SemaExpr.cpp revision e4d2bdd54c29656f2eba004d6db1e4942f2bfcd9
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Lex/LiteralSupport.h"
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Designator.h"
28#include "clang/Parse/Scope.h"
29#include "clang/Parse/Template.h"
30using namespace clang;
31
32
33/// \brief Determine whether the use of this declaration is valid, and
34/// emit any corresponding diagnostics.
35///
36/// This routine diagnoses various problems with referencing
37/// declarations that can occur when using a declaration. For example,
38/// it might warn if a deprecated or unavailable declaration is being
39/// used, or produce an error (and return true) if a C++0x deleted
40/// function is being used.
41///
42/// If IgnoreDeprecated is set to true, this should not want about deprecated
43/// decls.
44///
45/// \returns true if there was an error (this declaration cannot be
46/// referenced), false otherwise.
47///
48bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
49  // See if the decl is deprecated.
50  if (D->getAttr<DeprecatedAttr>()) {
51    EmitDeprecationWarning(D, Loc);
52  }
53
54  // See if the decl is unavailable
55  if (D->getAttr<UnavailableAttr>()) {
56    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
57    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
58  }
59
60  // See if this is a deleted function.
61  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
62    if (FD->isDeleted()) {
63      Diag(Loc, diag::err_deleted_function_use);
64      Diag(D->getLocation(), diag::note_unavailable_here) << true;
65      return true;
66    }
67  }
68
69  return false;
70}
71
72/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
73/// (and other functions in future), which have been declared with sentinel
74/// attribute. It warns if call does not have the sentinel argument.
75///
76void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
77                                 Expr **Args, unsigned NumArgs) {
78  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
79  if (!attr)
80    return;
81  int sentinelPos = attr->getSentinel();
82  int nullPos = attr->getNullPos();
83
84  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
85  // base class. Then we won't be needing two versions of the same code.
86  unsigned int i = 0;
87  bool warnNotEnoughArgs = false;
88  int isMethod = 0;
89  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
90    // skip over named parameters.
91    ObjCMethodDecl::param_iterator P, E = MD->param_end();
92    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
93      if (nullPos)
94        --nullPos;
95      else
96        ++i;
97    }
98    warnNotEnoughArgs = (P != E || i >= NumArgs);
99    isMethod = 1;
100  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
101    // skip over named parameters.
102    ObjCMethodDecl::param_iterator P, E = FD->param_end();
103    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
104      if (nullPos)
105        --nullPos;
106      else
107        ++i;
108    }
109    warnNotEnoughArgs = (P != E || i >= NumArgs);
110  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
111    // block or function pointer call.
112    QualType Ty = V->getType();
113    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
114      const FunctionType *FT = Ty->isFunctionPointerType()
115      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
116      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
117      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
118        unsigned NumArgsInProto = Proto->getNumArgs();
119        unsigned k;
120        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
121          if (nullPos)
122            --nullPos;
123          else
124            ++i;
125        }
126        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
127      }
128      if (Ty->isBlockPointerType())
129        isMethod = 2;
130    } else
131      return;
132  } else
133    return;
134
135  if (warnNotEnoughArgs) {
136    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
137    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
138    return;
139  }
140  int sentinel = i;
141  while (sentinelPos > 0 && i < NumArgs-1) {
142    --sentinelPos;
143    ++i;
144  }
145  if (sentinelPos > 0) {
146    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
147    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
148    return;
149  }
150  while (i < NumArgs-1) {
151    ++i;
152    ++sentinel;
153  }
154  Expr *sentinelExpr = Args[sentinel];
155  if (sentinelExpr && (!isa<GNUNullExpr>(sentinelExpr) &&
156                       (!sentinelExpr->getType()->isPointerType() ||
157                        !sentinelExpr->isNullPointerConstant(Context,
158                                            Expr::NPC_ValueDependentIsNull)))) {
159    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
160    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
161  }
162  return;
163}
164
165SourceRange Sema::getExprRange(ExprTy *E) const {
166  Expr *Ex = (Expr *)E;
167  return Ex? Ex->getSourceRange() : SourceRange();
168}
169
170//===----------------------------------------------------------------------===//
171//  Standard Promotions and Conversions
172//===----------------------------------------------------------------------===//
173
174/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
175void Sema::DefaultFunctionArrayConversion(Expr *&E) {
176  QualType Ty = E->getType();
177  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
178
179  if (Ty->isFunctionType())
180    ImpCastExprToType(E, Context.getPointerType(Ty),
181                      CastExpr::CK_FunctionToPointerDecay);
182  else if (Ty->isArrayType()) {
183    // In C90 mode, arrays only promote to pointers if the array expression is
184    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
185    // type 'array of type' is converted to an expression that has type 'pointer
186    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
187    // that has type 'array of type' ...".  The relevant change is "an lvalue"
188    // (C90) to "an expression" (C99).
189    //
190    // C++ 4.2p1:
191    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
192    // T" can be converted to an rvalue of type "pointer to T".
193    //
194    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
195        E->isLvalue(Context) == Expr::LV_Valid)
196      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
197                        CastExpr::CK_ArrayToPointerDecay);
198  }
199}
200
201/// UsualUnaryConversions - Performs various conversions that are common to most
202/// operators (C99 6.3). The conversions of array and function types are
203/// sometimes surpressed. For example, the array->pointer conversion doesn't
204/// apply if the array is an argument to the sizeof or address (&) operators.
205/// In these instances, this routine should *not* be called.
206Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
207  QualType Ty = Expr->getType();
208  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
209
210  // C99 6.3.1.1p2:
211  //
212  //   The following may be used in an expression wherever an int or
213  //   unsigned int may be used:
214  //     - an object or expression with an integer type whose integer
215  //       conversion rank is less than or equal to the rank of int
216  //       and unsigned int.
217  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
218  //
219  //   If an int can represent all values of the original type, the
220  //   value is converted to an int; otherwise, it is converted to an
221  //   unsigned int. These are called the integer promotions. All
222  //   other types are unchanged by the integer promotions.
223  QualType PTy = Context.isPromotableBitField(Expr);
224  if (!PTy.isNull()) {
225    ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
226    return Expr;
227  }
228  if (Ty->isPromotableIntegerType()) {
229    QualType PT = Context.getPromotedIntegerType(Ty);
230    ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
231    return Expr;
232  }
233
234  DefaultFunctionArrayConversion(Expr);
235  return Expr;
236}
237
238/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
239/// do not have a prototype. Arguments that have type float are promoted to
240/// double. All other argument types are converted by UsualUnaryConversions().
241void Sema::DefaultArgumentPromotion(Expr *&Expr) {
242  QualType Ty = Expr->getType();
243  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
244
245  // If this is a 'float' (CVR qualified or typedef) promote to double.
246  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
247    if (BT->getKind() == BuiltinType::Float)
248      return ImpCastExprToType(Expr, Context.DoubleTy,
249                               CastExpr::CK_FloatingCast);
250
251  UsualUnaryConversions(Expr);
252}
253
254/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
255/// will warn if the resulting type is not a POD type, and rejects ObjC
256/// interfaces passed by value.  This returns true if the argument type is
257/// completely illegal.
258bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
259  DefaultArgumentPromotion(Expr);
260
261  if (Expr->getType()->isObjCInterfaceType()) {
262    Diag(Expr->getLocStart(),
263         diag::err_cannot_pass_objc_interface_to_vararg)
264      << Expr->getType() << CT;
265    return true;
266  }
267
268  if (!Expr->getType()->isPODType())
269    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
270      << Expr->getType() << CT;
271
272  return false;
273}
274
275
276/// UsualArithmeticConversions - Performs various conversions that are common to
277/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
278/// routine returns the first non-arithmetic type found. The client is
279/// responsible for emitting appropriate error diagnostics.
280/// FIXME: verify the conversion rules for "complex int" are consistent with
281/// GCC.
282QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
283                                          bool isCompAssign) {
284  if (!isCompAssign)
285    UsualUnaryConversions(lhsExpr);
286
287  UsualUnaryConversions(rhsExpr);
288
289  // For conversion purposes, we ignore any qualifiers.
290  // For example, "const float" and "float" are equivalent.
291  QualType lhs =
292    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
293  QualType rhs =
294    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
295
296  // If both types are identical, no conversion is needed.
297  if (lhs == rhs)
298    return lhs;
299
300  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
301  // The caller can deal with this (e.g. pointer + int).
302  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
303    return lhs;
304
305  // Perform bitfield promotions.
306  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
307  if (!LHSBitfieldPromoteTy.isNull())
308    lhs = LHSBitfieldPromoteTy;
309  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
310  if (!RHSBitfieldPromoteTy.isNull())
311    rhs = RHSBitfieldPromoteTy;
312
313  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
314  if (!isCompAssign)
315    ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
316  ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
317  return destType;
318}
319
320//===----------------------------------------------------------------------===//
321//  Semantic Analysis for various Expression Types
322//===----------------------------------------------------------------------===//
323
324
325/// ActOnStringLiteral - The specified tokens were lexed as pasted string
326/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
327/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
328/// multiple tokens.  However, the common case is that StringToks points to one
329/// string.
330///
331Action::OwningExprResult
332Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
333  assert(NumStringToks && "Must have at least one string!");
334
335  StringLiteralParser Literal(StringToks, NumStringToks, PP);
336  if (Literal.hadError)
337    return ExprError();
338
339  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
340  for (unsigned i = 0; i != NumStringToks; ++i)
341    StringTokLocs.push_back(StringToks[i].getLocation());
342
343  QualType StrTy = Context.CharTy;
344  if (Literal.AnyWide) StrTy = Context.getWCharType();
345  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
346
347  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
348  if (getLangOptions().CPlusPlus)
349    StrTy.addConst();
350
351  // Get an array type for the string, according to C99 6.4.5.  This includes
352  // the nul terminator character as well as the string length for pascal
353  // strings.
354  StrTy = Context.getConstantArrayType(StrTy,
355                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
356                                       ArrayType::Normal, 0);
357
358  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
359  return Owned(StringLiteral::Create(Context, Literal.GetString(),
360                                     Literal.GetStringLength(),
361                                     Literal.AnyWide, StrTy,
362                                     &StringTokLocs[0],
363                                     StringTokLocs.size()));
364}
365
366/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
367/// CurBlock to VD should cause it to be snapshotted (as we do for auto
368/// variables defined outside the block) or false if this is not needed (e.g.
369/// for values inside the block or for globals).
370///
371/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
372/// up-to-date.
373///
374static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
375                                              ValueDecl *VD) {
376  // If the value is defined inside the block, we couldn't snapshot it even if
377  // we wanted to.
378  if (CurBlock->TheDecl == VD->getDeclContext())
379    return false;
380
381  // If this is an enum constant or function, it is constant, don't snapshot.
382  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
383    return false;
384
385  // If this is a reference to an extern, static, or global variable, no need to
386  // snapshot it.
387  // FIXME: What about 'const' variables in C++?
388  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
389    if (!Var->hasLocalStorage())
390      return false;
391
392  // Blocks that have these can't be constant.
393  CurBlock->hasBlockDeclRefExprs = true;
394
395  // If we have nested blocks, the decl may be declared in an outer block (in
396  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
397  // be defined outside all of the current blocks (in which case the blocks do
398  // all get the bit).  Walk the nesting chain.
399  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
400       NextBlock = NextBlock->PrevBlockInfo) {
401    // If we found the defining block for the variable, don't mark the block as
402    // having a reference outside it.
403    if (NextBlock->TheDecl == VD->getDeclContext())
404      break;
405
406    // Otherwise, the DeclRef from the inner block causes the outer one to need
407    // a snapshot as well.
408    NextBlock->hasBlockDeclRefExprs = true;
409  }
410
411  return true;
412}
413
414
415
416/// BuildDeclRefExpr - Build a DeclRefExpr.
417Sema::OwningExprResult
418Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
419                       const CXXScopeSpec *SS) {
420  assert(!isa<OverloadedFunctionDecl>(D));
421
422  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
423    Diag(Loc,
424         diag::err_auto_variable_cannot_appear_in_own_initializer)
425      << D->getDeclName();
426    return ExprError();
427  }
428
429  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
430    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
431      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
432        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
433          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
434            << D->getIdentifier() << FD->getDeclName();
435          Diag(D->getLocation(), diag::note_local_variable_declared_here)
436            << D->getIdentifier();
437          return ExprError();
438        }
439      }
440    }
441  }
442
443  MarkDeclarationReferenced(Loc, D);
444
445  return Owned(DeclRefExpr::Create(Context,
446                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
447                                   SS? SS->getRange() : SourceRange(),
448                                   D, Loc, Ty));
449}
450
451/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
452/// variable corresponding to the anonymous union or struct whose type
453/// is Record.
454static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
455                                             RecordDecl *Record) {
456  assert(Record->isAnonymousStructOrUnion() &&
457         "Record must be an anonymous struct or union!");
458
459  // FIXME: Once Decls are directly linked together, this will be an O(1)
460  // operation rather than a slow walk through DeclContext's vector (which
461  // itself will be eliminated). DeclGroups might make this even better.
462  DeclContext *Ctx = Record->getDeclContext();
463  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
464                               DEnd = Ctx->decls_end();
465       D != DEnd; ++D) {
466    if (*D == Record) {
467      // The object for the anonymous struct/union directly
468      // follows its type in the list of declarations.
469      ++D;
470      assert(D != DEnd && "Missing object for anonymous record");
471      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
472      return *D;
473    }
474  }
475
476  assert(false && "Missing object for anonymous record");
477  return 0;
478}
479
480/// \brief Given a field that represents a member of an anonymous
481/// struct/union, build the path from that field's context to the
482/// actual member.
483///
484/// Construct the sequence of field member references we'll have to
485/// perform to get to the field in the anonymous union/struct. The
486/// list of members is built from the field outward, so traverse it
487/// backwards to go from an object in the current context to the field
488/// we found.
489///
490/// \returns The variable from which the field access should begin,
491/// for an anonymous struct/union that is not a member of another
492/// class. Otherwise, returns NULL.
493VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
494                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
495  assert(Field->getDeclContext()->isRecord() &&
496         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
497         && "Field must be stored inside an anonymous struct or union");
498
499  Path.push_back(Field);
500  VarDecl *BaseObject = 0;
501  DeclContext *Ctx = Field->getDeclContext();
502  do {
503    RecordDecl *Record = cast<RecordDecl>(Ctx);
504    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
505    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
506      Path.push_back(AnonField);
507    else {
508      BaseObject = cast<VarDecl>(AnonObject);
509      break;
510    }
511    Ctx = Ctx->getParent();
512  } while (Ctx->isRecord() &&
513           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
514
515  return BaseObject;
516}
517
518Sema::OwningExprResult
519Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
520                                               FieldDecl *Field,
521                                               Expr *BaseObjectExpr,
522                                               SourceLocation OpLoc) {
523  llvm::SmallVector<FieldDecl *, 4> AnonFields;
524  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
525                                                            AnonFields);
526
527  // Build the expression that refers to the base object, from
528  // which we will build a sequence of member references to each
529  // of the anonymous union objects and, eventually, the field we
530  // found via name lookup.
531  bool BaseObjectIsPointer = false;
532  Qualifiers BaseQuals;
533  if (BaseObject) {
534    // BaseObject is an anonymous struct/union variable (and is,
535    // therefore, not part of another non-anonymous record).
536    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
537    MarkDeclarationReferenced(Loc, BaseObject);
538    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
539                                               SourceLocation());
540    BaseQuals
541      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
542  } else if (BaseObjectExpr) {
543    // The caller provided the base object expression. Determine
544    // whether its a pointer and whether it adds any qualifiers to the
545    // anonymous struct/union fields we're looking into.
546    QualType ObjectType = BaseObjectExpr->getType();
547    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
548      BaseObjectIsPointer = true;
549      ObjectType = ObjectPtr->getPointeeType();
550    }
551    BaseQuals
552      = Context.getCanonicalType(ObjectType).getQualifiers();
553  } else {
554    // We've found a member of an anonymous struct/union that is
555    // inside a non-anonymous struct/union, so in a well-formed
556    // program our base object expression is "this".
557    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
558      if (!MD->isStatic()) {
559        QualType AnonFieldType
560          = Context.getTagDeclType(
561                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
562        QualType ThisType = Context.getTagDeclType(MD->getParent());
563        if ((Context.getCanonicalType(AnonFieldType)
564               == Context.getCanonicalType(ThisType)) ||
565            IsDerivedFrom(ThisType, AnonFieldType)) {
566          // Our base object expression is "this".
567          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
568                                                     MD->getThisType(Context));
569          BaseObjectIsPointer = true;
570        }
571      } else {
572        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
573          << Field->getDeclName());
574      }
575      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
576    }
577
578    if (!BaseObjectExpr)
579      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
580        << Field->getDeclName());
581  }
582
583  // Build the implicit member references to the field of the
584  // anonymous struct/union.
585  Expr *Result = BaseObjectExpr;
586  Qualifiers ResultQuals = BaseQuals;
587  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
588         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
589       FI != FIEnd; ++FI) {
590    QualType MemberType = (*FI)->getType();
591    Qualifiers MemberTypeQuals =
592      Context.getCanonicalType(MemberType).getQualifiers();
593
594    // CVR attributes from the base are picked up by members,
595    // except that 'mutable' members don't pick up 'const'.
596    if ((*FI)->isMutable())
597      ResultQuals.removeConst();
598
599    // GC attributes are never picked up by members.
600    ResultQuals.removeObjCGCAttr();
601
602    // TR 18037 does not allow fields to be declared with address spaces.
603    assert(!MemberTypeQuals.hasAddressSpace());
604
605    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
606    if (NewQuals != MemberTypeQuals)
607      MemberType = Context.getQualifiedType(MemberType, NewQuals);
608
609    MarkDeclarationReferenced(Loc, *FI);
610    // FIXME: Might this end up being a qualified name?
611    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
612                                      OpLoc, MemberType);
613    BaseObjectIsPointer = false;
614    ResultQuals = NewQuals;
615  }
616
617  return Owned(Result);
618}
619
620Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
621                                               const CXXScopeSpec &SS,
622                                               UnqualifiedId &Name,
623                                               bool HasTrailingLParen,
624                                               bool IsAddressOfOperand) {
625  assert(!(IsAddressOfOperand && HasTrailingLParen) &&
626         "cannot be direct & operand and have a trailing lparen");
627
628  if (Name.getKind() == UnqualifiedId::IK_TemplateId) {
629    ASTTemplateArgsPtr TemplateArgsPtr(*this,
630                                       Name.TemplateId->getTemplateArgs(),
631                                       Name.TemplateId->NumArgs);
632    return ActOnTemplateIdExpr(SS,
633                               TemplateTy::make(Name.TemplateId->Template),
634                               Name.TemplateId->TemplateNameLoc,
635                               Name.TemplateId->LAngleLoc,
636                               TemplateArgsPtr,
637                               Name.TemplateId->RAngleLoc);
638  }
639
640  // FIXME: We lose a bunch of source information by doing this. Later,
641  // we'll want to merge ActOnDeclarationNameExpr's logic into
642  // ActOnIdExpression.
643  return ActOnDeclarationNameExpr(S,
644                                  Name.StartLocation,
645                                  GetNameFromUnqualifiedId(Name),
646                                  HasTrailingLParen,
647                                  &SS,
648                                  IsAddressOfOperand);
649}
650
651/// ActOnDeclarationNameExpr - The parser has read some kind of name
652/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
653/// performs lookup on that name and returns an expression that refers
654/// to that name. This routine isn't directly called from the parser,
655/// because the parser doesn't know about DeclarationName. Rather,
656/// this routine is called by ActOnIdExpression, which contains a
657/// parsed UnqualifiedId.
658///
659/// HasTrailingLParen indicates whether this identifier is used in a
660/// function call context.  LookupCtx is only used for a C++
661/// qualified-id (foo::bar) to indicate the class or namespace that
662/// the identifier must be a member of.
663///
664/// isAddressOfOperand means that this expression is the direct operand
665/// of an address-of operator. This matters because this is the only
666/// situation where a qualified name referencing a non-static member may
667/// appear outside a member function of this class.
668Sema::OwningExprResult
669Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
670                               DeclarationName Name, bool HasTrailingLParen,
671                               const CXXScopeSpec *SS,
672                               bool isAddressOfOperand) {
673  // Could be enum-constant, value decl, instance variable, etc.
674  if (SS && SS->isInvalid())
675    return ExprError();
676
677  // Determine whether this is a member of an unknown specialization.
678  if (SS && SS->isSet() && !computeDeclContext(*SS, false)) {
679    return Owned(new (Context) DependentScopeDeclRefExpr(Name, Context.DependentTy,
680                                                     Loc, SS->getRange(),
681                static_cast<NestedNameSpecifier *>(SS->getScopeRep()),
682                                                     isAddressOfOperand));
683  }
684
685  LookupResult Lookup(*this, Name, Loc, LookupOrdinaryName);
686  LookupParsedName(Lookup, S, SS, true);
687
688  if (Lookup.isAmbiguous())
689    return ExprError();
690
691  // If this reference is in an Objective-C method, then ivar lookup happens as
692  // well.
693  IdentifierInfo *II = Name.getAsIdentifierInfo();
694  if (II && getCurMethodDecl()) {
695    // There are two cases to handle here.  1) scoped lookup could have failed,
696    // in which case we should look for an ivar.  2) scoped lookup could have
697    // found a decl, but that decl is outside the current instance method (i.e.
698    // a global variable).  In these two cases, we do a lookup for an ivar with
699    // this name, if the lookup sucedes, we replace it our current decl.
700
701    // FIXME:  we should change lookup to do this.
702
703    // If we're in a class method, we don't normally want to look for
704    // ivars.  But if we don't find anything else, and there's an
705    // ivar, that's an error.
706    bool IsClassMethod = getCurMethodDecl()->isClassMethod();
707
708    bool LookForIvars;
709    if (Lookup.empty())
710      LookForIvars = true;
711    else if (IsClassMethod)
712      LookForIvars = false;
713    else
714      LookForIvars = (Lookup.isSingleResult() &&
715                      Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
716
717    if (LookForIvars) {
718      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
719      ObjCInterfaceDecl *ClassDeclared;
720      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
721        // Diagnose using an ivar in a class method.
722        if (IsClassMethod)
723           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
724                            << IV->getDeclName());
725
726        // If we're referencing an invalid decl, just return this as a silent
727        // error node.  The error diagnostic was already emitted on the decl.
728        if (IV->isInvalidDecl())
729          return ExprError();
730
731        // Check if referencing a field with __attribute__((deprecated)).
732        if (DiagnoseUseOfDecl(IV, Loc))
733          return ExprError();
734
735        // Diagnose the use of an ivar outside of the declaring class.
736        if (IV->getAccessControl() == ObjCIvarDecl::Private &&
737            ClassDeclared != IFace)
738          Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
739
740        // FIXME: This should use a new expr for a direct reference, don't
741        // turn this into Self->ivar, just return a BareIVarExpr or something.
742        IdentifierInfo &II = Context.Idents.get("self");
743        UnqualifiedId SelfName;
744        SelfName.setIdentifier(&II, SourceLocation());
745        CXXScopeSpec SelfScopeSpec;
746        OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
747                                                      SelfName, false, false);
748        MarkDeclarationReferenced(Loc, IV);
749        return Owned(new (Context)
750                     ObjCIvarRefExpr(IV, IV->getType(), Loc,
751                                     SelfExpr.takeAs<Expr>(), true, true));
752      }
753    } else if (getCurMethodDecl()->isInstanceMethod()) {
754      // We should warn if a local variable hides an ivar.
755      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
756      ObjCInterfaceDecl *ClassDeclared;
757      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
758        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
759            IFace == ClassDeclared)
760          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
761      }
762    }
763    // Needed to implement property "super.method" notation.
764    if (Lookup.empty() && II->isStr("super")) {
765      QualType T;
766
767      if (getCurMethodDecl()->isInstanceMethod())
768        T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
769                                      getCurMethodDecl()->getClassInterface()));
770      else
771        T = Context.getObjCClassType();
772      return Owned(new (Context) ObjCSuperExpr(Loc, T));
773    }
774  }
775
776  // Determine whether this name might be a candidate for
777  // argument-dependent lookup.
778  bool ADL = UseArgumentDependentLookup(SS, Lookup, HasTrailingLParen);
779
780  if (Lookup.empty() && !ADL) {
781    // Otherwise, this could be an implicitly declared function reference (legal
782    // in C90, extension in C99).
783    if (HasTrailingLParen && II &&
784        !getLangOptions().CPlusPlus) { // Not in C++.
785      NamedDecl *D = ImplicitlyDefineFunction(Loc, *II, S);
786      if (D) Lookup.addDecl(D);
787    } else {
788      // If this name wasn't predeclared and if this is not a function call,
789      // diagnose the problem.
790      if (SS && !SS->isEmpty())
791        return ExprError(Diag(Loc, diag::err_no_member)
792                           << Name << computeDeclContext(*SS, false)
793                           << SS->getRange());
794      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
795               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
796        return ExprError(Diag(Loc, diag::err_undeclared_use)
797          << Name.getAsString());
798      else
799        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
800    }
801  }
802
803  if (VarDecl *Var = Lookup.getAsSingle<VarDecl>()) {
804    // Warn about constructs like:
805    //   if (void *X = foo()) { ... } else { X }.
806    // In the else block, the pointer is always false.
807
808    // FIXME: In a template instantiation, we don't have scope
809    // information to check this property.
810    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
811      Scope *CheckS = S;
812      while (CheckS && CheckS->getControlParent()) {
813        if (CheckS->isWithinElse() &&
814            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
815          ExprError(Diag(Loc, diag::warn_value_always_zero)
816            << Var->getDeclName()
817            << (Var->getType()->isPointerType()? 2 :
818                Var->getType()->isBooleanType()? 1 : 0));
819          break;
820        }
821
822        // Move to the parent of this scope.
823        CheckS = CheckS->getParent();
824      }
825    }
826  } else if (FunctionDecl *Func = Lookup.getAsSingle<FunctionDecl>()) {
827    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
828      // C99 DR 316 says that, if a function type comes from a
829      // function definition (without a prototype), that type is only
830      // used for checking compatibility. Therefore, when referencing
831      // the function, we pretend that we don't have the full function
832      // type.
833      if (DiagnoseUseOfDecl(Func, Loc))
834        return ExprError();
835
836      QualType T = Func->getType();
837      QualType NoProtoType = T;
838      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
839        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
840      return BuildDeclRefExpr(Func, NoProtoType, Loc, SS);
841    }
842  }
843
844  // &SomeClass::foo is an abstract member reference, regardless of
845  // the nature of foo, but &SomeClass::foo(...) is not.  If this is
846  // *not* an abstract member reference, and any of the results is a
847  // class member (which necessarily means they're all class members),
848  // then we make an implicit member reference instead.
849  //
850  // This check considers all the same information as the "needs ADL"
851  // check, but there's no simple logical relationship other than the
852  // fact that they can never be simultaneously true.  We could
853  // calculate them both in one pass if that proves important for
854  // performance.
855  if (!ADL) {
856    bool isAbstractMemberPointer =
857      (isAddressOfOperand && SS && !SS->isEmpty());
858
859    if (!isAbstractMemberPointer && !Lookup.empty() &&
860        isa<CXXRecordDecl>((*Lookup.begin())->getDeclContext())) {
861      return BuildImplicitMemberReferenceExpr(SS, Lookup);
862    }
863  }
864
865  assert(Lookup.getResultKind() != LookupResult::FoundUnresolvedValue &&
866         "found UnresolvedUsingValueDecl in non-class scope");
867
868  return BuildDeclarationNameExpr(SS, Lookup, ADL);
869}
870
871/// \brief Cast member's object to its own class if necessary.
872bool
873Sema::PerformObjectMemberConversion(Expr *&From, NamedDecl *Member) {
874  if (FieldDecl *FD = dyn_cast<FieldDecl>(Member))
875    if (CXXRecordDecl *RD =
876        dyn_cast<CXXRecordDecl>(FD->getDeclContext())) {
877      QualType DestType =
878        Context.getCanonicalType(Context.getTypeDeclType(RD));
879      if (DestType->isDependentType() || From->getType()->isDependentType())
880        return false;
881      QualType FromRecordType = From->getType();
882      QualType DestRecordType = DestType;
883      if (FromRecordType->getAs<PointerType>()) {
884        DestType = Context.getPointerType(DestType);
885        FromRecordType = FromRecordType->getPointeeType();
886      }
887      if (!Context.hasSameUnqualifiedType(FromRecordType, DestRecordType) &&
888          CheckDerivedToBaseConversion(FromRecordType,
889                                       DestRecordType,
890                                       From->getSourceRange().getBegin(),
891                                       From->getSourceRange()))
892        return true;
893      ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
894                        /*isLvalue=*/true);
895    }
896  return false;
897}
898
899/// \brief Build a MemberExpr AST node.
900static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
901                                   const CXXScopeSpec *SS, NamedDecl *Member,
902                                   SourceLocation Loc, QualType Ty) {
903  if (SS && SS->isSet())
904    return MemberExpr::Create(C, Base, isArrow,
905                              (NestedNameSpecifier *)SS->getScopeRep(),
906                              SS->getRange(), Member, Loc,
907                              // FIXME: Explicit template argument lists
908                              0, Ty);
909
910  return new (C) MemberExpr(Base, isArrow, Member, Loc, Ty);
911}
912
913/// Builds an implicit member access expression from the given
914/// unqualified lookup set, which is known to contain only class
915/// members.
916Sema::OwningExprResult
917Sema::BuildImplicitMemberReferenceExpr(const CXXScopeSpec *SS,
918                                       LookupResult &R) {
919  NamedDecl *D = R.getAsSingleDecl(Context);
920  SourceLocation Loc = R.getNameLoc();
921
922  // We may have found a field within an anonymous union or struct
923  // (C++ [class.union]).
924  // FIXME: This needs to happen post-isImplicitMemberReference?
925  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
926    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
927      return BuildAnonymousStructUnionMemberReference(Loc, FD);
928
929  QualType ThisType;
930  QualType MemberType;
931  if (isImplicitMemberReference(SS, D, Loc, ThisType, MemberType)) {
932    Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType);
933    MarkDeclarationReferenced(Loc, D);
934    if (PerformObjectMemberConversion(This, D))
935      return ExprError();
936
937    bool ShouldCheckUse = true;
938    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
939      // Don't diagnose the use of a virtual member function unless it's
940      // explicitly qualified.
941      if (MD->isVirtual() && (!SS || !SS->isSet()))
942        ShouldCheckUse = false;
943    }
944
945    if (ShouldCheckUse && DiagnoseUseOfDecl(D, Loc))
946      return ExprError();
947    return Owned(BuildMemberExpr(Context, This, true, SS, D, Loc, MemberType));
948  }
949
950  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
951    if (!Method->isStatic())
952      return ExprError(Diag(Loc, diag::err_member_call_without_object));
953  }
954
955  if (isa<FieldDecl>(D)) {
956    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
957      if (MD->isStatic()) {
958        // "invalid use of member 'x' in static member function"
959        Diag(Loc, diag::err_invalid_member_use_in_static_method)
960          << D->getDeclName();
961        return ExprError();
962      }
963    }
964
965    // Any other ways we could have found the field in a well-formed
966    // program would have been turned into implicit member expressions
967    // above.
968    Diag(Loc, diag::err_invalid_non_static_member_use)
969      << D->getDeclName();
970    return ExprError();
971  }
972
973  // We're not in an implicit member-reference context, but the lookup
974  // results might not require an instance.  Try to build a non-member
975  // decl reference.
976  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
977}
978
979bool Sema::UseArgumentDependentLookup(const CXXScopeSpec *SS,
980                                      const LookupResult &R,
981                                      bool HasTrailingLParen) {
982  // Only when used directly as the postfix-expression of a call.
983  if (!HasTrailingLParen)
984    return false;
985
986  // Never if a scope specifier was provided.
987  if (SS && SS->isSet())
988    return false;
989
990  // Only in C++ or ObjC++.
991  if (!getLangOptions().CPlusPlus)
992    return false;
993
994  // Turn off ADL when we find certain kinds of declarations during
995  // normal lookup:
996  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
997    NamedDecl *D = *I;
998
999    // C++0x [basic.lookup.argdep]p3:
1000    //     -- a declaration of a class member
1001    // Since using decls preserve this property, we check this on the
1002    // original decl.
1003    if (D->getDeclContext()->isRecord())
1004      return false;
1005
1006    // C++0x [basic.lookup.argdep]p3:
1007    //     -- a block-scope function declaration that is not a
1008    //        using-declaration
1009    // NOTE: we also trigger this for function templates (in fact, we
1010    // don't check the decl type at all, since all other decl types
1011    // turn off ADL anyway).
1012    if (isa<UsingShadowDecl>(D))
1013      D = cast<UsingShadowDecl>(D)->getTargetDecl();
1014    else if (D->getDeclContext()->isFunctionOrMethod())
1015      return false;
1016
1017    // C++0x [basic.lookup.argdep]p3:
1018    //     -- a declaration that is neither a function or a function
1019    //        template
1020    // And also for builtin functions.
1021    if (isa<FunctionDecl>(D)) {
1022      FunctionDecl *FDecl = cast<FunctionDecl>(D);
1023
1024      // But also builtin functions.
1025      if (FDecl->getBuiltinID() && FDecl->isImplicit())
1026        return false;
1027    } else if (!isa<FunctionTemplateDecl>(D))
1028      return false;
1029  }
1030
1031  return true;
1032}
1033
1034
1035/// Diagnoses obvious problems with the use of the given declaration
1036/// as an expression.  This is only actually called for lookups that
1037/// were not overloaded, and it doesn't promise that the declaration
1038/// will in fact be used.
1039static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
1040  if (isa<TypedefDecl>(D)) {
1041    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
1042    return true;
1043  }
1044
1045  if (isa<ObjCInterfaceDecl>(D)) {
1046    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
1047    return true;
1048  }
1049
1050  if (isa<NamespaceDecl>(D)) {
1051    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
1052    return true;
1053  }
1054
1055  return false;
1056}
1057
1058Sema::OwningExprResult
1059Sema::BuildDeclarationNameExpr(const CXXScopeSpec *SS,
1060                               LookupResult &R,
1061                               bool NeedsADL) {
1062  assert(R.getResultKind() != LookupResult::FoundUnresolvedValue);
1063
1064  if (!NeedsADL && !R.isOverloadedResult())
1065    return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl());
1066
1067  // We only need to check the declaration if there's exactly one
1068  // result, because in the overloaded case the results can only be
1069  // functions and function templates.
1070  if (R.isSingleResult() &&
1071      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
1072    return ExprError();
1073
1074  UnresolvedLookupExpr *ULE
1075    = UnresolvedLookupExpr::Create(Context,
1076                    SS ? (NestedNameSpecifier *)SS->getScopeRep() : 0,
1077                                   SS ? SS->getRange() : SourceRange(),
1078                                   R.getLookupName(), R.getNameLoc(),
1079                                   NeedsADL, R.isOverloadedResult());
1080  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1081    ULE->addDecl(*I);
1082
1083  return Owned(ULE);
1084}
1085
1086
1087/// \brief Complete semantic analysis for a reference to the given declaration.
1088Sema::OwningExprResult
1089Sema::BuildDeclarationNameExpr(const CXXScopeSpec *SS,
1090                               SourceLocation Loc, NamedDecl *D) {
1091  assert(D && "Cannot refer to a NULL declaration");
1092  assert(!isa<FunctionTemplateDecl>(D) &&
1093         "Cannot refer unambiguously to a function template");
1094  DeclarationName Name = D->getDeclName();
1095
1096  if (CheckDeclInExpr(*this, Loc, D))
1097    return ExprError();
1098
1099  ValueDecl *VD = cast<ValueDecl>(D);
1100
1101  // Check whether this declaration can be used. Note that we suppress
1102  // this check when we're going to perform argument-dependent lookup
1103  // on this function name, because this might not be the function
1104  // that overload resolution actually selects.
1105  if (DiagnoseUseOfDecl(VD, Loc))
1106    return ExprError();
1107
1108  // Only create DeclRefExpr's for valid Decl's.
1109  if (VD->isInvalidDecl())
1110    return ExprError();
1111
1112  // If the identifier reference is inside a block, and it refers to a value
1113  // that is outside the block, create a BlockDeclRefExpr instead of a
1114  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1115  // the block is formed.
1116  //
1117  // We do not do this for things like enum constants, global variables, etc,
1118  // as they do not get snapshotted.
1119  //
1120  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1121    MarkDeclarationReferenced(Loc, VD);
1122    QualType ExprTy = VD->getType().getNonReferenceType();
1123    // The BlocksAttr indicates the variable is bound by-reference.
1124    if (VD->getAttr<BlocksAttr>())
1125      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1126    // This is to record that a 'const' was actually synthesize and added.
1127    bool constAdded = !ExprTy.isConstQualified();
1128    // Variable will be bound by-copy, make it const within the closure.
1129
1130    ExprTy.addConst();
1131    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1132                                                constAdded));
1133  }
1134  // If this reference is not in a block or if the referenced variable is
1135  // within the block, create a normal DeclRefExpr.
1136
1137  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, SS);
1138}
1139
1140Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1141                                                 tok::TokenKind Kind) {
1142  PredefinedExpr::IdentType IT;
1143
1144  switch (Kind) {
1145  default: assert(0 && "Unknown simple primary expr!");
1146  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1147  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1148  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1149  }
1150
1151  // Pre-defined identifiers are of type char[x], where x is the length of the
1152  // string.
1153
1154  Decl *currentDecl = getCurFunctionOrMethodDecl();
1155  if (!currentDecl) {
1156    Diag(Loc, diag::ext_predef_outside_function);
1157    currentDecl = Context.getTranslationUnitDecl();
1158  }
1159
1160  QualType ResTy;
1161  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1162    ResTy = Context.DependentTy;
1163  } else {
1164    unsigned Length =
1165      PredefinedExpr::ComputeName(Context, IT, currentDecl).length();
1166
1167    llvm::APInt LengthI(32, Length + 1);
1168    ResTy = Context.CharTy.withConst();
1169    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1170  }
1171  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1172}
1173
1174Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1175  llvm::SmallString<16> CharBuffer;
1176  CharBuffer.resize(Tok.getLength());
1177  const char *ThisTokBegin = &CharBuffer[0];
1178  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1179
1180  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1181                            Tok.getLocation(), PP);
1182  if (Literal.hadError())
1183    return ExprError();
1184
1185  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1186
1187  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1188                                              Literal.isWide(),
1189                                              type, Tok.getLocation()));
1190}
1191
1192Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1193  // Fast path for a single digit (which is quite common).  A single digit
1194  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1195  if (Tok.getLength() == 1) {
1196    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1197    unsigned IntSize = Context.Target.getIntWidth();
1198    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1199                    Context.IntTy, Tok.getLocation()));
1200  }
1201
1202  llvm::SmallString<512> IntegerBuffer;
1203  // Add padding so that NumericLiteralParser can overread by one character.
1204  IntegerBuffer.resize(Tok.getLength()+1);
1205  const char *ThisTokBegin = &IntegerBuffer[0];
1206
1207  // Get the spelling of the token, which eliminates trigraphs, etc.
1208  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1209
1210  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1211                               Tok.getLocation(), PP);
1212  if (Literal.hadError)
1213    return ExprError();
1214
1215  Expr *Res;
1216
1217  if (Literal.isFloatingLiteral()) {
1218    QualType Ty;
1219    if (Literal.isFloat)
1220      Ty = Context.FloatTy;
1221    else if (!Literal.isLong)
1222      Ty = Context.DoubleTy;
1223    else
1224      Ty = Context.LongDoubleTy;
1225
1226    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1227
1228    // isExact will be set by GetFloatValue().
1229    bool isExact = false;
1230    llvm::APFloat Val = Literal.GetFloatValue(Format, &isExact);
1231    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1232
1233  } else if (!Literal.isIntegerLiteral()) {
1234    return ExprError();
1235  } else {
1236    QualType Ty;
1237
1238    // long long is a C99 feature.
1239    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1240        Literal.isLongLong)
1241      Diag(Tok.getLocation(), diag::ext_longlong);
1242
1243    // Get the value in the widest-possible width.
1244    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1245
1246    if (Literal.GetIntegerValue(ResultVal)) {
1247      // If this value didn't fit into uintmax_t, warn and force to ull.
1248      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1249      Ty = Context.UnsignedLongLongTy;
1250      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1251             "long long is not intmax_t?");
1252    } else {
1253      // If this value fits into a ULL, try to figure out what else it fits into
1254      // according to the rules of C99 6.4.4.1p5.
1255
1256      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1257      // be an unsigned int.
1258      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1259
1260      // Check from smallest to largest, picking the smallest type we can.
1261      unsigned Width = 0;
1262      if (!Literal.isLong && !Literal.isLongLong) {
1263        // Are int/unsigned possibilities?
1264        unsigned IntSize = Context.Target.getIntWidth();
1265
1266        // Does it fit in a unsigned int?
1267        if (ResultVal.isIntN(IntSize)) {
1268          // Does it fit in a signed int?
1269          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1270            Ty = Context.IntTy;
1271          else if (AllowUnsigned)
1272            Ty = Context.UnsignedIntTy;
1273          Width = IntSize;
1274        }
1275      }
1276
1277      // Are long/unsigned long possibilities?
1278      if (Ty.isNull() && !Literal.isLongLong) {
1279        unsigned LongSize = Context.Target.getLongWidth();
1280
1281        // Does it fit in a unsigned long?
1282        if (ResultVal.isIntN(LongSize)) {
1283          // Does it fit in a signed long?
1284          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1285            Ty = Context.LongTy;
1286          else if (AllowUnsigned)
1287            Ty = Context.UnsignedLongTy;
1288          Width = LongSize;
1289        }
1290      }
1291
1292      // Finally, check long long if needed.
1293      if (Ty.isNull()) {
1294        unsigned LongLongSize = Context.Target.getLongLongWidth();
1295
1296        // Does it fit in a unsigned long long?
1297        if (ResultVal.isIntN(LongLongSize)) {
1298          // Does it fit in a signed long long?
1299          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1300            Ty = Context.LongLongTy;
1301          else if (AllowUnsigned)
1302            Ty = Context.UnsignedLongLongTy;
1303          Width = LongLongSize;
1304        }
1305      }
1306
1307      // If we still couldn't decide a type, we probably have something that
1308      // does not fit in a signed long long, but has no U suffix.
1309      if (Ty.isNull()) {
1310        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1311        Ty = Context.UnsignedLongLongTy;
1312        Width = Context.Target.getLongLongWidth();
1313      }
1314
1315      if (ResultVal.getBitWidth() != Width)
1316        ResultVal.trunc(Width);
1317    }
1318    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1319  }
1320
1321  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1322  if (Literal.isImaginary)
1323    Res = new (Context) ImaginaryLiteral(Res,
1324                                        Context.getComplexType(Res->getType()));
1325
1326  return Owned(Res);
1327}
1328
1329Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1330                                              SourceLocation R, ExprArg Val) {
1331  Expr *E = Val.takeAs<Expr>();
1332  assert((E != 0) && "ActOnParenExpr() missing expr");
1333  return Owned(new (Context) ParenExpr(L, R, E));
1334}
1335
1336/// The UsualUnaryConversions() function is *not* called by this routine.
1337/// See C99 6.3.2.1p[2-4] for more details.
1338bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1339                                     SourceLocation OpLoc,
1340                                     const SourceRange &ExprRange,
1341                                     bool isSizeof) {
1342  if (exprType->isDependentType())
1343    return false;
1344
1345  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1346  //   the result is the size of the referenced type."
1347  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
1348  //   result shall be the alignment of the referenced type."
1349  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
1350    exprType = Ref->getPointeeType();
1351
1352  // C99 6.5.3.4p1:
1353  if (exprType->isFunctionType()) {
1354    // alignof(function) is allowed as an extension.
1355    if (isSizeof)
1356      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1357    return false;
1358  }
1359
1360  // Allow sizeof(void)/alignof(void) as an extension.
1361  if (exprType->isVoidType()) {
1362    Diag(OpLoc, diag::ext_sizeof_void_type)
1363      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1364    return false;
1365  }
1366
1367  if (RequireCompleteType(OpLoc, exprType,
1368                          isSizeof ? diag::err_sizeof_incomplete_type :
1369                          PDiag(diag::err_alignof_incomplete_type)
1370                            << ExprRange))
1371    return true;
1372
1373  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1374  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1375    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1376      << exprType << isSizeof << ExprRange;
1377    return true;
1378  }
1379
1380  return false;
1381}
1382
1383bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1384                            const SourceRange &ExprRange) {
1385  E = E->IgnoreParens();
1386
1387  // alignof decl is always ok.
1388  if (isa<DeclRefExpr>(E))
1389    return false;
1390
1391  // Cannot know anything else if the expression is dependent.
1392  if (E->isTypeDependent())
1393    return false;
1394
1395  if (E->getBitField()) {
1396    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1397    return true;
1398  }
1399
1400  // Alignment of a field access is always okay, so long as it isn't a
1401  // bit-field.
1402  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1403    if (isa<FieldDecl>(ME->getMemberDecl()))
1404      return false;
1405
1406  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1407}
1408
1409/// \brief Build a sizeof or alignof expression given a type operand.
1410Action::OwningExprResult
1411Sema::CreateSizeOfAlignOfExpr(DeclaratorInfo *DInfo,
1412                              SourceLocation OpLoc,
1413                              bool isSizeOf, SourceRange R) {
1414  if (!DInfo)
1415    return ExprError();
1416
1417  QualType T = DInfo->getType();
1418
1419  if (!T->isDependentType() &&
1420      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1421    return ExprError();
1422
1423  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1424  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, DInfo,
1425                                               Context.getSizeType(), OpLoc,
1426                                               R.getEnd()));
1427}
1428
1429/// \brief Build a sizeof or alignof expression given an expression
1430/// operand.
1431Action::OwningExprResult
1432Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1433                              bool isSizeOf, SourceRange R) {
1434  // Verify that the operand is valid.
1435  bool isInvalid = false;
1436  if (E->isTypeDependent()) {
1437    // Delay type-checking for type-dependent expressions.
1438  } else if (!isSizeOf) {
1439    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1440  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1441    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1442    isInvalid = true;
1443  } else {
1444    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1445  }
1446
1447  if (isInvalid)
1448    return ExprError();
1449
1450  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1451  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1452                                               Context.getSizeType(), OpLoc,
1453                                               R.getEnd()));
1454}
1455
1456/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1457/// the same for @c alignof and @c __alignof
1458/// Note that the ArgRange is invalid if isType is false.
1459Action::OwningExprResult
1460Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1461                             void *TyOrEx, const SourceRange &ArgRange) {
1462  // If error parsing type, ignore.
1463  if (TyOrEx == 0) return ExprError();
1464
1465  if (isType) {
1466    DeclaratorInfo *DInfo;
1467    (void) GetTypeFromParser(TyOrEx, &DInfo);
1468    return CreateSizeOfAlignOfExpr(DInfo, OpLoc, isSizeof, ArgRange);
1469  }
1470
1471  Expr *ArgEx = (Expr *)TyOrEx;
1472  Action::OwningExprResult Result
1473    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1474
1475  if (Result.isInvalid())
1476    DeleteExpr(ArgEx);
1477
1478  return move(Result);
1479}
1480
1481QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1482  if (V->isTypeDependent())
1483    return Context.DependentTy;
1484
1485  // These operators return the element type of a complex type.
1486  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
1487    return CT->getElementType();
1488
1489  // Otherwise they pass through real integer and floating point types here.
1490  if (V->getType()->isArithmeticType())
1491    return V->getType();
1492
1493  // Reject anything else.
1494  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1495    << (isReal ? "__real" : "__imag");
1496  return QualType();
1497}
1498
1499
1500
1501Action::OwningExprResult
1502Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1503                          tok::TokenKind Kind, ExprArg Input) {
1504  UnaryOperator::Opcode Opc;
1505  switch (Kind) {
1506  default: assert(0 && "Unknown unary op!");
1507  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1508  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1509  }
1510
1511  return BuildUnaryOp(S, OpLoc, Opc, move(Input));
1512}
1513
1514Action::OwningExprResult
1515Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1516                              ExprArg Idx, SourceLocation RLoc) {
1517  // Since this might be a postfix expression, get rid of ParenListExprs.
1518  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
1519
1520  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1521       *RHSExp = static_cast<Expr*>(Idx.get());
1522
1523  if (getLangOptions().CPlusPlus &&
1524      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
1525    Base.release();
1526    Idx.release();
1527    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1528                                                  Context.DependentTy, RLoc));
1529  }
1530
1531  if (getLangOptions().CPlusPlus &&
1532      (LHSExp->getType()->isRecordType() ||
1533       LHSExp->getType()->isEnumeralType() ||
1534       RHSExp->getType()->isRecordType() ||
1535       RHSExp->getType()->isEnumeralType())) {
1536    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
1537  }
1538
1539  return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
1540}
1541
1542
1543Action::OwningExprResult
1544Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
1545                                     ExprArg Idx, SourceLocation RLoc) {
1546  Expr *LHSExp = static_cast<Expr*>(Base.get());
1547  Expr *RHSExp = static_cast<Expr*>(Idx.get());
1548
1549  // Perform default conversions.
1550  DefaultFunctionArrayConversion(LHSExp);
1551  DefaultFunctionArrayConversion(RHSExp);
1552
1553  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1554
1555  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1556  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1557  // in the subscript position. As a result, we need to derive the array base
1558  // and index from the expression types.
1559  Expr *BaseExpr, *IndexExpr;
1560  QualType ResultType;
1561  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1562    BaseExpr = LHSExp;
1563    IndexExpr = RHSExp;
1564    ResultType = Context.DependentTy;
1565  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
1566    BaseExpr = LHSExp;
1567    IndexExpr = RHSExp;
1568    ResultType = PTy->getPointeeType();
1569  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
1570     // Handle the uncommon case of "123[Ptr]".
1571    BaseExpr = RHSExp;
1572    IndexExpr = LHSExp;
1573    ResultType = PTy->getPointeeType();
1574  } else if (const ObjCObjectPointerType *PTy =
1575               LHSTy->getAs<ObjCObjectPointerType>()) {
1576    BaseExpr = LHSExp;
1577    IndexExpr = RHSExp;
1578    ResultType = PTy->getPointeeType();
1579  } else if (const ObjCObjectPointerType *PTy =
1580               RHSTy->getAs<ObjCObjectPointerType>()) {
1581     // Handle the uncommon case of "123[Ptr]".
1582    BaseExpr = RHSExp;
1583    IndexExpr = LHSExp;
1584    ResultType = PTy->getPointeeType();
1585  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
1586    BaseExpr = LHSExp;    // vectors: V[123]
1587    IndexExpr = RHSExp;
1588
1589    // FIXME: need to deal with const...
1590    ResultType = VTy->getElementType();
1591  } else if (LHSTy->isArrayType()) {
1592    // If we see an array that wasn't promoted by
1593    // DefaultFunctionArrayConversion, it must be an array that
1594    // wasn't promoted because of the C90 rule that doesn't
1595    // allow promoting non-lvalue arrays.  Warn, then
1596    // force the promotion here.
1597    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1598        LHSExp->getSourceRange();
1599    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
1600                      CastExpr::CK_ArrayToPointerDecay);
1601    LHSTy = LHSExp->getType();
1602
1603    BaseExpr = LHSExp;
1604    IndexExpr = RHSExp;
1605    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
1606  } else if (RHSTy->isArrayType()) {
1607    // Same as previous, except for 123[f().a] case
1608    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1609        RHSExp->getSourceRange();
1610    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
1611                      CastExpr::CK_ArrayToPointerDecay);
1612    RHSTy = RHSExp->getType();
1613
1614    BaseExpr = RHSExp;
1615    IndexExpr = LHSExp;
1616    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
1617  } else {
1618    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
1619       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
1620  }
1621  // C99 6.5.2.1p1
1622  if (!(IndexExpr->getType()->isIntegerType() &&
1623        IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
1624    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
1625                     << IndexExpr->getSourceRange());
1626
1627  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
1628       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
1629         && !IndexExpr->isTypeDependent())
1630    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
1631
1632  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1633  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1634  // type. Note that Functions are not objects, and that (in C99 parlance)
1635  // incomplete types are not object types.
1636  if (ResultType->isFunctionType()) {
1637    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1638      << ResultType << BaseExpr->getSourceRange();
1639    return ExprError();
1640  }
1641
1642  if (!ResultType->isDependentType() &&
1643      RequireCompleteType(LLoc, ResultType,
1644                          PDiag(diag::err_subscript_incomplete_type)
1645                            << BaseExpr->getSourceRange()))
1646    return ExprError();
1647
1648  // Diagnose bad cases where we step over interface counts.
1649  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
1650    Diag(LLoc, diag::err_subscript_nonfragile_interface)
1651      << ResultType << BaseExpr->getSourceRange();
1652    return ExprError();
1653  }
1654
1655  Base.release();
1656  Idx.release();
1657  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1658                                                ResultType, RLoc));
1659}
1660
1661QualType Sema::
1662CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1663                        const IdentifierInfo *CompName,
1664                        SourceLocation CompLoc) {
1665  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
1666  // see FIXME there.
1667  //
1668  // FIXME: This logic can be greatly simplified by splitting it along
1669  // halving/not halving and reworking the component checking.
1670  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
1671
1672  // The vector accessor can't exceed the number of elements.
1673  const char *compStr = CompName->getNameStart();
1674
1675  // This flag determines whether or not the component is one of the four
1676  // special names that indicate a subset of exactly half the elements are
1677  // to be selected.
1678  bool HalvingSwizzle = false;
1679
1680  // This flag determines whether or not CompName has an 's' char prefix,
1681  // indicating that it is a string of hex values to be used as vector indices.
1682  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
1683
1684  // Check that we've found one of the special components, or that the component
1685  // names must come from the same set.
1686  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1687      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1688    HalvingSwizzle = true;
1689  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1690    do
1691      compStr++;
1692    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1693  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1694    do
1695      compStr++;
1696    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1697  }
1698
1699  if (!HalvingSwizzle && *compStr) {
1700    // We didn't get to the end of the string. This means the component names
1701    // didn't come from the same set *or* we encountered an illegal name.
1702    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1703      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1704    return QualType();
1705  }
1706
1707  // Ensure no component accessor exceeds the width of the vector type it
1708  // operates on.
1709  if (!HalvingSwizzle) {
1710    compStr = CompName->getNameStart();
1711
1712    if (HexSwizzle)
1713      compStr++;
1714
1715    while (*compStr) {
1716      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1717        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1718          << baseType << SourceRange(CompLoc);
1719        return QualType();
1720      }
1721    }
1722  }
1723
1724  // If this is a halving swizzle, verify that the base type has an even
1725  // number of elements.
1726  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1727    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1728      << baseType << SourceRange(CompLoc);
1729    return QualType();
1730  }
1731
1732  // The component accessor looks fine - now we need to compute the actual type.
1733  // The vector type is implied by the component accessor. For example,
1734  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1735  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1736  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1737  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1738                                     : CompName->getLength();
1739  if (HexSwizzle)
1740    CompSize--;
1741
1742  if (CompSize == 1)
1743    return vecType->getElementType();
1744
1745  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1746  // Now look up the TypeDefDecl from the vector type. Without this,
1747  // diagostics look bad. We want extended vector types to appear built-in.
1748  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1749    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1750      return Context.getTypedefType(ExtVectorDecls[i]);
1751  }
1752  return VT; // should never get here (a typedef type should always be found).
1753}
1754
1755static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
1756                                                IdentifierInfo *Member,
1757                                                const Selector &Sel,
1758                                                ASTContext &Context) {
1759
1760  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
1761    return PD;
1762  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
1763    return OMD;
1764
1765  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
1766       E = PDecl->protocol_end(); I != E; ++I) {
1767    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
1768                                                     Context))
1769      return D;
1770  }
1771  return 0;
1772}
1773
1774static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
1775                                IdentifierInfo *Member,
1776                                const Selector &Sel,
1777                                ASTContext &Context) {
1778  // Check protocols on qualified interfaces.
1779  Decl *GDecl = 0;
1780  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
1781       E = QIdTy->qual_end(); I != E; ++I) {
1782    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
1783      GDecl = PD;
1784      break;
1785    }
1786    // Also must look for a getter name which uses property syntax.
1787    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1788      GDecl = OMD;
1789      break;
1790    }
1791  }
1792  if (!GDecl) {
1793    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
1794         E = QIdTy->qual_end(); I != E; ++I) {
1795      // Search in the protocol-qualifier list of current protocol.
1796      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
1797      if (GDecl)
1798        return GDecl;
1799    }
1800  }
1801  return GDecl;
1802}
1803
1804Action::OwningExprResult
1805Sema::BuildMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
1806                               tok::TokenKind OpKind, SourceLocation MemberLoc,
1807                               DeclarationName MemberName,
1808                          const TemplateArgumentListInfo *ExplicitTemplateArgs,
1809                               DeclPtrTy ObjCImpDecl, const CXXScopeSpec *SS,
1810                               NamedDecl *FirstQualifierInScope) {
1811  if (SS && SS->isInvalid())
1812    return ExprError();
1813
1814  // Since this might be a postfix expression, get rid of ParenListExprs.
1815  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
1816
1817  Expr *BaseExpr = Base.takeAs<Expr>();
1818  assert(BaseExpr && "no base expression");
1819
1820  // Perform default conversions.
1821  DefaultFunctionArrayConversion(BaseExpr);
1822
1823  QualType BaseType = BaseExpr->getType();
1824
1825  // If the user is trying to apply -> or . to a function pointer
1826  // type, it's probably because the forgot parentheses to call that
1827  // function. Suggest the addition of those parentheses, build the
1828  // call, and continue on.
1829  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1830    if (const FunctionProtoType *Fun
1831          = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
1832      QualType ResultTy = Fun->getResultType();
1833      if (Fun->getNumArgs() == 0 &&
1834          ((OpKind == tok::period && ResultTy->isRecordType()) ||
1835           (OpKind == tok::arrow && ResultTy->isPointerType() &&
1836            ResultTy->getAs<PointerType>()->getPointeeType()
1837                                                          ->isRecordType()))) {
1838        SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
1839        Diag(Loc, diag::err_member_reference_needs_call)
1840          << QualType(Fun, 0)
1841          << CodeModificationHint::CreateInsertion(Loc, "()");
1842
1843        OwningExprResult NewBase
1844          = ActOnCallExpr(S, ExprArg(*this, BaseExpr), Loc,
1845                          MultiExprArg(*this, 0, 0), 0, Loc);
1846        if (NewBase.isInvalid())
1847          return move(NewBase);
1848
1849        BaseExpr = NewBase.takeAs<Expr>();
1850        DefaultFunctionArrayConversion(BaseExpr);
1851        BaseType = BaseExpr->getType();
1852      }
1853    }
1854  }
1855
1856  // If this is an Objective-C pseudo-builtin and a definition is provided then
1857  // use that.
1858  if (BaseType->isObjCIdType()) {
1859    // We have an 'id' type. Rather than fall through, we check if this
1860    // is a reference to 'isa'.
1861    if (BaseType != Context.ObjCIdRedefinitionType) {
1862      BaseType = Context.ObjCIdRedefinitionType;
1863      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
1864    }
1865  }
1866  assert(!BaseType.isNull() && "no type for member expression");
1867
1868  // Handle properties on ObjC 'Class' types.
1869  if (OpKind == tok::period && BaseType->isObjCClassType()) {
1870    // Also must look for a getter name which uses property syntax.
1871    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1872    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1873    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1874      ObjCInterfaceDecl *IFace = MD->getClassInterface();
1875      ObjCMethodDecl *Getter;
1876      // FIXME: need to also look locally in the implementation.
1877      if ((Getter = IFace->lookupClassMethod(Sel))) {
1878        // Check the use of this method.
1879        if (DiagnoseUseOfDecl(Getter, MemberLoc))
1880          return ExprError();
1881      }
1882      // If we found a getter then this may be a valid dot-reference, we
1883      // will look for the matching setter, in case it is needed.
1884      Selector SetterSel =
1885      SelectorTable::constructSetterName(PP.getIdentifierTable(),
1886                                         PP.getSelectorTable(), Member);
1887      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1888      if (!Setter) {
1889        // If this reference is in an @implementation, also check for 'private'
1890        // methods.
1891        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
1892      }
1893      // Look through local category implementations associated with the class.
1894      if (!Setter)
1895        Setter = IFace->getCategoryClassMethod(SetterSel);
1896
1897      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1898        return ExprError();
1899
1900      if (Getter || Setter) {
1901        QualType PType;
1902
1903        if (Getter)
1904          PType = Getter->getResultType();
1905        else
1906          // Get the expression type from Setter's incoming parameter.
1907          PType = (*(Setter->param_end() -1))->getType();
1908        // FIXME: we must check that the setter has property type.
1909        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
1910                                                  PType,
1911                                                  Setter, MemberLoc, BaseExpr));
1912      }
1913      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1914                       << MemberName << BaseType);
1915    }
1916  }
1917
1918  if (BaseType->isObjCClassType() &&
1919      BaseType != Context.ObjCClassRedefinitionType) {
1920    BaseType = Context.ObjCClassRedefinitionType;
1921    ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
1922  }
1923
1924  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1925  // must have pointer type, and the accessed type is the pointee.
1926  if (OpKind == tok::arrow) {
1927    if (BaseType->isDependentType()) {
1928      NestedNameSpecifier *Qualifier = 0;
1929      if (SS) {
1930        Qualifier = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
1931        if (!FirstQualifierInScope)
1932          FirstQualifierInScope = FindFirstQualifierInScope(S, Qualifier);
1933      }
1934
1935      return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, true,
1936                                                   OpLoc, Qualifier,
1937                                            SS? SS->getRange() : SourceRange(),
1938                                                   FirstQualifierInScope,
1939                                                   MemberName,
1940                                                   MemberLoc,
1941                                                   ExplicitTemplateArgs));
1942    }
1943    else if (const PointerType *PT = BaseType->getAs<PointerType>())
1944      BaseType = PT->getPointeeType();
1945    else if (BaseType->isObjCObjectPointerType())
1946      ;
1947    else
1948      return ExprError(Diag(MemberLoc,
1949                            diag::err_typecheck_member_reference_arrow)
1950        << BaseType << BaseExpr->getSourceRange());
1951  } else if (BaseType->isDependentType()) {
1952      // Require that the base type isn't a pointer type
1953      // (so we'll report an error for)
1954      // T* t;
1955      // t.f;
1956      //
1957      // In Obj-C++, however, the above expression is valid, since it could be
1958      // accessing the 'f' property if T is an Obj-C interface. The extra check
1959      // allows this, while still reporting an error if T is a struct pointer.
1960      const PointerType *PT = BaseType->getAs<PointerType>();
1961
1962      if (!PT || (getLangOptions().ObjC1 &&
1963                  !PT->getPointeeType()->isRecordType())) {
1964        NestedNameSpecifier *Qualifier = 0;
1965        if (SS) {
1966          Qualifier = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
1967          if (!FirstQualifierInScope)
1968            FirstQualifierInScope = FindFirstQualifierInScope(S, Qualifier);
1969        }
1970
1971        return Owned(CXXDependentScopeMemberExpr::Create(Context,
1972                                                     BaseExpr, false,
1973                                                     OpLoc,
1974                                                     Qualifier,
1975                                            SS? SS->getRange() : SourceRange(),
1976                                                     FirstQualifierInScope,
1977                                                     MemberName,
1978                                                     MemberLoc,
1979                                                     ExplicitTemplateArgs));
1980      }
1981    }
1982
1983  // Handle field access to simple records.  This also handles access to fields
1984  // of the ObjC 'id' struct.
1985  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1986    RecordDecl *RDecl = RTy->getDecl();
1987    if (RequireCompleteType(OpLoc, BaseType,
1988                            PDiag(diag::err_typecheck_incomplete_tag)
1989                              << BaseExpr->getSourceRange()))
1990      return ExprError();
1991
1992    DeclContext *DC = RDecl;
1993    if (SS && SS->isSet()) {
1994      // If the member name was a qualified-id, look into the
1995      // nested-name-specifier.
1996      DC = computeDeclContext(*SS, false);
1997
1998      if (!isa<TypeDecl>(DC)) {
1999        Diag(MemberLoc, diag::err_qualified_member_nonclass)
2000          << DC << SS->getRange();
2001        return ExprError();
2002      }
2003
2004      // FIXME: If DC is not computable, we should build a
2005      // CXXDependentScopeMemberExpr.
2006      assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2007    }
2008
2009    // The record definition is complete, now make sure the member is valid.
2010    LookupResult Result(*this, MemberName, MemberLoc, LookupMemberName);
2011    LookupQualifiedName(Result, DC);
2012
2013    if (Result.empty())
2014      return ExprError(Diag(MemberLoc, diag::err_no_member)
2015               << MemberName << DC << BaseExpr->getSourceRange());
2016    if (Result.isAmbiguous())
2017      return ExprError();
2018
2019    NamedDecl *MemberDecl = Result.getAsSingleDecl(Context);
2020
2021    if (SS && SS->isSet()) {
2022      TypeDecl* TyD = cast<TypeDecl>(MemberDecl->getDeclContext());
2023      QualType BaseTypeCanon
2024        = Context.getCanonicalType(BaseType).getUnqualifiedType();
2025      QualType MemberTypeCanon
2026        = Context.getCanonicalType(Context.getTypeDeclType(TyD));
2027
2028      if (BaseTypeCanon != MemberTypeCanon &&
2029          !IsDerivedFrom(BaseTypeCanon, MemberTypeCanon))
2030        return ExprError(Diag(SS->getBeginLoc(),
2031                              diag::err_not_direct_base_or_virtual)
2032                         << MemberTypeCanon << BaseTypeCanon);
2033    }
2034
2035    // If the decl being referenced had an error, return an error for this
2036    // sub-expr without emitting another error, in order to avoid cascading
2037    // error cases.
2038    if (MemberDecl->isInvalidDecl())
2039      return ExprError();
2040
2041    bool ShouldCheckUse = true;
2042    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2043      // Don't diagnose the use of a virtual member function unless it's
2044      // explicitly qualified.
2045      if (MD->isVirtual() && (!SS || !SS->isSet()))
2046        ShouldCheckUse = false;
2047    }
2048
2049    // Check the use of this field
2050    if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc))
2051      return ExprError();
2052
2053    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2054      // We may have found a field within an anonymous union or struct
2055      // (C++ [class.union]).
2056      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
2057        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2058                                                        BaseExpr, OpLoc);
2059
2060      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2061      QualType MemberType = FD->getType();
2062      if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2063        MemberType = Ref->getPointeeType();
2064      else {
2065        Qualifiers BaseQuals = BaseType.getQualifiers();
2066        BaseQuals.removeObjCGCAttr();
2067        if (FD->isMutable()) BaseQuals.removeConst();
2068
2069        Qualifiers MemberQuals
2070          = Context.getCanonicalType(MemberType).getQualifiers();
2071
2072        Qualifiers Combined = BaseQuals + MemberQuals;
2073        if (Combined != MemberQuals)
2074          MemberType = Context.getQualifiedType(MemberType, Combined);
2075      }
2076
2077      MarkDeclarationReferenced(MemberLoc, FD);
2078      if (PerformObjectMemberConversion(BaseExpr, FD))
2079        return ExprError();
2080      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2081                                   FD, MemberLoc, MemberType));
2082    }
2083
2084    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2085      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2086      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2087                                   Var, MemberLoc,
2088                                   Var->getType().getNonReferenceType()));
2089    }
2090    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2091      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2092      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2093                                   MemberFn, MemberLoc,
2094                                   MemberFn->getType()));
2095    }
2096    if (FunctionTemplateDecl *FunTmpl
2097          = dyn_cast<FunctionTemplateDecl>(MemberDecl)) {
2098      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2099
2100      if (ExplicitTemplateArgs)
2101        return Owned(MemberExpr::Create(Context, BaseExpr, OpKind == tok::arrow,
2102                             (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0),
2103                                       SS? SS->getRange() : SourceRange(),
2104                                        FunTmpl, MemberLoc,
2105                                        ExplicitTemplateArgs,
2106                                        Context.OverloadTy));
2107
2108      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2109                                   FunTmpl, MemberLoc,
2110                                   Context.OverloadTy));
2111    }
2112    if (OverloadedFunctionDecl *Ovl
2113          = dyn_cast<OverloadedFunctionDecl>(MemberDecl)) {
2114      if (ExplicitTemplateArgs)
2115        return Owned(MemberExpr::Create(Context, BaseExpr, OpKind == tok::arrow,
2116                             (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0),
2117                                        SS? SS->getRange() : SourceRange(),
2118                                        Ovl, MemberLoc, ExplicitTemplateArgs,
2119                                        Context.OverloadTy));
2120
2121      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2122                                   Ovl, MemberLoc, Context.OverloadTy));
2123    }
2124    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2125      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2126      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2127                                   Enum, MemberLoc, Enum->getType()));
2128    }
2129    if (isa<TypeDecl>(MemberDecl))
2130      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2131        << MemberName << int(OpKind == tok::arrow));
2132
2133    // We found a declaration kind that we didn't expect. This is a
2134    // generic error message that tells the user that she can't refer
2135    // to this member with '.' or '->'.
2136    return ExprError(Diag(MemberLoc,
2137                          diag::err_typecheck_member_reference_unknown)
2138      << MemberName << int(OpKind == tok::arrow));
2139  }
2140
2141  // Handle pseudo-destructors (C++ [expr.pseudo]). Since anything referring
2142  // into a record type was handled above, any destructor we see here is a
2143  // pseudo-destructor.
2144  if (MemberName.getNameKind() == DeclarationName::CXXDestructorName) {
2145    // C++ [expr.pseudo]p2:
2146    //   The left hand side of the dot operator shall be of scalar type. The
2147    //   left hand side of the arrow operator shall be of pointer to scalar
2148    //   type.
2149    if (!BaseType->isScalarType())
2150      return Owned(Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
2151                     << BaseType << BaseExpr->getSourceRange());
2152
2153    //   [...] The type designated by the pseudo-destructor-name shall be the
2154    //   same as the object type.
2155    if (!MemberName.getCXXNameType()->isDependentType() &&
2156        !Context.hasSameUnqualifiedType(BaseType, MemberName.getCXXNameType()))
2157      return Owned(Diag(OpLoc, diag::err_pseudo_dtor_type_mismatch)
2158                     << BaseType << MemberName.getCXXNameType()
2159                     << BaseExpr->getSourceRange() << SourceRange(MemberLoc));
2160
2161    //   [...] Furthermore, the two type-names in a pseudo-destructor-name of
2162    //   the form
2163    //
2164    //       ::[opt] nested-name-specifier[opt] type-name ::  ̃ type-name
2165    //
2166    //   shall designate the same scalar type.
2167    //
2168    // FIXME: DPG can't see any way to trigger this particular clause, so it
2169    // isn't checked here.
2170
2171    // FIXME: We've lost the precise spelling of the type by going through
2172    // DeclarationName. Can we do better?
2173    return Owned(new (Context) CXXPseudoDestructorExpr(Context, BaseExpr,
2174                                                       OpKind == tok::arrow,
2175                                                       OpLoc,
2176                            (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0),
2177                                            SS? SS->getRange() : SourceRange(),
2178                                                   MemberName.getCXXNameType(),
2179                                                       MemberLoc));
2180  }
2181
2182  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2183  // (*Obj).ivar.
2184  if ((OpKind == tok::arrow && BaseType->isObjCObjectPointerType()) ||
2185      (OpKind == tok::period && BaseType->isObjCInterfaceType())) {
2186    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
2187    const ObjCInterfaceType *IFaceT =
2188      OPT ? OPT->getInterfaceType() : BaseType->getAs<ObjCInterfaceType>();
2189    if (IFaceT) {
2190      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2191
2192      ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
2193      ObjCInterfaceDecl *ClassDeclared;
2194      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
2195
2196      if (IV) {
2197        // If the decl being referenced had an error, return an error for this
2198        // sub-expr without emitting another error, in order to avoid cascading
2199        // error cases.
2200        if (IV->isInvalidDecl())
2201          return ExprError();
2202
2203        // Check whether we can reference this field.
2204        if (DiagnoseUseOfDecl(IV, MemberLoc))
2205          return ExprError();
2206        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2207            IV->getAccessControl() != ObjCIvarDecl::Package) {
2208          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2209          if (ObjCMethodDecl *MD = getCurMethodDecl())
2210            ClassOfMethodDecl =  MD->getClassInterface();
2211          else if (ObjCImpDecl && getCurFunctionDecl()) {
2212            // Case of a c-function declared inside an objc implementation.
2213            // FIXME: For a c-style function nested inside an objc implementation
2214            // class, there is no implementation context available, so we pass
2215            // down the context as argument to this routine. Ideally, this context
2216            // need be passed down in the AST node and somehow calculated from the
2217            // AST for a function decl.
2218            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2219            if (ObjCImplementationDecl *IMPD =
2220                dyn_cast<ObjCImplementationDecl>(ImplDecl))
2221              ClassOfMethodDecl = IMPD->getClassInterface();
2222            else if (ObjCCategoryImplDecl* CatImplClass =
2223                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2224              ClassOfMethodDecl = CatImplClass->getClassInterface();
2225          }
2226
2227          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2228            if (ClassDeclared != IDecl ||
2229                ClassOfMethodDecl != ClassDeclared)
2230              Diag(MemberLoc, diag::error_private_ivar_access)
2231                << IV->getDeclName();
2232          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
2233            // @protected
2234            Diag(MemberLoc, diag::error_protected_ivar_access)
2235              << IV->getDeclName();
2236        }
2237
2238        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2239                                                   MemberLoc, BaseExpr,
2240                                                   OpKind == tok::arrow));
2241      }
2242      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
2243                         << IDecl->getDeclName() << MemberName
2244                         << BaseExpr->getSourceRange());
2245    }
2246  }
2247  // Handle properties on 'id' and qualified "id".
2248  if (OpKind == tok::period && (BaseType->isObjCIdType() ||
2249                                BaseType->isObjCQualifiedIdType())) {
2250    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
2251    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2252
2253    // Check protocols on qualified interfaces.
2254    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2255    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2256      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2257        // Check the use of this declaration
2258        if (DiagnoseUseOfDecl(PD, MemberLoc))
2259          return ExprError();
2260
2261        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2262                                                       MemberLoc, BaseExpr));
2263      }
2264      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2265        // Check the use of this method.
2266        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2267          return ExprError();
2268
2269        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2270                                                   OMD->getResultType(),
2271                                                   OMD, OpLoc, MemberLoc,
2272                                                   NULL, 0));
2273      }
2274    }
2275
2276    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2277                       << MemberName << BaseType);
2278  }
2279  // Handle Objective-C property access, which is "Obj.property" where Obj is a
2280  // pointer to a (potentially qualified) interface type.
2281  const ObjCObjectPointerType *OPT;
2282  if (OpKind == tok::period &&
2283      (OPT = BaseType->getAsObjCInterfacePointerType())) {
2284    const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
2285    ObjCInterfaceDecl *IFace = IFaceT->getDecl();
2286    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2287
2288    // Search for a declared property first.
2289    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
2290      // Check whether we can reference this property.
2291      if (DiagnoseUseOfDecl(PD, MemberLoc))
2292        return ExprError();
2293      QualType ResTy = PD->getType();
2294      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2295      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2296      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
2297        ResTy = Getter->getResultType();
2298      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
2299                                                     MemberLoc, BaseExpr));
2300    }
2301    // Check protocols on qualified interfaces.
2302    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2303         E = OPT->qual_end(); I != E; ++I)
2304      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2305        // Check whether we can reference this property.
2306        if (DiagnoseUseOfDecl(PD, MemberLoc))
2307          return ExprError();
2308
2309        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2310                                                       MemberLoc, BaseExpr));
2311      }
2312    // If that failed, look for an "implicit" property by seeing if the nullary
2313    // selector is implemented.
2314
2315    // FIXME: The logic for looking up nullary and unary selectors should be
2316    // shared with the code in ActOnInstanceMessage.
2317
2318    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2319    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2320
2321    // If this reference is in an @implementation, check for 'private' methods.
2322    if (!Getter)
2323      Getter = IFace->lookupPrivateInstanceMethod(Sel);
2324
2325    // Look through local category implementations associated with the class.
2326    if (!Getter)
2327      Getter = IFace->getCategoryInstanceMethod(Sel);
2328    if (Getter) {
2329      // Check if we can reference this property.
2330      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2331        return ExprError();
2332    }
2333    // If we found a getter then this may be a valid dot-reference, we
2334    // will look for the matching setter, in case it is needed.
2335    Selector SetterSel =
2336      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2337                                         PP.getSelectorTable(), Member);
2338    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
2339    if (!Setter) {
2340      // If this reference is in an @implementation, also check for 'private'
2341      // methods.
2342      Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
2343    }
2344    // Look through local category implementations associated with the class.
2345    if (!Setter)
2346      Setter = IFace->getCategoryInstanceMethod(SetterSel);
2347
2348    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2349      return ExprError();
2350
2351    if (Getter || Setter) {
2352      QualType PType;
2353
2354      if (Getter)
2355        PType = Getter->getResultType();
2356      else
2357        // Get the expression type from Setter's incoming parameter.
2358        PType = (*(Setter->param_end() -1))->getType();
2359      // FIXME: we must check that the setter has property type.
2360      return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType,
2361                                      Setter, MemberLoc, BaseExpr));
2362    }
2363    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2364      << MemberName << BaseType);
2365  }
2366
2367  // Handle the following exceptional case (*Obj).isa.
2368  if (OpKind == tok::period &&
2369      BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2370      MemberName.getAsIdentifierInfo()->isStr("isa"))
2371    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
2372                                           Context.getObjCIdType()));
2373
2374  // Handle 'field access' to vectors, such as 'V.xx'.
2375  if (BaseType->isExtVectorType()) {
2376    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2377    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2378    if (ret.isNull())
2379      return ExprError();
2380    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
2381                                                    MemberLoc));
2382  }
2383
2384  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2385    << BaseType << BaseExpr->getSourceRange();
2386
2387  return ExprError();
2388}
2389
2390Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg Base,
2391                                                   SourceLocation OpLoc,
2392                                                   tok::TokenKind OpKind,
2393                                                   const CXXScopeSpec &SS,
2394                                                   UnqualifiedId &Member,
2395                                                   DeclPtrTy ObjCImpDecl,
2396                                                   bool HasTrailingLParen) {
2397  if (Member.getKind() == UnqualifiedId::IK_TemplateId) {
2398    TemplateName Template
2399      = TemplateName::getFromVoidPointer(Member.TemplateId->Template);
2400
2401    // FIXME: We're going to end up looking up the template based on its name,
2402    // twice!
2403    DeclarationName Name;
2404    if (TemplateDecl *ActualTemplate = Template.getAsTemplateDecl())
2405      Name = ActualTemplate->getDeclName();
2406    else if (OverloadedFunctionDecl *Ovl = Template.getAsOverloadedFunctionDecl())
2407      Name = Ovl->getDeclName();
2408    else {
2409      DependentTemplateName *DTN = Template.getAsDependentTemplateName();
2410      if (DTN->isIdentifier())
2411        Name = DTN->getIdentifier();
2412      else
2413        Name = Context.DeclarationNames.getCXXOperatorName(DTN->getOperator());
2414    }
2415
2416    // Translate the parser's template argument list in our AST format.
2417    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2418                                       Member.TemplateId->getTemplateArgs(),
2419                                       Member.TemplateId->NumArgs);
2420
2421    TemplateArgumentListInfo TemplateArgs;
2422    TemplateArgs.setLAngleLoc(Member.TemplateId->LAngleLoc);
2423    TemplateArgs.setRAngleLoc(Member.TemplateId->RAngleLoc);
2424    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
2425    TemplateArgsPtr.release();
2426
2427    // Do we have the save the actual template name? We might need it...
2428    return BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind,
2429                                    Member.TemplateId->TemplateNameLoc,
2430                                    Name, &TemplateArgs, DeclPtrTy(),
2431                                    &SS);
2432  }
2433
2434  // FIXME: We lose a lot of source information by mapping directly to the
2435  // DeclarationName.
2436  OwningExprResult Result
2437    = BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind,
2438                               Member.getSourceRange().getBegin(),
2439                               GetNameFromUnqualifiedId(Member),
2440                               ObjCImpDecl, &SS);
2441
2442  if (Result.isInvalid() || HasTrailingLParen ||
2443      Member.getKind() != UnqualifiedId::IK_DestructorName)
2444    return move(Result);
2445
2446  // The only way a reference to a destructor can be used is to
2447  // immediately call them. Since the next token is not a '(', produce a
2448  // diagnostic and build the call now.
2449  Expr *E = (Expr *)Result.get();
2450  SourceLocation ExpectedLParenLoc
2451    = PP.getLocForEndOfToken(Member.getSourceRange().getEnd());
2452  Diag(E->getLocStart(), diag::err_dtor_expr_without_call)
2453    << isa<CXXPseudoDestructorExpr>(E)
2454    << CodeModificationHint::CreateInsertion(ExpectedLParenLoc, "()");
2455
2456  return ActOnCallExpr(0, move(Result), ExpectedLParenLoc,
2457                       MultiExprArg(*this, 0, 0), 0, ExpectedLParenLoc);
2458}
2459
2460Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
2461                                                    FunctionDecl *FD,
2462                                                    ParmVarDecl *Param) {
2463  if (Param->hasUnparsedDefaultArg()) {
2464    Diag (CallLoc,
2465          diag::err_use_of_default_argument_to_function_declared_later) <<
2466      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
2467    Diag(UnparsedDefaultArgLocs[Param],
2468          diag::note_default_argument_declared_here);
2469  } else {
2470    if (Param->hasUninstantiatedDefaultArg()) {
2471      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
2472
2473      // Instantiate the expression.
2474      MultiLevelTemplateArgumentList ArgList = getTemplateInstantiationArgs(FD);
2475
2476      InstantiatingTemplate Inst(*this, CallLoc, Param,
2477                                 ArgList.getInnermost().getFlatArgumentList(),
2478                                 ArgList.getInnermost().flat_size());
2479
2480      OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
2481      if (Result.isInvalid())
2482        return ExprError();
2483
2484      if (SetParamDefaultArgument(Param, move(Result),
2485                                  /*FIXME:EqualLoc*/
2486                                  UninstExpr->getSourceRange().getBegin()))
2487        return ExprError();
2488    }
2489
2490    Expr *DefaultExpr = Param->getDefaultArg();
2491
2492    // If the default expression creates temporaries, we need to
2493    // push them to the current stack of expression temporaries so they'll
2494    // be properly destroyed.
2495    if (CXXExprWithTemporaries *E
2496          = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2497      assert(!E->shouldDestroyTemporaries() &&
2498             "Can't destroy temporaries in a default argument expr!");
2499      for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2500        ExprTemporaries.push_back(E->getTemporary(I));
2501    }
2502  }
2503
2504  // We already type-checked the argument, so we know it works.
2505  return Owned(CXXDefaultArgExpr::Create(Context, Param));
2506}
2507
2508/// ConvertArgumentsForCall - Converts the arguments specified in
2509/// Args/NumArgs to the parameter types of the function FDecl with
2510/// function prototype Proto. Call is the call expression itself, and
2511/// Fn is the function expression. For a C++ member function, this
2512/// routine does not attempt to convert the object argument. Returns
2513/// true if the call is ill-formed.
2514bool
2515Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2516                              FunctionDecl *FDecl,
2517                              const FunctionProtoType *Proto,
2518                              Expr **Args, unsigned NumArgs,
2519                              SourceLocation RParenLoc) {
2520  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2521  // assignment, to the types of the corresponding parameter, ...
2522  unsigned NumArgsInProto = Proto->getNumArgs();
2523  unsigned NumArgsToCheck = NumArgs;
2524  bool Invalid = false;
2525
2526  // If too few arguments are available (and we don't have default
2527  // arguments for the remaining parameters), don't make the call.
2528  if (NumArgs < NumArgsInProto) {
2529    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2530      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2531        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2532    // Use default arguments for missing arguments
2533    NumArgsToCheck = NumArgsInProto;
2534    Call->setNumArgs(Context, NumArgsInProto);
2535  }
2536
2537  // If too many are passed and not variadic, error on the extras and drop
2538  // them.
2539  if (NumArgs > NumArgsInProto) {
2540    if (!Proto->isVariadic()) {
2541      Diag(Args[NumArgsInProto]->getLocStart(),
2542           diag::err_typecheck_call_too_many_args)
2543        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2544        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2545                       Args[NumArgs-1]->getLocEnd());
2546      // This deletes the extra arguments.
2547      Call->setNumArgs(Context, NumArgsInProto);
2548      Invalid = true;
2549    }
2550    NumArgsToCheck = NumArgsInProto;
2551  }
2552
2553  // Continue to check argument types (even if we have too few/many args).
2554  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2555    QualType ProtoArgType = Proto->getArgType(i);
2556
2557    Expr *Arg;
2558    if (i < NumArgs) {
2559      Arg = Args[i];
2560
2561      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2562                              ProtoArgType,
2563                              PDiag(diag::err_call_incomplete_argument)
2564                                << Arg->getSourceRange()))
2565        return true;
2566
2567      // Pass the argument.
2568      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2569        return true;
2570
2571      if (!ProtoArgType->isReferenceType())
2572        Arg = MaybeBindToTemporary(Arg).takeAs<Expr>();
2573    } else {
2574      ParmVarDecl *Param = FDecl->getParamDecl(i);
2575
2576      OwningExprResult ArgExpr =
2577        BuildCXXDefaultArgExpr(Call->getSourceRange().getBegin(),
2578                               FDecl, Param);
2579      if (ArgExpr.isInvalid())
2580        return true;
2581
2582      Arg = ArgExpr.takeAs<Expr>();
2583    }
2584
2585    Call->setArg(i, Arg);
2586  }
2587
2588  // If this is a variadic call, handle args passed through "...".
2589  if (Proto->isVariadic()) {
2590    VariadicCallType CallType = VariadicFunction;
2591    if (Fn->getType()->isBlockPointerType())
2592      CallType = VariadicBlock; // Block
2593    else if (isa<MemberExpr>(Fn))
2594      CallType = VariadicMethod;
2595
2596    // Promote the arguments (C99 6.5.2.2p7).
2597    for (unsigned i = NumArgsInProto; i < NumArgs; i++) {
2598      Expr *Arg = Args[i];
2599      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2600      Call->setArg(i, Arg);
2601    }
2602  }
2603
2604  return Invalid;
2605}
2606
2607/// \brief "Deconstruct" the function argument of a call expression to find
2608/// the underlying declaration (if any), the name of the called function,
2609/// whether argument-dependent lookup is available, whether it has explicit
2610/// template arguments, etc.
2611void Sema::DeconstructCallFunction(Expr *FnExpr,
2612                                   llvm::SmallVectorImpl<NamedDecl*> &Fns,
2613                                   DeclarationName &Name,
2614                                   NestedNameSpecifier *&Qualifier,
2615                                   SourceRange &QualifierRange,
2616                                   bool &ArgumentDependentLookup,
2617                                   bool &Overloaded,
2618                                   bool &HasExplicitTemplateArguments,
2619                           TemplateArgumentListInfo &ExplicitTemplateArgs) {
2620  // Set defaults for all of the output parameters.
2621  Name = DeclarationName();
2622  Qualifier = 0;
2623  QualifierRange = SourceRange();
2624  ArgumentDependentLookup = getLangOptions().CPlusPlus;
2625  Overloaded = false;
2626  HasExplicitTemplateArguments = false;
2627
2628  // Most of the explicit tracking of ArgumentDependentLookup in this
2629  // function can disappear when we handle unresolved
2630  // TemplateIdRefExprs properly.
2631
2632  // If we're directly calling a function, get the appropriate declaration.
2633  // Also, in C++, keep track of whether we should perform argument-dependent
2634  // lookup and whether there were any explicitly-specified template arguments.
2635  while (true) {
2636    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2637      FnExpr = IcExpr->getSubExpr();
2638    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2639      // Parentheses around a function disable ADL
2640      // (C++0x [basic.lookup.argdep]p1).
2641      ArgumentDependentLookup = false;
2642      FnExpr = PExpr->getSubExpr();
2643    } else if (isa<UnaryOperator>(FnExpr) &&
2644               cast<UnaryOperator>(FnExpr)->getOpcode()
2645               == UnaryOperator::AddrOf) {
2646      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2647    } else if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(FnExpr)) {
2648      Fns.push_back(cast<NamedDecl>(DRExpr->getDecl()));
2649      ArgumentDependentLookup = false;
2650      if ((Qualifier = DRExpr->getQualifier()))
2651        QualifierRange = DRExpr->getQualifierRange();
2652      break;
2653    } else if (UnresolvedLookupExpr *UnresLookup
2654               = dyn_cast<UnresolvedLookupExpr>(FnExpr)) {
2655      Name = UnresLookup->getName();
2656      Fns.append(UnresLookup->decls_begin(), UnresLookup->decls_end());
2657      ArgumentDependentLookup = UnresLookup->requiresADL();
2658      Overloaded = UnresLookup->isOverloaded();
2659      if ((Qualifier = UnresLookup->getQualifier()))
2660        QualifierRange = UnresLookup->getQualifierRange();
2661      break;
2662    } else if (TemplateIdRefExpr *TemplateIdRef
2663               = dyn_cast<TemplateIdRefExpr>(FnExpr)) {
2664      if (NamedDecl *Function
2665          = TemplateIdRef->getTemplateName().getAsTemplateDecl()) {
2666        Name = Function->getDeclName();
2667        Fns.push_back(Function);
2668      }
2669      else {
2670        OverloadedFunctionDecl *Overload
2671          = TemplateIdRef->getTemplateName().getAsOverloadedFunctionDecl();
2672        Name = Overload->getDeclName();
2673        Fns.append(Overload->function_begin(), Overload->function_end());
2674      }
2675      Overloaded = true;
2676      HasExplicitTemplateArguments = true;
2677      TemplateIdRef->copyTemplateArgumentsInto(ExplicitTemplateArgs);
2678
2679      // C++ [temp.arg.explicit]p6:
2680      //   [Note: For simple function names, argument dependent lookup (3.4.2)
2681      //   applies even when the function name is not visible within the
2682      //   scope of the call. This is because the call still has the syntactic
2683      //   form of a function call (3.4.1). But when a function template with
2684      //   explicit template arguments is used, the call does not have the
2685      //   correct syntactic form unless there is a function template with
2686      //   that name visible at the point of the call. If no such name is
2687      //   visible, the call is not syntactically well-formed and
2688      //   argument-dependent lookup does not apply. If some such name is
2689      //   visible, argument dependent lookup applies and additional function
2690      //   templates may be found in other namespaces.
2691      //
2692      // The summary of this paragraph is that, if we get to this point and the
2693      // template-id was not a qualified name, then argument-dependent lookup
2694      // is still possible.
2695      if ((Qualifier = TemplateIdRef->getQualifier())) {
2696        ArgumentDependentLookup = false;
2697        QualifierRange = TemplateIdRef->getQualifierRange();
2698      }
2699      break;
2700    } else {
2701      // Any kind of name that does not refer to a declaration (or
2702      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2703      ArgumentDependentLookup = false;
2704      break;
2705    }
2706  }
2707}
2708
2709/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2710/// This provides the location of the left/right parens and a list of comma
2711/// locations.
2712Action::OwningExprResult
2713Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2714                    MultiExprArg args,
2715                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2716  unsigned NumArgs = args.size();
2717
2718  // Since this might be a postfix expression, get rid of ParenListExprs.
2719  fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
2720
2721  Expr *Fn = fn.takeAs<Expr>();
2722  Expr **Args = reinterpret_cast<Expr**>(args.release());
2723  assert(Fn && "no function call expression");
2724
2725  if (getLangOptions().CPlusPlus) {
2726    // If this is a pseudo-destructor expression, build the call immediately.
2727    if (isa<CXXPseudoDestructorExpr>(Fn)) {
2728      if (NumArgs > 0) {
2729        // Pseudo-destructor calls should not have any arguments.
2730        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
2731          << CodeModificationHint::CreateRemoval(
2732                                    SourceRange(Args[0]->getLocStart(),
2733                                                Args[NumArgs-1]->getLocEnd()));
2734
2735        for (unsigned I = 0; I != NumArgs; ++I)
2736          Args[I]->Destroy(Context);
2737
2738        NumArgs = 0;
2739      }
2740
2741      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
2742                                          RParenLoc));
2743    }
2744
2745    // Determine whether this is a dependent call inside a C++ template,
2746    // in which case we won't do any semantic analysis now.
2747    // FIXME: Will need to cache the results of name lookup (including ADL) in
2748    // Fn.
2749    bool Dependent = false;
2750    if (Fn->isTypeDependent())
2751      Dependent = true;
2752    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2753      Dependent = true;
2754
2755    if (Dependent)
2756      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2757                                          Context.DependentTy, RParenLoc));
2758
2759    // Determine whether this is a call to an object (C++ [over.call.object]).
2760    if (Fn->getType()->isRecordType())
2761      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2762                                                CommaLocs, RParenLoc));
2763
2764    // Determine whether this is a call to a member function.
2765    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens())) {
2766      NamedDecl *MemDecl = MemExpr->getMemberDecl();
2767      if (isa<OverloadedFunctionDecl>(MemDecl) ||
2768          isa<CXXMethodDecl>(MemDecl) ||
2769          (isa<FunctionTemplateDecl>(MemDecl) &&
2770           isa<CXXMethodDecl>(
2771                cast<FunctionTemplateDecl>(MemDecl)->getTemplatedDecl())))
2772        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2773                                               CommaLocs, RParenLoc));
2774    }
2775
2776    // Determine whether this is a call to a pointer-to-member function.
2777    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Fn->IgnoreParens())) {
2778      if (BO->getOpcode() == BinaryOperator::PtrMemD ||
2779          BO->getOpcode() == BinaryOperator::PtrMemI) {
2780        if (const FunctionProtoType *FPT =
2781              dyn_cast<FunctionProtoType>(BO->getType())) {
2782          QualType ResultTy = FPT->getResultType().getNonReferenceType();
2783
2784          ExprOwningPtr<CXXMemberCallExpr>
2785            TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
2786                                                          NumArgs, ResultTy,
2787                                                          RParenLoc));
2788
2789          if (CheckCallReturnType(FPT->getResultType(),
2790                                  BO->getRHS()->getSourceRange().getBegin(),
2791                                  TheCall.get(), 0))
2792            return ExprError();
2793
2794          if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
2795                                      RParenLoc))
2796            return ExprError();
2797
2798          return Owned(MaybeBindToTemporary(TheCall.release()).release());
2799        }
2800        return ExprError(Diag(Fn->getLocStart(),
2801                              diag::err_typecheck_call_not_function)
2802                              << Fn->getType() << Fn->getSourceRange());
2803      }
2804    }
2805  }
2806
2807  // If we're directly calling a function, get the appropriate declaration.
2808  // Also, in C++, keep track of whether we should perform argument-dependent
2809  // lookup and whether there were any explicitly-specified template arguments.
2810  llvm::SmallVector<NamedDecl*,8> Fns;
2811  DeclarationName UnqualifiedName;
2812  bool Overloaded;
2813  bool ADL;
2814  bool HasExplicitTemplateArgs = 0;
2815  TemplateArgumentListInfo ExplicitTemplateArgs;
2816  NestedNameSpecifier *Qualifier = 0;
2817  SourceRange QualifierRange;
2818  DeconstructCallFunction(Fn, Fns, UnqualifiedName, Qualifier, QualifierRange,
2819                          ADL, Overloaded, HasExplicitTemplateArgs,
2820                          ExplicitTemplateArgs);
2821
2822  NamedDecl *NDecl;    // the specific declaration we're calling, if applicable
2823  FunctionDecl *FDecl; // same, if it's known to be a function
2824
2825  if (Overloaded || ADL) {
2826#ifndef NDEBUG
2827    if (ADL) {
2828      // To do ADL, we must have found an unqualified name.
2829      assert(UnqualifiedName && "found no unqualified name for ADL");
2830
2831      // We don't perform ADL for implicit declarations of builtins.
2832      // Verify that this was correctly set up.
2833      if (Fns.size() == 1 && (FDecl = dyn_cast<FunctionDecl>(Fns[0])) &&
2834          FDecl->getBuiltinID() && FDecl->isImplicit())
2835        assert(0 && "performing ADL for builtin");
2836
2837      // We don't perform ADL in C.
2838      assert(getLangOptions().CPlusPlus && "ADL enabled in C");
2839    }
2840
2841    if (Overloaded) {
2842      // To be overloaded, we must either have multiple functions or
2843      // at least one function template (which is effectively an
2844      // infinite set of functions).
2845      assert((Fns.size() > 1 ||
2846              (Fns.size() == 1 &&
2847               isa<FunctionTemplateDecl>(Fns[0]->getUnderlyingDecl())))
2848             && "unrecognized overload situation");
2849    }
2850#endif
2851
2852    FDecl = ResolveOverloadedCallFn(Fn, Fns, UnqualifiedName,
2853                       (HasExplicitTemplateArgs ? &ExplicitTemplateArgs : 0),
2854                                    LParenLoc, Args, NumArgs, CommaLocs,
2855                                    RParenLoc, ADL);
2856    if (!FDecl)
2857      return ExprError();
2858
2859    Fn = FixOverloadedFunctionReference(Fn, FDecl);
2860
2861    NDecl = FDecl;
2862  } else {
2863    assert(Fns.size() <= 1 && "overloaded without Overloaded flag");
2864    if (Fns.empty())
2865      NDecl = FDecl = 0;
2866    else {
2867      NDecl = Fns[0];
2868      FDecl = dyn_cast<FunctionDecl>(NDecl);
2869    }
2870  }
2871
2872  // Promote the function operand.
2873  UsualUnaryConversions(Fn);
2874
2875  // Make the call expr early, before semantic checks.  This guarantees cleanup
2876  // of arguments and function on error.
2877  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2878                                                               Args, NumArgs,
2879                                                               Context.BoolTy,
2880                                                               RParenLoc));
2881
2882  const FunctionType *FuncT;
2883  if (!Fn->getType()->isBlockPointerType()) {
2884    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2885    // have type pointer to function".
2886    const PointerType *PT = Fn->getType()->getAs<PointerType>();
2887    if (PT == 0)
2888      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2889        << Fn->getType() << Fn->getSourceRange());
2890    FuncT = PT->getPointeeType()->getAs<FunctionType>();
2891  } else { // This is a block call.
2892    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
2893                getAs<FunctionType>();
2894  }
2895  if (FuncT == 0)
2896    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2897      << Fn->getType() << Fn->getSourceRange());
2898
2899  // Check for a valid return type
2900  if (CheckCallReturnType(FuncT->getResultType(),
2901                          Fn->getSourceRange().getBegin(), TheCall.get(),
2902                          FDecl))
2903    return ExprError();
2904
2905  // We know the result type of the call, set it.
2906  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2907
2908  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2909    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2910                                RParenLoc))
2911      return ExprError();
2912  } else {
2913    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2914
2915    if (FDecl) {
2916      // Check if we have too few/too many template arguments, based
2917      // on our knowledge of the function definition.
2918      const FunctionDecl *Def = 0;
2919      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
2920        const FunctionProtoType *Proto =
2921            Def->getType()->getAs<FunctionProtoType>();
2922        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
2923          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2924            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2925        }
2926      }
2927    }
2928
2929    // Promote the arguments (C99 6.5.2.2p6).
2930    for (unsigned i = 0; i != NumArgs; i++) {
2931      Expr *Arg = Args[i];
2932      DefaultArgumentPromotion(Arg);
2933      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2934                              Arg->getType(),
2935                              PDiag(diag::err_call_incomplete_argument)
2936                                << Arg->getSourceRange()))
2937        return ExprError();
2938      TheCall->setArg(i, Arg);
2939    }
2940  }
2941
2942  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2943    if (!Method->isStatic())
2944      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2945        << Fn->getSourceRange());
2946
2947  // Check for sentinels
2948  if (NDecl)
2949    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
2950
2951  // Do special checking on direct calls to functions.
2952  if (FDecl) {
2953    if (CheckFunctionCall(FDecl, TheCall.get()))
2954      return ExprError();
2955
2956    if (unsigned BuiltinID = FDecl->getBuiltinID())
2957      return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
2958  } else if (NDecl) {
2959    if (CheckBlockCall(NDecl, TheCall.get()))
2960      return ExprError();
2961  }
2962
2963  return MaybeBindToTemporary(TheCall.take());
2964}
2965
2966Action::OwningExprResult
2967Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2968                           SourceLocation RParenLoc, ExprArg InitExpr) {
2969  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2970  //FIXME: Preserve type source info.
2971  QualType literalType = GetTypeFromParser(Ty);
2972  // FIXME: put back this assert when initializers are worked out.
2973  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2974  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2975
2976  if (literalType->isArrayType()) {
2977    if (literalType->isVariableArrayType())
2978      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2979        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2980  } else if (!literalType->isDependentType() &&
2981             RequireCompleteType(LParenLoc, literalType,
2982                      PDiag(diag::err_typecheck_decl_incomplete_type)
2983                        << SourceRange(LParenLoc,
2984                                       literalExpr->getSourceRange().getEnd())))
2985    return ExprError();
2986
2987  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2988                            DeclarationName(), /*FIXME:DirectInit=*/false))
2989    return ExprError();
2990
2991  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2992  if (isFileScope) { // 6.5.2.5p3
2993    if (CheckForConstantInitializer(literalExpr, literalType))
2994      return ExprError();
2995  }
2996  InitExpr.release();
2997  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2998                                                 literalExpr, isFileScope));
2999}
3000
3001Action::OwningExprResult
3002Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3003                    SourceLocation RBraceLoc) {
3004  unsigned NumInit = initlist.size();
3005  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
3006
3007  // Semantic analysis for initializers is done by ActOnDeclarator() and
3008  // CheckInitializer() - it requires knowledge of the object being intialized.
3009
3010  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
3011                                               RBraceLoc);
3012  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3013  return Owned(E);
3014}
3015
3016static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
3017                                            QualType SrcTy, QualType DestTy) {
3018  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
3019    return CastExpr::CK_NoOp;
3020
3021  if (SrcTy->hasPointerRepresentation()) {
3022    if (DestTy->hasPointerRepresentation())
3023      return CastExpr::CK_BitCast;
3024    if (DestTy->isIntegerType())
3025      return CastExpr::CK_PointerToIntegral;
3026  }
3027
3028  if (SrcTy->isIntegerType()) {
3029    if (DestTy->isIntegerType())
3030      return CastExpr::CK_IntegralCast;
3031    if (DestTy->hasPointerRepresentation())
3032      return CastExpr::CK_IntegralToPointer;
3033    if (DestTy->isRealFloatingType())
3034      return CastExpr::CK_IntegralToFloating;
3035  }
3036
3037  if (SrcTy->isRealFloatingType()) {
3038    if (DestTy->isRealFloatingType())
3039      return CastExpr::CK_FloatingCast;
3040    if (DestTy->isIntegerType())
3041      return CastExpr::CK_FloatingToIntegral;
3042  }
3043
3044  // FIXME: Assert here.
3045  // assert(false && "Unhandled cast combination!");
3046  return CastExpr::CK_Unknown;
3047}
3048
3049/// CheckCastTypes - Check type constraints for casting between types.
3050bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3051                          CastExpr::CastKind& Kind,
3052                          CXXMethodDecl *& ConversionDecl,
3053                          bool FunctionalStyle) {
3054  if (getLangOptions().CPlusPlus)
3055    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, FunctionalStyle,
3056                              ConversionDecl);
3057
3058  DefaultFunctionArrayConversion(castExpr);
3059
3060  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3061  // type needs to be scalar.
3062  if (castType->isVoidType()) {
3063    // Cast to void allows any expr type.
3064    Kind = CastExpr::CK_ToVoid;
3065    return false;
3066  }
3067
3068  if (!castType->isScalarType() && !castType->isVectorType()) {
3069    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
3070        (castType->isStructureType() || castType->isUnionType())) {
3071      // GCC struct/union extension: allow cast to self.
3072      // FIXME: Check that the cast destination type is complete.
3073      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3074        << castType << castExpr->getSourceRange();
3075      Kind = CastExpr::CK_NoOp;
3076      return false;
3077    }
3078
3079    if (castType->isUnionType()) {
3080      // GCC cast to union extension
3081      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3082      RecordDecl::field_iterator Field, FieldEnd;
3083      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3084           Field != FieldEnd; ++Field) {
3085        if (Context.hasSameUnqualifiedType(Field->getType(),
3086                                           castExpr->getType())) {
3087          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3088            << castExpr->getSourceRange();
3089          break;
3090        }
3091      }
3092      if (Field == FieldEnd)
3093        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3094          << castExpr->getType() << castExpr->getSourceRange();
3095      Kind = CastExpr::CK_ToUnion;
3096      return false;
3097    }
3098
3099    // Reject any other conversions to non-scalar types.
3100    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3101      << castType << castExpr->getSourceRange();
3102  }
3103
3104  if (!castExpr->getType()->isScalarType() &&
3105      !castExpr->getType()->isVectorType()) {
3106    return Diag(castExpr->getLocStart(),
3107                diag::err_typecheck_expect_scalar_operand)
3108      << castExpr->getType() << castExpr->getSourceRange();
3109  }
3110
3111  if (castType->isExtVectorType())
3112    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
3113
3114  if (castType->isVectorType())
3115    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
3116  if (castExpr->getType()->isVectorType())
3117    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
3118
3119  if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr))
3120    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
3121
3122  if (isa<ObjCSelectorExpr>(castExpr))
3123    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3124
3125  if (!castType->isArithmeticType()) {
3126    QualType castExprType = castExpr->getType();
3127    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
3128      return Diag(castExpr->getLocStart(),
3129                  diag::err_cast_pointer_from_non_pointer_int)
3130        << castExprType << castExpr->getSourceRange();
3131  } else if (!castExpr->getType()->isArithmeticType()) {
3132    if (!castType->isIntegralType() && castType->isArithmeticType())
3133      return Diag(castExpr->getLocStart(),
3134                  diag::err_cast_pointer_to_non_pointer_int)
3135        << castType << castExpr->getSourceRange();
3136  }
3137
3138  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
3139  return false;
3140}
3141
3142bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
3143                           CastExpr::CastKind &Kind) {
3144  assert(VectorTy->isVectorType() && "Not a vector type!");
3145
3146  if (Ty->isVectorType() || Ty->isIntegerType()) {
3147    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
3148      return Diag(R.getBegin(),
3149                  Ty->isVectorType() ?
3150                  diag::err_invalid_conversion_between_vectors :
3151                  diag::err_invalid_conversion_between_vector_and_integer)
3152        << VectorTy << Ty << R;
3153  } else
3154    return Diag(R.getBegin(),
3155                diag::err_invalid_conversion_between_vector_and_scalar)
3156      << VectorTy << Ty << R;
3157
3158  Kind = CastExpr::CK_BitCast;
3159  return false;
3160}
3161
3162bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
3163                              CastExpr::CastKind &Kind) {
3164  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
3165
3166  QualType SrcTy = CastExpr->getType();
3167
3168  // If SrcTy is a VectorType, the total size must match to explicitly cast to
3169  // an ExtVectorType.
3170  if (SrcTy->isVectorType()) {
3171    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
3172      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
3173        << DestTy << SrcTy << R;
3174    Kind = CastExpr::CK_BitCast;
3175    return false;
3176  }
3177
3178  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
3179  // conversion will take place first from scalar to elt type, and then
3180  // splat from elt type to vector.
3181  if (SrcTy->isPointerType())
3182    return Diag(R.getBegin(),
3183                diag::err_invalid_conversion_between_vector_and_scalar)
3184      << DestTy << SrcTy << R;
3185
3186  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
3187  ImpCastExprToType(CastExpr, DestElemTy,
3188                    getScalarCastKind(Context, SrcTy, DestElemTy));
3189
3190  Kind = CastExpr::CK_VectorSplat;
3191  return false;
3192}
3193
3194Action::OwningExprResult
3195Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
3196                    SourceLocation RParenLoc, ExprArg Op) {
3197  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
3198
3199  assert((Ty != 0) && (Op.get() != 0) &&
3200         "ActOnCastExpr(): missing type or expr");
3201
3202  Expr *castExpr = (Expr *)Op.get();
3203  //FIXME: Preserve type source info.
3204  QualType castType = GetTypeFromParser(Ty);
3205
3206  // If the Expr being casted is a ParenListExpr, handle it specially.
3207  if (isa<ParenListExpr>(castExpr))
3208    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),castType);
3209  CXXMethodDecl *Method = 0;
3210  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr,
3211                     Kind, Method))
3212    return ExprError();
3213
3214  if (Method) {
3215    OwningExprResult CastArg = BuildCXXCastArgument(LParenLoc, castType, Kind,
3216                                                    Method, move(Op));
3217
3218    if (CastArg.isInvalid())
3219      return ExprError();
3220
3221    castExpr = CastArg.takeAs<Expr>();
3222  } else {
3223    Op.release();
3224  }
3225
3226  return Owned(new (Context) CStyleCastExpr(castType.getNonReferenceType(),
3227                                            Kind, castExpr, castType,
3228                                            LParenLoc, RParenLoc));
3229}
3230
3231/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
3232/// of comma binary operators.
3233Action::OwningExprResult
3234Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
3235  Expr *expr = EA.takeAs<Expr>();
3236  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
3237  if (!E)
3238    return Owned(expr);
3239
3240  OwningExprResult Result(*this, E->getExpr(0));
3241
3242  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
3243    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
3244                        Owned(E->getExpr(i)));
3245
3246  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
3247}
3248
3249Action::OwningExprResult
3250Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
3251                               SourceLocation RParenLoc, ExprArg Op,
3252                               QualType Ty) {
3253  ParenListExpr *PE = (ParenListExpr *)Op.get();
3254
3255  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
3256  // then handle it as such.
3257  if (getLangOptions().AltiVec && Ty->isVectorType()) {
3258    if (PE->getNumExprs() == 0) {
3259      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
3260      return ExprError();
3261    }
3262
3263    llvm::SmallVector<Expr *, 8> initExprs;
3264    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
3265      initExprs.push_back(PE->getExpr(i));
3266
3267    // FIXME: This means that pretty-printing the final AST will produce curly
3268    // braces instead of the original commas.
3269    Op.release();
3270    InitListExpr *E = new (Context) InitListExpr(LParenLoc, &initExprs[0],
3271                                                 initExprs.size(), RParenLoc);
3272    E->setType(Ty);
3273    return ActOnCompoundLiteral(LParenLoc, Ty.getAsOpaquePtr(), RParenLoc,
3274                                Owned(E));
3275  } else {
3276    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
3277    // sequence of BinOp comma operators.
3278    Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
3279    return ActOnCastExpr(S, LParenLoc, Ty.getAsOpaquePtr(), RParenLoc,move(Op));
3280  }
3281}
3282
3283Action::OwningExprResult Sema::ActOnParenListExpr(SourceLocation L,
3284                                                  SourceLocation R,
3285                                                  MultiExprArg Val) {
3286  unsigned nexprs = Val.size();
3287  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
3288  assert((exprs != 0) && "ActOnParenListExpr() missing expr list");
3289  Expr *expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
3290  return Owned(expr);
3291}
3292
3293/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
3294/// In that case, lhs = cond.
3295/// C99 6.5.15
3296QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
3297                                        SourceLocation QuestionLoc) {
3298  // C++ is sufficiently different to merit its own checker.
3299  if (getLangOptions().CPlusPlus)
3300    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
3301
3302  CheckSignCompare(LHS, RHS, QuestionLoc, diag::warn_mixed_sign_conditional);
3303
3304  UsualUnaryConversions(Cond);
3305  UsualUnaryConversions(LHS);
3306  UsualUnaryConversions(RHS);
3307  QualType CondTy = Cond->getType();
3308  QualType LHSTy = LHS->getType();
3309  QualType RHSTy = RHS->getType();
3310
3311  // first, check the condition.
3312  if (!CondTy->isScalarType()) { // C99 6.5.15p2
3313    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
3314      << CondTy;
3315    return QualType();
3316  }
3317
3318  // Now check the two expressions.
3319  if (LHSTy->isVectorType() || RHSTy->isVectorType())
3320    return CheckVectorOperands(QuestionLoc, LHS, RHS);
3321
3322  // If both operands have arithmetic type, do the usual arithmetic conversions
3323  // to find a common type: C99 6.5.15p3,5.
3324  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
3325    UsualArithmeticConversions(LHS, RHS);
3326    return LHS->getType();
3327  }
3328
3329  // If both operands are the same structure or union type, the result is that
3330  // type.
3331  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
3332    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
3333      if (LHSRT->getDecl() == RHSRT->getDecl())
3334        // "If both the operands have structure or union type, the result has
3335        // that type."  This implies that CV qualifiers are dropped.
3336        return LHSTy.getUnqualifiedType();
3337    // FIXME: Type of conditional expression must be complete in C mode.
3338  }
3339
3340  // C99 6.5.15p5: "If both operands have void type, the result has void type."
3341  // The following || allows only one side to be void (a GCC-ism).
3342  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
3343    if (!LHSTy->isVoidType())
3344      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3345        << RHS->getSourceRange();
3346    if (!RHSTy->isVoidType())
3347      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3348        << LHS->getSourceRange();
3349    ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
3350    ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
3351    return Context.VoidTy;
3352  }
3353  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
3354  // the type of the other operand."
3355  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
3356      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3357    // promote the null to a pointer.
3358    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
3359    return LHSTy;
3360  }
3361  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
3362      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3363    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
3364    return RHSTy;
3365  }
3366  // Handle things like Class and struct objc_class*.  Here we case the result
3367  // to the pseudo-builtin, because that will be implicitly cast back to the
3368  // redefinition type if an attempt is made to access its fields.
3369  if (LHSTy->isObjCClassType() &&
3370      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
3371    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3372    return LHSTy;
3373  }
3374  if (RHSTy->isObjCClassType() &&
3375      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
3376    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
3377    return RHSTy;
3378  }
3379  // And the same for struct objc_object* / id
3380  if (LHSTy->isObjCIdType() &&
3381      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
3382    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3383    return LHSTy;
3384  }
3385  if (RHSTy->isObjCIdType() &&
3386      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
3387    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
3388    return RHSTy;
3389  }
3390  // Handle block pointer types.
3391  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
3392    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
3393      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
3394        QualType destType = Context.getPointerType(Context.VoidTy);
3395        ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
3396        ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3397        return destType;
3398      }
3399      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3400            << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3401      return QualType();
3402    }
3403    // We have 2 block pointer types.
3404    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3405      // Two identical block pointer types are always compatible.
3406      return LHSTy;
3407    }
3408    // The block pointer types aren't identical, continue checking.
3409    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
3410    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
3411
3412    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3413                                    rhptee.getUnqualifiedType())) {
3414      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3415        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3416      // In this situation, we assume void* type. No especially good
3417      // reason, but this is what gcc does, and we do have to pick
3418      // to get a consistent AST.
3419      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3420      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
3421      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
3422      return incompatTy;
3423    }
3424    // The block pointer types are compatible.
3425    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
3426    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3427    return LHSTy;
3428  }
3429  // Check constraints for Objective-C object pointers types.
3430  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
3431
3432    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3433      // Two identical object pointer types are always compatible.
3434      return LHSTy;
3435    }
3436    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
3437    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
3438    QualType compositeType = LHSTy;
3439
3440    // If both operands are interfaces and either operand can be
3441    // assigned to the other, use that type as the composite
3442    // type. This allows
3443    //   xxx ? (A*) a : (B*) b
3444    // where B is a subclass of A.
3445    //
3446    // Additionally, as for assignment, if either type is 'id'
3447    // allow silent coercion. Finally, if the types are
3448    // incompatible then make sure to use 'id' as the composite
3449    // type so the result is acceptable for sending messages to.
3450
3451    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
3452    // It could return the composite type.
3453    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
3454      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
3455    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
3456      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
3457    } else if ((LHSTy->isObjCQualifiedIdType() ||
3458                RHSTy->isObjCQualifiedIdType()) &&
3459                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
3460      // Need to handle "id<xx>" explicitly.
3461      // GCC allows qualified id and any Objective-C type to devolve to
3462      // id. Currently localizing to here until clear this should be
3463      // part of ObjCQualifiedIdTypesAreCompatible.
3464      compositeType = Context.getObjCIdType();
3465    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
3466      compositeType = Context.getObjCIdType();
3467    } else if (!(compositeType =
3468                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
3469      ;
3470    else {
3471      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
3472        << LHSTy << RHSTy
3473        << LHS->getSourceRange() << RHS->getSourceRange();
3474      QualType incompatTy = Context.getObjCIdType();
3475      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
3476      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
3477      return incompatTy;
3478    }
3479    // The object pointer types are compatible.
3480    ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
3481    ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
3482    return compositeType;
3483  }
3484  // Check Objective-C object pointer types and 'void *'
3485  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
3486    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
3487    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
3488    QualType destPointee
3489      = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
3490    QualType destType = Context.getPointerType(destPointee);
3491    // Add qualifiers if necessary.
3492    ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
3493    // Promote to void*.
3494    ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3495    return destType;
3496  }
3497  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
3498    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
3499    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
3500    QualType destPointee
3501      = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
3502    QualType destType = Context.getPointerType(destPointee);
3503    // Add qualifiers if necessary.
3504    ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
3505    // Promote to void*.
3506    ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
3507    return destType;
3508  }
3509  // Check constraints for C object pointers types (C99 6.5.15p3,6).
3510  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
3511    // get the "pointed to" types
3512    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
3513    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
3514
3515    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
3516    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
3517      // Figure out necessary qualifiers (C99 6.5.15p6)
3518      QualType destPointee
3519        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
3520      QualType destType = Context.getPointerType(destPointee);
3521      // Add qualifiers if necessary.
3522      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
3523      // Promote to void*.
3524      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3525      return destType;
3526    }
3527    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
3528      QualType destPointee
3529        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
3530      QualType destType = Context.getPointerType(destPointee);
3531      // Add qualifiers if necessary.
3532      ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
3533      // Promote to void*.
3534      ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
3535      return destType;
3536    }
3537
3538    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3539      // Two identical pointer types are always compatible.
3540      return LHSTy;
3541    }
3542    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3543                                    rhptee.getUnqualifiedType())) {
3544      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3545        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3546      // In this situation, we assume void* type. No especially good
3547      // reason, but this is what gcc does, and we do have to pick
3548      // to get a consistent AST.
3549      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3550      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
3551      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
3552      return incompatTy;
3553    }
3554    // The pointer types are compatible.
3555    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
3556    // differently qualified versions of compatible types, the result type is
3557    // a pointer to an appropriately qualified version of the *composite*
3558    // type.
3559    // FIXME: Need to calculate the composite type.
3560    // FIXME: Need to add qualifiers
3561    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
3562    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3563    return LHSTy;
3564  }
3565
3566  // GCC compatibility: soften pointer/integer mismatch.
3567  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
3568    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3569      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3570    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
3571    return RHSTy;
3572  }
3573  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
3574    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3575      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3576    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
3577    return LHSTy;
3578  }
3579
3580  // Otherwise, the operands are not compatible.
3581  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3582    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3583  return QualType();
3584}
3585
3586/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
3587/// in the case of a the GNU conditional expr extension.
3588Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
3589                                                  SourceLocation ColonLoc,
3590                                                  ExprArg Cond, ExprArg LHS,
3591                                                  ExprArg RHS) {
3592  Expr *CondExpr = (Expr *) Cond.get();
3593  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
3594
3595  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
3596  // was the condition.
3597  bool isLHSNull = LHSExpr == 0;
3598  if (isLHSNull)
3599    LHSExpr = CondExpr;
3600
3601  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
3602                                             RHSExpr, QuestionLoc);
3603  if (result.isNull())
3604    return ExprError();
3605
3606  Cond.release();
3607  LHS.release();
3608  RHS.release();
3609  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
3610                                                 isLHSNull ? 0 : LHSExpr,
3611                                                 ColonLoc, RHSExpr, result));
3612}
3613
3614// CheckPointerTypesForAssignment - This is a very tricky routine (despite
3615// being closely modeled after the C99 spec:-). The odd characteristic of this
3616// routine is it effectively iqnores the qualifiers on the top level pointee.
3617// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
3618// FIXME: add a couple examples in this comment.
3619Sema::AssignConvertType
3620Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
3621  QualType lhptee, rhptee;
3622
3623  if ((lhsType->isObjCClassType() &&
3624       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
3625     (rhsType->isObjCClassType() &&
3626       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
3627      return Compatible;
3628  }
3629
3630  // get the "pointed to" type (ignoring qualifiers at the top level)
3631  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
3632  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
3633
3634  // make sure we operate on the canonical type
3635  lhptee = Context.getCanonicalType(lhptee);
3636  rhptee = Context.getCanonicalType(rhptee);
3637
3638  AssignConvertType ConvTy = Compatible;
3639
3640  // C99 6.5.16.1p1: This following citation is common to constraints
3641  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
3642  // qualifiers of the type *pointed to* by the right;
3643  // FIXME: Handle ExtQualType
3644  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
3645    ConvTy = CompatiblePointerDiscardsQualifiers;
3646
3647  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
3648  // incomplete type and the other is a pointer to a qualified or unqualified
3649  // version of void...
3650  if (lhptee->isVoidType()) {
3651    if (rhptee->isIncompleteOrObjectType())
3652      return ConvTy;
3653
3654    // As an extension, we allow cast to/from void* to function pointer.
3655    assert(rhptee->isFunctionType());
3656    return FunctionVoidPointer;
3657  }
3658
3659  if (rhptee->isVoidType()) {
3660    if (lhptee->isIncompleteOrObjectType())
3661      return ConvTy;
3662
3663    // As an extension, we allow cast to/from void* to function pointer.
3664    assert(lhptee->isFunctionType());
3665    return FunctionVoidPointer;
3666  }
3667  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
3668  // unqualified versions of compatible types, ...
3669  lhptee = lhptee.getUnqualifiedType();
3670  rhptee = rhptee.getUnqualifiedType();
3671  if (!Context.typesAreCompatible(lhptee, rhptee)) {
3672    // Check if the pointee types are compatible ignoring the sign.
3673    // We explicitly check for char so that we catch "char" vs
3674    // "unsigned char" on systems where "char" is unsigned.
3675    if (lhptee->isCharType())
3676      lhptee = Context.UnsignedCharTy;
3677    else if (lhptee->isSignedIntegerType())
3678      lhptee = Context.getCorrespondingUnsignedType(lhptee);
3679
3680    if (rhptee->isCharType())
3681      rhptee = Context.UnsignedCharTy;
3682    else if (rhptee->isSignedIntegerType())
3683      rhptee = Context.getCorrespondingUnsignedType(rhptee);
3684
3685    if (lhptee == rhptee) {
3686      // Types are compatible ignoring the sign. Qualifier incompatibility
3687      // takes priority over sign incompatibility because the sign
3688      // warning can be disabled.
3689      if (ConvTy != Compatible)
3690        return ConvTy;
3691      return IncompatiblePointerSign;
3692    }
3693
3694    // If we are a multi-level pointer, it's possible that our issue is simply
3695    // one of qualification - e.g. char ** -> const char ** is not allowed. If
3696    // the eventual target type is the same and the pointers have the same
3697    // level of indirection, this must be the issue.
3698    if (lhptee->isPointerType() && rhptee->isPointerType()) {
3699      do {
3700        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
3701        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
3702
3703        lhptee = Context.getCanonicalType(lhptee);
3704        rhptee = Context.getCanonicalType(rhptee);
3705      } while (lhptee->isPointerType() && rhptee->isPointerType());
3706
3707      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
3708        return IncompatibleNestedPointerQualifiers;
3709    }
3710
3711    // General pointer incompatibility takes priority over qualifiers.
3712    return IncompatiblePointer;
3713  }
3714  return ConvTy;
3715}
3716
3717/// CheckBlockPointerTypesForAssignment - This routine determines whether two
3718/// block pointer types are compatible or whether a block and normal pointer
3719/// are compatible. It is more restrict than comparing two function pointer
3720// types.
3721Sema::AssignConvertType
3722Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
3723                                          QualType rhsType) {
3724  QualType lhptee, rhptee;
3725
3726  // get the "pointed to" type (ignoring qualifiers at the top level)
3727  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
3728  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
3729
3730  // make sure we operate on the canonical type
3731  lhptee = Context.getCanonicalType(lhptee);
3732  rhptee = Context.getCanonicalType(rhptee);
3733
3734  AssignConvertType ConvTy = Compatible;
3735
3736  // For blocks we enforce that qualifiers are identical.
3737  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
3738    ConvTy = CompatiblePointerDiscardsQualifiers;
3739
3740  if (!Context.typesAreCompatible(lhptee, rhptee))
3741    return IncompatibleBlockPointer;
3742  return ConvTy;
3743}
3744
3745/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
3746/// has code to accommodate several GCC extensions when type checking
3747/// pointers. Here are some objectionable examples that GCC considers warnings:
3748///
3749///  int a, *pint;
3750///  short *pshort;
3751///  struct foo *pfoo;
3752///
3753///  pint = pshort; // warning: assignment from incompatible pointer type
3754///  a = pint; // warning: assignment makes integer from pointer without a cast
3755///  pint = a; // warning: assignment makes pointer from integer without a cast
3756///  pint = pfoo; // warning: assignment from incompatible pointer type
3757///
3758/// As a result, the code for dealing with pointers is more complex than the
3759/// C99 spec dictates.
3760///
3761Sema::AssignConvertType
3762Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
3763  // Get canonical types.  We're not formatting these types, just comparing
3764  // them.
3765  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
3766  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
3767
3768  if (lhsType == rhsType)
3769    return Compatible; // Common case: fast path an exact match.
3770
3771  if ((lhsType->isObjCClassType() &&
3772       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
3773     (rhsType->isObjCClassType() &&
3774       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
3775      return Compatible;
3776  }
3777
3778  // If the left-hand side is a reference type, then we are in a
3779  // (rare!) case where we've allowed the use of references in C,
3780  // e.g., as a parameter type in a built-in function. In this case,
3781  // just make sure that the type referenced is compatible with the
3782  // right-hand side type. The caller is responsible for adjusting
3783  // lhsType so that the resulting expression does not have reference
3784  // type.
3785  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
3786    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
3787      return Compatible;
3788    return Incompatible;
3789  }
3790  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
3791  // to the same ExtVector type.
3792  if (lhsType->isExtVectorType()) {
3793    if (rhsType->isExtVectorType())
3794      return lhsType == rhsType ? Compatible : Incompatible;
3795    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
3796      return Compatible;
3797  }
3798
3799  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3800    // If we are allowing lax vector conversions, and LHS and RHS are both
3801    // vectors, the total size only needs to be the same. This is a bitcast;
3802    // no bits are changed but the result type is different.
3803    if (getLangOptions().LaxVectorConversions &&
3804        lhsType->isVectorType() && rhsType->isVectorType()) {
3805      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3806        return IncompatibleVectors;
3807    }
3808    return Incompatible;
3809  }
3810
3811  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3812    return Compatible;
3813
3814  if (isa<PointerType>(lhsType)) {
3815    if (rhsType->isIntegerType())
3816      return IntToPointer;
3817
3818    if (isa<PointerType>(rhsType))
3819      return CheckPointerTypesForAssignment(lhsType, rhsType);
3820
3821    // In general, C pointers are not compatible with ObjC object pointers.
3822    if (isa<ObjCObjectPointerType>(rhsType)) {
3823      if (lhsType->isVoidPointerType()) // an exception to the rule.
3824        return Compatible;
3825      return IncompatiblePointer;
3826    }
3827    if (rhsType->getAs<BlockPointerType>()) {
3828      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3829        return Compatible;
3830
3831      // Treat block pointers as objects.
3832      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
3833        return Compatible;
3834    }
3835    return Incompatible;
3836  }
3837
3838  if (isa<BlockPointerType>(lhsType)) {
3839    if (rhsType->isIntegerType())
3840      return IntToBlockPointer;
3841
3842    // Treat block pointers as objects.
3843    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
3844      return Compatible;
3845
3846    if (rhsType->isBlockPointerType())
3847      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3848
3849    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
3850      if (RHSPT->getPointeeType()->isVoidType())
3851        return Compatible;
3852    }
3853    return Incompatible;
3854  }
3855
3856  if (isa<ObjCObjectPointerType>(lhsType)) {
3857    if (rhsType->isIntegerType())
3858      return IntToPointer;
3859
3860    // In general, C pointers are not compatible with ObjC object pointers.
3861    if (isa<PointerType>(rhsType)) {
3862      if (rhsType->isVoidPointerType()) // an exception to the rule.
3863        return Compatible;
3864      return IncompatiblePointer;
3865    }
3866    if (rhsType->isObjCObjectPointerType()) {
3867      if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType())
3868        return Compatible;
3869      if (Context.typesAreCompatible(lhsType, rhsType))
3870        return Compatible;
3871      if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
3872        return IncompatibleObjCQualifiedId;
3873      return IncompatiblePointer;
3874    }
3875    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
3876      if (RHSPT->getPointeeType()->isVoidType())
3877        return Compatible;
3878    }
3879    // Treat block pointers as objects.
3880    if (rhsType->isBlockPointerType())
3881      return Compatible;
3882    return Incompatible;
3883  }
3884  if (isa<PointerType>(rhsType)) {
3885    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3886    if (lhsType == Context.BoolTy)
3887      return Compatible;
3888
3889    if (lhsType->isIntegerType())
3890      return PointerToInt;
3891
3892    if (isa<PointerType>(lhsType))
3893      return CheckPointerTypesForAssignment(lhsType, rhsType);
3894
3895    if (isa<BlockPointerType>(lhsType) &&
3896        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3897      return Compatible;
3898    return Incompatible;
3899  }
3900  if (isa<ObjCObjectPointerType>(rhsType)) {
3901    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3902    if (lhsType == Context.BoolTy)
3903      return Compatible;
3904
3905    if (lhsType->isIntegerType())
3906      return PointerToInt;
3907
3908    // In general, C pointers are not compatible with ObjC object pointers.
3909    if (isa<PointerType>(lhsType)) {
3910      if (lhsType->isVoidPointerType()) // an exception to the rule.
3911        return Compatible;
3912      return IncompatiblePointer;
3913    }
3914    if (isa<BlockPointerType>(lhsType) &&
3915        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3916      return Compatible;
3917    return Incompatible;
3918  }
3919
3920  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3921    if (Context.typesAreCompatible(lhsType, rhsType))
3922      return Compatible;
3923  }
3924  return Incompatible;
3925}
3926
3927/// \brief Constructs a transparent union from an expression that is
3928/// used to initialize the transparent union.
3929static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
3930                                      QualType UnionType, FieldDecl *Field) {
3931  // Build an initializer list that designates the appropriate member
3932  // of the transparent union.
3933  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
3934                                                   &E, 1,
3935                                                   SourceLocation());
3936  Initializer->setType(UnionType);
3937  Initializer->setInitializedFieldInUnion(Field);
3938
3939  // Build a compound literal constructing a value of the transparent
3940  // union type from this initializer list.
3941  E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
3942                                  false);
3943}
3944
3945Sema::AssignConvertType
3946Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
3947  QualType FromType = rExpr->getType();
3948
3949  // If the ArgType is a Union type, we want to handle a potential
3950  // transparent_union GCC extension.
3951  const RecordType *UT = ArgType->getAsUnionType();
3952  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
3953    return Incompatible;
3954
3955  // The field to initialize within the transparent union.
3956  RecordDecl *UD = UT->getDecl();
3957  FieldDecl *InitField = 0;
3958  // It's compatible if the expression matches any of the fields.
3959  for (RecordDecl::field_iterator it = UD->field_begin(),
3960         itend = UD->field_end();
3961       it != itend; ++it) {
3962    if (it->getType()->isPointerType()) {
3963      // If the transparent union contains a pointer type, we allow:
3964      // 1) void pointer
3965      // 2) null pointer constant
3966      if (FromType->isPointerType())
3967        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
3968          ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
3969          InitField = *it;
3970          break;
3971        }
3972
3973      if (rExpr->isNullPointerConstant(Context,
3974                                       Expr::NPC_ValueDependentIsNull)) {
3975        ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
3976        InitField = *it;
3977        break;
3978      }
3979    }
3980
3981    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
3982          == Compatible) {
3983      InitField = *it;
3984      break;
3985    }
3986  }
3987
3988  if (!InitField)
3989    return Incompatible;
3990
3991  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
3992  return Compatible;
3993}
3994
3995Sema::AssignConvertType
3996Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
3997  if (getLangOptions().CPlusPlus) {
3998    if (!lhsType->isRecordType()) {
3999      // C++ 5.17p3: If the left operand is not of class type, the
4000      // expression is implicitly converted (C++ 4) to the
4001      // cv-unqualified type of the left operand.
4002      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
4003                                    "assigning"))
4004        return Incompatible;
4005      return Compatible;
4006    }
4007
4008    // FIXME: Currently, we fall through and treat C++ classes like C
4009    // structures.
4010  }
4011
4012  // C99 6.5.16.1p1: the left operand is a pointer and the right is
4013  // a null pointer constant.
4014  if ((lhsType->isPointerType() ||
4015       lhsType->isObjCObjectPointerType() ||
4016       lhsType->isBlockPointerType())
4017      && rExpr->isNullPointerConstant(Context,
4018                                      Expr::NPC_ValueDependentIsNull)) {
4019    ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
4020    return Compatible;
4021  }
4022
4023  // This check seems unnatural, however it is necessary to ensure the proper
4024  // conversion of functions/arrays. If the conversion were done for all
4025  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
4026  // expressions that surpress this implicit conversion (&, sizeof).
4027  //
4028  // Suppress this for references: C++ 8.5.3p5.
4029  if (!lhsType->isReferenceType())
4030    DefaultFunctionArrayConversion(rExpr);
4031
4032  Sema::AssignConvertType result =
4033    CheckAssignmentConstraints(lhsType, rExpr->getType());
4034
4035  // C99 6.5.16.1p2: The value of the right operand is converted to the
4036  // type of the assignment expression.
4037  // CheckAssignmentConstraints allows the left-hand side to be a reference,
4038  // so that we can use references in built-in functions even in C.
4039  // The getNonReferenceType() call makes sure that the resulting expression
4040  // does not have reference type.
4041  if (result != Incompatible && rExpr->getType() != lhsType)
4042    ImpCastExprToType(rExpr, lhsType.getNonReferenceType(),
4043                      CastExpr::CK_Unknown);
4044  return result;
4045}
4046
4047QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4048  Diag(Loc, diag::err_typecheck_invalid_operands)
4049    << lex->getType() << rex->getType()
4050    << lex->getSourceRange() << rex->getSourceRange();
4051  return QualType();
4052}
4053
4054inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
4055                                                              Expr *&rex) {
4056  // For conversion purposes, we ignore any qualifiers.
4057  // For example, "const float" and "float" are equivalent.
4058  QualType lhsType =
4059    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
4060  QualType rhsType =
4061    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
4062
4063  // If the vector types are identical, return.
4064  if (lhsType == rhsType)
4065    return lhsType;
4066
4067  // Handle the case of a vector & extvector type of the same size and element
4068  // type.  It would be nice if we only had one vector type someday.
4069  if (getLangOptions().LaxVectorConversions) {
4070    // FIXME: Should we warn here?
4071    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
4072      if (const VectorType *RV = rhsType->getAs<VectorType>())
4073        if (LV->getElementType() == RV->getElementType() &&
4074            LV->getNumElements() == RV->getNumElements()) {
4075          return lhsType->isExtVectorType() ? lhsType : rhsType;
4076        }
4077    }
4078  }
4079
4080  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
4081  // swap back (so that we don't reverse the inputs to a subtract, for instance.
4082  bool swapped = false;
4083  if (rhsType->isExtVectorType()) {
4084    swapped = true;
4085    std::swap(rex, lex);
4086    std::swap(rhsType, lhsType);
4087  }
4088
4089  // Handle the case of an ext vector and scalar.
4090  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
4091    QualType EltTy = LV->getElementType();
4092    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
4093      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
4094        ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
4095        if (swapped) std::swap(rex, lex);
4096        return lhsType;
4097      }
4098    }
4099    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
4100        rhsType->isRealFloatingType()) {
4101      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
4102        ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
4103        if (swapped) std::swap(rex, lex);
4104        return lhsType;
4105      }
4106    }
4107  }
4108
4109  // Vectors of different size or scalar and non-ext-vector are errors.
4110  Diag(Loc, diag::err_typecheck_vector_not_convertable)
4111    << lex->getType() << rex->getType()
4112    << lex->getSourceRange() << rex->getSourceRange();
4113  return QualType();
4114}
4115
4116inline QualType Sema::CheckMultiplyDivideOperands(
4117  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4118  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4119    return CheckVectorOperands(Loc, lex, rex);
4120
4121  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4122
4123  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
4124    return compType;
4125  return InvalidOperands(Loc, lex, rex);
4126}
4127
4128inline QualType Sema::CheckRemainderOperands(
4129  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4130  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4131    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4132      return CheckVectorOperands(Loc, lex, rex);
4133    return InvalidOperands(Loc, lex, rex);
4134  }
4135
4136  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4137
4138  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4139    return compType;
4140  return InvalidOperands(Loc, lex, rex);
4141}
4142
4143inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
4144  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
4145  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4146    QualType compType = CheckVectorOperands(Loc, lex, rex);
4147    if (CompLHSTy) *CompLHSTy = compType;
4148    return compType;
4149  }
4150
4151  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
4152
4153  // handle the common case first (both operands are arithmetic).
4154  if (lex->getType()->isArithmeticType() &&
4155      rex->getType()->isArithmeticType()) {
4156    if (CompLHSTy) *CompLHSTy = compType;
4157    return compType;
4158  }
4159
4160  // Put any potential pointer into PExp
4161  Expr* PExp = lex, *IExp = rex;
4162  if (IExp->getType()->isAnyPointerType())
4163    std::swap(PExp, IExp);
4164
4165  if (PExp->getType()->isAnyPointerType()) {
4166
4167    if (IExp->getType()->isIntegerType()) {
4168      QualType PointeeTy = PExp->getType()->getPointeeType();
4169
4170      // Check for arithmetic on pointers to incomplete types.
4171      if (PointeeTy->isVoidType()) {
4172        if (getLangOptions().CPlusPlus) {
4173          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4174            << lex->getSourceRange() << rex->getSourceRange();
4175          return QualType();
4176        }
4177
4178        // GNU extension: arithmetic on pointer to void
4179        Diag(Loc, diag::ext_gnu_void_ptr)
4180          << lex->getSourceRange() << rex->getSourceRange();
4181      } else if (PointeeTy->isFunctionType()) {
4182        if (getLangOptions().CPlusPlus) {
4183          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4184            << lex->getType() << lex->getSourceRange();
4185          return QualType();
4186        }
4187
4188        // GNU extension: arithmetic on pointer to function
4189        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4190          << lex->getType() << lex->getSourceRange();
4191      } else {
4192        // Check if we require a complete type.
4193        if (((PExp->getType()->isPointerType() &&
4194              !PExp->getType()->isDependentType()) ||
4195              PExp->getType()->isObjCObjectPointerType()) &&
4196             RequireCompleteType(Loc, PointeeTy,
4197                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
4198                             << PExp->getSourceRange()
4199                             << PExp->getType()))
4200          return QualType();
4201      }
4202      // Diagnose bad cases where we step over interface counts.
4203      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4204        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
4205          << PointeeTy << PExp->getSourceRange();
4206        return QualType();
4207      }
4208
4209      if (CompLHSTy) {
4210        QualType LHSTy = Context.isPromotableBitField(lex);
4211        if (LHSTy.isNull()) {
4212          LHSTy = lex->getType();
4213          if (LHSTy->isPromotableIntegerType())
4214            LHSTy = Context.getPromotedIntegerType(LHSTy);
4215        }
4216        *CompLHSTy = LHSTy;
4217      }
4218      return PExp->getType();
4219    }
4220  }
4221
4222  return InvalidOperands(Loc, lex, rex);
4223}
4224
4225// C99 6.5.6
4226QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
4227                                        SourceLocation Loc, QualType* CompLHSTy) {
4228  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4229    QualType compType = CheckVectorOperands(Loc, lex, rex);
4230    if (CompLHSTy) *CompLHSTy = compType;
4231    return compType;
4232  }
4233
4234  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
4235
4236  // Enforce type constraints: C99 6.5.6p3.
4237
4238  // Handle the common case first (both operands are arithmetic).
4239  if (lex->getType()->isArithmeticType()
4240      && rex->getType()->isArithmeticType()) {
4241    if (CompLHSTy) *CompLHSTy = compType;
4242    return compType;
4243  }
4244
4245  // Either ptr - int   or   ptr - ptr.
4246  if (lex->getType()->isAnyPointerType()) {
4247    QualType lpointee = lex->getType()->getPointeeType();
4248
4249    // The LHS must be an completely-defined object type.
4250
4251    bool ComplainAboutVoid = false;
4252    Expr *ComplainAboutFunc = 0;
4253    if (lpointee->isVoidType()) {
4254      if (getLangOptions().CPlusPlus) {
4255        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4256          << lex->getSourceRange() << rex->getSourceRange();
4257        return QualType();
4258      }
4259
4260      // GNU C extension: arithmetic on pointer to void
4261      ComplainAboutVoid = true;
4262    } else if (lpointee->isFunctionType()) {
4263      if (getLangOptions().CPlusPlus) {
4264        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4265          << lex->getType() << lex->getSourceRange();
4266        return QualType();
4267      }
4268
4269      // GNU C extension: arithmetic on pointer to function
4270      ComplainAboutFunc = lex;
4271    } else if (!lpointee->isDependentType() &&
4272               RequireCompleteType(Loc, lpointee,
4273                                   PDiag(diag::err_typecheck_sub_ptr_object)
4274                                     << lex->getSourceRange()
4275                                     << lex->getType()))
4276      return QualType();
4277
4278    // Diagnose bad cases where we step over interface counts.
4279    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4280      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
4281        << lpointee << lex->getSourceRange();
4282      return QualType();
4283    }
4284
4285    // The result type of a pointer-int computation is the pointer type.
4286    if (rex->getType()->isIntegerType()) {
4287      if (ComplainAboutVoid)
4288        Diag(Loc, diag::ext_gnu_void_ptr)
4289          << lex->getSourceRange() << rex->getSourceRange();
4290      if (ComplainAboutFunc)
4291        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4292          << ComplainAboutFunc->getType()
4293          << ComplainAboutFunc->getSourceRange();
4294
4295      if (CompLHSTy) *CompLHSTy = lex->getType();
4296      return lex->getType();
4297    }
4298
4299    // Handle pointer-pointer subtractions.
4300    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
4301      QualType rpointee = RHSPTy->getPointeeType();
4302
4303      // RHS must be a completely-type object type.
4304      // Handle the GNU void* extension.
4305      if (rpointee->isVoidType()) {
4306        if (getLangOptions().CPlusPlus) {
4307          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4308            << lex->getSourceRange() << rex->getSourceRange();
4309          return QualType();
4310        }
4311
4312        ComplainAboutVoid = true;
4313      } else if (rpointee->isFunctionType()) {
4314        if (getLangOptions().CPlusPlus) {
4315          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4316            << rex->getType() << rex->getSourceRange();
4317          return QualType();
4318        }
4319
4320        // GNU extension: arithmetic on pointer to function
4321        if (!ComplainAboutFunc)
4322          ComplainAboutFunc = rex;
4323      } else if (!rpointee->isDependentType() &&
4324                 RequireCompleteType(Loc, rpointee,
4325                                     PDiag(diag::err_typecheck_sub_ptr_object)
4326                                       << rex->getSourceRange()
4327                                       << rex->getType()))
4328        return QualType();
4329
4330      if (getLangOptions().CPlusPlus) {
4331        // Pointee types must be the same: C++ [expr.add]
4332        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
4333          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4334            << lex->getType() << rex->getType()
4335            << lex->getSourceRange() << rex->getSourceRange();
4336          return QualType();
4337        }
4338      } else {
4339        // Pointee types must be compatible C99 6.5.6p3
4340        if (!Context.typesAreCompatible(
4341                Context.getCanonicalType(lpointee).getUnqualifiedType(),
4342                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
4343          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4344            << lex->getType() << rex->getType()
4345            << lex->getSourceRange() << rex->getSourceRange();
4346          return QualType();
4347        }
4348      }
4349
4350      if (ComplainAboutVoid)
4351        Diag(Loc, diag::ext_gnu_void_ptr)
4352          << lex->getSourceRange() << rex->getSourceRange();
4353      if (ComplainAboutFunc)
4354        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4355          << ComplainAboutFunc->getType()
4356          << ComplainAboutFunc->getSourceRange();
4357
4358      if (CompLHSTy) *CompLHSTy = lex->getType();
4359      return Context.getPointerDiffType();
4360    }
4361  }
4362
4363  return InvalidOperands(Loc, lex, rex);
4364}
4365
4366// C99 6.5.7
4367QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4368                                  bool isCompAssign) {
4369  // C99 6.5.7p2: Each of the operands shall have integer type.
4370  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
4371    return InvalidOperands(Loc, lex, rex);
4372
4373  // Vector shifts promote their scalar inputs to vector type.
4374  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4375    return CheckVectorOperands(Loc, lex, rex);
4376
4377  // Shifts don't perform usual arithmetic conversions, they just do integer
4378  // promotions on each operand. C99 6.5.7p3
4379  QualType LHSTy = Context.isPromotableBitField(lex);
4380  if (LHSTy.isNull()) {
4381    LHSTy = lex->getType();
4382    if (LHSTy->isPromotableIntegerType())
4383      LHSTy = Context.getPromotedIntegerType(LHSTy);
4384  }
4385  if (!isCompAssign)
4386    ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
4387
4388  UsualUnaryConversions(rex);
4389
4390  // Sanity-check shift operands
4391  llvm::APSInt Right;
4392  // Check right/shifter operand
4393  if (!rex->isValueDependent() &&
4394      rex->isIntegerConstantExpr(Right, Context)) {
4395    if (Right.isNegative())
4396      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
4397    else {
4398      llvm::APInt LeftBits(Right.getBitWidth(),
4399                          Context.getTypeSize(lex->getType()));
4400      if (Right.uge(LeftBits))
4401        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
4402    }
4403  }
4404
4405  // "The type of the result is that of the promoted left operand."
4406  return LHSTy;
4407}
4408
4409/// \brief Implements -Wsign-compare.
4410///
4411/// \param lex the left-hand expression
4412/// \param rex the right-hand expression
4413/// \param OpLoc the location of the joining operator
4414/// \param Equality whether this is an "equality-like" join, which
4415///   suppresses the warning in some cases
4416void Sema::CheckSignCompare(Expr *lex, Expr *rex, SourceLocation OpLoc,
4417                            const PartialDiagnostic &PD, bool Equality) {
4418  // Don't warn if we're in an unevaluated context.
4419  if (ExprEvalContext == Unevaluated)
4420    return;
4421
4422  QualType lt = lex->getType(), rt = rex->getType();
4423
4424  // Only warn if both operands are integral.
4425  if (!lt->isIntegerType() || !rt->isIntegerType())
4426    return;
4427
4428  // If either expression is value-dependent, don't warn. We'll get another
4429  // chance at instantiation time.
4430  if (lex->isValueDependent() || rex->isValueDependent())
4431    return;
4432
4433  // The rule is that the signed operand becomes unsigned, so isolate the
4434  // signed operand.
4435  Expr *signedOperand, *unsignedOperand;
4436  if (lt->isSignedIntegerType()) {
4437    if (rt->isSignedIntegerType()) return;
4438    signedOperand = lex;
4439    unsignedOperand = rex;
4440  } else {
4441    if (!rt->isSignedIntegerType()) return;
4442    signedOperand = rex;
4443    unsignedOperand = lex;
4444  }
4445
4446  // If the unsigned type is strictly smaller than the signed type,
4447  // then (1) the result type will be signed and (2) the unsigned
4448  // value will fit fully within the signed type, and thus the result
4449  // of the comparison will be exact.
4450  if (Context.getIntWidth(signedOperand->getType()) >
4451      Context.getIntWidth(unsignedOperand->getType()))
4452    return;
4453
4454  // If the value is a non-negative integer constant, then the
4455  // signed->unsigned conversion won't change it.
4456  llvm::APSInt value;
4457  if (signedOperand->isIntegerConstantExpr(value, Context)) {
4458    assert(value.isSigned() && "result of signed expression not signed");
4459
4460    if (value.isNonNegative())
4461      return;
4462  }
4463
4464  if (Equality) {
4465    // For (in)equality comparisons, if the unsigned operand is a
4466    // constant which cannot collide with a overflowed signed operand,
4467    // then reinterpreting the signed operand as unsigned will not
4468    // change the result of the comparison.
4469    if (unsignedOperand->isIntegerConstantExpr(value, Context)) {
4470      assert(!value.isSigned() && "result of unsigned expression is signed");
4471
4472      // 2's complement:  test the top bit.
4473      if (value.isNonNegative())
4474        return;
4475    }
4476  }
4477
4478  Diag(OpLoc, PD)
4479    << lex->getType() << rex->getType()
4480    << lex->getSourceRange() << rex->getSourceRange();
4481}
4482
4483// C99 6.5.8, C++ [expr.rel]
4484QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4485                                    unsigned OpaqueOpc, bool isRelational) {
4486  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
4487
4488  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4489    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
4490
4491  CheckSignCompare(lex, rex, Loc, diag::warn_mixed_sign_comparison,
4492                   (Opc == BinaryOperator::EQ || Opc == BinaryOperator::NE));
4493
4494  // C99 6.5.8p3 / C99 6.5.9p4
4495  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
4496    UsualArithmeticConversions(lex, rex);
4497  else {
4498    UsualUnaryConversions(lex);
4499    UsualUnaryConversions(rex);
4500  }
4501  QualType lType = lex->getType();
4502  QualType rType = rex->getType();
4503
4504  if (!lType->isFloatingType()
4505      && !(lType->isBlockPointerType() && isRelational)) {
4506    // For non-floating point types, check for self-comparisons of the form
4507    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4508    // often indicate logic errors in the program.
4509    // NOTE: Don't warn about comparisons of enum constants. These can arise
4510    //  from macro expansions, and are usually quite deliberate.
4511    Expr *LHSStripped = lex->IgnoreParens();
4512    Expr *RHSStripped = rex->IgnoreParens();
4513    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
4514      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
4515        if (DRL->getDecl() == DRR->getDecl() &&
4516            !isa<EnumConstantDecl>(DRL->getDecl()))
4517          Diag(Loc, diag::warn_selfcomparison);
4518
4519    if (isa<CastExpr>(LHSStripped))
4520      LHSStripped = LHSStripped->IgnoreParenCasts();
4521    if (isa<CastExpr>(RHSStripped))
4522      RHSStripped = RHSStripped->IgnoreParenCasts();
4523
4524    // Warn about comparisons against a string constant (unless the other
4525    // operand is null), the user probably wants strcmp.
4526    Expr *literalString = 0;
4527    Expr *literalStringStripped = 0;
4528    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
4529        !RHSStripped->isNullPointerConstant(Context,
4530                                            Expr::NPC_ValueDependentIsNull)) {
4531      literalString = lex;
4532      literalStringStripped = LHSStripped;
4533    } else if ((isa<StringLiteral>(RHSStripped) ||
4534                isa<ObjCEncodeExpr>(RHSStripped)) &&
4535               !LHSStripped->isNullPointerConstant(Context,
4536                                            Expr::NPC_ValueDependentIsNull)) {
4537      literalString = rex;
4538      literalStringStripped = RHSStripped;
4539    }
4540
4541    if (literalString) {
4542      std::string resultComparison;
4543      switch (Opc) {
4544      case BinaryOperator::LT: resultComparison = ") < 0"; break;
4545      case BinaryOperator::GT: resultComparison = ") > 0"; break;
4546      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
4547      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
4548      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
4549      case BinaryOperator::NE: resultComparison = ") != 0"; break;
4550      default: assert(false && "Invalid comparison operator");
4551      }
4552      Diag(Loc, diag::warn_stringcompare)
4553        << isa<ObjCEncodeExpr>(literalStringStripped)
4554        << literalString->getSourceRange()
4555        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
4556        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
4557                                                 "strcmp(")
4558        << CodeModificationHint::CreateInsertion(
4559                                       PP.getLocForEndOfToken(rex->getLocEnd()),
4560                                       resultComparison);
4561    }
4562  }
4563
4564  // The result of comparisons is 'bool' in C++, 'int' in C.
4565  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
4566
4567  if (isRelational) {
4568    if (lType->isRealType() && rType->isRealType())
4569      return ResultTy;
4570  } else {
4571    // Check for comparisons of floating point operands using != and ==.
4572    if (lType->isFloatingType()) {
4573      assert(rType->isFloatingType());
4574      CheckFloatComparison(Loc,lex,rex);
4575    }
4576
4577    if (lType->isArithmeticType() && rType->isArithmeticType())
4578      return ResultTy;
4579  }
4580
4581  bool LHSIsNull = lex->isNullPointerConstant(Context,
4582                                              Expr::NPC_ValueDependentIsNull);
4583  bool RHSIsNull = rex->isNullPointerConstant(Context,
4584                                              Expr::NPC_ValueDependentIsNull);
4585
4586  // All of the following pointer related warnings are GCC extensions, except
4587  // when handling null pointer constants. One day, we can consider making them
4588  // errors (when -pedantic-errors is enabled).
4589  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
4590    QualType LCanPointeeTy =
4591      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
4592    QualType RCanPointeeTy =
4593      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
4594
4595    if (getLangOptions().CPlusPlus) {
4596      if (LCanPointeeTy == RCanPointeeTy)
4597        return ResultTy;
4598
4599      // C++ [expr.rel]p2:
4600      //   [...] Pointer conversions (4.10) and qualification
4601      //   conversions (4.4) are performed on pointer operands (or on
4602      //   a pointer operand and a null pointer constant) to bring
4603      //   them to their composite pointer type. [...]
4604      //
4605      // C++ [expr.eq]p1 uses the same notion for (in)equality
4606      // comparisons of pointers.
4607      QualType T = FindCompositePointerType(lex, rex);
4608      if (T.isNull()) {
4609        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4610          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4611        return QualType();
4612      }
4613
4614      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
4615      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
4616      return ResultTy;
4617    }
4618    // C99 6.5.9p2 and C99 6.5.8p2
4619    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
4620                                   RCanPointeeTy.getUnqualifiedType())) {
4621      // Valid unless a relational comparison of function pointers
4622      if (isRelational && LCanPointeeTy->isFunctionType()) {
4623        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
4624          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4625      }
4626    } else if (!isRelational &&
4627               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
4628      // Valid unless comparison between non-null pointer and function pointer
4629      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
4630          && !LHSIsNull && !RHSIsNull) {
4631        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
4632          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4633      }
4634    } else {
4635      // Invalid
4636      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4637        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4638    }
4639    if (LCanPointeeTy != RCanPointeeTy)
4640      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4641    return ResultTy;
4642  }
4643
4644  if (getLangOptions().CPlusPlus) {
4645    // Comparison of pointers with null pointer constants and equality
4646    // comparisons of member pointers to null pointer constants.
4647    if (RHSIsNull &&
4648        (lType->isPointerType() ||
4649         (!isRelational && lType->isMemberPointerType()))) {
4650      ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
4651      return ResultTy;
4652    }
4653    if (LHSIsNull &&
4654        (rType->isPointerType() ||
4655         (!isRelational && rType->isMemberPointerType()))) {
4656      ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
4657      return ResultTy;
4658    }
4659
4660    // Comparison of member pointers.
4661    if (!isRelational &&
4662        lType->isMemberPointerType() && rType->isMemberPointerType()) {
4663      // C++ [expr.eq]p2:
4664      //   In addition, pointers to members can be compared, or a pointer to
4665      //   member and a null pointer constant. Pointer to member conversions
4666      //   (4.11) and qualification conversions (4.4) are performed to bring
4667      //   them to a common type. If one operand is a null pointer constant,
4668      //   the common type is the type of the other operand. Otherwise, the
4669      //   common type is a pointer to member type similar (4.4) to the type
4670      //   of one of the operands, with a cv-qualification signature (4.4)
4671      //   that is the union of the cv-qualification signatures of the operand
4672      //   types.
4673      QualType T = FindCompositePointerType(lex, rex);
4674      if (T.isNull()) {
4675        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4676        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4677        return QualType();
4678      }
4679
4680      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
4681      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
4682      return ResultTy;
4683    }
4684
4685    // Comparison of nullptr_t with itself.
4686    if (lType->isNullPtrType() && rType->isNullPtrType())
4687      return ResultTy;
4688  }
4689
4690  // Handle block pointer types.
4691  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
4692    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
4693    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
4694
4695    if (!LHSIsNull && !RHSIsNull &&
4696        !Context.typesAreCompatible(lpointee, rpointee)) {
4697      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4698        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4699    }
4700    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4701    return ResultTy;
4702  }
4703  // Allow block pointers to be compared with null pointer constants.
4704  if (!isRelational
4705      && ((lType->isBlockPointerType() && rType->isPointerType())
4706          || (lType->isPointerType() && rType->isBlockPointerType()))) {
4707    if (!LHSIsNull && !RHSIsNull) {
4708      if (!((rType->isPointerType() && rType->getAs<PointerType>()
4709             ->getPointeeType()->isVoidType())
4710            || (lType->isPointerType() && lType->getAs<PointerType>()
4711                ->getPointeeType()->isVoidType())))
4712        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4713          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4714    }
4715    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4716    return ResultTy;
4717  }
4718
4719  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
4720    if (lType->isPointerType() || rType->isPointerType()) {
4721      const PointerType *LPT = lType->getAs<PointerType>();
4722      const PointerType *RPT = rType->getAs<PointerType>();
4723      bool LPtrToVoid = LPT ?
4724        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
4725      bool RPtrToVoid = RPT ?
4726        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
4727
4728      if (!LPtrToVoid && !RPtrToVoid &&
4729          !Context.typesAreCompatible(lType, rType)) {
4730        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4731          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4732      }
4733      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4734      return ResultTy;
4735    }
4736    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
4737      if (!Context.areComparableObjCPointerTypes(lType, rType))
4738        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4739          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4740      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4741      return ResultTy;
4742    }
4743  }
4744  if (lType->isAnyPointerType() && rType->isIntegerType()) {
4745    unsigned DiagID = 0;
4746    if (RHSIsNull) {
4747      if (isRelational)
4748        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
4749    } else if (isRelational)
4750      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
4751    else
4752      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
4753
4754    if (DiagID) {
4755      Diag(Loc, DiagID)
4756        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4757    }
4758    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
4759    return ResultTy;
4760  }
4761  if (lType->isIntegerType() && rType->isAnyPointerType()) {
4762    unsigned DiagID = 0;
4763    if (LHSIsNull) {
4764      if (isRelational)
4765        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
4766    } else if (isRelational)
4767      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
4768    else
4769      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
4770
4771    if (DiagID) {
4772      Diag(Loc, DiagID)
4773        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4774    }
4775    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
4776    return ResultTy;
4777  }
4778  // Handle block pointers.
4779  if (!isRelational && RHSIsNull
4780      && lType->isBlockPointerType() && rType->isIntegerType()) {
4781    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
4782    return ResultTy;
4783  }
4784  if (!isRelational && LHSIsNull
4785      && lType->isIntegerType() && rType->isBlockPointerType()) {
4786    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
4787    return ResultTy;
4788  }
4789  return InvalidOperands(Loc, lex, rex);
4790}
4791
4792/// CheckVectorCompareOperands - vector comparisons are a clang extension that
4793/// operates on extended vector types.  Instead of producing an IntTy result,
4794/// like a scalar comparison, a vector comparison produces a vector of integer
4795/// types.
4796QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
4797                                          SourceLocation Loc,
4798                                          bool isRelational) {
4799  // Check to make sure we're operating on vectors of the same type and width,
4800  // Allowing one side to be a scalar of element type.
4801  QualType vType = CheckVectorOperands(Loc, lex, rex);
4802  if (vType.isNull())
4803    return vType;
4804
4805  QualType lType = lex->getType();
4806  QualType rType = rex->getType();
4807
4808  // For non-floating point types, check for self-comparisons of the form
4809  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4810  // often indicate logic errors in the program.
4811  if (!lType->isFloatingType()) {
4812    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
4813      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
4814        if (DRL->getDecl() == DRR->getDecl())
4815          Diag(Loc, diag::warn_selfcomparison);
4816  }
4817
4818  // Check for comparisons of floating point operands using != and ==.
4819  if (!isRelational && lType->isFloatingType()) {
4820    assert (rType->isFloatingType());
4821    CheckFloatComparison(Loc,lex,rex);
4822  }
4823
4824  // Return the type for the comparison, which is the same as vector type for
4825  // integer vectors, or an integer type of identical size and number of
4826  // elements for floating point vectors.
4827  if (lType->isIntegerType())
4828    return lType;
4829
4830  const VectorType *VTy = lType->getAs<VectorType>();
4831  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
4832  if (TypeSize == Context.getTypeSize(Context.IntTy))
4833    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
4834  if (TypeSize == Context.getTypeSize(Context.LongTy))
4835    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
4836
4837  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
4838         "Unhandled vector element size in vector compare");
4839  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
4840}
4841
4842inline QualType Sema::CheckBitwiseOperands(
4843  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4844  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4845    return CheckVectorOperands(Loc, lex, rex);
4846
4847  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4848
4849  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4850    return compType;
4851  return InvalidOperands(Loc, lex, rex);
4852}
4853
4854inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
4855  Expr *&lex, Expr *&rex, SourceLocation Loc) {
4856  if (!Context.getLangOptions().CPlusPlus) {
4857    UsualUnaryConversions(lex);
4858    UsualUnaryConversions(rex);
4859
4860    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
4861      return InvalidOperands(Loc, lex, rex);
4862
4863    return Context.IntTy;
4864  }
4865
4866  // C++ [expr.log.and]p1
4867  // C++ [expr.log.or]p1
4868  // The operands are both implicitly converted to type bool (clause 4).
4869  StandardConversionSequence LHS;
4870  if (!IsStandardConversion(lex, Context.BoolTy,
4871                            /*InOverloadResolution=*/false, LHS))
4872    return InvalidOperands(Loc, lex, rex);
4873
4874  if (PerformImplicitConversion(lex, Context.BoolTy, LHS,
4875                                "passing", /*IgnoreBaseAccess=*/false))
4876    return InvalidOperands(Loc, lex, rex);
4877
4878  StandardConversionSequence RHS;
4879  if (!IsStandardConversion(rex, Context.BoolTy,
4880                            /*InOverloadResolution=*/false, RHS))
4881    return InvalidOperands(Loc, lex, rex);
4882
4883  if (PerformImplicitConversion(rex, Context.BoolTy, RHS,
4884                                "passing", /*IgnoreBaseAccess=*/false))
4885    return InvalidOperands(Loc, lex, rex);
4886
4887  // C++ [expr.log.and]p2
4888  // C++ [expr.log.or]p2
4889  // The result is a bool.
4890  return Context.BoolTy;
4891}
4892
4893/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
4894/// is a read-only property; return true if so. A readonly property expression
4895/// depends on various declarations and thus must be treated specially.
4896///
4897static bool IsReadonlyProperty(Expr *E, Sema &S) {
4898  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
4899    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
4900    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
4901      QualType BaseType = PropExpr->getBase()->getType();
4902      if (const ObjCObjectPointerType *OPT =
4903            BaseType->getAsObjCInterfacePointerType())
4904        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
4905          if (S.isPropertyReadonly(PDecl, IFace))
4906            return true;
4907    }
4908  }
4909  return false;
4910}
4911
4912/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
4913/// emit an error and return true.  If so, return false.
4914static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
4915  SourceLocation OrigLoc = Loc;
4916  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
4917                                                              &Loc);
4918  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
4919    IsLV = Expr::MLV_ReadonlyProperty;
4920  if (IsLV == Expr::MLV_Valid)
4921    return false;
4922
4923  unsigned Diag = 0;
4924  bool NeedType = false;
4925  switch (IsLV) { // C99 6.5.16p2
4926  default: assert(0 && "Unknown result from isModifiableLvalue!");
4927  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
4928  case Expr::MLV_ArrayType:
4929    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
4930    NeedType = true;
4931    break;
4932  case Expr::MLV_NotObjectType:
4933    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
4934    NeedType = true;
4935    break;
4936  case Expr::MLV_LValueCast:
4937    Diag = diag::err_typecheck_lvalue_casts_not_supported;
4938    break;
4939  case Expr::MLV_InvalidExpression:
4940    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
4941    break;
4942  case Expr::MLV_IncompleteType:
4943  case Expr::MLV_IncompleteVoidType:
4944    return S.RequireCompleteType(Loc, E->getType(),
4945                PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
4946                  << E->getSourceRange());
4947  case Expr::MLV_DuplicateVectorComponents:
4948    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
4949    break;
4950  case Expr::MLV_NotBlockQualified:
4951    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
4952    break;
4953  case Expr::MLV_ReadonlyProperty:
4954    Diag = diag::error_readonly_property_assignment;
4955    break;
4956  case Expr::MLV_NoSetterProperty:
4957    Diag = diag::error_nosetter_property_assignment;
4958    break;
4959  }
4960
4961  SourceRange Assign;
4962  if (Loc != OrigLoc)
4963    Assign = SourceRange(OrigLoc, OrigLoc);
4964  if (NeedType)
4965    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
4966  else
4967    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
4968  return true;
4969}
4970
4971
4972
4973// C99 6.5.16.1
4974QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
4975                                       SourceLocation Loc,
4976                                       QualType CompoundType) {
4977  // Verify that LHS is a modifiable lvalue, and emit error if not.
4978  if (CheckForModifiableLvalue(LHS, Loc, *this))
4979    return QualType();
4980
4981  QualType LHSType = LHS->getType();
4982  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
4983
4984  AssignConvertType ConvTy;
4985  if (CompoundType.isNull()) {
4986    // Simple assignment "x = y".
4987    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
4988    // Special case of NSObject attributes on c-style pointer types.
4989    if (ConvTy == IncompatiblePointer &&
4990        ((Context.isObjCNSObjectType(LHSType) &&
4991          RHSType->isObjCObjectPointerType()) ||
4992         (Context.isObjCNSObjectType(RHSType) &&
4993          LHSType->isObjCObjectPointerType())))
4994      ConvTy = Compatible;
4995
4996    // If the RHS is a unary plus or minus, check to see if they = and + are
4997    // right next to each other.  If so, the user may have typo'd "x =+ 4"
4998    // instead of "x += 4".
4999    Expr *RHSCheck = RHS;
5000    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
5001      RHSCheck = ICE->getSubExpr();
5002    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
5003      if ((UO->getOpcode() == UnaryOperator::Plus ||
5004           UO->getOpcode() == UnaryOperator::Minus) &&
5005          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
5006          // Only if the two operators are exactly adjacent.
5007          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
5008          // And there is a space or other character before the subexpr of the
5009          // unary +/-.  We don't want to warn on "x=-1".
5010          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
5011          UO->getSubExpr()->getLocStart().isFileID()) {
5012        Diag(Loc, diag::warn_not_compound_assign)
5013          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
5014          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
5015      }
5016    }
5017  } else {
5018    // Compound assignment "x += y"
5019    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
5020  }
5021
5022  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
5023                               RHS, "assigning"))
5024    return QualType();
5025
5026  // C99 6.5.16p3: The type of an assignment expression is the type of the
5027  // left operand unless the left operand has qualified type, in which case
5028  // it is the unqualified version of the type of the left operand.
5029  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
5030  // is converted to the type of the assignment expression (above).
5031  // C++ 5.17p1: the type of the assignment expression is that of its left
5032  // operand.
5033  return LHSType.getUnqualifiedType();
5034}
5035
5036// C99 6.5.17
5037QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
5038  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
5039  DefaultFunctionArrayConversion(RHS);
5040
5041  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
5042  // incomplete in C++).
5043
5044  return RHS->getType();
5045}
5046
5047/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
5048/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
5049QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
5050                                              bool isInc) {
5051  if (Op->isTypeDependent())
5052    return Context.DependentTy;
5053
5054  QualType ResType = Op->getType();
5055  assert(!ResType.isNull() && "no type for increment/decrement expression");
5056
5057  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
5058    // Decrement of bool is not allowed.
5059    if (!isInc) {
5060      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
5061      return QualType();
5062    }
5063    // Increment of bool sets it to true, but is deprecated.
5064    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
5065  } else if (ResType->isRealType()) {
5066    // OK!
5067  } else if (ResType->isAnyPointerType()) {
5068    QualType PointeeTy = ResType->getPointeeType();
5069
5070    // C99 6.5.2.4p2, 6.5.6p2
5071    if (PointeeTy->isVoidType()) {
5072      if (getLangOptions().CPlusPlus) {
5073        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
5074          << Op->getSourceRange();
5075        return QualType();
5076      }
5077
5078      // Pointer to void is a GNU extension in C.
5079      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
5080    } else if (PointeeTy->isFunctionType()) {
5081      if (getLangOptions().CPlusPlus) {
5082        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
5083          << Op->getType() << Op->getSourceRange();
5084        return QualType();
5085      }
5086
5087      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
5088        << ResType << Op->getSourceRange();
5089    } else if (RequireCompleteType(OpLoc, PointeeTy,
5090                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5091                             << Op->getSourceRange()
5092                             << ResType))
5093      return QualType();
5094    // Diagnose bad cases where we step over interface counts.
5095    else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5096      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
5097        << PointeeTy << Op->getSourceRange();
5098      return QualType();
5099    }
5100  } else if (ResType->isComplexType()) {
5101    // C99 does not support ++/-- on complex types, we allow as an extension.
5102    Diag(OpLoc, diag::ext_integer_increment_complex)
5103      << ResType << Op->getSourceRange();
5104  } else {
5105    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
5106      << ResType << Op->getSourceRange();
5107    return QualType();
5108  }
5109  // At this point, we know we have a real, complex or pointer type.
5110  // Now make sure the operand is a modifiable lvalue.
5111  if (CheckForModifiableLvalue(Op, OpLoc, *this))
5112    return QualType();
5113  return ResType;
5114}
5115
5116/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
5117/// This routine allows us to typecheck complex/recursive expressions
5118/// where the declaration is needed for type checking. We only need to
5119/// handle cases when the expression references a function designator
5120/// or is an lvalue. Here are some examples:
5121///  - &(x) => x
5122///  - &*****f => f for f a function designator.
5123///  - &s.xx => s
5124///  - &s.zz[1].yy -> s, if zz is an array
5125///  - *(x + 1) -> x, if x is an array
5126///  - &"123"[2] -> 0
5127///  - & __real__ x -> x
5128static NamedDecl *getPrimaryDecl(Expr *E) {
5129  switch (E->getStmtClass()) {
5130  case Stmt::DeclRefExprClass:
5131    return cast<DeclRefExpr>(E)->getDecl();
5132  case Stmt::MemberExprClass:
5133    // If this is an arrow operator, the address is an offset from
5134    // the base's value, so the object the base refers to is
5135    // irrelevant.
5136    if (cast<MemberExpr>(E)->isArrow())
5137      return 0;
5138    // Otherwise, the expression refers to a part of the base
5139    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
5140  case Stmt::ArraySubscriptExprClass: {
5141    // FIXME: This code shouldn't be necessary!  We should catch the implicit
5142    // promotion of register arrays earlier.
5143    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
5144    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
5145      if (ICE->getSubExpr()->getType()->isArrayType())
5146        return getPrimaryDecl(ICE->getSubExpr());
5147    }
5148    return 0;
5149  }
5150  case Stmt::UnaryOperatorClass: {
5151    UnaryOperator *UO = cast<UnaryOperator>(E);
5152
5153    switch(UO->getOpcode()) {
5154    case UnaryOperator::Real:
5155    case UnaryOperator::Imag:
5156    case UnaryOperator::Extension:
5157      return getPrimaryDecl(UO->getSubExpr());
5158    default:
5159      return 0;
5160    }
5161  }
5162  case Stmt::ParenExprClass:
5163    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
5164  case Stmt::ImplicitCastExprClass:
5165    // If the result of an implicit cast is an l-value, we care about
5166    // the sub-expression; otherwise, the result here doesn't matter.
5167    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
5168  default:
5169    return 0;
5170  }
5171}
5172
5173/// CheckAddressOfOperand - The operand of & must be either a function
5174/// designator or an lvalue designating an object. If it is an lvalue, the
5175/// object cannot be declared with storage class register or be a bit field.
5176/// Note: The usual conversions are *not* applied to the operand of the &
5177/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
5178/// In C++, the operand might be an overloaded function name, in which case
5179/// we allow the '&' but retain the overloaded-function type.
5180QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
5181  // Make sure to ignore parentheses in subsequent checks
5182  op = op->IgnoreParens();
5183
5184  if (op->isTypeDependent())
5185    return Context.DependentTy;
5186
5187  if (getLangOptions().C99) {
5188    // Implement C99-only parts of addressof rules.
5189    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
5190      if (uOp->getOpcode() == UnaryOperator::Deref)
5191        // Per C99 6.5.3.2, the address of a deref always returns a valid result
5192        // (assuming the deref expression is valid).
5193        return uOp->getSubExpr()->getType();
5194    }
5195    // Technically, there should be a check for array subscript
5196    // expressions here, but the result of one is always an lvalue anyway.
5197  }
5198  NamedDecl *dcl = getPrimaryDecl(op);
5199  Expr::isLvalueResult lval = op->isLvalue(Context);
5200
5201  if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
5202    // C99 6.5.3.2p1
5203    // The operand must be either an l-value or a function designator
5204    if (!op->getType()->isFunctionType()) {
5205      // FIXME: emit more specific diag...
5206      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
5207        << op->getSourceRange();
5208      return QualType();
5209    }
5210  } else if (op->getBitField()) { // C99 6.5.3.2p1
5211    // The operand cannot be a bit-field
5212    Diag(OpLoc, diag::err_typecheck_address_of)
5213      << "bit-field" << op->getSourceRange();
5214        return QualType();
5215  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
5216           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
5217    // The operand cannot be an element of a vector
5218    Diag(OpLoc, diag::err_typecheck_address_of)
5219      << "vector element" << op->getSourceRange();
5220    return QualType();
5221  } else if (isa<ObjCPropertyRefExpr>(op)) {
5222    // cannot take address of a property expression.
5223    Diag(OpLoc, diag::err_typecheck_address_of)
5224      << "property expression" << op->getSourceRange();
5225    return QualType();
5226  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
5227    // FIXME: Can LHS ever be null here?
5228    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
5229      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
5230  } else if (isa<UnresolvedLookupExpr>(op)) {
5231    return Context.OverloadTy;
5232  } else if (dcl) { // C99 6.5.3.2p1
5233    // We have an lvalue with a decl. Make sure the decl is not declared
5234    // with the register storage-class specifier.
5235    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
5236      if (vd->getStorageClass() == VarDecl::Register) {
5237        Diag(OpLoc, diag::err_typecheck_address_of)
5238          << "register variable" << op->getSourceRange();
5239        return QualType();
5240      }
5241    } else if (isa<FunctionTemplateDecl>(dcl)) {
5242      return Context.OverloadTy;
5243    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
5244      // Okay: we can take the address of a field.
5245      // Could be a pointer to member, though, if there is an explicit
5246      // scope qualifier for the class.
5247      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
5248        DeclContext *Ctx = dcl->getDeclContext();
5249        if (Ctx && Ctx->isRecord()) {
5250          if (FD->getType()->isReferenceType()) {
5251            Diag(OpLoc,
5252                 diag::err_cannot_form_pointer_to_member_of_reference_type)
5253              << FD->getDeclName() << FD->getType();
5254            return QualType();
5255          }
5256
5257          return Context.getMemberPointerType(op->getType(),
5258                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
5259        }
5260      }
5261    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
5262      // Okay: we can take the address of a function.
5263      // As above.
5264      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
5265          MD->isInstance())
5266        return Context.getMemberPointerType(op->getType(),
5267              Context.getTypeDeclType(MD->getParent()).getTypePtr());
5268    } else if (!isa<FunctionDecl>(dcl))
5269      assert(0 && "Unknown/unexpected decl type");
5270  }
5271
5272  if (lval == Expr::LV_IncompleteVoidType) {
5273    // Taking the address of a void variable is technically illegal, but we
5274    // allow it in cases which are otherwise valid.
5275    // Example: "extern void x; void* y = &x;".
5276    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
5277  }
5278
5279  // If the operand has type "type", the result has type "pointer to type".
5280  return Context.getPointerType(op->getType());
5281}
5282
5283QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
5284  if (Op->isTypeDependent())
5285    return Context.DependentTy;
5286
5287  UsualUnaryConversions(Op);
5288  QualType Ty = Op->getType();
5289
5290  // Note that per both C89 and C99, this is always legal, even if ptype is an
5291  // incomplete type or void.  It would be possible to warn about dereferencing
5292  // a void pointer, but it's completely well-defined, and such a warning is
5293  // unlikely to catch any mistakes.
5294  if (const PointerType *PT = Ty->getAs<PointerType>())
5295    return PT->getPointeeType();
5296
5297  if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>())
5298    return OPT->getPointeeType();
5299
5300  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
5301    << Ty << Op->getSourceRange();
5302  return QualType();
5303}
5304
5305static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
5306  tok::TokenKind Kind) {
5307  BinaryOperator::Opcode Opc;
5308  switch (Kind) {
5309  default: assert(0 && "Unknown binop!");
5310  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
5311  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
5312  case tok::star:                 Opc = BinaryOperator::Mul; break;
5313  case tok::slash:                Opc = BinaryOperator::Div; break;
5314  case tok::percent:              Opc = BinaryOperator::Rem; break;
5315  case tok::plus:                 Opc = BinaryOperator::Add; break;
5316  case tok::minus:                Opc = BinaryOperator::Sub; break;
5317  case tok::lessless:             Opc = BinaryOperator::Shl; break;
5318  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
5319  case tok::lessequal:            Opc = BinaryOperator::LE; break;
5320  case tok::less:                 Opc = BinaryOperator::LT; break;
5321  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
5322  case tok::greater:              Opc = BinaryOperator::GT; break;
5323  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
5324  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
5325  case tok::amp:                  Opc = BinaryOperator::And; break;
5326  case tok::caret:                Opc = BinaryOperator::Xor; break;
5327  case tok::pipe:                 Opc = BinaryOperator::Or; break;
5328  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
5329  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
5330  case tok::equal:                Opc = BinaryOperator::Assign; break;
5331  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
5332  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
5333  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
5334  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
5335  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
5336  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
5337  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
5338  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
5339  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
5340  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
5341  case tok::comma:                Opc = BinaryOperator::Comma; break;
5342  }
5343  return Opc;
5344}
5345
5346static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
5347  tok::TokenKind Kind) {
5348  UnaryOperator::Opcode Opc;
5349  switch (Kind) {
5350  default: assert(0 && "Unknown unary op!");
5351  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
5352  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
5353  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
5354  case tok::star:         Opc = UnaryOperator::Deref; break;
5355  case tok::plus:         Opc = UnaryOperator::Plus; break;
5356  case tok::minus:        Opc = UnaryOperator::Minus; break;
5357  case tok::tilde:        Opc = UnaryOperator::Not; break;
5358  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
5359  case tok::kw___real:    Opc = UnaryOperator::Real; break;
5360  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
5361  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
5362  }
5363  return Opc;
5364}
5365
5366/// CreateBuiltinBinOp - Creates a new built-in binary operation with
5367/// operator @p Opc at location @c TokLoc. This routine only supports
5368/// built-in operations; ActOnBinOp handles overloaded operators.
5369Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
5370                                                  unsigned Op,
5371                                                  Expr *lhs, Expr *rhs) {
5372  QualType ResultTy;     // Result type of the binary operator.
5373  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
5374  // The following two variables are used for compound assignment operators
5375  QualType CompLHSTy;    // Type of LHS after promotions for computation
5376  QualType CompResultTy; // Type of computation result
5377
5378  switch (Opc) {
5379  case BinaryOperator::Assign:
5380    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
5381    break;
5382  case BinaryOperator::PtrMemD:
5383  case BinaryOperator::PtrMemI:
5384    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
5385                                            Opc == BinaryOperator::PtrMemI);
5386    break;
5387  case BinaryOperator::Mul:
5388  case BinaryOperator::Div:
5389    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
5390    break;
5391  case BinaryOperator::Rem:
5392    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
5393    break;
5394  case BinaryOperator::Add:
5395    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
5396    break;
5397  case BinaryOperator::Sub:
5398    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
5399    break;
5400  case BinaryOperator::Shl:
5401  case BinaryOperator::Shr:
5402    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
5403    break;
5404  case BinaryOperator::LE:
5405  case BinaryOperator::LT:
5406  case BinaryOperator::GE:
5407  case BinaryOperator::GT:
5408    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
5409    break;
5410  case BinaryOperator::EQ:
5411  case BinaryOperator::NE:
5412    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
5413    break;
5414  case BinaryOperator::And:
5415  case BinaryOperator::Xor:
5416  case BinaryOperator::Or:
5417    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
5418    break;
5419  case BinaryOperator::LAnd:
5420  case BinaryOperator::LOr:
5421    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
5422    break;
5423  case BinaryOperator::MulAssign:
5424  case BinaryOperator::DivAssign:
5425    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
5426    CompLHSTy = CompResultTy;
5427    if (!CompResultTy.isNull())
5428      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5429    break;
5430  case BinaryOperator::RemAssign:
5431    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
5432    CompLHSTy = CompResultTy;
5433    if (!CompResultTy.isNull())
5434      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5435    break;
5436  case BinaryOperator::AddAssign:
5437    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
5438    if (!CompResultTy.isNull())
5439      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5440    break;
5441  case BinaryOperator::SubAssign:
5442    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
5443    if (!CompResultTy.isNull())
5444      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5445    break;
5446  case BinaryOperator::ShlAssign:
5447  case BinaryOperator::ShrAssign:
5448    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
5449    CompLHSTy = CompResultTy;
5450    if (!CompResultTy.isNull())
5451      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5452    break;
5453  case BinaryOperator::AndAssign:
5454  case BinaryOperator::XorAssign:
5455  case BinaryOperator::OrAssign:
5456    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
5457    CompLHSTy = CompResultTy;
5458    if (!CompResultTy.isNull())
5459      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5460    break;
5461  case BinaryOperator::Comma:
5462    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
5463    break;
5464  }
5465  if (ResultTy.isNull())
5466    return ExprError();
5467  if (CompResultTy.isNull())
5468    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
5469  else
5470    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
5471                                                      CompLHSTy, CompResultTy,
5472                                                      OpLoc));
5473}
5474
5475/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
5476/// ParenRange in parentheses.
5477static void SuggestParentheses(Sema &Self, SourceLocation Loc,
5478                               const PartialDiagnostic &PD,
5479                               SourceRange ParenRange)
5480{
5481  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
5482  if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
5483    // We can't display the parentheses, so just dig the
5484    // warning/error and return.
5485    Self.Diag(Loc, PD);
5486    return;
5487  }
5488
5489  Self.Diag(Loc, PD)
5490    << CodeModificationHint::CreateInsertion(ParenRange.getBegin(), "(")
5491    << CodeModificationHint::CreateInsertion(EndLoc, ")");
5492}
5493
5494/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
5495/// operators are mixed in a way that suggests that the programmer forgot that
5496/// comparison operators have higher precedence. The most typical example of
5497/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
5498static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
5499                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
5500  typedef BinaryOperator BinOp;
5501  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
5502                rhsopc = static_cast<BinOp::Opcode>(-1);
5503  if (BinOp *BO = dyn_cast<BinOp>(lhs))
5504    lhsopc = BO->getOpcode();
5505  if (BinOp *BO = dyn_cast<BinOp>(rhs))
5506    rhsopc = BO->getOpcode();
5507
5508  // Subs are not binary operators.
5509  if (lhsopc == -1 && rhsopc == -1)
5510    return;
5511
5512  // Bitwise operations are sometimes used as eager logical ops.
5513  // Don't diagnose this.
5514  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
5515      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
5516    return;
5517
5518  if (BinOp::isComparisonOp(lhsopc))
5519    SuggestParentheses(Self, OpLoc,
5520      PDiag(diag::warn_precedence_bitwise_rel)
5521          << SourceRange(lhs->getLocStart(), OpLoc)
5522          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
5523      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
5524  else if (BinOp::isComparisonOp(rhsopc))
5525    SuggestParentheses(Self, OpLoc,
5526      PDiag(diag::warn_precedence_bitwise_rel)
5527          << SourceRange(OpLoc, rhs->getLocEnd())
5528          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
5529      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()));
5530}
5531
5532/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
5533/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
5534/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
5535static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
5536                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
5537  if (BinaryOperator::isBitwiseOp(Opc))
5538    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
5539}
5540
5541// Binary Operators.  'Tok' is the token for the operator.
5542Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
5543                                          tok::TokenKind Kind,
5544                                          ExprArg LHS, ExprArg RHS) {
5545  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
5546  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
5547
5548  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
5549  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
5550
5551  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
5552  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
5553
5554  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
5555}
5556
5557Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
5558                                          BinaryOperator::Opcode Opc,
5559                                          Expr *lhs, Expr *rhs) {
5560  if (getLangOptions().CPlusPlus &&
5561      (lhs->getType()->isOverloadableType() ||
5562       rhs->getType()->isOverloadableType())) {
5563    // Find all of the overloaded operators visible from this
5564    // point. We perform both an operator-name lookup from the local
5565    // scope and an argument-dependent lookup based on the types of
5566    // the arguments.
5567    FunctionSet Functions;
5568    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
5569    if (OverOp != OO_None) {
5570      if (S)
5571        LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
5572                                     Functions);
5573      Expr *Args[2] = { lhs, rhs };
5574      DeclarationName OpName
5575        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5576      ArgumentDependentLookup(OpName, /*Operator*/true, Args, 2, Functions);
5577    }
5578
5579    // Build the (potentially-overloaded, potentially-dependent)
5580    // binary operation.
5581    return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
5582  }
5583
5584  // Build a built-in binary operation.
5585  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
5586}
5587
5588Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
5589                                                    unsigned OpcIn,
5590                                                    ExprArg InputArg) {
5591  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5592
5593  // FIXME: Input is modified below, but InputArg is not updated appropriately.
5594  Expr *Input = (Expr *)InputArg.get();
5595  QualType resultType;
5596  switch (Opc) {
5597  case UnaryOperator::OffsetOf:
5598    assert(false && "Invalid unary operator");
5599    break;
5600
5601  case UnaryOperator::PreInc:
5602  case UnaryOperator::PreDec:
5603  case UnaryOperator::PostInc:
5604  case UnaryOperator::PostDec:
5605    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
5606                                                Opc == UnaryOperator::PreInc ||
5607                                                Opc == UnaryOperator::PostInc);
5608    break;
5609  case UnaryOperator::AddrOf:
5610    resultType = CheckAddressOfOperand(Input, OpLoc);
5611    break;
5612  case UnaryOperator::Deref:
5613    DefaultFunctionArrayConversion(Input);
5614    resultType = CheckIndirectionOperand(Input, OpLoc);
5615    break;
5616  case UnaryOperator::Plus:
5617  case UnaryOperator::Minus:
5618    UsualUnaryConversions(Input);
5619    resultType = Input->getType();
5620    if (resultType->isDependentType())
5621      break;
5622    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
5623      break;
5624    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
5625             resultType->isEnumeralType())
5626      break;
5627    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
5628             Opc == UnaryOperator::Plus &&
5629             resultType->isPointerType())
5630      break;
5631
5632    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5633      << resultType << Input->getSourceRange());
5634  case UnaryOperator::Not: // bitwise complement
5635    UsualUnaryConversions(Input);
5636    resultType = Input->getType();
5637    if (resultType->isDependentType())
5638      break;
5639    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
5640    if (resultType->isComplexType() || resultType->isComplexIntegerType())
5641      // C99 does not support '~' for complex conjugation.
5642      Diag(OpLoc, diag::ext_integer_complement_complex)
5643        << resultType << Input->getSourceRange();
5644    else if (!resultType->isIntegerType())
5645      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5646        << resultType << Input->getSourceRange());
5647    break;
5648  case UnaryOperator::LNot: // logical negation
5649    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
5650    DefaultFunctionArrayConversion(Input);
5651    resultType = Input->getType();
5652    if (resultType->isDependentType())
5653      break;
5654    if (!resultType->isScalarType()) // C99 6.5.3.3p1
5655      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5656        << resultType << Input->getSourceRange());
5657    // LNot always has type int. C99 6.5.3.3p5.
5658    // In C++, it's bool. C++ 5.3.1p8
5659    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
5660    break;
5661  case UnaryOperator::Real:
5662  case UnaryOperator::Imag:
5663    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
5664    break;
5665  case UnaryOperator::Extension:
5666    resultType = Input->getType();
5667    break;
5668  }
5669  if (resultType.isNull())
5670    return ExprError();
5671
5672  InputArg.release();
5673  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
5674}
5675
5676Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
5677                                            UnaryOperator::Opcode Opc,
5678                                            ExprArg input) {
5679  Expr *Input = (Expr*)input.get();
5680  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
5681      Opc != UnaryOperator::Extension) {
5682    // Find all of the overloaded operators visible from this
5683    // point. We perform both an operator-name lookup from the local
5684    // scope and an argument-dependent lookup based on the types of
5685    // the arguments.
5686    FunctionSet Functions;
5687    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
5688    if (OverOp != OO_None) {
5689      if (S)
5690        LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
5691                                     Functions);
5692      DeclarationName OpName
5693        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5694      ArgumentDependentLookup(OpName, /*Operator*/true, &Input, 1, Functions);
5695    }
5696
5697    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
5698  }
5699
5700  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
5701}
5702
5703// Unary Operators.  'Tok' is the token for the operator.
5704Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
5705                                            tok::TokenKind Op, ExprArg input) {
5706  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input));
5707}
5708
5709/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
5710Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
5711                                            SourceLocation LabLoc,
5712                                            IdentifierInfo *LabelII) {
5713  // Look up the record for this label identifier.
5714  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
5715
5716  // If we haven't seen this label yet, create a forward reference. It
5717  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
5718  if (LabelDecl == 0)
5719    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
5720
5721  // Create the AST node.  The address of a label always has type 'void*'.
5722  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
5723                                       Context.getPointerType(Context.VoidTy)));
5724}
5725
5726Sema::OwningExprResult
5727Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
5728                    SourceLocation RPLoc) { // "({..})"
5729  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
5730  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
5731  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
5732
5733  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
5734  if (isFileScope)
5735    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
5736
5737  // FIXME: there are a variety of strange constraints to enforce here, for
5738  // example, it is not possible to goto into a stmt expression apparently.
5739  // More semantic analysis is needed.
5740
5741  // If there are sub stmts in the compound stmt, take the type of the last one
5742  // as the type of the stmtexpr.
5743  QualType Ty = Context.VoidTy;
5744
5745  if (!Compound->body_empty()) {
5746    Stmt *LastStmt = Compound->body_back();
5747    // If LastStmt is a label, skip down through into the body.
5748    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
5749      LastStmt = Label->getSubStmt();
5750
5751    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
5752      Ty = LastExpr->getType();
5753  }
5754
5755  // FIXME: Check that expression type is complete/non-abstract; statement
5756  // expressions are not lvalues.
5757
5758  substmt.release();
5759  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
5760}
5761
5762Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
5763                                                  SourceLocation BuiltinLoc,
5764                                                  SourceLocation TypeLoc,
5765                                                  TypeTy *argty,
5766                                                  OffsetOfComponent *CompPtr,
5767                                                  unsigned NumComponents,
5768                                                  SourceLocation RPLoc) {
5769  // FIXME: This function leaks all expressions in the offset components on
5770  // error.
5771  // FIXME: Preserve type source info.
5772  QualType ArgTy = GetTypeFromParser(argty);
5773  assert(!ArgTy.isNull() && "Missing type argument!");
5774
5775  bool Dependent = ArgTy->isDependentType();
5776
5777  // We must have at least one component that refers to the type, and the first
5778  // one is known to be a field designator.  Verify that the ArgTy represents
5779  // a struct/union/class.
5780  if (!Dependent && !ArgTy->isRecordType())
5781    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
5782
5783  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
5784  // with an incomplete type would be illegal.
5785
5786  // Otherwise, create a null pointer as the base, and iteratively process
5787  // the offsetof designators.
5788  QualType ArgTyPtr = Context.getPointerType(ArgTy);
5789  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
5790  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
5791                                    ArgTy, SourceLocation());
5792
5793  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
5794  // GCC extension, diagnose them.
5795  // FIXME: This diagnostic isn't actually visible because the location is in
5796  // a system header!
5797  if (NumComponents != 1)
5798    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
5799      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
5800
5801  if (!Dependent) {
5802    bool DidWarnAboutNonPOD = false;
5803
5804    if (RequireCompleteType(TypeLoc, Res->getType(),
5805                            diag::err_offsetof_incomplete_type))
5806      return ExprError();
5807
5808    // FIXME: Dependent case loses a lot of information here. And probably
5809    // leaks like a sieve.
5810    for (unsigned i = 0; i != NumComponents; ++i) {
5811      const OffsetOfComponent &OC = CompPtr[i];
5812      if (OC.isBrackets) {
5813        // Offset of an array sub-field.  TODO: Should we allow vector elements?
5814        const ArrayType *AT = Context.getAsArrayType(Res->getType());
5815        if (!AT) {
5816          Res->Destroy(Context);
5817          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
5818            << Res->getType());
5819        }
5820
5821        // FIXME: C++: Verify that operator[] isn't overloaded.
5822
5823        // Promote the array so it looks more like a normal array subscript
5824        // expression.
5825        DefaultFunctionArrayConversion(Res);
5826
5827        // C99 6.5.2.1p1
5828        Expr *Idx = static_cast<Expr*>(OC.U.E);
5829        // FIXME: Leaks Res
5830        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
5831          return ExprError(Diag(Idx->getLocStart(),
5832                                diag::err_typecheck_subscript_not_integer)
5833            << Idx->getSourceRange());
5834
5835        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
5836                                               OC.LocEnd);
5837        continue;
5838      }
5839
5840      const RecordType *RC = Res->getType()->getAs<RecordType>();
5841      if (!RC) {
5842        Res->Destroy(Context);
5843        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
5844          << Res->getType());
5845      }
5846
5847      // Get the decl corresponding to this.
5848      RecordDecl *RD = RC->getDecl();
5849      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5850        if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
5851          ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
5852            << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
5853            << Res->getType());
5854          DidWarnAboutNonPOD = true;
5855        }
5856      }
5857
5858      LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
5859      LookupQualifiedName(R, RD);
5860
5861      FieldDecl *MemberDecl
5862        = dyn_cast_or_null<FieldDecl>(R.getAsSingleDecl(Context));
5863      // FIXME: Leaks Res
5864      if (!MemberDecl)
5865        return ExprError(Diag(BuiltinLoc, diag::err_no_member)
5866         << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
5867
5868      // FIXME: C++: Verify that MemberDecl isn't a static field.
5869      // FIXME: Verify that MemberDecl isn't a bitfield.
5870      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
5871        Res = BuildAnonymousStructUnionMemberReference(
5872            OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>();
5873      } else {
5874        // MemberDecl->getType() doesn't get the right qualifiers, but it
5875        // doesn't matter here.
5876        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
5877                MemberDecl->getType().getNonReferenceType());
5878      }
5879    }
5880  }
5881
5882  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
5883                                           Context.getSizeType(), BuiltinLoc));
5884}
5885
5886
5887Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
5888                                                      TypeTy *arg1,TypeTy *arg2,
5889                                                      SourceLocation RPLoc) {
5890  // FIXME: Preserve type source info.
5891  QualType argT1 = GetTypeFromParser(arg1);
5892  QualType argT2 = GetTypeFromParser(arg2);
5893
5894  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
5895
5896  if (getLangOptions().CPlusPlus) {
5897    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
5898      << SourceRange(BuiltinLoc, RPLoc);
5899    return ExprError();
5900  }
5901
5902  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
5903                                                 argT1, argT2, RPLoc));
5904}
5905
5906Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
5907                                             ExprArg cond,
5908                                             ExprArg expr1, ExprArg expr2,
5909                                             SourceLocation RPLoc) {
5910  Expr *CondExpr = static_cast<Expr*>(cond.get());
5911  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
5912  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
5913
5914  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
5915
5916  QualType resType;
5917  bool ValueDependent = false;
5918  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
5919    resType = Context.DependentTy;
5920    ValueDependent = true;
5921  } else {
5922    // The conditional expression is required to be a constant expression.
5923    llvm::APSInt condEval(32);
5924    SourceLocation ExpLoc;
5925    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
5926      return ExprError(Diag(ExpLoc,
5927                       diag::err_typecheck_choose_expr_requires_constant)
5928        << CondExpr->getSourceRange());
5929
5930    // If the condition is > zero, then the AST type is the same as the LSHExpr.
5931    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
5932    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
5933                                             : RHSExpr->isValueDependent();
5934  }
5935
5936  cond.release(); expr1.release(); expr2.release();
5937  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
5938                                        resType, RPLoc,
5939                                        resType->isDependentType(),
5940                                        ValueDependent));
5941}
5942
5943//===----------------------------------------------------------------------===//
5944// Clang Extensions.
5945//===----------------------------------------------------------------------===//
5946
5947/// ActOnBlockStart - This callback is invoked when a block literal is started.
5948void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
5949  // Analyze block parameters.
5950  BlockSemaInfo *BSI = new BlockSemaInfo();
5951
5952  // Add BSI to CurBlock.
5953  BSI->PrevBlockInfo = CurBlock;
5954  CurBlock = BSI;
5955
5956  BSI->ReturnType = QualType();
5957  BSI->TheScope = BlockScope;
5958  BSI->hasBlockDeclRefExprs = false;
5959  BSI->hasPrototype = false;
5960  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
5961  CurFunctionNeedsScopeChecking = false;
5962
5963  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
5964  PushDeclContext(BlockScope, BSI->TheDecl);
5965}
5966
5967void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
5968  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
5969
5970  if (ParamInfo.getNumTypeObjects() == 0
5971      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
5972    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5973    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5974
5975    if (T->isArrayType()) {
5976      Diag(ParamInfo.getSourceRange().getBegin(),
5977           diag::err_block_returns_array);
5978      return;
5979    }
5980
5981    // The parameter list is optional, if there was none, assume ().
5982    if (!T->isFunctionType())
5983      T = Context.getFunctionType(T, NULL, 0, 0, 0);
5984
5985    CurBlock->hasPrototype = true;
5986    CurBlock->isVariadic = false;
5987    // Check for a valid sentinel attribute on this block.
5988    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5989      Diag(ParamInfo.getAttributes()->getLoc(),
5990           diag::warn_attribute_sentinel_not_variadic) << 1;
5991      // FIXME: remove the attribute.
5992    }
5993    QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType();
5994
5995    // Do not allow returning a objc interface by-value.
5996    if (RetTy->isObjCInterfaceType()) {
5997      Diag(ParamInfo.getSourceRange().getBegin(),
5998           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5999      return;
6000    }
6001    return;
6002  }
6003
6004  // Analyze arguments to block.
6005  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
6006         "Not a function declarator!");
6007  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
6008
6009  CurBlock->hasPrototype = FTI.hasPrototype;
6010  CurBlock->isVariadic = true;
6011
6012  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
6013  // no arguments, not a function that takes a single void argument.
6014  if (FTI.hasPrototype &&
6015      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6016     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
6017        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
6018    // empty arg list, don't push any params.
6019    CurBlock->isVariadic = false;
6020  } else if (FTI.hasPrototype) {
6021    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
6022      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
6023    CurBlock->isVariadic = FTI.isVariadic;
6024  }
6025  CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
6026                               CurBlock->Params.size());
6027  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
6028  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
6029  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
6030       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
6031    // If this has an identifier, add it to the scope stack.
6032    if ((*AI)->getIdentifier())
6033      PushOnScopeChains(*AI, CurBlock->TheScope);
6034
6035  // Check for a valid sentinel attribute on this block.
6036  if (!CurBlock->isVariadic &&
6037      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
6038    Diag(ParamInfo.getAttributes()->getLoc(),
6039         diag::warn_attribute_sentinel_not_variadic) << 1;
6040    // FIXME: remove the attribute.
6041  }
6042
6043  // Analyze the return type.
6044  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
6045  QualType RetTy = T->getAs<FunctionType>()->getResultType();
6046
6047  // Do not allow returning a objc interface by-value.
6048  if (RetTy->isObjCInterfaceType()) {
6049    Diag(ParamInfo.getSourceRange().getBegin(),
6050         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
6051  } else if (!RetTy->isDependentType())
6052    CurBlock->ReturnType = RetTy;
6053}
6054
6055/// ActOnBlockError - If there is an error parsing a block, this callback
6056/// is invoked to pop the information about the block from the action impl.
6057void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
6058  // Ensure that CurBlock is deleted.
6059  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
6060
6061  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
6062
6063  // Pop off CurBlock, handle nested blocks.
6064  PopDeclContext();
6065  CurBlock = CurBlock->PrevBlockInfo;
6066  // FIXME: Delete the ParmVarDecl objects as well???
6067}
6068
6069/// ActOnBlockStmtExpr - This is called when the body of a block statement
6070/// literal was successfully completed.  ^(int x){...}
6071Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
6072                                                StmtArg body, Scope *CurScope) {
6073  // If blocks are disabled, emit an error.
6074  if (!LangOpts.Blocks)
6075    Diag(CaretLoc, diag::err_blocks_disable);
6076
6077  // Ensure that CurBlock is deleted.
6078  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
6079
6080  PopDeclContext();
6081
6082  // Pop off CurBlock, handle nested blocks.
6083  CurBlock = CurBlock->PrevBlockInfo;
6084
6085  QualType RetTy = Context.VoidTy;
6086  if (!BSI->ReturnType.isNull())
6087    RetTy = BSI->ReturnType;
6088
6089  llvm::SmallVector<QualType, 8> ArgTypes;
6090  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
6091    ArgTypes.push_back(BSI->Params[i]->getType());
6092
6093  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
6094  QualType BlockTy;
6095  if (!BSI->hasPrototype)
6096    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
6097                                      NoReturn);
6098  else
6099    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
6100                                      BSI->isVariadic, 0, false, false, 0, 0,
6101                                      NoReturn);
6102
6103  // FIXME: Check that return/parameter types are complete/non-abstract
6104  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
6105  BlockTy = Context.getBlockPointerType(BlockTy);
6106
6107  // If needed, diagnose invalid gotos and switches in the block.
6108  if (CurFunctionNeedsScopeChecking)
6109    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
6110  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
6111
6112  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
6113  CheckFallThroughForBlock(BlockTy, BSI->TheDecl->getBody());
6114  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
6115                                       BSI->hasBlockDeclRefExprs));
6116}
6117
6118Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
6119                                        ExprArg expr, TypeTy *type,
6120                                        SourceLocation RPLoc) {
6121  QualType T = GetTypeFromParser(type);
6122  Expr *E = static_cast<Expr*>(expr.get());
6123  Expr *OrigExpr = E;
6124
6125  InitBuiltinVaListType();
6126
6127  // Get the va_list type
6128  QualType VaListType = Context.getBuiltinVaListType();
6129  if (VaListType->isArrayType()) {
6130    // Deal with implicit array decay; for example, on x86-64,
6131    // va_list is an array, but it's supposed to decay to
6132    // a pointer for va_arg.
6133    VaListType = Context.getArrayDecayedType(VaListType);
6134    // Make sure the input expression also decays appropriately.
6135    UsualUnaryConversions(E);
6136  } else {
6137    // Otherwise, the va_list argument must be an l-value because
6138    // it is modified by va_arg.
6139    if (!E->isTypeDependent() &&
6140        CheckForModifiableLvalue(E, BuiltinLoc, *this))
6141      return ExprError();
6142  }
6143
6144  if (!E->isTypeDependent() &&
6145      !Context.hasSameType(VaListType, E->getType())) {
6146    return ExprError(Diag(E->getLocStart(),
6147                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
6148      << OrigExpr->getType() << E->getSourceRange());
6149  }
6150
6151  // FIXME: Check that type is complete/non-abstract
6152  // FIXME: Warn if a non-POD type is passed in.
6153
6154  expr.release();
6155  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
6156                                       RPLoc));
6157}
6158
6159Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
6160  // The type of __null will be int or long, depending on the size of
6161  // pointers on the target.
6162  QualType Ty;
6163  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
6164    Ty = Context.IntTy;
6165  else
6166    Ty = Context.LongTy;
6167
6168  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
6169}
6170
6171static void
6172MakeObjCStringLiteralCodeModificationHint(Sema& SemaRef,
6173                                          QualType DstType,
6174                                          Expr *SrcExpr,
6175                                          CodeModificationHint &Hint) {
6176  if (!SemaRef.getLangOptions().ObjC1)
6177    return;
6178
6179  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
6180  if (!PT)
6181    return;
6182
6183  // Check if the destination is of type 'id'.
6184  if (!PT->isObjCIdType()) {
6185    // Check if the destination is the 'NSString' interface.
6186    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
6187    if (!ID || !ID->getIdentifier()->isStr("NSString"))
6188      return;
6189  }
6190
6191  // Strip off any parens and casts.
6192  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
6193  if (!SL || SL->isWide())
6194    return;
6195
6196  Hint = CodeModificationHint::CreateInsertion(SL->getLocStart(), "@");
6197}
6198
6199bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
6200                                    SourceLocation Loc,
6201                                    QualType DstType, QualType SrcType,
6202                                    Expr *SrcExpr, const char *Flavor) {
6203  // Decode the result (notice that AST's are still created for extensions).
6204  bool isInvalid = false;
6205  unsigned DiagKind;
6206  CodeModificationHint Hint;
6207
6208  switch (ConvTy) {
6209  default: assert(0 && "Unknown conversion type");
6210  case Compatible: return false;
6211  case PointerToInt:
6212    DiagKind = diag::ext_typecheck_convert_pointer_int;
6213    break;
6214  case IntToPointer:
6215    DiagKind = diag::ext_typecheck_convert_int_pointer;
6216    break;
6217  case IncompatiblePointer:
6218    MakeObjCStringLiteralCodeModificationHint(*this, DstType, SrcExpr, Hint);
6219    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
6220    break;
6221  case IncompatiblePointerSign:
6222    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
6223    break;
6224  case FunctionVoidPointer:
6225    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
6226    break;
6227  case CompatiblePointerDiscardsQualifiers:
6228    // If the qualifiers lost were because we were applying the
6229    // (deprecated) C++ conversion from a string literal to a char*
6230    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
6231    // Ideally, this check would be performed in
6232    // CheckPointerTypesForAssignment. However, that would require a
6233    // bit of refactoring (so that the second argument is an
6234    // expression, rather than a type), which should be done as part
6235    // of a larger effort to fix CheckPointerTypesForAssignment for
6236    // C++ semantics.
6237    if (getLangOptions().CPlusPlus &&
6238        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
6239      return false;
6240    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
6241    break;
6242  case IncompatibleNestedPointerQualifiers:
6243    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
6244    break;
6245  case IntToBlockPointer:
6246    DiagKind = diag::err_int_to_block_pointer;
6247    break;
6248  case IncompatibleBlockPointer:
6249    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
6250    break;
6251  case IncompatibleObjCQualifiedId:
6252    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
6253    // it can give a more specific diagnostic.
6254    DiagKind = diag::warn_incompatible_qualified_id;
6255    break;
6256  case IncompatibleVectors:
6257    DiagKind = diag::warn_incompatible_vectors;
6258    break;
6259  case Incompatible:
6260    DiagKind = diag::err_typecheck_convert_incompatible;
6261    isInvalid = true;
6262    break;
6263  }
6264
6265  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
6266    << SrcExpr->getSourceRange() << Hint;
6267  return isInvalid;
6268}
6269
6270bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
6271  llvm::APSInt ICEResult;
6272  if (E->isIntegerConstantExpr(ICEResult, Context)) {
6273    if (Result)
6274      *Result = ICEResult;
6275    return false;
6276  }
6277
6278  Expr::EvalResult EvalResult;
6279
6280  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
6281      EvalResult.HasSideEffects) {
6282    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
6283
6284    if (EvalResult.Diag) {
6285      // We only show the note if it's not the usual "invalid subexpression"
6286      // or if it's actually in a subexpression.
6287      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
6288          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
6289        Diag(EvalResult.DiagLoc, EvalResult.Diag);
6290    }
6291
6292    return true;
6293  }
6294
6295  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
6296    E->getSourceRange();
6297
6298  if (EvalResult.Diag &&
6299      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
6300    Diag(EvalResult.DiagLoc, EvalResult.Diag);
6301
6302  if (Result)
6303    *Result = EvalResult.Val.getInt();
6304  return false;
6305}
6306
6307Sema::ExpressionEvaluationContext
6308Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
6309  // Introduce a new set of potentially referenced declarations to the stack.
6310  if (NewContext == PotentiallyPotentiallyEvaluated)
6311    PotentiallyReferencedDeclStack.push_back(PotentiallyReferencedDecls());
6312
6313  std::swap(ExprEvalContext, NewContext);
6314  return NewContext;
6315}
6316
6317void
6318Sema::PopExpressionEvaluationContext(ExpressionEvaluationContext OldContext,
6319                                     ExpressionEvaluationContext NewContext) {
6320  ExprEvalContext = NewContext;
6321
6322  if (OldContext == PotentiallyPotentiallyEvaluated) {
6323    // Mark any remaining declarations in the current position of the stack
6324    // as "referenced". If they were not meant to be referenced, semantic
6325    // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
6326    PotentiallyReferencedDecls RemainingDecls;
6327    RemainingDecls.swap(PotentiallyReferencedDeclStack.back());
6328    PotentiallyReferencedDeclStack.pop_back();
6329
6330    for (PotentiallyReferencedDecls::iterator I = RemainingDecls.begin(),
6331                                           IEnd = RemainingDecls.end();
6332         I != IEnd; ++I)
6333      MarkDeclarationReferenced(I->first, I->second);
6334  }
6335}
6336
6337/// \brief Note that the given declaration was referenced in the source code.
6338///
6339/// This routine should be invoke whenever a given declaration is referenced
6340/// in the source code, and where that reference occurred. If this declaration
6341/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
6342/// C99 6.9p3), then the declaration will be marked as used.
6343///
6344/// \param Loc the location where the declaration was referenced.
6345///
6346/// \param D the declaration that has been referenced by the source code.
6347void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
6348  assert(D && "No declaration?");
6349
6350  if (D->isUsed())
6351    return;
6352
6353  // Mark a parameter or variable declaration "used", regardless of whether we're in a
6354  // template or not. The reason for this is that unevaluated expressions
6355  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
6356  // -Wunused-parameters)
6357  if (isa<ParmVarDecl>(D) ||
6358      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod()))
6359    D->setUsed(true);
6360
6361  // Do not mark anything as "used" within a dependent context; wait for
6362  // an instantiation.
6363  if (CurContext->isDependentContext())
6364    return;
6365
6366  switch (ExprEvalContext) {
6367    case Unevaluated:
6368      // We are in an expression that is not potentially evaluated; do nothing.
6369      return;
6370
6371    case PotentiallyEvaluated:
6372      // We are in a potentially-evaluated expression, so this declaration is
6373      // "used"; handle this below.
6374      break;
6375
6376    case PotentiallyPotentiallyEvaluated:
6377      // We are in an expression that may be potentially evaluated; queue this
6378      // declaration reference until we know whether the expression is
6379      // potentially evaluated.
6380      PotentiallyReferencedDeclStack.back().push_back(std::make_pair(Loc, D));
6381      return;
6382  }
6383
6384  // Note that this declaration has been used.
6385  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
6386    unsigned TypeQuals;
6387    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
6388        if (!Constructor->isUsed())
6389          DefineImplicitDefaultConstructor(Loc, Constructor);
6390    } else if (Constructor->isImplicit() &&
6391               Constructor->isCopyConstructor(Context, TypeQuals)) {
6392      if (!Constructor->isUsed())
6393        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
6394    }
6395  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
6396    if (Destructor->isImplicit() && !Destructor->isUsed())
6397      DefineImplicitDestructor(Loc, Destructor);
6398
6399  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
6400    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
6401        MethodDecl->getOverloadedOperator() == OO_Equal) {
6402      if (!MethodDecl->isUsed())
6403        DefineImplicitOverloadedAssign(Loc, MethodDecl);
6404    }
6405  }
6406  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
6407    // Implicit instantiation of function templates and member functions of
6408    // class templates.
6409    if (!Function->getBody() && Function->isImplicitlyInstantiable()) {
6410      bool AlreadyInstantiated = false;
6411      if (FunctionTemplateSpecializationInfo *SpecInfo
6412                                = Function->getTemplateSpecializationInfo()) {
6413        if (SpecInfo->getPointOfInstantiation().isInvalid())
6414          SpecInfo->setPointOfInstantiation(Loc);
6415        else if (SpecInfo->getTemplateSpecializationKind()
6416                   == TSK_ImplicitInstantiation)
6417          AlreadyInstantiated = true;
6418      } else if (MemberSpecializationInfo *MSInfo
6419                                  = Function->getMemberSpecializationInfo()) {
6420        if (MSInfo->getPointOfInstantiation().isInvalid())
6421          MSInfo->setPointOfInstantiation(Loc);
6422        else if (MSInfo->getTemplateSpecializationKind()
6423                   == TSK_ImplicitInstantiation)
6424          AlreadyInstantiated = true;
6425      }
6426
6427      if (!AlreadyInstantiated)
6428        PendingImplicitInstantiations.push_back(std::make_pair(Function, Loc));
6429    }
6430
6431    // FIXME: keep track of references to static functions
6432    Function->setUsed(true);
6433    return;
6434  }
6435
6436  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
6437    // Implicit instantiation of static data members of class templates.
6438    if (Var->isStaticDataMember() &&
6439        Var->getInstantiatedFromStaticDataMember()) {
6440      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
6441      assert(MSInfo && "Missing member specialization information?");
6442      if (MSInfo->getPointOfInstantiation().isInvalid() &&
6443          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
6444        MSInfo->setPointOfInstantiation(Loc);
6445        PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
6446      }
6447    }
6448
6449    // FIXME: keep track of references to static data?
6450
6451    D->setUsed(true);
6452    return;
6453  }
6454}
6455
6456bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
6457                               CallExpr *CE, FunctionDecl *FD) {
6458  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
6459    return false;
6460
6461  PartialDiagnostic Note =
6462    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
6463    << FD->getDeclName() : PDiag();
6464  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
6465
6466  if (RequireCompleteType(Loc, ReturnType,
6467                          FD ?
6468                          PDiag(diag::err_call_function_incomplete_return)
6469                            << CE->getSourceRange() << FD->getDeclName() :
6470                          PDiag(diag::err_call_incomplete_return)
6471                            << CE->getSourceRange(),
6472                          std::make_pair(NoteLoc, Note)))
6473    return true;
6474
6475  return false;
6476}
6477
6478// Diagnose the common s/=/==/ typo.  Note that adding parentheses
6479// will prevent this condition from triggering, which is what we want.
6480void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
6481  SourceLocation Loc;
6482
6483  unsigned diagnostic = diag::warn_condition_is_assignment;
6484
6485  if (isa<BinaryOperator>(E)) {
6486    BinaryOperator *Op = cast<BinaryOperator>(E);
6487    if (Op->getOpcode() != BinaryOperator::Assign)
6488      return;
6489
6490    // Greylist some idioms by putting them into a warning subcategory.
6491    if (ObjCMessageExpr *ME
6492          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
6493      Selector Sel = ME->getSelector();
6494
6495      // self = [<foo> init...]
6496      if (isSelfExpr(Op->getLHS())
6497          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
6498        diagnostic = diag::warn_condition_is_idiomatic_assignment;
6499
6500      // <foo> = [<bar> nextObject]
6501      else if (Sel.isUnarySelector() &&
6502               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
6503        diagnostic = diag::warn_condition_is_idiomatic_assignment;
6504    }
6505
6506    Loc = Op->getOperatorLoc();
6507  } else if (isa<CXXOperatorCallExpr>(E)) {
6508    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
6509    if (Op->getOperator() != OO_Equal)
6510      return;
6511
6512    Loc = Op->getOperatorLoc();
6513  } else {
6514    // Not an assignment.
6515    return;
6516  }
6517
6518  SourceLocation Open = E->getSourceRange().getBegin();
6519  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
6520
6521  Diag(Loc, diagnostic)
6522    << E->getSourceRange()
6523    << CodeModificationHint::CreateInsertion(Open, "(")
6524    << CodeModificationHint::CreateInsertion(Close, ")");
6525}
6526
6527bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
6528  DiagnoseAssignmentAsCondition(E);
6529
6530  if (!E->isTypeDependent()) {
6531    DefaultFunctionArrayConversion(E);
6532
6533    QualType T = E->getType();
6534
6535    if (getLangOptions().CPlusPlus) {
6536      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
6537        return true;
6538    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
6539      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
6540        << T << E->getSourceRange();
6541      return true;
6542    }
6543  }
6544
6545  return false;
6546}
6547