SemaExpr.cpp revision ecce1314380e740bbe303cc68bf8f6b57480b09a
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>(Context)) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>(Context);
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(Context,
62                                                    MD->getSelector(),
63                                                    MD->isInstanceMethod());
64          isSilenced |= MD && MD->getAttr<DeprecatedAttr>(Context);
65        }
66      }
67    }
68
69    if (!isSilenced)
70      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
71  }
72
73  // See if this is a deleted function.
74  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
75    if (FD->isDeleted()) {
76      Diag(Loc, diag::err_deleted_function_use);
77      Diag(D->getLocation(), diag::note_unavailable_here) << true;
78      return true;
79    }
80  }
81
82  // See if the decl is unavailable
83  if (D->getAttr<UnavailableAttr>(Context)) {
84    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
85    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
86  }
87
88  return false;
89}
90
91/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
92/// (and other functions in future), which have been declared with sentinel
93/// attribute. It warns if call does not have the sentinel argument.
94///
95void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
96                                 Expr **Args, unsigned NumArgs)
97{
98  const SentinelAttr *attr = D->getAttr<SentinelAttr>(Context);
99  if (!attr)
100    return;
101  int sentinelPos = attr->getSentinel();
102  int nullPos = attr->getNullPos();
103
104  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
105  // base class. Then we won't be needing two versions of the same code.
106  unsigned int i = 0;
107  bool warnNotEnoughArgs = false;
108  int isMethod = 0;
109  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
110    // skip over named parameters.
111    ObjCMethodDecl::param_iterator P, E = MD->param_end();
112    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
113      if (nullPos)
114        --nullPos;
115      else
116        ++i;
117    }
118    warnNotEnoughArgs = (P != E || i >= NumArgs);
119    isMethod = 1;
120  }
121  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
122    // skip over named parameters.
123    ObjCMethodDecl::param_iterator P, E = FD->param_end();
124    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
125      if (nullPos)
126        --nullPos;
127      else
128        ++i;
129    }
130    warnNotEnoughArgs = (P != E || i >= NumArgs);
131  }
132  else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
133    // block or function pointer call.
134    QualType Ty = V->getType();
135    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
136      const FunctionType *FT = Ty->isFunctionPointerType()
137      ? Ty->getAsPointerType()->getPointeeType()->getAsFunctionType()
138      : Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType();
139      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
140        unsigned NumArgsInProto = Proto->getNumArgs();
141        unsigned k;
142        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
143          if (nullPos)
144            --nullPos;
145          else
146            ++i;
147        }
148        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
149      }
150      if (Ty->isBlockPointerType())
151        isMethod = 2;
152    }
153    else
154      return;
155  }
156  else
157    return;
158
159  if (warnNotEnoughArgs) {
160    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
161    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
162    return;
163  }
164  int sentinel = i;
165  while (sentinelPos > 0 && i < NumArgs-1) {
166    --sentinelPos;
167    ++i;
168  }
169  if (sentinelPos > 0) {
170    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
171    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
172    return;
173  }
174  while (i < NumArgs-1) {
175    ++i;
176    ++sentinel;
177  }
178  Expr *sentinelExpr = Args[sentinel];
179  if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() ||
180                       !sentinelExpr->isNullPointerConstant(Context))) {
181    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
182    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
183  }
184  return;
185}
186
187SourceRange Sema::getExprRange(ExprTy *E) const {
188  Expr *Ex = (Expr *)E;
189  return Ex? Ex->getSourceRange() : SourceRange();
190}
191
192//===----------------------------------------------------------------------===//
193//  Standard Promotions and Conversions
194//===----------------------------------------------------------------------===//
195
196/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
197void Sema::DefaultFunctionArrayConversion(Expr *&E) {
198  QualType Ty = E->getType();
199  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
200
201  if (Ty->isFunctionType())
202    ImpCastExprToType(E, Context.getPointerType(Ty));
203  else if (Ty->isArrayType()) {
204    // In C90 mode, arrays only promote to pointers if the array expression is
205    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
206    // type 'array of type' is converted to an expression that has type 'pointer
207    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
208    // that has type 'array of type' ...".  The relevant change is "an lvalue"
209    // (C90) to "an expression" (C99).
210    //
211    // C++ 4.2p1:
212    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
213    // T" can be converted to an rvalue of type "pointer to T".
214    //
215    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
216        E->isLvalue(Context) == Expr::LV_Valid)
217      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
218  }
219}
220
221/// \brief Whether this is a promotable bitfield reference according
222/// to C99 6.3.1.1p2, bullet 2.
223///
224/// \returns the type this bit-field will promote to, or NULL if no
225/// promotion occurs.
226static QualType isPromotableBitField(Expr *E, ASTContext &Context) {
227  FieldDecl *Field = E->getBitField();
228  if (!Field)
229    return QualType();
230
231  const BuiltinType *BT = Field->getType()->getAsBuiltinType();
232  if (!BT)
233    return QualType();
234
235  if (BT->getKind() != BuiltinType::Bool &&
236      BT->getKind() != BuiltinType::Int &&
237      BT->getKind() != BuiltinType::UInt)
238    return QualType();
239
240  llvm::APSInt BitWidthAP;
241  if (!Field->getBitWidth()->isIntegerConstantExpr(BitWidthAP, Context))
242    return QualType();
243
244  uint64_t BitWidth = BitWidthAP.getZExtValue();
245  uint64_t IntSize = Context.getTypeSize(Context.IntTy);
246  if (BitWidth < IntSize ||
247      (Field->getType()->isSignedIntegerType() && BitWidth == IntSize))
248    return Context.IntTy;
249
250  if (BitWidth == IntSize && Field->getType()->isUnsignedIntegerType())
251    return Context.UnsignedIntTy;
252
253  return QualType();
254}
255
256/// UsualUnaryConversions - Performs various conversions that are common to most
257/// operators (C99 6.3). The conversions of array and function types are
258/// sometimes surpressed. For example, the array->pointer conversion doesn't
259/// apply if the array is an argument to the sizeof or address (&) operators.
260/// In these instances, this routine should *not* be called.
261Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
262  QualType Ty = Expr->getType();
263  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
264
265  // C99 6.3.1.1p2:
266  //
267  //   The following may be used in an expression wherever an int or
268  //   unsigned int may be used:
269  //     - an object or expression with an integer type whose integer
270  //       conversion rank is less than or equal to the rank of int
271  //       and unsigned int.
272  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
273  //
274  //   If an int can represent all values of the original type, the
275  //   value is converted to an int; otherwise, it is converted to an
276  //   unsigned int. These are called the integer promotions. All
277  //   other types are unchanged by the integer promotions.
278  if (Ty->isPromotableIntegerType()) {
279    ImpCastExprToType(Expr, Context.IntTy);
280    return Expr;
281  } else {
282    QualType T = isPromotableBitField(Expr, Context);
283    if (!T.isNull()) {
284      ImpCastExprToType(Expr, T);
285      return Expr;
286    }
287  }
288
289  DefaultFunctionArrayConversion(Expr);
290  return Expr;
291}
292
293/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
294/// do not have a prototype. Arguments that have type float are promoted to
295/// double. All other argument types are converted by UsualUnaryConversions().
296void Sema::DefaultArgumentPromotion(Expr *&Expr) {
297  QualType Ty = Expr->getType();
298  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
299
300  // If this is a 'float' (CVR qualified or typedef) promote to double.
301  if (const BuiltinType *BT = Ty->getAsBuiltinType())
302    if (BT->getKind() == BuiltinType::Float)
303      return ImpCastExprToType(Expr, Context.DoubleTy);
304
305  UsualUnaryConversions(Expr);
306}
307
308/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
309/// will warn if the resulting type is not a POD type, and rejects ObjC
310/// interfaces passed by value.  This returns true if the argument type is
311/// completely illegal.
312bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
313  DefaultArgumentPromotion(Expr);
314
315  if (Expr->getType()->isObjCInterfaceType()) {
316    Diag(Expr->getLocStart(),
317         diag::err_cannot_pass_objc_interface_to_vararg)
318      << Expr->getType() << CT;
319    return true;
320  }
321
322  if (!Expr->getType()->isPODType())
323    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
324      << Expr->getType() << CT;
325
326  return false;
327}
328
329
330/// UsualArithmeticConversions - Performs various conversions that are common to
331/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
332/// routine returns the first non-arithmetic type found. The client is
333/// responsible for emitting appropriate error diagnostics.
334/// FIXME: verify the conversion rules for "complex int" are consistent with
335/// GCC.
336QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
337                                          bool isCompAssign) {
338  if (!isCompAssign)
339    UsualUnaryConversions(lhsExpr);
340
341  UsualUnaryConversions(rhsExpr);
342
343  // For conversion purposes, we ignore any qualifiers.
344  // For example, "const float" and "float" are equivalent.
345  QualType lhs =
346    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
347  QualType rhs =
348    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
349
350  // If both types are identical, no conversion is needed.
351  if (lhs == rhs)
352    return lhs;
353
354  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
355  // The caller can deal with this (e.g. pointer + int).
356  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
357    return lhs;
358
359  // Perform bitfield promotions.
360  QualType LHSBitfieldPromoteTy = isPromotableBitField(lhsExpr, Context);
361  if (!LHSBitfieldPromoteTy.isNull())
362    lhs = LHSBitfieldPromoteTy;
363  QualType RHSBitfieldPromoteTy = isPromotableBitField(rhsExpr, Context);
364  if (!RHSBitfieldPromoteTy.isNull())
365    rhs = RHSBitfieldPromoteTy;
366
367  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
368  if (!isCompAssign)
369    ImpCastExprToType(lhsExpr, destType);
370  ImpCastExprToType(rhsExpr, destType);
371  return destType;
372}
373
374QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
375  // Perform the usual unary conversions. We do this early so that
376  // integral promotions to "int" can allow us to exit early, in the
377  // lhs == rhs check. Also, for conversion purposes, we ignore any
378  // qualifiers.  For example, "const float" and "float" are
379  // equivalent.
380  if (lhs->isPromotableIntegerType())
381    lhs = Context.IntTy;
382  else
383    lhs = lhs.getUnqualifiedType();
384  if (rhs->isPromotableIntegerType())
385    rhs = Context.IntTy;
386  else
387    rhs = rhs.getUnqualifiedType();
388
389  // If both types are identical, no conversion is needed.
390  if (lhs == rhs)
391    return lhs;
392
393  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
394  // The caller can deal with this (e.g. pointer + int).
395  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
396    return lhs;
397
398  // At this point, we have two different arithmetic types.
399
400  // Handle complex types first (C99 6.3.1.8p1).
401  if (lhs->isComplexType() || rhs->isComplexType()) {
402    // if we have an integer operand, the result is the complex type.
403    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
404      // convert the rhs to the lhs complex type.
405      return lhs;
406    }
407    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
408      // convert the lhs to the rhs complex type.
409      return rhs;
410    }
411    // This handles complex/complex, complex/float, or float/complex.
412    // When both operands are complex, the shorter operand is converted to the
413    // type of the longer, and that is the type of the result. This corresponds
414    // to what is done when combining two real floating-point operands.
415    // The fun begins when size promotion occur across type domains.
416    // From H&S 6.3.4: When one operand is complex and the other is a real
417    // floating-point type, the less precise type is converted, within it's
418    // real or complex domain, to the precision of the other type. For example,
419    // when combining a "long double" with a "double _Complex", the
420    // "double _Complex" is promoted to "long double _Complex".
421    int result = Context.getFloatingTypeOrder(lhs, rhs);
422
423    if (result > 0) { // The left side is bigger, convert rhs.
424      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
425    } else if (result < 0) { // The right side is bigger, convert lhs.
426      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
427    }
428    // At this point, lhs and rhs have the same rank/size. Now, make sure the
429    // domains match. This is a requirement for our implementation, C99
430    // does not require this promotion.
431    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
432      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
433        return rhs;
434      } else { // handle "_Complex double, double".
435        return lhs;
436      }
437    }
438    return lhs; // The domain/size match exactly.
439  }
440  // Now handle "real" floating types (i.e. float, double, long double).
441  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
442    // if we have an integer operand, the result is the real floating type.
443    if (rhs->isIntegerType()) {
444      // convert rhs to the lhs floating point type.
445      return lhs;
446    }
447    if (rhs->isComplexIntegerType()) {
448      // convert rhs to the complex floating point type.
449      return Context.getComplexType(lhs);
450    }
451    if (lhs->isIntegerType()) {
452      // convert lhs to the rhs floating point type.
453      return rhs;
454    }
455    if (lhs->isComplexIntegerType()) {
456      // convert lhs to the complex floating point type.
457      return Context.getComplexType(rhs);
458    }
459    // We have two real floating types, float/complex combos were handled above.
460    // Convert the smaller operand to the bigger result.
461    int result = Context.getFloatingTypeOrder(lhs, rhs);
462    if (result > 0) // convert the rhs
463      return lhs;
464    assert(result < 0 && "illegal float comparison");
465    return rhs;   // convert the lhs
466  }
467  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
468    // Handle GCC complex int extension.
469    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
470    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
471
472    if (lhsComplexInt && rhsComplexInt) {
473      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
474                                      rhsComplexInt->getElementType()) >= 0)
475        return lhs; // convert the rhs
476      return rhs;
477    } else if (lhsComplexInt && rhs->isIntegerType()) {
478      // convert the rhs to the lhs complex type.
479      return lhs;
480    } else if (rhsComplexInt && lhs->isIntegerType()) {
481      // convert the lhs to the rhs complex type.
482      return rhs;
483    }
484  }
485  // Finally, we have two differing integer types.
486  // The rules for this case are in C99 6.3.1.8
487  int compare = Context.getIntegerTypeOrder(lhs, rhs);
488  bool lhsSigned = lhs->isSignedIntegerType(),
489       rhsSigned = rhs->isSignedIntegerType();
490  QualType destType;
491  if (lhsSigned == rhsSigned) {
492    // Same signedness; use the higher-ranked type
493    destType = compare >= 0 ? lhs : rhs;
494  } else if (compare != (lhsSigned ? 1 : -1)) {
495    // The unsigned type has greater than or equal rank to the
496    // signed type, so use the unsigned type
497    destType = lhsSigned ? rhs : lhs;
498  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
499    // The two types are different widths; if we are here, that
500    // means the signed type is larger than the unsigned type, so
501    // use the signed type.
502    destType = lhsSigned ? lhs : rhs;
503  } else {
504    // The signed type is higher-ranked than the unsigned type,
505    // but isn't actually any bigger (like unsigned int and long
506    // on most 32-bit systems).  Use the unsigned type corresponding
507    // to the signed type.
508    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
509  }
510  return destType;
511}
512
513//===----------------------------------------------------------------------===//
514//  Semantic Analysis for various Expression Types
515//===----------------------------------------------------------------------===//
516
517
518/// ActOnStringLiteral - The specified tokens were lexed as pasted string
519/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
520/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
521/// multiple tokens.  However, the common case is that StringToks points to one
522/// string.
523///
524Action::OwningExprResult
525Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
526  assert(NumStringToks && "Must have at least one string!");
527
528  StringLiteralParser Literal(StringToks, NumStringToks, PP);
529  if (Literal.hadError)
530    return ExprError();
531
532  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
533  for (unsigned i = 0; i != NumStringToks; ++i)
534    StringTokLocs.push_back(StringToks[i].getLocation());
535
536  QualType StrTy = Context.CharTy;
537  if (Literal.AnyWide) StrTy = Context.getWCharType();
538  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
539
540  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
541  if (getLangOptions().CPlusPlus)
542    StrTy.addConst();
543
544  // Get an array type for the string, according to C99 6.4.5.  This includes
545  // the nul terminator character as well as the string length for pascal
546  // strings.
547  StrTy = Context.getConstantArrayType(StrTy,
548                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
549                                       ArrayType::Normal, 0);
550
551  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
552  return Owned(StringLiteral::Create(Context, Literal.GetString(),
553                                     Literal.GetStringLength(),
554                                     Literal.AnyWide, StrTy,
555                                     &StringTokLocs[0],
556                                     StringTokLocs.size()));
557}
558
559/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
560/// CurBlock to VD should cause it to be snapshotted (as we do for auto
561/// variables defined outside the block) or false if this is not needed (e.g.
562/// for values inside the block or for globals).
563///
564/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
565/// up-to-date.
566///
567static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
568                                              ValueDecl *VD) {
569  // If the value is defined inside the block, we couldn't snapshot it even if
570  // we wanted to.
571  if (CurBlock->TheDecl == VD->getDeclContext())
572    return false;
573
574  // If this is an enum constant or function, it is constant, don't snapshot.
575  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
576    return false;
577
578  // If this is a reference to an extern, static, or global variable, no need to
579  // snapshot it.
580  // FIXME: What about 'const' variables in C++?
581  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
582    if (!Var->hasLocalStorage())
583      return false;
584
585  // Blocks that have these can't be constant.
586  CurBlock->hasBlockDeclRefExprs = true;
587
588  // If we have nested blocks, the decl may be declared in an outer block (in
589  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
590  // be defined outside all of the current blocks (in which case the blocks do
591  // all get the bit).  Walk the nesting chain.
592  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
593       NextBlock = NextBlock->PrevBlockInfo) {
594    // If we found the defining block for the variable, don't mark the block as
595    // having a reference outside it.
596    if (NextBlock->TheDecl == VD->getDeclContext())
597      break;
598
599    // Otherwise, the DeclRef from the inner block causes the outer one to need
600    // a snapshot as well.
601    NextBlock->hasBlockDeclRefExprs = true;
602  }
603
604  return true;
605}
606
607
608
609/// ActOnIdentifierExpr - The parser read an identifier in expression context,
610/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
611/// identifier is used in a function call context.
612/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
613/// class or namespace that the identifier must be a member of.
614Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
615                                                 IdentifierInfo &II,
616                                                 bool HasTrailingLParen,
617                                                 const CXXScopeSpec *SS,
618                                                 bool isAddressOfOperand) {
619  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
620                                  isAddressOfOperand);
621}
622
623/// BuildDeclRefExpr - Build either a DeclRefExpr or a
624/// QualifiedDeclRefExpr based on whether or not SS is a
625/// nested-name-specifier.
626Sema::OwningExprResult
627Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
628                       bool TypeDependent, bool ValueDependent,
629                       const CXXScopeSpec *SS) {
630
631  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
632    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
633      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
634        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
635          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
636            << D->getIdentifier() << FD->getDeclName();
637          Diag(D->getLocation(), diag::note_local_variable_declared_here)
638            << D->getIdentifier();
639          return ExprError();
640        }
641      }
642    }
643  }
644
645  MarkDeclarationReferenced(Loc, D);
646
647  Expr *E;
648  if (SS && !SS->isEmpty()) {
649    E = new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
650                                          ValueDependent, SS->getRange(),
651                  static_cast<NestedNameSpecifier *>(SS->getScopeRep()));
652  } else
653    E = new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
654
655  return Owned(E);
656}
657
658/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
659/// variable corresponding to the anonymous union or struct whose type
660/// is Record.
661static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
662                                             RecordDecl *Record) {
663  assert(Record->isAnonymousStructOrUnion() &&
664         "Record must be an anonymous struct or union!");
665
666  // FIXME: Once Decls are directly linked together, this will be an O(1)
667  // operation rather than a slow walk through DeclContext's vector (which
668  // itself will be eliminated). DeclGroups might make this even better.
669  DeclContext *Ctx = Record->getDeclContext();
670  for (DeclContext::decl_iterator D = Ctx->decls_begin(Context),
671                               DEnd = Ctx->decls_end(Context);
672       D != DEnd; ++D) {
673    if (*D == Record) {
674      // The object for the anonymous struct/union directly
675      // follows its type in the list of declarations.
676      ++D;
677      assert(D != DEnd && "Missing object for anonymous record");
678      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
679      return *D;
680    }
681  }
682
683  assert(false && "Missing object for anonymous record");
684  return 0;
685}
686
687/// \brief Given a field that represents a member of an anonymous
688/// struct/union, build the path from that field's context to the
689/// actual member.
690///
691/// Construct the sequence of field member references we'll have to
692/// perform to get to the field in the anonymous union/struct. The
693/// list of members is built from the field outward, so traverse it
694/// backwards to go from an object in the current context to the field
695/// we found.
696///
697/// \returns The variable from which the field access should begin,
698/// for an anonymous struct/union that is not a member of another
699/// class. Otherwise, returns NULL.
700VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
701                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
702  assert(Field->getDeclContext()->isRecord() &&
703         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
704         && "Field must be stored inside an anonymous struct or union");
705
706  Path.push_back(Field);
707  VarDecl *BaseObject = 0;
708  DeclContext *Ctx = Field->getDeclContext();
709  do {
710    RecordDecl *Record = cast<RecordDecl>(Ctx);
711    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
712    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
713      Path.push_back(AnonField);
714    else {
715      BaseObject = cast<VarDecl>(AnonObject);
716      break;
717    }
718    Ctx = Ctx->getParent();
719  } while (Ctx->isRecord() &&
720           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
721
722  return BaseObject;
723}
724
725Sema::OwningExprResult
726Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
727                                               FieldDecl *Field,
728                                               Expr *BaseObjectExpr,
729                                               SourceLocation OpLoc) {
730  llvm::SmallVector<FieldDecl *, 4> AnonFields;
731  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
732                                                            AnonFields);
733
734  // Build the expression that refers to the base object, from
735  // which we will build a sequence of member references to each
736  // of the anonymous union objects and, eventually, the field we
737  // found via name lookup.
738  bool BaseObjectIsPointer = false;
739  unsigned ExtraQuals = 0;
740  if (BaseObject) {
741    // BaseObject is an anonymous struct/union variable (and is,
742    // therefore, not part of another non-anonymous record).
743    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
744    MarkDeclarationReferenced(Loc, BaseObject);
745    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
746                                               SourceLocation());
747    ExtraQuals
748      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
749  } else if (BaseObjectExpr) {
750    // The caller provided the base object expression. Determine
751    // whether its a pointer and whether it adds any qualifiers to the
752    // anonymous struct/union fields we're looking into.
753    QualType ObjectType = BaseObjectExpr->getType();
754    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
755      BaseObjectIsPointer = true;
756      ObjectType = ObjectPtr->getPointeeType();
757    }
758    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
759  } else {
760    // We've found a member of an anonymous struct/union that is
761    // inside a non-anonymous struct/union, so in a well-formed
762    // program our base object expression is "this".
763    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
764      if (!MD->isStatic()) {
765        QualType AnonFieldType
766          = Context.getTagDeclType(
767                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
768        QualType ThisType = Context.getTagDeclType(MD->getParent());
769        if ((Context.getCanonicalType(AnonFieldType)
770               == Context.getCanonicalType(ThisType)) ||
771            IsDerivedFrom(ThisType, AnonFieldType)) {
772          // Our base object expression is "this".
773          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
774                                                     MD->getThisType(Context));
775          BaseObjectIsPointer = true;
776        }
777      } else {
778        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
779          << Field->getDeclName());
780      }
781      ExtraQuals = MD->getTypeQualifiers();
782    }
783
784    if (!BaseObjectExpr)
785      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
786        << Field->getDeclName());
787  }
788
789  // Build the implicit member references to the field of the
790  // anonymous struct/union.
791  Expr *Result = BaseObjectExpr;
792  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
793         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
794       FI != FIEnd; ++FI) {
795    QualType MemberType = (*FI)->getType();
796    if (!(*FI)->isMutable()) {
797      unsigned combinedQualifiers
798        = MemberType.getCVRQualifiers() | ExtraQuals;
799      MemberType = MemberType.getQualifiedType(combinedQualifiers);
800    }
801    MarkDeclarationReferenced(Loc, *FI);
802    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
803                                      OpLoc, MemberType);
804    BaseObjectIsPointer = false;
805    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
806  }
807
808  return Owned(Result);
809}
810
811/// ActOnDeclarationNameExpr - The parser has read some kind of name
812/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
813/// performs lookup on that name and returns an expression that refers
814/// to that name. This routine isn't directly called from the parser,
815/// because the parser doesn't know about DeclarationName. Rather,
816/// this routine is called by ActOnIdentifierExpr,
817/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
818/// which form the DeclarationName from the corresponding syntactic
819/// forms.
820///
821/// HasTrailingLParen indicates whether this identifier is used in a
822/// function call context.  LookupCtx is only used for a C++
823/// qualified-id (foo::bar) to indicate the class or namespace that
824/// the identifier must be a member of.
825///
826/// isAddressOfOperand means that this expression is the direct operand
827/// of an address-of operator. This matters because this is the only
828/// situation where a qualified name referencing a non-static member may
829/// appear outside a member function of this class.
830Sema::OwningExprResult
831Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
832                               DeclarationName Name, bool HasTrailingLParen,
833                               const CXXScopeSpec *SS,
834                               bool isAddressOfOperand) {
835  // Could be enum-constant, value decl, instance variable, etc.
836  if (SS && SS->isInvalid())
837    return ExprError();
838
839  // C++ [temp.dep.expr]p3:
840  //   An id-expression is type-dependent if it contains:
841  //     -- a nested-name-specifier that contains a class-name that
842  //        names a dependent type.
843  // FIXME: Member of the current instantiation.
844  if (SS && isDependentScopeSpecifier(*SS)) {
845    return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
846                                                     Loc, SS->getRange(),
847                static_cast<NestedNameSpecifier *>(SS->getScopeRep())));
848  }
849
850  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
851                                         false, true, Loc);
852
853  if (Lookup.isAmbiguous()) {
854    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
855                            SS && SS->isSet() ? SS->getRange()
856                                              : SourceRange());
857    return ExprError();
858  }
859
860  NamedDecl *D = Lookup.getAsDecl();
861
862  // If this reference is in an Objective-C method, then ivar lookup happens as
863  // well.
864  IdentifierInfo *II = Name.getAsIdentifierInfo();
865  if (II && getCurMethodDecl()) {
866    // There are two cases to handle here.  1) scoped lookup could have failed,
867    // in which case we should look for an ivar.  2) scoped lookup could have
868    // found a decl, but that decl is outside the current instance method (i.e.
869    // a global variable).  In these two cases, we do a lookup for an ivar with
870    // this name, if the lookup sucedes, we replace it our current decl.
871    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
872      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
873      ObjCInterfaceDecl *ClassDeclared;
874      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
875                                                           ClassDeclared)) {
876        // Check if referencing a field with __attribute__((deprecated)).
877        if (DiagnoseUseOfDecl(IV, Loc))
878          return ExprError();
879
880        // If we're referencing an invalid decl, just return this as a silent
881        // error node.  The error diagnostic was already emitted on the decl.
882        if (IV->isInvalidDecl())
883          return ExprError();
884
885        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
886        // If a class method attemps to use a free standing ivar, this is
887        // an error.
888        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
889           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
890                           << IV->getDeclName());
891        // If a class method uses a global variable, even if an ivar with
892        // same name exists, use the global.
893        if (!IsClsMethod) {
894          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
895              ClassDeclared != IFace)
896           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
897          // FIXME: This should use a new expr for a direct reference, don't
898          // turn this into Self->ivar, just return a BareIVarExpr or something.
899          IdentifierInfo &II = Context.Idents.get("self");
900          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
901          MarkDeclarationReferenced(Loc, IV);
902          return Owned(new (Context)
903                       ObjCIvarRefExpr(IV, IV->getType(), Loc,
904                                       SelfExpr.takeAs<Expr>(), true, true));
905        }
906      }
907    }
908    else if (getCurMethodDecl()->isInstanceMethod()) {
909      // We should warn if a local variable hides an ivar.
910      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
911      ObjCInterfaceDecl *ClassDeclared;
912      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
913                                                           ClassDeclared)) {
914        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
915            IFace == ClassDeclared)
916          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
917      }
918    }
919    // Needed to implement property "super.method" notation.
920    if (D == 0 && II->isStr("super")) {
921      QualType T;
922
923      if (getCurMethodDecl()->isInstanceMethod())
924        T = Context.getPointerType(Context.getObjCInterfaceType(
925                                   getCurMethodDecl()->getClassInterface()));
926      else
927        T = Context.getObjCClassType();
928      return Owned(new (Context) ObjCSuperExpr(Loc, T));
929    }
930  }
931
932  // Determine whether this name might be a candidate for
933  // argument-dependent lookup.
934  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
935             HasTrailingLParen;
936
937  if (ADL && D == 0) {
938    // We've seen something of the form
939    //
940    //   identifier(
941    //
942    // and we did not find any entity by the name
943    // "identifier". However, this identifier is still subject to
944    // argument-dependent lookup, so keep track of the name.
945    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
946                                                          Context.OverloadTy,
947                                                          Loc));
948  }
949
950  if (D == 0) {
951    // Otherwise, this could be an implicitly declared function reference (legal
952    // in C90, extension in C99).
953    if (HasTrailingLParen && II &&
954        !getLangOptions().CPlusPlus) // Not in C++.
955      D = ImplicitlyDefineFunction(Loc, *II, S);
956    else {
957      // If this name wasn't predeclared and if this is not a function call,
958      // diagnose the problem.
959      if (SS && !SS->isEmpty())
960        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
961          << Name << SS->getRange());
962      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
963               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
964        return ExprError(Diag(Loc, diag::err_undeclared_use)
965          << Name.getAsString());
966      else
967        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
968    }
969  }
970
971  // If this is an expression of the form &Class::member, don't build an
972  // implicit member ref, because we want a pointer to the member in general,
973  // not any specific instance's member.
974  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
975    DeclContext *DC = computeDeclContext(*SS);
976    if (D && isa<CXXRecordDecl>(DC)) {
977      QualType DType;
978      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
979        DType = FD->getType().getNonReferenceType();
980      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
981        DType = Method->getType();
982      } else if (isa<OverloadedFunctionDecl>(D)) {
983        DType = Context.OverloadTy;
984      }
985      // Could be an inner type. That's diagnosed below, so ignore it here.
986      if (!DType.isNull()) {
987        // The pointer is type- and value-dependent if it points into something
988        // dependent.
989        bool Dependent = DC->isDependentContext();
990        return BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS);
991      }
992    }
993  }
994
995  // We may have found a field within an anonymous union or struct
996  // (C++ [class.union]).
997  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
998    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
999      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1000
1001  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1002    if (!MD->isStatic()) {
1003      // C++ [class.mfct.nonstatic]p2:
1004      //   [...] if name lookup (3.4.1) resolves the name in the
1005      //   id-expression to a nonstatic nontype member of class X or of
1006      //   a base class of X, the id-expression is transformed into a
1007      //   class member access expression (5.2.5) using (*this) (9.3.2)
1008      //   as the postfix-expression to the left of the '.' operator.
1009      DeclContext *Ctx = 0;
1010      QualType MemberType;
1011      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1012        Ctx = FD->getDeclContext();
1013        MemberType = FD->getType();
1014
1015        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
1016          MemberType = RefType->getPointeeType();
1017        else if (!FD->isMutable()) {
1018          unsigned combinedQualifiers
1019            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
1020          MemberType = MemberType.getQualifiedType(combinedQualifiers);
1021        }
1022      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1023        if (!Method->isStatic()) {
1024          Ctx = Method->getParent();
1025          MemberType = Method->getType();
1026        }
1027      } else if (OverloadedFunctionDecl *Ovl
1028                   = dyn_cast<OverloadedFunctionDecl>(D)) {
1029        for (OverloadedFunctionDecl::function_iterator
1030               Func = Ovl->function_begin(),
1031               FuncEnd = Ovl->function_end();
1032             Func != FuncEnd; ++Func) {
1033          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
1034            if (!DMethod->isStatic()) {
1035              Ctx = Ovl->getDeclContext();
1036              MemberType = Context.OverloadTy;
1037              break;
1038            }
1039        }
1040      }
1041
1042      if (Ctx && Ctx->isRecord()) {
1043        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
1044        QualType ThisType = Context.getTagDeclType(MD->getParent());
1045        if ((Context.getCanonicalType(CtxType)
1046               == Context.getCanonicalType(ThisType)) ||
1047            IsDerivedFrom(ThisType, CtxType)) {
1048          // Build the implicit member access expression.
1049          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
1050                                                 MD->getThisType(Context));
1051          MarkDeclarationReferenced(Loc, D);
1052          return Owned(new (Context) MemberExpr(This, true, D,
1053                                                Loc, MemberType));
1054        }
1055      }
1056    }
1057  }
1058
1059  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1060    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1061      if (MD->isStatic())
1062        // "invalid use of member 'x' in static member function"
1063        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
1064          << FD->getDeclName());
1065    }
1066
1067    // Any other ways we could have found the field in a well-formed
1068    // program would have been turned into implicit member expressions
1069    // above.
1070    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
1071      << FD->getDeclName());
1072  }
1073
1074  if (isa<TypedefDecl>(D))
1075    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
1076  if (isa<ObjCInterfaceDecl>(D))
1077    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
1078  if (isa<NamespaceDecl>(D))
1079    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
1080
1081  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
1082  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
1083    return BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
1084                           false, false, SS);
1085  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
1086    return BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
1087                            false, false, SS);
1088  ValueDecl *VD = cast<ValueDecl>(D);
1089
1090  // Check whether this declaration can be used. Note that we suppress
1091  // this check when we're going to perform argument-dependent lookup
1092  // on this function name, because this might not be the function
1093  // that overload resolution actually selects.
1094  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
1095    return ExprError();
1096
1097  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
1098    // Warn about constructs like:
1099    //   if (void *X = foo()) { ... } else { X }.
1100    // In the else block, the pointer is always false.
1101
1102    // FIXME: In a template instantiation, we don't have scope
1103    // information to check this property.
1104    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
1105      Scope *CheckS = S;
1106      while (CheckS) {
1107        if (CheckS->isWithinElse() &&
1108            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
1109          if (Var->getType()->isBooleanType())
1110            ExprError(Diag(Loc, diag::warn_value_always_false)
1111              << Var->getDeclName());
1112          else
1113            ExprError(Diag(Loc, diag::warn_value_always_zero)
1114              << Var->getDeclName());
1115          break;
1116        }
1117
1118        // Move up one more control parent to check again.
1119        CheckS = CheckS->getControlParent();
1120        if (CheckS)
1121          CheckS = CheckS->getParent();
1122      }
1123    }
1124  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(VD)) {
1125    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1126      // C99 DR 316 says that, if a function type comes from a
1127      // function definition (without a prototype), that type is only
1128      // used for checking compatibility. Therefore, when referencing
1129      // the function, we pretend that we don't have the full function
1130      // type.
1131      QualType T = Func->getType();
1132      QualType NoProtoType = T;
1133      if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
1134        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
1135      return BuildDeclRefExpr(VD, NoProtoType, Loc, false, false, SS);
1136    }
1137  }
1138
1139  // Only create DeclRefExpr's for valid Decl's.
1140  if (VD->isInvalidDecl())
1141    return ExprError();
1142
1143  // If the identifier reference is inside a block, and it refers to a value
1144  // that is outside the block, create a BlockDeclRefExpr instead of a
1145  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1146  // the block is formed.
1147  //
1148  // We do not do this for things like enum constants, global variables, etc,
1149  // as they do not get snapshotted.
1150  //
1151  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1152    MarkDeclarationReferenced(Loc, VD);
1153    QualType ExprTy = VD->getType().getNonReferenceType();
1154    // The BlocksAttr indicates the variable is bound by-reference.
1155    if (VD->getAttr<BlocksAttr>(Context))
1156      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1157    // This is to record that a 'const' was actually synthesize and added.
1158    bool constAdded = !ExprTy.isConstQualified();
1159    // Variable will be bound by-copy, make it const within the closure.
1160
1161    ExprTy.addConst();
1162    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1163                                                constAdded));
1164  }
1165  // If this reference is not in a block or if the referenced variable is
1166  // within the block, create a normal DeclRefExpr.
1167
1168  bool TypeDependent = false;
1169  bool ValueDependent = false;
1170  if (getLangOptions().CPlusPlus) {
1171    // C++ [temp.dep.expr]p3:
1172    //   An id-expression is type-dependent if it contains:
1173    //     - an identifier that was declared with a dependent type,
1174    if (VD->getType()->isDependentType())
1175      TypeDependent = true;
1176    //     - FIXME: a template-id that is dependent,
1177    //     - a conversion-function-id that specifies a dependent type,
1178    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1179             Name.getCXXNameType()->isDependentType())
1180      TypeDependent = true;
1181    //     - a nested-name-specifier that contains a class-name that
1182    //       names a dependent type.
1183    else if (SS && !SS->isEmpty()) {
1184      for (DeclContext *DC = computeDeclContext(*SS);
1185           DC; DC = DC->getParent()) {
1186        // FIXME: could stop early at namespace scope.
1187        if (DC->isRecord()) {
1188          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1189          if (Context.getTypeDeclType(Record)->isDependentType()) {
1190            TypeDependent = true;
1191            break;
1192          }
1193        }
1194      }
1195    }
1196
1197    // C++ [temp.dep.constexpr]p2:
1198    //
1199    //   An identifier is value-dependent if it is:
1200    //     - a name declared with a dependent type,
1201    if (TypeDependent)
1202      ValueDependent = true;
1203    //     - the name of a non-type template parameter,
1204    else if (isa<NonTypeTemplateParmDecl>(VD))
1205      ValueDependent = true;
1206    //    - a constant with integral or enumeration type and is
1207    //      initialized with an expression that is value-dependent
1208    else if (const VarDecl *Dcl = dyn_cast<VarDecl>(VD)) {
1209      if (Dcl->getType().getCVRQualifiers() == QualType::Const &&
1210          Dcl->getInit()) {
1211        ValueDependent = Dcl->getInit()->isValueDependent();
1212      }
1213    }
1214  }
1215
1216  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
1217                          TypeDependent, ValueDependent, SS);
1218}
1219
1220Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1221                                                 tok::TokenKind Kind) {
1222  PredefinedExpr::IdentType IT;
1223
1224  switch (Kind) {
1225  default: assert(0 && "Unknown simple primary expr!");
1226  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1227  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1228  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1229  }
1230
1231  // Pre-defined identifiers are of type char[x], where x is the length of the
1232  // string.
1233  unsigned Length;
1234  if (FunctionDecl *FD = getCurFunctionDecl())
1235    Length = FD->getIdentifier()->getLength();
1236  else if (ObjCMethodDecl *MD = getCurMethodDecl())
1237    Length = MD->getSynthesizedMethodSize();
1238  else {
1239    Diag(Loc, diag::ext_predef_outside_function);
1240    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
1241    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
1242  }
1243
1244
1245  llvm::APInt LengthI(32, Length + 1);
1246  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
1247  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1248  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1249}
1250
1251Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1252  llvm::SmallString<16> CharBuffer;
1253  CharBuffer.resize(Tok.getLength());
1254  const char *ThisTokBegin = &CharBuffer[0];
1255  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1256
1257  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1258                            Tok.getLocation(), PP);
1259  if (Literal.hadError())
1260    return ExprError();
1261
1262  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1263
1264  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1265                                              Literal.isWide(),
1266                                              type, Tok.getLocation()));
1267}
1268
1269Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1270  // Fast path for a single digit (which is quite common).  A single digit
1271  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1272  if (Tok.getLength() == 1) {
1273    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1274    unsigned IntSize = Context.Target.getIntWidth();
1275    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1276                    Context.IntTy, Tok.getLocation()));
1277  }
1278
1279  llvm::SmallString<512> IntegerBuffer;
1280  // Add padding so that NumericLiteralParser can overread by one character.
1281  IntegerBuffer.resize(Tok.getLength()+1);
1282  const char *ThisTokBegin = &IntegerBuffer[0];
1283
1284  // Get the spelling of the token, which eliminates trigraphs, etc.
1285  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1286
1287  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1288                               Tok.getLocation(), PP);
1289  if (Literal.hadError)
1290    return ExprError();
1291
1292  Expr *Res;
1293
1294  if (Literal.isFloatingLiteral()) {
1295    QualType Ty;
1296    if (Literal.isFloat)
1297      Ty = Context.FloatTy;
1298    else if (!Literal.isLong)
1299      Ty = Context.DoubleTy;
1300    else
1301      Ty = Context.LongDoubleTy;
1302
1303    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1304
1305    // isExact will be set by GetFloatValue().
1306    bool isExact = false;
1307    Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
1308                                        &isExact, Ty, Tok.getLocation());
1309
1310  } else if (!Literal.isIntegerLiteral()) {
1311    return ExprError();
1312  } else {
1313    QualType Ty;
1314
1315    // long long is a C99 feature.
1316    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1317        Literal.isLongLong)
1318      Diag(Tok.getLocation(), diag::ext_longlong);
1319
1320    // Get the value in the widest-possible width.
1321    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1322
1323    if (Literal.GetIntegerValue(ResultVal)) {
1324      // If this value didn't fit into uintmax_t, warn and force to ull.
1325      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1326      Ty = Context.UnsignedLongLongTy;
1327      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1328             "long long is not intmax_t?");
1329    } else {
1330      // If this value fits into a ULL, try to figure out what else it fits into
1331      // according to the rules of C99 6.4.4.1p5.
1332
1333      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1334      // be an unsigned int.
1335      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1336
1337      // Check from smallest to largest, picking the smallest type we can.
1338      unsigned Width = 0;
1339      if (!Literal.isLong && !Literal.isLongLong) {
1340        // Are int/unsigned possibilities?
1341        unsigned IntSize = Context.Target.getIntWidth();
1342
1343        // Does it fit in a unsigned int?
1344        if (ResultVal.isIntN(IntSize)) {
1345          // Does it fit in a signed int?
1346          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1347            Ty = Context.IntTy;
1348          else if (AllowUnsigned)
1349            Ty = Context.UnsignedIntTy;
1350          Width = IntSize;
1351        }
1352      }
1353
1354      // Are long/unsigned long possibilities?
1355      if (Ty.isNull() && !Literal.isLongLong) {
1356        unsigned LongSize = Context.Target.getLongWidth();
1357
1358        // Does it fit in a unsigned long?
1359        if (ResultVal.isIntN(LongSize)) {
1360          // Does it fit in a signed long?
1361          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1362            Ty = Context.LongTy;
1363          else if (AllowUnsigned)
1364            Ty = Context.UnsignedLongTy;
1365          Width = LongSize;
1366        }
1367      }
1368
1369      // Finally, check long long if needed.
1370      if (Ty.isNull()) {
1371        unsigned LongLongSize = Context.Target.getLongLongWidth();
1372
1373        // Does it fit in a unsigned long long?
1374        if (ResultVal.isIntN(LongLongSize)) {
1375          // Does it fit in a signed long long?
1376          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1377            Ty = Context.LongLongTy;
1378          else if (AllowUnsigned)
1379            Ty = Context.UnsignedLongLongTy;
1380          Width = LongLongSize;
1381        }
1382      }
1383
1384      // If we still couldn't decide a type, we probably have something that
1385      // does not fit in a signed long long, but has no U suffix.
1386      if (Ty.isNull()) {
1387        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1388        Ty = Context.UnsignedLongLongTy;
1389        Width = Context.Target.getLongLongWidth();
1390      }
1391
1392      if (ResultVal.getBitWidth() != Width)
1393        ResultVal.trunc(Width);
1394    }
1395    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1396  }
1397
1398  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1399  if (Literal.isImaginary)
1400    Res = new (Context) ImaginaryLiteral(Res,
1401                                        Context.getComplexType(Res->getType()));
1402
1403  return Owned(Res);
1404}
1405
1406Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1407                                              SourceLocation R, ExprArg Val) {
1408  Expr *E = Val.takeAs<Expr>();
1409  assert((E != 0) && "ActOnParenExpr() missing expr");
1410  return Owned(new (Context) ParenExpr(L, R, E));
1411}
1412
1413/// The UsualUnaryConversions() function is *not* called by this routine.
1414/// See C99 6.3.2.1p[2-4] for more details.
1415bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1416                                     SourceLocation OpLoc,
1417                                     const SourceRange &ExprRange,
1418                                     bool isSizeof) {
1419  if (exprType->isDependentType())
1420    return false;
1421
1422  // C99 6.5.3.4p1:
1423  if (isa<FunctionType>(exprType)) {
1424    // alignof(function) is allowed as an extension.
1425    if (isSizeof)
1426      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1427    return false;
1428  }
1429
1430  // Allow sizeof(void)/alignof(void) as an extension.
1431  if (exprType->isVoidType()) {
1432    Diag(OpLoc, diag::ext_sizeof_void_type)
1433      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1434    return false;
1435  }
1436
1437  if (RequireCompleteType(OpLoc, exprType,
1438                          isSizeof ? diag::err_sizeof_incomplete_type :
1439                          diag::err_alignof_incomplete_type,
1440                          ExprRange))
1441    return true;
1442
1443  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1444  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1445    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1446      << exprType << isSizeof << ExprRange;
1447    return true;
1448  }
1449
1450  return false;
1451}
1452
1453bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1454                            const SourceRange &ExprRange) {
1455  E = E->IgnoreParens();
1456
1457  // alignof decl is always ok.
1458  if (isa<DeclRefExpr>(E))
1459    return false;
1460
1461  // Cannot know anything else if the expression is dependent.
1462  if (E->isTypeDependent())
1463    return false;
1464
1465  if (E->getBitField()) {
1466    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1467    return true;
1468  }
1469
1470  // Alignment of a field access is always okay, so long as it isn't a
1471  // bit-field.
1472  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1473    if (dyn_cast<FieldDecl>(ME->getMemberDecl()))
1474      return false;
1475
1476  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1477}
1478
1479/// \brief Build a sizeof or alignof expression given a type operand.
1480Action::OwningExprResult
1481Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
1482                              bool isSizeOf, SourceRange R) {
1483  if (T.isNull())
1484    return ExprError();
1485
1486  if (!T->isDependentType() &&
1487      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1488    return ExprError();
1489
1490  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1491  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
1492                                               Context.getSizeType(), OpLoc,
1493                                               R.getEnd()));
1494}
1495
1496/// \brief Build a sizeof or alignof expression given an expression
1497/// operand.
1498Action::OwningExprResult
1499Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1500                              bool isSizeOf, SourceRange R) {
1501  // Verify that the operand is valid.
1502  bool isInvalid = false;
1503  if (E->isTypeDependent()) {
1504    // Delay type-checking for type-dependent expressions.
1505  } else if (!isSizeOf) {
1506    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1507  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1508    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1509    isInvalid = true;
1510  } else {
1511    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1512  }
1513
1514  if (isInvalid)
1515    return ExprError();
1516
1517  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1518  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1519                                               Context.getSizeType(), OpLoc,
1520                                               R.getEnd()));
1521}
1522
1523/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1524/// the same for @c alignof and @c __alignof
1525/// Note that the ArgRange is invalid if isType is false.
1526Action::OwningExprResult
1527Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1528                             void *TyOrEx, const SourceRange &ArgRange) {
1529  // If error parsing type, ignore.
1530  if (TyOrEx == 0) return ExprError();
1531
1532  if (isType) {
1533    QualType ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1534    return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
1535  }
1536
1537  // Get the end location.
1538  Expr *ArgEx = (Expr *)TyOrEx;
1539  Action::OwningExprResult Result
1540    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1541
1542  if (Result.isInvalid())
1543    DeleteExpr(ArgEx);
1544
1545  return move(Result);
1546}
1547
1548QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1549  if (V->isTypeDependent())
1550    return Context.DependentTy;
1551
1552  // These operators return the element type of a complex type.
1553  if (const ComplexType *CT = V->getType()->getAsComplexType())
1554    return CT->getElementType();
1555
1556  // Otherwise they pass through real integer and floating point types here.
1557  if (V->getType()->isArithmeticType())
1558    return V->getType();
1559
1560  // Reject anything else.
1561  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1562    << (isReal ? "__real" : "__imag");
1563  return QualType();
1564}
1565
1566
1567
1568Action::OwningExprResult
1569Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1570                          tok::TokenKind Kind, ExprArg Input) {
1571  Expr *Arg = (Expr *)Input.get();
1572
1573  UnaryOperator::Opcode Opc;
1574  switch (Kind) {
1575  default: assert(0 && "Unknown unary op!");
1576  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1577  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1578  }
1579
1580  if (getLangOptions().CPlusPlus &&
1581      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1582    // Which overloaded operator?
1583    OverloadedOperatorKind OverOp =
1584      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1585
1586    // C++ [over.inc]p1:
1587    //
1588    //     [...] If the function is a member function with one
1589    //     parameter (which shall be of type int) or a non-member
1590    //     function with two parameters (the second of which shall be
1591    //     of type int), it defines the postfix increment operator ++
1592    //     for objects of that type. When the postfix increment is
1593    //     called as a result of using the ++ operator, the int
1594    //     argument will have value zero.
1595    Expr *Args[2] = {
1596      Arg,
1597      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1598                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1599    };
1600
1601    // Build the candidate set for overloading
1602    OverloadCandidateSet CandidateSet;
1603    AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
1604
1605    // Perform overload resolution.
1606    OverloadCandidateSet::iterator Best;
1607    switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
1608    case OR_Success: {
1609      // We found a built-in operator or an overloaded operator.
1610      FunctionDecl *FnDecl = Best->Function;
1611
1612      if (FnDecl) {
1613        // We matched an overloaded operator. Build a call to that
1614        // operator.
1615
1616        // Convert the arguments.
1617        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1618          if (PerformObjectArgumentInitialization(Arg, Method))
1619            return ExprError();
1620        } else {
1621          // Convert the arguments.
1622          if (PerformCopyInitialization(Arg,
1623                                        FnDecl->getParamDecl(0)->getType(),
1624                                        "passing"))
1625            return ExprError();
1626        }
1627
1628        // Determine the result type
1629        QualType ResultTy
1630          = FnDecl->getType()->getAsFunctionType()->getResultType();
1631        ResultTy = ResultTy.getNonReferenceType();
1632
1633        // Build the actual expression node.
1634        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1635                                                 SourceLocation());
1636        UsualUnaryConversions(FnExpr);
1637
1638        Input.release();
1639        Args[0] = Arg;
1640        return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
1641                                                       Args, 2, ResultTy,
1642                                                       OpLoc));
1643      } else {
1644        // We matched a built-in operator. Convert the arguments, then
1645        // break out so that we will build the appropriate built-in
1646        // operator node.
1647        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1648                                      "passing"))
1649          return ExprError();
1650
1651        break;
1652      }
1653    }
1654
1655    case OR_No_Viable_Function:
1656      // No viable function; fall through to handling this as a
1657      // built-in operator, which will produce an error message for us.
1658      break;
1659
1660    case OR_Ambiguous:
1661      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1662          << UnaryOperator::getOpcodeStr(Opc)
1663          << Arg->getSourceRange();
1664      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1665      return ExprError();
1666
1667    case OR_Deleted:
1668      Diag(OpLoc, diag::err_ovl_deleted_oper)
1669        << Best->Function->isDeleted()
1670        << UnaryOperator::getOpcodeStr(Opc)
1671        << Arg->getSourceRange();
1672      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1673      return ExprError();
1674    }
1675
1676    // Either we found no viable overloaded operator or we matched a
1677    // built-in operator. In either case, fall through to trying to
1678    // build a built-in operation.
1679  }
1680
1681  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1682                                                 Opc == UnaryOperator::PostInc);
1683  if (result.isNull())
1684    return ExprError();
1685  Input.release();
1686  return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
1687}
1688
1689Action::OwningExprResult
1690Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1691                              ExprArg Idx, SourceLocation RLoc) {
1692  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1693       *RHSExp = static_cast<Expr*>(Idx.get());
1694
1695  if (getLangOptions().CPlusPlus &&
1696      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
1697    Base.release();
1698    Idx.release();
1699    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1700                                                  Context.DependentTy, RLoc));
1701  }
1702
1703  if (getLangOptions().CPlusPlus &&
1704      (LHSExp->getType()->isRecordType() ||
1705       LHSExp->getType()->isEnumeralType() ||
1706       RHSExp->getType()->isRecordType() ||
1707       RHSExp->getType()->isEnumeralType())) {
1708    // Add the appropriate overloaded operators (C++ [over.match.oper])
1709    // to the candidate set.
1710    OverloadCandidateSet CandidateSet;
1711    Expr *Args[2] = { LHSExp, RHSExp };
1712    AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1713                          SourceRange(LLoc, RLoc));
1714
1715    // Perform overload resolution.
1716    OverloadCandidateSet::iterator Best;
1717    switch (BestViableFunction(CandidateSet, LLoc, Best)) {
1718    case OR_Success: {
1719      // We found a built-in operator or an overloaded operator.
1720      FunctionDecl *FnDecl = Best->Function;
1721
1722      if (FnDecl) {
1723        // We matched an overloaded operator. Build a call to that
1724        // operator.
1725
1726        // Convert the arguments.
1727        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1728          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1729              PerformCopyInitialization(RHSExp,
1730                                        FnDecl->getParamDecl(0)->getType(),
1731                                        "passing"))
1732            return ExprError();
1733        } else {
1734          // Convert the arguments.
1735          if (PerformCopyInitialization(LHSExp,
1736                                        FnDecl->getParamDecl(0)->getType(),
1737                                        "passing") ||
1738              PerformCopyInitialization(RHSExp,
1739                                        FnDecl->getParamDecl(1)->getType(),
1740                                        "passing"))
1741            return ExprError();
1742        }
1743
1744        // Determine the result type
1745        QualType ResultTy
1746          = FnDecl->getType()->getAsFunctionType()->getResultType();
1747        ResultTy = ResultTy.getNonReferenceType();
1748
1749        // Build the actual expression node.
1750        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1751                                                 SourceLocation());
1752        UsualUnaryConversions(FnExpr);
1753
1754        Base.release();
1755        Idx.release();
1756        Args[0] = LHSExp;
1757        Args[1] = RHSExp;
1758        return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
1759                                                       FnExpr, Args, 2,
1760                                                       ResultTy, LLoc));
1761      } else {
1762        // We matched a built-in operator. Convert the arguments, then
1763        // break out so that we will build the appropriate built-in
1764        // operator node.
1765        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1766                                      "passing") ||
1767            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1768                                      "passing"))
1769          return ExprError();
1770
1771        break;
1772      }
1773    }
1774
1775    case OR_No_Viable_Function:
1776      // No viable function; fall through to handling this as a
1777      // built-in operator, which will produce an error message for us.
1778      break;
1779
1780    case OR_Ambiguous:
1781      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1782          << "[]"
1783          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1784      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1785      return ExprError();
1786
1787    case OR_Deleted:
1788      Diag(LLoc, diag::err_ovl_deleted_oper)
1789        << Best->Function->isDeleted()
1790        << "[]"
1791        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1792      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1793      return ExprError();
1794    }
1795
1796    // Either we found no viable overloaded operator or we matched a
1797    // built-in operator. In either case, fall through to trying to
1798    // build a built-in operation.
1799  }
1800
1801  // Perform default conversions.
1802  DefaultFunctionArrayConversion(LHSExp);
1803  DefaultFunctionArrayConversion(RHSExp);
1804
1805  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1806
1807  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1808  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1809  // in the subscript position. As a result, we need to derive the array base
1810  // and index from the expression types.
1811  Expr *BaseExpr, *IndexExpr;
1812  QualType ResultType;
1813  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1814    BaseExpr = LHSExp;
1815    IndexExpr = RHSExp;
1816    ResultType = Context.DependentTy;
1817  } else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1818    BaseExpr = LHSExp;
1819    IndexExpr = RHSExp;
1820    ResultType = PTy->getPointeeType();
1821  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1822     // Handle the uncommon case of "123[Ptr]".
1823    BaseExpr = RHSExp;
1824    IndexExpr = LHSExp;
1825    ResultType = PTy->getPointeeType();
1826  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1827    BaseExpr = LHSExp;    // vectors: V[123]
1828    IndexExpr = RHSExp;
1829
1830    // FIXME: need to deal with const...
1831    ResultType = VTy->getElementType();
1832  } else if (LHSTy->isArrayType()) {
1833    // If we see an array that wasn't promoted by
1834    // DefaultFunctionArrayConversion, it must be an array that
1835    // wasn't promoted because of the C90 rule that doesn't
1836    // allow promoting non-lvalue arrays.  Warn, then
1837    // force the promotion here.
1838    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1839        LHSExp->getSourceRange();
1840    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy));
1841    LHSTy = LHSExp->getType();
1842
1843    BaseExpr = LHSExp;
1844    IndexExpr = RHSExp;
1845    ResultType = LHSTy->getAsPointerType()->getPointeeType();
1846  } else if (RHSTy->isArrayType()) {
1847    // Same as previous, except for 123[f().a] case
1848    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1849        RHSExp->getSourceRange();
1850    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy));
1851    RHSTy = RHSExp->getType();
1852
1853    BaseExpr = RHSExp;
1854    IndexExpr = LHSExp;
1855    ResultType = RHSTy->getAsPointerType()->getPointeeType();
1856  } else {
1857    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
1858       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
1859  }
1860  // C99 6.5.2.1p1
1861  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
1862    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
1863                     << IndexExpr->getSourceRange());
1864
1865  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1866  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1867  // type. Note that Functions are not objects, and that (in C99 parlance)
1868  // incomplete types are not object types.
1869  if (ResultType->isFunctionType()) {
1870    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1871      << ResultType << BaseExpr->getSourceRange();
1872    return ExprError();
1873  }
1874
1875  if (!ResultType->isDependentType() &&
1876      RequireCompleteType(LLoc, ResultType, diag::err_subscript_incomplete_type,
1877                          BaseExpr->getSourceRange()))
1878    return ExprError();
1879
1880  // Diagnose bad cases where we step over interface counts.
1881  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
1882    Diag(LLoc, diag::err_subscript_nonfragile_interface)
1883      << ResultType << BaseExpr->getSourceRange();
1884    return ExprError();
1885  }
1886
1887  Base.release();
1888  Idx.release();
1889  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1890                                                ResultType, RLoc));
1891}
1892
1893QualType Sema::
1894CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1895                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1896  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1897
1898  // The vector accessor can't exceed the number of elements.
1899  const char *compStr = CompName.getName();
1900
1901  // This flag determines whether or not the component is one of the four
1902  // special names that indicate a subset of exactly half the elements are
1903  // to be selected.
1904  bool HalvingSwizzle = false;
1905
1906  // This flag determines whether or not CompName has an 's' char prefix,
1907  // indicating that it is a string of hex values to be used as vector indices.
1908  bool HexSwizzle = *compStr == 's';
1909
1910  // Check that we've found one of the special components, or that the component
1911  // names must come from the same set.
1912  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1913      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1914    HalvingSwizzle = true;
1915  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1916    do
1917      compStr++;
1918    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1919  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1920    do
1921      compStr++;
1922    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1923  }
1924
1925  if (!HalvingSwizzle && *compStr) {
1926    // We didn't get to the end of the string. This means the component names
1927    // didn't come from the same set *or* we encountered an illegal name.
1928    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1929      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1930    return QualType();
1931  }
1932
1933  // Ensure no component accessor exceeds the width of the vector type it
1934  // operates on.
1935  if (!HalvingSwizzle) {
1936    compStr = CompName.getName();
1937
1938    if (HexSwizzle)
1939      compStr++;
1940
1941    while (*compStr) {
1942      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1943        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1944          << baseType << SourceRange(CompLoc);
1945        return QualType();
1946      }
1947    }
1948  }
1949
1950  // If this is a halving swizzle, verify that the base type has an even
1951  // number of elements.
1952  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1953    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1954      << baseType << SourceRange(CompLoc);
1955    return QualType();
1956  }
1957
1958  // The component accessor looks fine - now we need to compute the actual type.
1959  // The vector type is implied by the component accessor. For example,
1960  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1961  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1962  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1963  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1964                                     : CompName.getLength();
1965  if (HexSwizzle)
1966    CompSize--;
1967
1968  if (CompSize == 1)
1969    return vecType->getElementType();
1970
1971  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1972  // Now look up the TypeDefDecl from the vector type. Without this,
1973  // diagostics look bad. We want extended vector types to appear built-in.
1974  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1975    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1976      return Context.getTypedefType(ExtVectorDecls[i]);
1977  }
1978  return VT; // should never get here (a typedef type should always be found).
1979}
1980
1981static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
1982                                                IdentifierInfo &Member,
1983                                                const Selector &Sel,
1984                                                ASTContext &Context) {
1985
1986  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Context, &Member))
1987    return PD;
1988  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Context, Sel))
1989    return OMD;
1990
1991  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
1992       E = PDecl->protocol_end(); I != E; ++I) {
1993    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
1994                                                     Context))
1995      return D;
1996  }
1997  return 0;
1998}
1999
2000static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
2001                                IdentifierInfo &Member,
2002                                const Selector &Sel,
2003                                ASTContext &Context) {
2004  // Check protocols on qualified interfaces.
2005  Decl *GDecl = 0;
2006  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2007       E = QIdTy->qual_end(); I != E; ++I) {
2008    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context, &Member)) {
2009      GDecl = PD;
2010      break;
2011    }
2012    // Also must look for a getter name which uses property syntax.
2013    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Context, Sel)) {
2014      GDecl = OMD;
2015      break;
2016    }
2017  }
2018  if (!GDecl) {
2019    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2020         E = QIdTy->qual_end(); I != E; ++I) {
2021      // Search in the protocol-qualifier list of current protocol.
2022      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2023      if (GDecl)
2024        return GDecl;
2025    }
2026  }
2027  return GDecl;
2028}
2029
2030/// FindMethodInNestedImplementations - Look up a method in current and
2031/// all base class implementations.
2032///
2033ObjCMethodDecl *Sema::FindMethodInNestedImplementations(
2034                                              const ObjCInterfaceDecl *IFace,
2035                                              const Selector &Sel) {
2036  ObjCMethodDecl *Method = 0;
2037  if (ObjCImplementationDecl *ImpDecl
2038        = LookupObjCImplementation(IFace->getIdentifier()))
2039    Method = ImpDecl->getInstanceMethod(Context, Sel);
2040
2041  if (!Method && IFace->getSuperClass())
2042    return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel);
2043  return Method;
2044}
2045
2046Action::OwningExprResult
2047Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
2048                               tok::TokenKind OpKind, SourceLocation MemberLoc,
2049                               IdentifierInfo &Member,
2050                               DeclPtrTy ObjCImpDecl) {
2051  Expr *BaseExpr = Base.takeAs<Expr>();
2052  assert(BaseExpr && "no record expression");
2053
2054  // Perform default conversions.
2055  DefaultFunctionArrayConversion(BaseExpr);
2056
2057  QualType BaseType = BaseExpr->getType();
2058  assert(!BaseType.isNull() && "no type for member expression");
2059
2060  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2061  // must have pointer type, and the accessed type is the pointee.
2062  if (OpKind == tok::arrow) {
2063    if (BaseType->isDependentType())
2064      return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2065                                                         BaseExpr, true,
2066                                                         OpLoc,
2067                                                     DeclarationName(&Member),
2068                                                         MemberLoc));
2069    else if (const PointerType *PT = BaseType->getAsPointerType())
2070      BaseType = PT->getPointeeType();
2071    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
2072      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
2073                                            MemberLoc, Member));
2074    else
2075      return ExprError(Diag(MemberLoc,
2076                            diag::err_typecheck_member_reference_arrow)
2077        << BaseType << BaseExpr->getSourceRange());
2078  } else {
2079    if (BaseType->isDependentType()) {
2080      // Require that the base type isn't a pointer type
2081      // (so we'll report an error for)
2082      // T* t;
2083      // t.f;
2084      //
2085      // In Obj-C++, however, the above expression is valid, since it could be
2086      // accessing the 'f' property if T is an Obj-C interface. The extra check
2087      // allows this, while still reporting an error if T is a struct pointer.
2088      const PointerType *PT = BaseType->getAsPointerType();
2089
2090      if (!PT || (getLangOptions().ObjC1 &&
2091                  !PT->getPointeeType()->isRecordType()))
2092        return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2093                                                           BaseExpr, false,
2094                                                           OpLoc,
2095                                                     DeclarationName(&Member),
2096                                                           MemberLoc));
2097    }
2098  }
2099
2100  // Handle field access to simple records.  This also handles access to fields
2101  // of the ObjC 'id' struct.
2102  if (const RecordType *RTy = BaseType->getAsRecordType()) {
2103    RecordDecl *RDecl = RTy->getDecl();
2104    if (RequireCompleteType(OpLoc, BaseType,
2105                               diag::err_typecheck_incomplete_tag,
2106                               BaseExpr->getSourceRange()))
2107      return ExprError();
2108
2109    // The record definition is complete, now make sure the member is valid.
2110    // FIXME: Qualified name lookup for C++ is a bit more complicated than this.
2111    LookupResult Result
2112      = LookupQualifiedName(RDecl, DeclarationName(&Member),
2113                            LookupMemberName, false);
2114
2115    if (!Result)
2116      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
2117               << &Member << BaseExpr->getSourceRange());
2118    if (Result.isAmbiguous()) {
2119      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
2120                              MemberLoc, BaseExpr->getSourceRange());
2121      return ExprError();
2122    }
2123
2124    NamedDecl *MemberDecl = Result;
2125
2126    // If the decl being referenced had an error, return an error for this
2127    // sub-expr without emitting another error, in order to avoid cascading
2128    // error cases.
2129    if (MemberDecl->isInvalidDecl())
2130      return ExprError();
2131
2132    // Check the use of this field
2133    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
2134      return ExprError();
2135
2136    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2137      // We may have found a field within an anonymous union or struct
2138      // (C++ [class.union]).
2139      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
2140        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2141                                                        BaseExpr, OpLoc);
2142
2143      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2144      // FIXME: Handle address space modifiers
2145      QualType MemberType = FD->getType();
2146      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
2147        MemberType = Ref->getPointeeType();
2148      else {
2149        unsigned combinedQualifiers =
2150          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
2151        if (FD->isMutable())
2152          combinedQualifiers &= ~QualType::Const;
2153        MemberType = MemberType.getQualifiedType(combinedQualifiers);
2154      }
2155
2156      MarkDeclarationReferenced(MemberLoc, FD);
2157      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
2158                                            MemberLoc, MemberType));
2159    }
2160
2161    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2162      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2163      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2164                                            Var, MemberLoc,
2165                                         Var->getType().getNonReferenceType()));
2166    }
2167    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2168      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2169      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2170                                            MemberFn, MemberLoc,
2171                                            MemberFn->getType()));
2172    }
2173    if (OverloadedFunctionDecl *Ovl
2174          = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
2175      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
2176                                            MemberLoc, Context.OverloadTy));
2177    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2178      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2179      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2180                                            Enum, MemberLoc, Enum->getType()));
2181    }
2182    if (isa<TypeDecl>(MemberDecl))
2183      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2184        << DeclarationName(&Member) << int(OpKind == tok::arrow));
2185
2186    // We found a declaration kind that we didn't expect. This is a
2187    // generic error message that tells the user that she can't refer
2188    // to this member with '.' or '->'.
2189    return ExprError(Diag(MemberLoc,
2190                          diag::err_typecheck_member_reference_unknown)
2191      << DeclarationName(&Member) << int(OpKind == tok::arrow));
2192  }
2193
2194  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2195  // (*Obj).ivar.
2196  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
2197    ObjCInterfaceDecl *ClassDeclared;
2198    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(Context,
2199                                                                   &Member,
2200                                                             ClassDeclared)) {
2201      // If the decl being referenced had an error, return an error for this
2202      // sub-expr without emitting another error, in order to avoid cascading
2203      // error cases.
2204      if (IV->isInvalidDecl())
2205        return ExprError();
2206
2207      // Check whether we can reference this field.
2208      if (DiagnoseUseOfDecl(IV, MemberLoc))
2209        return ExprError();
2210      if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2211          IV->getAccessControl() != ObjCIvarDecl::Package) {
2212        ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2213        if (ObjCMethodDecl *MD = getCurMethodDecl())
2214          ClassOfMethodDecl =  MD->getClassInterface();
2215        else if (ObjCImpDecl && getCurFunctionDecl()) {
2216          // Case of a c-function declared inside an objc implementation.
2217          // FIXME: For a c-style function nested inside an objc implementation
2218          // class, there is no implementation context available, so we pass
2219          // down the context as argument to this routine. Ideally, this context
2220          // need be passed down in the AST node and somehow calculated from the
2221          // AST for a function decl.
2222          Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2223          if (ObjCImplementationDecl *IMPD =
2224              dyn_cast<ObjCImplementationDecl>(ImplDecl))
2225            ClassOfMethodDecl = IMPD->getClassInterface();
2226          else if (ObjCCategoryImplDecl* CatImplClass =
2227                      dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2228            ClassOfMethodDecl = CatImplClass->getClassInterface();
2229        }
2230
2231        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2232          if (ClassDeclared != IFTy->getDecl() ||
2233              ClassOfMethodDecl != ClassDeclared)
2234            Diag(MemberLoc, diag::error_private_ivar_access) << IV->getDeclName();
2235        }
2236        // @protected
2237        else if (!IFTy->getDecl()->isSuperClassOf(ClassOfMethodDecl))
2238          Diag(MemberLoc, diag::error_protected_ivar_access) << IV->getDeclName();
2239      }
2240
2241      return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2242                                                 MemberLoc, BaseExpr,
2243                                                 OpKind == tok::arrow));
2244    }
2245    return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
2246                       << IFTy->getDecl()->getDeclName() << &Member
2247                       << BaseExpr->getSourceRange());
2248  }
2249
2250  // Handle Objective-C property access, which is "Obj.property" where Obj is a
2251  // pointer to a (potentially qualified) interface type.
2252  const PointerType *PTy;
2253  const ObjCInterfaceType *IFTy;
2254  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
2255      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
2256    ObjCInterfaceDecl *IFace = IFTy->getDecl();
2257
2258    // Search for a declared property first.
2259    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Context,
2260                                                              &Member)) {
2261      // Check whether we can reference this property.
2262      if (DiagnoseUseOfDecl(PD, MemberLoc))
2263        return ExprError();
2264      QualType ResTy = PD->getType();
2265      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2266      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel);
2267      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
2268        ResTy = Getter->getResultType();
2269      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
2270                                                     MemberLoc, BaseExpr));
2271    }
2272
2273    // Check protocols on qualified interfaces.
2274    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
2275         E = IFTy->qual_end(); I != E; ++I)
2276      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context,
2277                                                               &Member)) {
2278        // Check whether we can reference this property.
2279        if (DiagnoseUseOfDecl(PD, MemberLoc))
2280          return ExprError();
2281
2282        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2283                                                       MemberLoc, BaseExpr));
2284      }
2285
2286    // If that failed, look for an "implicit" property by seeing if the nullary
2287    // selector is implemented.
2288
2289    // FIXME: The logic for looking up nullary and unary selectors should be
2290    // shared with the code in ActOnInstanceMessage.
2291
2292    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2293    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel);
2294
2295    // If this reference is in an @implementation, check for 'private' methods.
2296    if (!Getter)
2297      Getter = FindMethodInNestedImplementations(IFace, Sel);
2298
2299    // Look through local category implementations associated with the class.
2300    if (!Getter) {
2301      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
2302        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2303          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Context, Sel);
2304      }
2305    }
2306    if (Getter) {
2307      // Check if we can reference this property.
2308      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2309        return ExprError();
2310    }
2311    // If we found a getter then this may be a valid dot-reference, we
2312    // will look for the matching setter, in case it is needed.
2313    Selector SetterSel =
2314      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2315                                         PP.getSelectorTable(), &Member);
2316    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(Context, SetterSel);
2317    if (!Setter) {
2318      // If this reference is in an @implementation, also check for 'private'
2319      // methods.
2320      Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2321    }
2322    // Look through local category implementations associated with the class.
2323    if (!Setter) {
2324      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2325        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2326          Setter = ObjCCategoryImpls[i]->getInstanceMethod(Context, SetterSel);
2327      }
2328    }
2329
2330    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2331      return ExprError();
2332
2333    if (Getter || Setter) {
2334      QualType PType;
2335
2336      if (Getter)
2337        PType = Getter->getResultType();
2338      else {
2339        for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2340             E = Setter->param_end(); PI != E; ++PI)
2341          PType = (*PI)->getType();
2342      }
2343      // FIXME: we must check that the setter has property type.
2344      return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2345                                      Setter, MemberLoc, BaseExpr));
2346    }
2347    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2348      << &Member << BaseType);
2349  }
2350  // Handle properties on qualified "id" protocols.
2351  const ObjCObjectPointerType *QIdTy;
2352  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
2353    // Check protocols on qualified interfaces.
2354    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2355    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2356      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2357        // Check the use of this declaration
2358        if (DiagnoseUseOfDecl(PD, MemberLoc))
2359          return ExprError();
2360
2361        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2362                                                       MemberLoc, BaseExpr));
2363      }
2364      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2365        // Check the use of this method.
2366        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2367          return ExprError();
2368
2369        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2370                                                   OMD->getResultType(),
2371                                                   OMD, OpLoc, MemberLoc,
2372                                                   NULL, 0));
2373      }
2374    }
2375
2376    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2377                       << &Member << BaseType);
2378  }
2379  // Handle properties on ObjC 'Class' types.
2380  if (OpKind == tok::period && (BaseType == Context.getObjCClassType())) {
2381    // Also must look for a getter name which uses property syntax.
2382    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2383    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2384      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2385      ObjCMethodDecl *Getter;
2386      // FIXME: need to also look locally in the implementation.
2387      if ((Getter = IFace->lookupClassMethod(Context, Sel))) {
2388        // Check the use of this method.
2389        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2390          return ExprError();
2391      }
2392      // If we found a getter then this may be a valid dot-reference, we
2393      // will look for the matching setter, in case it is needed.
2394      Selector SetterSel =
2395        SelectorTable::constructSetterName(PP.getIdentifierTable(),
2396                                           PP.getSelectorTable(), &Member);
2397      ObjCMethodDecl *Setter = IFace->lookupClassMethod(Context, SetterSel);
2398      if (!Setter) {
2399        // If this reference is in an @implementation, also check for 'private'
2400        // methods.
2401        Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2402      }
2403      // Look through local category implementations associated with the class.
2404      if (!Setter) {
2405        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2406          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2407            Setter = ObjCCategoryImpls[i]->getClassMethod(Context, SetterSel);
2408        }
2409      }
2410
2411      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2412        return ExprError();
2413
2414      if (Getter || Setter) {
2415        QualType PType;
2416
2417        if (Getter)
2418          PType = Getter->getResultType();
2419        else {
2420          for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2421               E = Setter->param_end(); PI != E; ++PI)
2422            PType = (*PI)->getType();
2423        }
2424        // FIXME: we must check that the setter has property type.
2425        return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2426                                        Setter, MemberLoc, BaseExpr));
2427      }
2428      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2429        << &Member << BaseType);
2430    }
2431  }
2432
2433  // Handle 'field access' to vectors, such as 'V.xx'.
2434  if (BaseType->isExtVectorType()) {
2435    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2436    if (ret.isNull())
2437      return ExprError();
2438    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
2439                                                    MemberLoc));
2440  }
2441
2442  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2443    << BaseType << BaseExpr->getSourceRange();
2444
2445  // If the user is trying to apply -> or . to a function or function
2446  // pointer, it's probably because they forgot parentheses to call
2447  // the function. Suggest the addition of those parentheses.
2448  if (BaseType == Context.OverloadTy ||
2449      BaseType->isFunctionType() ||
2450      (BaseType->isPointerType() &&
2451       BaseType->getAsPointerType()->isFunctionType())) {
2452    SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2453    Diag(Loc, diag::note_member_reference_needs_call)
2454      << CodeModificationHint::CreateInsertion(Loc, "()");
2455  }
2456
2457  return ExprError();
2458}
2459
2460/// ConvertArgumentsForCall - Converts the arguments specified in
2461/// Args/NumArgs to the parameter types of the function FDecl with
2462/// function prototype Proto. Call is the call expression itself, and
2463/// Fn is the function expression. For a C++ member function, this
2464/// routine does not attempt to convert the object argument. Returns
2465/// true if the call is ill-formed.
2466bool
2467Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2468                              FunctionDecl *FDecl,
2469                              const FunctionProtoType *Proto,
2470                              Expr **Args, unsigned NumArgs,
2471                              SourceLocation RParenLoc) {
2472  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2473  // assignment, to the types of the corresponding parameter, ...
2474  unsigned NumArgsInProto = Proto->getNumArgs();
2475  unsigned NumArgsToCheck = NumArgs;
2476  bool Invalid = false;
2477
2478  // If too few arguments are available (and we don't have default
2479  // arguments for the remaining parameters), don't make the call.
2480  if (NumArgs < NumArgsInProto) {
2481    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2482      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2483        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2484    // Use default arguments for missing arguments
2485    NumArgsToCheck = NumArgsInProto;
2486    Call->setNumArgs(Context, NumArgsInProto);
2487  }
2488
2489  // If too many are passed and not variadic, error on the extras and drop
2490  // them.
2491  if (NumArgs > NumArgsInProto) {
2492    if (!Proto->isVariadic()) {
2493      Diag(Args[NumArgsInProto]->getLocStart(),
2494           diag::err_typecheck_call_too_many_args)
2495        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2496        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2497                       Args[NumArgs-1]->getLocEnd());
2498      // This deletes the extra arguments.
2499      Call->setNumArgs(Context, NumArgsInProto);
2500      Invalid = true;
2501    }
2502    NumArgsToCheck = NumArgsInProto;
2503  }
2504
2505  // Continue to check argument types (even if we have too few/many args).
2506  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2507    QualType ProtoArgType = Proto->getArgType(i);
2508
2509    Expr *Arg;
2510    if (i < NumArgs) {
2511      Arg = Args[i];
2512
2513      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2514                              ProtoArgType,
2515                              diag::err_call_incomplete_argument,
2516                              Arg->getSourceRange()))
2517        return true;
2518
2519      // Pass the argument.
2520      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2521        return true;
2522    } else {
2523      if (FDecl->getParamDecl(i)->hasUnparsedDefaultArg()) {
2524        Diag (Call->getSourceRange().getBegin(),
2525              diag::err_use_of_default_argument_to_function_declared_later) <<
2526        FDecl << cast<CXXRecordDecl>(FDecl->getDeclContext())->getDeclName();
2527        Diag(UnparsedDefaultArgLocs[FDecl->getParamDecl(i)],
2528              diag::note_default_argument_declared_here);
2529      } else {
2530        Expr *DefaultExpr = FDecl->getParamDecl(i)->getDefaultArg();
2531
2532        // If the default expression creates temporaries, we need to
2533        // push them to the current stack of expression temporaries so they'll
2534        // be properly destroyed.
2535        if (CXXExprWithTemporaries *E
2536              = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2537          assert(!E->shouldDestroyTemporaries() &&
2538                 "Can't destroy temporaries in a default argument expr!");
2539          for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2540            ExprTemporaries.push_back(E->getTemporary(I));
2541        }
2542      }
2543
2544      // We already type-checked the argument, so we know it works.
2545      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
2546    }
2547
2548    QualType ArgType = Arg->getType();
2549
2550    Call->setArg(i, Arg);
2551  }
2552
2553  // If this is a variadic call, handle args passed through "...".
2554  if (Proto->isVariadic()) {
2555    VariadicCallType CallType = VariadicFunction;
2556    if (Fn->getType()->isBlockPointerType())
2557      CallType = VariadicBlock; // Block
2558    else if (isa<MemberExpr>(Fn))
2559      CallType = VariadicMethod;
2560
2561    // Promote the arguments (C99 6.5.2.2p7).
2562    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2563      Expr *Arg = Args[i];
2564      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2565      Call->setArg(i, Arg);
2566    }
2567  }
2568
2569  return Invalid;
2570}
2571
2572/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2573/// This provides the location of the left/right parens and a list of comma
2574/// locations.
2575Action::OwningExprResult
2576Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2577                    MultiExprArg args,
2578                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2579  unsigned NumArgs = args.size();
2580  Expr *Fn = fn.takeAs<Expr>();
2581  Expr **Args = reinterpret_cast<Expr**>(args.release());
2582  assert(Fn && "no function call expression");
2583  FunctionDecl *FDecl = NULL;
2584  NamedDecl *NDecl = NULL;
2585  DeclarationName UnqualifiedName;
2586
2587  if (getLangOptions().CPlusPlus) {
2588    // Determine whether this is a dependent call inside a C++ template,
2589    // in which case we won't do any semantic analysis now.
2590    // FIXME: Will need to cache the results of name lookup (including ADL) in
2591    // Fn.
2592    bool Dependent = false;
2593    if (Fn->isTypeDependent())
2594      Dependent = true;
2595    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2596      Dependent = true;
2597
2598    if (Dependent)
2599      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2600                                          Context.DependentTy, RParenLoc));
2601
2602    // Determine whether this is a call to an object (C++ [over.call.object]).
2603    if (Fn->getType()->isRecordType())
2604      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2605                                                CommaLocs, RParenLoc));
2606
2607    // Determine whether this is a call to a member function.
2608    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
2609      if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
2610          isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
2611        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2612                                               CommaLocs, RParenLoc));
2613  }
2614
2615  // If we're directly calling a function, get the appropriate declaration.
2616  DeclRefExpr *DRExpr = NULL;
2617  Expr *FnExpr = Fn;
2618  bool ADL = true;
2619  while (true) {
2620    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2621      FnExpr = IcExpr->getSubExpr();
2622    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2623      // Parentheses around a function disable ADL
2624      // (C++0x [basic.lookup.argdep]p1).
2625      ADL = false;
2626      FnExpr = PExpr->getSubExpr();
2627    } else if (isa<UnaryOperator>(FnExpr) &&
2628               cast<UnaryOperator>(FnExpr)->getOpcode()
2629                 == UnaryOperator::AddrOf) {
2630      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2631    } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) {
2632      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2633      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2634      break;
2635    } else if (UnresolvedFunctionNameExpr *DepName
2636                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2637      UnqualifiedName = DepName->getName();
2638      break;
2639    } else {
2640      // Any kind of name that does not refer to a declaration (or
2641      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2642      ADL = false;
2643      break;
2644    }
2645  }
2646
2647  OverloadedFunctionDecl *Ovl = 0;
2648  if (DRExpr) {
2649    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
2650    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
2651    NDecl = dyn_cast<NamedDecl>(DRExpr->getDecl());
2652  }
2653
2654  if (Ovl || (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2655    // We don't perform ADL for implicit declarations of builtins.
2656    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2657      ADL = false;
2658
2659    // We don't perform ADL in C.
2660    if (!getLangOptions().CPlusPlus)
2661      ADL = false;
2662
2663    if (Ovl || ADL) {
2664      FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0,
2665                                      UnqualifiedName, LParenLoc, Args,
2666                                      NumArgs, CommaLocs, RParenLoc, ADL);
2667      if (!FDecl)
2668        return ExprError();
2669
2670      // Update Fn to refer to the actual function selected.
2671      Expr *NewFn = 0;
2672      if (QualifiedDeclRefExpr *QDRExpr
2673            = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr))
2674        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
2675                                                   QDRExpr->getLocation(),
2676                                                   false, false,
2677                                                 QDRExpr->getQualifierRange(),
2678                                                   QDRExpr->getQualifier());
2679      else
2680        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2681                                          Fn->getSourceRange().getBegin());
2682      Fn->Destroy(Context);
2683      Fn = NewFn;
2684    }
2685  }
2686
2687  // Promote the function operand.
2688  UsualUnaryConversions(Fn);
2689
2690  // Make the call expr early, before semantic checks.  This guarantees cleanup
2691  // of arguments and function on error.
2692  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2693                                                               Args, NumArgs,
2694                                                               Context.BoolTy,
2695                                                               RParenLoc));
2696
2697  const FunctionType *FuncT;
2698  if (!Fn->getType()->isBlockPointerType()) {
2699    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2700    // have type pointer to function".
2701    const PointerType *PT = Fn->getType()->getAsPointerType();
2702    if (PT == 0)
2703      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2704        << Fn->getType() << Fn->getSourceRange());
2705    FuncT = PT->getPointeeType()->getAsFunctionType();
2706  } else { // This is a block call.
2707    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
2708                getAsFunctionType();
2709  }
2710  if (FuncT == 0)
2711    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2712      << Fn->getType() << Fn->getSourceRange());
2713
2714  // Check for a valid return type
2715  if (!FuncT->getResultType()->isVoidType() &&
2716      RequireCompleteType(Fn->getSourceRange().getBegin(),
2717                          FuncT->getResultType(),
2718                          diag::err_call_incomplete_return,
2719                          TheCall->getSourceRange()))
2720    return ExprError();
2721
2722  // We know the result type of the call, set it.
2723  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2724
2725  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2726    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2727                                RParenLoc))
2728      return ExprError();
2729  } else {
2730    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2731
2732    if (FDecl) {
2733      // Check if we have too few/too many template arguments, based
2734      // on our knowledge of the function definition.
2735      const FunctionDecl *Def = 0;
2736      if (FDecl->getBody(Context, Def) && NumArgs != Def->param_size()) {
2737        const FunctionProtoType *Proto =
2738            Def->getType()->getAsFunctionProtoType();
2739        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
2740          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2741            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2742        }
2743      }
2744    }
2745
2746    // Promote the arguments (C99 6.5.2.2p6).
2747    for (unsigned i = 0; i != NumArgs; i++) {
2748      Expr *Arg = Args[i];
2749      DefaultArgumentPromotion(Arg);
2750      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2751                              Arg->getType(),
2752                              diag::err_call_incomplete_argument,
2753                              Arg->getSourceRange()))
2754        return ExprError();
2755      TheCall->setArg(i, Arg);
2756    }
2757  }
2758
2759  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2760    if (!Method->isStatic())
2761      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2762        << Fn->getSourceRange());
2763
2764  // Check for sentinels
2765  if (NDecl)
2766    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
2767  // Do special checking on direct calls to functions.
2768  if (FDecl)
2769    return CheckFunctionCall(FDecl, TheCall.take());
2770  if (NDecl)
2771    return CheckBlockCall(NDecl, TheCall.take());
2772
2773  return Owned(TheCall.take());
2774}
2775
2776Action::OwningExprResult
2777Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2778                           SourceLocation RParenLoc, ExprArg InitExpr) {
2779  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2780  QualType literalType = QualType::getFromOpaquePtr(Ty);
2781  // FIXME: put back this assert when initializers are worked out.
2782  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2783  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2784
2785  if (literalType->isArrayType()) {
2786    if (literalType->isVariableArrayType())
2787      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2788        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2789  } else if (!literalType->isDependentType() &&
2790             RequireCompleteType(LParenLoc, literalType,
2791                                 diag::err_typecheck_decl_incomplete_type,
2792                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2793    return ExprError();
2794
2795  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2796                            DeclarationName(), /*FIXME:DirectInit=*/false))
2797    return ExprError();
2798
2799  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2800  if (isFileScope) { // 6.5.2.5p3
2801    if (CheckForConstantInitializer(literalExpr, literalType))
2802      return ExprError();
2803  }
2804  InitExpr.release();
2805  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2806                                                 literalExpr, isFileScope));
2807}
2808
2809Action::OwningExprResult
2810Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2811                    SourceLocation RBraceLoc) {
2812  unsigned NumInit = initlist.size();
2813  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2814
2815  // Semantic analysis for initializers is done by ActOnDeclarator() and
2816  // CheckInitializer() - it requires knowledge of the object being intialized.
2817
2818  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2819                                               RBraceLoc);
2820  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2821  return Owned(E);
2822}
2823
2824/// CheckCastTypes - Check type constraints for casting between types.
2825bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
2826  UsualUnaryConversions(castExpr);
2827
2828  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2829  // type needs to be scalar.
2830  if (castType->isVoidType()) {
2831    // Cast to void allows any expr type.
2832  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
2833    // We can't check any more until template instantiation time.
2834  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2835    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2836        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2837        (castType->isStructureType() || castType->isUnionType())) {
2838      // GCC struct/union extension: allow cast to self.
2839      // FIXME: Check that the cast destination type is complete.
2840      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2841        << castType << castExpr->getSourceRange();
2842    } else if (castType->isUnionType()) {
2843      // GCC cast to union extension
2844      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2845      RecordDecl::field_iterator Field, FieldEnd;
2846      for (Field = RD->field_begin(Context), FieldEnd = RD->field_end(Context);
2847           Field != FieldEnd; ++Field) {
2848        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2849            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2850          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2851            << castExpr->getSourceRange();
2852          break;
2853        }
2854      }
2855      if (Field == FieldEnd)
2856        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2857          << castExpr->getType() << castExpr->getSourceRange();
2858    } else {
2859      // Reject any other conversions to non-scalar types.
2860      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2861        << castType << castExpr->getSourceRange();
2862    }
2863  } else if (!castExpr->getType()->isScalarType() &&
2864             !castExpr->getType()->isVectorType()) {
2865    return Diag(castExpr->getLocStart(),
2866                diag::err_typecheck_expect_scalar_operand)
2867      << castExpr->getType() << castExpr->getSourceRange();
2868  } else if (castExpr->getType()->isVectorType()) {
2869    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2870      return true;
2871  } else if (castType->isVectorType()) {
2872    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2873      return true;
2874  } else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
2875    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
2876  } else if (!castType->isArithmeticType()) {
2877    QualType castExprType = castExpr->getType();
2878    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
2879      return Diag(castExpr->getLocStart(),
2880                  diag::err_cast_pointer_from_non_pointer_int)
2881        << castExprType << castExpr->getSourceRange();
2882  } else if (!castExpr->getType()->isArithmeticType()) {
2883    if (!castType->isIntegralType() && castType->isArithmeticType())
2884      return Diag(castExpr->getLocStart(),
2885                  diag::err_cast_pointer_to_non_pointer_int)
2886        << castType << castExpr->getSourceRange();
2887  }
2888  if (isa<ObjCSelectorExpr>(castExpr))
2889    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
2890  return false;
2891}
2892
2893bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
2894  assert(VectorTy->isVectorType() && "Not a vector type!");
2895
2896  if (Ty->isVectorType() || Ty->isIntegerType()) {
2897    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
2898      return Diag(R.getBegin(),
2899                  Ty->isVectorType() ?
2900                  diag::err_invalid_conversion_between_vectors :
2901                  diag::err_invalid_conversion_between_vector_and_integer)
2902        << VectorTy << Ty << R;
2903  } else
2904    return Diag(R.getBegin(),
2905                diag::err_invalid_conversion_between_vector_and_scalar)
2906      << VectorTy << Ty << R;
2907
2908  return false;
2909}
2910
2911Action::OwningExprResult
2912Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
2913                    SourceLocation RParenLoc, ExprArg Op) {
2914  assert((Ty != 0) && (Op.get() != 0) &&
2915         "ActOnCastExpr(): missing type or expr");
2916
2917  Expr *castExpr = Op.takeAs<Expr>();
2918  QualType castType = QualType::getFromOpaquePtr(Ty);
2919
2920  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2921    return ExprError();
2922  return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
2923                                            LParenLoc, RParenLoc));
2924}
2925
2926/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
2927/// In that case, lhs = cond.
2928/// C99 6.5.15
2929QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2930                                        SourceLocation QuestionLoc) {
2931  // C++ is sufficiently different to merit its own checker.
2932  if (getLangOptions().CPlusPlus)
2933    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
2934
2935  UsualUnaryConversions(Cond);
2936  UsualUnaryConversions(LHS);
2937  UsualUnaryConversions(RHS);
2938  QualType CondTy = Cond->getType();
2939  QualType LHSTy = LHS->getType();
2940  QualType RHSTy = RHS->getType();
2941
2942  // first, check the condition.
2943  if (!CondTy->isScalarType()) { // C99 6.5.15p2
2944    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
2945      << CondTy;
2946    return QualType();
2947  }
2948
2949  // Now check the two expressions.
2950
2951  // If both operands have arithmetic type, do the usual arithmetic conversions
2952  // to find a common type: C99 6.5.15p3,5.
2953  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
2954    UsualArithmeticConversions(LHS, RHS);
2955    return LHS->getType();
2956  }
2957
2958  // If both operands are the same structure or union type, the result is that
2959  // type.
2960  if (const RecordType *LHSRT = LHSTy->getAsRecordType()) {    // C99 6.5.15p3
2961    if (const RecordType *RHSRT = RHSTy->getAsRecordType())
2962      if (LHSRT->getDecl() == RHSRT->getDecl())
2963        // "If both the operands have structure or union type, the result has
2964        // that type."  This implies that CV qualifiers are dropped.
2965        return LHSTy.getUnqualifiedType();
2966    // FIXME: Type of conditional expression must be complete in C mode.
2967  }
2968
2969  // C99 6.5.15p5: "If both operands have void type, the result has void type."
2970  // The following || allows only one side to be void (a GCC-ism).
2971  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
2972    if (!LHSTy->isVoidType())
2973      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2974        << RHS->getSourceRange();
2975    if (!RHSTy->isVoidType())
2976      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2977        << LHS->getSourceRange();
2978    ImpCastExprToType(LHS, Context.VoidTy);
2979    ImpCastExprToType(RHS, Context.VoidTy);
2980    return Context.VoidTy;
2981  }
2982  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
2983  // the type of the other operand."
2984  if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() ||
2985       Context.isObjCObjectPointerType(LHSTy)) &&
2986      RHS->isNullPointerConstant(Context)) {
2987    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
2988    return LHSTy;
2989  }
2990  if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() ||
2991       Context.isObjCObjectPointerType(RHSTy)) &&
2992      LHS->isNullPointerConstant(Context)) {
2993    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
2994    return RHSTy;
2995  }
2996
2997  const PointerType *LHSPT = LHSTy->getAsPointerType();
2998  const PointerType *RHSPT = RHSTy->getAsPointerType();
2999  const BlockPointerType *LHSBPT = LHSTy->getAsBlockPointerType();
3000  const BlockPointerType *RHSBPT = RHSTy->getAsBlockPointerType();
3001
3002  // Handle the case where both operands are pointers before we handle null
3003  // pointer constants in case both operands are null pointer constants.
3004  if ((LHSPT || LHSBPT) && (RHSPT || RHSBPT)) { // C99 6.5.15p3,6
3005    // get the "pointed to" types
3006    QualType lhptee = (LHSPT ? LHSPT->getPointeeType()
3007                       : LHSBPT->getPointeeType());
3008      QualType rhptee = (RHSPT ? RHSPT->getPointeeType()
3009                         : RHSBPT->getPointeeType());
3010
3011    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
3012    if (lhptee->isVoidType()
3013        && (RHSBPT || rhptee->isIncompleteOrObjectType())) {
3014      // Figure out necessary qualifiers (C99 6.5.15p6)
3015      QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
3016      QualType destType = Context.getPointerType(destPointee);
3017      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3018      ImpCastExprToType(RHS, destType); // promote to void*
3019      return destType;
3020    }
3021    if (rhptee->isVoidType()
3022        && (LHSBPT || lhptee->isIncompleteOrObjectType())) {
3023      QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
3024      QualType destType = Context.getPointerType(destPointee);
3025      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3026      ImpCastExprToType(RHS, destType); // promote to void*
3027      return destType;
3028    }
3029
3030    bool sameKind = (LHSPT && RHSPT) || (LHSBPT && RHSBPT);
3031    if (sameKind
3032        && Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3033      // Two identical pointer types are always compatible.
3034      return LHSTy;
3035    }
3036
3037    QualType compositeType = LHSTy;
3038
3039    // If either type is an Objective-C object type then check
3040    // compatibility according to Objective-C.
3041    if (Context.isObjCObjectPointerType(LHSTy) ||
3042        Context.isObjCObjectPointerType(RHSTy)) {
3043      // If both operands are interfaces and either operand can be
3044      // assigned to the other, use that type as the composite
3045      // type. This allows
3046      //   xxx ? (A*) a : (B*) b
3047      // where B is a subclass of A.
3048      //
3049      // Additionally, as for assignment, if either type is 'id'
3050      // allow silent coercion. Finally, if the types are
3051      // incompatible then make sure to use 'id' as the composite
3052      // type so the result is acceptable for sending messages to.
3053
3054      // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
3055      // It could return the composite type.
3056      const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
3057      const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
3058      if (LHSIface && RHSIface &&
3059          Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
3060        compositeType = LHSTy;
3061      } else if (LHSIface && RHSIface &&
3062                 Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
3063        compositeType = RHSTy;
3064      } else if (Context.isObjCIdStructType(lhptee) ||
3065                 Context.isObjCIdStructType(rhptee)) {
3066        compositeType = Context.getObjCIdType();
3067      } else if (LHSBPT || RHSBPT) {
3068        if (!sameKind
3069            || !Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3070                                           rhptee.getUnqualifiedType()))
3071          Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3072            << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3073        return QualType();
3074      } else {
3075        Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
3076          << LHSTy << RHSTy
3077          << LHS->getSourceRange() << RHS->getSourceRange();
3078        QualType incompatTy = Context.getObjCIdType();
3079        ImpCastExprToType(LHS, incompatTy);
3080        ImpCastExprToType(RHS, incompatTy);
3081        return incompatTy;
3082      }
3083    } else if (!sameKind
3084               || !Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3085                                              rhptee.getUnqualifiedType())) {
3086      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3087        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3088      // In this situation, we assume void* type. No especially good
3089      // reason, but this is what gcc does, and we do have to pick
3090      // to get a consistent AST.
3091      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3092      ImpCastExprToType(LHS, incompatTy);
3093      ImpCastExprToType(RHS, incompatTy);
3094      return incompatTy;
3095    }
3096    // The pointer types are compatible.
3097    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
3098    // differently qualified versions of compatible types, the result type is
3099    // a pointer to an appropriately qualified version of the *composite*
3100    // type.
3101    // FIXME: Need to calculate the composite type.
3102    // FIXME: Need to add qualifiers
3103    ImpCastExprToType(LHS, compositeType);
3104    ImpCastExprToType(RHS, compositeType);
3105    return compositeType;
3106  }
3107
3108  // GCC compatibility: soften pointer/integer mismatch.
3109  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
3110    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3111      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3112    ImpCastExprToType(LHS, RHSTy); // promote the integer to a pointer.
3113    return RHSTy;
3114  }
3115  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
3116    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3117      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3118    ImpCastExprToType(RHS, LHSTy); // promote the integer to a pointer.
3119    return LHSTy;
3120  }
3121
3122  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
3123  // evaluates to "struct objc_object *" (and is handled above when comparing
3124  // id with statically typed objects).
3125  if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
3126    // GCC allows qualified id and any Objective-C type to devolve to
3127    // id. Currently localizing to here until clear this should be
3128    // part of ObjCQualifiedIdTypesAreCompatible.
3129    if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
3130        (LHSTy->isObjCQualifiedIdType() &&
3131         Context.isObjCObjectPointerType(RHSTy)) ||
3132        (RHSTy->isObjCQualifiedIdType() &&
3133         Context.isObjCObjectPointerType(LHSTy))) {
3134      // FIXME: This is not the correct composite type. This only happens to
3135      // work because id can more or less be used anywhere, however this may
3136      // change the type of method sends.
3137
3138      // FIXME: gcc adds some type-checking of the arguments and emits
3139      // (confusing) incompatible comparison warnings in some
3140      // cases. Investigate.
3141      QualType compositeType = Context.getObjCIdType();
3142      ImpCastExprToType(LHS, compositeType);
3143      ImpCastExprToType(RHS, compositeType);
3144      return compositeType;
3145    }
3146  }
3147
3148  // Otherwise, the operands are not compatible.
3149  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3150    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3151  return QualType();
3152}
3153
3154/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
3155/// in the case of a the GNU conditional expr extension.
3156Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
3157                                                  SourceLocation ColonLoc,
3158                                                  ExprArg Cond, ExprArg LHS,
3159                                                  ExprArg RHS) {
3160  Expr *CondExpr = (Expr *) Cond.get();
3161  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
3162
3163  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
3164  // was the condition.
3165  bool isLHSNull = LHSExpr == 0;
3166  if (isLHSNull)
3167    LHSExpr = CondExpr;
3168
3169  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
3170                                             RHSExpr, QuestionLoc);
3171  if (result.isNull())
3172    return ExprError();
3173
3174  Cond.release();
3175  LHS.release();
3176  RHS.release();
3177  return Owned(new (Context) ConditionalOperator(CondExpr,
3178                                                 isLHSNull ? 0 : LHSExpr,
3179                                                 RHSExpr, result));
3180}
3181
3182
3183// CheckPointerTypesForAssignment - This is a very tricky routine (despite
3184// being closely modeled after the C99 spec:-). The odd characteristic of this
3185// routine is it effectively iqnores the qualifiers on the top level pointee.
3186// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
3187// FIXME: add a couple examples in this comment.
3188Sema::AssignConvertType
3189Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
3190  QualType lhptee, rhptee;
3191
3192  // get the "pointed to" type (ignoring qualifiers at the top level)
3193  lhptee = lhsType->getAsPointerType()->getPointeeType();
3194  rhptee = rhsType->getAsPointerType()->getPointeeType();
3195
3196  // make sure we operate on the canonical type
3197  lhptee = Context.getCanonicalType(lhptee);
3198  rhptee = Context.getCanonicalType(rhptee);
3199
3200  AssignConvertType ConvTy = Compatible;
3201
3202  // C99 6.5.16.1p1: This following citation is common to constraints
3203  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
3204  // qualifiers of the type *pointed to* by the right;
3205  // FIXME: Handle ExtQualType
3206  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
3207    ConvTy = CompatiblePointerDiscardsQualifiers;
3208
3209  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
3210  // incomplete type and the other is a pointer to a qualified or unqualified
3211  // version of void...
3212  if (lhptee->isVoidType()) {
3213    if (rhptee->isIncompleteOrObjectType())
3214      return ConvTy;
3215
3216    // As an extension, we allow cast to/from void* to function pointer.
3217    assert(rhptee->isFunctionType());
3218    return FunctionVoidPointer;
3219  }
3220
3221  if (rhptee->isVoidType()) {
3222    if (lhptee->isIncompleteOrObjectType())
3223      return ConvTy;
3224
3225    // As an extension, we allow cast to/from void* to function pointer.
3226    assert(lhptee->isFunctionType());
3227    return FunctionVoidPointer;
3228  }
3229  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
3230  // unqualified versions of compatible types, ...
3231  lhptee = lhptee.getUnqualifiedType();
3232  rhptee = rhptee.getUnqualifiedType();
3233  if (!Context.typesAreCompatible(lhptee, rhptee)) {
3234    // Check if the pointee types are compatible ignoring the sign.
3235    // We explicitly check for char so that we catch "char" vs
3236    // "unsigned char" on systems where "char" is unsigned.
3237    if (lhptee->isCharType()) {
3238      lhptee = Context.UnsignedCharTy;
3239    } else if (lhptee->isSignedIntegerType()) {
3240      lhptee = Context.getCorrespondingUnsignedType(lhptee);
3241    }
3242    if (rhptee->isCharType()) {
3243      rhptee = Context.UnsignedCharTy;
3244    } else if (rhptee->isSignedIntegerType()) {
3245      rhptee = Context.getCorrespondingUnsignedType(rhptee);
3246    }
3247    if (lhptee == rhptee) {
3248      // Types are compatible ignoring the sign. Qualifier incompatibility
3249      // takes priority over sign incompatibility because the sign
3250      // warning can be disabled.
3251      if (ConvTy != Compatible)
3252        return ConvTy;
3253      return IncompatiblePointerSign;
3254    }
3255    // General pointer incompatibility takes priority over qualifiers.
3256    return IncompatiblePointer;
3257  }
3258  return ConvTy;
3259}
3260
3261/// CheckBlockPointerTypesForAssignment - This routine determines whether two
3262/// block pointer types are compatible or whether a block and normal pointer
3263/// are compatible. It is more restrict than comparing two function pointer
3264// types.
3265Sema::AssignConvertType
3266Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
3267                                          QualType rhsType) {
3268  QualType lhptee, rhptee;
3269
3270  // get the "pointed to" type (ignoring qualifiers at the top level)
3271  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
3272  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
3273
3274  // make sure we operate on the canonical type
3275  lhptee = Context.getCanonicalType(lhptee);
3276  rhptee = Context.getCanonicalType(rhptee);
3277
3278  AssignConvertType ConvTy = Compatible;
3279
3280  // For blocks we enforce that qualifiers are identical.
3281  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
3282    ConvTy = CompatiblePointerDiscardsQualifiers;
3283
3284  if (!Context.typesAreCompatible(lhptee, rhptee))
3285    return IncompatibleBlockPointer;
3286  return ConvTy;
3287}
3288
3289/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
3290/// has code to accommodate several GCC extensions when type checking
3291/// pointers. Here are some objectionable examples that GCC considers warnings:
3292///
3293///  int a, *pint;
3294///  short *pshort;
3295///  struct foo *pfoo;
3296///
3297///  pint = pshort; // warning: assignment from incompatible pointer type
3298///  a = pint; // warning: assignment makes integer from pointer without a cast
3299///  pint = a; // warning: assignment makes pointer from integer without a cast
3300///  pint = pfoo; // warning: assignment from incompatible pointer type
3301///
3302/// As a result, the code for dealing with pointers is more complex than the
3303/// C99 spec dictates.
3304///
3305Sema::AssignConvertType
3306Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
3307  // Get canonical types.  We're not formatting these types, just comparing
3308  // them.
3309  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
3310  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
3311
3312  if (lhsType == rhsType)
3313    return Compatible; // Common case: fast path an exact match.
3314
3315  // If the left-hand side is a reference type, then we are in a
3316  // (rare!) case where we've allowed the use of references in C,
3317  // e.g., as a parameter type in a built-in function. In this case,
3318  // just make sure that the type referenced is compatible with the
3319  // right-hand side type. The caller is responsible for adjusting
3320  // lhsType so that the resulting expression does not have reference
3321  // type.
3322  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
3323    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
3324      return Compatible;
3325    return Incompatible;
3326  }
3327
3328  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
3329    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
3330      return Compatible;
3331    // Relax integer conversions like we do for pointers below.
3332    if (rhsType->isIntegerType())
3333      return IntToPointer;
3334    if (lhsType->isIntegerType())
3335      return PointerToInt;
3336    return IncompatibleObjCQualifiedId;
3337  }
3338
3339  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3340    // For ExtVector, allow vector splats; float -> <n x float>
3341    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
3342      if (LV->getElementType() == rhsType)
3343        return Compatible;
3344
3345    // If we are allowing lax vector conversions, and LHS and RHS are both
3346    // vectors, the total size only needs to be the same. This is a bitcast;
3347    // no bits are changed but the result type is different.
3348    if (getLangOptions().LaxVectorConversions &&
3349        lhsType->isVectorType() && rhsType->isVectorType()) {
3350      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3351        return IncompatibleVectors;
3352    }
3353    return Incompatible;
3354  }
3355
3356  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3357    return Compatible;
3358
3359  if (isa<PointerType>(lhsType)) {
3360    if (rhsType->isIntegerType())
3361      return IntToPointer;
3362
3363    if (isa<PointerType>(rhsType))
3364      return CheckPointerTypesForAssignment(lhsType, rhsType);
3365
3366    if (rhsType->getAsBlockPointerType()) {
3367      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
3368        return Compatible;
3369
3370      // Treat block pointers as objects.
3371      if (getLangOptions().ObjC1 &&
3372          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
3373        return Compatible;
3374    }
3375    return Incompatible;
3376  }
3377
3378  if (isa<BlockPointerType>(lhsType)) {
3379    if (rhsType->isIntegerType())
3380      return IntToBlockPointer;
3381
3382    // Treat block pointers as objects.
3383    if (getLangOptions().ObjC1 &&
3384        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
3385      return Compatible;
3386
3387    if (rhsType->isBlockPointerType())
3388      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3389
3390    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
3391      if (RHSPT->getPointeeType()->isVoidType())
3392        return Compatible;
3393    }
3394    return Incompatible;
3395  }
3396
3397  if (isa<PointerType>(rhsType)) {
3398    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3399    if (lhsType == Context.BoolTy)
3400      return Compatible;
3401
3402    if (lhsType->isIntegerType())
3403      return PointerToInt;
3404
3405    if (isa<PointerType>(lhsType))
3406      return CheckPointerTypesForAssignment(lhsType, rhsType);
3407
3408    if (isa<BlockPointerType>(lhsType) &&
3409        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
3410      return Compatible;
3411    return Incompatible;
3412  }
3413
3414  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3415    if (Context.typesAreCompatible(lhsType, rhsType))
3416      return Compatible;
3417  }
3418  return Incompatible;
3419}
3420
3421/// \brief Constructs a transparent union from an expression that is
3422/// used to initialize the transparent union.
3423static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
3424                                      QualType UnionType, FieldDecl *Field) {
3425  // Build an initializer list that designates the appropriate member
3426  // of the transparent union.
3427  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
3428                                                   &E, 1,
3429                                                   SourceLocation());
3430  Initializer->setType(UnionType);
3431  Initializer->setInitializedFieldInUnion(Field);
3432
3433  // Build a compound literal constructing a value of the transparent
3434  // union type from this initializer list.
3435  E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
3436                                  false);
3437}
3438
3439Sema::AssignConvertType
3440Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
3441  QualType FromType = rExpr->getType();
3442
3443  // If the ArgType is a Union type, we want to handle a potential
3444  // transparent_union GCC extension.
3445  const RecordType *UT = ArgType->getAsUnionType();
3446  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>(Context))
3447    return Incompatible;
3448
3449  // The field to initialize within the transparent union.
3450  RecordDecl *UD = UT->getDecl();
3451  FieldDecl *InitField = 0;
3452  // It's compatible if the expression matches any of the fields.
3453  for (RecordDecl::field_iterator it = UD->field_begin(Context),
3454         itend = UD->field_end(Context);
3455       it != itend; ++it) {
3456    if (it->getType()->isPointerType()) {
3457      // If the transparent union contains a pointer type, we allow:
3458      // 1) void pointer
3459      // 2) null pointer constant
3460      if (FromType->isPointerType())
3461        if (FromType->getAsPointerType()->getPointeeType()->isVoidType()) {
3462          ImpCastExprToType(rExpr, it->getType());
3463          InitField = *it;
3464          break;
3465        }
3466
3467      if (rExpr->isNullPointerConstant(Context)) {
3468        ImpCastExprToType(rExpr, it->getType());
3469        InitField = *it;
3470        break;
3471      }
3472    }
3473
3474    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
3475          == Compatible) {
3476      InitField = *it;
3477      break;
3478    }
3479  }
3480
3481  if (!InitField)
3482    return Incompatible;
3483
3484  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
3485  return Compatible;
3486}
3487
3488Sema::AssignConvertType
3489Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
3490  if (getLangOptions().CPlusPlus) {
3491    if (!lhsType->isRecordType()) {
3492      // C++ 5.17p3: If the left operand is not of class type, the
3493      // expression is implicitly converted (C++ 4) to the
3494      // cv-unqualified type of the left operand.
3495      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
3496                                    "assigning"))
3497        return Incompatible;
3498      return Compatible;
3499    }
3500
3501    // FIXME: Currently, we fall through and treat C++ classes like C
3502    // structures.
3503  }
3504
3505  // C99 6.5.16.1p1: the left operand is a pointer and the right is
3506  // a null pointer constant.
3507  if ((lhsType->isPointerType() ||
3508       lhsType->isObjCQualifiedIdType() ||
3509       lhsType->isBlockPointerType())
3510      && rExpr->isNullPointerConstant(Context)) {
3511    ImpCastExprToType(rExpr, lhsType);
3512    return Compatible;
3513  }
3514
3515  // This check seems unnatural, however it is necessary to ensure the proper
3516  // conversion of functions/arrays. If the conversion were done for all
3517  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
3518  // expressions that surpress this implicit conversion (&, sizeof).
3519  //
3520  // Suppress this for references: C++ 8.5.3p5.
3521  if (!lhsType->isReferenceType())
3522    DefaultFunctionArrayConversion(rExpr);
3523
3524  Sema::AssignConvertType result =
3525    CheckAssignmentConstraints(lhsType, rExpr->getType());
3526
3527  // C99 6.5.16.1p2: The value of the right operand is converted to the
3528  // type of the assignment expression.
3529  // CheckAssignmentConstraints allows the left-hand side to be a reference,
3530  // so that we can use references in built-in functions even in C.
3531  // The getNonReferenceType() call makes sure that the resulting expression
3532  // does not have reference type.
3533  if (result != Incompatible && rExpr->getType() != lhsType)
3534    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
3535  return result;
3536}
3537
3538QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
3539  Diag(Loc, diag::err_typecheck_invalid_operands)
3540    << lex->getType() << rex->getType()
3541    << lex->getSourceRange() << rex->getSourceRange();
3542  return QualType();
3543}
3544
3545inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
3546                                                              Expr *&rex) {
3547  // For conversion purposes, we ignore any qualifiers.
3548  // For example, "const float" and "float" are equivalent.
3549  QualType lhsType =
3550    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
3551  QualType rhsType =
3552    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
3553
3554  // If the vector types are identical, return.
3555  if (lhsType == rhsType)
3556    return lhsType;
3557
3558  // Handle the case of a vector & extvector type of the same size and element
3559  // type.  It would be nice if we only had one vector type someday.
3560  if (getLangOptions().LaxVectorConversions) {
3561    // FIXME: Should we warn here?
3562    if (const VectorType *LV = lhsType->getAsVectorType()) {
3563      if (const VectorType *RV = rhsType->getAsVectorType())
3564        if (LV->getElementType() == RV->getElementType() &&
3565            LV->getNumElements() == RV->getNumElements()) {
3566          return lhsType->isExtVectorType() ? lhsType : rhsType;
3567        }
3568    }
3569  }
3570
3571  // If the lhs is an extended vector and the rhs is a scalar of the same type
3572  // or a literal, promote the rhs to the vector type.
3573  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
3574    QualType eltType = V->getElementType();
3575
3576    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
3577        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
3578        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
3579      ImpCastExprToType(rex, lhsType);
3580      return lhsType;
3581    }
3582  }
3583
3584  // If the rhs is an extended vector and the lhs is a scalar of the same type,
3585  // promote the lhs to the vector type.
3586  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
3587    QualType eltType = V->getElementType();
3588
3589    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
3590        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
3591        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
3592      ImpCastExprToType(lex, rhsType);
3593      return rhsType;
3594    }
3595  }
3596
3597  // You cannot convert between vector values of different size.
3598  Diag(Loc, diag::err_typecheck_vector_not_convertable)
3599    << lex->getType() << rex->getType()
3600    << lex->getSourceRange() << rex->getSourceRange();
3601  return QualType();
3602}
3603
3604inline QualType Sema::CheckMultiplyDivideOperands(
3605  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3606{
3607  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3608    return CheckVectorOperands(Loc, lex, rex);
3609
3610  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3611
3612  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3613    return compType;
3614  return InvalidOperands(Loc, lex, rex);
3615}
3616
3617inline QualType Sema::CheckRemainderOperands(
3618  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3619{
3620  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3621    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3622      return CheckVectorOperands(Loc, lex, rex);
3623    return InvalidOperands(Loc, lex, rex);
3624  }
3625
3626  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3627
3628  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3629    return compType;
3630  return InvalidOperands(Loc, lex, rex);
3631}
3632
3633inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
3634  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy)
3635{
3636  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3637    QualType compType = CheckVectorOperands(Loc, lex, rex);
3638    if (CompLHSTy) *CompLHSTy = compType;
3639    return compType;
3640  }
3641
3642  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3643
3644  // handle the common case first (both operands are arithmetic).
3645  if (lex->getType()->isArithmeticType() &&
3646      rex->getType()->isArithmeticType()) {
3647    if (CompLHSTy) *CompLHSTy = compType;
3648    return compType;
3649  }
3650
3651  // Put any potential pointer into PExp
3652  Expr* PExp = lex, *IExp = rex;
3653  if (IExp->getType()->isPointerType())
3654    std::swap(PExp, IExp);
3655
3656  if (const PointerType *PTy = PExp->getType()->getAsPointerType()) {
3657    if (IExp->getType()->isIntegerType()) {
3658      QualType PointeeTy = PTy->getPointeeType();
3659      // Check for arithmetic on pointers to incomplete types.
3660      if (PointeeTy->isVoidType()) {
3661        if (getLangOptions().CPlusPlus) {
3662          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3663            << lex->getSourceRange() << rex->getSourceRange();
3664          return QualType();
3665        }
3666
3667        // GNU extension: arithmetic on pointer to void
3668        Diag(Loc, diag::ext_gnu_void_ptr)
3669          << lex->getSourceRange() << rex->getSourceRange();
3670      } else if (PointeeTy->isFunctionType()) {
3671        if (getLangOptions().CPlusPlus) {
3672          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3673            << lex->getType() << lex->getSourceRange();
3674          return QualType();
3675        }
3676
3677        // GNU extension: arithmetic on pointer to function
3678        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3679          << lex->getType() << lex->getSourceRange();
3680      } else if (!PTy->isDependentType() &&
3681                 RequireCompleteType(Loc, PointeeTy,
3682                                diag::err_typecheck_arithmetic_incomplete_type,
3683                                     PExp->getSourceRange(), SourceRange(),
3684                                     PExp->getType()))
3685        return QualType();
3686
3687      // Diagnose bad cases where we step over interface counts.
3688      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3689        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3690          << PointeeTy << PExp->getSourceRange();
3691        return QualType();
3692      }
3693
3694      if (CompLHSTy) {
3695        QualType LHSTy = lex->getType();
3696        if (LHSTy->isPromotableIntegerType())
3697          LHSTy = Context.IntTy;
3698        else {
3699          QualType T = isPromotableBitField(lex, Context);
3700          if (!T.isNull())
3701            LHSTy = T;
3702        }
3703
3704        *CompLHSTy = LHSTy;
3705      }
3706      return PExp->getType();
3707    }
3708  }
3709
3710  return InvalidOperands(Loc, lex, rex);
3711}
3712
3713// C99 6.5.6
3714QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
3715                                        SourceLocation Loc, QualType* CompLHSTy) {
3716  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3717    QualType compType = CheckVectorOperands(Loc, lex, rex);
3718    if (CompLHSTy) *CompLHSTy = compType;
3719    return compType;
3720  }
3721
3722  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3723
3724  // Enforce type constraints: C99 6.5.6p3.
3725
3726  // Handle the common case first (both operands are arithmetic).
3727  if (lex->getType()->isArithmeticType()
3728      && rex->getType()->isArithmeticType()) {
3729    if (CompLHSTy) *CompLHSTy = compType;
3730    return compType;
3731  }
3732
3733  // Either ptr - int   or   ptr - ptr.
3734  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
3735    QualType lpointee = LHSPTy->getPointeeType();
3736
3737    // The LHS must be an completely-defined object type.
3738
3739    bool ComplainAboutVoid = false;
3740    Expr *ComplainAboutFunc = 0;
3741    if (lpointee->isVoidType()) {
3742      if (getLangOptions().CPlusPlus) {
3743        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3744          << lex->getSourceRange() << rex->getSourceRange();
3745        return QualType();
3746      }
3747
3748      // GNU C extension: arithmetic on pointer to void
3749      ComplainAboutVoid = true;
3750    } else if (lpointee->isFunctionType()) {
3751      if (getLangOptions().CPlusPlus) {
3752        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3753          << lex->getType() << lex->getSourceRange();
3754        return QualType();
3755      }
3756
3757      // GNU C extension: arithmetic on pointer to function
3758      ComplainAboutFunc = lex;
3759    } else if (!lpointee->isDependentType() &&
3760               RequireCompleteType(Loc, lpointee,
3761                                   diag::err_typecheck_sub_ptr_object,
3762                                   lex->getSourceRange(),
3763                                   SourceRange(),
3764                                   lex->getType()))
3765      return QualType();
3766
3767    // Diagnose bad cases where we step over interface counts.
3768    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3769      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3770        << lpointee << lex->getSourceRange();
3771      return QualType();
3772    }
3773
3774    // The result type of a pointer-int computation is the pointer type.
3775    if (rex->getType()->isIntegerType()) {
3776      if (ComplainAboutVoid)
3777        Diag(Loc, diag::ext_gnu_void_ptr)
3778          << lex->getSourceRange() << rex->getSourceRange();
3779      if (ComplainAboutFunc)
3780        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3781          << ComplainAboutFunc->getType()
3782          << ComplainAboutFunc->getSourceRange();
3783
3784      if (CompLHSTy) *CompLHSTy = lex->getType();
3785      return lex->getType();
3786    }
3787
3788    // Handle pointer-pointer subtractions.
3789    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
3790      QualType rpointee = RHSPTy->getPointeeType();
3791
3792      // RHS must be a completely-type object type.
3793      // Handle the GNU void* extension.
3794      if (rpointee->isVoidType()) {
3795        if (getLangOptions().CPlusPlus) {
3796          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3797            << lex->getSourceRange() << rex->getSourceRange();
3798          return QualType();
3799        }
3800
3801        ComplainAboutVoid = true;
3802      } else if (rpointee->isFunctionType()) {
3803        if (getLangOptions().CPlusPlus) {
3804          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3805            << rex->getType() << rex->getSourceRange();
3806          return QualType();
3807        }
3808
3809        // GNU extension: arithmetic on pointer to function
3810        if (!ComplainAboutFunc)
3811          ComplainAboutFunc = rex;
3812      } else if (!rpointee->isDependentType() &&
3813                 RequireCompleteType(Loc, rpointee,
3814                                     diag::err_typecheck_sub_ptr_object,
3815                                     rex->getSourceRange(),
3816                                     SourceRange(),
3817                                     rex->getType()))
3818        return QualType();
3819
3820      if (getLangOptions().CPlusPlus) {
3821        // Pointee types must be the same: C++ [expr.add]
3822        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
3823          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3824            << lex->getType() << rex->getType()
3825            << lex->getSourceRange() << rex->getSourceRange();
3826          return QualType();
3827        }
3828      } else {
3829        // Pointee types must be compatible C99 6.5.6p3
3830        if (!Context.typesAreCompatible(
3831                Context.getCanonicalType(lpointee).getUnqualifiedType(),
3832                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
3833          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3834            << lex->getType() << rex->getType()
3835            << lex->getSourceRange() << rex->getSourceRange();
3836          return QualType();
3837        }
3838      }
3839
3840      if (ComplainAboutVoid)
3841        Diag(Loc, diag::ext_gnu_void_ptr)
3842          << lex->getSourceRange() << rex->getSourceRange();
3843      if (ComplainAboutFunc)
3844        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3845          << ComplainAboutFunc->getType()
3846          << ComplainAboutFunc->getSourceRange();
3847
3848      if (CompLHSTy) *CompLHSTy = lex->getType();
3849      return Context.getPointerDiffType();
3850    }
3851  }
3852
3853  return InvalidOperands(Loc, lex, rex);
3854}
3855
3856// C99 6.5.7
3857QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3858                                  bool isCompAssign) {
3859  // C99 6.5.7p2: Each of the operands shall have integer type.
3860  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
3861    return InvalidOperands(Loc, lex, rex);
3862
3863  // Shifts don't perform usual arithmetic conversions, they just do integer
3864  // promotions on each operand. C99 6.5.7p3
3865  QualType LHSTy;
3866  if (lex->getType()->isPromotableIntegerType())
3867    LHSTy = Context.IntTy;
3868  else {
3869    LHSTy = isPromotableBitField(lex, Context);
3870    if (LHSTy.isNull())
3871      LHSTy = lex->getType();
3872  }
3873  if (!isCompAssign)
3874    ImpCastExprToType(lex, LHSTy);
3875
3876  UsualUnaryConversions(rex);
3877
3878  // "The type of the result is that of the promoted left operand."
3879  return LHSTy;
3880}
3881
3882// C99 6.5.8, C++ [expr.rel]
3883QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3884                                    unsigned OpaqueOpc, bool isRelational) {
3885  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
3886
3887  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3888    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
3889
3890  // C99 6.5.8p3 / C99 6.5.9p4
3891  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3892    UsualArithmeticConversions(lex, rex);
3893  else {
3894    UsualUnaryConversions(lex);
3895    UsualUnaryConversions(rex);
3896  }
3897  QualType lType = lex->getType();
3898  QualType rType = rex->getType();
3899
3900  if (!lType->isFloatingType()
3901      && !(lType->isBlockPointerType() && isRelational)) {
3902    // For non-floating point types, check for self-comparisons of the form
3903    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3904    // often indicate logic errors in the program.
3905    // NOTE: Don't warn about comparisons of enum constants. These can arise
3906    //  from macro expansions, and are usually quite deliberate.
3907    Expr *LHSStripped = lex->IgnoreParens();
3908    Expr *RHSStripped = rex->IgnoreParens();
3909    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
3910      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
3911        if (DRL->getDecl() == DRR->getDecl() &&
3912            !isa<EnumConstantDecl>(DRL->getDecl()))
3913          Diag(Loc, diag::warn_selfcomparison);
3914
3915    if (isa<CastExpr>(LHSStripped))
3916      LHSStripped = LHSStripped->IgnoreParenCasts();
3917    if (isa<CastExpr>(RHSStripped))
3918      RHSStripped = RHSStripped->IgnoreParenCasts();
3919
3920    // Warn about comparisons against a string constant (unless the other
3921    // operand is null), the user probably wants strcmp.
3922    Expr *literalString = 0;
3923    Expr *literalStringStripped = 0;
3924    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
3925        !RHSStripped->isNullPointerConstant(Context)) {
3926      literalString = lex;
3927      literalStringStripped = LHSStripped;
3928    }
3929    else if ((isa<StringLiteral>(RHSStripped) ||
3930              isa<ObjCEncodeExpr>(RHSStripped)) &&
3931             !LHSStripped->isNullPointerConstant(Context)) {
3932      literalString = rex;
3933      literalStringStripped = RHSStripped;
3934    }
3935
3936    if (literalString) {
3937      std::string resultComparison;
3938      switch (Opc) {
3939      case BinaryOperator::LT: resultComparison = ") < 0"; break;
3940      case BinaryOperator::GT: resultComparison = ") > 0"; break;
3941      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
3942      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
3943      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
3944      case BinaryOperator::NE: resultComparison = ") != 0"; break;
3945      default: assert(false && "Invalid comparison operator");
3946      }
3947      Diag(Loc, diag::warn_stringcompare)
3948        << isa<ObjCEncodeExpr>(literalStringStripped)
3949        << literalString->getSourceRange()
3950        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
3951        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
3952                                                 "strcmp(")
3953        << CodeModificationHint::CreateInsertion(
3954                                       PP.getLocForEndOfToken(rex->getLocEnd()),
3955                                       resultComparison);
3956    }
3957  }
3958
3959  // The result of comparisons is 'bool' in C++, 'int' in C.
3960  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
3961
3962  if (isRelational) {
3963    if (lType->isRealType() && rType->isRealType())
3964      return ResultTy;
3965  } else {
3966    // Check for comparisons of floating point operands using != and ==.
3967    if (lType->isFloatingType()) {
3968      assert(rType->isFloatingType());
3969      CheckFloatComparison(Loc,lex,rex);
3970    }
3971
3972    if (lType->isArithmeticType() && rType->isArithmeticType())
3973      return ResultTy;
3974  }
3975
3976  bool LHSIsNull = lex->isNullPointerConstant(Context);
3977  bool RHSIsNull = rex->isNullPointerConstant(Context);
3978
3979  // All of the following pointer related warnings are GCC extensions, except
3980  // when handling null pointer constants. One day, we can consider making them
3981  // errors (when -pedantic-errors is enabled).
3982  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
3983    QualType LCanPointeeTy =
3984      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
3985    QualType RCanPointeeTy =
3986      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
3987
3988    // Simple check: if the pointee types are identical, we're done.
3989    if (LCanPointeeTy == RCanPointeeTy)
3990      return ResultTy;
3991
3992    if (getLangOptions().CPlusPlus) {
3993      // C++ [expr.rel]p2:
3994      //   [...] Pointer conversions (4.10) and qualification
3995      //   conversions (4.4) are performed on pointer operands (or on
3996      //   a pointer operand and a null pointer constant) to bring
3997      //   them to their composite pointer type. [...]
3998      //
3999      // C++ [expr.eq]p2 uses the same notion for (in)equality
4000      // comparisons of pointers.
4001      QualType T = FindCompositePointerType(lex, rex);
4002      if (T.isNull()) {
4003        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4004          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4005        return QualType();
4006      }
4007
4008      ImpCastExprToType(lex, T);
4009      ImpCastExprToType(rex, T);
4010      return ResultTy;
4011    }
4012
4013    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
4014        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
4015        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
4016                                    RCanPointeeTy.getUnqualifiedType()) &&
4017        !Context.areComparableObjCPointerTypes(lType, rType)) {
4018      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4019        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4020    }
4021    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4022    return ResultTy;
4023  }
4024  // C++ allows comparison of pointers with null pointer constants.
4025  if (getLangOptions().CPlusPlus) {
4026    if (lType->isPointerType() && RHSIsNull) {
4027      ImpCastExprToType(rex, lType);
4028      return ResultTy;
4029    }
4030    if (rType->isPointerType() && LHSIsNull) {
4031      ImpCastExprToType(lex, rType);
4032      return ResultTy;
4033    }
4034    // And comparison of nullptr_t with itself.
4035    if (lType->isNullPtrType() && rType->isNullPtrType())
4036      return ResultTy;
4037  }
4038  // Handle block pointer types.
4039  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
4040    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
4041    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
4042
4043    if (!LHSIsNull && !RHSIsNull &&
4044        !Context.typesAreCompatible(lpointee, rpointee)) {
4045      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4046        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4047    }
4048    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4049    return ResultTy;
4050  }
4051  // Allow block pointers to be compared with null pointer constants.
4052  if (!isRelational
4053      && ((lType->isBlockPointerType() && rType->isPointerType())
4054          || (lType->isPointerType() && rType->isBlockPointerType()))) {
4055    if (!LHSIsNull && !RHSIsNull) {
4056      if (!((rType->isPointerType() && rType->getAsPointerType()
4057             ->getPointeeType()->isVoidType())
4058            || (lType->isPointerType() && lType->getAsPointerType()
4059                ->getPointeeType()->isVoidType())))
4060        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4061          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4062    }
4063    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4064    return ResultTy;
4065  }
4066
4067  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
4068    if (lType->isPointerType() || rType->isPointerType()) {
4069      const PointerType *LPT = lType->getAsPointerType();
4070      const PointerType *RPT = rType->getAsPointerType();
4071      bool LPtrToVoid = LPT ?
4072        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
4073      bool RPtrToVoid = RPT ?
4074        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
4075
4076      if (!LPtrToVoid && !RPtrToVoid &&
4077          !Context.typesAreCompatible(lType, rType)) {
4078        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4079          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4080        ImpCastExprToType(rex, lType);
4081        return ResultTy;
4082      }
4083      ImpCastExprToType(rex, lType);
4084      return ResultTy;
4085    }
4086    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
4087      ImpCastExprToType(rex, lType);
4088      return ResultTy;
4089    } else {
4090      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
4091        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
4092          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4093        ImpCastExprToType(rex, lType);
4094        return ResultTy;
4095      }
4096    }
4097  }
4098  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
4099       rType->isIntegerType()) {
4100    if (!RHSIsNull)
4101      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4102        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4103    ImpCastExprToType(rex, lType); // promote the integer to pointer
4104    return ResultTy;
4105  }
4106  if (lType->isIntegerType() &&
4107      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
4108    if (!LHSIsNull)
4109      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4110        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4111    ImpCastExprToType(lex, rType); // promote the integer to pointer
4112    return ResultTy;
4113  }
4114  // Handle block pointers.
4115  if (!isRelational && RHSIsNull
4116      && lType->isBlockPointerType() && rType->isIntegerType()) {
4117    ImpCastExprToType(rex, lType); // promote the integer to pointer
4118    return ResultTy;
4119  }
4120  if (!isRelational && LHSIsNull
4121      && lType->isIntegerType() && rType->isBlockPointerType()) {
4122    ImpCastExprToType(lex, rType); // promote the integer to pointer
4123    return ResultTy;
4124  }
4125  return InvalidOperands(Loc, lex, rex);
4126}
4127
4128/// CheckVectorCompareOperands - vector comparisons are a clang extension that
4129/// operates on extended vector types.  Instead of producing an IntTy result,
4130/// like a scalar comparison, a vector comparison produces a vector of integer
4131/// types.
4132QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
4133                                          SourceLocation Loc,
4134                                          bool isRelational) {
4135  // Check to make sure we're operating on vectors of the same type and width,
4136  // Allowing one side to be a scalar of element type.
4137  QualType vType = CheckVectorOperands(Loc, lex, rex);
4138  if (vType.isNull())
4139    return vType;
4140
4141  QualType lType = lex->getType();
4142  QualType rType = rex->getType();
4143
4144  // For non-floating point types, check for self-comparisons of the form
4145  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4146  // often indicate logic errors in the program.
4147  if (!lType->isFloatingType()) {
4148    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
4149      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
4150        if (DRL->getDecl() == DRR->getDecl())
4151          Diag(Loc, diag::warn_selfcomparison);
4152  }
4153
4154  // Check for comparisons of floating point operands using != and ==.
4155  if (!isRelational && lType->isFloatingType()) {
4156    assert (rType->isFloatingType());
4157    CheckFloatComparison(Loc,lex,rex);
4158  }
4159
4160  // FIXME: Vector compare support in the LLVM backend is not fully reliable,
4161  // just reject all vector comparisons for now.
4162  if (1) {
4163    Diag(Loc, diag::err_typecheck_vector_comparison)
4164      << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4165    return QualType();
4166  }
4167
4168  // Return the type for the comparison, which is the same as vector type for
4169  // integer vectors, or an integer type of identical size and number of
4170  // elements for floating point vectors.
4171  if (lType->isIntegerType())
4172    return lType;
4173
4174  const VectorType *VTy = lType->getAsVectorType();
4175  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
4176  if (TypeSize == Context.getTypeSize(Context.IntTy))
4177    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
4178  if (TypeSize == Context.getTypeSize(Context.LongTy))
4179    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
4180
4181  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
4182         "Unhandled vector element size in vector compare");
4183  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
4184}
4185
4186inline QualType Sema::CheckBitwiseOperands(
4187  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
4188{
4189  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4190    return CheckVectorOperands(Loc, lex, rex);
4191
4192  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4193
4194  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4195    return compType;
4196  return InvalidOperands(Loc, lex, rex);
4197}
4198
4199inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
4200  Expr *&lex, Expr *&rex, SourceLocation Loc)
4201{
4202  UsualUnaryConversions(lex);
4203  UsualUnaryConversions(rex);
4204
4205  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
4206    return Context.IntTy;
4207  return InvalidOperands(Loc, lex, rex);
4208}
4209
4210/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
4211/// is a read-only property; return true if so. A readonly property expression
4212/// depends on various declarations and thus must be treated specially.
4213///
4214static bool IsReadonlyProperty(Expr *E, Sema &S)
4215{
4216  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
4217    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
4218    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
4219      QualType BaseType = PropExpr->getBase()->getType();
4220      if (const PointerType *PTy = BaseType->getAsPointerType())
4221        if (const ObjCInterfaceType *IFTy =
4222            PTy->getPointeeType()->getAsObjCInterfaceType())
4223          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
4224            if (S.isPropertyReadonly(PDecl, IFace))
4225              return true;
4226    }
4227  }
4228  return false;
4229}
4230
4231/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
4232/// emit an error and return true.  If so, return false.
4233static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
4234  SourceLocation OrigLoc = Loc;
4235  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
4236                                                              &Loc);
4237  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
4238    IsLV = Expr::MLV_ReadonlyProperty;
4239  if (IsLV == Expr::MLV_Valid)
4240    return false;
4241
4242  unsigned Diag = 0;
4243  bool NeedType = false;
4244  switch (IsLV) { // C99 6.5.16p2
4245  default: assert(0 && "Unknown result from isModifiableLvalue!");
4246  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
4247  case Expr::MLV_ArrayType:
4248    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
4249    NeedType = true;
4250    break;
4251  case Expr::MLV_NotObjectType:
4252    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
4253    NeedType = true;
4254    break;
4255  case Expr::MLV_LValueCast:
4256    Diag = diag::err_typecheck_lvalue_casts_not_supported;
4257    break;
4258  case Expr::MLV_InvalidExpression:
4259    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
4260    break;
4261  case Expr::MLV_IncompleteType:
4262  case Expr::MLV_IncompleteVoidType:
4263    return S.RequireCompleteType(Loc, E->getType(),
4264                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
4265                                    E->getSourceRange());
4266  case Expr::MLV_DuplicateVectorComponents:
4267    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
4268    break;
4269  case Expr::MLV_NotBlockQualified:
4270    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
4271    break;
4272  case Expr::MLV_ReadonlyProperty:
4273    Diag = diag::error_readonly_property_assignment;
4274    break;
4275  case Expr::MLV_NoSetterProperty:
4276    Diag = diag::error_nosetter_property_assignment;
4277    break;
4278  }
4279
4280  SourceRange Assign;
4281  if (Loc != OrigLoc)
4282    Assign = SourceRange(OrigLoc, OrigLoc);
4283  if (NeedType)
4284    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
4285  else
4286    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
4287  return true;
4288}
4289
4290
4291
4292// C99 6.5.16.1
4293QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
4294                                       SourceLocation Loc,
4295                                       QualType CompoundType) {
4296  // Verify that LHS is a modifiable lvalue, and emit error if not.
4297  if (CheckForModifiableLvalue(LHS, Loc, *this))
4298    return QualType();
4299
4300  QualType LHSType = LHS->getType();
4301  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
4302
4303  AssignConvertType ConvTy;
4304  if (CompoundType.isNull()) {
4305    // Simple assignment "x = y".
4306    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
4307    // Special case of NSObject attributes on c-style pointer types.
4308    if (ConvTy == IncompatiblePointer &&
4309        ((Context.isObjCNSObjectType(LHSType) &&
4310          Context.isObjCObjectPointerType(RHSType)) ||
4311         (Context.isObjCNSObjectType(RHSType) &&
4312          Context.isObjCObjectPointerType(LHSType))))
4313      ConvTy = Compatible;
4314
4315    // If the RHS is a unary plus or minus, check to see if they = and + are
4316    // right next to each other.  If so, the user may have typo'd "x =+ 4"
4317    // instead of "x += 4".
4318    Expr *RHSCheck = RHS;
4319    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
4320      RHSCheck = ICE->getSubExpr();
4321    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
4322      if ((UO->getOpcode() == UnaryOperator::Plus ||
4323           UO->getOpcode() == UnaryOperator::Minus) &&
4324          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
4325          // Only if the two operators are exactly adjacent.
4326          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
4327          // And there is a space or other character before the subexpr of the
4328          // unary +/-.  We don't want to warn on "x=-1".
4329          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
4330          UO->getSubExpr()->getLocStart().isFileID()) {
4331        Diag(Loc, diag::warn_not_compound_assign)
4332          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
4333          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
4334      }
4335    }
4336  } else {
4337    // Compound assignment "x += y"
4338    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
4339  }
4340
4341  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
4342                               RHS, "assigning"))
4343    return QualType();
4344
4345  // C99 6.5.16p3: The type of an assignment expression is the type of the
4346  // left operand unless the left operand has qualified type, in which case
4347  // it is the unqualified version of the type of the left operand.
4348  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
4349  // is converted to the type of the assignment expression (above).
4350  // C++ 5.17p1: the type of the assignment expression is that of its left
4351  // operand.
4352  return LHSType.getUnqualifiedType();
4353}
4354
4355// C99 6.5.17
4356QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
4357  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
4358  DefaultFunctionArrayConversion(RHS);
4359
4360  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
4361  // incomplete in C++).
4362
4363  return RHS->getType();
4364}
4365
4366/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
4367/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
4368QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
4369                                              bool isInc) {
4370  if (Op->isTypeDependent())
4371    return Context.DependentTy;
4372
4373  QualType ResType = Op->getType();
4374  assert(!ResType.isNull() && "no type for increment/decrement expression");
4375
4376  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
4377    // Decrement of bool is not allowed.
4378    if (!isInc) {
4379      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
4380      return QualType();
4381    }
4382    // Increment of bool sets it to true, but is deprecated.
4383    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
4384  } else if (ResType->isRealType()) {
4385    // OK!
4386  } else if (const PointerType *PT = ResType->getAsPointerType()) {
4387    // C99 6.5.2.4p2, 6.5.6p2
4388    if (PT->getPointeeType()->isVoidType()) {
4389      if (getLangOptions().CPlusPlus) {
4390        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
4391          << Op->getSourceRange();
4392        return QualType();
4393      }
4394
4395      // Pointer to void is a GNU extension in C.
4396      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
4397    } else if (PT->getPointeeType()->isFunctionType()) {
4398      if (getLangOptions().CPlusPlus) {
4399        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
4400          << Op->getType() << Op->getSourceRange();
4401        return QualType();
4402      }
4403
4404      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
4405        << ResType << Op->getSourceRange();
4406    } else if (RequireCompleteType(OpLoc, PT->getPointeeType(),
4407                               diag::err_typecheck_arithmetic_incomplete_type,
4408                                   Op->getSourceRange(), SourceRange(),
4409                                   ResType))
4410      return QualType();
4411  } else if (ResType->isComplexType()) {
4412    // C99 does not support ++/-- on complex types, we allow as an extension.
4413    Diag(OpLoc, diag::ext_integer_increment_complex)
4414      << ResType << Op->getSourceRange();
4415  } else {
4416    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
4417      << ResType << Op->getSourceRange();
4418    return QualType();
4419  }
4420  // At this point, we know we have a real, complex or pointer type.
4421  // Now make sure the operand is a modifiable lvalue.
4422  if (CheckForModifiableLvalue(Op, OpLoc, *this))
4423    return QualType();
4424  return ResType;
4425}
4426
4427/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
4428/// This routine allows us to typecheck complex/recursive expressions
4429/// where the declaration is needed for type checking. We only need to
4430/// handle cases when the expression references a function designator
4431/// or is an lvalue. Here are some examples:
4432///  - &(x) => x
4433///  - &*****f => f for f a function designator.
4434///  - &s.xx => s
4435///  - &s.zz[1].yy -> s, if zz is an array
4436///  - *(x + 1) -> x, if x is an array
4437///  - &"123"[2] -> 0
4438///  - & __real__ x -> x
4439static NamedDecl *getPrimaryDecl(Expr *E) {
4440  switch (E->getStmtClass()) {
4441  case Stmt::DeclRefExprClass:
4442  case Stmt::QualifiedDeclRefExprClass:
4443    return cast<DeclRefExpr>(E)->getDecl();
4444  case Stmt::MemberExprClass:
4445    // If this is an arrow operator, the address is an offset from
4446    // the base's value, so the object the base refers to is
4447    // irrelevant.
4448    if (cast<MemberExpr>(E)->isArrow())
4449      return 0;
4450    // Otherwise, the expression refers to a part of the base
4451    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
4452  case Stmt::ArraySubscriptExprClass: {
4453    // FIXME: This code shouldn't be necessary!  We should catch the implicit
4454    // promotion of register arrays earlier.
4455    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
4456    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
4457      if (ICE->getSubExpr()->getType()->isArrayType())
4458        return getPrimaryDecl(ICE->getSubExpr());
4459    }
4460    return 0;
4461  }
4462  case Stmt::UnaryOperatorClass: {
4463    UnaryOperator *UO = cast<UnaryOperator>(E);
4464
4465    switch(UO->getOpcode()) {
4466    case UnaryOperator::Real:
4467    case UnaryOperator::Imag:
4468    case UnaryOperator::Extension:
4469      return getPrimaryDecl(UO->getSubExpr());
4470    default:
4471      return 0;
4472    }
4473  }
4474  case Stmt::ParenExprClass:
4475    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
4476  case Stmt::ImplicitCastExprClass:
4477    // If the result of an implicit cast is an l-value, we care about
4478    // the sub-expression; otherwise, the result here doesn't matter.
4479    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
4480  default:
4481    return 0;
4482  }
4483}
4484
4485/// CheckAddressOfOperand - The operand of & must be either a function
4486/// designator or an lvalue designating an object. If it is an lvalue, the
4487/// object cannot be declared with storage class register or be a bit field.
4488/// Note: The usual conversions are *not* applied to the operand of the &
4489/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
4490/// In C++, the operand might be an overloaded function name, in which case
4491/// we allow the '&' but retain the overloaded-function type.
4492QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
4493  // Make sure to ignore parentheses in subsequent checks
4494  op = op->IgnoreParens();
4495
4496  if (op->isTypeDependent())
4497    return Context.DependentTy;
4498
4499  if (getLangOptions().C99) {
4500    // Implement C99-only parts of addressof rules.
4501    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
4502      if (uOp->getOpcode() == UnaryOperator::Deref)
4503        // Per C99 6.5.3.2, the address of a deref always returns a valid result
4504        // (assuming the deref expression is valid).
4505        return uOp->getSubExpr()->getType();
4506    }
4507    // Technically, there should be a check for array subscript
4508    // expressions here, but the result of one is always an lvalue anyway.
4509  }
4510  NamedDecl *dcl = getPrimaryDecl(op);
4511  Expr::isLvalueResult lval = op->isLvalue(Context);
4512
4513  if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
4514    // C99 6.5.3.2p1
4515    // The operand must be either an l-value or a function designator
4516    if (!op->getType()->isFunctionType()) {
4517      // FIXME: emit more specific diag...
4518      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
4519        << op->getSourceRange();
4520      return QualType();
4521    }
4522  } else if (op->getBitField()) { // C99 6.5.3.2p1
4523    // The operand cannot be a bit-field
4524    Diag(OpLoc, diag::err_typecheck_address_of)
4525      << "bit-field" << op->getSourceRange();
4526        return QualType();
4527  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
4528           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
4529    // The operand cannot be an element of a vector
4530    Diag(OpLoc, diag::err_typecheck_address_of)
4531      << "vector element" << op->getSourceRange();
4532    return QualType();
4533  } else if (dcl) { // C99 6.5.3.2p1
4534    // We have an lvalue with a decl. Make sure the decl is not declared
4535    // with the register storage-class specifier.
4536    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
4537      if (vd->getStorageClass() == VarDecl::Register) {
4538        Diag(OpLoc, diag::err_typecheck_address_of)
4539          << "register variable" << op->getSourceRange();
4540        return QualType();
4541      }
4542    } else if (isa<OverloadedFunctionDecl>(dcl)) {
4543      return Context.OverloadTy;
4544    } else if (isa<FieldDecl>(dcl)) {
4545      // Okay: we can take the address of a field.
4546      // Could be a pointer to member, though, if there is an explicit
4547      // scope qualifier for the class.
4548      if (isa<QualifiedDeclRefExpr>(op)) {
4549        DeclContext *Ctx = dcl->getDeclContext();
4550        if (Ctx && Ctx->isRecord())
4551          return Context.getMemberPointerType(op->getType(),
4552                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
4553      }
4554    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
4555      // Okay: we can take the address of a function.
4556      // As above.
4557      if (isa<QualifiedDeclRefExpr>(op) && MD->isInstance())
4558        return Context.getMemberPointerType(op->getType(),
4559              Context.getTypeDeclType(MD->getParent()).getTypePtr());
4560    } else if (!isa<FunctionDecl>(dcl))
4561      assert(0 && "Unknown/unexpected decl type");
4562  }
4563
4564  if (lval == Expr::LV_IncompleteVoidType) {
4565    // Taking the address of a void variable is technically illegal, but we
4566    // allow it in cases which are otherwise valid.
4567    // Example: "extern void x; void* y = &x;".
4568    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
4569  }
4570
4571  // If the operand has type "type", the result has type "pointer to type".
4572  return Context.getPointerType(op->getType());
4573}
4574
4575QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
4576  if (Op->isTypeDependent())
4577    return Context.DependentTy;
4578
4579  UsualUnaryConversions(Op);
4580  QualType Ty = Op->getType();
4581
4582  // Note that per both C89 and C99, this is always legal, even if ptype is an
4583  // incomplete type or void.  It would be possible to warn about dereferencing
4584  // a void pointer, but it's completely well-defined, and such a warning is
4585  // unlikely to catch any mistakes.
4586  if (const PointerType *PT = Ty->getAsPointerType())
4587    return PT->getPointeeType();
4588
4589  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
4590    << Ty << Op->getSourceRange();
4591  return QualType();
4592}
4593
4594static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
4595  tok::TokenKind Kind) {
4596  BinaryOperator::Opcode Opc;
4597  switch (Kind) {
4598  default: assert(0 && "Unknown binop!");
4599  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
4600  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
4601  case tok::star:                 Opc = BinaryOperator::Mul; break;
4602  case tok::slash:                Opc = BinaryOperator::Div; break;
4603  case tok::percent:              Opc = BinaryOperator::Rem; break;
4604  case tok::plus:                 Opc = BinaryOperator::Add; break;
4605  case tok::minus:                Opc = BinaryOperator::Sub; break;
4606  case tok::lessless:             Opc = BinaryOperator::Shl; break;
4607  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
4608  case tok::lessequal:            Opc = BinaryOperator::LE; break;
4609  case tok::less:                 Opc = BinaryOperator::LT; break;
4610  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
4611  case tok::greater:              Opc = BinaryOperator::GT; break;
4612  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
4613  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
4614  case tok::amp:                  Opc = BinaryOperator::And; break;
4615  case tok::caret:                Opc = BinaryOperator::Xor; break;
4616  case tok::pipe:                 Opc = BinaryOperator::Or; break;
4617  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
4618  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
4619  case tok::equal:                Opc = BinaryOperator::Assign; break;
4620  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
4621  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
4622  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
4623  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
4624  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
4625  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
4626  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
4627  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
4628  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
4629  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
4630  case tok::comma:                Opc = BinaryOperator::Comma; break;
4631  }
4632  return Opc;
4633}
4634
4635static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
4636  tok::TokenKind Kind) {
4637  UnaryOperator::Opcode Opc;
4638  switch (Kind) {
4639  default: assert(0 && "Unknown unary op!");
4640  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
4641  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
4642  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
4643  case tok::star:         Opc = UnaryOperator::Deref; break;
4644  case tok::plus:         Opc = UnaryOperator::Plus; break;
4645  case tok::minus:        Opc = UnaryOperator::Minus; break;
4646  case tok::tilde:        Opc = UnaryOperator::Not; break;
4647  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
4648  case tok::kw___real:    Opc = UnaryOperator::Real; break;
4649  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
4650  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
4651  }
4652  return Opc;
4653}
4654
4655/// CreateBuiltinBinOp - Creates a new built-in binary operation with
4656/// operator @p Opc at location @c TokLoc. This routine only supports
4657/// built-in operations; ActOnBinOp handles overloaded operators.
4658Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
4659                                                  unsigned Op,
4660                                                  Expr *lhs, Expr *rhs) {
4661  QualType ResultTy;     // Result type of the binary operator.
4662  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
4663  // The following two variables are used for compound assignment operators
4664  QualType CompLHSTy;    // Type of LHS after promotions for computation
4665  QualType CompResultTy; // Type of computation result
4666
4667  switch (Opc) {
4668  case BinaryOperator::Assign:
4669    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
4670    break;
4671  case BinaryOperator::PtrMemD:
4672  case BinaryOperator::PtrMemI:
4673    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
4674                                            Opc == BinaryOperator::PtrMemI);
4675    break;
4676  case BinaryOperator::Mul:
4677  case BinaryOperator::Div:
4678    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
4679    break;
4680  case BinaryOperator::Rem:
4681    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
4682    break;
4683  case BinaryOperator::Add:
4684    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
4685    break;
4686  case BinaryOperator::Sub:
4687    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
4688    break;
4689  case BinaryOperator::Shl:
4690  case BinaryOperator::Shr:
4691    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
4692    break;
4693  case BinaryOperator::LE:
4694  case BinaryOperator::LT:
4695  case BinaryOperator::GE:
4696  case BinaryOperator::GT:
4697    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
4698    break;
4699  case BinaryOperator::EQ:
4700  case BinaryOperator::NE:
4701    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
4702    break;
4703  case BinaryOperator::And:
4704  case BinaryOperator::Xor:
4705  case BinaryOperator::Or:
4706    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
4707    break;
4708  case BinaryOperator::LAnd:
4709  case BinaryOperator::LOr:
4710    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
4711    break;
4712  case BinaryOperator::MulAssign:
4713  case BinaryOperator::DivAssign:
4714    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
4715    CompLHSTy = CompResultTy;
4716    if (!CompResultTy.isNull())
4717      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4718    break;
4719  case BinaryOperator::RemAssign:
4720    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
4721    CompLHSTy = CompResultTy;
4722    if (!CompResultTy.isNull())
4723      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4724    break;
4725  case BinaryOperator::AddAssign:
4726    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4727    if (!CompResultTy.isNull())
4728      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4729    break;
4730  case BinaryOperator::SubAssign:
4731    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4732    if (!CompResultTy.isNull())
4733      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4734    break;
4735  case BinaryOperator::ShlAssign:
4736  case BinaryOperator::ShrAssign:
4737    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
4738    CompLHSTy = CompResultTy;
4739    if (!CompResultTy.isNull())
4740      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4741    break;
4742  case BinaryOperator::AndAssign:
4743  case BinaryOperator::XorAssign:
4744  case BinaryOperator::OrAssign:
4745    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
4746    CompLHSTy = CompResultTy;
4747    if (!CompResultTy.isNull())
4748      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4749    break;
4750  case BinaryOperator::Comma:
4751    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
4752    break;
4753  }
4754  if (ResultTy.isNull())
4755    return ExprError();
4756  if (CompResultTy.isNull())
4757    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
4758  else
4759    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
4760                                                      CompLHSTy, CompResultTy,
4761                                                      OpLoc));
4762}
4763
4764// Binary Operators.  'Tok' is the token for the operator.
4765Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
4766                                          tok::TokenKind Kind,
4767                                          ExprArg LHS, ExprArg RHS) {
4768  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
4769  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
4770
4771  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
4772  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
4773
4774  if (getLangOptions().CPlusPlus &&
4775      (lhs->getType()->isOverloadableType() ||
4776       rhs->getType()->isOverloadableType())) {
4777    // Find all of the overloaded operators visible from this
4778    // point. We perform both an operator-name lookup from the local
4779    // scope and an argument-dependent lookup based on the types of
4780    // the arguments.
4781    FunctionSet Functions;
4782    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
4783    if (OverOp != OO_None) {
4784      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
4785                                   Functions);
4786      Expr *Args[2] = { lhs, rhs };
4787      DeclarationName OpName
4788        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4789      ArgumentDependentLookup(OpName, Args, 2, Functions);
4790    }
4791
4792    // Build the (potentially-overloaded, potentially-dependent)
4793    // binary operation.
4794    return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
4795  }
4796
4797  // Build a built-in binary operation.
4798  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
4799}
4800
4801Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
4802                                                    unsigned OpcIn,
4803                                                    ExprArg InputArg) {
4804  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4805
4806  // FIXME: Input is modified below, but InputArg is not updated appropriately.
4807  Expr *Input = (Expr *)InputArg.get();
4808  QualType resultType;
4809  switch (Opc) {
4810  case UnaryOperator::PostInc:
4811  case UnaryOperator::PostDec:
4812  case UnaryOperator::OffsetOf:
4813    assert(false && "Invalid unary operator");
4814    break;
4815
4816  case UnaryOperator::PreInc:
4817  case UnaryOperator::PreDec:
4818    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
4819                                                Opc == UnaryOperator::PreInc);
4820    break;
4821  case UnaryOperator::AddrOf:
4822    resultType = CheckAddressOfOperand(Input, OpLoc);
4823    break;
4824  case UnaryOperator::Deref:
4825    DefaultFunctionArrayConversion(Input);
4826    resultType = CheckIndirectionOperand(Input, OpLoc);
4827    break;
4828  case UnaryOperator::Plus:
4829  case UnaryOperator::Minus:
4830    UsualUnaryConversions(Input);
4831    resultType = Input->getType();
4832    if (resultType->isDependentType())
4833      break;
4834    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
4835      break;
4836    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
4837             resultType->isEnumeralType())
4838      break;
4839    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
4840             Opc == UnaryOperator::Plus &&
4841             resultType->isPointerType())
4842      break;
4843
4844    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4845      << resultType << Input->getSourceRange());
4846  case UnaryOperator::Not: // bitwise complement
4847    UsualUnaryConversions(Input);
4848    resultType = Input->getType();
4849    if (resultType->isDependentType())
4850      break;
4851    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
4852    if (resultType->isComplexType() || resultType->isComplexIntegerType())
4853      // C99 does not support '~' for complex conjugation.
4854      Diag(OpLoc, diag::ext_integer_complement_complex)
4855        << resultType << Input->getSourceRange();
4856    else if (!resultType->isIntegerType())
4857      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4858        << resultType << Input->getSourceRange());
4859    break;
4860  case UnaryOperator::LNot: // logical negation
4861    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
4862    DefaultFunctionArrayConversion(Input);
4863    resultType = Input->getType();
4864    if (resultType->isDependentType())
4865      break;
4866    if (!resultType->isScalarType()) // C99 6.5.3.3p1
4867      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4868        << resultType << Input->getSourceRange());
4869    // LNot always has type int. C99 6.5.3.3p5.
4870    // In C++, it's bool. C++ 5.3.1p8
4871    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
4872    break;
4873  case UnaryOperator::Real:
4874  case UnaryOperator::Imag:
4875    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
4876    break;
4877  case UnaryOperator::Extension:
4878    resultType = Input->getType();
4879    break;
4880  }
4881  if (resultType.isNull())
4882    return ExprError();
4883
4884  InputArg.release();
4885  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
4886}
4887
4888// Unary Operators.  'Tok' is the token for the operator.
4889Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
4890                                            tok::TokenKind Op, ExprArg input) {
4891  Expr *Input = (Expr*)input.get();
4892  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
4893
4894  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
4895    // Find all of the overloaded operators visible from this
4896    // point. We perform both an operator-name lookup from the local
4897    // scope and an argument-dependent lookup based on the types of
4898    // the arguments.
4899    FunctionSet Functions;
4900    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
4901    if (OverOp != OO_None) {
4902      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
4903                                   Functions);
4904      DeclarationName OpName
4905        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4906      ArgumentDependentLookup(OpName, &Input, 1, Functions);
4907    }
4908
4909    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
4910  }
4911
4912  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
4913}
4914
4915/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
4916Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
4917                                            SourceLocation LabLoc,
4918                                            IdentifierInfo *LabelII) {
4919  // Look up the record for this label identifier.
4920  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
4921
4922  // If we haven't seen this label yet, create a forward reference. It
4923  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
4924  if (LabelDecl == 0)
4925    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
4926
4927  // Create the AST node.  The address of a label always has type 'void*'.
4928  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
4929                                       Context.getPointerType(Context.VoidTy)));
4930}
4931
4932Sema::OwningExprResult
4933Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
4934                    SourceLocation RPLoc) { // "({..})"
4935  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
4936  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
4937  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
4938
4939  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4940  if (isFileScope)
4941    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
4942
4943  // FIXME: there are a variety of strange constraints to enforce here, for
4944  // example, it is not possible to goto into a stmt expression apparently.
4945  // More semantic analysis is needed.
4946
4947  // If there are sub stmts in the compound stmt, take the type of the last one
4948  // as the type of the stmtexpr.
4949  QualType Ty = Context.VoidTy;
4950
4951  if (!Compound->body_empty()) {
4952    Stmt *LastStmt = Compound->body_back();
4953    // If LastStmt is a label, skip down through into the body.
4954    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
4955      LastStmt = Label->getSubStmt();
4956
4957    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
4958      Ty = LastExpr->getType();
4959  }
4960
4961  // FIXME: Check that expression type is complete/non-abstract; statement
4962  // expressions are not lvalues.
4963
4964  substmt.release();
4965  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
4966}
4967
4968Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
4969                                                  SourceLocation BuiltinLoc,
4970                                                  SourceLocation TypeLoc,
4971                                                  TypeTy *argty,
4972                                                  OffsetOfComponent *CompPtr,
4973                                                  unsigned NumComponents,
4974                                                  SourceLocation RPLoc) {
4975  // FIXME: This function leaks all expressions in the offset components on
4976  // error.
4977  QualType ArgTy = QualType::getFromOpaquePtr(argty);
4978  assert(!ArgTy.isNull() && "Missing type argument!");
4979
4980  bool Dependent = ArgTy->isDependentType();
4981
4982  // We must have at least one component that refers to the type, and the first
4983  // one is known to be a field designator.  Verify that the ArgTy represents
4984  // a struct/union/class.
4985  if (!Dependent && !ArgTy->isRecordType())
4986    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
4987
4988  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
4989  // with an incomplete type would be illegal.
4990
4991  // Otherwise, create a null pointer as the base, and iteratively process
4992  // the offsetof designators.
4993  QualType ArgTyPtr = Context.getPointerType(ArgTy);
4994  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
4995  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
4996                                    ArgTy, SourceLocation());
4997
4998  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
4999  // GCC extension, diagnose them.
5000  // FIXME: This diagnostic isn't actually visible because the location is in
5001  // a system header!
5002  if (NumComponents != 1)
5003    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
5004      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
5005
5006  if (!Dependent) {
5007    bool DidWarnAboutNonPOD = false;
5008
5009    // FIXME: Dependent case loses a lot of information here. And probably
5010    // leaks like a sieve.
5011    for (unsigned i = 0; i != NumComponents; ++i) {
5012      const OffsetOfComponent &OC = CompPtr[i];
5013      if (OC.isBrackets) {
5014        // Offset of an array sub-field.  TODO: Should we allow vector elements?
5015        const ArrayType *AT = Context.getAsArrayType(Res->getType());
5016        if (!AT) {
5017          Res->Destroy(Context);
5018          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
5019            << Res->getType());
5020        }
5021
5022        // FIXME: C++: Verify that operator[] isn't overloaded.
5023
5024        // Promote the array so it looks more like a normal array subscript
5025        // expression.
5026        DefaultFunctionArrayConversion(Res);
5027
5028        // C99 6.5.2.1p1
5029        Expr *Idx = static_cast<Expr*>(OC.U.E);
5030        // FIXME: Leaks Res
5031        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
5032          return ExprError(Diag(Idx->getLocStart(),
5033                                diag::err_typecheck_subscript_not_integer)
5034            << Idx->getSourceRange());
5035
5036        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
5037                                               OC.LocEnd);
5038        continue;
5039      }
5040
5041      const RecordType *RC = Res->getType()->getAsRecordType();
5042      if (!RC) {
5043        Res->Destroy(Context);
5044        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
5045          << Res->getType());
5046      }
5047
5048      // Get the decl corresponding to this.
5049      RecordDecl *RD = RC->getDecl();
5050      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5051        if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
5052          ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
5053            << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
5054            << Res->getType());
5055          DidWarnAboutNonPOD = true;
5056        }
5057      }
5058
5059      FieldDecl *MemberDecl
5060        = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
5061                                                          LookupMemberName)
5062                                        .getAsDecl());
5063      // FIXME: Leaks Res
5064      if (!MemberDecl)
5065        return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member)
5066         << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd));
5067
5068      // FIXME: C++: Verify that MemberDecl isn't a static field.
5069      // FIXME: Verify that MemberDecl isn't a bitfield.
5070      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
5071        Res = BuildAnonymousStructUnionMemberReference(
5072            SourceLocation(), MemberDecl, Res, SourceLocation()).takeAs<Expr>();
5073      } else {
5074        // MemberDecl->getType() doesn't get the right qualifiers, but it
5075        // doesn't matter here.
5076        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
5077                MemberDecl->getType().getNonReferenceType());
5078      }
5079    }
5080  }
5081
5082  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
5083                                           Context.getSizeType(), BuiltinLoc));
5084}
5085
5086
5087Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
5088                                                      TypeTy *arg1,TypeTy *arg2,
5089                                                      SourceLocation RPLoc) {
5090  QualType argT1 = QualType::getFromOpaquePtr(arg1);
5091  QualType argT2 = QualType::getFromOpaquePtr(arg2);
5092
5093  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
5094
5095  if (getLangOptions().CPlusPlus) {
5096    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
5097      << SourceRange(BuiltinLoc, RPLoc);
5098    return ExprError();
5099  }
5100
5101  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
5102                                                 argT1, argT2, RPLoc));
5103}
5104
5105Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
5106                                             ExprArg cond,
5107                                             ExprArg expr1, ExprArg expr2,
5108                                             SourceLocation RPLoc) {
5109  Expr *CondExpr = static_cast<Expr*>(cond.get());
5110  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
5111  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
5112
5113  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
5114
5115  QualType resType;
5116  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
5117    resType = Context.DependentTy;
5118  } else {
5119    // The conditional expression is required to be a constant expression.
5120    llvm::APSInt condEval(32);
5121    SourceLocation ExpLoc;
5122    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
5123      return ExprError(Diag(ExpLoc,
5124                       diag::err_typecheck_choose_expr_requires_constant)
5125        << CondExpr->getSourceRange());
5126
5127    // If the condition is > zero, then the AST type is the same as the LSHExpr.
5128    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
5129  }
5130
5131  cond.release(); expr1.release(); expr2.release();
5132  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
5133                                        resType, RPLoc));
5134}
5135
5136//===----------------------------------------------------------------------===//
5137// Clang Extensions.
5138//===----------------------------------------------------------------------===//
5139
5140/// ActOnBlockStart - This callback is invoked when a block literal is started.
5141void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
5142  // Analyze block parameters.
5143  BlockSemaInfo *BSI = new BlockSemaInfo();
5144
5145  // Add BSI to CurBlock.
5146  BSI->PrevBlockInfo = CurBlock;
5147  CurBlock = BSI;
5148
5149  BSI->ReturnType = QualType();
5150  BSI->TheScope = BlockScope;
5151  BSI->hasBlockDeclRefExprs = false;
5152  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
5153  CurFunctionNeedsScopeChecking = false;
5154
5155  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
5156  PushDeclContext(BlockScope, BSI->TheDecl);
5157}
5158
5159void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
5160  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
5161
5162  if (ParamInfo.getNumTypeObjects() == 0
5163      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
5164    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5165    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5166
5167    if (T->isArrayType()) {
5168      Diag(ParamInfo.getSourceRange().getBegin(),
5169           diag::err_block_returns_array);
5170      return;
5171    }
5172
5173    // The parameter list is optional, if there was none, assume ().
5174    if (!T->isFunctionType())
5175      T = Context.getFunctionType(T, NULL, 0, 0, 0);
5176
5177    CurBlock->hasPrototype = true;
5178    CurBlock->isVariadic = false;
5179    // Check for a valid sentinel attribute on this block.
5180    if (CurBlock->TheDecl->getAttr<SentinelAttr>(Context)) {
5181      Diag(ParamInfo.getAttributes()->getLoc(),
5182           diag::warn_attribute_sentinel_not_variadic) << 1;
5183      // FIXME: remove the attribute.
5184    }
5185    QualType RetTy = T.getTypePtr()->getAsFunctionType()->getResultType();
5186
5187    // Do not allow returning a objc interface by-value.
5188    if (RetTy->isObjCInterfaceType()) {
5189      Diag(ParamInfo.getSourceRange().getBegin(),
5190           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5191      return;
5192    }
5193    return;
5194  }
5195
5196  // Analyze arguments to block.
5197  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
5198         "Not a function declarator!");
5199  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
5200
5201  CurBlock->hasPrototype = FTI.hasPrototype;
5202  CurBlock->isVariadic = true;
5203
5204  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
5205  // no arguments, not a function that takes a single void argument.
5206  if (FTI.hasPrototype &&
5207      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5208     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
5209        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
5210    // empty arg list, don't push any params.
5211    CurBlock->isVariadic = false;
5212  } else if (FTI.hasPrototype) {
5213    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
5214      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
5215    CurBlock->isVariadic = FTI.isVariadic;
5216  }
5217  CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
5218                               CurBlock->Params.size());
5219  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
5220  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5221  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
5222       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
5223    // If this has an identifier, add it to the scope stack.
5224    if ((*AI)->getIdentifier())
5225      PushOnScopeChains(*AI, CurBlock->TheScope);
5226
5227  // Check for a valid sentinel attribute on this block.
5228  if (!CurBlock->isVariadic &&
5229      CurBlock->TheDecl->getAttr<SentinelAttr>(Context)) {
5230    Diag(ParamInfo.getAttributes()->getLoc(),
5231         diag::warn_attribute_sentinel_not_variadic) << 1;
5232    // FIXME: remove the attribute.
5233  }
5234
5235  // Analyze the return type.
5236  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5237  QualType RetTy = T->getAsFunctionType()->getResultType();
5238
5239  // Do not allow returning a objc interface by-value.
5240  if (RetTy->isObjCInterfaceType()) {
5241    Diag(ParamInfo.getSourceRange().getBegin(),
5242         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5243  } else if (!RetTy->isDependentType())
5244    CurBlock->ReturnType = RetTy;
5245}
5246
5247/// ActOnBlockError - If there is an error parsing a block, this callback
5248/// is invoked to pop the information about the block from the action impl.
5249void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
5250  // Ensure that CurBlock is deleted.
5251  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
5252
5253  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
5254
5255  // Pop off CurBlock, handle nested blocks.
5256  PopDeclContext();
5257  CurBlock = CurBlock->PrevBlockInfo;
5258  // FIXME: Delete the ParmVarDecl objects as well???
5259}
5260
5261/// ActOnBlockStmtExpr - This is called when the body of a block statement
5262/// literal was successfully completed.  ^(int x){...}
5263Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
5264                                                StmtArg body, Scope *CurScope) {
5265  // If blocks are disabled, emit an error.
5266  if (!LangOpts.Blocks)
5267    Diag(CaretLoc, diag::err_blocks_disable);
5268
5269  // Ensure that CurBlock is deleted.
5270  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
5271
5272  PopDeclContext();
5273
5274  // Pop off CurBlock, handle nested blocks.
5275  CurBlock = CurBlock->PrevBlockInfo;
5276
5277  QualType RetTy = Context.VoidTy;
5278  if (!BSI->ReturnType.isNull())
5279    RetTy = BSI->ReturnType;
5280
5281  llvm::SmallVector<QualType, 8> ArgTypes;
5282  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
5283    ArgTypes.push_back(BSI->Params[i]->getType());
5284
5285  QualType BlockTy;
5286  if (!BSI->hasPrototype)
5287    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0);
5288  else
5289    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
5290                                      BSI->isVariadic, 0);
5291
5292  // FIXME: Check that return/parameter types are complete/non-abstract
5293  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
5294  BlockTy = Context.getBlockPointerType(BlockTy);
5295
5296  // If needed, diagnose invalid gotos and switches in the block.
5297  if (CurFunctionNeedsScopeChecking)
5298    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
5299  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
5300
5301  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
5302  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
5303                                       BSI->hasBlockDeclRefExprs));
5304}
5305
5306Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
5307                                        ExprArg expr, TypeTy *type,
5308                                        SourceLocation RPLoc) {
5309  QualType T = QualType::getFromOpaquePtr(type);
5310  Expr *E = static_cast<Expr*>(expr.get());
5311  Expr *OrigExpr = E;
5312
5313  InitBuiltinVaListType();
5314
5315  // Get the va_list type
5316  QualType VaListType = Context.getBuiltinVaListType();
5317  if (VaListType->isArrayType()) {
5318    // Deal with implicit array decay; for example, on x86-64,
5319    // va_list is an array, but it's supposed to decay to
5320    // a pointer for va_arg.
5321    VaListType = Context.getArrayDecayedType(VaListType);
5322    // Make sure the input expression also decays appropriately.
5323    UsualUnaryConversions(E);
5324  } else {
5325    // Otherwise, the va_list argument must be an l-value because
5326    // it is modified by va_arg.
5327    if (!E->isTypeDependent() &&
5328        CheckForModifiableLvalue(E, BuiltinLoc, *this))
5329      return ExprError();
5330  }
5331
5332  if (!E->isTypeDependent() &&
5333      !Context.hasSameType(VaListType, E->getType())) {
5334    return ExprError(Diag(E->getLocStart(),
5335                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
5336      << OrigExpr->getType() << E->getSourceRange());
5337  }
5338
5339  // FIXME: Check that type is complete/non-abstract
5340  // FIXME: Warn if a non-POD type is passed in.
5341
5342  expr.release();
5343  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
5344                                       RPLoc));
5345}
5346
5347Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
5348  // The type of __null will be int or long, depending on the size of
5349  // pointers on the target.
5350  QualType Ty;
5351  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
5352    Ty = Context.IntTy;
5353  else
5354    Ty = Context.LongTy;
5355
5356  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
5357}
5358
5359bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
5360                                    SourceLocation Loc,
5361                                    QualType DstType, QualType SrcType,
5362                                    Expr *SrcExpr, const char *Flavor) {
5363  // Decode the result (notice that AST's are still created for extensions).
5364  bool isInvalid = false;
5365  unsigned DiagKind;
5366  switch (ConvTy) {
5367  default: assert(0 && "Unknown conversion type");
5368  case Compatible: return false;
5369  case PointerToInt:
5370    DiagKind = diag::ext_typecheck_convert_pointer_int;
5371    break;
5372  case IntToPointer:
5373    DiagKind = diag::ext_typecheck_convert_int_pointer;
5374    break;
5375  case IncompatiblePointer:
5376    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
5377    break;
5378  case IncompatiblePointerSign:
5379    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
5380    break;
5381  case FunctionVoidPointer:
5382    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
5383    break;
5384  case CompatiblePointerDiscardsQualifiers:
5385    // If the qualifiers lost were because we were applying the
5386    // (deprecated) C++ conversion from a string literal to a char*
5387    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
5388    // Ideally, this check would be performed in
5389    // CheckPointerTypesForAssignment. However, that would require a
5390    // bit of refactoring (so that the second argument is an
5391    // expression, rather than a type), which should be done as part
5392    // of a larger effort to fix CheckPointerTypesForAssignment for
5393    // C++ semantics.
5394    if (getLangOptions().CPlusPlus &&
5395        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
5396      return false;
5397    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
5398    break;
5399  case IntToBlockPointer:
5400    DiagKind = diag::err_int_to_block_pointer;
5401    break;
5402  case IncompatibleBlockPointer:
5403    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
5404    break;
5405  case IncompatibleObjCQualifiedId:
5406    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
5407    // it can give a more specific diagnostic.
5408    DiagKind = diag::warn_incompatible_qualified_id;
5409    break;
5410  case IncompatibleVectors:
5411    DiagKind = diag::warn_incompatible_vectors;
5412    break;
5413  case Incompatible:
5414    DiagKind = diag::err_typecheck_convert_incompatible;
5415    isInvalid = true;
5416    break;
5417  }
5418
5419  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
5420    << SrcExpr->getSourceRange();
5421  return isInvalid;
5422}
5423
5424bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
5425  llvm::APSInt ICEResult;
5426  if (E->isIntegerConstantExpr(ICEResult, Context)) {
5427    if (Result)
5428      *Result = ICEResult;
5429    return false;
5430  }
5431
5432  Expr::EvalResult EvalResult;
5433
5434  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
5435      EvalResult.HasSideEffects) {
5436    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
5437
5438    if (EvalResult.Diag) {
5439      // We only show the note if it's not the usual "invalid subexpression"
5440      // or if it's actually in a subexpression.
5441      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
5442          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
5443        Diag(EvalResult.DiagLoc, EvalResult.Diag);
5444    }
5445
5446    return true;
5447  }
5448
5449  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
5450    E->getSourceRange();
5451
5452  if (EvalResult.Diag &&
5453      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
5454    Diag(EvalResult.DiagLoc, EvalResult.Diag);
5455
5456  if (Result)
5457    *Result = EvalResult.Val.getInt();
5458  return false;
5459}
5460
5461Sema::ExpressionEvaluationContext
5462Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
5463  // Introduce a new set of potentially referenced declarations to the stack.
5464  if (NewContext == PotentiallyPotentiallyEvaluated)
5465    PotentiallyReferencedDeclStack.push_back(PotentiallyReferencedDecls());
5466
5467  std::swap(ExprEvalContext, NewContext);
5468  return NewContext;
5469}
5470
5471void
5472Sema::PopExpressionEvaluationContext(ExpressionEvaluationContext OldContext,
5473                                     ExpressionEvaluationContext NewContext) {
5474  ExprEvalContext = NewContext;
5475
5476  if (OldContext == PotentiallyPotentiallyEvaluated) {
5477    // Mark any remaining declarations in the current position of the stack
5478    // as "referenced". If they were not meant to be referenced, semantic
5479    // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
5480    PotentiallyReferencedDecls RemainingDecls;
5481    RemainingDecls.swap(PotentiallyReferencedDeclStack.back());
5482    PotentiallyReferencedDeclStack.pop_back();
5483
5484    for (PotentiallyReferencedDecls::iterator I = RemainingDecls.begin(),
5485                                           IEnd = RemainingDecls.end();
5486         I != IEnd; ++I)
5487      MarkDeclarationReferenced(I->first, I->second);
5488  }
5489}
5490
5491/// \brief Note that the given declaration was referenced in the source code.
5492///
5493/// This routine should be invoke whenever a given declaration is referenced
5494/// in the source code, and where that reference occurred. If this declaration
5495/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
5496/// C99 6.9p3), then the declaration will be marked as used.
5497///
5498/// \param Loc the location where the declaration was referenced.
5499///
5500/// \param D the declaration that has been referenced by the source code.
5501void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
5502  assert(D && "No declaration?");
5503
5504  if (D->isUsed())
5505    return;
5506
5507  // Mark a parameter declaration "used", regardless of whether we're in a
5508  // template or not.
5509  if (isa<ParmVarDecl>(D))
5510    D->setUsed(true);
5511
5512  // Do not mark anything as "used" within a dependent context; wait for
5513  // an instantiation.
5514  if (CurContext->isDependentContext())
5515    return;
5516
5517  switch (ExprEvalContext) {
5518    case Unevaluated:
5519      // We are in an expression that is not potentially evaluated; do nothing.
5520      return;
5521
5522    case PotentiallyEvaluated:
5523      // We are in a potentially-evaluated expression, so this declaration is
5524      // "used"; handle this below.
5525      break;
5526
5527    case PotentiallyPotentiallyEvaluated:
5528      // We are in an expression that may be potentially evaluated; queue this
5529      // declaration reference until we know whether the expression is
5530      // potentially evaluated.
5531      PotentiallyReferencedDeclStack.back().push_back(std::make_pair(Loc, D));
5532      return;
5533  }
5534
5535  // Note that this declaration has been used.
5536  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
5537    unsigned TypeQuals;
5538    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
5539        if (!Constructor->isUsed())
5540          DefineImplicitDefaultConstructor(Loc, Constructor);
5541    }
5542    else if (Constructor->isImplicit() &&
5543             Constructor->isCopyConstructor(Context, TypeQuals)) {
5544      if (!Constructor->isUsed())
5545        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
5546    }
5547    // FIXME: more checking for other implicits go here.
5548    else
5549      Constructor->setUsed(true);
5550  }
5551  else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
5552    // Implicit instantiation of function templates
5553    if (!Function->getBody(Context)) {
5554      if (Function->getInstantiatedFromMemberFunction())
5555        PendingImplicitInstantiations.push(std::make_pair(Function, Loc));
5556
5557      // FIXME: check for function template specializations.
5558    }
5559
5560
5561    // FIXME: keep track of references to static functions
5562    Function->setUsed(true);
5563    return;
5564  }
5565
5566  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
5567    (void)Var;
5568    // FIXME: implicit template instantiation
5569    // FIXME: keep track of references to static data?
5570    D->setUsed(true);
5571  }
5572}
5573
5574