumElements() == RV->getNumElements()) {
4908          if (lhsType->isExtVectorType()) {
4909            ImpCastExprToType(rex, lhsType, CastExpr::CK_BitCast);
4910            return lhsType;
4911          }
4912
4913          ImpCastExprToType(lex, rhsType, CastExpr::CK_BitCast);
4914          return rhsType;
4915        }
4916    }
4917  }
4918
4919  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
4920  // swap back (so that we don't reverse the inputs to a subtract, for instance.
4921  bool swapped = false;
4922  if (rhsType->isExtVectorType()) {
4923    swapped = true;
4924    std::swap(rex, lex);
4925    std::swap(rhsType, lhsType);
4926  }
4927
4928  // Handle the case of an ext vector and scalar.
4929  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
4930    QualType EltTy = LV->getElementType();
4931    if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
4932      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
4933        ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
4934        if (swapped) std::swap(rex, lex);
4935        return lhsType;
4936      }
4937    }
4938    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
4939        rhsType->isRealFloatingType()) {
4940      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
4941        ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
4942        if (swapped) std::swap(rex, lex);
4943        return lhsType;
4944      }
4945    }
4946  }
4947
4948  // Vectors of different size or scalar and non-ext-vector are errors.
4949  Diag(Loc, diag::err_typecheck_vector_not_convertable)
4950    << lex->getType() << rex->getType()
4951    << lex->getSourceRange() << rex->getSourceRange();
4952  return QualType();
4953}
4954
4955QualType Sema::CheckMultiplyDivideOperands(
4956  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
4957  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4958    return CheckVectorOperands(Loc, lex, rex);
4959
4960  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4961
4962  if (!lex->getType()->isArithmeticType() ||
4963      !rex->getType()->isArithmeticType())
4964    return InvalidOperands(Loc, lex, rex);
4965
4966  // Check for division by zero.
4967  if (isDiv &&
4968      rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
4969    DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
4970                                     << rex->getSourceRange());
4971
4972  return compType;
4973}
4974
4975QualType Sema::CheckRemainderOperands(
4976  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4977  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4978    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4979      return CheckVectorOperands(Loc, lex, rex);
4980    return InvalidOperands(Loc, lex, rex);
4981  }
4982
4983  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4984
4985  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
4986    return InvalidOperands(Loc, lex, rex);
4987
4988  // Check for remainder by zero.
4989  if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
4990    DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
4991                                 << rex->getSourceRange());
4992
4993  return compType;
4994}
4995
4996QualType Sema::CheckAdditionOperands( // C99 6.5.6
4997  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
4998  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4999    QualType compType = CheckVectorOperands(Loc, lex, rex);
5000    if (CompLHSTy) *CompLHSTy = compType;
5001    return compType;
5002  }
5003
5004  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5005
5006  // handle the common case first (both operands are arithmetic).
5007  if (lex->getType()->isArithmeticType() &&
5008      rex->getType()->isArithmeticType()) {
5009    if (CompLHSTy) *CompLHSTy = compType;
5010    return compType;
5011  }
5012
5013  // Put any potential pointer into PExp
5014  Expr* PExp = lex, *IExp = rex;
5015  if (IExp->getType()->isAnyPointerType())
5016    std::swap(PExp, IExp);
5017
5018  if (PExp->getType()->isAnyPointerType()) {
5019
5020    if (IExp->getType()->isIntegerType()) {
5021      QualType PointeeTy = PExp->getType()->getPointeeType();
5022
5023      // Check for arithmetic on pointers to incomplete types.
5024      if (PointeeTy->isVoidType()) {
5025        if (getLangOptions().CPlusPlus) {
5026          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5027            << lex->getSourceRange() << rex->getSourceRange();
5028          return QualType();
5029        }
5030
5031        // GNU extension: arithmetic on pointer to void
5032        Diag(Loc, diag::ext_gnu_void_ptr)
5033          << lex->getSourceRange() << rex->getSourceRange();
5034      } else if (PointeeTy->isFunctionType()) {
5035        if (getLangOptions().CPlusPlus) {
5036          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5037            << lex->getType() << lex->getSourceRange();
5038          return QualType();
5039        }
5040
5041        // GNU extension: arithmetic on pointer to function
5042        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5043          << lex->getType() << lex->getSourceRange();
5044      } else {
5045        // Check if we require a complete type.
5046        if (((PExp->getType()->isPointerType() &&
5047              !PExp->getType()->isDependentType()) ||
5048              PExp->getType()->isObjCObjectPointerType()) &&
5049             RequireCompleteType(Loc, PointeeTy,
5050                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5051                             << PExp->getSourceRange()
5052                             << PExp->getType()))
5053          return QualType();
5054      }
5055      // Diagnose bad cases where we step over interface counts.
5056      if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5057        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5058          << PointeeTy << PExp->getSourceRange();
5059        return QualType();
5060      }
5061
5062      if (CompLHSTy) {
5063        QualType LHSTy = Context.isPromotableBitField(lex);
5064        if (LHSTy.isNull()) {
5065          LHSTy = lex->getType();
5066          if (LHSTy->isPromotableIntegerType())
5067            LHSTy = Context.getPromotedIntegerType(LHSTy);
5068        }
5069        *CompLHSTy = LHSTy;
5070      }
5071      return PExp->getType();
5072    }
5073  }
5074
5075  return InvalidOperands(Loc, lex, rex);
5076}
5077
5078// C99 6.5.6
5079QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
5080                                        SourceLocation Loc, QualType* CompLHSTy) {
5081  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5082    QualType compType = CheckVectorOperands(Loc, lex, rex);
5083    if (CompLHSTy) *CompLHSTy = compType;
5084    return compType;
5085  }
5086
5087  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5088
5089  // Enforce type constraints: C99 6.5.6p3.
5090
5091  // Handle the common case first (both operands are arithmetic).
5092  if (lex->getType()->isArithmeticType()
5093      && rex->getType()->isArithmeticType()) {
5094    if (CompLHSTy) *CompLHSTy = compType;
5095    return compType;
5096  }
5097
5098  // Either ptr - int   or   ptr - ptr.
5099  if (lex->getType()->isAnyPointerType()) {
5100    QualType lpointee = lex->getType()->getPointeeType();
5101
5102    // The LHS must be an completely-defined object type.
5103
5104    bool ComplainAboutVoid = false;
5105    Expr *ComplainAboutFunc = 0;
5106    if (lpointee->isVoidType()) {
5107      if (getLangOptions().CPlusPlus) {
5108        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5109          << lex->getSourceRange() << rex->getSourceRange();
5110        return QualType();
5111      }
5112
5113      // GNU C extension: arithmetic on pointer to void
5114      ComplainAboutVoid = true;
5115    } else if (lpointee->isFunctionType()) {
5116      if (getLangOptions().CPlusPlus) {
5117        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5118          << lex->getType() << lex->getSourceRange();
5119        return QualType();
5120      }
5121
5122      // GNU C extension: arithmetic on pointer to function
5123      ComplainAboutFunc = lex;
5124    } else if (!lpointee->isDependentType() &&
5125               RequireCompleteType(Loc, lpointee,
5126                                   PDiag(diag::err_typecheck_sub_ptr_object)
5127                                     << lex->getSourceRange()
5128                                     << lex->getType()))
5129      return QualType();
5130
5131    // Diagnose bad cases where we step over interface counts.
5132    if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5133      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5134        << lpointee << lex->getSourceRange();
5135      return QualType();
5136    }
5137
5138    // The result type of a pointer-int computation is the pointer type.
5139    if (rex->getType()->isIntegerType()) {
5140      if (ComplainAboutVoid)
5141        Diag(Loc, diag::ext_gnu_void_ptr)
5142          << lex->getSourceRange() << rex->getSourceRange();
5143      if (ComplainAboutFunc)
5144        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5145          << ComplainAboutFunc->getType()
5146          << ComplainAboutFunc->getSourceRange();
5147
5148      if (CompLHSTy) *CompLHSTy = lex->getType();
5149      return lex->getType();
5150    }
5151
5152    // Handle pointer-pointer subtractions.
5153    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
5154      QualType rpointee = RHSPTy->getPointeeType();
5155
5156      // RHS must be a completely-type object type.
5157      // Handle the GNU void* extension.
5158      if (rpointee->isVoidType()) {
5159        if (getLangOptions().CPlusPlus) {
5160          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5161            << lex->getSourceRange() << rex->getSourceRange();
5162          return QualType();
5163        }
5164
5165        ComplainAboutVoid = true;
5166      } else if (rpointee->isFunctionType()) {
5167        if (getLangOptions().CPlusPlus) {
5168          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5169            << rex->getType() << rex->getSourceRange();
5170          return QualType();
5171        }
5172
5173        // GNU extension: arithmetic on pointer to function
5174        if (!ComplainAboutFunc)
5175          ComplainAboutFunc = rex;
5176      } else if (!rpointee->isDependentType() &&
5177                 RequireCompleteType(Loc, rpointee,
5178                                     PDiag(diag::err_typecheck_sub_ptr_object)
5179                                       << rex->getSourceRange()
5180                                       << rex->getType()))
5181        return QualType();
5182
5183      if (getLangOptions().CPlusPlus) {
5184        // Pointee types must be the same: C++ [expr.add]
5185        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
5186          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5187            << lex->getType() << rex->getType()
5188            << lex->getSourceRange() << rex->getSourceRange();
5189          return QualType();
5190        }
5191      } else {
5192        // Pointee types must be compatible C99 6.5.6p3
5193        if (!Context.typesAreCompatible(
5194                Context.getCanonicalType(lpointee).getUnqualifiedType(),
5195                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
5196          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5197            << lex->getType() << rex->getType()
5198            << lex->getSourceRange() << rex->getSourceRange();
5199          return QualType();
5200        }
5201      }
5202
5203      if (ComplainAboutVoid)
5204        Diag(Loc, diag::ext_gnu_void_ptr)
5205          << lex->getSourceRange() << rex->getSourceRange();
5206      if (ComplainAboutFunc)
5207        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5208          << ComplainAboutFunc->getType()
5209          << ComplainAboutFunc->getSourceRange();
5210
5211      if (CompLHSTy) *CompLHSTy = lex->getType();
5212      return Context.getPointerDiffType();
5213    }
5214  }
5215
5216  return InvalidOperands(Loc, lex, rex);
5217}
5218
5219// C99 6.5.7
5220QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5221                                  bool isCompAssign) {
5222  // C99 6.5.7p2: Each of the operands shall have integer type.
5223  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
5224    return InvalidOperands(Loc, lex, rex);
5225
5226  // Vector shifts promote their scalar inputs to vector type.
5227  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5228    return CheckVectorOperands(Loc, lex, rex);
5229
5230  // Shifts don't perform usual arithmetic conversions, they just do integer
5231  // promotions on each operand. C99 6.5.7p3
5232  QualType LHSTy = Context.isPromotableBitField(lex);
5233  if (LHSTy.isNull()) {
5234    LHSTy = lex->getType();
5235    if (LHSTy->isPromotableIntegerType())
5236      LHSTy = Context.getPromotedIntegerType(LHSTy);
5237  }
5238  if (!isCompAssign)
5239    ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
5240
5241  UsualUnaryConversions(rex);
5242
5243  // Sanity-check shift operands
5244  llvm::APSInt Right;
5245  // Check right/shifter operand
5246  if (!rex->isValueDependent() &&
5247      rex->isIntegerConstantExpr(Right, Context)) {
5248    if (Right.isNegative())
5249      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
5250    else {
5251      llvm::APInt LeftBits(Right.getBitWidth(),
5252                          Context.getTypeSize(lex->getType()));
5253      if (Right.uge(LeftBits))
5254        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
5255    }
5256  }
5257
5258  // "The type of the result is that of the promoted left operand."
5259  return LHSTy;
5260}
5261
5262// C99 6.5.8, C++ [expr.rel]
5263QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5264                                    unsigned OpaqueOpc, bool isRelational) {
5265  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
5266
5267  // Handle vector comparisons separately.
5268  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5269    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
5270
5271  QualType lType = lex->getType();
5272  QualType rType = rex->getType();
5273
5274  if (!lType->hasFloatingRepresentation() &&
5275      !(lType->isBlockPointerType() && isRelational)) {
5276    // For non-floating point types, check for self-comparisons of the form
5277    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5278    // often indicate logic errors in the program.
5279    // NOTE: Don't warn about comparisons of enum constants. These can arise
5280    //  from macro expansions, and are usually quite deliberate.
5281    Expr *LHSStripped = lex->IgnoreParens();
5282    Expr *RHSStripped = rex->IgnoreParens();
5283    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
5284      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
5285        if (DRL->getDecl() == DRR->getDecl() &&
5286            !isa<EnumConstantDecl>(DRL->getDecl())) {
5287          DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
5288                              << 0 // self-
5289                              << (Opc == BinaryOperator::EQ
5290                                  || Opc == BinaryOperator::LE
5291                                  || Opc == BinaryOperator::GE));
5292        } else if (lType->isArrayType() && rType->isArrayType() &&
5293                   !DRL->getDecl()->getType()->isReferenceType() &&
5294                   !DRR->getDecl()->getType()->isReferenceType()) {
5295            // what is it always going to eval to?
5296            char always_evals_to;
5297            switch(Opc) {
5298            case BinaryOperator::EQ: // e.g. array1 == array2
5299              always_evals_to = 0; // false
5300              break;
5301            case BinaryOperator::NE: // e.g. array1 != array2
5302              always_evals_to = 1; // true
5303              break;
5304            default:
5305              // best we can say is 'a constant'
5306              always_evals_to = 2; // e.g. array1 <= array2
5307              break;
5308            }
5309            DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
5310                                << 1 // array
5311                                << always_evals_to);
5312        }
5313      }
5314
5315    if (isa<CastExpr>(LHSStripped))
5316      LHSStripped = LHSStripped->IgnoreParenCasts();
5317    if (isa<CastExpr>(RHSStripped))
5318      RHSStripped = RHSStripped->IgnoreParenCasts();
5319
5320    // Warn about comparisons against a string constant (unless the other
5321    // operand is null), the user probably wants strcmp.
5322    Expr *literalString = 0;
5323    Expr *literalStringStripped = 0;
5324    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
5325        !RHSStripped->isNullPointerConstant(Context,
5326                                            Expr::NPC_ValueDependentIsNull)) {
5327      literalString = lex;
5328      literalStringStripped = LHSStripped;
5329    } else if ((isa<StringLiteral>(RHSStripped) ||
5330                isa<ObjCEncodeExpr>(RHSStripped)) &&
5331               !LHSStripped->isNullPointerConstant(Context,
5332                                            Expr::NPC_ValueDependentIsNull)) {
5333      literalString = rex;
5334      literalStringStripped = RHSStripped;
5335    }
5336
5337    if (literalString) {
5338      std::string resultComparison;
5339      switch (Opc) {
5340      case BinaryOperator::LT: resultComparison = ") < 0"; break;
5341      case BinaryOperator::GT: resultComparison = ") > 0"; break;
5342      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
5343      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
5344      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
5345      case BinaryOperator::NE: resultComparison = ") != 0"; break;
5346      default: assert(false && "Invalid comparison operator");
5347      }
5348
5349      DiagRuntimeBehavior(Loc,
5350        PDiag(diag::warn_stringcompare)
5351          << isa<ObjCEncodeExpr>(literalStringStripped)
5352          << literalString->getSourceRange());
5353    }
5354  }
5355
5356  // C99 6.5.8p3 / C99 6.5.9p4
5357  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
5358    UsualArithmeticConversions(lex, rex);
5359  else {
5360    UsualUnaryConversions(lex);
5361    UsualUnaryConversions(rex);
5362  }
5363
5364  lType = lex->getType();
5365  rType = rex->getType();
5366
5367  // The result of comparisons is 'bool' in C++, 'int' in C.
5368  QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
5369
5370  if (isRelational) {
5371    if (lType->isRealType() && rType->isRealType())
5372      return ResultTy;
5373  } else {
5374    // Check for comparisons of floating point operands using != and ==.
5375    if (lType->hasFloatingRepresentation())
5376      CheckFloatComparison(Loc,lex,rex);
5377
5378    if (lType->isArithmeticType() && rType->isArithmeticType())
5379      return ResultTy;
5380  }
5381
5382  bool LHSIsNull = lex->isNullPointerConstant(Context,
5383                                              Expr::NPC_ValueDependentIsNull);
5384  bool RHSIsNull = rex->isNullPointerConstant(Context,
5385                                              Expr::NPC_ValueDependentIsNull);
5386
5387  // All of the following pointer-related warnings are GCC extensions, except
5388  // when handling null pointer constants.
5389  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
5390    QualType LCanPointeeTy =
5391      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
5392    QualType RCanPointeeTy =
5393      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
5394
5395    if (getLangOptions().CPlusPlus) {
5396      if (LCanPointeeTy == RCanPointeeTy)
5397        return ResultTy;
5398      if (!isRelational &&
5399          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5400        // Valid unless comparison between non-null pointer and function pointer
5401        // This is a gcc extension compatibility comparison.
5402        // In a SFINAE context, we treat this as a hard error to maintain
5403        // conformance with the C++ standard.
5404        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5405            && !LHSIsNull && !RHSIsNull) {
5406          Diag(Loc,
5407               isSFINAEContext()?
5408                   diag::err_typecheck_comparison_of_fptr_to_void
5409                 : diag::ext_typecheck_comparison_of_fptr_to_void)
5410            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5411
5412          if (isSFINAEContext())
5413            return QualType();
5414
5415          ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5416          return ResultTy;
5417        }
5418      }
5419      // C++ [expr.rel]p2:
5420      //   [...] Pointer conversions (4.10) and qualification
5421      //   conversions (4.4) are performed on pointer operands (or on
5422      //   a pointer operand and a null pointer constant) to bring
5423      //   them to their composite pointer type. [...]
5424      //
5425      // C++ [expr.eq]p1 uses the same notion for (in)equality
5426      // comparisons of pointers.
5427      bool NonStandardCompositeType = false;
5428      QualType T = FindCompositePointerType(Loc, lex, rex,
5429                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5430      if (T.isNull()) {
5431        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5432          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5433        return QualType();
5434      } else if (NonStandardCompositeType) {
5435        Diag(Loc,
5436             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5437          << lType << rType << T
5438          << lex->getSourceRange() << rex->getSourceRange();
5439      }
5440
5441      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5442      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5443      return ResultTy;
5444    }
5445    // C99 6.5.9p2 and C99 6.5.8p2
5446    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
5447                                   RCanPointeeTy.getUnqualifiedType())) {
5448      // Valid unless a relational comparison of function pointers
5449      if (isRelational && LCanPointeeTy->isFunctionType()) {
5450        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
5451          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5452      }
5453    } else if (!isRelational &&
5454               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5455      // Valid unless comparison between non-null pointer and function pointer
5456      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5457          && !LHSIsNull && !RHSIsNull) {
5458        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5459          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5460      }
5461    } else {
5462      // Invalid
5463      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5464        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5465    }
5466    if (LCanPointeeTy != RCanPointeeTy)
5467      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5468    return ResultTy;
5469  }
5470
5471  if (getLangOptions().CPlusPlus) {
5472    // Comparison of pointers with null pointer constants and equality
5473    // comparisons of member pointers to null pointer constants.
5474    if (RHSIsNull &&
5475        (lType->isPointerType() ||
5476         (!isRelational && lType->isMemberPointerType()))) {
5477      ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
5478      return ResultTy;
5479    }
5480    if (LHSIsNull &&
5481        (rType->isPointerType() ||
5482         (!isRelational && rType->isMemberPointerType()))) {
5483      ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
5484      return ResultTy;
5485    }
5486
5487    // Comparison of member pointers.
5488    if (!isRelational &&
5489        lType->isMemberPointerType() && rType->isMemberPointerType()) {
5490      // C++ [expr.eq]p2:
5491      //   In addition, pointers to members can be compared, or a pointer to
5492      //   member and a null pointer constant. Pointer to member conversions
5493      //   (4.11) and qualification conversions (4.4) are performed to bring
5494      //   them to a common type. If one operand is a null pointer constant,
5495      //   the common type is the type of the other operand. Otherwise, the
5496      //   common type is a pointer to member type similar (4.4) to the type
5497      //   of one of the operands, with a cv-qualification signature (4.4)
5498      //   that is the union of the cv-qualification signatures of the operand
5499      //   types.
5500      bool NonStandardCompositeType = false;
5501      QualType T = FindCompositePointerType(Loc, lex, rex,
5502                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5503      if (T.isNull()) {
5504        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5505          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5506        return QualType();
5507      } else if (NonStandardCompositeType) {
5508        Diag(Loc,
5509             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5510          << lType << rType << T
5511          << lex->getSourceRange() << rex->getSourceRange();
5512      }
5513
5514      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5515      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5516      return ResultTy;
5517    }
5518
5519    // Comparison of nullptr_t with itself.
5520    if (lType->isNullPtrType() && rType->isNullPtrType())
5521      return ResultTy;
5522  }
5523
5524  // Handle block pointer types.
5525  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
5526    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
5527    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
5528
5529    if (!LHSIsNull && !RHSIsNull &&
5530        !Context.typesAreCompatible(lpointee, rpointee)) {
5531      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5532        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5533    }
5534    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5535    return ResultTy;
5536  }
5537  // Allow block pointers to be compared with null pointer constants.
5538  if (!isRelational
5539      && ((lType->isBlockPointerType() && rType->isPointerType())
5540          || (lType->isPointerType() && rType->isBlockPointerType()))) {
5541    if (!LHSIsNull && !RHSIsNull) {
5542      if (!((rType->isPointerType() && rType->getAs<PointerType>()
5543             ->getPointeeType()->isVoidType())
5544            || (lType->isPointerType() && lType->getAs<PointerType>()
5545                ->getPointeeType()->isVoidType())))
5546        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5547          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5548    }
5549    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5550    return ResultTy;
5551  }
5552
5553  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
5554    if (lType->isPointerType() || rType->isPointerType()) {
5555      const PointerType *LPT = lType->getAs<PointerType>();
5556      const PointerType *RPT = rType->getAs<PointerType>();
5557      bool LPtrToVoid = LPT ?
5558        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
5559      bool RPtrToVoid = RPT ?
5560        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
5561
5562      if (!LPtrToVoid && !RPtrToVoid &&
5563          !Context.typesAreCompatible(lType, rType)) {
5564        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5565          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5566      }
5567      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5568      return ResultTy;
5569    }
5570    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
5571      if (!Context.areComparableObjCPointerTypes(lType, rType))
5572        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5573          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5574      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5575      return ResultTy;
5576    }
5577  }
5578  if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
5579      (lType->isIntegerType() && rType->isAnyPointerType())) {
5580    unsigned DiagID = 0;
5581    bool isError = false;
5582    if ((LHSIsNull && lType->isIntegerType()) ||
5583        (RHSIsNull && rType->isIntegerType())) {
5584      if (isRelational && !getLangOptions().CPlusPlus)
5585        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5586    } else if (isRelational && !getLangOptions().CPlusPlus)
5587      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5588    else if (getLangOptions().CPlusPlus) {
5589      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
5590      isError = true;
5591    } else
5592      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5593
5594    if (DiagID) {
5595      Diag(Loc, DiagID)
5596        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5597      if (isError)
5598        return QualType();
5599    }
5600
5601    if (lType->isIntegerType())
5602      ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5603    else
5604      ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5605    return ResultTy;
5606  }
5607
5608  // Handle block pointers.
5609  if (!isRelational && RHSIsNull
5610      && lType->isBlockPointerType() && rType->isIntegerType()) {
5611    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5612    return ResultTy;
5613  }
5614  if (!isRelational && LHSIsNull
5615      && lType->isIntegerType() && rType->isBlockPointerType()) {
5616    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5617    return ResultTy;
5618  }
5619  return InvalidOperands(Loc, lex, rex);
5620}
5621
5622/// CheckVectorCompareOperands - vector comparisons are a clang extension that
5623/// operates on extended vector types.  Instead of producing an IntTy result,
5624/// like a scalar comparison, a vector comparison produces a vector of integer
5625/// types.
5626QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
5627                                          SourceLocation Loc,
5628                                          bool isRelational) {
5629  // Check to make sure we're operating on vectors of the same type and width,
5630  // Allowing one side to be a scalar of element type.
5631  QualType vType = CheckVectorOperands(Loc, lex, rex);
5632  if (vType.isNull())
5633    return vType;
5634
5635  QualType lType = lex->getType();
5636  QualType rType = rex->getType();
5637
5638  // For non-floating point types, check for self-comparisons of the form
5639  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5640  // often indicate logic errors in the program.
5641  if (!lType->hasFloatingRepresentation()) {
5642    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
5643      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
5644        if (DRL->getDecl() == DRR->getDecl())
5645          DiagRuntimeBehavior(Loc,
5646                              PDiag(diag::warn_comparison_always)
5647                                << 0 // self-
5648                                << 2 // "a constant"
5649                              );
5650  }
5651
5652  // Check for comparisons of floating point operands using != and ==.
5653  if (!isRelational && lType->hasFloatingRepresentation()) {
5654    assert (rType->hasFloatingRepresentation());
5655    CheckFloatComparison(Loc,lex,rex);
5656  }
5657
5658  // Return the type for the comparison, which is the same as vector type for
5659  // integer vectors, or an integer type of identical size and number of
5660  // elements for floating point vectors.
5661  if (lType->isIntegerType())
5662    return lType;
5663
5664  const VectorType *VTy = lType->getAs<VectorType>();
5665  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
5666  if (TypeSize == Context.getTypeSize(Context.IntTy))
5667    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
5668  if (TypeSize == Context.getTypeSize(Context.LongTy))
5669    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
5670
5671  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
5672         "Unhandled vector element size in vector compare");
5673  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
5674}
5675
5676inline QualType Sema::CheckBitwiseOperands(
5677  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5678  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5679    return CheckVectorOperands(Loc, lex, rex);
5680
5681  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5682
5683  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
5684    return compType;
5685  return InvalidOperands(Loc, lex, rex);
5686}
5687
5688inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
5689  Expr *&lex, Expr *&rex, SourceLocation Loc) {
5690  if (!Context.getLangOptions().CPlusPlus) {
5691    UsualUnaryConversions(lex);
5692    UsualUnaryConversions(rex);
5693
5694    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
5695      return InvalidOperands(Loc, lex, rex);
5696
5697    return Context.IntTy;
5698  }
5699
5700  // The following is safe because we only use this method for
5701  // non-overloadable operands.
5702
5703  // C++ [expr.log.and]p1
5704  // C++ [expr.log.or]p1
5705  // The operands are both contextually converted to type bool.
5706  if (PerformContextuallyConvertToBool(lex) ||
5707      PerformContextuallyConvertToBool(rex))
5708    return InvalidOperands(Loc, lex, rex);
5709
5710  // C++ [expr.log.and]p2
5711  // C++ [expr.log.or]p2
5712  // The result is a bool.
5713  return Context.BoolTy;
5714}
5715
5716/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
5717/// is a read-only property; return true if so. A readonly property expression
5718/// depends on various declarations and thus must be treated specially.
5719///
5720static bool IsReadonlyProperty(Expr *E, Sema &S) {
5721  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
5722    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
5723    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
5724      QualType BaseType = PropExpr->getBase()->getType();
5725      if (const ObjCObjectPointerType *OPT =
5726            BaseType->getAsObjCInterfacePointerType())
5727        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
5728          if (S.isPropertyReadonly(PDecl, IFace))
5729            return true;
5730    }
5731  }
5732  return false;
5733}
5734
5735/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
5736/// emit an error and return true.  If so, return false.
5737static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
5738  SourceLocation OrigLoc = Loc;
5739  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
5740                                                              &Loc);
5741  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
5742    IsLV = Expr::MLV_ReadonlyProperty;
5743  if (IsLV == Expr::MLV_Valid)
5744    return false;
5745
5746  unsigned Diag = 0;
5747  bool NeedType = false;
5748  switch (IsLV) { // C99 6.5.16p2
5749  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
5750  case Expr::MLV_ArrayType:
5751    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
5752    NeedType = true;
5753    break;
5754  case Expr::MLV_NotObjectType:
5755    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
5756    NeedType = true;
5757    break;
5758  case Expr::MLV_LValueCast:
5759    Diag = diag::err_typecheck_lvalue_casts_not_supported;
5760    break;
5761  case Expr::MLV_Valid:
5762    llvm_unreachable("did not take early return for MLV_Valid");
5763  case Expr::MLV_InvalidExpression:
5764  case Expr::MLV_MemberFunction:
5765  case Expr::MLV_ClassTemporary:
5766    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
5767    break;
5768  case Expr::MLV_IncompleteType:
5769  case Expr::MLV_IncompleteVoidType:
5770    return S.RequireCompleteType(Loc, E->getType(),
5771              S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
5772                  << E->getSourceRange());
5773  case Expr::MLV_DuplicateVectorComponents:
5774    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
5775    break;
5776  case Expr::MLV_NotBlockQualified:
5777    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
5778    break;
5779  case Expr::MLV_ReadonlyProperty:
5780    Diag = diag::error_readonly_property_assignment;
5781    break;
5782  case Expr::MLV_NoSetterProperty:
5783    Diag = diag::error_nosetter_property_assignment;
5784    break;
5785  case Expr::MLV_SubObjCPropertySetting:
5786    Diag = diag::error_no_subobject_property_setting;
5787    break;
5788  }
5789
5790  SourceRange Assign;
5791  if (Loc != OrigLoc)
5792    Assign = SourceRange(OrigLoc, OrigLoc);
5793  if (NeedType)
5794    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
5795  else
5796    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
5797  return true;
5798}
5799
5800
5801
5802// C99 6.5.16.1
5803QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
5804                                       SourceLocation Loc,
5805                                       QualType CompoundType) {
5806  // Verify that LHS is a modifiable lvalue, and emit error if not.
5807  if (CheckForModifiableLvalue(LHS, Loc, *this))
5808    return QualType();
5809
5810  QualType LHSType = LHS->getType();
5811  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
5812  AssignConvertType ConvTy;
5813  if (CompoundType.isNull()) {
5814    QualType LHSTy(LHSType);
5815    // Simple assignment "x = y".
5816    if (const ObjCImplicitSetterGetterRefExpr *OISGE =
5817        dyn_cast<ObjCImplicitSetterGetterRefExpr>(LHS)) {
5818      // If using property-dot syntax notation for assignment, and there is a
5819      // setter, RHS expression is being passed to the setter argument. So,
5820      // type conversion (and comparison) is RHS to setter's argument type.
5821      if (const ObjCMethodDecl *SetterMD = OISGE->getSetterMethod()) {
5822        ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
5823        LHSTy = (*P)->getType();
5824      }
5825    }
5826
5827    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
5828    // Special case of NSObject attributes on c-style pointer types.
5829    if (ConvTy == IncompatiblePointer &&
5830        ((Context.isObjCNSObjectType(LHSType) &&
5831          RHSType->isObjCObjectPointerType()) ||
5832         (Context.isObjCNSObjectType(RHSType) &&
5833          LHSType->isObjCObjectPointerType())))
5834      ConvTy = Compatible;
5835
5836    // If the RHS is a unary plus or minus, check to see if they = and + are
5837    // right next to each other.  If so, the user may have typo'd "x =+ 4"
5838    // instead of "x += 4".
5839    Expr *RHSCheck = RHS;
5840    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
5841      RHSCheck = ICE->getSubExpr();
5842    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
5843      if ((UO->getOpcode() == UnaryOperator::Plus ||
5844           UO->getOpcode() == UnaryOperator::Minus) &&
5845          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
5846          // Only if the two operators are exactly adjacent.
5847          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
5848          // And there is a space or other character before the subexpr of the
5849          // unary +/-.  We don't want to warn on "x=-1".
5850          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
5851          UO->getSubExpr()->getLocStart().isFileID()) {
5852        Diag(Loc, diag::warn_not_compound_assign)
5853          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
5854          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
5855      }
5856    }
5857  } else {
5858    // Compound assignment "x += y"
5859    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
5860  }
5861
5862  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
5863                               RHS, AA_Assigning))
5864    return QualType();
5865
5866  // C99 6.5.16p3: The type of an assignment expression is the type of the
5867  // left operand unless the left operand has qualified type, in which case
5868  // it is the unqualified version of the type of the left operand.
5869  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
5870  // is converted to the type of the assignment expression (above).
5871  // C++ 5.17p1: the type of the assignment expression is that of its left
5872  // operand.
5873  return LHSType.getUnqualifiedType();
5874}
5875
5876// C99 6.5.17
5877QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
5878  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
5879  // C++ does not perform this conversion (C++ [expr.comma]p1).
5880  if (!getLangOptions().CPlusPlus)
5881    DefaultFunctionArrayLvalueConversion(RHS);
5882
5883  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
5884  // incomplete in C++).
5885
5886  return RHS->getType();
5887}
5888
5889/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
5890/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
5891QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
5892                                              bool isInc, bool isPrefix) {
5893  if (Op->isTypeDependent())
5894    return Context.DependentTy;
5895
5896  QualType ResType = Op->getType();
5897  assert(!ResType.isNull() && "no type for increment/decrement expression");
5898
5899  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
5900    // Decrement of bool is not allowed.
5901    if (!isInc) {
5902      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
5903      return QualType();
5904    }
5905    // Increment of bool sets it to true, but is deprecated.
5906    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
5907  } else if (ResType->isRealType()) {
5908    // OK!
5909  } else if (ResType->isAnyPointerType()) {
5910    QualType PointeeTy = ResType->getPointeeType();
5911
5912    // C99 6.5.2.4p2, 6.5.6p2
5913    if (PointeeTy->isVoidType()) {
5914      if (getLangOptions().CPlusPlus) {
5915        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
5916          << Op->getSourceRange();
5917        return QualType();
5918      }
5919
5920      // Pointer to void is a GNU extension in C.
5921      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
5922    } else if (PointeeTy->isFunctionType()) {
5923      if (getLangOptions().CPlusPlus) {
5924        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
5925          << Op->getType() << Op->getSourceRange();
5926        return QualType();
5927      }
5928
5929      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
5930        << ResType << Op->getSourceRange();
5931    } else if (RequireCompleteType(OpLoc, PointeeTy,
5932                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5933                             << Op->getSourceRange()
5934                             << ResType))
5935      return QualType();
5936    // Diagnose bad cases where we step over interface counts.
5937    else if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5938      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
5939        << PointeeTy << Op->getSourceRange();
5940      return QualType();
5941    }
5942  } else if (ResType->isAnyComplexType()) {
5943    // C99 does not support ++/-- on complex types, we allow as an extension.
5944    Diag(OpLoc, diag::ext_integer_increment_complex)
5945      << ResType << Op->getSourceRange();
5946  } else {
5947    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
5948      << ResType << int(isInc) << Op->getSourceRange();
5949    return QualType();
5950  }
5951  // At this point, we know we have a real, complex or pointer type.
5952  // Now make sure the operand is a modifiable lvalue.
5953  if (CheckForModifiableLvalue(Op, OpLoc, *this))
5954    return QualType();
5955  // In C++, a prefix increment is the same type as the operand. Otherwise
5956  // (in C or with postfix), the increment is the unqualified type of the
5957  // operand.
5958  return isPrefix && getLangOptions().CPlusPlus
5959    ? ResType : ResType.getUnqualifiedType();
5960}
5961
5962/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
5963/// This routine allows us to typecheck complex/recursive expressions
5964/// where the declaration is needed for type checking. We only need to
5965/// handle cases when the expression references a function designator
5966/// or is an lvalue. Here are some examples:
5967///  - &(x) => x
5968///  - &*****f => f for f a function designator.
5969///  - &s.xx => s
5970///  - &s.zz[1].yy -> s, if zz is an array
5971///  - *(x + 1) -> x, if x is an array
5972///  - &"123"[2] -> 0
5973///  - & __real__ x -> x
5974static NamedDecl *getPrimaryDecl(Expr *E) {
5975  switch (E->getStmtClass()) {
5976  case Stmt::DeclRefExprClass:
5977    return cast<DeclRefExpr>(E)->getDecl();
5978  case Stmt::MemberExprClass:
5979    // If this is an arrow operator, the address is an offset from
5980    // the base's value, so the object the base refers to is
5981    // irrelevant.
5982    if (cast<MemberExpr>(E)->isArrow())
5983      return 0;
5984    // Otherwise, the expression refers to a part of the base
5985    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
5986  case Stmt::ArraySubscriptExprClass: {
5987    // FIXME: This code shouldn't be necessary!  We should catch the implicit
5988    // promotion of register arrays earlier.
5989    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
5990    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
5991      if (ICE->getSubExpr()->getType()->isArrayType())
5992        return getPrimaryDecl(ICE->getSubExpr());
5993    }
5994    return 0;
5995  }
5996  case Stmt::UnaryOperatorClass: {
5997    UnaryOperator *UO = cast<UnaryOperator>(E);
5998
5999    switch(UO->getOpcode()) {
6000    case UnaryOperator::Real:
6001    case UnaryOperator::Imag:
6002    case UnaryOperator::Extension:
6003      return getPrimaryDecl(UO->getSubExpr());
6004    default:
6005      return 0;
6006    }
6007  }
6008  case Stmt::ParenExprClass:
6009    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
6010  case Stmt::ImplicitCastExprClass:
6011    // If the result of an implicit cast is an l-value, we care about
6012    // the sub-expression; otherwise, the result here doesn't matter.
6013    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
6014  default:
6015    return 0;
6016  }
6017}
6018
6019/// CheckAddressOfOperand - The operand of & must be either a function
6020/// designator or an lvalue designating an object. If it is an lvalue, the
6021/// object cannot be declared with storage class register or be a bit field.
6022/// Note: The usual conversions are *not* applied to the operand of the &
6023/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
6024/// In C++, the operand might be an overloaded function name, in which case
6025/// we allow the '&' but retain the overloaded-function type.
6026QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
6027  // Make sure to ignore parentheses in subsequent checks
6028  op = op->IgnoreParens();
6029
6030  if (op->isTypeDependent())
6031    return Context.DependentTy;
6032
6033  if (getLangOptions().C99) {
6034    // Implement C99-only parts of addressof rules.
6035    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
6036      if (uOp->getOpcode() == UnaryOperator::Deref)
6037        // Per C99 6.5.3.2, the address of a deref always returns a valid result
6038        // (assuming the deref expression is valid).
6039        return uOp->getSubExpr()->getType();
6040    }
6041    // Technically, there should be a check for array subscript
6042    // expressions here, but the result of one is always an lvalue anyway.
6043  }
6044  NamedDecl *dcl = getPrimaryDecl(op);
6045  Expr::isLvalueResult lval = op->isLvalue(Context);
6046
6047  MemberExpr *ME = dyn_cast<MemberExpr>(op);
6048  if (lval == Expr::LV_MemberFunction && ME &&
6049      isa<CXXMethodDecl>(ME->getMemberDecl())) {
6050    ValueDecl *dcl = cast<MemberExpr>(op)->getMemberDecl();
6051    // &f where f is a member of the current object, or &o.f, or &p->f
6052    // All these are not allowed, and we need to catch them before the dcl
6053    // branch of the if, below.
6054    Diag(OpLoc, diag::err_unqualified_pointer_member_function)
6055        << dcl;
6056    // FIXME: Improve this diagnostic and provide a fixit.
6057
6058    // Now recover by acting as if the function had been accessed qualified.
6059    return Context.getMemberPointerType(op->getType(),
6060                Context.getTypeDeclType(cast<RecordDecl>(dcl->getDeclContext()))
6061                       .getTypePtr());
6062  } else if (lval == Expr::LV_ClassTemporary) {
6063    Diag(OpLoc, isSFINAEContext()? diag::err_typecheck_addrof_class_temporary
6064                                 : diag::ext_typecheck_addrof_class_temporary)
6065      << op->getType() << op->getSourceRange();
6066    if (isSFINAEContext())
6067      return QualType();
6068  } else if (isa<ObjCSelectorExpr>(op)) {
6069      return Context.getPointerType(op->getType());
6070  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
6071    // C99 6.5.3.2p1
6072    // The operand must be either an l-value or a function designator
6073    if (!op->getType()->isFunctionType()) {
6074      // FIXME: emit more specific diag...
6075      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
6076        << op->getSourceRange();
6077      return QualType();
6078    }
6079  } else if (op->getBitField()) { // C99 6.5.3.2p1
6080    // The operand cannot be a bit-field
6081    Diag(OpLoc, diag::err_typecheck_address_of)
6082      << "bit-field" << op->getSourceRange();
6083        return QualType();
6084  } else if (op->refersToVectorElement()) {
6085    // The operand cannot be an element of a vector
6086    Diag(OpLoc, diag::err_typecheck_address_of)
6087      << "vector element" << op->getSourceRange();
6088    return QualType();
6089  } else if (isa<ObjCPropertyRefExpr>(op)) {
6090    // cannot take address of a property expression.
6091    Diag(OpLoc, diag::err_typecheck_address_of)
6092      << "property expression" << op->getSourceRange();
6093    return QualType();
6094  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
6095    // FIXME: Can LHS ever be null here?
6096    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
6097      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
6098  } else if (isa<UnresolvedLookupExpr>(op)) {
6099    return Context.OverloadTy;
6100  } else if (dcl) { // C99 6.5.3.2p1
6101    // We have an lvalue with a decl. Make sure the decl is not declared
6102    // with the register storage-class specifier.
6103    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
6104      if (vd->getStorageClass() == VarDecl::Register) {
6105        Diag(OpLoc, diag::err_typecheck_address_of)
6106          << "register variable" << op->getSourceRange();
6107        return QualType();
6108      }
6109    } else if (isa<FunctionTemplateDecl>(dcl)) {
6110      return Context.OverloadTy;
6111    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
6112      // Okay: we can take the address of a field.
6113      // Could be a pointer to member, though, if there is an explicit
6114      // scope qualifier for the class.
6115      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
6116        DeclContext *Ctx = dcl->getDeclContext();
6117        if (Ctx && Ctx->isRecord()) {
6118          if (FD->getType()->isReferenceType()) {
6119            Diag(OpLoc,
6120                 diag::err_cannot_form_pointer_to_member_of_reference_type)
6121              << FD->getDeclName() << FD->getType();
6122            return QualType();
6123          }
6124
6125          return Context.getMemberPointerType(op->getType(),
6126                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
6127        }
6128      }
6129    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
6130      // Okay: we can take the address of a function.
6131      // As above.
6132      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
6133          MD->isInstance())
6134        return Context.getMemberPointerType(op->getType(),
6135              Context.getTypeDeclType(MD->getParent()).getTypePtr());
6136    } else if (!isa<FunctionDecl>(dcl))
6137      assert(0 && "Unknown/unexpected decl type");
6138  }
6139
6140  if (lval == Expr::LV_IncompleteVoidType) {
6141    // Taking the address of a void variable is technically illegal, but we
6142    // allow it in cases which are otherwise valid.
6143    // Example: "extern void x; void* y = &x;".
6144    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
6145  }
6146
6147  // If the operand has type "type", the result has type "pointer to type".
6148  return Context.getPointerType(op->getType());
6149}
6150
6151QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
6152  if (Op->isTypeDependent())
6153    return Context.DependentTy;
6154
6155  UsualUnaryConversions(Op);
6156  QualType Ty = Op->getType();
6157
6158  // Note that per both C89 and C99, this is always legal, even if ptype is an
6159  // incomplete type or void.  It would be possible to warn about dereferencing
6160  // a void pointer, but it's completely well-defined, and such a warning is
6161  // unlikely to catch any mistakes.
6162  if (const PointerType *PT = Ty->getAs<PointerType>())
6163    return PT->getPointeeType();
6164
6165  if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>())
6166    return OPT->getPointeeType();
6167
6168  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
6169    << Ty << Op->getSourceRange();
6170  return QualType();
6171}
6172
6173static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
6174  tok::TokenKind Kind) {
6175  BinaryOperator::Opcode Opc;
6176  switch (Kind) {
6177  default: assert(0 && "Unknown binop!");
6178  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
6179  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
6180  case tok::star:                 Opc = BinaryOperator::Mul; break;
6181  case tok::slash:                Opc = BinaryOperator::Div; break;
6182  case tok::percent:              Opc = BinaryOperator::Rem; break;
6183  case tok::plus:                 Opc = BinaryOperator::Add; break;
6184  case tok::minus:                Opc = BinaryOperator::Sub; break;
6185  case tok::lessless:             Opc = BinaryOperator::Shl; break;
6186  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
6187  case tok::lessequal:            Opc = BinaryOperator::LE; break;
6188  case tok::less:                 Opc = BinaryOperator::LT; break;
6189  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
6190  case tok::greater:              Opc = BinaryOperator::GT; break;
6191  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
6192  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
6193  case tok::amp:                  Opc = BinaryOperator::And; break;
6194  case tok::caret:                Opc = BinaryOperator::Xor; break;
6195  case tok::pipe:                 Opc = BinaryOperator::Or; break;
6196  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
6197  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
6198  case tok::equal:                Opc = BinaryOperator::Assign; break;
6199  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
6200  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
6201  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
6202  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
6203  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
6204  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
6205  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
6206  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
6207  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
6208  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
6209  case tok::comma:                Opc = BinaryOperator::Comma; break;
6210  }
6211  return Opc;
6212}
6213
6214static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
6215  tok::TokenKind Kind) {
6216  UnaryOperator::Opcode Opc;
6217  switch (Kind) {
6218  default: assert(0 && "Unknown unary op!");
6219  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
6220  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
6221  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
6222  case tok::star:         Opc = UnaryOperator::Deref; break;
6223  case tok::plus:         Opc = UnaryOperator::Plus; break;
6224  case tok::minus:        Opc = UnaryOperator::Minus; break;
6225  case tok::tilde:        Opc = UnaryOperator::Not; break;
6226  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
6227  case tok::kw___real:    Opc = UnaryOperator::Real; break;
6228  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
6229  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
6230  }
6231  return Opc;
6232}
6233
6234/// CreateBuiltinBinOp - Creates a new built-in binary operation with
6235/// operator @p Opc at location @c TokLoc. This routine only supports
6236/// built-in operations; ActOnBinOp handles overloaded operators.
6237Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
6238                                                  unsigned Op,
6239                                                  Expr *lhs, Expr *rhs) {
6240  QualType ResultTy;     // Result type of the binary operator.
6241  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
6242  // The following two variables are used for compound assignment operators
6243  QualType CompLHSTy;    // Type of LHS after promotions for computation
6244  QualType CompResultTy; // Type of computation result
6245
6246  switch (Opc) {
6247  case BinaryOperator::Assign:
6248    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
6249    break;
6250  case BinaryOperator::PtrMemD:
6251  case BinaryOperator::PtrMemI:
6252    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
6253                                            Opc == BinaryOperator::PtrMemI);
6254    break;
6255  case BinaryOperator::Mul:
6256  case BinaryOperator::Div:
6257    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
6258                                           Opc == BinaryOperator::Div);
6259    break;
6260  case BinaryOperator::Rem:
6261    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
6262    break;
6263  case BinaryOperator::Add:
6264    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
6265    break;
6266  case BinaryOperator::Sub:
6267    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
6268    break;
6269  case BinaryOperator::Shl:
6270  case BinaryOperator::Shr:
6271    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
6272    break;
6273  case BinaryOperator::LE:
6274  case BinaryOperator::LT:
6275  case BinaryOperator::GE:
6276  case BinaryOperator::GT:
6277    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
6278    break;
6279  case BinaryOperator::EQ:
6280  case BinaryOperator::NE:
6281    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
6282    break;
6283  case BinaryOperator::And:
6284  case BinaryOperator::Xor:
6285  case BinaryOperator::Or:
6286    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
6287    break;
6288  case BinaryOperator::LAnd:
6289  case BinaryOperator::LOr:
6290    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
6291    break;
6292  case BinaryOperator::MulAssign:
6293  case BinaryOperator::DivAssign:
6294    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
6295                                              Opc == BinaryOperator::DivAssign);
6296    CompLHSTy = CompResultTy;
6297    if (!CompResultTy.isNull())
6298      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6299    break;
6300  case BinaryOperator::RemAssign:
6301    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
6302    CompLHSTy = CompResultTy;
6303    if (!CompResultTy.isNull())
6304      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6305    break;
6306  case BinaryOperator::AddAssign:
6307    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6308    if (!CompResultTy.isNull())
6309      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6310    break;
6311  case BinaryOperator::SubAssign:
6312    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6313    if (!CompResultTy.isNull())
6314      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6315    break;
6316  case BinaryOperator::ShlAssign:
6317  case BinaryOperator::ShrAssign:
6318    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
6319    CompLHSTy = CompResultTy;
6320    if (!CompResultTy.isNull())
6321      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6322    break;
6323  case BinaryOperator::AndAssign:
6324  case BinaryOperator::XorAssign:
6325  case BinaryOperator::OrAssign:
6326    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
6327    CompLHSTy = CompResultTy;
6328    if (!CompResultTy.isNull())
6329      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6330    break;
6331  case BinaryOperator::Comma:
6332    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
6333    break;
6334  }
6335  if (ResultTy.isNull())
6336    return ExprError();
6337  if (CompResultTy.isNull())
6338    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
6339  else
6340    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
6341                                                      CompLHSTy, CompResultTy,
6342                                                      OpLoc));
6343}
6344
6345/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
6346/// ParenRange in parentheses.
6347static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6348                               const PartialDiagnostic &PD,
6349                               const PartialDiagnostic &FirstNote,
6350                               SourceRange FirstParenRange,
6351                               const PartialDiagnostic &SecondNote,
6352                               SourceRange SecondParenRange) {
6353  Self.Diag(Loc, PD);
6354
6355  if (!FirstNote.getDiagID())
6356    return;
6357
6358  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd());
6359  if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6360    // We can't display the parentheses, so just return.
6361    return;
6362  }
6363
6364  Self.Diag(Loc, FirstNote)
6365    << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(")
6366    << FixItHint::CreateInsertion(EndLoc, ")");
6367
6368  if (!SecondNote.getDiagID())
6369    return;
6370
6371  EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
6372  if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6373    // We can't display the parentheses, so just dig the
6374    // warning/error and return.
6375    Self.Diag(Loc, SecondNote);
6376    return;
6377  }
6378
6379  Self.Diag(Loc, SecondNote)
6380    << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(")
6381    << FixItHint::CreateInsertion(EndLoc, ")");
6382}
6383
6384/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
6385/// operators are mixed in a way that suggests that the programmer forgot that
6386/// comparison operators have higher precedence. The most typical example of
6387/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
6388static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6389                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
6390  typedef BinaryOperator BinOp;
6391  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
6392                rhsopc = static_cast<BinOp::Opcode>(-1);
6393  if (BinOp *BO = dyn_cast<BinOp>(lhs))
6394    lhsopc = BO->getOpcode();
6395  if (BinOp *BO = dyn_cast<BinOp>(rhs))
6396    rhsopc = BO->getOpcode();
6397
6398  // Subs are not binary operators.
6399  if (lhsopc == -1 && rhsopc == -1)
6400    return;
6401
6402  // Bitwise operations are sometimes used as eager logical ops.
6403  // Don't diagnose this.
6404  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
6405      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
6406    return;
6407
6408  if (BinOp::isComparisonOp(lhsopc))
6409    SuggestParentheses(Self, OpLoc,
6410      Self.PDiag(diag::warn_precedence_bitwise_rel)
6411          << SourceRange(lhs->getLocStart(), OpLoc)
6412          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
6413      Self.PDiag(diag::note_precedence_bitwise_first)
6414          << BinOp::getOpcodeStr(Opc),
6415      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()),
6416      Self.PDiag(diag::note_precedence_bitwise_silence)
6417          << BinOp::getOpcodeStr(lhsopc),
6418                       lhs->getSourceRange());
6419  else if (BinOp::isComparisonOp(rhsopc))
6420    SuggestParentheses(Self, OpLoc,
6421      Self.PDiag(diag::warn_precedence_bitwise_rel)
6422          << SourceRange(OpLoc, rhs->getLocEnd())
6423          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
6424      Self.PDiag(diag::note_precedence_bitwise_first)
6425        << BinOp::getOpcodeStr(Opc),
6426      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()),
6427      Self.PDiag(diag::note_precedence_bitwise_silence)
6428        << BinOp::getOpcodeStr(rhsopc),
6429                       rhs->getSourceRange());
6430}
6431
6432/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
6433/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
6434/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
6435static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6436                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
6437  if (BinaryOperator::isBitwiseOp(Opc))
6438    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
6439}
6440
6441// Binary Operators.  'Tok' is the token for the operator.
6442Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
6443                                          tok::TokenKind Kind,
6444                                          ExprArg LHS, ExprArg RHS) {
6445  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
6446  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
6447
6448  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
6449  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
6450
6451  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
6452  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
6453
6454  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
6455}
6456
6457Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
6458                                          BinaryOperator::Opcode Opc,
6459                                          Expr *lhs, Expr *rhs) {
6460  if (getLangOptions().CPlusPlus &&
6461      (lhs->getType()->isOverloadableType() ||
6462       rhs->getType()->isOverloadableType())) {
6463    // Find all of the overloaded operators visible from this
6464    // point. We perform both an operator-name lookup from the local
6465    // scope and an argument-dependent lookup based on the types of
6466    // the arguments.
6467    UnresolvedSet<16> Functions;
6468    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
6469    if (S && OverOp != OO_None)
6470      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
6471                                   Functions);
6472
6473    // Build the (potentially-overloaded, potentially-dependent)
6474    // binary operation.
6475    return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
6476  }
6477
6478  // Build a built-in binary operation.
6479  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
6480}
6481
6482Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
6483                                                    unsigned OpcIn,
6484                                                    ExprArg InputArg) {
6485  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
6486
6487  // FIXME: Input is modified below, but InputArg is not updated appropriately.
6488  Expr *Input = (Expr *)InputArg.get();
6489  QualType resultType;
6490  switch (Opc) {
6491  case UnaryOperator::OffsetOf:
6492    assert(false && "Invalid unary operator");
6493    break;
6494
6495  case UnaryOperator::PreInc:
6496  case UnaryOperator::PreDec:
6497  case UnaryOperator::PostInc:
6498  case UnaryOperator::PostDec:
6499    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
6500                                                Opc == UnaryOperator::PreInc ||
6501                                                Opc == UnaryOperator::PostInc,
6502                                                Opc == UnaryOperator::PreInc ||
6503                                                Opc == UnaryOperator::PreDec);
6504    break;
6505  case UnaryOperator::AddrOf:
6506    resultType = CheckAddressOfOperand(Input, OpLoc);
6507    break;
6508  case UnaryOperator::Deref:
6509    DefaultFunctionArrayLvalueConversion(Input);
6510    resultType = CheckIndirectionOperand(Input, OpLoc);
6511    break;
6512  case UnaryOperator::Plus:
6513  case UnaryOperator::Minus:
6514    UsualUnaryConversions(Input);
6515    resultType = Input->getType();
6516    if (resultType->isDependentType())
6517      break;
6518    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
6519        resultType->isVectorType())
6520      break;
6521    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
6522             resultType->isEnumeralType())
6523      break;
6524    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
6525             Opc == UnaryOperator::Plus &&
6526             resultType->isPointerType())
6527      break;
6528
6529    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6530      << resultType << Input->getSourceRange());
6531  case UnaryOperator::Not: // bitwise complement
6532    UsualUnaryConversions(Input);
6533    resultType = Input->getType();
6534    if (resultType->isDependentType())
6535      break;
6536    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
6537    if (resultType->isComplexType() || resultType->isComplexIntegerType())
6538      // C99 does not support '~' for complex conjugation.
6539      Diag(OpLoc, diag::ext_integer_complement_complex)
6540        << resultType << Input->getSourceRange();
6541    else if (!resultType->isIntegerType())
6542      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6543        << resultType << Input->getSourceRange());
6544    break;
6545  case UnaryOperator::LNot: // logical negation
6546    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
6547    DefaultFunctionArrayLvalueConversion(Input);
6548    resultType = Input->getType();
6549    if (resultType->isDependentType())
6550      break;
6551    if (!resultType->isScalarType()) // C99 6.5.3.3p1
6552      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6553        << resultType << Input->getSourceRange());
6554    // LNot always has type int. C99 6.5.3.3p5.
6555    // In C++, it's bool. C++ 5.3.1p8
6556    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
6557    break;
6558  case UnaryOperator::Real:
6559  case UnaryOperator::Imag:
6560    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
6561    break;
6562  case UnaryOperator::Extension:
6563    resultType = Input->getType();
6564    break;
6565  }
6566  if (resultType.isNull())
6567    return ExprError();
6568
6569  InputArg.release();
6570  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
6571}
6572
6573Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
6574                                            UnaryOperator::Opcode Opc,
6575                                            ExprArg input) {
6576  Expr *Input = (Expr*)input.get();
6577  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
6578      Opc != UnaryOperator::Extension) {
6579    // Find all of the overloaded operators visible from this
6580    // point. We perform both an operator-name lookup from the local
6581    // scope and an argument-dependent lookup based on the types of
6582    // the arguments.
6583    UnresolvedSet<16> Functions;
6584    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
6585    if (S && OverOp != OO_None)
6586      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
6587                                   Functions);
6588
6589    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
6590  }
6591
6592  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
6593}
6594
6595// Unary Operators.  'Tok' is the token for the operator.
6596Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
6597                                            tok::TokenKind Op, ExprArg input) {
6598  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input));
6599}
6600
6601/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
6602Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
6603                                            SourceLocation LabLoc,
6604                                            IdentifierInfo *LabelII) {
6605  // Look up the record for this label identifier.
6606  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
6607
6608  // If we haven't seen this label yet, create a forward reference. It
6609  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
6610  if (LabelDecl == 0)
6611    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
6612
6613  // Create the AST node.  The address of a label always has type 'void*'.
6614  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
6615                                       Context.getPointerType(Context.VoidTy)));
6616}
6617
6618Sema::OwningExprResult
6619Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
6620                    SourceLocation RPLoc) { // "({..})"
6621  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
6622  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
6623  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
6624
6625  bool isFileScope
6626    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
6627  if (isFileScope)
6628    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
6629
6630  // FIXME: there are a variety of strange constraints to enforce here, for
6631  // example, it is not possible to goto into a stmt expression apparently.
6632  // More semantic analysis is needed.
6633
6634  // If there are sub stmts in the compound stmt, take the type of the last one
6635  // as the type of the stmtexpr.
6636  QualType Ty = Context.VoidTy;
6637
6638  if (!Compound->body_empty()) {
6639    Stmt *LastStmt = Compound->body_back();
6640    // If LastStmt is a label, skip down through into the body.
6641    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
6642      LastStmt = Label->getSubStmt();
6643
6644    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
6645      Ty = LastExpr->getType();
6646  }
6647
6648  // FIXME: Check that expression type is complete/non-abstract; statement
6649  // expressions are not lvalues.
6650
6651  substmt.release();
6652  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
6653}
6654
6655Sema::OwningExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
6656                                                  TypeSourceInfo *TInfo,
6657                                                  OffsetOfComponent *CompPtr,
6658                                                  unsigned NumComponents,
6659                                                  SourceLocation RParenLoc) {
6660  QualType ArgTy = TInfo->getType();
6661  bool Dependent = ArgTy->isDependentType();
6662  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
6663
6664  // We must have at least one component that refers to the type, and the first
6665  // one is known to be a field designator.  Verify that the ArgTy represents
6666  // a struct/union/class.
6667  if (!Dependent && !ArgTy->isRecordType())
6668    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
6669                       << ArgTy << TypeRange);
6670
6671  // Type must be complete per C99 7.17p3 because a declaring a variable
6672  // with an incomplete type would be ill-formed.
6673  if (!Dependent
6674      && RequireCompleteType(BuiltinLoc, ArgTy,
6675                             PDiag(diag::err_offsetof_incomplete_type)
6676                               << TypeRange))
6677    return ExprError();
6678
6679  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
6680  // GCC extension, diagnose them.
6681  // FIXME: This diagnostic isn't actually visible because the location is in
6682  // a system header!
6683  if (NumComponents != 1)
6684    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
6685      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
6686
6687  bool DidWarnAboutNonPOD = false;
6688  QualType CurrentType = ArgTy;
6689  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
6690  llvm::SmallVector<OffsetOfNode, 4> Comps;
6691  llvm::SmallVector<Expr*, 4> Exprs;
6692  for (unsigned i = 0; i != NumComponents; ++i) {
6693    const OffsetOfComponent &OC = CompPtr[i];
6694    if (OC.isBrackets) {
6695      // Offset of an array sub-field.  TODO: Should we allow vector elements?
6696      if (!CurrentType->isDependentType()) {
6697        const ArrayType *AT = Context.getAsArrayType(CurrentType);
6698        if(!AT)
6699          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
6700                           << CurrentType);
6701        CurrentType = AT->getElementType();
6702      } else
6703        CurrentType = Context.DependentTy;
6704
6705      // The expression must be an integral expression.
6706      // FIXME: An integral constant expression?
6707      Expr *Idx = static_cast<Expr*>(OC.U.E);
6708      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
6709          !Idx->getType()->isIntegerType())
6710        return ExprError(Diag(Idx->getLocStart(),
6711                              diag::err_typecheck_subscript_not_integer)
6712                         << Idx->getSourceRange());
6713
6714      // Record this array index.
6715      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
6716      Exprs.push_back(Idx);
6717      continue;
6718    }
6719
6720    // Offset of a field.
6721    if (CurrentType->isDependentType()) {
6722      // We have the offset of a field, but we can't look into the dependent
6723      // type. Just record the identifier of the field.
6724      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
6725      CurrentType = Context.DependentTy;
6726      continue;
6727    }
6728
6729    // We need to have a complete type to look into.
6730    if (RequireCompleteType(OC.LocStart, CurrentType,
6731                            diag::err_offsetof_incomplete_type))
6732      return ExprError();
6733
6734    // Look for the designated field.
6735    const RecordType *RC = CurrentType->getAs<RecordType>();
6736    if (!RC)
6737      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
6738                       << CurrentType);
6739    RecordDecl *RD = RC->getDecl();
6740
6741    // C++ [lib.support.types]p5:
6742    //   The macro offsetof accepts a restricted set of type arguments in this
6743    //   International Standard. type shall be a POD structure or a POD union
6744    //   (clause 9).
6745    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6746      if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
6747          DiagRuntimeBehavior(BuiltinLoc,
6748                              PDiag(diag::warn_offsetof_non_pod_type)
6749                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
6750                              << CurrentType))
6751        DidWarnAboutNonPOD = true;
6752    }
6753
6754    // Look for the field.
6755    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
6756    LookupQualifiedName(R, RD);
6757    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
6758    if (!MemberDecl)
6759      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
6760                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
6761                                                              OC.LocEnd));
6762
6763    // C99 7.17p3:
6764    //   (If the specified member is a bit-field, the behavior is undefined.)
6765    //
6766    // We diagnose this as an error.
6767    if (MemberDecl->getBitWidth()) {
6768      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
6769        << MemberDecl->getDeclName()
6770        << SourceRange(BuiltinLoc, RParenLoc);
6771      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
6772      return ExprError();
6773    }
6774
6775    // If the member was found in a base class, introduce OffsetOfNodes for
6776    // the base class indirections.
6777    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
6778                       /*DetectVirtual=*/false);
6779    if (IsDerivedFrom(CurrentType,
6780                      Context.getTypeDeclType(MemberDecl->getParent()),
6781                      Paths)) {
6782      CXXBasePath &Path = Paths.front();
6783      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
6784           B != BEnd; ++B)
6785        Comps.push_back(OffsetOfNode(B->Base));
6786    }
6787
6788    if (cast<RecordDecl>(MemberDecl->getDeclContext())->
6789                                                isAnonymousStructOrUnion()) {
6790      llvm::SmallVector<FieldDecl*, 4> Path;
6791      BuildAnonymousStructUnionMemberPath(MemberDecl, Path);
6792      unsigned n = Path.size();
6793      for (int j = n - 1; j > -1; --j)
6794        Comps.push_back(OffsetOfNode(OC.LocStart, Path[j], OC.LocEnd));
6795    } else {
6796      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
6797    }
6798    CurrentType = MemberDecl->getType().getNonReferenceType();
6799  }
6800
6801  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
6802                                    TInfo, Comps.data(), Comps.size(),
6803                                    Exprs.data(), Exprs.size(), RParenLoc));
6804}
6805
6806Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
6807                                                  SourceLocation BuiltinLoc,
6808                                                  SourceLocation TypeLoc,
6809                                                  TypeTy *argty,
6810                                                  OffsetOfComponent *CompPtr,
6811                                                  unsigned NumComponents,
6812                                                  SourceLocation RPLoc) {
6813
6814  TypeSourceInfo *ArgTInfo;
6815  QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
6816  if (ArgTy.isNull())
6817    return ExprError();
6818
6819  if (getLangOptions().CPlusPlus) {
6820    if (!ArgTInfo)
6821      ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
6822
6823    return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
6824                                RPLoc);
6825  }
6826
6827  // FIXME: The code below is marked for death, once we have proper CodeGen
6828  // support for non-constant OffsetOf expressions.
6829
6830  bool Dependent = ArgTy->isDependentType();
6831
6832  // We must have at least one component that refers to the type, and the first
6833  // one is known to be a field designator.  Verify that the ArgTy represents
6834  // a struct/union/class.
6835  if (!Dependent && !ArgTy->isRecordType())
6836    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
6837
6838  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
6839  // with an incomplete type would be illegal.
6840
6841  // Otherwise, create a null pointer as the base, and iteratively process
6842  // the offsetof designators.
6843  QualType ArgTyPtr = Context.getPointerType(ArgTy);
6844  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
6845  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
6846                                    ArgTy, SourceLocation());
6847
6848  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
6849  // GCC extension, diagnose them.
6850  // FIXME: This diagnostic isn't actually visible because the location is in
6851  // a system header!
6852  if (NumComponents != 1)
6853    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
6854    << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
6855
6856  if (!Dependent) {
6857    bool DidWarnAboutNonPOD = false;
6858
6859    if (RequireCompleteType(TypeLoc, Res->getType(),
6860                            diag::err_offsetof_incomplete_type))
6861      return ExprError();
6862
6863    // FIXME: Dependent case loses a lot of information here. And probably
6864    // leaks like a sieve.
6865    for (unsigned i = 0; i != NumComponents; ++i) {
6866      const OffsetOfComponent &OC = CompPtr[i];
6867      if (OC.isBrackets) {
6868        // Offset of an array sub-field.  TODO: Should we allow vector elements?
6869        const ArrayType *AT = Context.getAsArrayType(Res->getType());
6870        if (!AT) {
6871          Res->Destroy(Context);
6872          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
6873                           << Res->getType());
6874        }
6875
6876        // FIXME: C++: Verify that operator[] isn't overloaded.
6877
6878        // Promote the array so it looks more like a normal array subscript
6879        // expression.
6880        DefaultFunctionArrayLvalueConversion(Res);
6881
6882        // C99 6.5.2.1p1
6883        Expr *Idx = static_cast<Expr*>(OC.U.E);
6884        // FIXME: Leaks Res
6885        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
6886          return ExprError(Diag(Idx->getLocStart(),
6887                                diag::err_typecheck_subscript_not_integer)
6888                           << Idx->getSourceRange());
6889
6890        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
6891                                               OC.LocEnd);
6892        continue;
6893      }
6894
6895      const RecordType *RC = Res->getType()->getAs<RecordType>();
6896      if (!RC) {
6897        Res->Destroy(Context);
6898        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
6899                         << Res->getType());
6900      }
6901
6902      // Get the decl corresponding to this.
6903      RecordDecl *RD = RC->getDecl();
6904      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6905        if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
6906            DiagRuntimeBehavior(BuiltinLoc,
6907                                PDiag(diag::warn_offsetof_non_pod_type)
6908                                << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
6909                                << Res->getType()))
6910          DidWarnAboutNonPOD = true;
6911      }
6912
6913      LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
6914      LookupQualifiedName(R, RD);
6915
6916      FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
6917      // FIXME: Leaks Res
6918      if (!MemberDecl)
6919        return ExprError(Diag(BuiltinLoc, diag::err_no_member)
6920                         << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
6921
6922      // C99 7.17p3:
6923      //   (If the specified member is a bit-field, the behavior is undefined.)
6924      //
6925      // We diagnose this as an error.
6926      if (MemberDecl->getBitWidth()) {
6927        Diag(OC.LocEnd, diag::err_offsetof_bitfield)
6928          << MemberDecl->getDeclName()
6929          << SourceRange(BuiltinLoc, RPLoc);
6930        Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
6931        return ExprError();
6932      }
6933
6934      // FIXME: C++: Verify that MemberDecl isn't a static field.
6935      // FIXME: Verify that MemberDecl isn't a bitfield.
6936      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
6937        Res = BuildAnonymousStructUnionMemberReference(
6938                                                       OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>();
6939      } else {
6940        PerformObjectMemberConversion(Res, /*Qualifier=*/0,
6941                                      *R.begin(), MemberDecl);
6942        // MemberDecl->getType() doesn't get the right qualifiers, but it
6943        // doesn't matter here.
6944        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
6945                                       MemberDecl->getType().getNonReferenceType());
6946      }
6947    }
6948  }
6949
6950  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
6951                                           Context.getSizeType(), BuiltinLoc));
6952}
6953
6954
6955Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
6956                                                      TypeTy *arg1,TypeTy *arg2,
6957                                                      SourceLocation RPLoc) {
6958  // FIXME: Preserve type source info.
6959  QualType argT1 = GetTypeFromParser(arg1);
6960  QualType argT2 = GetTypeFromParser(arg2);
6961
6962  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
6963
6964  if (getLangOptions().CPlusPlus) {
6965    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
6966      << SourceRange(BuiltinLoc, RPLoc);
6967    return ExprError();
6968  }
6969
6970  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
6971                                                 argT1, argT2, RPLoc));
6972}
6973
6974Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
6975                                             ExprArg cond,
6976                                             ExprArg expr1, ExprArg expr2,
6977                                             SourceLocation RPLoc) {
6978  Expr *CondExpr = static_cast<Expr*>(cond.get());
6979  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
6980  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
6981
6982  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
6983
6984  QualType resType;
6985  bool ValueDependent = false;
6986  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
6987    resType = Context.DependentTy;
6988    ValueDependent = true;
6989  } else {
6990    // The conditional expression is required to be a constant expression.
6991    llvm::APSInt condEval(32);
6992    SourceLocation ExpLoc;
6993    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
6994      return ExprError(Diag(ExpLoc,
6995                       diag::err_typecheck_choose_expr_requires_constant)
6996        << CondExpr->getSourceRange());
6997
6998    // If the condition is > zero, then the AST type is the same as the LSHExpr.
6999    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
7000    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
7001                                             : RHSExpr->isValueDependent();
7002  }
7003
7004  cond.release(); expr1.release(); expr2.release();
7005  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
7006                                        resType, RPLoc,
7007                                        resType->isDependentType(),
7008                                        ValueDependent));
7009}
7010
7011//===----------------------------------------------------------------------===//
7012// Clang Extensions.
7013//===----------------------------------------------------------------------===//
7014
7015/// ActOnBlockStart - This callback is invoked when a block literal is started.
7016void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
7017  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
7018  PushBlockScope(BlockScope, Block);
7019  CurContext->addDecl(Block);
7020  PushDeclContext(BlockScope, Block);
7021}
7022
7023void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
7024  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
7025  BlockScopeInfo *CurBlock = getCurBlock();
7026
7027  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
7028  CurBlock->TheDecl->setSignatureAsWritten(Sig);
7029  QualType T = Sig->getType();
7030
7031  bool isVariadic;
7032  QualType RetTy;
7033  if (const FunctionType *Fn = T->getAs<FunctionType>()) {
7034    CurBlock->FunctionType = T;
7035    RetTy = Fn->getResultType();
7036    isVariadic =
7037      !isa<FunctionProtoType>(Fn) || cast<FunctionProtoType>(Fn)->isVariadic();
7038  } else {
7039    RetTy = T;
7040    isVariadic = false;
7041  }
7042
7043  CurBlock->TheDecl->setIsVariadic(isVariadic);
7044
7045  // Don't allow returning an array by value.
7046  if (RetTy->isArrayType()) {
7047    Diag(ParamInfo.getSourceRange().getBegin(), diag::err_block_returns_array);
7048    return;
7049  }
7050
7051  // Don't allow returning a objc interface by value.
7052  if (RetTy->isObjCObjectType()) {
7053    Diag(ParamInfo.getSourceRange().getBegin(),
7054         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
7055    return;
7056  }
7057
7058  // Context.DependentTy is used as a placeholder for a missing block
7059  // return type.  TODO:  what should we do with declarators like:
7060  //   ^ * { ... }
7061  // If the answer is "apply template argument deduction"....
7062  if (RetTy != Context.DependentTy)
7063    CurBlock->ReturnType = RetTy;
7064
7065  // Push block parameters from the declarator if we had them.
7066  llvm::SmallVector<ParmVarDecl*, 8> Params;
7067  if (isa<FunctionProtoType>(T)) {
7068    FunctionProtoTypeLoc TL = cast<FunctionProtoTypeLoc>(Sig->getTypeLoc());
7069    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
7070      ParmVarDecl *Param = TL.getArg(I);
7071      if (Param->getIdentifier() == 0 &&
7072          !Param->isImplicit() &&
7073          !Param->isInvalidDecl() &&
7074          !getLangOptions().CPlusPlus)
7075        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
7076      Params.push_back(Param);
7077    }
7078
7079  // Fake up parameter variables if we have a typedef, like
7080  //   ^ fntype { ... }
7081  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
7082    for (FunctionProtoType::arg_type_iterator
7083           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
7084      ParmVarDecl *Param =
7085        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
7086                                   ParamInfo.getSourceRange().getBegin(),
7087                                   *I);
7088      Params.push_back(Param);
7089    }
7090  }
7091
7092  // Set the parameters on the block decl.
7093  if (!Params.empty())
7094    CurBlock->TheDecl->setParams(Params.data(), Params.size());
7095
7096  // Finally we can process decl attributes.
7097  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
7098
7099  if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
7100    Diag(ParamInfo.getAttributes()->getLoc(),
7101         diag::warn_attribute_sentinel_not_variadic) << 1;
7102    // FIXME: remove the attribute.
7103  }
7104
7105  // Put the parameter variables in scope.  We can bail out immediately
7106  // if we don't have any.
7107  if (Params.empty())
7108    return;
7109
7110  bool ShouldCheckShadow =
7111    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
7112
7113  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
7114         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
7115    (*AI)->setOwningFunction(CurBlock->TheDecl);
7116
7117    // If this has an identifier, add it to the scope stack.
7118    if ((*AI)->getIdentifier()) {
7119      if (ShouldCheckShadow)
7120        CheckShadow(CurBlock->TheScope, *AI);
7121
7122      PushOnScopeChains(*AI, CurBlock->TheScope);
7123    }
7124  }
7125}
7126
7127/// ActOnBlockError - If there is an error parsing a block, this callback
7128/// is invoked to pop the information about the block from the action impl.
7129void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
7130  // Pop off CurBlock, handle nested blocks.
7131  PopDeclContext();
7132  PopFunctionOrBlockScope();
7133  // FIXME: Delete the ParmVarDecl objects as well???
7134}
7135
7136/// ActOnBlockStmtExpr - This is called when the body of a block statement
7137/// literal was successfully completed.  ^(int x){...}
7138Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
7139                                                StmtArg body, Scope *CurScope) {
7140  // If blocks are disabled, emit an error.
7141  if (!LangOpts.Blocks)
7142    Diag(CaretLoc, diag::err_blocks_disable);
7143
7144  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
7145
7146  PopDeclContext();
7147
7148  QualType RetTy = Context.VoidTy;
7149  if (!BSI->ReturnType.isNull())
7150    RetTy = BSI->ReturnType;
7151
7152  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
7153  QualType BlockTy;
7154
7155  // If the user wrote a function type in some form, try to use that.
7156  if (!BSI->FunctionType.isNull()) {
7157    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
7158
7159    FunctionType::ExtInfo Ext = FTy->getExtInfo();
7160    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
7161
7162    // Turn protoless block types into nullary block types.
7163    if (isa<FunctionNoProtoType>(FTy)) {
7164      BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
7165                                        false, false, 0, 0, Ext);
7166
7167    // Otherwise, if we don't need to change anything about the function type,
7168    // preserve its sugar structure.
7169    } else if (FTy->getResultType() == RetTy &&
7170               (!NoReturn || FTy->getNoReturnAttr())) {
7171      BlockTy = BSI->FunctionType;
7172
7173    // Otherwise, make the minimal modifications to the function type.
7174    } else {
7175      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
7176      BlockTy = Context.getFunctionType(RetTy,
7177                                        FPT->arg_type_begin(),
7178                                        FPT->getNumArgs(),
7179                                        FPT->isVariadic(),
7180                                        /*quals*/ 0,
7181                                        FPT->hasExceptionSpec(),
7182                                        FPT->hasAnyExceptionSpec(),
7183                                        FPT->getNumExceptions(),
7184                                        FPT->exception_begin(),
7185                                        Ext);
7186    }
7187
7188  // If we don't have a function type, just build one from nothing.
7189  } else {
7190    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
7191                                      false, false, 0, 0,
7192                             FunctionType::ExtInfo(NoReturn, 0, CC_Default));
7193  }
7194
7195  // FIXME: Check that return/parameter types are complete/non-abstract
7196  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
7197                           BSI->TheDecl->param_end());
7198  BlockTy = Context.getBlockPointerType(BlockTy);
7199
7200  // If needed, diagnose invalid gotos and switches in the block.
7201  if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
7202    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
7203
7204  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
7205
7206  bool Good = true;
7207  // Check goto/label use.
7208  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
7209         I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
7210    LabelStmt *L = I->second;
7211
7212    // Verify that we have no forward references left.  If so, there was a goto
7213    // or address of a label taken, but no definition of it.
7214    if (L->getSubStmt() != 0)
7215      continue;
7216
7217    // Emit error.
7218    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
7219    Good = false;
7220  }
7221  if (!Good) {
7222    PopFunctionOrBlockScope();
7223    return ExprError();
7224  }
7225
7226  // Issue any analysis-based warnings.
7227  const sema::AnalysisBasedWarnings::Policy &WP =
7228    AnalysisWarnings.getDefaultPolicy();
7229  AnalysisWarnings.IssueWarnings(WP, BSI->TheDecl, BlockTy);
7230
7231  Expr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy,
7232                                         BSI->hasBlockDeclRefExprs);
7233  PopFunctionOrBlockScope();
7234  return Owned(Result);
7235}
7236
7237Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
7238                                        ExprArg expr, TypeTy *type,
7239                                        SourceLocation RPLoc) {
7240  QualType T = GetTypeFromParser(type);
7241  Expr *E = static_cast<Expr*>(expr.get());
7242  Expr *OrigExpr = E;
7243
7244  InitBuiltinVaListType();
7245
7246  // Get the va_list type
7247  QualType VaListType = Context.getBuiltinVaListType();
7248  if (VaListType->isArrayType()) {
7249    // Deal with implicit array decay; for example, on x86-64,
7250    // va_list is an array, but it's supposed to decay to
7251    // a pointer for va_arg.
7252    VaListType = Context.getArrayDecayedType(VaListType);
7253    // Make sure the input expression also decays appropriately.
7254    UsualUnaryConversions(E);
7255  } else {
7256    // Otherwise, the va_list argument must be an l-value because
7257    // it is modified by va_arg.
7258    if (!E->isTypeDependent() &&
7259        CheckForModifiableLvalue(E, BuiltinLoc, *this))
7260      return ExprError();
7261  }
7262
7263  if (!E->isTypeDependent() &&
7264      !Context.hasSameType(VaListType, E->getType())) {
7265    return ExprError(Diag(E->getLocStart(),
7266                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
7267      << OrigExpr->getType() << E->getSourceRange());
7268  }
7269
7270  // FIXME: Check that type is complete/non-abstract
7271  // FIXME: Warn if a non-POD type is passed in.
7272
7273  expr.release();
7274  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
7275                                       RPLoc));
7276}
7277
7278Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
7279  // The type of __null will be int or long, depending on the size of
7280  // pointers on the target.
7281  QualType Ty;
7282  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
7283    Ty = Context.IntTy;
7284  else
7285    Ty = Context.LongTy;
7286
7287  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
7288}
7289
7290static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
7291                                           Expr *SrcExpr, FixItHint &Hint) {
7292  if (!SemaRef.getLangOptions().ObjC1)
7293    return;
7294
7295  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
7296  if (!PT)
7297    return;
7298
7299  // Check if the destination is of type 'id'.
7300  if (!PT->isObjCIdType()) {
7301    // Check if the destination is the 'NSString' interface.
7302    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
7303    if (!ID || !ID->getIdentifier()->isStr("NSString"))
7304      return;
7305  }
7306
7307  // Strip off any parens and casts.
7308  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
7309  if (!SL || SL->isWide())
7310    return;
7311
7312  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
7313}
7314
7315bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
7316                                    SourceLocation Loc,
7317                                    QualType DstType, QualType SrcType,
7318                                    Expr *SrcExpr, AssignmentAction Action,
7319                                    bool *Complained) {
7320  if (Complained)
7321    *Complained = false;
7322
7323  // Decode the result (notice that AST's are still created for extensions).
7324  bool isInvalid = false;
7325  unsigned DiagKind;
7326  FixItHint Hint;
7327
7328  switch (ConvTy) {
7329  default: assert(0 && "Unknown conversion type");
7330  case Compatible: return false;
7331  case PointerToInt:
7332    DiagKind = diag::ext_typecheck_convert_pointer_int;
7333    break;
7334  case IntToPointer:
7335    DiagKind = diag::ext_typecheck_convert_int_pointer;
7336    break;
7337  case IncompatiblePointer:
7338    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
7339    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
7340    break;
7341  case IncompatiblePointerSign:
7342    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
7343    break;
7344  case FunctionVoidPointer:
7345    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
7346    break;
7347  case CompatiblePointerDiscardsQualifiers:
7348    // If the qualifiers lost were because we were applying the
7349    // (deprecated) C++ conversion from a string literal to a char*
7350    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
7351    // Ideally, this check would be performed in
7352    // CheckPointerTypesForAssignment. However, that would require a
7353    // bit of refactoring (so that the second argument is an
7354    // expression, rather than a type), which should be done as part
7355    // of a larger effort to fix CheckPointerTypesForAssignment for
7356    // C++ semantics.
7357    if (getLangOptions().CPlusPlus &&
7358        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
7359      return false;
7360    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
7361    break;
7362  case IncompatibleNestedPointerQualifiers:
7363    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
7364    break;
7365  case IntToBlockPointer:
7366    DiagKind = diag::err_int_to_block_pointer;
7367    break;
7368  case IncompatibleBlockPointer:
7369    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
7370    break;
7371  case IncompatibleObjCQualifiedId:
7372    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
7373    // it can give a more specific diagnostic.
7374    DiagKind = diag::warn_incompatible_qualified_id;
7375    break;
7376  case IncompatibleVectors:
7377    DiagKind = diag::warn_incompatible_vectors;
7378    break;
7379  case Incompatible:
7380    DiagKind = diag::err_typecheck_convert_incompatible;
7381    isInvalid = true;
7382    break;
7383  }
7384
7385  QualType FirstType, SecondType;
7386  switch (Action) {
7387  case AA_Assigning:
7388  case AA_Initializing:
7389    // The destination type comes first.
7390    FirstType = DstType;
7391    SecondType = SrcType;
7392    break;
7393
7394  case AA_Returning:
7395  case AA_Passing:
7396  case AA_Converting:
7397  case AA_Sending:
7398  case AA_Casting:
7399    // The source type comes first.
7400    FirstType = SrcType;
7401    SecondType = DstType;
7402    break;
7403  }
7404
7405  Diag(Loc, DiagKind) << FirstType << SecondType << Action
7406    << SrcExpr->getSourceRange() << Hint;
7407  if (Complained)
7408    *Complained = true;
7409  return isInvalid;
7410}
7411
7412bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
7413  llvm::APSInt ICEResult;
7414  if (E->isIntegerConstantExpr(ICEResult, Context)) {
7415    if (Result)
7416      *Result = ICEResult;
7417    return false;
7418  }
7419
7420  Expr::EvalResult EvalResult;
7421
7422  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
7423      EvalResult.HasSideEffects) {
7424    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
7425
7426    if (EvalResult.Diag) {
7427      // We only show the note if it's not the usual "invalid subexpression"
7428      // or if it's actually in a subexpression.
7429      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
7430          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
7431        Diag(EvalResult.DiagLoc, EvalResult.Diag);
7432    }
7433
7434    return true;
7435  }
7436
7437  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
7438    E->getSourceRange();
7439
7440  if (EvalResult.Diag &&
7441      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
7442    Diag(EvalResult.DiagLoc, EvalResult.Diag);
7443
7444  if (Result)
7445    *Result = EvalResult.Val.getInt();
7446  return false;
7447}
7448
7449void
7450Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
7451  ExprEvalContexts.push_back(
7452        ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
7453}
7454
7455void
7456Sema::PopExpressionEvaluationContext() {
7457  // Pop the current expression evaluation context off the stack.
7458  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
7459  ExprEvalContexts.pop_back();
7460
7461  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
7462    if (Rec.PotentiallyReferenced) {
7463      // Mark any remaining declarations in the current position of the stack
7464      // as "referenced". If they were not meant to be referenced, semantic
7465      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
7466      for (PotentiallyReferencedDecls::iterator
7467             I = Rec.PotentiallyReferenced->begin(),
7468             IEnd = Rec.PotentiallyReferenced->end();
7469           I != IEnd; ++I)
7470        MarkDeclarationReferenced(I->first, I->second);
7471    }
7472
7473    if (Rec.PotentiallyDiagnosed) {
7474      // Emit any pending diagnostics.
7475      for (PotentiallyEmittedDiagnostics::iterator
7476                I = Rec.PotentiallyDiagnosed->begin(),
7477             IEnd = Rec.PotentiallyDiagnosed->end();
7478           I != IEnd; ++I)
7479        Diag(I->first, I->second);
7480    }
7481  }
7482
7483  // When are coming out of an unevaluated context, clear out any
7484  // temporaries that we may have created as part of the evaluation of
7485  // the expression in that context: they aren't relevant because they
7486  // will never be constructed.
7487  if (Rec.Context == Unevaluated &&
7488      ExprTemporaries.size() > Rec.NumTemporaries)
7489    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
7490                          ExprTemporaries.end());
7491
7492  // Destroy the popped expression evaluation record.
7493  Rec.Destroy();
7494}
7495
7496/// \brief Note that the given declaration was referenced in the source code.
7497///
7498/// This routine should be invoke whenever a given declaration is referenced
7499/// in the source code, and where that reference occurred. If this declaration
7500/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
7501/// C99 6.9p3), then the declaration will be marked as used.
7502///
7503/// \param Loc the location where the declaration was referenced.
7504///
7505/// \param D the declaration that has been referenced by the source code.
7506void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
7507  assert(D && "No declaration?");
7508
7509  if (D->isUsed(false))
7510    return;
7511
7512  // Mark a parameter or variable declaration "used", regardless of whether we're in a
7513  // template or not. The reason for this is that unevaluated expressions
7514  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
7515  // -Wunused-parameters)
7516  if (isa<ParmVarDecl>(D) ||
7517      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
7518    D->setUsed(true);
7519    return;
7520  }
7521
7522  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
7523    return;
7524
7525  // Do not mark anything as "used" within a dependent context; wait for
7526  // an instantiation.
7527  if (CurContext->isDependentContext())
7528    return;
7529
7530  switch (ExprEvalContexts.back().Context) {
7531    case Unevaluated:
7532      // We are in an expression that is not potentially evaluated; do nothing.
7533      return;
7534
7535    case PotentiallyEvaluated:
7536      // We are in a potentially-evaluated expression, so this declaration is
7537      // "used"; handle this below.
7538      break;
7539
7540    case PotentiallyPotentiallyEvaluated:
7541      // We are in an expression that may be potentially evaluated; queue this
7542      // declaration reference until we know whether the expression is
7543      // potentially evaluated.
7544      ExprEvalContexts.back().addReferencedDecl(Loc, D);
7545      return;
7546  }
7547
7548  // Note that this declaration has been used.
7549  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
7550    unsigned TypeQuals;
7551    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
7552        if (!Constructor->isUsed(false))
7553          DefineImplicitDefaultConstructor(Loc, Constructor);
7554    } else if (Constructor->isImplicit() &&
7555               Constructor->isCopyConstructor(TypeQuals)) {
7556      if (!Constructor->isUsed(false))
7557        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
7558    }
7559
7560    MarkVTableUsed(Loc, Constructor->getParent());
7561  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
7562    if (Destructor->isImplicit() && !Destructor->isUsed(false))
7563      DefineImplicitDestructor(Loc, Destructor);
7564    if (Destructor->isVirtual())
7565      MarkVTableUsed(Loc, Destructor->getParent());
7566  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
7567    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
7568        MethodDecl->getOverloadedOperator() == OO_Equal) {
7569      if (!MethodDecl->isUsed(false))
7570        DefineImplicitCopyAssignment(Loc, MethodDecl);
7571    } else if (MethodDecl->isVirtual())
7572      MarkVTableUsed(Loc, MethodDecl->getParent());
7573  }
7574  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
7575    // Implicit instantiation of function templates and member functions of
7576    // class templates.
7577    if (Function->isImplicitlyInstantiable()) {
7578      bool AlreadyInstantiated = false;
7579      if (FunctionTemplateSpecializationInfo *SpecInfo
7580                                = Function->getTemplateSpecializationInfo()) {
7581        if (SpecInfo->getPointOfInstantiation().isInvalid())
7582          SpecInfo->setPointOfInstantiation(Loc);
7583        else if (SpecInfo->getTemplateSpecializationKind()
7584                   == TSK_ImplicitInstantiation)
7585          AlreadyInstantiated = true;
7586      } else if (MemberSpecializationInfo *MSInfo
7587                                  = Function->getMemberSpecializationInfo()) {
7588        if (MSInfo->getPointOfInstantiation().isInvalid())
7589          MSInfo->setPointOfInstantiation(Loc);
7590        else if (MSInfo->getTemplateSpecializationKind()
7591                   == TSK_ImplicitInstantiation)
7592          AlreadyInstantiated = true;
7593      }
7594
7595      if (!AlreadyInstantiated) {
7596        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
7597            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
7598          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
7599                                                                      Loc));
7600        else
7601          PendingImplicitInstantiations.push_back(std::make_pair(Function,
7602                                                                 Loc));
7603      }
7604    }
7605
7606    // FIXME: keep track of references to static functions
7607    Function->setUsed(true);
7608
7609    return;
7610  }
7611
7612  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
7613    // Implicit instantiation of static data members of class templates.
7614    if (Var->isStaticDataMember() &&
7615        Var->getInstantiatedFromStaticDataMember()) {
7616      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
7617      assert(MSInfo && "Missing member specialization information?");
7618      if (MSInfo->getPointOfInstantiation().isInvalid() &&
7619          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
7620        MSInfo->setPointOfInstantiation(Loc);
7621        PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
7622      }
7623    }
7624
7625    // FIXME: keep track of references to static data?
7626
7627    D->setUsed(true);
7628    return;
7629  }
7630}
7631
7632namespace {
7633  // Mark all of the declarations referenced
7634  // FIXME: Not fully implemented yet! We need to have a better understanding
7635  // of when we're entering
7636  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
7637    Sema &S;
7638    SourceLocation Loc;
7639
7640  public:
7641    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
7642
7643    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
7644
7645    bool TraverseTemplateArgument(const TemplateArgument &Arg);
7646    bool TraverseRecordType(RecordType *T);
7647  };
7648}
7649
7650bool MarkReferencedDecls::TraverseTemplateArgument(
7651  const TemplateArgument &Arg) {
7652  if (Arg.getKind() == TemplateArgument::Declaration) {
7653    S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
7654  }
7655
7656  return Inherited::TraverseTemplateArgument(Arg);
7657}
7658
7659bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
7660  if (ClassTemplateSpecializationDecl *Spec
7661                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
7662    const TemplateArgumentList &Args = Spec->getTemplateArgs();
7663    return TraverseTemplateArguments(Args.getFlatArgumentList(),
7664                                     Args.flat_size());
7665  }
7666
7667  return true;
7668}
7669
7670void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
7671  MarkReferencedDecls Marker(*this, Loc);
7672  Marker.TraverseType(Context.getCanonicalType(T));
7673}
7674
7675/// \brief Emit a diagnostic that describes an effect on the run-time behavior
7676/// of the program being compiled.
7677///
7678/// This routine emits the given diagnostic when the code currently being
7679/// type-checked is "potentially evaluated", meaning that there is a
7680/// possibility that the code will actually be executable. Code in sizeof()
7681/// expressions, code used only during overload resolution, etc., are not
7682/// potentially evaluated. This routine will suppress such diagnostics or,
7683/// in the absolutely nutty case of potentially potentially evaluated
7684/// expressions (C++ typeid), queue the diagnostic to potentially emit it
7685/// later.
7686///
7687/// This routine should be used for all diagnostics that describe the run-time
7688/// behavior of a program, such as passing a non-POD value through an ellipsis.
7689/// Failure to do so will likely result in spurious diagnostics or failures
7690/// during overload resolution or within sizeof/alignof/typeof/typeid.
7691bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
7692                               const PartialDiagnostic &PD) {
7693  switch (ExprEvalContexts.back().Context ) {
7694  case Unevaluated:
7695    // The argument will never be evaluated, so don't complain.
7696    break;
7697
7698  case PotentiallyEvaluated:
7699    Diag(Loc, PD);
7700    return true;
7701
7702  case PotentiallyPotentiallyEvaluated:
7703    ExprEvalContexts.back().addDiagnostic(Loc, PD);
7704    break;
7705  }
7706
7707  return false;
7708}
7709
7710bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
7711                               CallExpr *CE, FunctionDecl *FD) {
7712  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
7713    return false;
7714
7715  PartialDiagnostic Note =
7716    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
7717    << FD->getDeclName() : PDiag();
7718  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
7719
7720  if (RequireCompleteType(Loc, ReturnType,
7721                          FD ?
7722                          PDiag(diag::err_call_function_incomplete_return)
7723                            << CE->getSourceRange() << FD->getDeclName() :
7724                          PDiag(diag::err_call_incomplete_return)
7725                            << CE->getSourceRange(),
7726                          std::make_pair(NoteLoc, Note)))
7727    return true;
7728
7729  return false;
7730}
7731
7732// Diagnose the common s/=/==/ typo.  Note that adding parentheses
7733// will prevent this condition from triggering, which is what we want.
7734void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
7735  SourceLocation Loc;
7736
7737  unsigned diagnostic = diag::warn_condition_is_assignment;
7738
7739  if (isa<BinaryOperator>(E)) {
7740    BinaryOperator *Op = cast<BinaryOperator>(E);
7741    if (Op->getOpcode() != BinaryOperator::Assign)
7742      return;
7743
7744    // Greylist some idioms by putting them into a warning subcategory.
7745    if (ObjCMessageExpr *ME
7746          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
7747      Selector Sel = ME->getSelector();
7748
7749      // self = [<foo> init...]
7750      if (isSelfExpr(Op->getLHS())
7751          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
7752        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7753
7754      // <foo> = [<bar> nextObject]
7755      else if (Sel.isUnarySelector() &&
7756               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
7757        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7758    }
7759
7760    Loc = Op->getOperatorLoc();
7761  } else if (isa<CXXOperatorCallExpr>(E)) {
7762    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
7763    if (Op->getOperator() != OO_Equal)
7764      return;
7765
7766    Loc = Op->getOperatorLoc();
7767  } else {
7768    // Not an assignment.
7769    return;
7770  }
7771
7772  SourceLocation Open = E->getSourceRange().getBegin();
7773  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
7774
7775  Diag(Loc, diagnostic) << E->getSourceRange();
7776  Diag(Loc, diag::note_condition_assign_to_comparison)
7777    << FixItHint::CreateReplacement(Loc, "==");
7778  Diag(Loc, diag::note_condition_assign_silence)
7779    << FixItHint::CreateInsertion(Open, "(")
7780    << FixItHint::CreateInsertion(Close, ")");
7781}
7782
7783bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
7784  DiagnoseAssignmentAsCondition(E);
7785
7786  if (!E->isTypeDependent()) {
7787    DefaultFunctionArrayLvalueConversion(E);
7788
7789    QualType T = E->getType();
7790
7791    if (getLangOptions().CPlusPlus) {
7792      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
7793        return true;
7794    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
7795      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
7796        << T << E->getSourceRange();
7797      return true;
7798    }
7799  }
7800
7801  return false;
7802}
7803
7804Sema::OwningExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
7805                                                   ExprArg SubExpr) {
7806  Expr *Sub = SubExpr.takeAs<Expr>();
7807  if (!Sub)
7808    return ExprError();
7809
7810  if (CheckBooleanCondition(Sub, Loc)) {
7811    Sub->Destroy(Context);
7812    return ExprError();
7813  }
7814
7815  return Owned(Sub);
7816}
7817