SemaExpr.cpp revision dede0c9a8cbcb2a10a2dd72be04fbd754acd8fed
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>()) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>();
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(MD->getSelector(),
62                                                    MD->isInstanceMethod());
63          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
64        }
65      }
66    }
67
68    if (!isSilenced)
69      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
70  }
71
72  // See if this is a deleted function.
73  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
74    if (FD->isDeleted()) {
75      Diag(Loc, diag::err_deleted_function_use);
76      Diag(D->getLocation(), diag::note_unavailable_here) << true;
77      return true;
78    }
79  }
80
81  // See if the decl is unavailable
82  if (D->getAttr<UnavailableAttr>()) {
83    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
84    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
85  }
86
87  return false;
88}
89
90SourceRange Sema::getExprRange(ExprTy *E) const {
91  Expr *Ex = (Expr *)E;
92  return Ex? Ex->getSourceRange() : SourceRange();
93}
94
95//===----------------------------------------------------------------------===//
96//  Standard Promotions and Conversions
97//===----------------------------------------------------------------------===//
98
99/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
100void Sema::DefaultFunctionArrayConversion(Expr *&E) {
101  QualType Ty = E->getType();
102  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
103
104  if (Ty->isFunctionType())
105    ImpCastExprToType(E, Context.getPointerType(Ty));
106  else if (Ty->isArrayType()) {
107    // In C90 mode, arrays only promote to pointers if the array expression is
108    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
109    // type 'array of type' is converted to an expression that has type 'pointer
110    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
111    // that has type 'array of type' ...".  The relevant change is "an lvalue"
112    // (C90) to "an expression" (C99).
113    //
114    // C++ 4.2p1:
115    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
116    // T" can be converted to an rvalue of type "pointer to T".
117    //
118    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
119        E->isLvalue(Context) == Expr::LV_Valid)
120      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
121  }
122}
123
124/// UsualUnaryConversions - Performs various conversions that are common to most
125/// operators (C99 6.3). The conversions of array and function types are
126/// sometimes surpressed. For example, the array->pointer conversion doesn't
127/// apply if the array is an argument to the sizeof or address (&) operators.
128/// In these instances, this routine should *not* be called.
129Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
130  QualType Ty = Expr->getType();
131  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
132
133  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
134    ImpCastExprToType(Expr, Context.IntTy);
135  else
136    DefaultFunctionArrayConversion(Expr);
137
138  return Expr;
139}
140
141/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
142/// do not have a prototype. Arguments that have type float are promoted to
143/// double. All other argument types are converted by UsualUnaryConversions().
144void Sema::DefaultArgumentPromotion(Expr *&Expr) {
145  QualType Ty = Expr->getType();
146  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
147
148  // If this is a 'float' (CVR qualified or typedef) promote to double.
149  if (const BuiltinType *BT = Ty->getAsBuiltinType())
150    if (BT->getKind() == BuiltinType::Float)
151      return ImpCastExprToType(Expr, Context.DoubleTy);
152
153  UsualUnaryConversions(Expr);
154}
155
156// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
157// will warn if the resulting type is not a POD type.
158void Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
159  DefaultArgumentPromotion(Expr);
160
161  if (!Expr->getType()->isPODType()) {
162    Diag(Expr->getLocStart(),
163         diag::warn_cannot_pass_non_pod_arg_to_vararg) <<
164    Expr->getType() << CT;
165  }
166}
167
168
169/// UsualArithmeticConversions - Performs various conversions that are common to
170/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
171/// routine returns the first non-arithmetic type found. The client is
172/// responsible for emitting appropriate error diagnostics.
173/// FIXME: verify the conversion rules for "complex int" are consistent with
174/// GCC.
175QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
176                                          bool isCompAssign) {
177  if (!isCompAssign) {
178    UsualUnaryConversions(lhsExpr);
179    UsualUnaryConversions(rhsExpr);
180  }
181
182  // For conversion purposes, we ignore any qualifiers.
183  // For example, "const float" and "float" are equivalent.
184  QualType lhs =
185    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
186  QualType rhs =
187    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
188
189  // If both types are identical, no conversion is needed.
190  if (lhs == rhs)
191    return lhs;
192
193  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
194  // The caller can deal with this (e.g. pointer + int).
195  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
196    return lhs;
197
198  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
199  if (!isCompAssign) {
200    ImpCastExprToType(lhsExpr, destType);
201    ImpCastExprToType(rhsExpr, destType);
202  }
203  return destType;
204}
205
206QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
207  // Perform the usual unary conversions. We do this early so that
208  // integral promotions to "int" can allow us to exit early, in the
209  // lhs == rhs check. Also, for conversion purposes, we ignore any
210  // qualifiers.  For example, "const float" and "float" are
211  // equivalent.
212  if (lhs->isPromotableIntegerType())
213    lhs = Context.IntTy;
214  else
215    lhs = lhs.getUnqualifiedType();
216  if (rhs->isPromotableIntegerType())
217    rhs = Context.IntTy;
218  else
219    rhs = rhs.getUnqualifiedType();
220
221  // If both types are identical, no conversion is needed.
222  if (lhs == rhs)
223    return lhs;
224
225  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
226  // The caller can deal with this (e.g. pointer + int).
227  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
228    return lhs;
229
230  // At this point, we have two different arithmetic types.
231
232  // Handle complex types first (C99 6.3.1.8p1).
233  if (lhs->isComplexType() || rhs->isComplexType()) {
234    // if we have an integer operand, the result is the complex type.
235    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
236      // convert the rhs to the lhs complex type.
237      return lhs;
238    }
239    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
240      // convert the lhs to the rhs complex type.
241      return rhs;
242    }
243    // This handles complex/complex, complex/float, or float/complex.
244    // When both operands are complex, the shorter operand is converted to the
245    // type of the longer, and that is the type of the result. This corresponds
246    // to what is done when combining two real floating-point operands.
247    // The fun begins when size promotion occur across type domains.
248    // From H&S 6.3.4: When one operand is complex and the other is a real
249    // floating-point type, the less precise type is converted, within it's
250    // real or complex domain, to the precision of the other type. For example,
251    // when combining a "long double" with a "double _Complex", the
252    // "double _Complex" is promoted to "long double _Complex".
253    int result = Context.getFloatingTypeOrder(lhs, rhs);
254
255    if (result > 0) { // The left side is bigger, convert rhs.
256      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
257    } else if (result < 0) { // The right side is bigger, convert lhs.
258      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
259    }
260    // At this point, lhs and rhs have the same rank/size. Now, make sure the
261    // domains match. This is a requirement for our implementation, C99
262    // does not require this promotion.
263    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
264      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
265        return rhs;
266      } else { // handle "_Complex double, double".
267        return lhs;
268      }
269    }
270    return lhs; // The domain/size match exactly.
271  }
272  // Now handle "real" floating types (i.e. float, double, long double).
273  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
274    // if we have an integer operand, the result is the real floating type.
275    if (rhs->isIntegerType()) {
276      // convert rhs to the lhs floating point type.
277      return lhs;
278    }
279    if (rhs->isComplexIntegerType()) {
280      // convert rhs to the complex floating point type.
281      return Context.getComplexType(lhs);
282    }
283    if (lhs->isIntegerType()) {
284      // convert lhs to the rhs floating point type.
285      return rhs;
286    }
287    if (lhs->isComplexIntegerType()) {
288      // convert lhs to the complex floating point type.
289      return Context.getComplexType(rhs);
290    }
291    // We have two real floating types, float/complex combos were handled above.
292    // Convert the smaller operand to the bigger result.
293    int result = Context.getFloatingTypeOrder(lhs, rhs);
294    if (result > 0) // convert the rhs
295      return lhs;
296    assert(result < 0 && "illegal float comparison");
297    return rhs;   // convert the lhs
298  }
299  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
300    // Handle GCC complex int extension.
301    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
302    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
303
304    if (lhsComplexInt && rhsComplexInt) {
305      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
306                                      rhsComplexInt->getElementType()) >= 0)
307        return lhs; // convert the rhs
308      return rhs;
309    } else if (lhsComplexInt && rhs->isIntegerType()) {
310      // convert the rhs to the lhs complex type.
311      return lhs;
312    } else if (rhsComplexInt && lhs->isIntegerType()) {
313      // convert the lhs to the rhs complex type.
314      return rhs;
315    }
316  }
317  // Finally, we have two differing integer types.
318  // The rules for this case are in C99 6.3.1.8
319  int compare = Context.getIntegerTypeOrder(lhs, rhs);
320  bool lhsSigned = lhs->isSignedIntegerType(),
321       rhsSigned = rhs->isSignedIntegerType();
322  QualType destType;
323  if (lhsSigned == rhsSigned) {
324    // Same signedness; use the higher-ranked type
325    destType = compare >= 0 ? lhs : rhs;
326  } else if (compare != (lhsSigned ? 1 : -1)) {
327    // The unsigned type has greater than or equal rank to the
328    // signed type, so use the unsigned type
329    destType = lhsSigned ? rhs : lhs;
330  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
331    // The two types are different widths; if we are here, that
332    // means the signed type is larger than the unsigned type, so
333    // use the signed type.
334    destType = lhsSigned ? lhs : rhs;
335  } else {
336    // The signed type is higher-ranked than the unsigned type,
337    // but isn't actually any bigger (like unsigned int and long
338    // on most 32-bit systems).  Use the unsigned type corresponding
339    // to the signed type.
340    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
341  }
342  return destType;
343}
344
345//===----------------------------------------------------------------------===//
346//  Semantic Analysis for various Expression Types
347//===----------------------------------------------------------------------===//
348
349
350/// ActOnStringLiteral - The specified tokens were lexed as pasted string
351/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
352/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
353/// multiple tokens.  However, the common case is that StringToks points to one
354/// string.
355///
356Action::OwningExprResult
357Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
358  assert(NumStringToks && "Must have at least one string!");
359
360  StringLiteralParser Literal(StringToks, NumStringToks, PP);
361  if (Literal.hadError)
362    return ExprError();
363
364  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
365  for (unsigned i = 0; i != NumStringToks; ++i)
366    StringTokLocs.push_back(StringToks[i].getLocation());
367
368  QualType StrTy = Context.CharTy;
369  if (Literal.AnyWide) StrTy = Context.getWCharType();
370  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
371
372  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
373  if (getLangOptions().CPlusPlus)
374    StrTy.addConst();
375
376  // Get an array type for the string, according to C99 6.4.5.  This includes
377  // the nul terminator character as well as the string length for pascal
378  // strings.
379  StrTy = Context.getConstantArrayType(StrTy,
380                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
381                                       ArrayType::Normal, 0);
382
383  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
384  return Owned(StringLiteral::Create(Context, Literal.GetString(),
385                                     Literal.GetStringLength(),
386                                     Literal.AnyWide, StrTy,
387                                     &StringTokLocs[0],
388                                     StringTokLocs.size()));
389}
390
391/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
392/// CurBlock to VD should cause it to be snapshotted (as we do for auto
393/// variables defined outside the block) or false if this is not needed (e.g.
394/// for values inside the block or for globals).
395///
396/// FIXME: This will create BlockDeclRefExprs for global variables,
397/// function references, etc which is suboptimal :) and breaks
398/// things like "integer constant expression" tests.
399static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
400                                              ValueDecl *VD) {
401  // If the value is defined inside the block, we couldn't snapshot it even if
402  // we wanted to.
403  if (CurBlock->TheDecl == VD->getDeclContext())
404    return false;
405
406  // If this is an enum constant or function, it is constant, don't snapshot.
407  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
408    return false;
409
410  // If this is a reference to an extern, static, or global variable, no need to
411  // snapshot it.
412  // FIXME: What about 'const' variables in C++?
413  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
414    return Var->hasLocalStorage();
415
416  return true;
417}
418
419
420
421/// ActOnIdentifierExpr - The parser read an identifier in expression context,
422/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
423/// identifier is used in a function call context.
424/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
425/// class or namespace that the identifier must be a member of.
426Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
427                                                 IdentifierInfo &II,
428                                                 bool HasTrailingLParen,
429                                                 const CXXScopeSpec *SS,
430                                                 bool isAddressOfOperand) {
431  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
432                                  isAddressOfOperand);
433}
434
435/// BuildDeclRefExpr - Build either a DeclRefExpr or a
436/// QualifiedDeclRefExpr based on whether or not SS is a
437/// nested-name-specifier.
438DeclRefExpr *
439Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
440                       bool TypeDependent, bool ValueDependent,
441                       const CXXScopeSpec *SS) {
442  if (SS && !SS->isEmpty())
443    return new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
444                                              ValueDependent,
445                                              SS->getRange().getBegin());
446  else
447    return new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
448}
449
450/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
451/// variable corresponding to the anonymous union or struct whose type
452/// is Record.
453static Decl *getObjectForAnonymousRecordDecl(RecordDecl *Record) {
454  assert(Record->isAnonymousStructOrUnion() &&
455         "Record must be an anonymous struct or union!");
456
457  // FIXME: Once Decls are directly linked together, this will
458  // be an O(1) operation rather than a slow walk through DeclContext's
459  // vector (which itself will be eliminated). DeclGroups might make
460  // this even better.
461  DeclContext *Ctx = Record->getDeclContext();
462  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
463                               DEnd = Ctx->decls_end();
464       D != DEnd; ++D) {
465    if (*D == Record) {
466      // The object for the anonymous struct/union directly
467      // follows its type in the list of declarations.
468      ++D;
469      assert(D != DEnd && "Missing object for anonymous record");
470      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
471      return *D;
472    }
473  }
474
475  assert(false && "Missing object for anonymous record");
476  return 0;
477}
478
479Sema::OwningExprResult
480Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
481                                               FieldDecl *Field,
482                                               Expr *BaseObjectExpr,
483                                               SourceLocation OpLoc) {
484  assert(Field->getDeclContext()->isRecord() &&
485         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
486         && "Field must be stored inside an anonymous struct or union");
487
488  // Construct the sequence of field member references
489  // we'll have to perform to get to the field in the anonymous
490  // union/struct. The list of members is built from the field
491  // outward, so traverse it backwards to go from an object in
492  // the current context to the field we found.
493  llvm::SmallVector<FieldDecl *, 4> AnonFields;
494  AnonFields.push_back(Field);
495  VarDecl *BaseObject = 0;
496  DeclContext *Ctx = Field->getDeclContext();
497  do {
498    RecordDecl *Record = cast<RecordDecl>(Ctx);
499    Decl *AnonObject = getObjectForAnonymousRecordDecl(Record);
500    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
501      AnonFields.push_back(AnonField);
502    else {
503      BaseObject = cast<VarDecl>(AnonObject);
504      break;
505    }
506    Ctx = Ctx->getParent();
507  } while (Ctx->isRecord() &&
508           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
509
510  // Build the expression that refers to the base object, from
511  // which we will build a sequence of member references to each
512  // of the anonymous union objects and, eventually, the field we
513  // found via name lookup.
514  bool BaseObjectIsPointer = false;
515  unsigned ExtraQuals = 0;
516  if (BaseObject) {
517    // BaseObject is an anonymous struct/union variable (and is,
518    // therefore, not part of another non-anonymous record).
519    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
520    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
521                                               SourceLocation());
522    ExtraQuals
523      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
524  } else if (BaseObjectExpr) {
525    // The caller provided the base object expression. Determine
526    // whether its a pointer and whether it adds any qualifiers to the
527    // anonymous struct/union fields we're looking into.
528    QualType ObjectType = BaseObjectExpr->getType();
529    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
530      BaseObjectIsPointer = true;
531      ObjectType = ObjectPtr->getPointeeType();
532    }
533    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
534  } else {
535    // We've found a member of an anonymous struct/union that is
536    // inside a non-anonymous struct/union, so in a well-formed
537    // program our base object expression is "this".
538    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
539      if (!MD->isStatic()) {
540        QualType AnonFieldType
541          = Context.getTagDeclType(
542                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
543        QualType ThisType = Context.getTagDeclType(MD->getParent());
544        if ((Context.getCanonicalType(AnonFieldType)
545               == Context.getCanonicalType(ThisType)) ||
546            IsDerivedFrom(ThisType, AnonFieldType)) {
547          // Our base object expression is "this".
548          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
549                                                     MD->getThisType(Context));
550          BaseObjectIsPointer = true;
551        }
552      } else {
553        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
554          << Field->getDeclName());
555      }
556      ExtraQuals = MD->getTypeQualifiers();
557    }
558
559    if (!BaseObjectExpr)
560      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
561        << Field->getDeclName());
562  }
563
564  // Build the implicit member references to the field of the
565  // anonymous struct/union.
566  Expr *Result = BaseObjectExpr;
567  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
568         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
569       FI != FIEnd; ++FI) {
570    QualType MemberType = (*FI)->getType();
571    if (!(*FI)->isMutable()) {
572      unsigned combinedQualifiers
573        = MemberType.getCVRQualifiers() | ExtraQuals;
574      MemberType = MemberType.getQualifiedType(combinedQualifiers);
575    }
576    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
577                                      OpLoc, MemberType);
578    BaseObjectIsPointer = false;
579    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
580  }
581
582  return Owned(Result);
583}
584
585/// ActOnDeclarationNameExpr - The parser has read some kind of name
586/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
587/// performs lookup on that name and returns an expression that refers
588/// to that name. This routine isn't directly called from the parser,
589/// because the parser doesn't know about DeclarationName. Rather,
590/// this routine is called by ActOnIdentifierExpr,
591/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
592/// which form the DeclarationName from the corresponding syntactic
593/// forms.
594///
595/// HasTrailingLParen indicates whether this identifier is used in a
596/// function call context.  LookupCtx is only used for a C++
597/// qualified-id (foo::bar) to indicate the class or namespace that
598/// the identifier must be a member of.
599///
600/// isAddressOfOperand means that this expression is the direct operand
601/// of an address-of operator. This matters because this is the only
602/// situation where a qualified name referencing a non-static member may
603/// appear outside a member function of this class.
604Sema::OwningExprResult
605Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
606                               DeclarationName Name, bool HasTrailingLParen,
607                               const CXXScopeSpec *SS,
608                               bool isAddressOfOperand) {
609  // Could be enum-constant, value decl, instance variable, etc.
610  if (SS && SS->isInvalid())
611    return ExprError();
612  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
613                                         false, true, Loc);
614
615  NamedDecl *D = 0;
616  if (Lookup.isAmbiguous()) {
617    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
618                            SS && SS->isSet() ? SS->getRange()
619                                              : SourceRange());
620    return ExprError();
621  } else
622    D = Lookup.getAsDecl();
623
624  // If this reference is in an Objective-C method, then ivar lookup happens as
625  // well.
626  IdentifierInfo *II = Name.getAsIdentifierInfo();
627  if (II && getCurMethodDecl()) {
628    // There are two cases to handle here.  1) scoped lookup could have failed,
629    // in which case we should look for an ivar.  2) scoped lookup could have
630    // found a decl, but that decl is outside the current instance method (i.e.
631    // a global variable).  In these two cases, we do a lookup for an ivar with
632    // this name, if the lookup sucedes, we replace it our current decl.
633    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
634      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
635      ObjCInterfaceDecl *ClassDeclared;
636      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
637        // Check if referencing a field with __attribute__((deprecated)).
638        if (DiagnoseUseOfDecl(IV, Loc))
639          return ExprError();
640        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
641        // If a class method attemps to use a free standing ivar, this is
642        // an error.
643        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
644           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
645                           << IV->getDeclName());
646        // If a class method uses a global variable, even if an ivar with
647        // same name exists, use the global.
648        if (!IsClsMethod) {
649          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
650              ClassDeclared != IFace)
651           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
652          // FIXME: This should use a new expr for a direct reference, don't turn
653          // this into Self->ivar, just return a BareIVarExpr or something.
654          IdentifierInfo &II = Context.Idents.get("self");
655          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
656          ObjCIvarRefExpr *MRef = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
657                                    Loc, static_cast<Expr*>(SelfExpr.release()),
658                                    true, true);
659          Context.setFieldDecl(IFace, IV, MRef);
660          return Owned(MRef);
661        }
662      }
663    }
664    else if (getCurMethodDecl()->isInstanceMethod()) {
665      // We should warn if a local variable hides an ivar.
666      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
667      ObjCInterfaceDecl *ClassDeclared;
668      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
669        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
670            IFace == ClassDeclared)
671          Diag(Loc, diag::warn_ivar_use_hidden)<<IV->getDeclName();
672      }
673    }
674    // Needed to implement property "super.method" notation.
675    if (D == 0 && II->isStr("super")) {
676      QualType T;
677
678      if (getCurMethodDecl()->isInstanceMethod())
679        T = Context.getPointerType(Context.getObjCInterfaceType(
680                                   getCurMethodDecl()->getClassInterface()));
681      else
682        T = Context.getObjCClassType();
683      return Owned(new (Context) ObjCSuperExpr(Loc, T));
684    }
685  }
686
687  // Determine whether this name might be a candidate for
688  // argument-dependent lookup.
689  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
690             HasTrailingLParen;
691
692  if (ADL && D == 0) {
693    // We've seen something of the form
694    //
695    //   identifier(
696    //
697    // and we did not find any entity by the name
698    // "identifier". However, this identifier is still subject to
699    // argument-dependent lookup, so keep track of the name.
700    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
701                                                          Context.OverloadTy,
702                                                          Loc));
703  }
704
705  if (D == 0) {
706    // Otherwise, this could be an implicitly declared function reference (legal
707    // in C90, extension in C99).
708    if (HasTrailingLParen && II &&
709        !getLangOptions().CPlusPlus) // Not in C++.
710      D = ImplicitlyDefineFunction(Loc, *II, S);
711    else {
712      // If this name wasn't predeclared and if this is not a function call,
713      // diagnose the problem.
714      if (SS && !SS->isEmpty())
715        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
716          << Name << SS->getRange());
717      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
718               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
719        return ExprError(Diag(Loc, diag::err_undeclared_use)
720          << Name.getAsString());
721      else
722        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
723    }
724  }
725
726  // If this is an expression of the form &Class::member, don't build an
727  // implicit member ref, because we want a pointer to the member in general,
728  // not any specific instance's member.
729  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
730    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
731    if (D && isa<CXXRecordDecl>(DC)) {
732      QualType DType;
733      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
734        DType = FD->getType().getNonReferenceType();
735      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
736        DType = Method->getType();
737      } else if (isa<OverloadedFunctionDecl>(D)) {
738        DType = Context.OverloadTy;
739      }
740      // Could be an inner type. That's diagnosed below, so ignore it here.
741      if (!DType.isNull()) {
742        // The pointer is type- and value-dependent if it points into something
743        // dependent.
744        bool Dependent = false;
745        for (; DC; DC = DC->getParent()) {
746          // FIXME: could stop early at namespace scope.
747          if (DC->isRecord()) {
748            CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
749            if (Context.getTypeDeclType(Record)->isDependentType()) {
750              Dependent = true;
751              break;
752            }
753          }
754        }
755        return Owned(BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS));
756      }
757    }
758  }
759
760  // We may have found a field within an anonymous union or struct
761  // (C++ [class.union]).
762  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
763    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
764      return BuildAnonymousStructUnionMemberReference(Loc, FD);
765
766  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
767    if (!MD->isStatic()) {
768      // C++ [class.mfct.nonstatic]p2:
769      //   [...] if name lookup (3.4.1) resolves the name in the
770      //   id-expression to a nonstatic nontype member of class X or of
771      //   a base class of X, the id-expression is transformed into a
772      //   class member access expression (5.2.5) using (*this) (9.3.2)
773      //   as the postfix-expression to the left of the '.' operator.
774      DeclContext *Ctx = 0;
775      QualType MemberType;
776      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
777        Ctx = FD->getDeclContext();
778        MemberType = FD->getType();
779
780        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
781          MemberType = RefType->getPointeeType();
782        else if (!FD->isMutable()) {
783          unsigned combinedQualifiers
784            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
785          MemberType = MemberType.getQualifiedType(combinedQualifiers);
786        }
787      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
788        if (!Method->isStatic()) {
789          Ctx = Method->getParent();
790          MemberType = Method->getType();
791        }
792      } else if (OverloadedFunctionDecl *Ovl
793                   = dyn_cast<OverloadedFunctionDecl>(D)) {
794        for (OverloadedFunctionDecl::function_iterator
795               Func = Ovl->function_begin(),
796               FuncEnd = Ovl->function_end();
797             Func != FuncEnd; ++Func) {
798          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
799            if (!DMethod->isStatic()) {
800              Ctx = Ovl->getDeclContext();
801              MemberType = Context.OverloadTy;
802              break;
803            }
804        }
805      }
806
807      if (Ctx && Ctx->isRecord()) {
808        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
809        QualType ThisType = Context.getTagDeclType(MD->getParent());
810        if ((Context.getCanonicalType(CtxType)
811               == Context.getCanonicalType(ThisType)) ||
812            IsDerivedFrom(ThisType, CtxType)) {
813          // Build the implicit member access expression.
814          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
815                                                 MD->getThisType(Context));
816          return Owned(new (Context) MemberExpr(This, true, D,
817                                                SourceLocation(), MemberType));
818        }
819      }
820    }
821  }
822
823  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
824    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
825      if (MD->isStatic())
826        // "invalid use of member 'x' in static member function"
827        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
828          << FD->getDeclName());
829    }
830
831    // Any other ways we could have found the field in a well-formed
832    // program would have been turned into implicit member expressions
833    // above.
834    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
835      << FD->getDeclName());
836  }
837
838  if (isa<TypedefDecl>(D))
839    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
840  if (isa<ObjCInterfaceDecl>(D))
841    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
842  if (isa<NamespaceDecl>(D))
843    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
844
845  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
846  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
847    return Owned(BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
848                                  false, false, SS));
849  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
850    return Owned(BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
851                                  false, false, SS));
852  ValueDecl *VD = cast<ValueDecl>(D);
853
854  // Check whether this declaration can be used. Note that we suppress
855  // this check when we're going to perform argument-dependent lookup
856  // on this function name, because this might not be the function
857  // that overload resolution actually selects.
858  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
859    return ExprError();
860
861  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
862    // Warn about constructs like:
863    //   if (void *X = foo()) { ... } else { X }.
864    // In the else block, the pointer is always false.
865    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
866      Scope *CheckS = S;
867      while (CheckS) {
868        if (CheckS->isWithinElse() &&
869            CheckS->getControlParent()->isDeclScope(Var)) {
870          if (Var->getType()->isBooleanType())
871            ExprError(Diag(Loc, diag::warn_value_always_false)
872              << Var->getDeclName());
873          else
874            ExprError(Diag(Loc, diag::warn_value_always_zero)
875              << Var->getDeclName());
876          break;
877        }
878
879        // Move up one more control parent to check again.
880        CheckS = CheckS->getControlParent();
881        if (CheckS)
882          CheckS = CheckS->getParent();
883      }
884    }
885  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(VD)) {
886    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
887      // C99 DR 316 says that, if a function type comes from a
888      // function definition (without a prototype), that type is only
889      // used for checking compatibility. Therefore, when referencing
890      // the function, we pretend that we don't have the full function
891      // type.
892      QualType T = Func->getType();
893      QualType NoProtoType = T;
894      if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
895        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
896      return Owned(BuildDeclRefExpr(VD, NoProtoType, Loc, false, false, SS));
897    }
898  }
899
900  // Only create DeclRefExpr's for valid Decl's.
901  if (VD->isInvalidDecl())
902    return ExprError();
903
904  // If the identifier reference is inside a block, and it refers to a value
905  // that is outside the block, create a BlockDeclRefExpr instead of a
906  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
907  // the block is formed.
908  //
909  // We do not do this for things like enum constants, global variables, etc,
910  // as they do not get snapshotted.
911  //
912  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
913    // Blocks that have these can't be constant.
914    CurBlock->hasBlockDeclRefExprs = true;
915
916    // The BlocksAttr indicates the variable is bound by-reference.
917    if (VD->getAttr<BlocksAttr>())
918      return Owned(new (Context) BlockDeclRefExpr(VD,
919                               VD->getType().getNonReferenceType(), Loc, true));
920
921    // Variable will be bound by-copy, make it const within the closure.
922    VD->getType().addConst();
923    return Owned(new (Context) BlockDeclRefExpr(VD,
924                             VD->getType().getNonReferenceType(), Loc, false));
925  }
926  // If this reference is not in a block or if the referenced variable is
927  // within the block, create a normal DeclRefExpr.
928
929  bool TypeDependent = false;
930  bool ValueDependent = false;
931  if (getLangOptions().CPlusPlus) {
932    // C++ [temp.dep.expr]p3:
933    //   An id-expression is type-dependent if it contains:
934    //     - an identifier that was declared with a dependent type,
935    if (VD->getType()->isDependentType())
936      TypeDependent = true;
937    //     - FIXME: a template-id that is dependent,
938    //     - a conversion-function-id that specifies a dependent type,
939    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
940             Name.getCXXNameType()->isDependentType())
941      TypeDependent = true;
942    //     - a nested-name-specifier that contains a class-name that
943    //       names a dependent type.
944    else if (SS && !SS->isEmpty()) {
945      for (DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
946           DC; DC = DC->getParent()) {
947        // FIXME: could stop early at namespace scope.
948        if (DC->isRecord()) {
949          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
950          if (Context.getTypeDeclType(Record)->isDependentType()) {
951            TypeDependent = true;
952            break;
953          }
954        }
955      }
956    }
957
958    // C++ [temp.dep.constexpr]p2:
959    //
960    //   An identifier is value-dependent if it is:
961    //     - a name declared with a dependent type,
962    if (TypeDependent)
963      ValueDependent = true;
964    //     - the name of a non-type template parameter,
965    else if (isa<NonTypeTemplateParmDecl>(VD))
966      ValueDependent = true;
967    //    - a constant with integral or enumeration type and is
968    //      initialized with an expression that is value-dependent
969    //      (FIXME!).
970  }
971
972  return Owned(BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
973                                TypeDependent, ValueDependent, SS));
974}
975
976Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
977                                                 tok::TokenKind Kind) {
978  PredefinedExpr::IdentType IT;
979
980  switch (Kind) {
981  default: assert(0 && "Unknown simple primary expr!");
982  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
983  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
984  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
985  }
986
987  // Pre-defined identifiers are of type char[x], where x is the length of the
988  // string.
989  unsigned Length;
990  if (FunctionDecl *FD = getCurFunctionDecl())
991    Length = FD->getIdentifier()->getLength();
992  else if (ObjCMethodDecl *MD = getCurMethodDecl())
993    Length = MD->getSynthesizedMethodSize();
994  else {
995    Diag(Loc, diag::ext_predef_outside_function);
996    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
997    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
998  }
999
1000
1001  llvm::APInt LengthI(32, Length + 1);
1002  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
1003  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1004  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1005}
1006
1007Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1008  llvm::SmallString<16> CharBuffer;
1009  CharBuffer.resize(Tok.getLength());
1010  const char *ThisTokBegin = &CharBuffer[0];
1011  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1012
1013  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1014                            Tok.getLocation(), PP);
1015  if (Literal.hadError())
1016    return ExprError();
1017
1018  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1019
1020  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1021                                              Literal.isWide(),
1022                                              type, Tok.getLocation()));
1023}
1024
1025Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1026  // Fast path for a single digit (which is quite common).  A single digit
1027  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1028  if (Tok.getLength() == 1) {
1029    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1030    unsigned IntSize = Context.Target.getIntWidth();
1031    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1032                    Context.IntTy, Tok.getLocation()));
1033  }
1034
1035  llvm::SmallString<512> IntegerBuffer;
1036  // Add padding so that NumericLiteralParser can overread by one character.
1037  IntegerBuffer.resize(Tok.getLength()+1);
1038  const char *ThisTokBegin = &IntegerBuffer[0];
1039
1040  // Get the spelling of the token, which eliminates trigraphs, etc.
1041  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1042
1043  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1044                               Tok.getLocation(), PP);
1045  if (Literal.hadError)
1046    return ExprError();
1047
1048  Expr *Res;
1049
1050  if (Literal.isFloatingLiteral()) {
1051    QualType Ty;
1052    if (Literal.isFloat)
1053      Ty = Context.FloatTy;
1054    else if (!Literal.isLong)
1055      Ty = Context.DoubleTy;
1056    else
1057      Ty = Context.LongDoubleTy;
1058
1059    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1060
1061    // isExact will be set by GetFloatValue().
1062    bool isExact = false;
1063    Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
1064                                        &isExact, Ty, Tok.getLocation());
1065
1066  } else if (!Literal.isIntegerLiteral()) {
1067    return ExprError();
1068  } else {
1069    QualType Ty;
1070
1071    // long long is a C99 feature.
1072    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1073        Literal.isLongLong)
1074      Diag(Tok.getLocation(), diag::ext_longlong);
1075
1076    // Get the value in the widest-possible width.
1077    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1078
1079    if (Literal.GetIntegerValue(ResultVal)) {
1080      // If this value didn't fit into uintmax_t, warn and force to ull.
1081      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1082      Ty = Context.UnsignedLongLongTy;
1083      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1084             "long long is not intmax_t?");
1085    } else {
1086      // If this value fits into a ULL, try to figure out what else it fits into
1087      // according to the rules of C99 6.4.4.1p5.
1088
1089      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1090      // be an unsigned int.
1091      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1092
1093      // Check from smallest to largest, picking the smallest type we can.
1094      unsigned Width = 0;
1095      if (!Literal.isLong && !Literal.isLongLong) {
1096        // Are int/unsigned possibilities?
1097        unsigned IntSize = Context.Target.getIntWidth();
1098
1099        // Does it fit in a unsigned int?
1100        if (ResultVal.isIntN(IntSize)) {
1101          // Does it fit in a signed int?
1102          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1103            Ty = Context.IntTy;
1104          else if (AllowUnsigned)
1105            Ty = Context.UnsignedIntTy;
1106          Width = IntSize;
1107        }
1108      }
1109
1110      // Are long/unsigned long possibilities?
1111      if (Ty.isNull() && !Literal.isLongLong) {
1112        unsigned LongSize = Context.Target.getLongWidth();
1113
1114        // Does it fit in a unsigned long?
1115        if (ResultVal.isIntN(LongSize)) {
1116          // Does it fit in a signed long?
1117          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1118            Ty = Context.LongTy;
1119          else if (AllowUnsigned)
1120            Ty = Context.UnsignedLongTy;
1121          Width = LongSize;
1122        }
1123      }
1124
1125      // Finally, check long long if needed.
1126      if (Ty.isNull()) {
1127        unsigned LongLongSize = Context.Target.getLongLongWidth();
1128
1129        // Does it fit in a unsigned long long?
1130        if (ResultVal.isIntN(LongLongSize)) {
1131          // Does it fit in a signed long long?
1132          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1133            Ty = Context.LongLongTy;
1134          else if (AllowUnsigned)
1135            Ty = Context.UnsignedLongLongTy;
1136          Width = LongLongSize;
1137        }
1138      }
1139
1140      // If we still couldn't decide a type, we probably have something that
1141      // does not fit in a signed long long, but has no U suffix.
1142      if (Ty.isNull()) {
1143        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1144        Ty = Context.UnsignedLongLongTy;
1145        Width = Context.Target.getLongLongWidth();
1146      }
1147
1148      if (ResultVal.getBitWidth() != Width)
1149        ResultVal.trunc(Width);
1150    }
1151    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1152  }
1153
1154  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1155  if (Literal.isImaginary)
1156    Res = new (Context) ImaginaryLiteral(Res,
1157                                        Context.getComplexType(Res->getType()));
1158
1159  return Owned(Res);
1160}
1161
1162Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1163                                              SourceLocation R, ExprArg Val) {
1164  Expr *E = (Expr *)Val.release();
1165  assert((E != 0) && "ActOnParenExpr() missing expr");
1166  return Owned(new (Context) ParenExpr(L, R, E));
1167}
1168
1169/// The UsualUnaryConversions() function is *not* called by this routine.
1170/// See C99 6.3.2.1p[2-4] for more details.
1171bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1172                                     SourceLocation OpLoc,
1173                                     const SourceRange &ExprRange,
1174                                     bool isSizeof) {
1175  if (exprType->isDependentType())
1176    return false;
1177
1178  // C99 6.5.3.4p1:
1179  if (isa<FunctionType>(exprType)) {
1180    // alignof(function) is allowed.
1181    if (isSizeof)
1182      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1183    return false;
1184  }
1185
1186  if (exprType->isVoidType()) {
1187    Diag(OpLoc, diag::ext_sizeof_void_type)
1188      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1189    return false;
1190  }
1191
1192  return RequireCompleteType(OpLoc, exprType,
1193                                isSizeof ? diag::err_sizeof_incomplete_type :
1194                                           diag::err_alignof_incomplete_type,
1195                                ExprRange);
1196}
1197
1198bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1199                            const SourceRange &ExprRange) {
1200  E = E->IgnoreParens();
1201
1202  // alignof decl is always ok.
1203  if (isa<DeclRefExpr>(E))
1204    return false;
1205
1206  // Cannot know anything else if the expression is dependent.
1207  if (E->isTypeDependent())
1208    return false;
1209
1210  if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1211    if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
1212      if (FD->isBitField()) {
1213        Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1214        return true;
1215      }
1216      // Other fields are ok.
1217      return false;
1218    }
1219  }
1220  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1221}
1222
1223/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1224/// the same for @c alignof and @c __alignof
1225/// Note that the ArgRange is invalid if isType is false.
1226Action::OwningExprResult
1227Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1228                             void *TyOrEx, const SourceRange &ArgRange) {
1229  // If error parsing type, ignore.
1230  if (TyOrEx == 0) return ExprError();
1231
1232  QualType ArgTy;
1233  SourceRange Range;
1234  if (isType) {
1235    ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1236    Range = ArgRange;
1237
1238    // Verify that the operand is valid.
1239    if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof))
1240      return ExprError();
1241  } else {
1242    // Get the end location.
1243    Expr *ArgEx = (Expr *)TyOrEx;
1244    Range = ArgEx->getSourceRange();
1245    ArgTy = ArgEx->getType();
1246
1247    // Verify that the operand is valid.
1248    bool isInvalid;
1249    if (!isSizeof) {
1250      isInvalid = CheckAlignOfExpr(ArgEx, OpLoc, Range);
1251    } else if (ArgEx->isBitField()) {  // C99 6.5.3.4p1.
1252      Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1253      isInvalid = true;
1254    } else {
1255      isInvalid = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, true);
1256    }
1257
1258    if (isInvalid) {
1259      DeleteExpr(ArgEx);
1260      return ExprError();
1261    }
1262  }
1263
1264  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1265  return Owned(new (Context) SizeOfAlignOfExpr(isSizeof, isType, TyOrEx,
1266                                               Context.getSizeType(), OpLoc,
1267                                               Range.getEnd()));
1268}
1269
1270QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1271  if (V->isTypeDependent())
1272    return Context.DependentTy;
1273
1274  DefaultFunctionArrayConversion(V);
1275
1276  // These operators return the element type of a complex type.
1277  if (const ComplexType *CT = V->getType()->getAsComplexType())
1278    return CT->getElementType();
1279
1280  // Otherwise they pass through real integer and floating point types here.
1281  if (V->getType()->isArithmeticType())
1282    return V->getType();
1283
1284  // Reject anything else.
1285  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1286    << (isReal ? "__real" : "__imag");
1287  return QualType();
1288}
1289
1290
1291
1292Action::OwningExprResult
1293Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1294                          tok::TokenKind Kind, ExprArg Input) {
1295  Expr *Arg = (Expr *)Input.get();
1296
1297  UnaryOperator::Opcode Opc;
1298  switch (Kind) {
1299  default: assert(0 && "Unknown unary op!");
1300  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1301  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1302  }
1303
1304  if (getLangOptions().CPlusPlus &&
1305      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1306    // Which overloaded operator?
1307    OverloadedOperatorKind OverOp =
1308      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1309
1310    // C++ [over.inc]p1:
1311    //
1312    //     [...] If the function is a member function with one
1313    //     parameter (which shall be of type int) or a non-member
1314    //     function with two parameters (the second of which shall be
1315    //     of type int), it defines the postfix increment operator ++
1316    //     for objects of that type. When the postfix increment is
1317    //     called as a result of using the ++ operator, the int
1318    //     argument will have value zero.
1319    Expr *Args[2] = {
1320      Arg,
1321      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1322                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1323    };
1324
1325    // Build the candidate set for overloading
1326    OverloadCandidateSet CandidateSet;
1327    if (AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet))
1328      return ExprError();
1329
1330    // Perform overload resolution.
1331    OverloadCandidateSet::iterator Best;
1332    switch (BestViableFunction(CandidateSet, Best)) {
1333    case OR_Success: {
1334      // We found a built-in operator or an overloaded operator.
1335      FunctionDecl *FnDecl = Best->Function;
1336
1337      if (FnDecl) {
1338        // We matched an overloaded operator. Build a call to that
1339        // operator.
1340
1341        // Convert the arguments.
1342        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1343          if (PerformObjectArgumentInitialization(Arg, Method))
1344            return ExprError();
1345        } else {
1346          // Convert the arguments.
1347          if (PerformCopyInitialization(Arg,
1348                                        FnDecl->getParamDecl(0)->getType(),
1349                                        "passing"))
1350            return ExprError();
1351        }
1352
1353        // Determine the result type
1354        QualType ResultTy
1355          = FnDecl->getType()->getAsFunctionType()->getResultType();
1356        ResultTy = ResultTy.getNonReferenceType();
1357
1358        // Build the actual expression node.
1359        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1360                                                 SourceLocation());
1361        UsualUnaryConversions(FnExpr);
1362
1363        Input.release();
1364        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2,
1365                                                       ResultTy, OpLoc));
1366      } else {
1367        // We matched a built-in operator. Convert the arguments, then
1368        // break out so that we will build the appropriate built-in
1369        // operator node.
1370        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1371                                      "passing"))
1372          return ExprError();
1373
1374        break;
1375      }
1376    }
1377
1378    case OR_No_Viable_Function:
1379      // No viable function; fall through to handling this as a
1380      // built-in operator, which will produce an error message for us.
1381      break;
1382
1383    case OR_Ambiguous:
1384      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1385          << UnaryOperator::getOpcodeStr(Opc)
1386          << Arg->getSourceRange();
1387      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1388      return ExprError();
1389
1390    case OR_Deleted:
1391      Diag(OpLoc, diag::err_ovl_deleted_oper)
1392        << Best->Function->isDeleted()
1393        << UnaryOperator::getOpcodeStr(Opc)
1394        << Arg->getSourceRange();
1395      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1396      return ExprError();
1397    }
1398
1399    // Either we found no viable overloaded operator or we matched a
1400    // built-in operator. In either case, fall through to trying to
1401    // build a built-in operation.
1402  }
1403
1404  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1405                                                 Opc == UnaryOperator::PostInc);
1406  if (result.isNull())
1407    return ExprError();
1408  Input.release();
1409  return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
1410}
1411
1412Action::OwningExprResult
1413Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1414                              ExprArg Idx, SourceLocation RLoc) {
1415  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1416       *RHSExp = static_cast<Expr*>(Idx.get());
1417
1418  if (getLangOptions().CPlusPlus &&
1419      (LHSExp->getType()->isRecordType() ||
1420       LHSExp->getType()->isEnumeralType() ||
1421       RHSExp->getType()->isRecordType() ||
1422       RHSExp->getType()->isEnumeralType())) {
1423    // Add the appropriate overloaded operators (C++ [over.match.oper])
1424    // to the candidate set.
1425    OverloadCandidateSet CandidateSet;
1426    Expr *Args[2] = { LHSExp, RHSExp };
1427    if (AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1428                              SourceRange(LLoc, RLoc)))
1429      return ExprError();
1430
1431    // Perform overload resolution.
1432    OverloadCandidateSet::iterator Best;
1433    switch (BestViableFunction(CandidateSet, Best)) {
1434    case OR_Success: {
1435      // We found a built-in operator or an overloaded operator.
1436      FunctionDecl *FnDecl = Best->Function;
1437
1438      if (FnDecl) {
1439        // We matched an overloaded operator. Build a call to that
1440        // operator.
1441
1442        // Convert the arguments.
1443        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1444          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1445              PerformCopyInitialization(RHSExp,
1446                                        FnDecl->getParamDecl(0)->getType(),
1447                                        "passing"))
1448            return ExprError();
1449        } else {
1450          // Convert the arguments.
1451          if (PerformCopyInitialization(LHSExp,
1452                                        FnDecl->getParamDecl(0)->getType(),
1453                                        "passing") ||
1454              PerformCopyInitialization(RHSExp,
1455                                        FnDecl->getParamDecl(1)->getType(),
1456                                        "passing"))
1457            return ExprError();
1458        }
1459
1460        // Determine the result type
1461        QualType ResultTy
1462          = FnDecl->getType()->getAsFunctionType()->getResultType();
1463        ResultTy = ResultTy.getNonReferenceType();
1464
1465        // Build the actual expression node.
1466        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1467                                                 SourceLocation());
1468        UsualUnaryConversions(FnExpr);
1469
1470        Base.release();
1471        Idx.release();
1472        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2,
1473                                                       ResultTy, LLoc));
1474      } else {
1475        // We matched a built-in operator. Convert the arguments, then
1476        // break out so that we will build the appropriate built-in
1477        // operator node.
1478        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1479                                      "passing") ||
1480            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1481                                      "passing"))
1482          return ExprError();
1483
1484        break;
1485      }
1486    }
1487
1488    case OR_No_Viable_Function:
1489      // No viable function; fall through to handling this as a
1490      // built-in operator, which will produce an error message for us.
1491      break;
1492
1493    case OR_Ambiguous:
1494      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1495          << "[]"
1496          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1497      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1498      return ExprError();
1499
1500    case OR_Deleted:
1501      Diag(LLoc, diag::err_ovl_deleted_oper)
1502        << Best->Function->isDeleted()
1503        << "[]"
1504        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1505      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1506      return ExprError();
1507    }
1508
1509    // Either we found no viable overloaded operator or we matched a
1510    // built-in operator. In either case, fall through to trying to
1511    // build a built-in operation.
1512  }
1513
1514  // Perform default conversions.
1515  DefaultFunctionArrayConversion(LHSExp);
1516  DefaultFunctionArrayConversion(RHSExp);
1517
1518  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1519
1520  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1521  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1522  // in the subscript position. As a result, we need to derive the array base
1523  // and index from the expression types.
1524  Expr *BaseExpr, *IndexExpr;
1525  QualType ResultType;
1526  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1527    BaseExpr = LHSExp;
1528    IndexExpr = RHSExp;
1529    ResultType = Context.DependentTy;
1530  } else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1531    BaseExpr = LHSExp;
1532    IndexExpr = RHSExp;
1533    // FIXME: need to deal with const...
1534    ResultType = PTy->getPointeeType();
1535  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1536     // Handle the uncommon case of "123[Ptr]".
1537    BaseExpr = RHSExp;
1538    IndexExpr = LHSExp;
1539    // FIXME: need to deal with const...
1540    ResultType = PTy->getPointeeType();
1541  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1542    BaseExpr = LHSExp;    // vectors: V[123]
1543    IndexExpr = RHSExp;
1544
1545    // FIXME: need to deal with const...
1546    ResultType = VTy->getElementType();
1547  } else {
1548    return ExprError(Diag(LHSExp->getLocStart(),
1549      diag::err_typecheck_subscript_value) << RHSExp->getSourceRange());
1550  }
1551  // C99 6.5.2.1p1
1552  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
1553    return ExprError(Diag(IndexExpr->getLocStart(),
1554      diag::err_typecheck_subscript) << IndexExpr->getSourceRange());
1555
1556  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
1557  // the following check catches trying to index a pointer to a function (e.g.
1558  // void (*)(int)) and pointers to incomplete types.  Functions are not
1559  // objects in C99.
1560  if (!ResultType->isObjectType() && !ResultType->isDependentType())
1561    return ExprError(Diag(BaseExpr->getLocStart(),
1562                diag::err_typecheck_subscript_not_object)
1563      << BaseExpr->getType() << BaseExpr->getSourceRange());
1564
1565  Base.release();
1566  Idx.release();
1567  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1568                                                ResultType, RLoc));
1569}
1570
1571QualType Sema::
1572CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1573                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1574  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1575
1576  // The vector accessor can't exceed the number of elements.
1577  const char *compStr = CompName.getName();
1578
1579  // This flag determines whether or not the component is one of the four
1580  // special names that indicate a subset of exactly half the elements are
1581  // to be selected.
1582  bool HalvingSwizzle = false;
1583
1584  // This flag determines whether or not CompName has an 's' char prefix,
1585  // indicating that it is a string of hex values to be used as vector indices.
1586  bool HexSwizzle = *compStr == 's';
1587
1588  // Check that we've found one of the special components, or that the component
1589  // names must come from the same set.
1590  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1591      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1592    HalvingSwizzle = true;
1593  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1594    do
1595      compStr++;
1596    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1597  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1598    do
1599      compStr++;
1600    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1601  }
1602
1603  if (!HalvingSwizzle && *compStr) {
1604    // We didn't get to the end of the string. This means the component names
1605    // didn't come from the same set *or* we encountered an illegal name.
1606    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1607      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1608    return QualType();
1609  }
1610
1611  // Ensure no component accessor exceeds the width of the vector type it
1612  // operates on.
1613  if (!HalvingSwizzle) {
1614    compStr = CompName.getName();
1615
1616    if (HexSwizzle)
1617      compStr++;
1618
1619    while (*compStr) {
1620      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1621        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1622          << baseType << SourceRange(CompLoc);
1623        return QualType();
1624      }
1625    }
1626  }
1627
1628  // If this is a halving swizzle, verify that the base type has an even
1629  // number of elements.
1630  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1631    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1632      << baseType << SourceRange(CompLoc);
1633    return QualType();
1634  }
1635
1636  // The component accessor looks fine - now we need to compute the actual type.
1637  // The vector type is implied by the component accessor. For example,
1638  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1639  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1640  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1641  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1642                                     : CompName.getLength();
1643  if (HexSwizzle)
1644    CompSize--;
1645
1646  if (CompSize == 1)
1647    return vecType->getElementType();
1648
1649  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1650  // Now look up the TypeDefDecl from the vector type. Without this,
1651  // diagostics look bad. We want extended vector types to appear built-in.
1652  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1653    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1654      return Context.getTypedefType(ExtVectorDecls[i]);
1655  }
1656  return VT; // should never get here (a typedef type should always be found).
1657}
1658
1659
1660Action::OwningExprResult
1661Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
1662                               tok::TokenKind OpKind, SourceLocation MemberLoc,
1663                               IdentifierInfo &Member,
1664                               DeclTy *ObjCImpDecl) {
1665  Expr *BaseExpr = static_cast<Expr *>(Base.release());
1666  assert(BaseExpr && "no record expression");
1667
1668  // Perform default conversions.
1669  DefaultFunctionArrayConversion(BaseExpr);
1670
1671  QualType BaseType = BaseExpr->getType();
1672  assert(!BaseType.isNull() && "no type for member expression");
1673
1674  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1675  // must have pointer type, and the accessed type is the pointee.
1676  if (OpKind == tok::arrow) {
1677    if (const PointerType *PT = BaseType->getAsPointerType())
1678      BaseType = PT->getPointeeType();
1679    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
1680      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
1681                                            MemberLoc, Member));
1682    else
1683      return ExprError(Diag(MemberLoc,
1684                            diag::err_typecheck_member_reference_arrow)
1685        << BaseType << BaseExpr->getSourceRange());
1686  }
1687
1688  // Handle field access to simple records.  This also handles access to fields
1689  // of the ObjC 'id' struct.
1690  if (const RecordType *RTy = BaseType->getAsRecordType()) {
1691    RecordDecl *RDecl = RTy->getDecl();
1692    if (RequireCompleteType(OpLoc, BaseType,
1693                               diag::err_typecheck_incomplete_tag,
1694                               BaseExpr->getSourceRange()))
1695      return ExprError();
1696
1697    // The record definition is complete, now make sure the member is valid.
1698    // FIXME: Qualified name lookup for C++ is a bit more complicated
1699    // than this.
1700    LookupResult Result
1701      = LookupQualifiedName(RDecl, DeclarationName(&Member),
1702                            LookupMemberName, false);
1703
1704    NamedDecl *MemberDecl = 0;
1705    if (!Result)
1706      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
1707               << &Member << BaseExpr->getSourceRange());
1708    else if (Result.isAmbiguous()) {
1709      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
1710                              MemberLoc, BaseExpr->getSourceRange());
1711      return ExprError();
1712    } else
1713      MemberDecl = Result;
1714
1715    // If the decl being referenced had an error, return an error for this
1716    // sub-expr without emitting another error, in order to avoid cascading
1717    // error cases.
1718    if (MemberDecl->isInvalidDecl())
1719      return ExprError();
1720
1721    // Check the use of this field
1722    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1723      return ExprError();
1724
1725    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
1726      // We may have found a field within an anonymous union or struct
1727      // (C++ [class.union]).
1728      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1729        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
1730                                                        BaseExpr, OpLoc);
1731
1732      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1733      // FIXME: Handle address space modifiers
1734      QualType MemberType = FD->getType();
1735      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
1736        MemberType = Ref->getPointeeType();
1737      else {
1738        unsigned combinedQualifiers =
1739          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
1740        if (FD->isMutable())
1741          combinedQualifiers &= ~QualType::Const;
1742        MemberType = MemberType.getQualifiedType(combinedQualifiers);
1743      }
1744
1745      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
1746                                            MemberLoc, MemberType));
1747    } else if (CXXClassVarDecl *Var = dyn_cast<CXXClassVarDecl>(MemberDecl))
1748      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1749                                  Var, MemberLoc,
1750                                  Var->getType().getNonReferenceType()));
1751    else if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
1752      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1753                                  MemberFn, MemberLoc, MemberFn->getType()));
1754    else if (OverloadedFunctionDecl *Ovl
1755             = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
1756      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
1757                                  MemberLoc, Context.OverloadTy));
1758    else if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
1759      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1760                                            Enum, MemberLoc, Enum->getType()));
1761    else if (isa<TypeDecl>(MemberDecl))
1762      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
1763        << DeclarationName(&Member) << int(OpKind == tok::arrow));
1764
1765    // We found a declaration kind that we didn't expect. This is a
1766    // generic error message that tells the user that she can't refer
1767    // to this member with '.' or '->'.
1768    return ExprError(Diag(MemberLoc,
1769                          diag::err_typecheck_member_reference_unknown)
1770      << DeclarationName(&Member) << int(OpKind == tok::arrow));
1771  }
1772
1773  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
1774  // (*Obj).ivar.
1775  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
1776    ObjCInterfaceDecl *ClassDeclared;
1777    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member,
1778                                                             ClassDeclared)) {
1779      // If the decl being referenced had an error, return an error for this
1780      // sub-expr without emitting another error, in order to avoid cascading
1781      // error cases.
1782      if (IV->isInvalidDecl())
1783        return ExprError();
1784
1785      // Check whether we can reference this field.
1786      if (DiagnoseUseOfDecl(IV, MemberLoc))
1787        return ExprError();
1788      if (IV->getAccessControl() != ObjCIvarDecl::Public) {
1789        ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1790        if (ObjCMethodDecl *MD = getCurMethodDecl())
1791          ClassOfMethodDecl =  MD->getClassInterface();
1792        else if (ObjCImpDecl && getCurFunctionDecl()) {
1793          // Case of a c-function declared inside an objc implementation.
1794          // FIXME: For a c-style function nested inside an objc implementation
1795          // class, there is no implementation context available, so we pass down
1796          // the context as argument to this routine. Ideally, this context need
1797          // be passed down in the AST node and somehow calculated from the AST
1798          // for a function decl.
1799          Decl *ImplDecl = static_cast<Decl *>(ObjCImpDecl);
1800          if (ObjCImplementationDecl *IMPD =
1801              dyn_cast<ObjCImplementationDecl>(ImplDecl))
1802            ClassOfMethodDecl = IMPD->getClassInterface();
1803          else if (ObjCCategoryImplDecl* CatImplClass =
1804                      dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
1805            ClassOfMethodDecl = CatImplClass->getClassInterface();
1806        }
1807        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1808          if (ClassDeclared != IFTy->getDecl() ||
1809              ClassOfMethodDecl != ClassDeclared)
1810            Diag(MemberLoc, diag::error_private_ivar_access) << IV->getDeclName();
1811        }
1812        // @protected
1813        else if (!IFTy->getDecl()->isSuperClassOf(ClassOfMethodDecl))
1814          Diag(MemberLoc, diag::error_protected_ivar_access) << IV->getDeclName();
1815      }
1816
1817      ObjCIvarRefExpr *MRef= new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1818                                                 MemberLoc, BaseExpr,
1819                                                 OpKind == tok::arrow);
1820      Context.setFieldDecl(IFTy->getDecl(), IV, MRef);
1821      return Owned(MRef);
1822    }
1823    return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1824                       << IFTy->getDecl()->getDeclName() << &Member
1825                       << BaseExpr->getSourceRange());
1826  }
1827
1828  // Handle Objective-C property access, which is "Obj.property" where Obj is a
1829  // pointer to a (potentially qualified) interface type.
1830  const PointerType *PTy;
1831  const ObjCInterfaceType *IFTy;
1832  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
1833      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
1834    ObjCInterfaceDecl *IFace = IFTy->getDecl();
1835
1836    // Search for a declared property first.
1837    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member)) {
1838      // Check whether we can reference this property.
1839      if (DiagnoseUseOfDecl(PD, MemberLoc))
1840        return ExprError();
1841
1842      return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1843                                                     MemberLoc, BaseExpr));
1844    }
1845
1846    // Check protocols on qualified interfaces.
1847    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
1848         E = IFTy->qual_end(); I != E; ++I)
1849      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
1850        // Check whether we can reference this property.
1851        if (DiagnoseUseOfDecl(PD, MemberLoc))
1852          return ExprError();
1853
1854        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1855                                                       MemberLoc, BaseExpr));
1856      }
1857
1858    // If that failed, look for an "implicit" property by seeing if the nullary
1859    // selector is implemented.
1860
1861    // FIXME: The logic for looking up nullary and unary selectors should be
1862    // shared with the code in ActOnInstanceMessage.
1863
1864    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1865    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1866
1867    // If this reference is in an @implementation, check for 'private' methods.
1868    if (!Getter)
1869      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1870        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1871          if (ObjCImplementationDecl *ImpDecl =
1872              ObjCImplementations[ClassDecl->getIdentifier()])
1873            Getter = ImpDecl->getInstanceMethod(Sel);
1874
1875    // Look through local category implementations associated with the class.
1876    if (!Getter) {
1877      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
1878        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1879          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
1880      }
1881    }
1882    if (Getter) {
1883      // Check if we can reference this property.
1884      if (DiagnoseUseOfDecl(Getter, MemberLoc))
1885        return ExprError();
1886    }
1887    // If we found a getter then this may be a valid dot-reference, we
1888    // will look for the matching setter, in case it is needed.
1889    Selector SetterSel =
1890      SelectorTable::constructSetterName(PP.getIdentifierTable(),
1891                                         PP.getSelectorTable(), &Member);
1892    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1893    if (!Setter) {
1894      // If this reference is in an @implementation, also check for 'private'
1895      // methods.
1896      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1897        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1898          if (ObjCImplementationDecl *ImpDecl =
1899                ObjCImplementations[ClassDecl->getIdentifier()])
1900            Setter = ImpDecl->getInstanceMethod(SetterSel);
1901    }
1902    // Look through local category implementations associated with the class.
1903    if (!Setter) {
1904      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
1905        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1906          Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
1907      }
1908    }
1909
1910    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1911      return ExprError();
1912
1913    if (Getter || Setter) {
1914      QualType PType;
1915
1916      if (Getter)
1917        PType = Getter->getResultType();
1918      else {
1919        for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
1920             E = Setter->param_end(); PI != E; ++PI)
1921          PType = (*PI)->getType();
1922      }
1923      // FIXME: we must check that the setter has property type.
1924      return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
1925                                      Setter, MemberLoc, BaseExpr));
1926    }
1927    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1928      << &Member << BaseType);
1929  }
1930  // Handle properties on qualified "id" protocols.
1931  const ObjCQualifiedIdType *QIdTy;
1932  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
1933    // Check protocols on qualified interfaces.
1934    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1935         E = QIdTy->qual_end(); I != E; ++I) {
1936      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
1937        // Check the use of this declaration
1938        if (DiagnoseUseOfDecl(PD, MemberLoc))
1939          return ExprError();
1940
1941        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1942                                                       MemberLoc, BaseExpr));
1943      }
1944      // Also must look for a getter name which uses property syntax.
1945      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1946      if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1947        // Check the use of this method.
1948        if (DiagnoseUseOfDecl(OMD, MemberLoc))
1949          return ExprError();
1950
1951        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
1952                        OMD->getResultType(), OMD, OpLoc, MemberLoc, NULL, 0));
1953      }
1954    }
1955
1956    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1957                       << &Member << BaseType);
1958  }
1959  // Handle properties on ObjC 'Class' types.
1960  if (OpKind == tok::period && (BaseType == Context.getObjCClassType())) {
1961    // Also must look for a getter name which uses property syntax.
1962    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1963    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1964      ObjCMethodDecl *OMD;
1965      // FIXME: need to also look locally in the implementation.
1966      if ((OMD = MD->getClassInterface()->lookupClassMethod(Sel))) {
1967        // Check the use of this method.
1968        if (DiagnoseUseOfDecl(OMD, MemberLoc))
1969          return ExprError();
1970
1971        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
1972                        OMD->getResultType(), OMD, OpLoc, MemberLoc, NULL, 0));
1973      }
1974    }
1975  }
1976
1977  // Handle 'field access' to vectors, such as 'V.xx'.
1978  if (BaseType->isExtVectorType()) {
1979    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1980    if (ret.isNull())
1981      return ExprError();
1982    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
1983                                                    MemberLoc));
1984  }
1985
1986  return ExprError(Diag(MemberLoc,
1987                        diag::err_typecheck_member_reference_struct_union)
1988                     << BaseType << BaseExpr->getSourceRange());
1989}
1990
1991/// ConvertArgumentsForCall - Converts the arguments specified in
1992/// Args/NumArgs to the parameter types of the function FDecl with
1993/// function prototype Proto. Call is the call expression itself, and
1994/// Fn is the function expression. For a C++ member function, this
1995/// routine does not attempt to convert the object argument. Returns
1996/// true if the call is ill-formed.
1997bool
1998Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
1999                              FunctionDecl *FDecl,
2000                              const FunctionProtoType *Proto,
2001                              Expr **Args, unsigned NumArgs,
2002                              SourceLocation RParenLoc) {
2003  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2004  // assignment, to the types of the corresponding parameter, ...
2005  unsigned NumArgsInProto = Proto->getNumArgs();
2006  unsigned NumArgsToCheck = NumArgs;
2007  bool Invalid = false;
2008
2009  // If too few arguments are available (and we don't have default
2010  // arguments for the remaining parameters), don't make the call.
2011  if (NumArgs < NumArgsInProto) {
2012    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2013      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2014        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2015    // Use default arguments for missing arguments
2016    NumArgsToCheck = NumArgsInProto;
2017    Call->setNumArgs(Context, NumArgsInProto);
2018  }
2019
2020  // If too many are passed and not variadic, error on the extras and drop
2021  // them.
2022  if (NumArgs > NumArgsInProto) {
2023    if (!Proto->isVariadic()) {
2024      Diag(Args[NumArgsInProto]->getLocStart(),
2025           diag::err_typecheck_call_too_many_args)
2026        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2027        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2028                       Args[NumArgs-1]->getLocEnd());
2029      // This deletes the extra arguments.
2030      Call->setNumArgs(Context, NumArgsInProto);
2031      Invalid = true;
2032    }
2033    NumArgsToCheck = NumArgsInProto;
2034  }
2035
2036  // Continue to check argument types (even if we have too few/many args).
2037  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2038    QualType ProtoArgType = Proto->getArgType(i);
2039
2040    Expr *Arg;
2041    if (i < NumArgs) {
2042      Arg = Args[i];
2043
2044      // Pass the argument.
2045      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2046        return true;
2047    } else
2048      // We already type-checked the argument, so we know it works.
2049      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
2050    QualType ArgType = Arg->getType();
2051
2052    Call->setArg(i, Arg);
2053  }
2054
2055  // If this is a variadic call, handle args passed through "...".
2056  if (Proto->isVariadic()) {
2057    VariadicCallType CallType = VariadicFunction;
2058    if (Fn->getType()->isBlockPointerType())
2059      CallType = VariadicBlock; // Block
2060    else if (isa<MemberExpr>(Fn))
2061      CallType = VariadicMethod;
2062
2063    // Promote the arguments (C99 6.5.2.2p7).
2064    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2065      Expr *Arg = Args[i];
2066      DefaultVariadicArgumentPromotion(Arg, CallType);
2067      Call->setArg(i, Arg);
2068    }
2069  }
2070
2071  return Invalid;
2072}
2073
2074/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2075/// This provides the location of the left/right parens and a list of comma
2076/// locations.
2077Action::OwningExprResult
2078Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2079                    MultiExprArg args,
2080                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2081  unsigned NumArgs = args.size();
2082  Expr *Fn = static_cast<Expr *>(fn.release());
2083  Expr **Args = reinterpret_cast<Expr**>(args.release());
2084  assert(Fn && "no function call expression");
2085  FunctionDecl *FDecl = NULL;
2086  DeclarationName UnqualifiedName;
2087
2088  if (getLangOptions().CPlusPlus) {
2089    // Determine whether this is a dependent call inside a C++ template,
2090    // in which case we won't do any semantic analysis now.
2091    // FIXME: Will need to cache the results of name lookup (including ADL) in Fn.
2092    bool Dependent = false;
2093    if (Fn->isTypeDependent())
2094      Dependent = true;
2095    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2096      Dependent = true;
2097
2098    if (Dependent)
2099      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2100                                          Context.DependentTy, RParenLoc));
2101
2102    // Determine whether this is a call to an object (C++ [over.call.object]).
2103    if (Fn->getType()->isRecordType())
2104      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2105                                                CommaLocs, RParenLoc));
2106
2107    // Determine whether this is a call to a member function.
2108    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
2109      if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
2110          isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
2111        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2112                                               CommaLocs, RParenLoc));
2113  }
2114
2115  // If we're directly calling a function, get the appropriate declaration.
2116  DeclRefExpr *DRExpr = NULL;
2117  Expr *FnExpr = Fn;
2118  bool ADL = true;
2119  while (true) {
2120    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2121      FnExpr = IcExpr->getSubExpr();
2122    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2123      // Parentheses around a function disable ADL
2124      // (C++0x [basic.lookup.argdep]p1).
2125      ADL = false;
2126      FnExpr = PExpr->getSubExpr();
2127    } else if (isa<UnaryOperator>(FnExpr) &&
2128               cast<UnaryOperator>(FnExpr)->getOpcode()
2129                 == UnaryOperator::AddrOf) {
2130      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2131    } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) {
2132      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2133      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2134      break;
2135    } else if (UnresolvedFunctionNameExpr *DepName
2136                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2137      UnqualifiedName = DepName->getName();
2138      break;
2139    } else {
2140      // Any kind of name that does not refer to a declaration (or
2141      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2142      ADL = false;
2143      break;
2144    }
2145  }
2146
2147  OverloadedFunctionDecl *Ovl = 0;
2148  if (DRExpr) {
2149    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
2150    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
2151  }
2152
2153  if (Ovl || (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2154    // We don't perform ADL for implicit declarations of builtins.
2155    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2156      ADL = false;
2157
2158    // We don't perform ADL in C.
2159    if (!getLangOptions().CPlusPlus)
2160      ADL = false;
2161
2162    if (Ovl || ADL) {
2163      FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0,
2164                                      UnqualifiedName, LParenLoc, Args,
2165                                      NumArgs, CommaLocs, RParenLoc, ADL);
2166      if (!FDecl)
2167        return ExprError();
2168
2169      // Update Fn to refer to the actual function selected.
2170      Expr *NewFn = 0;
2171      if (QualifiedDeclRefExpr *QDRExpr
2172            = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr))
2173        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
2174                                                   QDRExpr->getLocation(),
2175                                                   false, false,
2176                                          QDRExpr->getSourceRange().getBegin());
2177      else
2178        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2179                                          Fn->getSourceRange().getBegin());
2180      Fn->Destroy(Context);
2181      Fn = NewFn;
2182    }
2183  }
2184
2185  // Promote the function operand.
2186  UsualUnaryConversions(Fn);
2187
2188  // Make the call expr early, before semantic checks.  This guarantees cleanup
2189  // of arguments and function on error.
2190  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2191                                                               Args, NumArgs,
2192                                                               Context.BoolTy,
2193                                                               RParenLoc));
2194
2195  const FunctionType *FuncT;
2196  if (!Fn->getType()->isBlockPointerType()) {
2197    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2198    // have type pointer to function".
2199    const PointerType *PT = Fn->getType()->getAsPointerType();
2200    if (PT == 0)
2201      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2202        << Fn->getType() << Fn->getSourceRange());
2203    FuncT = PT->getPointeeType()->getAsFunctionType();
2204  } else { // This is a block call.
2205    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
2206                getAsFunctionType();
2207  }
2208  if (FuncT == 0)
2209    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2210      << Fn->getType() << Fn->getSourceRange());
2211
2212  // We know the result type of the call, set it.
2213  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2214
2215  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2216    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2217                                RParenLoc))
2218      return ExprError();
2219  } else {
2220    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2221
2222    // Promote the arguments (C99 6.5.2.2p6).
2223    for (unsigned i = 0; i != NumArgs; i++) {
2224      Expr *Arg = Args[i];
2225      DefaultArgumentPromotion(Arg);
2226      TheCall->setArg(i, Arg);
2227    }
2228  }
2229
2230  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2231    if (!Method->isStatic())
2232      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2233        << Fn->getSourceRange());
2234
2235  // Do special checking on direct calls to functions.
2236  if (FDecl)
2237    return CheckFunctionCall(FDecl, TheCall.take());
2238
2239  return Owned(TheCall.take());
2240}
2241
2242Action::OwningExprResult
2243Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2244                           SourceLocation RParenLoc, ExprArg InitExpr) {
2245  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2246  QualType literalType = QualType::getFromOpaquePtr(Ty);
2247  // FIXME: put back this assert when initializers are worked out.
2248  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2249  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2250
2251  if (literalType->isArrayType()) {
2252    if (literalType->isVariableArrayType())
2253      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2254        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2255  } else if (RequireCompleteType(LParenLoc, literalType,
2256                                    diag::err_typecheck_decl_incomplete_type,
2257                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2258    return ExprError();
2259
2260  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2261                            DeclarationName(), /*FIXME:DirectInit=*/false))
2262    return ExprError();
2263
2264  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2265  if (isFileScope) { // 6.5.2.5p3
2266    if (CheckForConstantInitializer(literalExpr, literalType))
2267      return ExprError();
2268  }
2269  InitExpr.release();
2270  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2271                                                 literalExpr, isFileScope));
2272}
2273
2274Action::OwningExprResult
2275Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2276                    InitListDesignations &Designators,
2277                    SourceLocation RBraceLoc) {
2278  unsigned NumInit = initlist.size();
2279  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2280
2281  // Semantic analysis for initializers is done by ActOnDeclarator() and
2282  // CheckInitializer() - it requires knowledge of the object being intialized.
2283
2284  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2285                                               RBraceLoc);
2286  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2287  return Owned(E);
2288}
2289
2290/// CheckCastTypes - Check type constraints for casting between types.
2291bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
2292  UsualUnaryConversions(castExpr);
2293
2294  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2295  // type needs to be scalar.
2296  if (castType->isVoidType()) {
2297    // Cast to void allows any expr type.
2298  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
2299    // We can't check any more until template instantiation time.
2300  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2301    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2302        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2303        (castType->isStructureType() || castType->isUnionType())) {
2304      // GCC struct/union extension: allow cast to self.
2305      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2306        << castType << castExpr->getSourceRange();
2307    } else if (castType->isUnionType()) {
2308      // GCC cast to union extension
2309      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2310      RecordDecl::field_iterator Field, FieldEnd;
2311      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2312           Field != FieldEnd; ++Field) {
2313        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2314            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2315          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2316            << castExpr->getSourceRange();
2317          break;
2318        }
2319      }
2320      if (Field == FieldEnd)
2321        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2322          << castExpr->getType() << castExpr->getSourceRange();
2323    } else {
2324      // Reject any other conversions to non-scalar types.
2325      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2326        << castType << castExpr->getSourceRange();
2327    }
2328  } else if (!castExpr->getType()->isScalarType() &&
2329             !castExpr->getType()->isVectorType()) {
2330    return Diag(castExpr->getLocStart(),
2331                diag::err_typecheck_expect_scalar_operand)
2332      << castExpr->getType() << castExpr->getSourceRange();
2333  } else if (castExpr->getType()->isVectorType()) {
2334    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2335      return true;
2336  } else if (castType->isVectorType()) {
2337    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2338      return true;
2339  } else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
2340    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
2341  }
2342  return false;
2343}
2344
2345bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
2346  assert(VectorTy->isVectorType() && "Not a vector type!");
2347
2348  if (Ty->isVectorType() || Ty->isIntegerType()) {
2349    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
2350      return Diag(R.getBegin(),
2351                  Ty->isVectorType() ?
2352                  diag::err_invalid_conversion_between_vectors :
2353                  diag::err_invalid_conversion_between_vector_and_integer)
2354        << VectorTy << Ty << R;
2355  } else
2356    return Diag(R.getBegin(),
2357                diag::err_invalid_conversion_between_vector_and_scalar)
2358      << VectorTy << Ty << R;
2359
2360  return false;
2361}
2362
2363Action::OwningExprResult
2364Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
2365                    SourceLocation RParenLoc, ExprArg Op) {
2366  assert((Ty != 0) && (Op.get() != 0) &&
2367         "ActOnCastExpr(): missing type or expr");
2368
2369  Expr *castExpr = static_cast<Expr*>(Op.release());
2370  QualType castType = QualType::getFromOpaquePtr(Ty);
2371
2372  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2373    return ExprError();
2374  return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
2375                                            LParenLoc, RParenLoc));
2376}
2377
2378/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
2379/// In that case, lhs = cond.
2380/// C99 6.5.15
2381QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2382                                        SourceLocation QuestionLoc) {
2383  UsualUnaryConversions(Cond);
2384  UsualUnaryConversions(LHS);
2385  UsualUnaryConversions(RHS);
2386  QualType CondTy = Cond->getType();
2387  QualType LHSTy = LHS->getType();
2388  QualType RHSTy = RHS->getType();
2389
2390  // first, check the condition.
2391  if (!Cond->isTypeDependent()) {
2392    if (!CondTy->isScalarType()) { // C99 6.5.15p2
2393      Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
2394        << CondTy;
2395      return QualType();
2396    }
2397  }
2398
2399  // Now check the two expressions.
2400  if ((LHS && LHS->isTypeDependent()) || (RHS && RHS->isTypeDependent()))
2401    return Context.DependentTy;
2402
2403  // If both operands have arithmetic type, do the usual arithmetic conversions
2404  // to find a common type: C99 6.5.15p3,5.
2405  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
2406    UsualArithmeticConversions(LHS, RHS);
2407    return LHS->getType();
2408  }
2409
2410  // If both operands are the same structure or union type, the result is that
2411  // type.
2412  if (const RecordType *LHSRT = LHSTy->getAsRecordType()) {    // C99 6.5.15p3
2413    if (const RecordType *RHSRT = RHSTy->getAsRecordType())
2414      if (LHSRT->getDecl() == RHSRT->getDecl())
2415        // "If both the operands have structure or union type, the result has
2416        // that type."  This implies that CV qualifiers are dropped.
2417        return LHSTy.getUnqualifiedType();
2418  }
2419
2420  // C99 6.5.15p5: "If both operands have void type, the result has void type."
2421  // The following || allows only one side to be void (a GCC-ism).
2422  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
2423    if (!LHSTy->isVoidType())
2424      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2425        << RHS->getSourceRange();
2426    if (!RHSTy->isVoidType())
2427      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2428        << LHS->getSourceRange();
2429    ImpCastExprToType(LHS, Context.VoidTy);
2430    ImpCastExprToType(RHS, Context.VoidTy);
2431    return Context.VoidTy;
2432  }
2433  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
2434  // the type of the other operand."
2435  if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() ||
2436       Context.isObjCObjectPointerType(LHSTy)) &&
2437      RHS->isNullPointerConstant(Context)) {
2438    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
2439    return LHSTy;
2440  }
2441  if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() ||
2442       Context.isObjCObjectPointerType(RHSTy)) &&
2443      LHS->isNullPointerConstant(Context)) {
2444    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
2445    return RHSTy;
2446  }
2447
2448  // Handle the case where both operands are pointers before we handle null
2449  // pointer constants in case both operands are null pointer constants.
2450  if (const PointerType *LHSPT = LHSTy->getAsPointerType()) { // C99 6.5.15p3,6
2451    if (const PointerType *RHSPT = RHSTy->getAsPointerType()) {
2452      // get the "pointed to" types
2453      QualType lhptee = LHSPT->getPointeeType();
2454      QualType rhptee = RHSPT->getPointeeType();
2455
2456      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
2457      if (lhptee->isVoidType() &&
2458          rhptee->isIncompleteOrObjectType()) {
2459        // Figure out necessary qualifiers (C99 6.5.15p6)
2460        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
2461        QualType destType = Context.getPointerType(destPointee);
2462        ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2463        ImpCastExprToType(RHS, destType); // promote to void*
2464        return destType;
2465      }
2466      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
2467        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
2468        QualType destType = Context.getPointerType(destPointee);
2469        ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2470        ImpCastExprToType(RHS, destType); // promote to void*
2471        return destType;
2472      }
2473
2474      if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
2475        // Two identical pointer types are always compatible.
2476        return LHSTy;
2477      }
2478
2479      QualType compositeType = LHSTy;
2480
2481      // If either type is an Objective-C object type then check
2482      // compatibility according to Objective-C.
2483      if (Context.isObjCObjectPointerType(LHSTy) ||
2484          Context.isObjCObjectPointerType(RHSTy)) {
2485        // If both operands are interfaces and either operand can be
2486        // assigned to the other, use that type as the composite
2487        // type. This allows
2488        //   xxx ? (A*) a : (B*) b
2489        // where B is a subclass of A.
2490        //
2491        // Additionally, as for assignment, if either type is 'id'
2492        // allow silent coercion. Finally, if the types are
2493        // incompatible then make sure to use 'id' as the composite
2494        // type so the result is acceptable for sending messages to.
2495
2496        // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
2497        // It could return the composite type.
2498        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2499        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2500        if (LHSIface && RHSIface &&
2501            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
2502          compositeType = LHSTy;
2503        } else if (LHSIface && RHSIface &&
2504                   Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
2505          compositeType = RHSTy;
2506        } else if (Context.isObjCIdStructType(lhptee) ||
2507                   Context.isObjCIdStructType(rhptee)) {
2508          compositeType = Context.getObjCIdType();
2509        } else {
2510          Diag(QuestionLoc, diag::ext_typecheck_comparison_of_distinct_pointers)
2511               << LHSTy << RHSTy
2512               << LHS->getSourceRange() << RHS->getSourceRange();
2513          QualType incompatTy = Context.getObjCIdType();
2514          ImpCastExprToType(LHS, incompatTy);
2515          ImpCastExprToType(RHS, incompatTy);
2516          return incompatTy;
2517        }
2518      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2519                                             rhptee.getUnqualifiedType())) {
2520        Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
2521          << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2522        // In this situation, we assume void* type. No especially good
2523        // reason, but this is what gcc does, and we do have to pick
2524        // to get a consistent AST.
2525        QualType incompatTy = Context.getPointerType(Context.VoidTy);
2526        ImpCastExprToType(LHS, incompatTy);
2527        ImpCastExprToType(RHS, incompatTy);
2528        return incompatTy;
2529      }
2530      // The pointer types are compatible.
2531      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
2532      // differently qualified versions of compatible types, the result type is
2533      // a pointer to an appropriately qualified version of the *composite*
2534      // type.
2535      // FIXME: Need to calculate the composite type.
2536      // FIXME: Need to add qualifiers
2537      ImpCastExprToType(LHS, compositeType);
2538      ImpCastExprToType(RHS, compositeType);
2539      return compositeType;
2540    }
2541  }
2542
2543  // Selection between block pointer types is ok as long as they are the same.
2544  if (LHSTy->isBlockPointerType() && RHSTy->isBlockPointerType() &&
2545      Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy))
2546    return LHSTy;
2547
2548  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
2549  // evaluates to "struct objc_object *" (and is handled above when comparing
2550  // id with statically typed objects).
2551  if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
2552    // GCC allows qualified id and any Objective-C type to devolve to
2553    // id. Currently localizing to here until clear this should be
2554    // part of ObjCQualifiedIdTypesAreCompatible.
2555    if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
2556        (LHSTy->isObjCQualifiedIdType() &&
2557         Context.isObjCObjectPointerType(RHSTy)) ||
2558        (RHSTy->isObjCQualifiedIdType() &&
2559         Context.isObjCObjectPointerType(LHSTy))) {
2560      // FIXME: This is not the correct composite type. This only
2561      // happens to work because id can more or less be used anywhere,
2562      // however this may change the type of method sends.
2563      // FIXME: gcc adds some type-checking of the arguments and emits
2564      // (confusing) incompatible comparison warnings in some
2565      // cases. Investigate.
2566      QualType compositeType = Context.getObjCIdType();
2567      ImpCastExprToType(LHS, compositeType);
2568      ImpCastExprToType(RHS, compositeType);
2569      return compositeType;
2570    }
2571  }
2572
2573  // Otherwise, the operands are not compatible.
2574  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2575    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2576  return QualType();
2577}
2578
2579/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
2580/// in the case of a the GNU conditional expr extension.
2581Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
2582                                                  SourceLocation ColonLoc,
2583                                                  ExprArg Cond, ExprArg LHS,
2584                                                  ExprArg RHS) {
2585  Expr *CondExpr = (Expr *) Cond.get();
2586  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
2587
2588  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
2589  // was the condition.
2590  bool isLHSNull = LHSExpr == 0;
2591  if (isLHSNull)
2592    LHSExpr = CondExpr;
2593
2594  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
2595                                             RHSExpr, QuestionLoc);
2596  if (result.isNull())
2597    return ExprError();
2598
2599  Cond.release();
2600  LHS.release();
2601  RHS.release();
2602  return Owned(new (Context) ConditionalOperator(CondExpr,
2603                                                 isLHSNull ? 0 : LHSExpr,
2604                                                 RHSExpr, result));
2605}
2606
2607
2608// CheckPointerTypesForAssignment - This is a very tricky routine (despite
2609// being closely modeled after the C99 spec:-). The odd characteristic of this
2610// routine is it effectively iqnores the qualifiers on the top level pointee.
2611// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
2612// FIXME: add a couple examples in this comment.
2613Sema::AssignConvertType
2614Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
2615  QualType lhptee, rhptee;
2616
2617  // get the "pointed to" type (ignoring qualifiers at the top level)
2618  lhptee = lhsType->getAsPointerType()->getPointeeType();
2619  rhptee = rhsType->getAsPointerType()->getPointeeType();
2620
2621  // make sure we operate on the canonical type
2622  lhptee = Context.getCanonicalType(lhptee);
2623  rhptee = Context.getCanonicalType(rhptee);
2624
2625  AssignConvertType ConvTy = Compatible;
2626
2627  // C99 6.5.16.1p1: This following citation is common to constraints
2628  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
2629  // qualifiers of the type *pointed to* by the right;
2630  // FIXME: Handle ExtQualType
2631  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
2632    ConvTy = CompatiblePointerDiscardsQualifiers;
2633
2634  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
2635  // incomplete type and the other is a pointer to a qualified or unqualified
2636  // version of void...
2637  if (lhptee->isVoidType()) {
2638    if (rhptee->isIncompleteOrObjectType())
2639      return ConvTy;
2640
2641    // As an extension, we allow cast to/from void* to function pointer.
2642    assert(rhptee->isFunctionType());
2643    return FunctionVoidPointer;
2644  }
2645
2646  if (rhptee->isVoidType()) {
2647    if (lhptee->isIncompleteOrObjectType())
2648      return ConvTy;
2649
2650    // As an extension, we allow cast to/from void* to function pointer.
2651    assert(lhptee->isFunctionType());
2652    return FunctionVoidPointer;
2653  }
2654  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
2655  // unqualified versions of compatible types, ...
2656  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2657                                  rhptee.getUnqualifiedType()))
2658    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
2659  return ConvTy;
2660}
2661
2662/// CheckBlockPointerTypesForAssignment - This routine determines whether two
2663/// block pointer types are compatible or whether a block and normal pointer
2664/// are compatible. It is more restrict than comparing two function pointer
2665// types.
2666Sema::AssignConvertType
2667Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
2668                                          QualType rhsType) {
2669  QualType lhptee, rhptee;
2670
2671  // get the "pointed to" type (ignoring qualifiers at the top level)
2672  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
2673  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
2674
2675  // make sure we operate on the canonical type
2676  lhptee = Context.getCanonicalType(lhptee);
2677  rhptee = Context.getCanonicalType(rhptee);
2678
2679  AssignConvertType ConvTy = Compatible;
2680
2681  // For blocks we enforce that qualifiers are identical.
2682  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
2683    ConvTy = CompatiblePointerDiscardsQualifiers;
2684
2685  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
2686    return IncompatibleBlockPointer;
2687  return ConvTy;
2688}
2689
2690/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
2691/// has code to accommodate several GCC extensions when type checking
2692/// pointers. Here are some objectionable examples that GCC considers warnings:
2693///
2694///  int a, *pint;
2695///  short *pshort;
2696///  struct foo *pfoo;
2697///
2698///  pint = pshort; // warning: assignment from incompatible pointer type
2699///  a = pint; // warning: assignment makes integer from pointer without a cast
2700///  pint = a; // warning: assignment makes pointer from integer without a cast
2701///  pint = pfoo; // warning: assignment from incompatible pointer type
2702///
2703/// As a result, the code for dealing with pointers is more complex than the
2704/// C99 spec dictates.
2705///
2706Sema::AssignConvertType
2707Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
2708  // Get canonical types.  We're not formatting these types, just comparing
2709  // them.
2710  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
2711  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
2712
2713  if (lhsType == rhsType)
2714    return Compatible; // Common case: fast path an exact match.
2715
2716  // If the left-hand side is a reference type, then we are in a
2717  // (rare!) case where we've allowed the use of references in C,
2718  // e.g., as a parameter type in a built-in function. In this case,
2719  // just make sure that the type referenced is compatible with the
2720  // right-hand side type. The caller is responsible for adjusting
2721  // lhsType so that the resulting expression does not have reference
2722  // type.
2723  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
2724    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
2725      return Compatible;
2726    return Incompatible;
2727  }
2728
2729  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
2730    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
2731      return Compatible;
2732    // Relax integer conversions like we do for pointers below.
2733    if (rhsType->isIntegerType())
2734      return IntToPointer;
2735    if (lhsType->isIntegerType())
2736      return PointerToInt;
2737    return IncompatibleObjCQualifiedId;
2738  }
2739
2740  if (lhsType->isVectorType() || rhsType->isVectorType()) {
2741    // For ExtVector, allow vector splats; float -> <n x float>
2742    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
2743      if (LV->getElementType() == rhsType)
2744        return Compatible;
2745
2746    // If we are allowing lax vector conversions, and LHS and RHS are both
2747    // vectors, the total size only needs to be the same. This is a bitcast;
2748    // no bits are changed but the result type is different.
2749    if (getLangOptions().LaxVectorConversions &&
2750        lhsType->isVectorType() && rhsType->isVectorType()) {
2751      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
2752        return IncompatibleVectors;
2753    }
2754    return Incompatible;
2755  }
2756
2757  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
2758    return Compatible;
2759
2760  if (isa<PointerType>(lhsType)) {
2761    if (rhsType->isIntegerType())
2762      return IntToPointer;
2763
2764    if (isa<PointerType>(rhsType))
2765      return CheckPointerTypesForAssignment(lhsType, rhsType);
2766
2767    if (rhsType->getAsBlockPointerType()) {
2768      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
2769        return Compatible;
2770
2771      // Treat block pointers as objects.
2772      if (getLangOptions().ObjC1 &&
2773          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
2774        return Compatible;
2775    }
2776    return Incompatible;
2777  }
2778
2779  if (isa<BlockPointerType>(lhsType)) {
2780    if (rhsType->isIntegerType())
2781      return IntToBlockPointer;
2782
2783    // Treat block pointers as objects.
2784    if (getLangOptions().ObjC1 &&
2785        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
2786      return Compatible;
2787
2788    if (rhsType->isBlockPointerType())
2789      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
2790
2791    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
2792      if (RHSPT->getPointeeType()->isVoidType())
2793        return Compatible;
2794    }
2795    return Incompatible;
2796  }
2797
2798  if (isa<PointerType>(rhsType)) {
2799    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
2800    if (lhsType == Context.BoolTy)
2801      return Compatible;
2802
2803    if (lhsType->isIntegerType())
2804      return PointerToInt;
2805
2806    if (isa<PointerType>(lhsType))
2807      return CheckPointerTypesForAssignment(lhsType, rhsType);
2808
2809    if (isa<BlockPointerType>(lhsType) &&
2810        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
2811      return Compatible;
2812    return Incompatible;
2813  }
2814
2815  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
2816    if (Context.typesAreCompatible(lhsType, rhsType))
2817      return Compatible;
2818  }
2819  return Incompatible;
2820}
2821
2822Sema::AssignConvertType
2823Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
2824  if (getLangOptions().CPlusPlus) {
2825    if (!lhsType->isRecordType()) {
2826      // C++ 5.17p3: If the left operand is not of class type, the
2827      // expression is implicitly converted (C++ 4) to the
2828      // cv-unqualified type of the left operand.
2829      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
2830                                    "assigning"))
2831        return Incompatible;
2832      else
2833        return Compatible;
2834    }
2835
2836    // FIXME: Currently, we fall through and treat C++ classes like C
2837    // structures.
2838  }
2839
2840  // C99 6.5.16.1p1: the left operand is a pointer and the right is
2841  // a null pointer constant.
2842  if ((lhsType->isPointerType() ||
2843       lhsType->isObjCQualifiedIdType() ||
2844       lhsType->isBlockPointerType())
2845      && rExpr->isNullPointerConstant(Context)) {
2846    ImpCastExprToType(rExpr, lhsType);
2847    return Compatible;
2848  }
2849
2850  // This check seems unnatural, however it is necessary to ensure the proper
2851  // conversion of functions/arrays. If the conversion were done for all
2852  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
2853  // expressions that surpress this implicit conversion (&, sizeof).
2854  //
2855  // Suppress this for references: C++ 8.5.3p5.
2856  if (!lhsType->isReferenceType())
2857    DefaultFunctionArrayConversion(rExpr);
2858
2859  Sema::AssignConvertType result =
2860    CheckAssignmentConstraints(lhsType, rExpr->getType());
2861
2862  // C99 6.5.16.1p2: The value of the right operand is converted to the
2863  // type of the assignment expression.
2864  // CheckAssignmentConstraints allows the left-hand side to be a reference,
2865  // so that we can use references in built-in functions even in C.
2866  // The getNonReferenceType() call makes sure that the resulting expression
2867  // does not have reference type.
2868  if (rExpr->getType() != lhsType)
2869    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
2870  return result;
2871}
2872
2873Sema::AssignConvertType
2874Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
2875  return CheckAssignmentConstraints(lhsType, rhsType);
2876}
2877
2878QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
2879  Diag(Loc, diag::err_typecheck_invalid_operands)
2880    << lex->getType() << rex->getType()
2881    << lex->getSourceRange() << rex->getSourceRange();
2882  return QualType();
2883}
2884
2885inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
2886                                                              Expr *&rex) {
2887  // For conversion purposes, we ignore any qualifiers.
2888  // For example, "const float" and "float" are equivalent.
2889  QualType lhsType =
2890    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
2891  QualType rhsType =
2892    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
2893
2894  // If the vector types are identical, return.
2895  if (lhsType == rhsType)
2896    return lhsType;
2897
2898  // Handle the case of a vector & extvector type of the same size and element
2899  // type.  It would be nice if we only had one vector type someday.
2900  if (getLangOptions().LaxVectorConversions) {
2901    // FIXME: Should we warn here?
2902    if (const VectorType *LV = lhsType->getAsVectorType()) {
2903      if (const VectorType *RV = rhsType->getAsVectorType())
2904        if (LV->getElementType() == RV->getElementType() &&
2905            LV->getNumElements() == RV->getNumElements()) {
2906          return lhsType->isExtVectorType() ? lhsType : rhsType;
2907        }
2908    }
2909  }
2910
2911  // If the lhs is an extended vector and the rhs is a scalar of the same type
2912  // or a literal, promote the rhs to the vector type.
2913  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
2914    QualType eltType = V->getElementType();
2915
2916    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
2917        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
2918        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
2919      ImpCastExprToType(rex, lhsType);
2920      return lhsType;
2921    }
2922  }
2923
2924  // If the rhs is an extended vector and the lhs is a scalar of the same type,
2925  // promote the lhs to the vector type.
2926  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
2927    QualType eltType = V->getElementType();
2928
2929    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
2930        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
2931        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
2932      ImpCastExprToType(lex, rhsType);
2933      return rhsType;
2934    }
2935  }
2936
2937  // You cannot convert between vector values of different size.
2938  Diag(Loc, diag::err_typecheck_vector_not_convertable)
2939    << lex->getType() << rex->getType()
2940    << lex->getSourceRange() << rex->getSourceRange();
2941  return QualType();
2942}
2943
2944inline QualType Sema::CheckMultiplyDivideOperands(
2945  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2946{
2947  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2948    return CheckVectorOperands(Loc, lex, rex);
2949
2950  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2951
2952  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2953    return compType;
2954  return InvalidOperands(Loc, lex, rex);
2955}
2956
2957inline QualType Sema::CheckRemainderOperands(
2958  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2959{
2960  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
2961    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2962      return CheckVectorOperands(Loc, lex, rex);
2963    return InvalidOperands(Loc, lex, rex);
2964  }
2965
2966  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2967
2968  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2969    return compType;
2970  return InvalidOperands(Loc, lex, rex);
2971}
2972
2973inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
2974  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2975{
2976  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2977    return CheckVectorOperands(Loc, lex, rex);
2978
2979  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2980
2981  // handle the common case first (both operands are arithmetic).
2982  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2983    return compType;
2984
2985  // Put any potential pointer into PExp
2986  Expr* PExp = lex, *IExp = rex;
2987  if (IExp->getType()->isPointerType())
2988    std::swap(PExp, IExp);
2989
2990  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
2991    if (IExp->getType()->isIntegerType()) {
2992      // Check for arithmetic on pointers to incomplete types
2993      if (!PTy->getPointeeType()->isObjectType()) {
2994        if (PTy->getPointeeType()->isVoidType()) {
2995          if (getLangOptions().CPlusPlus) {
2996            Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
2997              << lex->getSourceRange() << rex->getSourceRange();
2998            return QualType();
2999          }
3000
3001          // GNU extension: arithmetic on pointer to void
3002          Diag(Loc, diag::ext_gnu_void_ptr)
3003            << lex->getSourceRange() << rex->getSourceRange();
3004        } else if (PTy->getPointeeType()->isFunctionType()) {
3005          if (getLangOptions().CPlusPlus) {
3006            Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3007              << lex->getType() << lex->getSourceRange();
3008            return QualType();
3009          }
3010
3011          // GNU extension: arithmetic on pointer to function
3012          Diag(Loc, diag::ext_gnu_ptr_func_arith)
3013            << lex->getType() << lex->getSourceRange();
3014        } else {
3015          RequireCompleteType(Loc, PTy->getPointeeType(),
3016                                 diag::err_typecheck_arithmetic_incomplete_type,
3017                                 lex->getSourceRange(), SourceRange(),
3018                                 lex->getType());
3019          return QualType();
3020        }
3021      }
3022      return PExp->getType();
3023    }
3024  }
3025
3026  return InvalidOperands(Loc, lex, rex);
3027}
3028
3029// C99 6.5.6
3030QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
3031                                        SourceLocation Loc, bool isCompAssign) {
3032  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3033    return CheckVectorOperands(Loc, lex, rex);
3034
3035  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3036
3037  // Enforce type constraints: C99 6.5.6p3.
3038
3039  // Handle the common case first (both operands are arithmetic).
3040  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3041    return compType;
3042
3043  // Either ptr - int   or   ptr - ptr.
3044  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
3045    QualType lpointee = LHSPTy->getPointeeType();
3046
3047    // The LHS must be an object type, not incomplete, function, etc.
3048    if (!lpointee->isObjectType()) {
3049      // Handle the GNU void* extension.
3050      if (lpointee->isVoidType()) {
3051        Diag(Loc, diag::ext_gnu_void_ptr)
3052          << lex->getSourceRange() << rex->getSourceRange();
3053      } else if (lpointee->isFunctionType()) {
3054        if (getLangOptions().CPlusPlus) {
3055          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3056            << lex->getType() << lex->getSourceRange();
3057          return QualType();
3058        }
3059
3060        // GNU extension: arithmetic on pointer to function
3061        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3062          << lex->getType() << lex->getSourceRange();
3063      } else {
3064        Diag(Loc, diag::err_typecheck_sub_ptr_object)
3065          << lex->getType() << lex->getSourceRange();
3066        return QualType();
3067      }
3068    }
3069
3070    // The result type of a pointer-int computation is the pointer type.
3071    if (rex->getType()->isIntegerType())
3072      return lex->getType();
3073
3074    // Handle pointer-pointer subtractions.
3075    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
3076      QualType rpointee = RHSPTy->getPointeeType();
3077
3078      // RHS must be an object type, unless void (GNU).
3079      if (!rpointee->isObjectType()) {
3080        // Handle the GNU void* extension.
3081        if (rpointee->isVoidType()) {
3082          if (!lpointee->isVoidType())
3083            Diag(Loc, diag::ext_gnu_void_ptr)
3084              << lex->getSourceRange() << rex->getSourceRange();
3085        } else if (rpointee->isFunctionType()) {
3086          if (getLangOptions().CPlusPlus) {
3087            Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3088              << rex->getType() << rex->getSourceRange();
3089            return QualType();
3090          }
3091
3092          // GNU extension: arithmetic on pointer to function
3093          if (!lpointee->isFunctionType())
3094            Diag(Loc, diag::ext_gnu_ptr_func_arith)
3095              << lex->getType() << lex->getSourceRange();
3096        } else {
3097          Diag(Loc, diag::err_typecheck_sub_ptr_object)
3098            << rex->getType() << rex->getSourceRange();
3099          return QualType();
3100        }
3101      }
3102
3103      // Pointee types must be compatible.
3104      if (!Context.typesAreCompatible(
3105              Context.getCanonicalType(lpointee).getUnqualifiedType(),
3106              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
3107        Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3108          << lex->getType() << rex->getType()
3109          << lex->getSourceRange() << rex->getSourceRange();
3110        return QualType();
3111      }
3112
3113      return Context.getPointerDiffType();
3114    }
3115  }
3116
3117  return InvalidOperands(Loc, lex, rex);
3118}
3119
3120// C99 6.5.7
3121QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3122                                  bool isCompAssign) {
3123  // C99 6.5.7p2: Each of the operands shall have integer type.
3124  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
3125    return InvalidOperands(Loc, lex, rex);
3126
3127  // Shifts don't perform usual arithmetic conversions, they just do integer
3128  // promotions on each operand. C99 6.5.7p3
3129  if (!isCompAssign)
3130    UsualUnaryConversions(lex);
3131  UsualUnaryConversions(rex);
3132
3133  // "The type of the result is that of the promoted left operand."
3134  return lex->getType();
3135}
3136
3137// C99 6.5.8
3138QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3139                                    bool isRelational) {
3140  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3141    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
3142
3143  // C99 6.5.8p3 / C99 6.5.9p4
3144  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3145    UsualArithmeticConversions(lex, rex);
3146  else {
3147    UsualUnaryConversions(lex);
3148    UsualUnaryConversions(rex);
3149  }
3150  QualType lType = lex->getType();
3151  QualType rType = rex->getType();
3152
3153  if (!lType->isFloatingType()) {
3154    // For non-floating point types, check for self-comparisons of the form
3155    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3156    // often indicate logic errors in the program.
3157    Expr *LHSStripped = lex->IgnoreParens();
3158    Expr *RHSStripped = rex->IgnoreParens();
3159    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
3160      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
3161        if (DRL->getDecl() == DRR->getDecl())
3162          Diag(Loc, diag::warn_selfcomparison);
3163
3164    if (isa<CastExpr>(LHSStripped))
3165      LHSStripped = LHSStripped->IgnoreParenCasts();
3166    if (isa<CastExpr>(RHSStripped))
3167      RHSStripped = RHSStripped->IgnoreParenCasts();
3168
3169    // Warn about comparisons against a string constant (unless the other
3170    // operand is null), the user probably wants strcmp.
3171    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
3172        !RHSStripped->isNullPointerConstant(Context))
3173      Diag(Loc, diag::warn_stringcompare) << lex->getSourceRange();
3174    else if ((isa<StringLiteral>(RHSStripped) ||
3175              isa<ObjCEncodeExpr>(RHSStripped)) &&
3176             !LHSStripped->isNullPointerConstant(Context))
3177      Diag(Loc, diag::warn_stringcompare) << rex->getSourceRange();
3178  }
3179
3180  // The result of comparisons is 'bool' in C++, 'int' in C.
3181  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
3182
3183  if (isRelational) {
3184    if (lType->isRealType() && rType->isRealType())
3185      return ResultTy;
3186  } else {
3187    // Check for comparisons of floating point operands using != and ==.
3188    if (lType->isFloatingType()) {
3189      assert(rType->isFloatingType());
3190      CheckFloatComparison(Loc,lex,rex);
3191    }
3192
3193    if (lType->isArithmeticType() && rType->isArithmeticType())
3194      return ResultTy;
3195  }
3196
3197  bool LHSIsNull = lex->isNullPointerConstant(Context);
3198  bool RHSIsNull = rex->isNullPointerConstant(Context);
3199
3200  // All of the following pointer related warnings are GCC extensions, except
3201  // when handling null pointer constants. One day, we can consider making them
3202  // errors (when -pedantic-errors is enabled).
3203  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
3204    QualType LCanPointeeTy =
3205      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
3206    QualType RCanPointeeTy =
3207      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
3208
3209    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
3210        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
3211        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
3212                                    RCanPointeeTy.getUnqualifiedType()) &&
3213        !Context.areComparableObjCPointerTypes(lType, rType)) {
3214      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3215        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3216    }
3217    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3218    return ResultTy;
3219  }
3220  // Handle block pointer types.
3221  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
3222    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
3223    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
3224
3225    if (!LHSIsNull && !RHSIsNull &&
3226        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
3227      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3228        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3229    }
3230    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3231    return ResultTy;
3232  }
3233  // Allow block pointers to be compared with null pointer constants.
3234  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
3235      (lType->isPointerType() && rType->isBlockPointerType())) {
3236    if (!LHSIsNull && !RHSIsNull) {
3237      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3238        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3239    }
3240    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3241    return ResultTy;
3242  }
3243
3244  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
3245    if (lType->isPointerType() || rType->isPointerType()) {
3246      const PointerType *LPT = lType->getAsPointerType();
3247      const PointerType *RPT = rType->getAsPointerType();
3248      bool LPtrToVoid = LPT ?
3249        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
3250      bool RPtrToVoid = RPT ?
3251        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
3252
3253      if (!LPtrToVoid && !RPtrToVoid &&
3254          !Context.typesAreCompatible(lType, rType)) {
3255        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3256          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3257        ImpCastExprToType(rex, lType);
3258        return ResultTy;
3259      }
3260      ImpCastExprToType(rex, lType);
3261      return ResultTy;
3262    }
3263    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
3264      ImpCastExprToType(rex, lType);
3265      return ResultTy;
3266    } else {
3267      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
3268        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
3269          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3270        ImpCastExprToType(rex, lType);
3271        return ResultTy;
3272      }
3273    }
3274  }
3275  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
3276       rType->isIntegerType()) {
3277    if (!RHSIsNull)
3278      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3279        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3280    ImpCastExprToType(rex, lType); // promote the integer to pointer
3281    return ResultTy;
3282  }
3283  if (lType->isIntegerType() &&
3284      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
3285    if (!LHSIsNull)
3286      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3287        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3288    ImpCastExprToType(lex, rType); // promote the integer to pointer
3289    return ResultTy;
3290  }
3291  // Handle block pointers.
3292  if (lType->isBlockPointerType() && rType->isIntegerType()) {
3293    if (!RHSIsNull)
3294      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3295        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3296    ImpCastExprToType(rex, lType); // promote the integer to pointer
3297    return ResultTy;
3298  }
3299  if (lType->isIntegerType() && rType->isBlockPointerType()) {
3300    if (!LHSIsNull)
3301      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3302        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3303    ImpCastExprToType(lex, rType); // promote the integer to pointer
3304    return ResultTy;
3305  }
3306  return InvalidOperands(Loc, lex, rex);
3307}
3308
3309/// CheckVectorCompareOperands - vector comparisons are a clang extension that
3310/// operates on extended vector types.  Instead of producing an IntTy result,
3311/// like a scalar comparison, a vector comparison produces a vector of integer
3312/// types.
3313QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
3314                                          SourceLocation Loc,
3315                                          bool isRelational) {
3316  // Check to make sure we're operating on vectors of the same type and width,
3317  // Allowing one side to be a scalar of element type.
3318  QualType vType = CheckVectorOperands(Loc, lex, rex);
3319  if (vType.isNull())
3320    return vType;
3321
3322  QualType lType = lex->getType();
3323  QualType rType = rex->getType();
3324
3325  // For non-floating point types, check for self-comparisons of the form
3326  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3327  // often indicate logic errors in the program.
3328  if (!lType->isFloatingType()) {
3329    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
3330      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
3331        if (DRL->getDecl() == DRR->getDecl())
3332          Diag(Loc, diag::warn_selfcomparison);
3333  }
3334
3335  // Check for comparisons of floating point operands using != and ==.
3336  if (!isRelational && lType->isFloatingType()) {
3337    assert (rType->isFloatingType());
3338    CheckFloatComparison(Loc,lex,rex);
3339  }
3340
3341  // Return the type for the comparison, which is the same as vector type for
3342  // integer vectors, or an integer type of identical size and number of
3343  // elements for floating point vectors.
3344  if (lType->isIntegerType())
3345    return lType;
3346
3347  const VectorType *VTy = lType->getAsVectorType();
3348  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
3349  if (TypeSize == Context.getTypeSize(Context.IntTy))
3350    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
3351  else if (TypeSize == Context.getTypeSize(Context.LongTy))
3352    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
3353
3354  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
3355         "Unhandled vector element size in vector compare");
3356  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
3357}
3358
3359inline QualType Sema::CheckBitwiseOperands(
3360  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3361{
3362  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3363    return CheckVectorOperands(Loc, lex, rex);
3364
3365  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3366
3367  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3368    return compType;
3369  return InvalidOperands(Loc, lex, rex);
3370}
3371
3372inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
3373  Expr *&lex, Expr *&rex, SourceLocation Loc)
3374{
3375  UsualUnaryConversions(lex);
3376  UsualUnaryConversions(rex);
3377
3378  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
3379    return Context.IntTy;
3380  return InvalidOperands(Loc, lex, rex);
3381}
3382
3383/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
3384/// is a read-only property; return true if so. A readonly property expression
3385/// depends on various declarations and thus must be treated specially.
3386///
3387static bool IsReadonlyProperty(Expr *E, Sema &S)
3388{
3389  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
3390    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
3391    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
3392      QualType BaseType = PropExpr->getBase()->getType();
3393      if (const PointerType *PTy = BaseType->getAsPointerType())
3394        if (const ObjCInterfaceType *IFTy =
3395            PTy->getPointeeType()->getAsObjCInterfaceType())
3396          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
3397            if (S.isPropertyReadonly(PDecl, IFace))
3398              return true;
3399    }
3400  }
3401  return false;
3402}
3403
3404/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
3405/// emit an error and return true.  If so, return false.
3406static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
3407  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context);
3408  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
3409    IsLV = Expr::MLV_ReadonlyProperty;
3410  if (IsLV == Expr::MLV_Valid)
3411    return false;
3412
3413  unsigned Diag = 0;
3414  bool NeedType = false;
3415  switch (IsLV) { // C99 6.5.16p2
3416  default: assert(0 && "Unknown result from isModifiableLvalue!");
3417  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
3418  case Expr::MLV_ArrayType:
3419    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
3420    NeedType = true;
3421    break;
3422  case Expr::MLV_NotObjectType:
3423    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
3424    NeedType = true;
3425    break;
3426  case Expr::MLV_LValueCast:
3427    Diag = diag::err_typecheck_lvalue_casts_not_supported;
3428    break;
3429  case Expr::MLV_InvalidExpression:
3430    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
3431    break;
3432  case Expr::MLV_IncompleteType:
3433  case Expr::MLV_IncompleteVoidType:
3434    return S.RequireCompleteType(Loc, E->getType(),
3435                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
3436                                    E->getSourceRange());
3437  case Expr::MLV_DuplicateVectorComponents:
3438    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
3439    break;
3440  case Expr::MLV_NotBlockQualified:
3441    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
3442    break;
3443  case Expr::MLV_ReadonlyProperty:
3444    Diag = diag::error_readonly_property_assignment;
3445    break;
3446  case Expr::MLV_NoSetterProperty:
3447    Diag = diag::error_nosetter_property_assignment;
3448    break;
3449  }
3450
3451  if (NeedType)
3452    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange();
3453  else
3454    S.Diag(Loc, Diag) << E->getSourceRange();
3455  return true;
3456}
3457
3458
3459
3460// C99 6.5.16.1
3461QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
3462                                       SourceLocation Loc,
3463                                       QualType CompoundType) {
3464  // Verify that LHS is a modifiable lvalue, and emit error if not.
3465  if (CheckForModifiableLvalue(LHS, Loc, *this))
3466    return QualType();
3467
3468  QualType LHSType = LHS->getType();
3469  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
3470
3471  AssignConvertType ConvTy;
3472  if (CompoundType.isNull()) {
3473    // Simple assignment "x = y".
3474    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
3475    // Special case of NSObject attributes on c-style pointer types.
3476    if (ConvTy == IncompatiblePointer &&
3477        ((Context.isObjCNSObjectType(LHSType) &&
3478          Context.isObjCObjectPointerType(RHSType)) ||
3479         (Context.isObjCNSObjectType(RHSType) &&
3480          Context.isObjCObjectPointerType(LHSType))))
3481      ConvTy = Compatible;
3482
3483    // If the RHS is a unary plus or minus, check to see if they = and + are
3484    // right next to each other.  If so, the user may have typo'd "x =+ 4"
3485    // instead of "x += 4".
3486    Expr *RHSCheck = RHS;
3487    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
3488      RHSCheck = ICE->getSubExpr();
3489    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
3490      if ((UO->getOpcode() == UnaryOperator::Plus ||
3491           UO->getOpcode() == UnaryOperator::Minus) &&
3492          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
3493          // Only if the two operators are exactly adjacent.
3494          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
3495          // And there is a space or other character before the subexpr of the
3496          // unary +/-.  We don't want to warn on "x=-1".
3497          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
3498          UO->getSubExpr()->getLocStart().isFileID()) {
3499        Diag(Loc, diag::warn_not_compound_assign)
3500          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
3501          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
3502      }
3503    }
3504  } else {
3505    // Compound assignment "x += y"
3506    ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
3507  }
3508
3509  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
3510                               RHS, "assigning"))
3511    return QualType();
3512
3513  // C99 6.5.16p3: The type of an assignment expression is the type of the
3514  // left operand unless the left operand has qualified type, in which case
3515  // it is the unqualified version of the type of the left operand.
3516  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
3517  // is converted to the type of the assignment expression (above).
3518  // C++ 5.17p1: the type of the assignment expression is that of its left
3519  // oprdu.
3520  return LHSType.getUnqualifiedType();
3521}
3522
3523// C99 6.5.17
3524QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
3525  // FIXME: what is required for LHS?
3526
3527  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
3528  DefaultFunctionArrayConversion(RHS);
3529  return RHS->getType();
3530}
3531
3532/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
3533/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
3534QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
3535                                              bool isInc) {
3536  if (Op->isTypeDependent())
3537    return Context.DependentTy;
3538
3539  QualType ResType = Op->getType();
3540  assert(!ResType.isNull() && "no type for increment/decrement expression");
3541
3542  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
3543    // Decrement of bool is not allowed.
3544    if (!isInc) {
3545      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
3546      return QualType();
3547    }
3548    // Increment of bool sets it to true, but is deprecated.
3549    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
3550  } else if (ResType->isRealType()) {
3551    // OK!
3552  } else if (const PointerType *PT = ResType->getAsPointerType()) {
3553    // C99 6.5.2.4p2, 6.5.6p2
3554    if (PT->getPointeeType()->isObjectType()) {
3555      // Pointer to object is ok!
3556    } else if (PT->getPointeeType()->isVoidType()) {
3557      if (getLangOptions().CPlusPlus) {
3558        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
3559          << Op->getSourceRange();
3560        return QualType();
3561      }
3562
3563      // Pointer to void is a GNU extension in C.
3564      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
3565    } else if (PT->getPointeeType()->isFunctionType()) {
3566      if (getLangOptions().CPlusPlus) {
3567        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
3568          << Op->getType() << Op->getSourceRange();
3569        return QualType();
3570      }
3571
3572      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
3573        << ResType << Op->getSourceRange();
3574    } else {
3575      RequireCompleteType(OpLoc, PT->getPointeeType(),
3576                             diag::err_typecheck_arithmetic_incomplete_type,
3577                             Op->getSourceRange(), SourceRange(),
3578                             ResType);
3579      return QualType();
3580    }
3581  } else if (ResType->isComplexType()) {
3582    // C99 does not support ++/-- on complex types, we allow as an extension.
3583    Diag(OpLoc, diag::ext_integer_increment_complex)
3584      << ResType << Op->getSourceRange();
3585  } else {
3586    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
3587      << ResType << Op->getSourceRange();
3588    return QualType();
3589  }
3590  // At this point, we know we have a real, complex or pointer type.
3591  // Now make sure the operand is a modifiable lvalue.
3592  if (CheckForModifiableLvalue(Op, OpLoc, *this))
3593    return QualType();
3594  return ResType;
3595}
3596
3597/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
3598/// This routine allows us to typecheck complex/recursive expressions
3599/// where the declaration is needed for type checking. We only need to
3600/// handle cases when the expression references a function designator
3601/// or is an lvalue. Here are some examples:
3602///  - &(x) => x
3603///  - &*****f => f for f a function designator.
3604///  - &s.xx => s
3605///  - &s.zz[1].yy -> s, if zz is an array
3606///  - *(x + 1) -> x, if x is an array
3607///  - &"123"[2] -> 0
3608///  - & __real__ x -> x
3609static NamedDecl *getPrimaryDecl(Expr *E) {
3610  switch (E->getStmtClass()) {
3611  case Stmt::DeclRefExprClass:
3612  case Stmt::QualifiedDeclRefExprClass:
3613    return cast<DeclRefExpr>(E)->getDecl();
3614  case Stmt::MemberExprClass:
3615    // Fields cannot be declared with a 'register' storage class.
3616    // &X->f is always ok, even if X is declared register.
3617    if (cast<MemberExpr>(E)->isArrow())
3618      return 0;
3619    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
3620  case Stmt::ArraySubscriptExprClass: {
3621    // &X[4] and &4[X] refers to X if X is not a pointer.
3622
3623    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
3624    ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
3625    if (!VD || VD->getType()->isPointerType())
3626      return 0;
3627    else
3628      return VD;
3629  }
3630  case Stmt::UnaryOperatorClass: {
3631    UnaryOperator *UO = cast<UnaryOperator>(E);
3632
3633    switch(UO->getOpcode()) {
3634    case UnaryOperator::Deref: {
3635      // *(X + 1) refers to X if X is not a pointer.
3636      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
3637        ValueDecl *VD = dyn_cast<ValueDecl>(D);
3638        if (!VD || VD->getType()->isPointerType())
3639          return 0;
3640        return VD;
3641      }
3642      return 0;
3643    }
3644    case UnaryOperator::Real:
3645    case UnaryOperator::Imag:
3646    case UnaryOperator::Extension:
3647      return getPrimaryDecl(UO->getSubExpr());
3648    default:
3649      return 0;
3650    }
3651  }
3652  case Stmt::BinaryOperatorClass: {
3653    BinaryOperator *BO = cast<BinaryOperator>(E);
3654
3655    // Handle cases involving pointer arithmetic. The result of an
3656    // Assign or AddAssign is not an lvalue so they can be ignored.
3657
3658    // (x + n) or (n + x) => x
3659    if (BO->getOpcode() == BinaryOperator::Add) {
3660      if (BO->getLHS()->getType()->isPointerType()) {
3661        return getPrimaryDecl(BO->getLHS());
3662      } else if (BO->getRHS()->getType()->isPointerType()) {
3663        return getPrimaryDecl(BO->getRHS());
3664      }
3665    }
3666
3667    return 0;
3668  }
3669  case Stmt::ParenExprClass:
3670    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
3671  case Stmt::ImplicitCastExprClass:
3672    // &X[4] when X is an array, has an implicit cast from array to pointer.
3673    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
3674  default:
3675    return 0;
3676  }
3677}
3678
3679/// CheckAddressOfOperand - The operand of & must be either a function
3680/// designator or an lvalue designating an object. If it is an lvalue, the
3681/// object cannot be declared with storage class register or be a bit field.
3682/// Note: The usual conversions are *not* applied to the operand of the &
3683/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
3684/// In C++, the operand might be an overloaded function name, in which case
3685/// we allow the '&' but retain the overloaded-function type.
3686QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
3687  if (op->isTypeDependent())
3688    return Context.DependentTy;
3689
3690  if (getLangOptions().C99) {
3691    // Implement C99-only parts of addressof rules.
3692    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
3693      if (uOp->getOpcode() == UnaryOperator::Deref)
3694        // Per C99 6.5.3.2, the address of a deref always returns a valid result
3695        // (assuming the deref expression is valid).
3696        return uOp->getSubExpr()->getType();
3697    }
3698    // Technically, there should be a check for array subscript
3699    // expressions here, but the result of one is always an lvalue anyway.
3700  }
3701  NamedDecl *dcl = getPrimaryDecl(op);
3702  Expr::isLvalueResult lval = op->isLvalue(Context);
3703
3704  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
3705    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
3706      // FIXME: emit more specific diag...
3707      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
3708        << op->getSourceRange();
3709      return QualType();
3710    }
3711  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
3712    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemExpr->getMemberDecl())) {
3713      if (Field->isBitField()) {
3714        Diag(OpLoc, diag::err_typecheck_address_of)
3715          << "bit-field" << op->getSourceRange();
3716        return QualType();
3717      }
3718    }
3719  // Check for Apple extension for accessing vector components.
3720  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
3721           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
3722    Diag(OpLoc, diag::err_typecheck_address_of)
3723      << "vector element" << op->getSourceRange();
3724    return QualType();
3725  } else if (dcl) { // C99 6.5.3.2p1
3726    // We have an lvalue with a decl. Make sure the decl is not declared
3727    // with the register storage-class specifier.
3728    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
3729      if (vd->getStorageClass() == VarDecl::Register) {
3730        Diag(OpLoc, diag::err_typecheck_address_of)
3731          << "register variable" << op->getSourceRange();
3732        return QualType();
3733      }
3734    } else if (isa<OverloadedFunctionDecl>(dcl)) {
3735      return Context.OverloadTy;
3736    } else if (isa<FieldDecl>(dcl)) {
3737      // Okay: we can take the address of a field.
3738      // Could be a pointer to member, though, if there is an explicit
3739      // scope qualifier for the class.
3740      if (isa<QualifiedDeclRefExpr>(op)) {
3741        DeclContext *Ctx = dcl->getDeclContext();
3742        if (Ctx && Ctx->isRecord())
3743          return Context.getMemberPointerType(op->getType(),
3744                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
3745      }
3746    } else if (isa<FunctionDecl>(dcl)) {
3747      // Okay: we can take the address of a function.
3748      // As above.
3749      if (isa<QualifiedDeclRefExpr>(op)) {
3750        DeclContext *Ctx = dcl->getDeclContext();
3751        if (Ctx && Ctx->isRecord())
3752          return Context.getMemberPointerType(op->getType(),
3753                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
3754      }
3755    }
3756    else
3757      assert(0 && "Unknown/unexpected decl type");
3758  }
3759
3760  // If the operand has type "type", the result has type "pointer to type".
3761  return Context.getPointerType(op->getType());
3762}
3763
3764QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
3765  if (Op->isTypeDependent())
3766    return Context.DependentTy;
3767
3768  UsualUnaryConversions(Op);
3769  QualType Ty = Op->getType();
3770
3771  // Note that per both C89 and C99, this is always legal, even if ptype is an
3772  // incomplete type or void.  It would be possible to warn about dereferencing
3773  // a void pointer, but it's completely well-defined, and such a warning is
3774  // unlikely to catch any mistakes.
3775  if (const PointerType *PT = Ty->getAsPointerType())
3776    return PT->getPointeeType();
3777
3778  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
3779    << Ty << Op->getSourceRange();
3780  return QualType();
3781}
3782
3783static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
3784  tok::TokenKind Kind) {
3785  BinaryOperator::Opcode Opc;
3786  switch (Kind) {
3787  default: assert(0 && "Unknown binop!");
3788  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
3789  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
3790  case tok::star:                 Opc = BinaryOperator::Mul; break;
3791  case tok::slash:                Opc = BinaryOperator::Div; break;
3792  case tok::percent:              Opc = BinaryOperator::Rem; break;
3793  case tok::plus:                 Opc = BinaryOperator::Add; break;
3794  case tok::minus:                Opc = BinaryOperator::Sub; break;
3795  case tok::lessless:             Opc = BinaryOperator::Shl; break;
3796  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
3797  case tok::lessequal:            Opc = BinaryOperator::LE; break;
3798  case tok::less:                 Opc = BinaryOperator::LT; break;
3799  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
3800  case tok::greater:              Opc = BinaryOperator::GT; break;
3801  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
3802  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
3803  case tok::amp:                  Opc = BinaryOperator::And; break;
3804  case tok::caret:                Opc = BinaryOperator::Xor; break;
3805  case tok::pipe:                 Opc = BinaryOperator::Or; break;
3806  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
3807  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
3808  case tok::equal:                Opc = BinaryOperator::Assign; break;
3809  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
3810  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
3811  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
3812  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
3813  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
3814  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
3815  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
3816  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
3817  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
3818  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
3819  case tok::comma:                Opc = BinaryOperator::Comma; break;
3820  }
3821  return Opc;
3822}
3823
3824static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
3825  tok::TokenKind Kind) {
3826  UnaryOperator::Opcode Opc;
3827  switch (Kind) {
3828  default: assert(0 && "Unknown unary op!");
3829  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
3830  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
3831  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
3832  case tok::star:         Opc = UnaryOperator::Deref; break;
3833  case tok::plus:         Opc = UnaryOperator::Plus; break;
3834  case tok::minus:        Opc = UnaryOperator::Minus; break;
3835  case tok::tilde:        Opc = UnaryOperator::Not; break;
3836  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
3837  case tok::kw___real:    Opc = UnaryOperator::Real; break;
3838  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
3839  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
3840  }
3841  return Opc;
3842}
3843
3844/// CreateBuiltinBinOp - Creates a new built-in binary operation with
3845/// operator @p Opc at location @c TokLoc. This routine only supports
3846/// built-in operations; ActOnBinOp handles overloaded operators.
3847Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
3848                                                  unsigned Op,
3849                                                  Expr *lhs, Expr *rhs) {
3850  QualType ResultTy;  // Result type of the binary operator.
3851  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
3852  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
3853
3854  switch (Opc) {
3855  default:
3856    assert(0 && "Unknown binary expr!");
3857  case BinaryOperator::Assign:
3858    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
3859    break;
3860  case BinaryOperator::PtrMemD:
3861  case BinaryOperator::PtrMemI:
3862    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
3863                                            Opc == BinaryOperator::PtrMemI);
3864    break;
3865  case BinaryOperator::Mul:
3866  case BinaryOperator::Div:
3867    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
3868    break;
3869  case BinaryOperator::Rem:
3870    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
3871    break;
3872  case BinaryOperator::Add:
3873    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
3874    break;
3875  case BinaryOperator::Sub:
3876    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
3877    break;
3878  case BinaryOperator::Shl:
3879  case BinaryOperator::Shr:
3880    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
3881    break;
3882  case BinaryOperator::LE:
3883  case BinaryOperator::LT:
3884  case BinaryOperator::GE:
3885  case BinaryOperator::GT:
3886    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true);
3887    break;
3888  case BinaryOperator::EQ:
3889  case BinaryOperator::NE:
3890    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false);
3891    break;
3892  case BinaryOperator::And:
3893  case BinaryOperator::Xor:
3894  case BinaryOperator::Or:
3895    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
3896    break;
3897  case BinaryOperator::LAnd:
3898  case BinaryOperator::LOr:
3899    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
3900    break;
3901  case BinaryOperator::MulAssign:
3902  case BinaryOperator::DivAssign:
3903    CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
3904    if (!CompTy.isNull())
3905      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3906    break;
3907  case BinaryOperator::RemAssign:
3908    CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
3909    if (!CompTy.isNull())
3910      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3911    break;
3912  case BinaryOperator::AddAssign:
3913    CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true);
3914    if (!CompTy.isNull())
3915      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3916    break;
3917  case BinaryOperator::SubAssign:
3918    CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true);
3919    if (!CompTy.isNull())
3920      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3921    break;
3922  case BinaryOperator::ShlAssign:
3923  case BinaryOperator::ShrAssign:
3924    CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
3925    if (!CompTy.isNull())
3926      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3927    break;
3928  case BinaryOperator::AndAssign:
3929  case BinaryOperator::XorAssign:
3930  case BinaryOperator::OrAssign:
3931    CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
3932    if (!CompTy.isNull())
3933      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3934    break;
3935  case BinaryOperator::Comma:
3936    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
3937    break;
3938  }
3939  if (ResultTy.isNull())
3940    return ExprError();
3941  if (CompTy.isNull())
3942    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
3943  else
3944    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
3945                                                      CompTy, OpLoc));
3946}
3947
3948// Binary Operators.  'Tok' is the token for the operator.
3949Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
3950                                          tok::TokenKind Kind,
3951                                          ExprArg LHS, ExprArg RHS) {
3952  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
3953  Expr *lhs = (Expr *)LHS.release(), *rhs = (Expr*)RHS.release();
3954
3955  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
3956  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
3957
3958  // If either expression is type-dependent, just build the AST.
3959  // FIXME: We'll need to perform some caching of the result of name
3960  // lookup for operator+.
3961  if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
3962    if (Opc > BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign)
3963      return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc,
3964                                              Context.DependentTy,
3965                                              Context.DependentTy, TokLoc));
3966    else
3967      return Owned(new (Context) BinaryOperator(lhs, rhs, Opc,
3968                                                Context.DependentTy, TokLoc));
3969  }
3970
3971  if (getLangOptions().CPlusPlus && Opc != BinaryOperator::PtrMemD &&
3972      (lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType() ||
3973       rhs->getType()->isRecordType() || rhs->getType()->isEnumeralType())) {
3974    // If this is one of the assignment operators, we only perform
3975    // overload resolution if the left-hand side is a class or
3976    // enumeration type (C++ [expr.ass]p3).
3977    if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3978        !(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType())) {
3979      return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3980    }
3981
3982    // Determine which overloaded operator we're dealing with.
3983    static const OverloadedOperatorKind OverOps[] = {
3984      // Overloading .* is not possible.
3985      static_cast<OverloadedOperatorKind>(0), OO_ArrowStar,
3986      OO_Star, OO_Slash, OO_Percent,
3987      OO_Plus, OO_Minus,
3988      OO_LessLess, OO_GreaterGreater,
3989      OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
3990      OO_EqualEqual, OO_ExclaimEqual,
3991      OO_Amp,
3992      OO_Caret,
3993      OO_Pipe,
3994      OO_AmpAmp,
3995      OO_PipePipe,
3996      OO_Equal, OO_StarEqual,
3997      OO_SlashEqual, OO_PercentEqual,
3998      OO_PlusEqual, OO_MinusEqual,
3999      OO_LessLessEqual, OO_GreaterGreaterEqual,
4000      OO_AmpEqual, OO_CaretEqual,
4001      OO_PipeEqual,
4002      OO_Comma
4003    };
4004    OverloadedOperatorKind OverOp = OverOps[Opc];
4005
4006    // Add the appropriate overloaded operators (C++ [over.match.oper])
4007    // to the candidate set.
4008    OverloadCandidateSet CandidateSet;
4009    Expr *Args[2] = { lhs, rhs };
4010    if (AddOperatorCandidates(OverOp, S, TokLoc, Args, 2, CandidateSet))
4011      return ExprError();
4012
4013    // Perform overload resolution.
4014    OverloadCandidateSet::iterator Best;
4015    switch (BestViableFunction(CandidateSet, Best)) {
4016    case OR_Success: {
4017      // We found a built-in operator or an overloaded operator.
4018      FunctionDecl *FnDecl = Best->Function;
4019
4020      if (FnDecl) {
4021        // We matched an overloaded operator. Build a call to that
4022        // operator.
4023
4024        // Convert the arguments.
4025        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4026          if (PerformObjectArgumentInitialization(lhs, Method) ||
4027              PerformCopyInitialization(rhs, FnDecl->getParamDecl(0)->getType(),
4028                                        "passing"))
4029            return ExprError();
4030        } else {
4031          // Convert the arguments.
4032          if (PerformCopyInitialization(lhs, FnDecl->getParamDecl(0)->getType(),
4033                                        "passing") ||
4034              PerformCopyInitialization(rhs, FnDecl->getParamDecl(1)->getType(),
4035                                        "passing"))
4036            return ExprError();
4037        }
4038
4039        // Determine the result type
4040        QualType ResultTy
4041          = FnDecl->getType()->getAsFunctionType()->getResultType();
4042        ResultTy = ResultTy.getNonReferenceType();
4043
4044        // Build the actual expression node.
4045        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4046                                                 SourceLocation());
4047        UsualUnaryConversions(FnExpr);
4048
4049        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2,
4050                                                       ResultTy, TokLoc));
4051      } else {
4052        // We matched a built-in operator. Convert the arguments, then
4053        // break out so that we will build the appropriate built-in
4054        // operator node.
4055        if (PerformImplicitConversion(lhs, Best->BuiltinTypes.ParamTypes[0],
4056                                      Best->Conversions[0], "passing") ||
4057            PerformImplicitConversion(rhs, Best->BuiltinTypes.ParamTypes[1],
4058                                      Best->Conversions[1], "passing"))
4059          return ExprError();
4060
4061        break;
4062      }
4063    }
4064
4065    case OR_No_Viable_Function:
4066      // No viable function; fall through to handling this as a
4067      // built-in operator, which will produce an error message for us.
4068      break;
4069
4070    case OR_Ambiguous:
4071      Diag(TokLoc,  diag::err_ovl_ambiguous_oper)
4072          << BinaryOperator::getOpcodeStr(Opc)
4073          << lhs->getSourceRange() << rhs->getSourceRange();
4074      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4075      return ExprError();
4076
4077    case OR_Deleted:
4078      Diag(TokLoc, diag::err_ovl_deleted_oper)
4079        << Best->Function->isDeleted()
4080        << BinaryOperator::getOpcodeStr(Opc)
4081        << lhs->getSourceRange() << rhs->getSourceRange();
4082      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4083      return ExprError();
4084    }
4085
4086    // Either we found no viable overloaded operator or we matched a
4087    // built-in operator. In either case, fall through to trying to
4088    // build a built-in operation.
4089  }
4090
4091  // Build a built-in binary operation.
4092  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
4093}
4094
4095// Unary Operators.  'Tok' is the token for the operator.
4096Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
4097                                            tok::TokenKind Op, ExprArg input) {
4098  // FIXME: Input is modified later, but smart pointer not reassigned.
4099  Expr *Input = (Expr*)input.get();
4100  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
4101
4102  if (getLangOptions().CPlusPlus &&
4103      (Input->getType()->isRecordType()
4104       || Input->getType()->isEnumeralType())) {
4105    // Determine which overloaded operator we're dealing with.
4106    static const OverloadedOperatorKind OverOps[] = {
4107      OO_None, OO_None,
4108      OO_PlusPlus, OO_MinusMinus,
4109      OO_Amp, OO_Star,
4110      OO_Plus, OO_Minus,
4111      OO_Tilde, OO_Exclaim,
4112      OO_None, OO_None,
4113      OO_None,
4114      OO_None
4115    };
4116    OverloadedOperatorKind OverOp = OverOps[Opc];
4117
4118    // Add the appropriate overloaded operators (C++ [over.match.oper])
4119    // to the candidate set.
4120    OverloadCandidateSet CandidateSet;
4121    if (OverOp != OO_None &&
4122        AddOperatorCandidates(OverOp, S, OpLoc, &Input, 1, CandidateSet))
4123      return ExprError();
4124
4125    // Perform overload resolution.
4126    OverloadCandidateSet::iterator Best;
4127    switch (BestViableFunction(CandidateSet, Best)) {
4128    case OR_Success: {
4129      // We found a built-in operator or an overloaded operator.
4130      FunctionDecl *FnDecl = Best->Function;
4131
4132      if (FnDecl) {
4133        // We matched an overloaded operator. Build a call to that
4134        // operator.
4135
4136        // Convert the arguments.
4137        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4138          if (PerformObjectArgumentInitialization(Input, Method))
4139            return ExprError();
4140        } else {
4141          // Convert the arguments.
4142          if (PerformCopyInitialization(Input,
4143                                        FnDecl->getParamDecl(0)->getType(),
4144                                        "passing"))
4145            return ExprError();
4146        }
4147
4148        // Determine the result type
4149        QualType ResultTy
4150          = FnDecl->getType()->getAsFunctionType()->getResultType();
4151        ResultTy = ResultTy.getNonReferenceType();
4152
4153        // Build the actual expression node.
4154        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4155                                                 SourceLocation());
4156        UsualUnaryConversions(FnExpr);
4157
4158        input.release();
4159        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, &Input,
4160                                                       1, ResultTy, OpLoc));
4161      } else {
4162        // We matched a built-in operator. Convert the arguments, then
4163        // break out so that we will build the appropriate built-in
4164        // operator node.
4165        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4166                                      Best->Conversions[0], "passing"))
4167          return ExprError();
4168
4169        break;
4170      }
4171    }
4172
4173    case OR_No_Viable_Function:
4174      // No viable function; fall through to handling this as a
4175      // built-in operator, which will produce an error message for us.
4176      break;
4177
4178    case OR_Ambiguous:
4179      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4180          << UnaryOperator::getOpcodeStr(Opc)
4181          << Input->getSourceRange();
4182      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4183      return ExprError();
4184
4185    case OR_Deleted:
4186      Diag(OpLoc, diag::err_ovl_deleted_oper)
4187        << Best->Function->isDeleted()
4188        << UnaryOperator::getOpcodeStr(Opc)
4189        << Input->getSourceRange();
4190      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4191      return ExprError();
4192    }
4193
4194    // Either we found no viable overloaded operator or we matched a
4195    // built-in operator. In either case, fall through to trying to
4196    // build a built-in operation.
4197  }
4198
4199  QualType resultType;
4200  switch (Opc) {
4201  default:
4202    assert(0 && "Unimplemented unary expr!");
4203  case UnaryOperator::PreInc:
4204  case UnaryOperator::PreDec:
4205    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
4206                                                Opc == UnaryOperator::PreInc);
4207    break;
4208  case UnaryOperator::AddrOf:
4209    resultType = CheckAddressOfOperand(Input, OpLoc);
4210    break;
4211  case UnaryOperator::Deref:
4212    DefaultFunctionArrayConversion(Input);
4213    resultType = CheckIndirectionOperand(Input, OpLoc);
4214    break;
4215  case UnaryOperator::Plus:
4216  case UnaryOperator::Minus:
4217    UsualUnaryConversions(Input);
4218    resultType = Input->getType();
4219    if (resultType->isDependentType())
4220      break;
4221    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
4222      break;
4223    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
4224             resultType->isEnumeralType())
4225      break;
4226    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
4227             Opc == UnaryOperator::Plus &&
4228             resultType->isPointerType())
4229      break;
4230
4231    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4232      << resultType << Input->getSourceRange());
4233  case UnaryOperator::Not: // bitwise complement
4234    UsualUnaryConversions(Input);
4235    resultType = Input->getType();
4236    if (resultType->isDependentType())
4237      break;
4238    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
4239    if (resultType->isComplexType() || resultType->isComplexIntegerType())
4240      // C99 does not support '~' for complex conjugation.
4241      Diag(OpLoc, diag::ext_integer_complement_complex)
4242        << resultType << Input->getSourceRange();
4243    else if (!resultType->isIntegerType())
4244      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4245        << resultType << Input->getSourceRange());
4246    break;
4247  case UnaryOperator::LNot: // logical negation
4248    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
4249    DefaultFunctionArrayConversion(Input);
4250    resultType = Input->getType();
4251    if (resultType->isDependentType())
4252      break;
4253    if (!resultType->isScalarType()) // C99 6.5.3.3p1
4254      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4255        << resultType << Input->getSourceRange());
4256    // LNot always has type int. C99 6.5.3.3p5.
4257    // In C++, it's bool. C++ 5.3.1p8
4258    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
4259    break;
4260  case UnaryOperator::Real:
4261  case UnaryOperator::Imag:
4262    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
4263    break;
4264  case UnaryOperator::Extension:
4265    resultType = Input->getType();
4266    break;
4267  }
4268  if (resultType.isNull())
4269    return ExprError();
4270  input.release();
4271  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
4272}
4273
4274/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
4275Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
4276                                      SourceLocation LabLoc,
4277                                      IdentifierInfo *LabelII) {
4278  // Look up the record for this label identifier.
4279  llvm::DenseMap<IdentifierInfo*, Action::StmtTy*>::iterator I =
4280    ActiveScope->LabelMap.find(LabelII);
4281
4282  LabelStmt *LabelDecl;
4283
4284  // If we haven't seen this label yet, create a forward reference. It
4285  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
4286  if (I == ActiveScope->LabelMap.end()) {
4287    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
4288
4289    ActiveScope->LabelMap.insert(std::make_pair(LabelII, LabelDecl));
4290  } else
4291    LabelDecl = static_cast<LabelStmt *>(I->second);
4292
4293  // Create the AST node.  The address of a label always has type 'void*'.
4294  return new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
4295                                     Context.getPointerType(Context.VoidTy));
4296}
4297
4298Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
4299                                     SourceLocation RPLoc) { // "({..})"
4300  Stmt *SubStmt = static_cast<Stmt*>(substmt);
4301  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
4302  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
4303
4304  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4305  if (isFileScope) {
4306    return Diag(LPLoc, diag::err_stmtexpr_file_scope);
4307  }
4308
4309  // FIXME: there are a variety of strange constraints to enforce here, for
4310  // example, it is not possible to goto into a stmt expression apparently.
4311  // More semantic analysis is needed.
4312
4313  // FIXME: the last statement in the compount stmt has its value used.  We
4314  // should not warn about it being unused.
4315
4316  // If there are sub stmts in the compound stmt, take the type of the last one
4317  // as the type of the stmtexpr.
4318  QualType Ty = Context.VoidTy;
4319
4320  if (!Compound->body_empty()) {
4321    Stmt *LastStmt = Compound->body_back();
4322    // If LastStmt is a label, skip down through into the body.
4323    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
4324      LastStmt = Label->getSubStmt();
4325
4326    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
4327      Ty = LastExpr->getType();
4328  }
4329
4330  return new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
4331}
4332
4333Sema::ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
4334                                            SourceLocation BuiltinLoc,
4335                                            SourceLocation TypeLoc,
4336                                            TypeTy *argty,
4337                                            OffsetOfComponent *CompPtr,
4338                                            unsigned NumComponents,
4339                                            SourceLocation RPLoc) {
4340  QualType ArgTy = QualType::getFromOpaquePtr(argty);
4341  assert(!ArgTy.isNull() && "Missing type argument!");
4342
4343  bool Dependent = ArgTy->isDependentType();
4344
4345  // We must have at least one component that refers to the type, and the first
4346  // one is known to be a field designator.  Verify that the ArgTy represents
4347  // a struct/union/class.
4348  if (!Dependent && !ArgTy->isRecordType())
4349    return Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy;
4350
4351  // Otherwise, create a null pointer as the base, and iteratively process
4352  // the offsetof designators.
4353  QualType ArgTyPtr = Context.getPointerType(ArgTy);
4354  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
4355  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
4356                                    ArgTy, SourceLocation());
4357
4358  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
4359  // GCC extension, diagnose them.
4360  // FIXME: This diagnostic isn't actually visible because the location is in
4361  // a system header!
4362  if (NumComponents != 1)
4363    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
4364      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
4365
4366  if (!Dependent) {
4367    // FIXME: Dependent case loses a lot of information here. And probably
4368    // leaks like a sieve.
4369    for (unsigned i = 0; i != NumComponents; ++i) {
4370      const OffsetOfComponent &OC = CompPtr[i];
4371      if (OC.isBrackets) {
4372        // Offset of an array sub-field.  TODO: Should we allow vector elements?
4373        const ArrayType *AT = Context.getAsArrayType(Res->getType());
4374        if (!AT) {
4375          Res->Destroy(Context);
4376          return Diag(OC.LocEnd, diag::err_offsetof_array_type)
4377            << Res->getType();
4378        }
4379
4380        // FIXME: C++: Verify that operator[] isn't overloaded.
4381
4382        // Promote the array so it looks more like a normal array subscript
4383        // expression.
4384        DefaultFunctionArrayConversion(Res);
4385
4386        // C99 6.5.2.1p1
4387        Expr *Idx = static_cast<Expr*>(OC.U.E);
4388        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
4389          return Diag(Idx->getLocStart(), diag::err_typecheck_subscript)
4390            << Idx->getSourceRange();
4391
4392        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
4393                                               OC.LocEnd);
4394        continue;
4395      }
4396
4397      const RecordType *RC = Res->getType()->getAsRecordType();
4398      if (!RC) {
4399        Res->Destroy(Context);
4400        return Diag(OC.LocEnd, diag::err_offsetof_record_type)
4401          << Res->getType();
4402      }
4403
4404      // Get the decl corresponding to this.
4405      RecordDecl *RD = RC->getDecl();
4406      FieldDecl *MemberDecl
4407        = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
4408                                                          LookupMemberName)
4409                                        .getAsDecl());
4410      if (!MemberDecl)
4411        return Diag(BuiltinLoc, diag::err_typecheck_no_member)
4412         << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd);
4413
4414      // FIXME: C++: Verify that MemberDecl isn't a static field.
4415      // FIXME: Verify that MemberDecl isn't a bitfield.
4416      // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
4417      // matter here.
4418      Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
4419                                   MemberDecl->getType().getNonReferenceType());
4420    }
4421  }
4422
4423  return new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
4424                                     Context.getSizeType(), BuiltinLoc);
4425}
4426
4427
4428Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
4429                                                TypeTy *arg1, TypeTy *arg2,
4430                                                SourceLocation RPLoc) {
4431  QualType argT1 = QualType::getFromOpaquePtr(arg1);
4432  QualType argT2 = QualType::getFromOpaquePtr(arg2);
4433
4434  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
4435
4436  return new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1,
4437                                           argT2, RPLoc);
4438}
4439
4440Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
4441                                       ExprTy *expr1, ExprTy *expr2,
4442                                       SourceLocation RPLoc) {
4443  Expr *CondExpr = static_cast<Expr*>(cond);
4444  Expr *LHSExpr = static_cast<Expr*>(expr1);
4445  Expr *RHSExpr = static_cast<Expr*>(expr2);
4446
4447  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
4448
4449  QualType resType;
4450  if (CondExpr->isValueDependent()) {
4451    resType = Context.DependentTy;
4452  } else {
4453    // The conditional expression is required to be a constant expression.
4454    llvm::APSInt condEval(32);
4455    SourceLocation ExpLoc;
4456    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
4457      return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant)
4458        << CondExpr->getSourceRange();
4459
4460    // If the condition is > zero, then the AST type is the same as the LSHExpr.
4461    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
4462  }
4463
4464  return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
4465                                  resType, RPLoc);
4466}
4467
4468//===----------------------------------------------------------------------===//
4469// Clang Extensions.
4470//===----------------------------------------------------------------------===//
4471
4472/// ActOnBlockStart - This callback is invoked when a block literal is started.
4473void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
4474  // Analyze block parameters.
4475  BlockSemaInfo *BSI = new BlockSemaInfo();
4476
4477  // Add BSI to CurBlock.
4478  BSI->PrevBlockInfo = CurBlock;
4479  CurBlock = BSI;
4480  ActiveScope = BlockScope;
4481
4482  BSI->ReturnType = 0;
4483  BSI->TheScope = BlockScope;
4484  BSI->hasBlockDeclRefExprs = false;
4485
4486  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
4487  PushDeclContext(BlockScope, BSI->TheDecl);
4488}
4489
4490void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
4491  assert(ParamInfo.getIdentifier() == 0 && "block-id should have no identifier!");
4492
4493  if (ParamInfo.getNumTypeObjects() == 0
4494      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
4495    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
4496
4497    // The type is entirely optional as well, if none, use DependentTy.
4498    if (T.isNull())
4499      T = Context.DependentTy;
4500
4501    // The parameter list is optional, if there was none, assume ().
4502    if (!T->isFunctionType())
4503      T = Context.getFunctionType(T, NULL, 0, 0, 0);
4504
4505    CurBlock->hasPrototype = true;
4506    CurBlock->isVariadic = false;
4507    Type *RetTy = T.getTypePtr()->getAsFunctionType()->getResultType()
4508      .getTypePtr();
4509
4510    if (!RetTy->isDependentType())
4511      CurBlock->ReturnType = RetTy;
4512    return;
4513  }
4514
4515  // Analyze arguments to block.
4516  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4517         "Not a function declarator!");
4518  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
4519
4520  CurBlock->hasPrototype = FTI.hasPrototype;
4521  CurBlock->isVariadic = true;
4522
4523  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
4524  // no arguments, not a function that takes a single void argument.
4525  if (FTI.hasPrototype &&
4526      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4527      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
4528        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
4529    // empty arg list, don't push any params.
4530    CurBlock->isVariadic = false;
4531  } else if (FTI.hasPrototype) {
4532    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
4533      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
4534    CurBlock->isVariadic = FTI.isVariadic;
4535    QualType T = GetTypeForDeclarator (ParamInfo, CurScope);
4536
4537    Type* RetTy = T.getTypePtr()->getAsFunctionType()->getResultType()
4538      .getTypePtr();
4539
4540    if (!RetTy->isDependentType())
4541      CurBlock->ReturnType = RetTy;
4542  }
4543  CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
4544
4545  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
4546       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
4547    // If this has an identifier, add it to the scope stack.
4548    if ((*AI)->getIdentifier())
4549      PushOnScopeChains(*AI, CurBlock->TheScope);
4550}
4551
4552/// ActOnBlockError - If there is an error parsing a block, this callback
4553/// is invoked to pop the information about the block from the action impl.
4554void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
4555  // Ensure that CurBlock is deleted.
4556  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
4557
4558  // Pop off CurBlock, handle nested blocks.
4559  CurBlock = CurBlock->PrevBlockInfo;
4560
4561  // FIXME: Delete the ParmVarDecl objects as well???
4562
4563}
4564
4565/// ActOnBlockStmtExpr - This is called when the body of a block statement
4566/// literal was successfully completed.  ^(int x){...}
4567Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
4568                                          Scope *CurScope) {
4569  // Ensure that CurBlock is deleted.
4570  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
4571  ExprOwningPtr<CompoundStmt> Body(this, static_cast<CompoundStmt*>(body));
4572
4573  PopDeclContext();
4574
4575  // Before poping CurBlock, set ActiveScope to this scopes parent.
4576  ActiveScope = CurBlock->TheScope->getParent();
4577
4578  // Pop off CurBlock, handle nested blocks.
4579  CurBlock = CurBlock->PrevBlockInfo;
4580
4581  QualType RetTy = Context.VoidTy;
4582  if (BSI->ReturnType)
4583    RetTy = QualType(BSI->ReturnType, 0);
4584
4585  llvm::SmallVector<QualType, 8> ArgTypes;
4586  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
4587    ArgTypes.push_back(BSI->Params[i]->getType());
4588
4589  QualType BlockTy;
4590  if (!BSI->hasPrototype)
4591    BlockTy = Context.getFunctionNoProtoType(RetTy);
4592  else
4593    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
4594                                      BSI->isVariadic, 0);
4595
4596  BlockTy = Context.getBlockPointerType(BlockTy);
4597
4598  BSI->TheDecl->setBody(Body.take());
4599  return new (Context) BlockExpr(BSI->TheDecl, BlockTy, BSI->hasBlockDeclRefExprs);
4600}
4601
4602Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
4603                                  ExprTy *expr, TypeTy *type,
4604                                  SourceLocation RPLoc) {
4605  Expr *E = static_cast<Expr*>(expr);
4606  QualType T = QualType::getFromOpaquePtr(type);
4607
4608  InitBuiltinVaListType();
4609
4610  // Get the va_list type
4611  QualType VaListType = Context.getBuiltinVaListType();
4612  // Deal with implicit array decay; for example, on x86-64,
4613  // va_list is an array, but it's supposed to decay to
4614  // a pointer for va_arg.
4615  if (VaListType->isArrayType())
4616    VaListType = Context.getArrayDecayedType(VaListType);
4617  // Make sure the input expression also decays appropriately.
4618  UsualUnaryConversions(E);
4619
4620  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
4621    return Diag(E->getLocStart(),
4622                diag::err_first_argument_to_va_arg_not_of_type_va_list)
4623      << E->getType() << E->getSourceRange();
4624
4625  // FIXME: Warn if a non-POD type is passed in.
4626
4627  return new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc);
4628}
4629
4630Sema::ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
4631  // The type of __null will be int or long, depending on the size of
4632  // pointers on the target.
4633  QualType Ty;
4634  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
4635    Ty = Context.IntTy;
4636  else
4637    Ty = Context.LongTy;
4638
4639  return new (Context) GNUNullExpr(Ty, TokenLoc);
4640}
4641
4642bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
4643                                    SourceLocation Loc,
4644                                    QualType DstType, QualType SrcType,
4645                                    Expr *SrcExpr, const char *Flavor) {
4646  // Decode the result (notice that AST's are still created for extensions).
4647  bool isInvalid = false;
4648  unsigned DiagKind;
4649  switch (ConvTy) {
4650  default: assert(0 && "Unknown conversion type");
4651  case Compatible: return false;
4652  case PointerToInt:
4653    DiagKind = diag::ext_typecheck_convert_pointer_int;
4654    break;
4655  case IntToPointer:
4656    DiagKind = diag::ext_typecheck_convert_int_pointer;
4657    break;
4658  case IncompatiblePointer:
4659    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
4660    break;
4661  case FunctionVoidPointer:
4662    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
4663    break;
4664  case CompatiblePointerDiscardsQualifiers:
4665    // If the qualifiers lost were because we were applying the
4666    // (deprecated) C++ conversion from a string literal to a char*
4667    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
4668    // Ideally, this check would be performed in
4669    // CheckPointerTypesForAssignment. However, that would require a
4670    // bit of refactoring (so that the second argument is an
4671    // expression, rather than a type), which should be done as part
4672    // of a larger effort to fix CheckPointerTypesForAssignment for
4673    // C++ semantics.
4674    if (getLangOptions().CPlusPlus &&
4675        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
4676      return false;
4677    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
4678    break;
4679  case IntToBlockPointer:
4680    DiagKind = diag::err_int_to_block_pointer;
4681    break;
4682  case IncompatibleBlockPointer:
4683    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
4684    break;
4685  case IncompatibleObjCQualifiedId:
4686    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
4687    // it can give a more specific diagnostic.
4688    DiagKind = diag::warn_incompatible_qualified_id;
4689    break;
4690  case IncompatibleVectors:
4691    DiagKind = diag::warn_incompatible_vectors;
4692    break;
4693  case Incompatible:
4694    DiagKind = diag::err_typecheck_convert_incompatible;
4695    isInvalid = true;
4696    break;
4697  }
4698
4699  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
4700    << SrcExpr->getSourceRange();
4701  return isInvalid;
4702}
4703
4704bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result)
4705{
4706  Expr::EvalResult EvalResult;
4707
4708  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
4709      EvalResult.HasSideEffects) {
4710    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
4711
4712    if (EvalResult.Diag) {
4713      // We only show the note if it's not the usual "invalid subexpression"
4714      // or if it's actually in a subexpression.
4715      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
4716          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
4717        Diag(EvalResult.DiagLoc, EvalResult.Diag);
4718    }
4719
4720    return true;
4721  }
4722
4723  if (EvalResult.Diag) {
4724    Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
4725      E->getSourceRange();
4726
4727    // Print the reason it's not a constant.
4728    if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
4729      Diag(EvalResult.DiagLoc, EvalResult.Diag);
4730  }
4731
4732  if (Result)
4733    *Result = EvalResult.Val.getInt();
4734  return false;
4735}
4736