SemaExpr.cpp revision f109fffb4f803b7d70450d7809c8473037c4af71
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>()) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>();
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(MD->getSelector(),
62                                                    MD->isInstanceMethod());
63          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
64        }
65      }
66    }
67
68    if (!isSilenced)
69      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
70  }
71
72  // See if this is a deleted function.
73  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
74    if (FD->isDeleted()) {
75      Diag(Loc, diag::err_deleted_function_use);
76      Diag(D->getLocation(), diag::note_unavailable_here) << true;
77      return true;
78    }
79  }
80
81  // See if the decl is unavailable
82  if (D->getAttr<UnavailableAttr>()) {
83    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
84    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
85  }
86
87  return false;
88}
89
90/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
91/// (and other functions in future), which have been declared with sentinel
92/// attribute. It warns if call does not have the sentinel argument.
93///
94void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
95                                 Expr **Args, unsigned NumArgs)
96{
97  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
98  if (!attr)
99    return;
100  int sentinelPos = attr->getSentinel();
101  int nullPos = attr->getNullPos();
102
103  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
104  // base class. Then we won't be needing two versions of the same code.
105  unsigned int i = 0;
106  bool warnNotEnoughArgs = false;
107  int isMethod = 0;
108  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
109    // skip over named parameters.
110    ObjCMethodDecl::param_iterator P, E = MD->param_end();
111    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
112      if (nullPos)
113        --nullPos;
114      else
115        ++i;
116    }
117    warnNotEnoughArgs = (P != E || i >= NumArgs);
118    isMethod = 1;
119  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
120    // skip over named parameters.
121    ObjCMethodDecl::param_iterator P, E = FD->param_end();
122    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
123      if (nullPos)
124        --nullPos;
125      else
126        ++i;
127    }
128    warnNotEnoughArgs = (P != E || i >= NumArgs);
129  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
130    // block or function pointer call.
131    QualType Ty = V->getType();
132    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
133      const FunctionType *FT = Ty->isFunctionPointerType()
134      ? Ty->getAs<PointerType>()->getPointeeType()->getAsFunctionType()
135      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAsFunctionType();
136      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
137        unsigned NumArgsInProto = Proto->getNumArgs();
138        unsigned k;
139        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
140          if (nullPos)
141            --nullPos;
142          else
143            ++i;
144        }
145        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
146      }
147      if (Ty->isBlockPointerType())
148        isMethod = 2;
149    } else
150      return;
151  } else
152    return;
153
154  if (warnNotEnoughArgs) {
155    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
156    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
157    return;
158  }
159  int sentinel = i;
160  while (sentinelPos > 0 && i < NumArgs-1) {
161    --sentinelPos;
162    ++i;
163  }
164  if (sentinelPos > 0) {
165    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
166    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
167    return;
168  }
169  while (i < NumArgs-1) {
170    ++i;
171    ++sentinel;
172  }
173  Expr *sentinelExpr = Args[sentinel];
174  if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() ||
175                       !sentinelExpr->isNullPointerConstant(Context))) {
176    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
177    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
178  }
179  return;
180}
181
182SourceRange Sema::getExprRange(ExprTy *E) const {
183  Expr *Ex = (Expr *)E;
184  return Ex? Ex->getSourceRange() : SourceRange();
185}
186
187//===----------------------------------------------------------------------===//
188//  Standard Promotions and Conversions
189//===----------------------------------------------------------------------===//
190
191/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
192void Sema::DefaultFunctionArrayConversion(Expr *&E) {
193  QualType Ty = E->getType();
194  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
195
196  if (Ty->isFunctionType())
197    ImpCastExprToType(E, Context.getPointerType(Ty));
198  else if (Ty->isArrayType()) {
199    // In C90 mode, arrays only promote to pointers if the array expression is
200    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
201    // type 'array of type' is converted to an expression that has type 'pointer
202    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
203    // that has type 'array of type' ...".  The relevant change is "an lvalue"
204    // (C90) to "an expression" (C99).
205    //
206    // C++ 4.2p1:
207    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
208    // T" can be converted to an rvalue of type "pointer to T".
209    //
210    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
211        E->isLvalue(Context) == Expr::LV_Valid)
212      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
213  }
214}
215
216/// \brief Whether this is a promotable bitfield reference according
217/// to C99 6.3.1.1p2, bullet 2.
218///
219/// \returns the type this bit-field will promote to, or NULL if no
220/// promotion occurs.
221static QualType isPromotableBitField(Expr *E, ASTContext &Context) {
222  FieldDecl *Field = E->getBitField();
223  if (!Field)
224    return QualType();
225
226  const BuiltinType *BT = Field->getType()->getAsBuiltinType();
227  if (!BT)
228    return QualType();
229
230  if (BT->getKind() != BuiltinType::Bool &&
231      BT->getKind() != BuiltinType::Int &&
232      BT->getKind() != BuiltinType::UInt)
233    return QualType();
234
235  llvm::APSInt BitWidthAP;
236  if (!Field->getBitWidth()->isIntegerConstantExpr(BitWidthAP, Context))
237    return QualType();
238
239  uint64_t BitWidth = BitWidthAP.getZExtValue();
240  uint64_t IntSize = Context.getTypeSize(Context.IntTy);
241  if (BitWidth < IntSize ||
242      (Field->getType()->isSignedIntegerType() && BitWidth == IntSize))
243    return Context.IntTy;
244
245  if (BitWidth == IntSize && Field->getType()->isUnsignedIntegerType())
246    return Context.UnsignedIntTy;
247
248  return QualType();
249}
250
251/// UsualUnaryConversions - Performs various conversions that are common to most
252/// operators (C99 6.3). The conversions of array and function types are
253/// sometimes surpressed. For example, the array->pointer conversion doesn't
254/// apply if the array is an argument to the sizeof or address (&) operators.
255/// In these instances, this routine should *not* be called.
256Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
257  QualType Ty = Expr->getType();
258  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
259
260  // C99 6.3.1.1p2:
261  //
262  //   The following may be used in an expression wherever an int or
263  //   unsigned int may be used:
264  //     - an object or expression with an integer type whose integer
265  //       conversion rank is less than or equal to the rank of int
266  //       and unsigned int.
267  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
268  //
269  //   If an int can represent all values of the original type, the
270  //   value is converted to an int; otherwise, it is converted to an
271  //   unsigned int. These are called the integer promotions. All
272  //   other types are unchanged by the integer promotions.
273  if (Ty->isPromotableIntegerType()) {
274    ImpCastExprToType(Expr, Context.IntTy);
275    return Expr;
276  } else {
277    QualType T = isPromotableBitField(Expr, Context);
278    if (!T.isNull()) {
279      ImpCastExprToType(Expr, T);
280      return Expr;
281    }
282  }
283
284  DefaultFunctionArrayConversion(Expr);
285  return Expr;
286}
287
288/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
289/// do not have a prototype. Arguments that have type float are promoted to
290/// double. All other argument types are converted by UsualUnaryConversions().
291void Sema::DefaultArgumentPromotion(Expr *&Expr) {
292  QualType Ty = Expr->getType();
293  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
294
295  // If this is a 'float' (CVR qualified or typedef) promote to double.
296  if (const BuiltinType *BT = Ty->getAsBuiltinType())
297    if (BT->getKind() == BuiltinType::Float)
298      return ImpCastExprToType(Expr, Context.DoubleTy);
299
300  UsualUnaryConversions(Expr);
301}
302
303/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
304/// will warn if the resulting type is not a POD type, and rejects ObjC
305/// interfaces passed by value.  This returns true if the argument type is
306/// completely illegal.
307bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
308  DefaultArgumentPromotion(Expr);
309
310  if (Expr->getType()->isObjCInterfaceType()) {
311    Diag(Expr->getLocStart(),
312         diag::err_cannot_pass_objc_interface_to_vararg)
313      << Expr->getType() << CT;
314    return true;
315  }
316
317  if (!Expr->getType()->isPODType())
318    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
319      << Expr->getType() << CT;
320
321  return false;
322}
323
324
325/// UsualArithmeticConversions - Performs various conversions that are common to
326/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
327/// routine returns the first non-arithmetic type found. The client is
328/// responsible for emitting appropriate error diagnostics.
329/// FIXME: verify the conversion rules for "complex int" are consistent with
330/// GCC.
331QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
332                                          bool isCompAssign) {
333  if (!isCompAssign)
334    UsualUnaryConversions(lhsExpr);
335
336  UsualUnaryConversions(rhsExpr);
337
338  // For conversion purposes, we ignore any qualifiers.
339  // For example, "const float" and "float" are equivalent.
340  QualType lhs =
341    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
342  QualType rhs =
343    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
344
345  // If both types are identical, no conversion is needed.
346  if (lhs == rhs)
347    return lhs;
348
349  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
350  // The caller can deal with this (e.g. pointer + int).
351  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
352    return lhs;
353
354  // Perform bitfield promotions.
355  QualType LHSBitfieldPromoteTy = isPromotableBitField(lhsExpr, Context);
356  if (!LHSBitfieldPromoteTy.isNull())
357    lhs = LHSBitfieldPromoteTy;
358  QualType RHSBitfieldPromoteTy = isPromotableBitField(rhsExpr, Context);
359  if (!RHSBitfieldPromoteTy.isNull())
360    rhs = RHSBitfieldPromoteTy;
361
362  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
363  if (!isCompAssign)
364    ImpCastExprToType(lhsExpr, destType);
365  ImpCastExprToType(rhsExpr, destType);
366  return destType;
367}
368
369QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
370  // Perform the usual unary conversions. We do this early so that
371  // integral promotions to "int" can allow us to exit early, in the
372  // lhs == rhs check. Also, for conversion purposes, we ignore any
373  // qualifiers.  For example, "const float" and "float" are
374  // equivalent.
375  if (lhs->isPromotableIntegerType())
376    lhs = Context.IntTy;
377  else
378    lhs = lhs.getUnqualifiedType();
379  if (rhs->isPromotableIntegerType())
380    rhs = Context.IntTy;
381  else
382    rhs = rhs.getUnqualifiedType();
383
384  // If both types are identical, no conversion is needed.
385  if (lhs == rhs)
386    return lhs;
387
388  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
389  // The caller can deal with this (e.g. pointer + int).
390  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
391    return lhs;
392
393  // At this point, we have two different arithmetic types.
394
395  // Handle complex types first (C99 6.3.1.8p1).
396  if (lhs->isComplexType() || rhs->isComplexType()) {
397    // if we have an integer operand, the result is the complex type.
398    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
399      // convert the rhs to the lhs complex type.
400      return lhs;
401    }
402    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
403      // convert the lhs to the rhs complex type.
404      return rhs;
405    }
406    // This handles complex/complex, complex/float, or float/complex.
407    // When both operands are complex, the shorter operand is converted to the
408    // type of the longer, and that is the type of the result. This corresponds
409    // to what is done when combining two real floating-point operands.
410    // The fun begins when size promotion occur across type domains.
411    // From H&S 6.3.4: When one operand is complex and the other is a real
412    // floating-point type, the less precise type is converted, within it's
413    // real or complex domain, to the precision of the other type. For example,
414    // when combining a "long double" with a "double _Complex", the
415    // "double _Complex" is promoted to "long double _Complex".
416    int result = Context.getFloatingTypeOrder(lhs, rhs);
417
418    if (result > 0) { // The left side is bigger, convert rhs.
419      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
420    } else if (result < 0) { // The right side is bigger, convert lhs.
421      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
422    }
423    // At this point, lhs and rhs have the same rank/size. Now, make sure the
424    // domains match. This is a requirement for our implementation, C99
425    // does not require this promotion.
426    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
427      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
428        return rhs;
429      } else { // handle "_Complex double, double".
430        return lhs;
431      }
432    }
433    return lhs; // The domain/size match exactly.
434  }
435  // Now handle "real" floating types (i.e. float, double, long double).
436  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
437    // if we have an integer operand, the result is the real floating type.
438    if (rhs->isIntegerType()) {
439      // convert rhs to the lhs floating point type.
440      return lhs;
441    }
442    if (rhs->isComplexIntegerType()) {
443      // convert rhs to the complex floating point type.
444      return Context.getComplexType(lhs);
445    }
446    if (lhs->isIntegerType()) {
447      // convert lhs to the rhs floating point type.
448      return rhs;
449    }
450    if (lhs->isComplexIntegerType()) {
451      // convert lhs to the complex floating point type.
452      return Context.getComplexType(rhs);
453    }
454    // We have two real floating types, float/complex combos were handled above.
455    // Convert the smaller operand to the bigger result.
456    int result = Context.getFloatingTypeOrder(lhs, rhs);
457    if (result > 0) // convert the rhs
458      return lhs;
459    assert(result < 0 && "illegal float comparison");
460    return rhs;   // convert the lhs
461  }
462  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
463    // Handle GCC complex int extension.
464    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
465    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
466
467    if (lhsComplexInt && rhsComplexInt) {
468      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
469                                      rhsComplexInt->getElementType()) >= 0)
470        return lhs; // convert the rhs
471      return rhs;
472    } else if (lhsComplexInt && rhs->isIntegerType()) {
473      // convert the rhs to the lhs complex type.
474      return lhs;
475    } else if (rhsComplexInt && lhs->isIntegerType()) {
476      // convert the lhs to the rhs complex type.
477      return rhs;
478    }
479  }
480  // Finally, we have two differing integer types.
481  // The rules for this case are in C99 6.3.1.8
482  int compare = Context.getIntegerTypeOrder(lhs, rhs);
483  bool lhsSigned = lhs->isSignedIntegerType(),
484       rhsSigned = rhs->isSignedIntegerType();
485  QualType destType;
486  if (lhsSigned == rhsSigned) {
487    // Same signedness; use the higher-ranked type
488    destType = compare >= 0 ? lhs : rhs;
489  } else if (compare != (lhsSigned ? 1 : -1)) {
490    // The unsigned type has greater than or equal rank to the
491    // signed type, so use the unsigned type
492    destType = lhsSigned ? rhs : lhs;
493  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
494    // The two types are different widths; if we are here, that
495    // means the signed type is larger than the unsigned type, so
496    // use the signed type.
497    destType = lhsSigned ? lhs : rhs;
498  } else {
499    // The signed type is higher-ranked than the unsigned type,
500    // but isn't actually any bigger (like unsigned int and long
501    // on most 32-bit systems).  Use the unsigned type corresponding
502    // to the signed type.
503    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
504  }
505  return destType;
506}
507
508//===----------------------------------------------------------------------===//
509//  Semantic Analysis for various Expression Types
510//===----------------------------------------------------------------------===//
511
512
513/// ActOnStringLiteral - The specified tokens were lexed as pasted string
514/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
515/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
516/// multiple tokens.  However, the common case is that StringToks points to one
517/// string.
518///
519Action::OwningExprResult
520Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
521  assert(NumStringToks && "Must have at least one string!");
522
523  StringLiteralParser Literal(StringToks, NumStringToks, PP);
524  if (Literal.hadError)
525    return ExprError();
526
527  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
528  for (unsigned i = 0; i != NumStringToks; ++i)
529    StringTokLocs.push_back(StringToks[i].getLocation());
530
531  QualType StrTy = Context.CharTy;
532  if (Literal.AnyWide) StrTy = Context.getWCharType();
533  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
534
535  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
536  if (getLangOptions().CPlusPlus)
537    StrTy.addConst();
538
539  // Get an array type for the string, according to C99 6.4.5.  This includes
540  // the nul terminator character as well as the string length for pascal
541  // strings.
542  StrTy = Context.getConstantArrayType(StrTy,
543                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
544                                       ArrayType::Normal, 0);
545
546  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
547  return Owned(StringLiteral::Create(Context, Literal.GetString(),
548                                     Literal.GetStringLength(),
549                                     Literal.AnyWide, StrTy,
550                                     &StringTokLocs[0],
551                                     StringTokLocs.size()));
552}
553
554/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
555/// CurBlock to VD should cause it to be snapshotted (as we do for auto
556/// variables defined outside the block) or false if this is not needed (e.g.
557/// for values inside the block or for globals).
558///
559/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
560/// up-to-date.
561///
562static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
563                                              ValueDecl *VD) {
564  // If the value is defined inside the block, we couldn't snapshot it even if
565  // we wanted to.
566  if (CurBlock->TheDecl == VD->getDeclContext())
567    return false;
568
569  // If this is an enum constant or function, it is constant, don't snapshot.
570  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
571    return false;
572
573  // If this is a reference to an extern, static, or global variable, no need to
574  // snapshot it.
575  // FIXME: What about 'const' variables in C++?
576  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
577    if (!Var->hasLocalStorage())
578      return false;
579
580  // Blocks that have these can't be constant.
581  CurBlock->hasBlockDeclRefExprs = true;
582
583  // If we have nested blocks, the decl may be declared in an outer block (in
584  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
585  // be defined outside all of the current blocks (in which case the blocks do
586  // all get the bit).  Walk the nesting chain.
587  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
588       NextBlock = NextBlock->PrevBlockInfo) {
589    // If we found the defining block for the variable, don't mark the block as
590    // having a reference outside it.
591    if (NextBlock->TheDecl == VD->getDeclContext())
592      break;
593
594    // Otherwise, the DeclRef from the inner block causes the outer one to need
595    // a snapshot as well.
596    NextBlock->hasBlockDeclRefExprs = true;
597  }
598
599  return true;
600}
601
602
603
604/// ActOnIdentifierExpr - The parser read an identifier in expression context,
605/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
606/// identifier is used in a function call context.
607/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
608/// class or namespace that the identifier must be a member of.
609Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
610                                                 IdentifierInfo &II,
611                                                 bool HasTrailingLParen,
612                                                 const CXXScopeSpec *SS,
613                                                 bool isAddressOfOperand) {
614  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
615                                  isAddressOfOperand);
616}
617
618/// BuildDeclRefExpr - Build either a DeclRefExpr or a
619/// QualifiedDeclRefExpr based on whether or not SS is a
620/// nested-name-specifier.
621Sema::OwningExprResult
622Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
623                       bool TypeDependent, bool ValueDependent,
624                       const CXXScopeSpec *SS) {
625  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
626    Diag(Loc,
627         diag::err_auto_variable_cannot_appear_in_own_initializer)
628      << D->getDeclName();
629    return ExprError();
630  }
631
632  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
633    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
634      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
635        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
636          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
637            << D->getIdentifier() << FD->getDeclName();
638          Diag(D->getLocation(), diag::note_local_variable_declared_here)
639            << D->getIdentifier();
640          return ExprError();
641        }
642      }
643    }
644  }
645
646  MarkDeclarationReferenced(Loc, D);
647
648  Expr *E;
649  if (SS && !SS->isEmpty()) {
650    E = new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
651                                          ValueDependent, SS->getRange(),
652                  static_cast<NestedNameSpecifier *>(SS->getScopeRep()));
653  } else
654    E = new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
655
656  return Owned(E);
657}
658
659/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
660/// variable corresponding to the anonymous union or struct whose type
661/// is Record.
662static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
663                                             RecordDecl *Record) {
664  assert(Record->isAnonymousStructOrUnion() &&
665         "Record must be an anonymous struct or union!");
666
667  // FIXME: Once Decls are directly linked together, this will be an O(1)
668  // operation rather than a slow walk through DeclContext's vector (which
669  // itself will be eliminated). DeclGroups might make this even better.
670  DeclContext *Ctx = Record->getDeclContext();
671  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
672                               DEnd = Ctx->decls_end();
673       D != DEnd; ++D) {
674    if (*D == Record) {
675      // The object for the anonymous struct/union directly
676      // follows its type in the list of declarations.
677      ++D;
678      assert(D != DEnd && "Missing object for anonymous record");
679      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
680      return *D;
681    }
682  }
683
684  assert(false && "Missing object for anonymous record");
685  return 0;
686}
687
688/// \brief Given a field that represents a member of an anonymous
689/// struct/union, build the path from that field's context to the
690/// actual member.
691///
692/// Construct the sequence of field member references we'll have to
693/// perform to get to the field in the anonymous union/struct. The
694/// list of members is built from the field outward, so traverse it
695/// backwards to go from an object in the current context to the field
696/// we found.
697///
698/// \returns The variable from which the field access should begin,
699/// for an anonymous struct/union that is not a member of another
700/// class. Otherwise, returns NULL.
701VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
702                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
703  assert(Field->getDeclContext()->isRecord() &&
704         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
705         && "Field must be stored inside an anonymous struct or union");
706
707  Path.push_back(Field);
708  VarDecl *BaseObject = 0;
709  DeclContext *Ctx = Field->getDeclContext();
710  do {
711    RecordDecl *Record = cast<RecordDecl>(Ctx);
712    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
713    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
714      Path.push_back(AnonField);
715    else {
716      BaseObject = cast<VarDecl>(AnonObject);
717      break;
718    }
719    Ctx = Ctx->getParent();
720  } while (Ctx->isRecord() &&
721           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
722
723  return BaseObject;
724}
725
726Sema::OwningExprResult
727Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
728                                               FieldDecl *Field,
729                                               Expr *BaseObjectExpr,
730                                               SourceLocation OpLoc) {
731  llvm::SmallVector<FieldDecl *, 4> AnonFields;
732  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
733                                                            AnonFields);
734
735  // Build the expression that refers to the base object, from
736  // which we will build a sequence of member references to each
737  // of the anonymous union objects and, eventually, the field we
738  // found via name lookup.
739  bool BaseObjectIsPointer = false;
740  unsigned ExtraQuals = 0;
741  if (BaseObject) {
742    // BaseObject is an anonymous struct/union variable (and is,
743    // therefore, not part of another non-anonymous record).
744    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
745    MarkDeclarationReferenced(Loc, BaseObject);
746    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
747                                               SourceLocation());
748    ExtraQuals
749      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
750  } else if (BaseObjectExpr) {
751    // The caller provided the base object expression. Determine
752    // whether its a pointer and whether it adds any qualifiers to the
753    // anonymous struct/union fields we're looking into.
754    QualType ObjectType = BaseObjectExpr->getType();
755    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
756      BaseObjectIsPointer = true;
757      ObjectType = ObjectPtr->getPointeeType();
758    }
759    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
760  } else {
761    // We've found a member of an anonymous struct/union that is
762    // inside a non-anonymous struct/union, so in a well-formed
763    // program our base object expression is "this".
764    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
765      if (!MD->isStatic()) {
766        QualType AnonFieldType
767          = Context.getTagDeclType(
768                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
769        QualType ThisType = Context.getTagDeclType(MD->getParent());
770        if ((Context.getCanonicalType(AnonFieldType)
771               == Context.getCanonicalType(ThisType)) ||
772            IsDerivedFrom(ThisType, AnonFieldType)) {
773          // Our base object expression is "this".
774          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
775                                                     MD->getThisType(Context));
776          BaseObjectIsPointer = true;
777        }
778      } else {
779        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
780          << Field->getDeclName());
781      }
782      ExtraQuals = MD->getTypeQualifiers();
783    }
784
785    if (!BaseObjectExpr)
786      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
787        << Field->getDeclName());
788  }
789
790  // Build the implicit member references to the field of the
791  // anonymous struct/union.
792  Expr *Result = BaseObjectExpr;
793  unsigned BaseAddrSpace = BaseObjectExpr->getType().getAddressSpace();
794  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
795         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
796       FI != FIEnd; ++FI) {
797    QualType MemberType = (*FI)->getType();
798    if (!(*FI)->isMutable()) {
799      unsigned combinedQualifiers
800        = MemberType.getCVRQualifiers() | ExtraQuals;
801      MemberType = MemberType.getQualifiedType(combinedQualifiers);
802    }
803    if (BaseAddrSpace != MemberType.getAddressSpace())
804      MemberType = Context.getAddrSpaceQualType(MemberType, BaseAddrSpace);
805    MarkDeclarationReferenced(Loc, *FI);
806    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
807                                      OpLoc, MemberType);
808    BaseObjectIsPointer = false;
809    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
810  }
811
812  return Owned(Result);
813}
814
815/// ActOnDeclarationNameExpr - The parser has read some kind of name
816/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
817/// performs lookup on that name and returns an expression that refers
818/// to that name. This routine isn't directly called from the parser,
819/// because the parser doesn't know about DeclarationName. Rather,
820/// this routine is called by ActOnIdentifierExpr,
821/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
822/// which form the DeclarationName from the corresponding syntactic
823/// forms.
824///
825/// HasTrailingLParen indicates whether this identifier is used in a
826/// function call context.  LookupCtx is only used for a C++
827/// qualified-id (foo::bar) to indicate the class or namespace that
828/// the identifier must be a member of.
829///
830/// isAddressOfOperand means that this expression is the direct operand
831/// of an address-of operator. This matters because this is the only
832/// situation where a qualified name referencing a non-static member may
833/// appear outside a member function of this class.
834Sema::OwningExprResult
835Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
836                               DeclarationName Name, bool HasTrailingLParen,
837                               const CXXScopeSpec *SS,
838                               bool isAddressOfOperand) {
839  // Could be enum-constant, value decl, instance variable, etc.
840  if (SS && SS->isInvalid())
841    return ExprError();
842
843  // C++ [temp.dep.expr]p3:
844  //   An id-expression is type-dependent if it contains:
845  //     -- a nested-name-specifier that contains a class-name that
846  //        names a dependent type.
847  // FIXME: Member of the current instantiation.
848  if (SS && isDependentScopeSpecifier(*SS)) {
849    return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
850                                                     Loc, SS->getRange(),
851                static_cast<NestedNameSpecifier *>(SS->getScopeRep()),
852                                                     isAddressOfOperand));
853  }
854
855  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
856                                         false, true, Loc);
857
858  if (Lookup.isAmbiguous()) {
859    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
860                            SS && SS->isSet() ? SS->getRange()
861                                              : SourceRange());
862    return ExprError();
863  }
864
865  NamedDecl *D = Lookup.getAsDecl();
866
867  // If this reference is in an Objective-C method, then ivar lookup happens as
868  // well.
869  IdentifierInfo *II = Name.getAsIdentifierInfo();
870  if (II && getCurMethodDecl()) {
871    // There are two cases to handle here.  1) scoped lookup could have failed,
872    // in which case we should look for an ivar.  2) scoped lookup could have
873    // found a decl, but that decl is outside the current instance method (i.e.
874    // a global variable).  In these two cases, we do a lookup for an ivar with
875    // this name, if the lookup sucedes, we replace it our current decl.
876    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
877      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
878      ObjCInterfaceDecl *ClassDeclared;
879      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
880        // Check if referencing a field with __attribute__((deprecated)).
881        if (DiagnoseUseOfDecl(IV, Loc))
882          return ExprError();
883
884        // If we're referencing an invalid decl, just return this as a silent
885        // error node.  The error diagnostic was already emitted on the decl.
886        if (IV->isInvalidDecl())
887          return ExprError();
888
889        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
890        // If a class method attemps to use a free standing ivar, this is
891        // an error.
892        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
893           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
894                           << IV->getDeclName());
895        // If a class method uses a global variable, even if an ivar with
896        // same name exists, use the global.
897        if (!IsClsMethod) {
898          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
899              ClassDeclared != IFace)
900           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
901          // FIXME: This should use a new expr for a direct reference, don't
902          // turn this into Self->ivar, just return a BareIVarExpr or something.
903          IdentifierInfo &II = Context.Idents.get("self");
904          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, SourceLocation(),
905                                                          II, false);
906          MarkDeclarationReferenced(Loc, IV);
907          return Owned(new (Context)
908                       ObjCIvarRefExpr(IV, IV->getType(), Loc,
909                                       SelfExpr.takeAs<Expr>(), true, true));
910        }
911      }
912    } else if (getCurMethodDecl()->isInstanceMethod()) {
913      // We should warn if a local variable hides an ivar.
914      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
915      ObjCInterfaceDecl *ClassDeclared;
916      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
917        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
918            IFace == ClassDeclared)
919          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
920      }
921    }
922    // Needed to implement property "super.method" notation.
923    if (D == 0 && II->isStr("super")) {
924      QualType T;
925
926      if (getCurMethodDecl()->isInstanceMethod())
927        T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
928                                      getCurMethodDecl()->getClassInterface()));
929      else
930        T = Context.getObjCClassType();
931      return Owned(new (Context) ObjCSuperExpr(Loc, T));
932    }
933  }
934
935  // Determine whether this name might be a candidate for
936  // argument-dependent lookup.
937  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
938             HasTrailingLParen;
939
940  if (ADL && D == 0) {
941    // We've seen something of the form
942    //
943    //   identifier(
944    //
945    // and we did not find any entity by the name
946    // "identifier". However, this identifier is still subject to
947    // argument-dependent lookup, so keep track of the name.
948    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
949                                                          Context.OverloadTy,
950                                                          Loc));
951  }
952
953  if (D == 0) {
954    // Otherwise, this could be an implicitly declared function reference (legal
955    // in C90, extension in C99).
956    if (HasTrailingLParen && II &&
957        !getLangOptions().CPlusPlus) // Not in C++.
958      D = ImplicitlyDefineFunction(Loc, *II, S);
959    else {
960      // If this name wasn't predeclared and if this is not a function call,
961      // diagnose the problem.
962      if (SS && !SS->isEmpty())
963        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
964          << Name << SS->getRange());
965      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
966               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
967        return ExprError(Diag(Loc, diag::err_undeclared_use)
968          << Name.getAsString());
969      else
970        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
971    }
972  }
973
974  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
975    // Warn about constructs like:
976    //   if (void *X = foo()) { ... } else { X }.
977    // In the else block, the pointer is always false.
978
979    // FIXME: In a template instantiation, we don't have scope
980    // information to check this property.
981    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
982      Scope *CheckS = S;
983      while (CheckS) {
984        if (CheckS->isWithinElse() &&
985            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
986          if (Var->getType()->isBooleanType())
987            ExprError(Diag(Loc, diag::warn_value_always_false)
988                      << Var->getDeclName());
989          else
990            ExprError(Diag(Loc, diag::warn_value_always_zero)
991                      << Var->getDeclName());
992          break;
993        }
994
995        // Move up one more control parent to check again.
996        CheckS = CheckS->getControlParent();
997        if (CheckS)
998          CheckS = CheckS->getParent();
999      }
1000    }
1001  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D)) {
1002    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1003      // C99 DR 316 says that, if a function type comes from a
1004      // function definition (without a prototype), that type is only
1005      // used for checking compatibility. Therefore, when referencing
1006      // the function, we pretend that we don't have the full function
1007      // type.
1008      if (DiagnoseUseOfDecl(Func, Loc))
1009        return ExprError();
1010
1011      QualType T = Func->getType();
1012      QualType NoProtoType = T;
1013      if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
1014        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
1015      return BuildDeclRefExpr(Func, NoProtoType, Loc, false, false, SS);
1016    }
1017  }
1018
1019  return BuildDeclarationNameExpr(Loc, D, HasTrailingLParen, SS, isAddressOfOperand);
1020}
1021/// \brief Cast member's object to its own class if necessary.
1022bool
1023Sema::PerformObjectMemberConversion(Expr *&From, NamedDecl *Member) {
1024  if (FieldDecl *FD = dyn_cast<FieldDecl>(Member))
1025    if (CXXRecordDecl *RD =
1026        dyn_cast<CXXRecordDecl>(FD->getDeclContext())) {
1027      QualType DestType =
1028        Context.getCanonicalType(Context.getTypeDeclType(RD));
1029      if (DestType->isDependentType() || From->getType()->isDependentType())
1030        return false;
1031      QualType FromRecordType = From->getType();
1032      QualType DestRecordType = DestType;
1033      if (FromRecordType->getAs<PointerType>()) {
1034        DestType = Context.getPointerType(DestType);
1035        FromRecordType = FromRecordType->getPointeeType();
1036      }
1037      if (!Context.hasSameUnqualifiedType(FromRecordType, DestRecordType) &&
1038          CheckDerivedToBaseConversion(FromRecordType,
1039                                       DestRecordType,
1040                                       From->getSourceRange().getBegin(),
1041                                       From->getSourceRange()))
1042        return true;
1043      ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
1044                        /*isLvalue=*/true);
1045    }
1046  return false;
1047}
1048
1049/// \brief Complete semantic analysis for a reference to the given declaration.
1050Sema::OwningExprResult
1051Sema::BuildDeclarationNameExpr(SourceLocation Loc, NamedDecl *D,
1052                               bool HasTrailingLParen,
1053                               const CXXScopeSpec *SS,
1054                               bool isAddressOfOperand) {
1055  assert(D && "Cannot refer to a NULL declaration");
1056  DeclarationName Name = D->getDeclName();
1057
1058  // If this is an expression of the form &Class::member, don't build an
1059  // implicit member ref, because we want a pointer to the member in general,
1060  // not any specific instance's member.
1061  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
1062    DeclContext *DC = computeDeclContext(*SS);
1063    if (D && isa<CXXRecordDecl>(DC)) {
1064      QualType DType;
1065      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1066        DType = FD->getType().getNonReferenceType();
1067      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1068        DType = Method->getType();
1069      } else if (isa<OverloadedFunctionDecl>(D)) {
1070        DType = Context.OverloadTy;
1071      }
1072      // Could be an inner type. That's diagnosed below, so ignore it here.
1073      if (!DType.isNull()) {
1074        // The pointer is type- and value-dependent if it points into something
1075        // dependent.
1076        bool Dependent = DC->isDependentContext();
1077        return BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS);
1078      }
1079    }
1080  }
1081
1082  // We may have found a field within an anonymous union or struct
1083  // (C++ [class.union]).
1084  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
1085    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1086      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1087
1088  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1089    if (!MD->isStatic()) {
1090      // C++ [class.mfct.nonstatic]p2:
1091      //   [...] if name lookup (3.4.1) resolves the name in the
1092      //   id-expression to a nonstatic nontype member of class X or of
1093      //   a base class of X, the id-expression is transformed into a
1094      //   class member access expression (5.2.5) using (*this) (9.3.2)
1095      //   as the postfix-expression to the left of the '.' operator.
1096      DeclContext *Ctx = 0;
1097      QualType MemberType;
1098      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1099        Ctx = FD->getDeclContext();
1100        MemberType = FD->getType();
1101
1102        if (const ReferenceType *RefType = MemberType->getAs<ReferenceType>())
1103          MemberType = RefType->getPointeeType();
1104        else if (!FD->isMutable()) {
1105          unsigned combinedQualifiers
1106            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
1107          MemberType = MemberType.getQualifiedType(combinedQualifiers);
1108        }
1109      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1110        if (!Method->isStatic()) {
1111          Ctx = Method->getParent();
1112          MemberType = Method->getType();
1113        }
1114      } else if (OverloadedFunctionDecl *Ovl
1115                   = dyn_cast<OverloadedFunctionDecl>(D)) {
1116        for (OverloadedFunctionDecl::function_iterator
1117               Func = Ovl->function_begin(),
1118               FuncEnd = Ovl->function_end();
1119             Func != FuncEnd; ++Func) {
1120          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
1121            if (!DMethod->isStatic()) {
1122              Ctx = Ovl->getDeclContext();
1123              MemberType = Context.OverloadTy;
1124              break;
1125            }
1126        }
1127      }
1128
1129      if (Ctx && Ctx->isRecord()) {
1130        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
1131        QualType ThisType = Context.getTagDeclType(MD->getParent());
1132        if ((Context.getCanonicalType(CtxType)
1133               == Context.getCanonicalType(ThisType)) ||
1134            IsDerivedFrom(ThisType, CtxType)) {
1135          // Build the implicit member access expression.
1136          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
1137                                                 MD->getThisType(Context));
1138          MarkDeclarationReferenced(Loc, D);
1139          if (PerformObjectMemberConversion(This, D))
1140            return ExprError();
1141          return Owned(new (Context) MemberExpr(This, true, D,
1142                                                Loc, MemberType));
1143        }
1144      }
1145    }
1146  }
1147
1148  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1149    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1150      if (MD->isStatic())
1151        // "invalid use of member 'x' in static member function"
1152        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
1153          << FD->getDeclName());
1154    }
1155
1156    // Any other ways we could have found the field in a well-formed
1157    // program would have been turned into implicit member expressions
1158    // above.
1159    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
1160      << FD->getDeclName());
1161  }
1162
1163  if (isa<TypedefDecl>(D))
1164    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
1165  if (isa<ObjCInterfaceDecl>(D))
1166    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
1167  if (isa<NamespaceDecl>(D))
1168    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
1169
1170  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
1171  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
1172    return BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
1173                           false, false, SS);
1174  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
1175    return BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
1176                            false, false, SS);
1177  ValueDecl *VD = cast<ValueDecl>(D);
1178
1179  // Check whether this declaration can be used. Note that we suppress
1180  // this check when we're going to perform argument-dependent lookup
1181  // on this function name, because this might not be the function
1182  // that overload resolution actually selects.
1183  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
1184             HasTrailingLParen;
1185  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
1186    return ExprError();
1187
1188  // Only create DeclRefExpr's for valid Decl's.
1189  if (VD->isInvalidDecl())
1190    return ExprError();
1191
1192  // If the identifier reference is inside a block, and it refers to a value
1193  // that is outside the block, create a BlockDeclRefExpr instead of a
1194  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1195  // the block is formed.
1196  //
1197  // We do not do this for things like enum constants, global variables, etc,
1198  // as they do not get snapshotted.
1199  //
1200  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1201    MarkDeclarationReferenced(Loc, VD);
1202    QualType ExprTy = VD->getType().getNonReferenceType();
1203    // The BlocksAttr indicates the variable is bound by-reference.
1204    if (VD->getAttr<BlocksAttr>())
1205      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1206    // This is to record that a 'const' was actually synthesize and added.
1207    bool constAdded = !ExprTy.isConstQualified();
1208    // Variable will be bound by-copy, make it const within the closure.
1209
1210    ExprTy.addConst();
1211    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1212                                                constAdded));
1213  }
1214  // If this reference is not in a block or if the referenced variable is
1215  // within the block, create a normal DeclRefExpr.
1216
1217  bool TypeDependent = false;
1218  bool ValueDependent = false;
1219  if (getLangOptions().CPlusPlus) {
1220    // C++ [temp.dep.expr]p3:
1221    //   An id-expression is type-dependent if it contains:
1222    //     - an identifier that was declared with a dependent type,
1223    if (VD->getType()->isDependentType())
1224      TypeDependent = true;
1225    //     - FIXME: a template-id that is dependent,
1226    //     - a conversion-function-id that specifies a dependent type,
1227    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1228             Name.getCXXNameType()->isDependentType())
1229      TypeDependent = true;
1230    //     - a nested-name-specifier that contains a class-name that
1231    //       names a dependent type.
1232    else if (SS && !SS->isEmpty()) {
1233      for (DeclContext *DC = computeDeclContext(*SS);
1234           DC; DC = DC->getParent()) {
1235        // FIXME: could stop early at namespace scope.
1236        if (DC->isRecord()) {
1237          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1238          if (Context.getTypeDeclType(Record)->isDependentType()) {
1239            TypeDependent = true;
1240            break;
1241          }
1242        }
1243      }
1244    }
1245
1246    // C++ [temp.dep.constexpr]p2:
1247    //
1248    //   An identifier is value-dependent if it is:
1249    //     - a name declared with a dependent type,
1250    if (TypeDependent)
1251      ValueDependent = true;
1252    //     - the name of a non-type template parameter,
1253    else if (isa<NonTypeTemplateParmDecl>(VD))
1254      ValueDependent = true;
1255    //    - a constant with integral or enumeration type and is
1256    //      initialized with an expression that is value-dependent
1257    else if (const VarDecl *Dcl = dyn_cast<VarDecl>(VD)) {
1258      if (Dcl->getType().getCVRQualifiers() == QualType::Const &&
1259          Dcl->getInit()) {
1260        ValueDependent = Dcl->getInit()->isValueDependent();
1261      }
1262    }
1263  }
1264
1265  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
1266                          TypeDependent, ValueDependent, SS);
1267}
1268
1269Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1270                                                 tok::TokenKind Kind) {
1271  PredefinedExpr::IdentType IT;
1272
1273  switch (Kind) {
1274  default: assert(0 && "Unknown simple primary expr!");
1275  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1276  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1277  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1278  }
1279
1280  // Pre-defined identifiers are of type char[x], where x is the length of the
1281  // string.
1282  unsigned Length;
1283  if (FunctionDecl *FD = getCurFunctionDecl())
1284    Length = FD->getIdentifier()->getLength();
1285  else if (ObjCMethodDecl *MD = getCurMethodDecl())
1286    Length = MD->getSynthesizedMethodSize();
1287  else {
1288    Diag(Loc, diag::ext_predef_outside_function);
1289    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
1290    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
1291  }
1292
1293
1294  llvm::APInt LengthI(32, Length + 1);
1295  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
1296  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1297  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1298}
1299
1300Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1301  llvm::SmallString<16> CharBuffer;
1302  CharBuffer.resize(Tok.getLength());
1303  const char *ThisTokBegin = &CharBuffer[0];
1304  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1305
1306  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1307                            Tok.getLocation(), PP);
1308  if (Literal.hadError())
1309    return ExprError();
1310
1311  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1312
1313  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1314                                              Literal.isWide(),
1315                                              type, Tok.getLocation()));
1316}
1317
1318Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1319  // Fast path for a single digit (which is quite common).  A single digit
1320  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1321  if (Tok.getLength() == 1) {
1322    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1323    unsigned IntSize = Context.Target.getIntWidth();
1324    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1325                    Context.IntTy, Tok.getLocation()));
1326  }
1327
1328  llvm::SmallString<512> IntegerBuffer;
1329  // Add padding so that NumericLiteralParser can overread by one character.
1330  IntegerBuffer.resize(Tok.getLength()+1);
1331  const char *ThisTokBegin = &IntegerBuffer[0];
1332
1333  // Get the spelling of the token, which eliminates trigraphs, etc.
1334  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1335
1336  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1337                               Tok.getLocation(), PP);
1338  if (Literal.hadError)
1339    return ExprError();
1340
1341  Expr *Res;
1342
1343  if (Literal.isFloatingLiteral()) {
1344    QualType Ty;
1345    if (Literal.isFloat)
1346      Ty = Context.FloatTy;
1347    else if (!Literal.isLong)
1348      Ty = Context.DoubleTy;
1349    else
1350      Ty = Context.LongDoubleTy;
1351
1352    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1353
1354    // isExact will be set by GetFloatValue().
1355    bool isExact = false;
1356    llvm::APFloat Val = Literal.GetFloatValue(Format, &isExact);
1357    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1358
1359  } else if (!Literal.isIntegerLiteral()) {
1360    return ExprError();
1361  } else {
1362    QualType Ty;
1363
1364    // long long is a C99 feature.
1365    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1366        Literal.isLongLong)
1367      Diag(Tok.getLocation(), diag::ext_longlong);
1368
1369    // Get the value in the widest-possible width.
1370    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1371
1372    if (Literal.GetIntegerValue(ResultVal)) {
1373      // If this value didn't fit into uintmax_t, warn and force to ull.
1374      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1375      Ty = Context.UnsignedLongLongTy;
1376      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1377             "long long is not intmax_t?");
1378    } else {
1379      // If this value fits into a ULL, try to figure out what else it fits into
1380      // according to the rules of C99 6.4.4.1p5.
1381
1382      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1383      // be an unsigned int.
1384      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1385
1386      // Check from smallest to largest, picking the smallest type we can.
1387      unsigned Width = 0;
1388      if (!Literal.isLong && !Literal.isLongLong) {
1389        // Are int/unsigned possibilities?
1390        unsigned IntSize = Context.Target.getIntWidth();
1391
1392        // Does it fit in a unsigned int?
1393        if (ResultVal.isIntN(IntSize)) {
1394          // Does it fit in a signed int?
1395          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1396            Ty = Context.IntTy;
1397          else if (AllowUnsigned)
1398            Ty = Context.UnsignedIntTy;
1399          Width = IntSize;
1400        }
1401      }
1402
1403      // Are long/unsigned long possibilities?
1404      if (Ty.isNull() && !Literal.isLongLong) {
1405        unsigned LongSize = Context.Target.getLongWidth();
1406
1407        // Does it fit in a unsigned long?
1408        if (ResultVal.isIntN(LongSize)) {
1409          // Does it fit in a signed long?
1410          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1411            Ty = Context.LongTy;
1412          else if (AllowUnsigned)
1413            Ty = Context.UnsignedLongTy;
1414          Width = LongSize;
1415        }
1416      }
1417
1418      // Finally, check long long if needed.
1419      if (Ty.isNull()) {
1420        unsigned LongLongSize = Context.Target.getLongLongWidth();
1421
1422        // Does it fit in a unsigned long long?
1423        if (ResultVal.isIntN(LongLongSize)) {
1424          // Does it fit in a signed long long?
1425          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1426            Ty = Context.LongLongTy;
1427          else if (AllowUnsigned)
1428            Ty = Context.UnsignedLongLongTy;
1429          Width = LongLongSize;
1430        }
1431      }
1432
1433      // If we still couldn't decide a type, we probably have something that
1434      // does not fit in a signed long long, but has no U suffix.
1435      if (Ty.isNull()) {
1436        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1437        Ty = Context.UnsignedLongLongTy;
1438        Width = Context.Target.getLongLongWidth();
1439      }
1440
1441      if (ResultVal.getBitWidth() != Width)
1442        ResultVal.trunc(Width);
1443    }
1444    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1445  }
1446
1447  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1448  if (Literal.isImaginary)
1449    Res = new (Context) ImaginaryLiteral(Res,
1450                                        Context.getComplexType(Res->getType()));
1451
1452  return Owned(Res);
1453}
1454
1455Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1456                                              SourceLocation R, ExprArg Val) {
1457  Expr *E = Val.takeAs<Expr>();
1458  assert((E != 0) && "ActOnParenExpr() missing expr");
1459  return Owned(new (Context) ParenExpr(L, R, E));
1460}
1461
1462/// The UsualUnaryConversions() function is *not* called by this routine.
1463/// See C99 6.3.2.1p[2-4] for more details.
1464bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1465                                     SourceLocation OpLoc,
1466                                     const SourceRange &ExprRange,
1467                                     bool isSizeof) {
1468  if (exprType->isDependentType())
1469    return false;
1470
1471  // C99 6.5.3.4p1:
1472  if (isa<FunctionType>(exprType)) {
1473    // alignof(function) is allowed as an extension.
1474    if (isSizeof)
1475      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1476    return false;
1477  }
1478
1479  // Allow sizeof(void)/alignof(void) as an extension.
1480  if (exprType->isVoidType()) {
1481    Diag(OpLoc, diag::ext_sizeof_void_type)
1482      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1483    return false;
1484  }
1485
1486  if (RequireCompleteType(OpLoc, exprType,
1487                          isSizeof ? diag::err_sizeof_incomplete_type :
1488                          diag::err_alignof_incomplete_type,
1489                          ExprRange))
1490    return true;
1491
1492  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1493  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1494    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1495      << exprType << isSizeof << ExprRange;
1496    return true;
1497  }
1498
1499  return false;
1500}
1501
1502bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1503                            const SourceRange &ExprRange) {
1504  E = E->IgnoreParens();
1505
1506  // alignof decl is always ok.
1507  if (isa<DeclRefExpr>(E))
1508    return false;
1509
1510  // Cannot know anything else if the expression is dependent.
1511  if (E->isTypeDependent())
1512    return false;
1513
1514  if (E->getBitField()) {
1515    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1516    return true;
1517  }
1518
1519  // Alignment of a field access is always okay, so long as it isn't a
1520  // bit-field.
1521  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1522    if (isa<FieldDecl>(ME->getMemberDecl()))
1523      return false;
1524
1525  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1526}
1527
1528/// \brief Build a sizeof or alignof expression given a type operand.
1529Action::OwningExprResult
1530Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
1531                              bool isSizeOf, SourceRange R) {
1532  if (T.isNull())
1533    return ExprError();
1534
1535  if (!T->isDependentType() &&
1536      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1537    return ExprError();
1538
1539  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1540  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
1541                                               Context.getSizeType(), OpLoc,
1542                                               R.getEnd()));
1543}
1544
1545/// \brief Build a sizeof or alignof expression given an expression
1546/// operand.
1547Action::OwningExprResult
1548Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1549                              bool isSizeOf, SourceRange R) {
1550  // Verify that the operand is valid.
1551  bool isInvalid = false;
1552  if (E->isTypeDependent()) {
1553    // Delay type-checking for type-dependent expressions.
1554  } else if (!isSizeOf) {
1555    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1556  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1557    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1558    isInvalid = true;
1559  } else {
1560    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1561  }
1562
1563  if (isInvalid)
1564    return ExprError();
1565
1566  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1567  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1568                                               Context.getSizeType(), OpLoc,
1569                                               R.getEnd()));
1570}
1571
1572/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1573/// the same for @c alignof and @c __alignof
1574/// Note that the ArgRange is invalid if isType is false.
1575Action::OwningExprResult
1576Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1577                             void *TyOrEx, const SourceRange &ArgRange) {
1578  // If error parsing type, ignore.
1579  if (TyOrEx == 0) return ExprError();
1580
1581  if (isType) {
1582    QualType ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1583    return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
1584  }
1585
1586  // Get the end location.
1587  Expr *ArgEx = (Expr *)TyOrEx;
1588  Action::OwningExprResult Result
1589    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1590
1591  if (Result.isInvalid())
1592    DeleteExpr(ArgEx);
1593
1594  return move(Result);
1595}
1596
1597QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1598  if (V->isTypeDependent())
1599    return Context.DependentTy;
1600
1601  // These operators return the element type of a complex type.
1602  if (const ComplexType *CT = V->getType()->getAsComplexType())
1603    return CT->getElementType();
1604
1605  // Otherwise they pass through real integer and floating point types here.
1606  if (V->getType()->isArithmeticType())
1607    return V->getType();
1608
1609  // Reject anything else.
1610  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1611    << (isReal ? "__real" : "__imag");
1612  return QualType();
1613}
1614
1615
1616
1617Action::OwningExprResult
1618Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1619                          tok::TokenKind Kind, ExprArg Input) {
1620  Expr *Arg = (Expr *)Input.get();
1621
1622  UnaryOperator::Opcode Opc;
1623  switch (Kind) {
1624  default: assert(0 && "Unknown unary op!");
1625  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1626  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1627  }
1628
1629  if (getLangOptions().CPlusPlus &&
1630      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1631    // Which overloaded operator?
1632    OverloadedOperatorKind OverOp =
1633      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1634
1635    // C++ [over.inc]p1:
1636    //
1637    //     [...] If the function is a member function with one
1638    //     parameter (which shall be of type int) or a non-member
1639    //     function with two parameters (the second of which shall be
1640    //     of type int), it defines the postfix increment operator ++
1641    //     for objects of that type. When the postfix increment is
1642    //     called as a result of using the ++ operator, the int
1643    //     argument will have value zero.
1644    Expr *Args[2] = {
1645      Arg,
1646      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1647                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1648    };
1649
1650    // Build the candidate set for overloading
1651    OverloadCandidateSet CandidateSet;
1652    AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
1653
1654    // Perform overload resolution.
1655    OverloadCandidateSet::iterator Best;
1656    switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
1657    case OR_Success: {
1658      // We found a built-in operator or an overloaded operator.
1659      FunctionDecl *FnDecl = Best->Function;
1660
1661      if (FnDecl) {
1662        // We matched an overloaded operator. Build a call to that
1663        // operator.
1664
1665        // Convert the arguments.
1666        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1667          if (PerformObjectArgumentInitialization(Arg, Method))
1668            return ExprError();
1669        } else {
1670          // Convert the arguments.
1671          if (PerformCopyInitialization(Arg,
1672                                        FnDecl->getParamDecl(0)->getType(),
1673                                        "passing"))
1674            return ExprError();
1675        }
1676
1677        // Determine the result type
1678        QualType ResultTy
1679          = FnDecl->getType()->getAsFunctionType()->getResultType();
1680        ResultTy = ResultTy.getNonReferenceType();
1681
1682        // Build the actual expression node.
1683        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1684                                                 SourceLocation());
1685        UsualUnaryConversions(FnExpr);
1686
1687        Input.release();
1688        Args[0] = Arg;
1689        return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
1690                                                       Args, 2, ResultTy,
1691                                                       OpLoc));
1692      } else {
1693        // We matched a built-in operator. Convert the arguments, then
1694        // break out so that we will build the appropriate built-in
1695        // operator node.
1696        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1697                                      "passing"))
1698          return ExprError();
1699
1700        break;
1701      }
1702    }
1703
1704    case OR_No_Viable_Function:
1705      // No viable function; fall through to handling this as a
1706      // built-in operator, which will produce an error message for us.
1707      break;
1708
1709    case OR_Ambiguous:
1710      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1711          << UnaryOperator::getOpcodeStr(Opc)
1712          << Arg->getSourceRange();
1713      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1714      return ExprError();
1715
1716    case OR_Deleted:
1717      Diag(OpLoc, diag::err_ovl_deleted_oper)
1718        << Best->Function->isDeleted()
1719        << UnaryOperator::getOpcodeStr(Opc)
1720        << Arg->getSourceRange();
1721      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1722      return ExprError();
1723    }
1724
1725    // Either we found no viable overloaded operator or we matched a
1726    // built-in operator. In either case, fall through to trying to
1727    // build a built-in operation.
1728  }
1729
1730  Input.release();
1731  Input = Arg;
1732  return CreateBuiltinUnaryOp(OpLoc, Opc, move(Input));
1733}
1734
1735Action::OwningExprResult
1736Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1737                              ExprArg Idx, SourceLocation RLoc) {
1738  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1739       *RHSExp = static_cast<Expr*>(Idx.get());
1740
1741  if (getLangOptions().CPlusPlus &&
1742      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
1743    Base.release();
1744    Idx.release();
1745    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1746                                                  Context.DependentTy, RLoc));
1747  }
1748
1749  if (getLangOptions().CPlusPlus &&
1750      (LHSExp->getType()->isRecordType() ||
1751       LHSExp->getType()->isEnumeralType() ||
1752       RHSExp->getType()->isRecordType() ||
1753       RHSExp->getType()->isEnumeralType())) {
1754    // Add the appropriate overloaded operators (C++ [over.match.oper])
1755    // to the candidate set.
1756    OverloadCandidateSet CandidateSet;
1757    Expr *Args[2] = { LHSExp, RHSExp };
1758    AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1759                          SourceRange(LLoc, RLoc));
1760
1761    // Perform overload resolution.
1762    OverloadCandidateSet::iterator Best;
1763    switch (BestViableFunction(CandidateSet, LLoc, Best)) {
1764    case OR_Success: {
1765      // We found a built-in operator or an overloaded operator.
1766      FunctionDecl *FnDecl = Best->Function;
1767
1768      if (FnDecl) {
1769        // We matched an overloaded operator. Build a call to that
1770        // operator.
1771
1772        // Convert the arguments.
1773        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1774          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1775              PerformCopyInitialization(RHSExp,
1776                                        FnDecl->getParamDecl(0)->getType(),
1777                                        "passing"))
1778            return ExprError();
1779        } else {
1780          // Convert the arguments.
1781          if (PerformCopyInitialization(LHSExp,
1782                                        FnDecl->getParamDecl(0)->getType(),
1783                                        "passing") ||
1784              PerformCopyInitialization(RHSExp,
1785                                        FnDecl->getParamDecl(1)->getType(),
1786                                        "passing"))
1787            return ExprError();
1788        }
1789
1790        // Determine the result type
1791        QualType ResultTy
1792          = FnDecl->getType()->getAsFunctionType()->getResultType();
1793        ResultTy = ResultTy.getNonReferenceType();
1794
1795        // Build the actual expression node.
1796        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1797                                                 SourceLocation());
1798        UsualUnaryConversions(FnExpr);
1799
1800        Base.release();
1801        Idx.release();
1802        Args[0] = LHSExp;
1803        Args[1] = RHSExp;
1804        return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
1805                                                       FnExpr, Args, 2,
1806                                                       ResultTy, LLoc));
1807      } else {
1808        // We matched a built-in operator. Convert the arguments, then
1809        // break out so that we will build the appropriate built-in
1810        // operator node.
1811        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1812                                      "passing") ||
1813            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1814                                      "passing"))
1815          return ExprError();
1816
1817        break;
1818      }
1819    }
1820
1821    case OR_No_Viable_Function:
1822      // No viable function; fall through to handling this as a
1823      // built-in operator, which will produce an error message for us.
1824      break;
1825
1826    case OR_Ambiguous:
1827      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1828          << "[]"
1829          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1830      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1831      return ExprError();
1832
1833    case OR_Deleted:
1834      Diag(LLoc, diag::err_ovl_deleted_oper)
1835        << Best->Function->isDeleted()
1836        << "[]"
1837        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1838      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1839      return ExprError();
1840    }
1841
1842    // Either we found no viable overloaded operator or we matched a
1843    // built-in operator. In either case, fall through to trying to
1844    // build a built-in operation.
1845  }
1846
1847  // Perform default conversions.
1848  DefaultFunctionArrayConversion(LHSExp);
1849  DefaultFunctionArrayConversion(RHSExp);
1850
1851  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1852
1853  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1854  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1855  // in the subscript position. As a result, we need to derive the array base
1856  // and index from the expression types.
1857  Expr *BaseExpr, *IndexExpr;
1858  QualType ResultType;
1859  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1860    BaseExpr = LHSExp;
1861    IndexExpr = RHSExp;
1862    ResultType = Context.DependentTy;
1863  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
1864    BaseExpr = LHSExp;
1865    IndexExpr = RHSExp;
1866    ResultType = PTy->getPointeeType();
1867  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
1868     // Handle the uncommon case of "123[Ptr]".
1869    BaseExpr = RHSExp;
1870    IndexExpr = LHSExp;
1871    ResultType = PTy->getPointeeType();
1872  } else if (const ObjCObjectPointerType *PTy =
1873               LHSTy->getAsObjCObjectPointerType()) {
1874    BaseExpr = LHSExp;
1875    IndexExpr = RHSExp;
1876    ResultType = PTy->getPointeeType();
1877  } else if (const ObjCObjectPointerType *PTy =
1878               RHSTy->getAsObjCObjectPointerType()) {
1879     // Handle the uncommon case of "123[Ptr]".
1880    BaseExpr = RHSExp;
1881    IndexExpr = LHSExp;
1882    ResultType = PTy->getPointeeType();
1883  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1884    BaseExpr = LHSExp;    // vectors: V[123]
1885    IndexExpr = RHSExp;
1886
1887    // FIXME: need to deal with const...
1888    ResultType = VTy->getElementType();
1889  } else if (LHSTy->isArrayType()) {
1890    // If we see an array that wasn't promoted by
1891    // DefaultFunctionArrayConversion, it must be an array that
1892    // wasn't promoted because of the C90 rule that doesn't
1893    // allow promoting non-lvalue arrays.  Warn, then
1894    // force the promotion here.
1895    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1896        LHSExp->getSourceRange();
1897    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy));
1898    LHSTy = LHSExp->getType();
1899
1900    BaseExpr = LHSExp;
1901    IndexExpr = RHSExp;
1902    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
1903  } else if (RHSTy->isArrayType()) {
1904    // Same as previous, except for 123[f().a] case
1905    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1906        RHSExp->getSourceRange();
1907    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy));
1908    RHSTy = RHSExp->getType();
1909
1910    BaseExpr = RHSExp;
1911    IndexExpr = LHSExp;
1912    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
1913  } else {
1914    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
1915       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
1916  }
1917  // C99 6.5.2.1p1
1918  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
1919    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
1920                     << IndexExpr->getSourceRange());
1921
1922  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1923  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1924  // type. Note that Functions are not objects, and that (in C99 parlance)
1925  // incomplete types are not object types.
1926  if (ResultType->isFunctionType()) {
1927    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1928      << ResultType << BaseExpr->getSourceRange();
1929    return ExprError();
1930  }
1931
1932  if (!ResultType->isDependentType() &&
1933      RequireCompleteType(LLoc, ResultType, diag::err_subscript_incomplete_type,
1934                          BaseExpr->getSourceRange()))
1935    return ExprError();
1936
1937  // Diagnose bad cases where we step over interface counts.
1938  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
1939    Diag(LLoc, diag::err_subscript_nonfragile_interface)
1940      << ResultType << BaseExpr->getSourceRange();
1941    return ExprError();
1942  }
1943
1944  Base.release();
1945  Idx.release();
1946  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1947                                                ResultType, RLoc));
1948}
1949
1950QualType Sema::
1951CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1952                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1953  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1954
1955  // The vector accessor can't exceed the number of elements.
1956  const char *compStr = CompName.getName();
1957
1958  // This flag determines whether or not the component is one of the four
1959  // special names that indicate a subset of exactly half the elements are
1960  // to be selected.
1961  bool HalvingSwizzle = false;
1962
1963  // This flag determines whether or not CompName has an 's' char prefix,
1964  // indicating that it is a string of hex values to be used as vector indices.
1965  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
1966
1967  // Check that we've found one of the special components, or that the component
1968  // names must come from the same set.
1969  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1970      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1971    HalvingSwizzle = true;
1972  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1973    do
1974      compStr++;
1975    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1976  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1977    do
1978      compStr++;
1979    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1980  }
1981
1982  if (!HalvingSwizzle && *compStr) {
1983    // We didn't get to the end of the string. This means the component names
1984    // didn't come from the same set *or* we encountered an illegal name.
1985    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1986      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1987    return QualType();
1988  }
1989
1990  // Ensure no component accessor exceeds the width of the vector type it
1991  // operates on.
1992  if (!HalvingSwizzle) {
1993    compStr = CompName.getName();
1994
1995    if (HexSwizzle)
1996      compStr++;
1997
1998    while (*compStr) {
1999      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
2000        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
2001          << baseType << SourceRange(CompLoc);
2002        return QualType();
2003      }
2004    }
2005  }
2006
2007  // If this is a halving swizzle, verify that the base type has an even
2008  // number of elements.
2009  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
2010    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
2011      << baseType << SourceRange(CompLoc);
2012    return QualType();
2013  }
2014
2015  // The component accessor looks fine - now we need to compute the actual type.
2016  // The vector type is implied by the component accessor. For example,
2017  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
2018  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
2019  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
2020  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
2021                                     : CompName.getLength();
2022  if (HexSwizzle)
2023    CompSize--;
2024
2025  if (CompSize == 1)
2026    return vecType->getElementType();
2027
2028  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
2029  // Now look up the TypeDefDecl from the vector type. Without this,
2030  // diagostics look bad. We want extended vector types to appear built-in.
2031  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
2032    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
2033      return Context.getTypedefType(ExtVectorDecls[i]);
2034  }
2035  return VT; // should never get here (a typedef type should always be found).
2036}
2037
2038static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
2039                                                IdentifierInfo &Member,
2040                                                const Selector &Sel,
2041                                                ASTContext &Context) {
2042
2043  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(&Member))
2044    return PD;
2045  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
2046    return OMD;
2047
2048  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
2049       E = PDecl->protocol_end(); I != E; ++I) {
2050    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
2051                                                     Context))
2052      return D;
2053  }
2054  return 0;
2055}
2056
2057static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
2058                                IdentifierInfo &Member,
2059                                const Selector &Sel,
2060                                ASTContext &Context) {
2061  // Check protocols on qualified interfaces.
2062  Decl *GDecl = 0;
2063  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2064       E = QIdTy->qual_end(); I != E; ++I) {
2065    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
2066      GDecl = PD;
2067      break;
2068    }
2069    // Also must look for a getter name which uses property syntax.
2070    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
2071      GDecl = OMD;
2072      break;
2073    }
2074  }
2075  if (!GDecl) {
2076    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2077         E = QIdTy->qual_end(); I != E; ++I) {
2078      // Search in the protocol-qualifier list of current protocol.
2079      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2080      if (GDecl)
2081        return GDecl;
2082    }
2083  }
2084  return GDecl;
2085}
2086
2087/// FindMethodInNestedImplementations - Look up a method in current and
2088/// all base class implementations.
2089///
2090ObjCMethodDecl *Sema::FindMethodInNestedImplementations(
2091                                              const ObjCInterfaceDecl *IFace,
2092                                              const Selector &Sel) {
2093  ObjCMethodDecl *Method = 0;
2094  if (ObjCImplementationDecl *ImpDecl = IFace->getImplementation())
2095    Method = ImpDecl->getInstanceMethod(Sel);
2096
2097  if (!Method && IFace->getSuperClass())
2098    return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel);
2099  return Method;
2100}
2101
2102Action::OwningExprResult
2103Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
2104                               tok::TokenKind OpKind, SourceLocation MemberLoc,
2105                               IdentifierInfo &Member,
2106                               DeclPtrTy ObjCImpDecl, const CXXScopeSpec *SS) {
2107  // FIXME: handle the CXXScopeSpec for proper lookup of qualified-ids
2108  if (SS && SS->isInvalid())
2109    return ExprError();
2110
2111  Expr *BaseExpr = Base.takeAs<Expr>();
2112  assert(BaseExpr && "no record expression");
2113
2114  // Perform default conversions.
2115  DefaultFunctionArrayConversion(BaseExpr);
2116
2117  QualType BaseType = BaseExpr->getType();
2118  assert(!BaseType.isNull() && "no type for member expression");
2119
2120  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2121  // must have pointer type, and the accessed type is the pointee.
2122  if (OpKind == tok::arrow) {
2123    if (BaseType->isDependentType())
2124      return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2125                                                         BaseExpr, true,
2126                                                         OpLoc,
2127                                                     DeclarationName(&Member),
2128                                                         MemberLoc));
2129    else if (const PointerType *PT = BaseType->getAs<PointerType>())
2130      BaseType = PT->getPointeeType();
2131    else if (BaseType->isObjCObjectPointerType())
2132      ;
2133    else
2134      return ExprError(Diag(MemberLoc,
2135                            diag::err_typecheck_member_reference_arrow)
2136        << BaseType << BaseExpr->getSourceRange());
2137  } else {
2138    if (BaseType->isDependentType()) {
2139      // Require that the base type isn't a pointer type
2140      // (so we'll report an error for)
2141      // T* t;
2142      // t.f;
2143      //
2144      // In Obj-C++, however, the above expression is valid, since it could be
2145      // accessing the 'f' property if T is an Obj-C interface. The extra check
2146      // allows this, while still reporting an error if T is a struct pointer.
2147      const PointerType *PT = BaseType->getAs<PointerType>();
2148
2149      if (!PT || (getLangOptions().ObjC1 &&
2150                  !PT->getPointeeType()->isRecordType()))
2151        return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2152                                                           BaseExpr, false,
2153                                                           OpLoc,
2154                                                     DeclarationName(&Member),
2155                                                           MemberLoc));
2156    }
2157  }
2158
2159  // Handle field access to simple records.  This also handles access to fields
2160  // of the ObjC 'id' struct.
2161  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
2162    RecordDecl *RDecl = RTy->getDecl();
2163    if (RequireCompleteType(OpLoc, BaseType,
2164                               diag::err_typecheck_incomplete_tag,
2165                               BaseExpr->getSourceRange()))
2166      return ExprError();
2167
2168    DeclContext *DC = RDecl;
2169    if (SS && SS->isSet()) {
2170      // If the member name was a qualified-id, look into the
2171      // nested-name-specifier.
2172      DC = computeDeclContext(*SS, false);
2173
2174      // FIXME: If DC is not computable, we should build a
2175      // CXXUnresolvedMemberExpr.
2176      assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2177    }
2178
2179    // The record definition is complete, now make sure the member is valid.
2180    LookupResult Result
2181      = LookupQualifiedName(DC, DeclarationName(&Member),
2182                            LookupMemberName, false);
2183
2184    if (SS && SS->isSet()) {
2185      QualType BaseTypeCanon
2186        = Context.getCanonicalType(BaseType).getUnqualifiedType();
2187      QualType MemberTypeCanon
2188        = Context.getCanonicalType(
2189            Context.getTypeDeclType(
2190                     dyn_cast<TypeDecl>(Result.getAsDecl()->getDeclContext())));
2191
2192      if (BaseTypeCanon != MemberTypeCanon &&
2193          !IsDerivedFrom(BaseTypeCanon, MemberTypeCanon))
2194        return ExprError(Diag(SS->getBeginLoc(),
2195                              diag::err_not_direct_base_or_virtual)
2196                         << MemberTypeCanon << BaseTypeCanon);
2197    }
2198
2199    if (!Result)
2200      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
2201               << &Member << BaseExpr->getSourceRange());
2202    if (Result.isAmbiguous()) {
2203      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
2204                              MemberLoc, BaseExpr->getSourceRange());
2205      return ExprError();
2206    }
2207
2208    NamedDecl *MemberDecl = Result;
2209
2210    // If the decl being referenced had an error, return an error for this
2211    // sub-expr without emitting another error, in order to avoid cascading
2212    // error cases.
2213    if (MemberDecl->isInvalidDecl())
2214      return ExprError();
2215
2216    // Check the use of this field
2217    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
2218      return ExprError();
2219
2220    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2221      // We may have found a field within an anonymous union or struct
2222      // (C++ [class.union]).
2223      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
2224        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2225                                                        BaseExpr, OpLoc);
2226
2227      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2228      QualType MemberType = FD->getType();
2229      if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2230        MemberType = Ref->getPointeeType();
2231      else {
2232        unsigned BaseAddrSpace = BaseType.getAddressSpace();
2233        unsigned combinedQualifiers =
2234          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
2235        if (FD->isMutable())
2236          combinedQualifiers &= ~QualType::Const;
2237        MemberType = MemberType.getQualifiedType(combinedQualifiers);
2238        if (BaseAddrSpace != MemberType.getAddressSpace())
2239           MemberType = Context.getAddrSpaceQualType(MemberType, BaseAddrSpace);
2240      }
2241
2242      MarkDeclarationReferenced(MemberLoc, FD);
2243      if (PerformObjectMemberConversion(BaseExpr, FD))
2244        return ExprError();
2245      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
2246                                            MemberLoc, MemberType));
2247    }
2248
2249    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2250      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2251      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2252                                            Var, MemberLoc,
2253                                         Var->getType().getNonReferenceType()));
2254    }
2255    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2256      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2257      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2258                                            MemberFn, MemberLoc,
2259                                            MemberFn->getType()));
2260    }
2261    if (OverloadedFunctionDecl *Ovl
2262          = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
2263      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
2264                                            MemberLoc, Context.OverloadTy));
2265    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2266      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2267      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2268                                            Enum, MemberLoc, Enum->getType()));
2269    }
2270    if (isa<TypeDecl>(MemberDecl))
2271      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2272        << DeclarationName(&Member) << int(OpKind == tok::arrow));
2273
2274    // We found a declaration kind that we didn't expect. This is a
2275    // generic error message that tells the user that she can't refer
2276    // to this member with '.' or '->'.
2277    return ExprError(Diag(MemberLoc,
2278                          diag::err_typecheck_member_reference_unknown)
2279      << DeclarationName(&Member) << int(OpKind == tok::arrow));
2280  }
2281
2282  // Handle properties on ObjC 'Class' types.
2283  if (OpKind == tok::period && BaseType->isObjCClassType()) {
2284    // Also must look for a getter name which uses property syntax.
2285    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2286    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2287      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2288      ObjCMethodDecl *Getter;
2289      // FIXME: need to also look locally in the implementation.
2290      if ((Getter = IFace->lookupClassMethod(Sel))) {
2291        // Check the use of this method.
2292        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2293          return ExprError();
2294      }
2295      // If we found a getter then this may be a valid dot-reference, we
2296      // will look for the matching setter, in case it is needed.
2297      Selector SetterSel =
2298        SelectorTable::constructSetterName(PP.getIdentifierTable(),
2299                                           PP.getSelectorTable(), &Member);
2300      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2301      if (!Setter) {
2302        // If this reference is in an @implementation, also check for 'private'
2303        // methods.
2304        Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2305      }
2306      // Look through local category implementations associated with the class.
2307      if (!Setter)
2308        Setter = IFace->getCategoryClassMethod(SetterSel);
2309
2310      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2311        return ExprError();
2312
2313      if (Getter || Setter) {
2314        QualType PType;
2315
2316        if (Getter)
2317          PType = Getter->getResultType();
2318        else {
2319          for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2320               E = Setter->param_end(); PI != E; ++PI)
2321            PType = (*PI)->getType();
2322        }
2323        // FIXME: we must check that the setter has property type.
2324        return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2325                                        Setter, MemberLoc, BaseExpr));
2326      }
2327      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2328        << &Member << BaseType);
2329    }
2330  }
2331  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2332  // (*Obj).ivar.
2333  if ((OpKind == tok::arrow && BaseType->isObjCObjectPointerType()) ||
2334      (OpKind == tok::period && BaseType->isObjCInterfaceType())) {
2335    const ObjCObjectPointerType *OPT = BaseType->getAsObjCObjectPointerType();
2336    const ObjCInterfaceType *IFaceT =
2337      OPT ? OPT->getInterfaceType() : BaseType->getAsObjCInterfaceType();
2338    if (IFaceT) {
2339      ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
2340      ObjCInterfaceDecl *ClassDeclared;
2341      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(&Member, ClassDeclared);
2342
2343      if (IV) {
2344        // If the decl being referenced had an error, return an error for this
2345        // sub-expr without emitting another error, in order to avoid cascading
2346        // error cases.
2347        if (IV->isInvalidDecl())
2348          return ExprError();
2349
2350        // Check whether we can reference this field.
2351        if (DiagnoseUseOfDecl(IV, MemberLoc))
2352          return ExprError();
2353        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2354            IV->getAccessControl() != ObjCIvarDecl::Package) {
2355          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2356          if (ObjCMethodDecl *MD = getCurMethodDecl())
2357            ClassOfMethodDecl =  MD->getClassInterface();
2358          else if (ObjCImpDecl && getCurFunctionDecl()) {
2359            // Case of a c-function declared inside an objc implementation.
2360            // FIXME: For a c-style function nested inside an objc implementation
2361            // class, there is no implementation context available, so we pass
2362            // down the context as argument to this routine. Ideally, this context
2363            // need be passed down in the AST node and somehow calculated from the
2364            // AST for a function decl.
2365            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2366            if (ObjCImplementationDecl *IMPD =
2367                dyn_cast<ObjCImplementationDecl>(ImplDecl))
2368              ClassOfMethodDecl = IMPD->getClassInterface();
2369            else if (ObjCCategoryImplDecl* CatImplClass =
2370                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2371              ClassOfMethodDecl = CatImplClass->getClassInterface();
2372          }
2373
2374          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2375            if (ClassDeclared != IDecl ||
2376                ClassOfMethodDecl != ClassDeclared)
2377              Diag(MemberLoc, diag::error_private_ivar_access)
2378                << IV->getDeclName();
2379          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
2380            // @protected
2381            Diag(MemberLoc, diag::error_protected_ivar_access)
2382              << IV->getDeclName();
2383        }
2384
2385        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2386                                                   MemberLoc, BaseExpr,
2387                                                   OpKind == tok::arrow));
2388      }
2389      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
2390                         << IDecl->getDeclName() << &Member
2391                         << BaseExpr->getSourceRange());
2392    }
2393    // We have an 'id' type. Rather than fall through, we check if this
2394    // is a reference to 'isa'.
2395    if (Member.isStr("isa"))
2396      return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
2397                                             Context.getObjCIdType()));
2398  }
2399  // Handle properties on 'id' and qualified "id".
2400  if (OpKind == tok::period && (BaseType->isObjCIdType() ||
2401                                BaseType->isObjCQualifiedIdType())) {
2402    const ObjCObjectPointerType *QIdTy = BaseType->getAsObjCObjectPointerType();
2403
2404    // Check protocols on qualified interfaces.
2405    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2406    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2407      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2408        // Check the use of this declaration
2409        if (DiagnoseUseOfDecl(PD, MemberLoc))
2410          return ExprError();
2411
2412        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2413                                                       MemberLoc, BaseExpr));
2414      }
2415      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2416        // Check the use of this method.
2417        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2418          return ExprError();
2419
2420        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2421                                                   OMD->getResultType(),
2422                                                   OMD, OpLoc, MemberLoc,
2423                                                   NULL, 0));
2424      }
2425    }
2426
2427    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2428                       << &Member << BaseType);
2429  }
2430  // Handle Objective-C property access, which is "Obj.property" where Obj is a
2431  // pointer to a (potentially qualified) interface type.
2432  const ObjCObjectPointerType *OPT;
2433  if (OpKind == tok::period &&
2434      (OPT = BaseType->getAsObjCInterfacePointerType())) {
2435    const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
2436    ObjCInterfaceDecl *IFace = IFaceT->getDecl();
2437
2438    // Search for a declared property first.
2439    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member)) {
2440      // Check whether we can reference this property.
2441      if (DiagnoseUseOfDecl(PD, MemberLoc))
2442        return ExprError();
2443      QualType ResTy = PD->getType();
2444      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2445      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2446      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
2447        ResTy = Getter->getResultType();
2448      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
2449                                                     MemberLoc, BaseExpr));
2450    }
2451    // Check protocols on qualified interfaces.
2452    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2453         E = OPT->qual_end(); I != E; ++I)
2454      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
2455        // Check whether we can reference this property.
2456        if (DiagnoseUseOfDecl(PD, MemberLoc))
2457          return ExprError();
2458
2459        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2460                                                       MemberLoc, BaseExpr));
2461      }
2462    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2463         E = OPT->qual_end(); I != E; ++I)
2464      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
2465        // Check whether we can reference this property.
2466        if (DiagnoseUseOfDecl(PD, MemberLoc))
2467          return ExprError();
2468
2469        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2470                                                       MemberLoc, BaseExpr));
2471      }
2472    // If that failed, look for an "implicit" property by seeing if the nullary
2473    // selector is implemented.
2474
2475    // FIXME: The logic for looking up nullary and unary selectors should be
2476    // shared with the code in ActOnInstanceMessage.
2477
2478    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2479    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2480
2481    // If this reference is in an @implementation, check for 'private' methods.
2482    if (!Getter)
2483      Getter = FindMethodInNestedImplementations(IFace, Sel);
2484
2485    // Look through local category implementations associated with the class.
2486    if (!Getter)
2487      Getter = IFace->getCategoryInstanceMethod(Sel);
2488    if (Getter) {
2489      // Check if we can reference this property.
2490      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2491        return ExprError();
2492    }
2493    // If we found a getter then this may be a valid dot-reference, we
2494    // will look for the matching setter, in case it is needed.
2495    Selector SetterSel =
2496      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2497                                         PP.getSelectorTable(), &Member);
2498    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
2499    if (!Setter) {
2500      // If this reference is in an @implementation, also check for 'private'
2501      // methods.
2502      Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2503    }
2504    // Look through local category implementations associated with the class.
2505    if (!Setter)
2506      Setter = IFace->getCategoryInstanceMethod(SetterSel);
2507
2508    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2509      return ExprError();
2510
2511    if (Getter || Setter) {
2512      QualType PType;
2513
2514      if (Getter)
2515        PType = Getter->getResultType();
2516      else {
2517        for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2518             E = Setter->param_end(); PI != E; ++PI)
2519          PType = (*PI)->getType();
2520      }
2521      // FIXME: we must check that the setter has property type.
2522      return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2523                                      Setter, MemberLoc, BaseExpr));
2524    }
2525    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2526      << &Member << BaseType);
2527  }
2528
2529  // Handle the following exceptional case (*Obj).isa.
2530  if (OpKind == tok::period &&
2531      BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2532      Member.isStr("isa"))
2533    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
2534                                           Context.getObjCIdType()));
2535
2536  // Handle 'field access' to vectors, such as 'V.xx'.
2537  if (BaseType->isExtVectorType()) {
2538    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2539    if (ret.isNull())
2540      return ExprError();
2541    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
2542                                                    MemberLoc));
2543  }
2544
2545  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2546    << BaseType << BaseExpr->getSourceRange();
2547
2548  // If the user is trying to apply -> or . to a function or function
2549  // pointer, it's probably because they forgot parentheses to call
2550  // the function. Suggest the addition of those parentheses.
2551  if (BaseType == Context.OverloadTy ||
2552      BaseType->isFunctionType() ||
2553      (BaseType->isPointerType() &&
2554       BaseType->getAs<PointerType>()->isFunctionType())) {
2555    SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2556    Diag(Loc, diag::note_member_reference_needs_call)
2557      << CodeModificationHint::CreateInsertion(Loc, "()");
2558  }
2559
2560  return ExprError();
2561}
2562
2563/// ConvertArgumentsForCall - Converts the arguments specified in
2564/// Args/NumArgs to the parameter types of the function FDecl with
2565/// function prototype Proto. Call is the call expression itself, and
2566/// Fn is the function expression. For a C++ member function, this
2567/// routine does not attempt to convert the object argument. Returns
2568/// true if the call is ill-formed.
2569bool
2570Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2571                              FunctionDecl *FDecl,
2572                              const FunctionProtoType *Proto,
2573                              Expr **Args, unsigned NumArgs,
2574                              SourceLocation RParenLoc) {
2575  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2576  // assignment, to the types of the corresponding parameter, ...
2577  unsigned NumArgsInProto = Proto->getNumArgs();
2578  unsigned NumArgsToCheck = NumArgs;
2579  bool Invalid = false;
2580
2581  // If too few arguments are available (and we don't have default
2582  // arguments for the remaining parameters), don't make the call.
2583  if (NumArgs < NumArgsInProto) {
2584    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2585      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2586        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2587    // Use default arguments for missing arguments
2588    NumArgsToCheck = NumArgsInProto;
2589    Call->setNumArgs(Context, NumArgsInProto);
2590  }
2591
2592  // If too many are passed and not variadic, error on the extras and drop
2593  // them.
2594  if (NumArgs > NumArgsInProto) {
2595    if (!Proto->isVariadic()) {
2596      Diag(Args[NumArgsInProto]->getLocStart(),
2597           diag::err_typecheck_call_too_many_args)
2598        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2599        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2600                       Args[NumArgs-1]->getLocEnd());
2601      // This deletes the extra arguments.
2602      Call->setNumArgs(Context, NumArgsInProto);
2603      Invalid = true;
2604    }
2605    NumArgsToCheck = NumArgsInProto;
2606  }
2607
2608  // Continue to check argument types (even if we have too few/many args).
2609  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2610    QualType ProtoArgType = Proto->getArgType(i);
2611
2612    Expr *Arg;
2613    if (i < NumArgs) {
2614      Arg = Args[i];
2615
2616      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2617                              ProtoArgType,
2618                              diag::err_call_incomplete_argument,
2619                              Arg->getSourceRange()))
2620        return true;
2621
2622      // Pass the argument.
2623      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2624        return true;
2625    } else {
2626      if (FDecl->getParamDecl(i)->hasUnparsedDefaultArg()) {
2627        Diag (Call->getSourceRange().getBegin(),
2628              diag::err_use_of_default_argument_to_function_declared_later) <<
2629        FDecl << cast<CXXRecordDecl>(FDecl->getDeclContext())->getDeclName();
2630        Diag(UnparsedDefaultArgLocs[FDecl->getParamDecl(i)],
2631              diag::note_default_argument_declared_here);
2632      } else {
2633        Expr *DefaultExpr = FDecl->getParamDecl(i)->getDefaultArg();
2634
2635        // If the default expression creates temporaries, we need to
2636        // push them to the current stack of expression temporaries so they'll
2637        // be properly destroyed.
2638        if (CXXExprWithTemporaries *E
2639              = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2640          assert(!E->shouldDestroyTemporaries() &&
2641                 "Can't destroy temporaries in a default argument expr!");
2642          for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2643            ExprTemporaries.push_back(E->getTemporary(I));
2644        }
2645      }
2646
2647      // We already type-checked the argument, so we know it works.
2648      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
2649    }
2650
2651    QualType ArgType = Arg->getType();
2652
2653    Call->setArg(i, Arg);
2654  }
2655
2656  // If this is a variadic call, handle args passed through "...".
2657  if (Proto->isVariadic()) {
2658    VariadicCallType CallType = VariadicFunction;
2659    if (Fn->getType()->isBlockPointerType())
2660      CallType = VariadicBlock; // Block
2661    else if (isa<MemberExpr>(Fn))
2662      CallType = VariadicMethod;
2663
2664    // Promote the arguments (C99 6.5.2.2p7).
2665    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2666      Expr *Arg = Args[i];
2667      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2668      Call->setArg(i, Arg);
2669    }
2670  }
2671
2672  return Invalid;
2673}
2674
2675/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2676/// This provides the location of the left/right parens and a list of comma
2677/// locations.
2678Action::OwningExprResult
2679Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2680                    MultiExprArg args,
2681                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2682  unsigned NumArgs = args.size();
2683  Expr *Fn = fn.takeAs<Expr>();
2684  Expr **Args = reinterpret_cast<Expr**>(args.release());
2685  assert(Fn && "no function call expression");
2686  FunctionDecl *FDecl = NULL;
2687  NamedDecl *NDecl = NULL;
2688  DeclarationName UnqualifiedName;
2689
2690  if (getLangOptions().CPlusPlus) {
2691    // Determine whether this is a dependent call inside a C++ template,
2692    // in which case we won't do any semantic analysis now.
2693    // FIXME: Will need to cache the results of name lookup (including ADL) in
2694    // Fn.
2695    bool Dependent = false;
2696    if (Fn->isTypeDependent())
2697      Dependent = true;
2698    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2699      Dependent = true;
2700
2701    if (Dependent)
2702      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2703                                          Context.DependentTy, RParenLoc));
2704
2705    // Determine whether this is a call to an object (C++ [over.call.object]).
2706    if (Fn->getType()->isRecordType())
2707      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2708                                                CommaLocs, RParenLoc));
2709
2710    // Determine whether this is a call to a member function.
2711    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens())) {
2712      NamedDecl *MemDecl = MemExpr->getMemberDecl();
2713      if (isa<OverloadedFunctionDecl>(MemDecl) ||
2714          isa<CXXMethodDecl>(MemDecl) ||
2715          (isa<FunctionTemplateDecl>(MemDecl) &&
2716           isa<CXXMethodDecl>(
2717                cast<FunctionTemplateDecl>(MemDecl)->getTemplatedDecl())))
2718        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2719                                               CommaLocs, RParenLoc));
2720    }
2721  }
2722
2723  // If we're directly calling a function, get the appropriate declaration.
2724  // Also, in C++, keep track of whether we should perform argument-dependent
2725  // lookup and whether there were any explicitly-specified template arguments.
2726  Expr *FnExpr = Fn;
2727  bool ADL = true;
2728  bool HasExplicitTemplateArgs = 0;
2729  const TemplateArgument *ExplicitTemplateArgs = 0;
2730  unsigned NumExplicitTemplateArgs = 0;
2731  while (true) {
2732    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2733      FnExpr = IcExpr->getSubExpr();
2734    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2735      // Parentheses around a function disable ADL
2736      // (C++0x [basic.lookup.argdep]p1).
2737      ADL = false;
2738      FnExpr = PExpr->getSubExpr();
2739    } else if (isa<UnaryOperator>(FnExpr) &&
2740               cast<UnaryOperator>(FnExpr)->getOpcode()
2741                 == UnaryOperator::AddrOf) {
2742      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2743    } else if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(FnExpr)) {
2744      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2745      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2746      NDecl = dyn_cast<NamedDecl>(DRExpr->getDecl());
2747      break;
2748    } else if (UnresolvedFunctionNameExpr *DepName
2749                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2750      UnqualifiedName = DepName->getName();
2751      break;
2752    } else if (TemplateIdRefExpr *TemplateIdRef
2753                 = dyn_cast<TemplateIdRefExpr>(FnExpr)) {
2754      NDecl = TemplateIdRef->getTemplateName().getAsTemplateDecl();
2755      if (!NDecl)
2756        NDecl = TemplateIdRef->getTemplateName().getAsOverloadedFunctionDecl();
2757      HasExplicitTemplateArgs = true;
2758      ExplicitTemplateArgs = TemplateIdRef->getTemplateArgs();
2759      NumExplicitTemplateArgs = TemplateIdRef->getNumTemplateArgs();
2760
2761      // C++ [temp.arg.explicit]p6:
2762      //   [Note: For simple function names, argument dependent lookup (3.4.2)
2763      //   applies even when the function name is not visible within the
2764      //   scope of the call. This is because the call still has the syntactic
2765      //   form of a function call (3.4.1). But when a function template with
2766      //   explicit template arguments is used, the call does not have the
2767      //   correct syntactic form unless there is a function template with
2768      //   that name visible at the point of the call. If no such name is
2769      //   visible, the call is not syntactically well-formed and
2770      //   argument-dependent lookup does not apply. If some such name is
2771      //   visible, argument dependent lookup applies and additional function
2772      //   templates may be found in other namespaces.
2773      //
2774      // The summary of this paragraph is that, if we get to this point and the
2775      // template-id was not a qualified name, then argument-dependent lookup
2776      // is still possible.
2777      if (TemplateIdRef->getQualifier())
2778        ADL = false;
2779      break;
2780    } else {
2781      // Any kind of name that does not refer to a declaration (or
2782      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2783      ADL = false;
2784      break;
2785    }
2786  }
2787
2788  OverloadedFunctionDecl *Ovl = 0;
2789  FunctionTemplateDecl *FunctionTemplate = 0;
2790  if (NDecl) {
2791    FDecl = dyn_cast<FunctionDecl>(NDecl);
2792    if ((FunctionTemplate = dyn_cast<FunctionTemplateDecl>(NDecl)))
2793      FDecl = FunctionTemplate->getTemplatedDecl();
2794    else
2795      FDecl = dyn_cast<FunctionDecl>(NDecl);
2796    Ovl = dyn_cast<OverloadedFunctionDecl>(NDecl);
2797  }
2798
2799  if (Ovl || FunctionTemplate ||
2800      (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2801    // We don't perform ADL for implicit declarations of builtins.
2802    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2803      ADL = false;
2804
2805    // We don't perform ADL in C.
2806    if (!getLangOptions().CPlusPlus)
2807      ADL = false;
2808
2809    if (Ovl || FunctionTemplate || ADL) {
2810      FDecl = ResolveOverloadedCallFn(Fn, NDecl, UnqualifiedName,
2811                                      HasExplicitTemplateArgs,
2812                                      ExplicitTemplateArgs,
2813                                      NumExplicitTemplateArgs,
2814                                      LParenLoc, Args, NumArgs, CommaLocs,
2815                                      RParenLoc, ADL);
2816      if (!FDecl)
2817        return ExprError();
2818
2819      // Update Fn to refer to the actual function selected.
2820      Expr *NewFn = 0;
2821      if (QualifiedDeclRefExpr *QDRExpr
2822            = dyn_cast<QualifiedDeclRefExpr>(FnExpr))
2823        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
2824                                                   QDRExpr->getLocation(),
2825                                                   false, false,
2826                                                 QDRExpr->getQualifierRange(),
2827                                                   QDRExpr->getQualifier());
2828      else
2829        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2830                                          Fn->getSourceRange().getBegin());
2831      Fn->Destroy(Context);
2832      Fn = NewFn;
2833    }
2834  }
2835
2836  // Promote the function operand.
2837  UsualUnaryConversions(Fn);
2838
2839  // Make the call expr early, before semantic checks.  This guarantees cleanup
2840  // of arguments and function on error.
2841  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2842                                                               Args, NumArgs,
2843                                                               Context.BoolTy,
2844                                                               RParenLoc));
2845
2846  const FunctionType *FuncT;
2847  if (!Fn->getType()->isBlockPointerType()) {
2848    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2849    // have type pointer to function".
2850    const PointerType *PT = Fn->getType()->getAs<PointerType>();
2851    if (PT == 0)
2852      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2853        << Fn->getType() << Fn->getSourceRange());
2854    FuncT = PT->getPointeeType()->getAsFunctionType();
2855  } else { // This is a block call.
2856    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
2857                getAsFunctionType();
2858  }
2859  if (FuncT == 0)
2860    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2861      << Fn->getType() << Fn->getSourceRange());
2862
2863  // Check for a valid return type
2864  if (!FuncT->getResultType()->isVoidType() &&
2865      RequireCompleteType(Fn->getSourceRange().getBegin(),
2866                          FuncT->getResultType(),
2867                          diag::err_call_incomplete_return,
2868                          TheCall->getSourceRange()))
2869    return ExprError();
2870
2871  // We know the result type of the call, set it.
2872  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2873
2874  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2875    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2876                                RParenLoc))
2877      return ExprError();
2878  } else {
2879    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2880
2881    if (FDecl) {
2882      // Check if we have too few/too many template arguments, based
2883      // on our knowledge of the function definition.
2884      const FunctionDecl *Def = 0;
2885      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
2886        const FunctionProtoType *Proto =
2887            Def->getType()->getAsFunctionProtoType();
2888        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
2889          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2890            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2891        }
2892      }
2893    }
2894
2895    // Promote the arguments (C99 6.5.2.2p6).
2896    for (unsigned i = 0; i != NumArgs; i++) {
2897      Expr *Arg = Args[i];
2898      DefaultArgumentPromotion(Arg);
2899      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2900                              Arg->getType(),
2901                              diag::err_call_incomplete_argument,
2902                              Arg->getSourceRange()))
2903        return ExprError();
2904      TheCall->setArg(i, Arg);
2905    }
2906  }
2907
2908  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2909    if (!Method->isStatic())
2910      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2911        << Fn->getSourceRange());
2912
2913  // Check for sentinels
2914  if (NDecl)
2915    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
2916  // Do special checking on direct calls to functions.
2917  if (FDecl)
2918    return CheckFunctionCall(FDecl, TheCall.take());
2919  if (NDecl)
2920    return CheckBlockCall(NDecl, TheCall.take());
2921
2922  return Owned(TheCall.take());
2923}
2924
2925Action::OwningExprResult
2926Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2927                           SourceLocation RParenLoc, ExprArg InitExpr) {
2928  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2929  QualType literalType = QualType::getFromOpaquePtr(Ty);
2930  // FIXME: put back this assert when initializers are worked out.
2931  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2932  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2933
2934  if (literalType->isArrayType()) {
2935    if (literalType->isVariableArrayType())
2936      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2937        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2938  } else if (!literalType->isDependentType() &&
2939             RequireCompleteType(LParenLoc, literalType,
2940                                 diag::err_typecheck_decl_incomplete_type,
2941                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2942    return ExprError();
2943
2944  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2945                            DeclarationName(), /*FIXME:DirectInit=*/false))
2946    return ExprError();
2947
2948  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2949  if (isFileScope) { // 6.5.2.5p3
2950    if (CheckForConstantInitializer(literalExpr, literalType))
2951      return ExprError();
2952  }
2953  InitExpr.release();
2954  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2955                                                 literalExpr, isFileScope));
2956}
2957
2958Action::OwningExprResult
2959Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2960                    SourceLocation RBraceLoc) {
2961  unsigned NumInit = initlist.size();
2962  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2963
2964  // Semantic analysis for initializers is done by ActOnDeclarator() and
2965  // CheckInitializer() - it requires knowledge of the object being intialized.
2966
2967  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2968                                               RBraceLoc);
2969  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2970  return Owned(E);
2971}
2972
2973/// CheckCastTypes - Check type constraints for casting between types.
2974bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
2975                          bool FunctionalStyle) {
2976  if (getLangOptions().CPlusPlus)
2977    return CXXCheckCStyleCast(TyR, castType, castExpr, FunctionalStyle);
2978
2979  UsualUnaryConversions(castExpr);
2980
2981  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2982  // type needs to be scalar.
2983  if (castType->isVoidType()) {
2984    // Cast to void allows any expr type.
2985  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2986    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2987        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2988        (castType->isStructureType() || castType->isUnionType())) {
2989      // GCC struct/union extension: allow cast to self.
2990      // FIXME: Check that the cast destination type is complete.
2991      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2992        << castType << castExpr->getSourceRange();
2993    } else if (castType->isUnionType()) {
2994      // GCC cast to union extension
2995      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
2996      RecordDecl::field_iterator Field, FieldEnd;
2997      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2998           Field != FieldEnd; ++Field) {
2999        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
3000            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
3001          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3002            << castExpr->getSourceRange();
3003          break;
3004        }
3005      }
3006      if (Field == FieldEnd)
3007        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3008          << castExpr->getType() << castExpr->getSourceRange();
3009    } else {
3010      // Reject any other conversions to non-scalar types.
3011      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3012        << castType << castExpr->getSourceRange();
3013    }
3014  } else if (!castExpr->getType()->isScalarType() &&
3015             !castExpr->getType()->isVectorType()) {
3016    return Diag(castExpr->getLocStart(),
3017                diag::err_typecheck_expect_scalar_operand)
3018      << castExpr->getType() << castExpr->getSourceRange();
3019  } else if (castType->isExtVectorType()) {
3020    if (CheckExtVectorCast(TyR, castType, castExpr->getType()))
3021      return true;
3022  } else if (castType->isVectorType()) {
3023    if (CheckVectorCast(TyR, castType, castExpr->getType()))
3024      return true;
3025  } else if (castExpr->getType()->isVectorType()) {
3026    if (CheckVectorCast(TyR, castExpr->getType(), castType))
3027      return true;
3028  } else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
3029    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
3030  } else if (!castType->isArithmeticType()) {
3031    QualType castExprType = castExpr->getType();
3032    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
3033      return Diag(castExpr->getLocStart(),
3034                  diag::err_cast_pointer_from_non_pointer_int)
3035        << castExprType << castExpr->getSourceRange();
3036  } else if (!castExpr->getType()->isArithmeticType()) {
3037    if (!castType->isIntegralType() && castType->isArithmeticType())
3038      return Diag(castExpr->getLocStart(),
3039                  diag::err_cast_pointer_to_non_pointer_int)
3040        << castType << castExpr->getSourceRange();
3041  }
3042  if (isa<ObjCSelectorExpr>(castExpr))
3043    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3044  return false;
3045}
3046
3047bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
3048  assert(VectorTy->isVectorType() && "Not a vector type!");
3049
3050  if (Ty->isVectorType() || Ty->isIntegerType()) {
3051    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
3052      return Diag(R.getBegin(),
3053                  Ty->isVectorType() ?
3054                  diag::err_invalid_conversion_between_vectors :
3055                  diag::err_invalid_conversion_between_vector_and_integer)
3056        << VectorTy << Ty << R;
3057  } else
3058    return Diag(R.getBegin(),
3059                diag::err_invalid_conversion_between_vector_and_scalar)
3060      << VectorTy << Ty << R;
3061
3062  return false;
3063}
3064
3065bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, QualType SrcTy) {
3066  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
3067
3068  // If SrcTy is a VectorType, the total size must match to explicitly cast to
3069  // an ExtVectorType.
3070  if (SrcTy->isVectorType()) {
3071    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
3072      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
3073        << DestTy << SrcTy << R;
3074    return false;
3075  }
3076
3077  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
3078  // conversion will take place first from scalar to elt type, and then
3079  // splat from elt type to vector.
3080  if (SrcTy->isPointerType())
3081    return Diag(R.getBegin(),
3082                diag::err_invalid_conversion_between_vector_and_scalar)
3083      << DestTy << SrcTy << R;
3084  return false;
3085}
3086
3087Action::OwningExprResult
3088Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
3089                    SourceLocation RParenLoc, ExprArg Op) {
3090  assert((Ty != 0) && (Op.get() != 0) &&
3091         "ActOnCastExpr(): missing type or expr");
3092
3093  Expr *castExpr = Op.takeAs<Expr>();
3094  QualType castType = QualType::getFromOpaquePtr(Ty);
3095
3096  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
3097    return ExprError();
3098  return Owned(new (Context) CStyleCastExpr(castType.getNonReferenceType(),
3099                                            CastExpr::CK_Unknown, castExpr,
3100                                            castType, LParenLoc, RParenLoc));
3101}
3102
3103/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
3104/// In that case, lhs = cond.
3105/// C99 6.5.15
3106QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
3107                                        SourceLocation QuestionLoc) {
3108  // C++ is sufficiently different to merit its own checker.
3109  if (getLangOptions().CPlusPlus)
3110    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
3111
3112  UsualUnaryConversions(Cond);
3113  UsualUnaryConversions(LHS);
3114  UsualUnaryConversions(RHS);
3115  QualType CondTy = Cond->getType();
3116  QualType LHSTy = LHS->getType();
3117  QualType RHSTy = RHS->getType();
3118
3119  // first, check the condition.
3120  if (!CondTy->isScalarType()) { // C99 6.5.15p2
3121    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
3122      << CondTy;
3123    return QualType();
3124  }
3125
3126  // Now check the two expressions.
3127
3128  // If both operands have arithmetic type, do the usual arithmetic conversions
3129  // to find a common type: C99 6.5.15p3,5.
3130  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
3131    UsualArithmeticConversions(LHS, RHS);
3132    return LHS->getType();
3133  }
3134
3135  // If both operands are the same structure or union type, the result is that
3136  // type.
3137  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
3138    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
3139      if (LHSRT->getDecl() == RHSRT->getDecl())
3140        // "If both the operands have structure or union type, the result has
3141        // that type."  This implies that CV qualifiers are dropped.
3142        return LHSTy.getUnqualifiedType();
3143    // FIXME: Type of conditional expression must be complete in C mode.
3144  }
3145
3146  // C99 6.5.15p5: "If both operands have void type, the result has void type."
3147  // The following || allows only one side to be void (a GCC-ism).
3148  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
3149    if (!LHSTy->isVoidType())
3150      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3151        << RHS->getSourceRange();
3152    if (!RHSTy->isVoidType())
3153      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3154        << LHS->getSourceRange();
3155    ImpCastExprToType(LHS, Context.VoidTy);
3156    ImpCastExprToType(RHS, Context.VoidTy);
3157    return Context.VoidTy;
3158  }
3159  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
3160  // the type of the other operand."
3161  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
3162      RHS->isNullPointerConstant(Context)) {
3163    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
3164    return LHSTy;
3165  }
3166  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
3167      LHS->isNullPointerConstant(Context)) {
3168    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
3169    return RHSTy;
3170  }
3171  // Handle block pointer types.
3172  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
3173    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
3174      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
3175        QualType destType = Context.getPointerType(Context.VoidTy);
3176        ImpCastExprToType(LHS, destType);
3177        ImpCastExprToType(RHS, destType);
3178        return destType;
3179      }
3180      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3181            << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3182      return QualType();
3183    }
3184    // We have 2 block pointer types.
3185    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3186      // Two identical block pointer types are always compatible.
3187      return LHSTy;
3188    }
3189    // The block pointer types aren't identical, continue checking.
3190    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
3191    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
3192
3193    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3194                                    rhptee.getUnqualifiedType())) {
3195      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3196        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3197      // In this situation, we assume void* type. No especially good
3198      // reason, but this is what gcc does, and we do have to pick
3199      // to get a consistent AST.
3200      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3201      ImpCastExprToType(LHS, incompatTy);
3202      ImpCastExprToType(RHS, incompatTy);
3203      return incompatTy;
3204    }
3205    // The block pointer types are compatible.
3206    ImpCastExprToType(LHS, LHSTy);
3207    ImpCastExprToType(RHS, LHSTy);
3208    return LHSTy;
3209  }
3210  // Check constraints for Objective-C object pointers types.
3211  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
3212
3213    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3214      // Two identical object pointer types are always compatible.
3215      return LHSTy;
3216    }
3217    const ObjCObjectPointerType *LHSOPT = LHSTy->getAsObjCObjectPointerType();
3218    const ObjCObjectPointerType *RHSOPT = RHSTy->getAsObjCObjectPointerType();
3219    QualType compositeType = LHSTy;
3220
3221    // If both operands are interfaces and either operand can be
3222    // assigned to the other, use that type as the composite
3223    // type. This allows
3224    //   xxx ? (A*) a : (B*) b
3225    // where B is a subclass of A.
3226    //
3227    // Additionally, as for assignment, if either type is 'id'
3228    // allow silent coercion. Finally, if the types are
3229    // incompatible then make sure to use 'id' as the composite
3230    // type so the result is acceptable for sending messages to.
3231
3232    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
3233    // It could return the composite type.
3234    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
3235      compositeType = LHSTy;
3236    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
3237      compositeType = RHSTy;
3238    } else if ((LHSTy->isObjCQualifiedIdType() ||
3239                RHSTy->isObjCQualifiedIdType()) &&
3240                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
3241      // Need to handle "id<xx>" explicitly.
3242      // GCC allows qualified id and any Objective-C type to devolve to
3243      // id. Currently localizing to here until clear this should be
3244      // part of ObjCQualifiedIdTypesAreCompatible.
3245      compositeType = Context.getObjCIdType();
3246    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
3247      compositeType = Context.getObjCIdType();
3248    } else {
3249      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
3250        << LHSTy << RHSTy
3251        << LHS->getSourceRange() << RHS->getSourceRange();
3252      QualType incompatTy = Context.getObjCIdType();
3253      ImpCastExprToType(LHS, incompatTy);
3254      ImpCastExprToType(RHS, incompatTy);
3255      return incompatTy;
3256    }
3257    // The object pointer types are compatible.
3258    ImpCastExprToType(LHS, compositeType);
3259    ImpCastExprToType(RHS, compositeType);
3260    return compositeType;
3261  }
3262  // Check Objective-C object pointer types and 'void *'
3263  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
3264    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
3265    QualType rhptee = RHSTy->getAsObjCObjectPointerType()->getPointeeType();
3266    QualType destPointee = lhptee.getQualifiedType(rhptee.getCVRQualifiers());
3267    QualType destType = Context.getPointerType(destPointee);
3268    ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3269    ImpCastExprToType(RHS, destType); // promote to void*
3270    return destType;
3271  }
3272  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
3273    QualType lhptee = LHSTy->getAsObjCObjectPointerType()->getPointeeType();
3274    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
3275    QualType destPointee = rhptee.getQualifiedType(lhptee.getCVRQualifiers());
3276    QualType destType = Context.getPointerType(destPointee);
3277    ImpCastExprToType(RHS, destType); // add qualifiers if necessary
3278    ImpCastExprToType(LHS, destType); // promote to void*
3279    return destType;
3280  }
3281  // Check constraints for C object pointers types (C99 6.5.15p3,6).
3282  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
3283    // get the "pointed to" types
3284    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
3285    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
3286
3287    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
3288    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
3289      // Figure out necessary qualifiers (C99 6.5.15p6)
3290      QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
3291      QualType destType = Context.getPointerType(destPointee);
3292      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3293      ImpCastExprToType(RHS, destType); // promote to void*
3294      return destType;
3295    }
3296    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
3297      QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
3298      QualType destType = Context.getPointerType(destPointee);
3299      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3300      ImpCastExprToType(RHS, destType); // promote to void*
3301      return destType;
3302    }
3303
3304    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3305      // Two identical pointer types are always compatible.
3306      return LHSTy;
3307    }
3308    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3309                                    rhptee.getUnqualifiedType())) {
3310      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3311        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3312      // In this situation, we assume void* type. No especially good
3313      // reason, but this is what gcc does, and we do have to pick
3314      // to get a consistent AST.
3315      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3316      ImpCastExprToType(LHS, incompatTy);
3317      ImpCastExprToType(RHS, incompatTy);
3318      return incompatTy;
3319    }
3320    // The pointer types are compatible.
3321    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
3322    // differently qualified versions of compatible types, the result type is
3323    // a pointer to an appropriately qualified version of the *composite*
3324    // type.
3325    // FIXME: Need to calculate the composite type.
3326    // FIXME: Need to add qualifiers
3327    ImpCastExprToType(LHS, LHSTy);
3328    ImpCastExprToType(RHS, LHSTy);
3329    return LHSTy;
3330  }
3331
3332  // GCC compatibility: soften pointer/integer mismatch.
3333  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
3334    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3335      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3336    ImpCastExprToType(LHS, RHSTy); // promote the integer to a pointer.
3337    return RHSTy;
3338  }
3339  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
3340    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3341      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3342    ImpCastExprToType(RHS, LHSTy); // promote the integer to a pointer.
3343    return LHSTy;
3344  }
3345
3346  // Otherwise, the operands are not compatible.
3347  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3348    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3349  return QualType();
3350}
3351
3352/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
3353/// in the case of a the GNU conditional expr extension.
3354Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
3355                                                  SourceLocation ColonLoc,
3356                                                  ExprArg Cond, ExprArg LHS,
3357                                                  ExprArg RHS) {
3358  Expr *CondExpr = (Expr *) Cond.get();
3359  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
3360
3361  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
3362  // was the condition.
3363  bool isLHSNull = LHSExpr == 0;
3364  if (isLHSNull)
3365    LHSExpr = CondExpr;
3366
3367  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
3368                                             RHSExpr, QuestionLoc);
3369  if (result.isNull())
3370    return ExprError();
3371
3372  Cond.release();
3373  LHS.release();
3374  RHS.release();
3375  return Owned(new (Context) ConditionalOperator(CondExpr,
3376                                                 isLHSNull ? 0 : LHSExpr,
3377                                                 RHSExpr, result));
3378}
3379
3380// CheckPointerTypesForAssignment - This is a very tricky routine (despite
3381// being closely modeled after the C99 spec:-). The odd characteristic of this
3382// routine is it effectively iqnores the qualifiers on the top level pointee.
3383// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
3384// FIXME: add a couple examples in this comment.
3385Sema::AssignConvertType
3386Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
3387  QualType lhptee, rhptee;
3388
3389  // get the "pointed to" type (ignoring qualifiers at the top level)
3390  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
3391  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
3392
3393  // make sure we operate on the canonical type
3394  lhptee = Context.getCanonicalType(lhptee);
3395  rhptee = Context.getCanonicalType(rhptee);
3396
3397  AssignConvertType ConvTy = Compatible;
3398
3399  // C99 6.5.16.1p1: This following citation is common to constraints
3400  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
3401  // qualifiers of the type *pointed to* by the right;
3402  // FIXME: Handle ExtQualType
3403  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
3404    ConvTy = CompatiblePointerDiscardsQualifiers;
3405
3406  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
3407  // incomplete type and the other is a pointer to a qualified or unqualified
3408  // version of void...
3409  if (lhptee->isVoidType()) {
3410    if (rhptee->isIncompleteOrObjectType())
3411      return ConvTy;
3412
3413    // As an extension, we allow cast to/from void* to function pointer.
3414    assert(rhptee->isFunctionType());
3415    return FunctionVoidPointer;
3416  }
3417
3418  if (rhptee->isVoidType()) {
3419    if (lhptee->isIncompleteOrObjectType())
3420      return ConvTy;
3421
3422    // As an extension, we allow cast to/from void* to function pointer.
3423    assert(lhptee->isFunctionType());
3424    return FunctionVoidPointer;
3425  }
3426  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
3427  // unqualified versions of compatible types, ...
3428  lhptee = lhptee.getUnqualifiedType();
3429  rhptee = rhptee.getUnqualifiedType();
3430  if (!Context.typesAreCompatible(lhptee, rhptee)) {
3431    // Check if the pointee types are compatible ignoring the sign.
3432    // We explicitly check for char so that we catch "char" vs
3433    // "unsigned char" on systems where "char" is unsigned.
3434    if (lhptee->isCharType()) {
3435      lhptee = Context.UnsignedCharTy;
3436    } else if (lhptee->isSignedIntegerType()) {
3437      lhptee = Context.getCorrespondingUnsignedType(lhptee);
3438    }
3439    if (rhptee->isCharType()) {
3440      rhptee = Context.UnsignedCharTy;
3441    } else if (rhptee->isSignedIntegerType()) {
3442      rhptee = Context.getCorrespondingUnsignedType(rhptee);
3443    }
3444    if (lhptee == rhptee) {
3445      // Types are compatible ignoring the sign. Qualifier incompatibility
3446      // takes priority over sign incompatibility because the sign
3447      // warning can be disabled.
3448      if (ConvTy != Compatible)
3449        return ConvTy;
3450      return IncompatiblePointerSign;
3451    }
3452    // General pointer incompatibility takes priority over qualifiers.
3453    return IncompatiblePointer;
3454  }
3455  return ConvTy;
3456}
3457
3458/// CheckBlockPointerTypesForAssignment - This routine determines whether two
3459/// block pointer types are compatible or whether a block and normal pointer
3460/// are compatible. It is more restrict than comparing two function pointer
3461// types.
3462Sema::AssignConvertType
3463Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
3464                                          QualType rhsType) {
3465  QualType lhptee, rhptee;
3466
3467  // get the "pointed to" type (ignoring qualifiers at the top level)
3468  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
3469  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
3470
3471  // make sure we operate on the canonical type
3472  lhptee = Context.getCanonicalType(lhptee);
3473  rhptee = Context.getCanonicalType(rhptee);
3474
3475  AssignConvertType ConvTy = Compatible;
3476
3477  // For blocks we enforce that qualifiers are identical.
3478  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
3479    ConvTy = CompatiblePointerDiscardsQualifiers;
3480
3481  if (!Context.typesAreCompatible(lhptee, rhptee))
3482    return IncompatibleBlockPointer;
3483  return ConvTy;
3484}
3485
3486/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
3487/// has code to accommodate several GCC extensions when type checking
3488/// pointers. Here are some objectionable examples that GCC considers warnings:
3489///
3490///  int a, *pint;
3491///  short *pshort;
3492///  struct foo *pfoo;
3493///
3494///  pint = pshort; // warning: assignment from incompatible pointer type
3495///  a = pint; // warning: assignment makes integer from pointer without a cast
3496///  pint = a; // warning: assignment makes pointer from integer without a cast
3497///  pint = pfoo; // warning: assignment from incompatible pointer type
3498///
3499/// As a result, the code for dealing with pointers is more complex than the
3500/// C99 spec dictates.
3501///
3502Sema::AssignConvertType
3503Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
3504  // Get canonical types.  We're not formatting these types, just comparing
3505  // them.
3506  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
3507  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
3508
3509  if (lhsType == rhsType)
3510    return Compatible; // Common case: fast path an exact match.
3511
3512  // If the left-hand side is a reference type, then we are in a
3513  // (rare!) case where we've allowed the use of references in C,
3514  // e.g., as a parameter type in a built-in function. In this case,
3515  // just make sure that the type referenced is compatible with the
3516  // right-hand side type. The caller is responsible for adjusting
3517  // lhsType so that the resulting expression does not have reference
3518  // type.
3519  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
3520    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
3521      return Compatible;
3522    return Incompatible;
3523  }
3524  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
3525  // to the same ExtVector type.
3526  if (lhsType->isExtVectorType()) {
3527    if (rhsType->isExtVectorType())
3528      return lhsType == rhsType ? Compatible : Incompatible;
3529    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
3530      return Compatible;
3531  }
3532
3533  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3534    // If we are allowing lax vector conversions, and LHS and RHS are both
3535    // vectors, the total size only needs to be the same. This is a bitcast;
3536    // no bits are changed but the result type is different.
3537    if (getLangOptions().LaxVectorConversions &&
3538        lhsType->isVectorType() && rhsType->isVectorType()) {
3539      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3540        return IncompatibleVectors;
3541    }
3542    return Incompatible;
3543  }
3544
3545  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3546    return Compatible;
3547
3548  if (isa<PointerType>(lhsType)) {
3549    if (rhsType->isIntegerType())
3550      return IntToPointer;
3551
3552    if (isa<PointerType>(rhsType))
3553      return CheckPointerTypesForAssignment(lhsType, rhsType);
3554
3555    // In general, C pointers are not compatible with ObjC object pointers.
3556    if (isa<ObjCObjectPointerType>(rhsType)) {
3557      if (lhsType->isVoidPointerType()) // an exception to the rule.
3558        return Compatible;
3559      return IncompatiblePointer;
3560    }
3561    if (rhsType->getAs<BlockPointerType>()) {
3562      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3563        return Compatible;
3564
3565      // Treat block pointers as objects.
3566      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
3567        return Compatible;
3568    }
3569    return Incompatible;
3570  }
3571
3572  if (isa<BlockPointerType>(lhsType)) {
3573    if (rhsType->isIntegerType())
3574      return IntToBlockPointer;
3575
3576    // Treat block pointers as objects.
3577    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
3578      return Compatible;
3579
3580    if (rhsType->isBlockPointerType())
3581      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3582
3583    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
3584      if (RHSPT->getPointeeType()->isVoidType())
3585        return Compatible;
3586    }
3587    return Incompatible;
3588  }
3589
3590  if (isa<ObjCObjectPointerType>(lhsType)) {
3591    if (rhsType->isIntegerType())
3592      return IntToPointer;
3593
3594    // In general, C pointers are not compatible with ObjC object pointers.
3595    if (isa<PointerType>(rhsType)) {
3596      if (rhsType->isVoidPointerType()) // an exception to the rule.
3597        return Compatible;
3598      return IncompatiblePointer;
3599    }
3600    if (rhsType->isObjCObjectPointerType()) {
3601      if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType())
3602        return Compatible;
3603      if (Context.typesAreCompatible(lhsType, rhsType))
3604        return Compatible;
3605      if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
3606        return IncompatibleObjCQualifiedId;
3607      return IncompatiblePointer;
3608    }
3609    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
3610      if (RHSPT->getPointeeType()->isVoidType())
3611        return Compatible;
3612    }
3613    // Treat block pointers as objects.
3614    if (rhsType->isBlockPointerType())
3615      return Compatible;
3616    return Incompatible;
3617  }
3618  if (isa<PointerType>(rhsType)) {
3619    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3620    if (lhsType == Context.BoolTy)
3621      return Compatible;
3622
3623    if (lhsType->isIntegerType())
3624      return PointerToInt;
3625
3626    if (isa<PointerType>(lhsType))
3627      return CheckPointerTypesForAssignment(lhsType, rhsType);
3628
3629    if (isa<BlockPointerType>(lhsType) &&
3630        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3631      return Compatible;
3632    return Incompatible;
3633  }
3634  if (isa<ObjCObjectPointerType>(rhsType)) {
3635    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3636    if (lhsType == Context.BoolTy)
3637      return Compatible;
3638
3639    if (lhsType->isIntegerType())
3640      return PointerToInt;
3641
3642    // In general, C pointers are not compatible with ObjC object pointers.
3643    if (isa<PointerType>(lhsType)) {
3644      if (lhsType->isVoidPointerType()) // an exception to the rule.
3645        return Compatible;
3646      return IncompatiblePointer;
3647    }
3648    if (isa<BlockPointerType>(lhsType) &&
3649        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3650      return Compatible;
3651    return Incompatible;
3652  }
3653
3654  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3655    if (Context.typesAreCompatible(lhsType, rhsType))
3656      return Compatible;
3657  }
3658  return Incompatible;
3659}
3660
3661/// \brief Constructs a transparent union from an expression that is
3662/// used to initialize the transparent union.
3663static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
3664                                      QualType UnionType, FieldDecl *Field) {
3665  // Build an initializer list that designates the appropriate member
3666  // of the transparent union.
3667  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
3668                                                   &E, 1,
3669                                                   SourceLocation());
3670  Initializer->setType(UnionType);
3671  Initializer->setInitializedFieldInUnion(Field);
3672
3673  // Build a compound literal constructing a value of the transparent
3674  // union type from this initializer list.
3675  E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
3676                                  false);
3677}
3678
3679Sema::AssignConvertType
3680Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
3681  QualType FromType = rExpr->getType();
3682
3683  // If the ArgType is a Union type, we want to handle a potential
3684  // transparent_union GCC extension.
3685  const RecordType *UT = ArgType->getAsUnionType();
3686  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
3687    return Incompatible;
3688
3689  // The field to initialize within the transparent union.
3690  RecordDecl *UD = UT->getDecl();
3691  FieldDecl *InitField = 0;
3692  // It's compatible if the expression matches any of the fields.
3693  for (RecordDecl::field_iterator it = UD->field_begin(),
3694         itend = UD->field_end();
3695       it != itend; ++it) {
3696    if (it->getType()->isPointerType()) {
3697      // If the transparent union contains a pointer type, we allow:
3698      // 1) void pointer
3699      // 2) null pointer constant
3700      if (FromType->isPointerType())
3701        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
3702          ImpCastExprToType(rExpr, it->getType());
3703          InitField = *it;
3704          break;
3705        }
3706
3707      if (rExpr->isNullPointerConstant(Context)) {
3708        ImpCastExprToType(rExpr, it->getType());
3709        InitField = *it;
3710        break;
3711      }
3712    }
3713
3714    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
3715          == Compatible) {
3716      InitField = *it;
3717      break;
3718    }
3719  }
3720
3721  if (!InitField)
3722    return Incompatible;
3723
3724  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
3725  return Compatible;
3726}
3727
3728Sema::AssignConvertType
3729Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
3730  if (getLangOptions().CPlusPlus) {
3731    if (!lhsType->isRecordType()) {
3732      // C++ 5.17p3: If the left operand is not of class type, the
3733      // expression is implicitly converted (C++ 4) to the
3734      // cv-unqualified type of the left operand.
3735      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
3736                                    "assigning"))
3737        return Incompatible;
3738      return Compatible;
3739    }
3740
3741    // FIXME: Currently, we fall through and treat C++ classes like C
3742    // structures.
3743  }
3744
3745  // C99 6.5.16.1p1: the left operand is a pointer and the right is
3746  // a null pointer constant.
3747  if ((lhsType->isPointerType() ||
3748       lhsType->isObjCObjectPointerType() ||
3749       lhsType->isBlockPointerType())
3750      && rExpr->isNullPointerConstant(Context)) {
3751    ImpCastExprToType(rExpr, lhsType);
3752    return Compatible;
3753  }
3754
3755  // This check seems unnatural, however it is necessary to ensure the proper
3756  // conversion of functions/arrays. If the conversion were done for all
3757  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
3758  // expressions that surpress this implicit conversion (&, sizeof).
3759  //
3760  // Suppress this for references: C++ 8.5.3p5.
3761  if (!lhsType->isReferenceType())
3762    DefaultFunctionArrayConversion(rExpr);
3763
3764  Sema::AssignConvertType result =
3765    CheckAssignmentConstraints(lhsType, rExpr->getType());
3766
3767  // C99 6.5.16.1p2: The value of the right operand is converted to the
3768  // type of the assignment expression.
3769  // CheckAssignmentConstraints allows the left-hand side to be a reference,
3770  // so that we can use references in built-in functions even in C.
3771  // The getNonReferenceType() call makes sure that the resulting expression
3772  // does not have reference type.
3773  if (result != Incompatible && rExpr->getType() != lhsType)
3774    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
3775  return result;
3776}
3777
3778QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
3779  Diag(Loc, diag::err_typecheck_invalid_operands)
3780    << lex->getType() << rex->getType()
3781    << lex->getSourceRange() << rex->getSourceRange();
3782  return QualType();
3783}
3784
3785inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
3786                                                              Expr *&rex) {
3787  // For conversion purposes, we ignore any qualifiers.
3788  // For example, "const float" and "float" are equivalent.
3789  QualType lhsType =
3790    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
3791  QualType rhsType =
3792    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
3793
3794  // If the vector types are identical, return.
3795  if (lhsType == rhsType)
3796    return lhsType;
3797
3798  // Handle the case of a vector & extvector type of the same size and element
3799  // type.  It would be nice if we only had one vector type someday.
3800  if (getLangOptions().LaxVectorConversions) {
3801    // FIXME: Should we warn here?
3802    if (const VectorType *LV = lhsType->getAsVectorType()) {
3803      if (const VectorType *RV = rhsType->getAsVectorType())
3804        if (LV->getElementType() == RV->getElementType() &&
3805            LV->getNumElements() == RV->getNumElements()) {
3806          return lhsType->isExtVectorType() ? lhsType : rhsType;
3807        }
3808    }
3809  }
3810
3811  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
3812  // swap back (so that we don't reverse the inputs to a subtract, for instance.
3813  bool swapped = false;
3814  if (rhsType->isExtVectorType()) {
3815    swapped = true;
3816    std::swap(rex, lex);
3817    std::swap(rhsType, lhsType);
3818  }
3819
3820  // Handle the case of an ext vector and scalar.
3821  if (const ExtVectorType *LV = lhsType->getAsExtVectorType()) {
3822    QualType EltTy = LV->getElementType();
3823    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
3824      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
3825        ImpCastExprToType(rex, lhsType);
3826        if (swapped) std::swap(rex, lex);
3827        return lhsType;
3828      }
3829    }
3830    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
3831        rhsType->isRealFloatingType()) {
3832      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
3833        ImpCastExprToType(rex, lhsType);
3834        if (swapped) std::swap(rex, lex);
3835        return lhsType;
3836      }
3837    }
3838  }
3839
3840  // Vectors of different size or scalar and non-ext-vector are errors.
3841  Diag(Loc, diag::err_typecheck_vector_not_convertable)
3842    << lex->getType() << rex->getType()
3843    << lex->getSourceRange() << rex->getSourceRange();
3844  return QualType();
3845}
3846
3847inline QualType Sema::CheckMultiplyDivideOperands(
3848  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3849{
3850  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3851    return CheckVectorOperands(Loc, lex, rex);
3852
3853  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3854
3855  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3856    return compType;
3857  return InvalidOperands(Loc, lex, rex);
3858}
3859
3860inline QualType Sema::CheckRemainderOperands(
3861  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3862{
3863  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3864    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3865      return CheckVectorOperands(Loc, lex, rex);
3866    return InvalidOperands(Loc, lex, rex);
3867  }
3868
3869  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3870
3871  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3872    return compType;
3873  return InvalidOperands(Loc, lex, rex);
3874}
3875
3876inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
3877  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy)
3878{
3879  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3880    QualType compType = CheckVectorOperands(Loc, lex, rex);
3881    if (CompLHSTy) *CompLHSTy = compType;
3882    return compType;
3883  }
3884
3885  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3886
3887  // handle the common case first (both operands are arithmetic).
3888  if (lex->getType()->isArithmeticType() &&
3889      rex->getType()->isArithmeticType()) {
3890    if (CompLHSTy) *CompLHSTy = compType;
3891    return compType;
3892  }
3893
3894  // Put any potential pointer into PExp
3895  Expr* PExp = lex, *IExp = rex;
3896  if (IExp->getType()->isAnyPointerType())
3897    std::swap(PExp, IExp);
3898
3899  if (PExp->getType()->isAnyPointerType()) {
3900
3901    if (IExp->getType()->isIntegerType()) {
3902      QualType PointeeTy = PExp->getType()->getPointeeType();
3903
3904      // Check for arithmetic on pointers to incomplete types.
3905      if (PointeeTy->isVoidType()) {
3906        if (getLangOptions().CPlusPlus) {
3907          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3908            << lex->getSourceRange() << rex->getSourceRange();
3909          return QualType();
3910        }
3911
3912        // GNU extension: arithmetic on pointer to void
3913        Diag(Loc, diag::ext_gnu_void_ptr)
3914          << lex->getSourceRange() << rex->getSourceRange();
3915      } else if (PointeeTy->isFunctionType()) {
3916        if (getLangOptions().CPlusPlus) {
3917          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3918            << lex->getType() << lex->getSourceRange();
3919          return QualType();
3920        }
3921
3922        // GNU extension: arithmetic on pointer to function
3923        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3924          << lex->getType() << lex->getSourceRange();
3925      } else {
3926        // Check if we require a complete type.
3927        if (((PExp->getType()->isPointerType() &&
3928              !PExp->getType()->isDependentType()) ||
3929              PExp->getType()->isObjCObjectPointerType()) &&
3930             RequireCompleteType(Loc, PointeeTy,
3931                                 diag::err_typecheck_arithmetic_incomplete_type,
3932                                 PExp->getSourceRange(), SourceRange(),
3933                                 PExp->getType()))
3934          return QualType();
3935      }
3936      // Diagnose bad cases where we step over interface counts.
3937      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3938        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3939          << PointeeTy << PExp->getSourceRange();
3940        return QualType();
3941      }
3942
3943      if (CompLHSTy) {
3944        QualType LHSTy = lex->getType();
3945        if (LHSTy->isPromotableIntegerType())
3946          LHSTy = Context.IntTy;
3947        else {
3948          QualType T = isPromotableBitField(lex, Context);
3949          if (!T.isNull())
3950            LHSTy = T;
3951        }
3952
3953        *CompLHSTy = LHSTy;
3954      }
3955      return PExp->getType();
3956    }
3957  }
3958
3959  return InvalidOperands(Loc, lex, rex);
3960}
3961
3962// C99 6.5.6
3963QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
3964                                        SourceLocation Loc, QualType* CompLHSTy) {
3965  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3966    QualType compType = CheckVectorOperands(Loc, lex, rex);
3967    if (CompLHSTy) *CompLHSTy = compType;
3968    return compType;
3969  }
3970
3971  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3972
3973  // Enforce type constraints: C99 6.5.6p3.
3974
3975  // Handle the common case first (both operands are arithmetic).
3976  if (lex->getType()->isArithmeticType()
3977      && rex->getType()->isArithmeticType()) {
3978    if (CompLHSTy) *CompLHSTy = compType;
3979    return compType;
3980  }
3981
3982  // Either ptr - int   or   ptr - ptr.
3983  if (lex->getType()->isAnyPointerType()) {
3984    QualType lpointee = lex->getType()->getPointeeType();
3985
3986    // The LHS must be an completely-defined object type.
3987
3988    bool ComplainAboutVoid = false;
3989    Expr *ComplainAboutFunc = 0;
3990    if (lpointee->isVoidType()) {
3991      if (getLangOptions().CPlusPlus) {
3992        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3993          << lex->getSourceRange() << rex->getSourceRange();
3994        return QualType();
3995      }
3996
3997      // GNU C extension: arithmetic on pointer to void
3998      ComplainAboutVoid = true;
3999    } else if (lpointee->isFunctionType()) {
4000      if (getLangOptions().CPlusPlus) {
4001        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4002          << lex->getType() << lex->getSourceRange();
4003        return QualType();
4004      }
4005
4006      // GNU C extension: arithmetic on pointer to function
4007      ComplainAboutFunc = lex;
4008    } else if (!lpointee->isDependentType() &&
4009               RequireCompleteType(Loc, lpointee,
4010                                   diag::err_typecheck_sub_ptr_object,
4011                                   lex->getSourceRange(),
4012                                   SourceRange(),
4013                                   lex->getType()))
4014      return QualType();
4015
4016    // Diagnose bad cases where we step over interface counts.
4017    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4018      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
4019        << lpointee << lex->getSourceRange();
4020      return QualType();
4021    }
4022
4023    // The result type of a pointer-int computation is the pointer type.
4024    if (rex->getType()->isIntegerType()) {
4025      if (ComplainAboutVoid)
4026        Diag(Loc, diag::ext_gnu_void_ptr)
4027          << lex->getSourceRange() << rex->getSourceRange();
4028      if (ComplainAboutFunc)
4029        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4030          << ComplainAboutFunc->getType()
4031          << ComplainAboutFunc->getSourceRange();
4032
4033      if (CompLHSTy) *CompLHSTy = lex->getType();
4034      return lex->getType();
4035    }
4036
4037    // Handle pointer-pointer subtractions.
4038    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
4039      QualType rpointee = RHSPTy->getPointeeType();
4040
4041      // RHS must be a completely-type object type.
4042      // Handle the GNU void* extension.
4043      if (rpointee->isVoidType()) {
4044        if (getLangOptions().CPlusPlus) {
4045          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4046            << lex->getSourceRange() << rex->getSourceRange();
4047          return QualType();
4048        }
4049
4050        ComplainAboutVoid = true;
4051      } else if (rpointee->isFunctionType()) {
4052        if (getLangOptions().CPlusPlus) {
4053          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4054            << rex->getType() << rex->getSourceRange();
4055          return QualType();
4056        }
4057
4058        // GNU extension: arithmetic on pointer to function
4059        if (!ComplainAboutFunc)
4060          ComplainAboutFunc = rex;
4061      } else if (!rpointee->isDependentType() &&
4062                 RequireCompleteType(Loc, rpointee,
4063                                     diag::err_typecheck_sub_ptr_object,
4064                                     rex->getSourceRange(),
4065                                     SourceRange(),
4066                                     rex->getType()))
4067        return QualType();
4068
4069      if (getLangOptions().CPlusPlus) {
4070        // Pointee types must be the same: C++ [expr.add]
4071        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
4072          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4073            << lex->getType() << rex->getType()
4074            << lex->getSourceRange() << rex->getSourceRange();
4075          return QualType();
4076        }
4077      } else {
4078        // Pointee types must be compatible C99 6.5.6p3
4079        if (!Context.typesAreCompatible(
4080                Context.getCanonicalType(lpointee).getUnqualifiedType(),
4081                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
4082          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4083            << lex->getType() << rex->getType()
4084            << lex->getSourceRange() << rex->getSourceRange();
4085          return QualType();
4086        }
4087      }
4088
4089      if (ComplainAboutVoid)
4090        Diag(Loc, diag::ext_gnu_void_ptr)
4091          << lex->getSourceRange() << rex->getSourceRange();
4092      if (ComplainAboutFunc)
4093        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4094          << ComplainAboutFunc->getType()
4095          << ComplainAboutFunc->getSourceRange();
4096
4097      if (CompLHSTy) *CompLHSTy = lex->getType();
4098      return Context.getPointerDiffType();
4099    }
4100  }
4101
4102  return InvalidOperands(Loc, lex, rex);
4103}
4104
4105// C99 6.5.7
4106QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4107                                  bool isCompAssign) {
4108  // C99 6.5.7p2: Each of the operands shall have integer type.
4109  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
4110    return InvalidOperands(Loc, lex, rex);
4111
4112  // Shifts don't perform usual arithmetic conversions, they just do integer
4113  // promotions on each operand. C99 6.5.7p3
4114  QualType LHSTy;
4115  if (lex->getType()->isPromotableIntegerType())
4116    LHSTy = Context.IntTy;
4117  else {
4118    LHSTy = isPromotableBitField(lex, Context);
4119    if (LHSTy.isNull())
4120      LHSTy = lex->getType();
4121  }
4122  if (!isCompAssign)
4123    ImpCastExprToType(lex, LHSTy);
4124
4125  UsualUnaryConversions(rex);
4126
4127  // Sanity-check shift operands
4128  llvm::APSInt Right;
4129  // Check right/shifter operand
4130  if (rex->isIntegerConstantExpr(Right, Context)) {
4131    // Check left/shiftee operand
4132    llvm::APSInt Left;
4133    if (lex->isIntegerConstantExpr(Left, Context)) {
4134      if (Left == 0 && Right != 0)
4135        Diag(Loc, diag::warn_op_no_effect)
4136          << lex->getSourceRange() << rex->getSourceRange();
4137    }
4138    if (isCompAssign && Right == 0)
4139      Diag(Loc, diag::warn_op_no_effect) << rex->getSourceRange();
4140    else if (Right.isNegative())
4141      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
4142    else {
4143      llvm::APInt LeftBits(Right.getBitWidth(),
4144                          Context.getTypeSize(lex->getType()));
4145      if (Right.uge(LeftBits))
4146        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
4147    }
4148  }
4149
4150  // "The type of the result is that of the promoted left operand."
4151  return LHSTy;
4152}
4153
4154// C99 6.5.8, C++ [expr.rel]
4155QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4156                                    unsigned OpaqueOpc, bool isRelational) {
4157  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
4158
4159  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4160    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
4161
4162  // C99 6.5.8p3 / C99 6.5.9p4
4163  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
4164    UsualArithmeticConversions(lex, rex);
4165  else {
4166    UsualUnaryConversions(lex);
4167    UsualUnaryConversions(rex);
4168  }
4169  QualType lType = lex->getType();
4170  QualType rType = rex->getType();
4171
4172  if (!lType->isFloatingType()
4173      && !(lType->isBlockPointerType() && isRelational)) {
4174    // For non-floating point types, check for self-comparisons of the form
4175    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4176    // often indicate logic errors in the program.
4177    // NOTE: Don't warn about comparisons of enum constants. These can arise
4178    //  from macro expansions, and are usually quite deliberate.
4179    Expr *LHSStripped = lex->IgnoreParens();
4180    Expr *RHSStripped = rex->IgnoreParens();
4181    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
4182      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
4183        if (DRL->getDecl() == DRR->getDecl() &&
4184            !isa<EnumConstantDecl>(DRL->getDecl()))
4185          Diag(Loc, diag::warn_selfcomparison);
4186
4187    if (isa<CastExpr>(LHSStripped))
4188      LHSStripped = LHSStripped->IgnoreParenCasts();
4189    if (isa<CastExpr>(RHSStripped))
4190      RHSStripped = RHSStripped->IgnoreParenCasts();
4191
4192    // Warn about comparisons against a string constant (unless the other
4193    // operand is null), the user probably wants strcmp.
4194    Expr *literalString = 0;
4195    Expr *literalStringStripped = 0;
4196    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
4197        !RHSStripped->isNullPointerConstant(Context)) {
4198      literalString = lex;
4199      literalStringStripped = LHSStripped;
4200    } else if ((isa<StringLiteral>(RHSStripped) ||
4201                isa<ObjCEncodeExpr>(RHSStripped)) &&
4202               !LHSStripped->isNullPointerConstant(Context)) {
4203      literalString = rex;
4204      literalStringStripped = RHSStripped;
4205    }
4206
4207    if (literalString) {
4208      std::string resultComparison;
4209      switch (Opc) {
4210      case BinaryOperator::LT: resultComparison = ") < 0"; break;
4211      case BinaryOperator::GT: resultComparison = ") > 0"; break;
4212      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
4213      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
4214      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
4215      case BinaryOperator::NE: resultComparison = ") != 0"; break;
4216      default: assert(false && "Invalid comparison operator");
4217      }
4218      Diag(Loc, diag::warn_stringcompare)
4219        << isa<ObjCEncodeExpr>(literalStringStripped)
4220        << literalString->getSourceRange()
4221        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
4222        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
4223                                                 "strcmp(")
4224        << CodeModificationHint::CreateInsertion(
4225                                       PP.getLocForEndOfToken(rex->getLocEnd()),
4226                                       resultComparison);
4227    }
4228  }
4229
4230  // The result of comparisons is 'bool' in C++, 'int' in C.
4231  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
4232
4233  if (isRelational) {
4234    if (lType->isRealType() && rType->isRealType())
4235      return ResultTy;
4236  } else {
4237    // Check for comparisons of floating point operands using != and ==.
4238    if (lType->isFloatingType()) {
4239      assert(rType->isFloatingType());
4240      CheckFloatComparison(Loc,lex,rex);
4241    }
4242
4243    if (lType->isArithmeticType() && rType->isArithmeticType())
4244      return ResultTy;
4245  }
4246
4247  bool LHSIsNull = lex->isNullPointerConstant(Context);
4248  bool RHSIsNull = rex->isNullPointerConstant(Context);
4249
4250  // All of the following pointer related warnings are GCC extensions, except
4251  // when handling null pointer constants. One day, we can consider making them
4252  // errors (when -pedantic-errors is enabled).
4253  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
4254    QualType LCanPointeeTy =
4255      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
4256    QualType RCanPointeeTy =
4257      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
4258
4259    if (isRelational) {
4260      if (lType->isFunctionPointerType() || rType->isFunctionPointerType()) {
4261        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
4262          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4263      }
4264      if (LCanPointeeTy->isVoidType() != RCanPointeeTy->isVoidType()) {
4265        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4266          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4267      }
4268    } else {
4269      if (lType->isFunctionPointerType() != rType->isFunctionPointerType()) {
4270        if (!LHSIsNull && !RHSIsNull)
4271          Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4272            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4273      }
4274    }
4275
4276    // Simple check: if the pointee types are identical, we're done.
4277    if (LCanPointeeTy == RCanPointeeTy)
4278      return ResultTy;
4279
4280    if (getLangOptions().CPlusPlus) {
4281      // C++ [expr.rel]p2:
4282      //   [...] Pointer conversions (4.10) and qualification
4283      //   conversions (4.4) are performed on pointer operands (or on
4284      //   a pointer operand and a null pointer constant) to bring
4285      //   them to their composite pointer type. [...]
4286      //
4287      // C++ [expr.eq]p2 uses the same notion for (in)equality
4288      // comparisons of pointers.
4289      QualType T = FindCompositePointerType(lex, rex);
4290      if (T.isNull()) {
4291        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4292          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4293        return QualType();
4294      }
4295
4296      ImpCastExprToType(lex, T);
4297      ImpCastExprToType(rex, T);
4298      return ResultTy;
4299    }
4300
4301    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
4302        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
4303        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
4304                                    RCanPointeeTy.getUnqualifiedType())) {
4305      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4306        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4307    }
4308    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4309    return ResultTy;
4310  }
4311  // C++ allows comparison of pointers with null pointer constants.
4312  if (getLangOptions().CPlusPlus) {
4313    if (lType->isPointerType() && RHSIsNull) {
4314      ImpCastExprToType(rex, lType);
4315      return ResultTy;
4316    }
4317    if (rType->isPointerType() && LHSIsNull) {
4318      ImpCastExprToType(lex, rType);
4319      return ResultTy;
4320    }
4321    // And comparison of nullptr_t with itself.
4322    if (lType->isNullPtrType() && rType->isNullPtrType())
4323      return ResultTy;
4324  }
4325  // Handle block pointer types.
4326  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
4327    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
4328    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
4329
4330    if (!LHSIsNull && !RHSIsNull &&
4331        !Context.typesAreCompatible(lpointee, rpointee)) {
4332      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4333        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4334    }
4335    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4336    return ResultTy;
4337  }
4338  // Allow block pointers to be compared with null pointer constants.
4339  if (!isRelational
4340      && ((lType->isBlockPointerType() && rType->isPointerType())
4341          || (lType->isPointerType() && rType->isBlockPointerType()))) {
4342    if (!LHSIsNull && !RHSIsNull) {
4343      if (!((rType->isPointerType() && rType->getAs<PointerType>()
4344             ->getPointeeType()->isVoidType())
4345            || (lType->isPointerType() && lType->getAs<PointerType>()
4346                ->getPointeeType()->isVoidType())))
4347        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4348          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4349    }
4350    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4351    return ResultTy;
4352  }
4353
4354  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
4355    if (lType->isPointerType() || rType->isPointerType()) {
4356      const PointerType *LPT = lType->getAs<PointerType>();
4357      const PointerType *RPT = rType->getAs<PointerType>();
4358      bool LPtrToVoid = LPT ?
4359        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
4360      bool RPtrToVoid = RPT ?
4361        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
4362
4363      if (!LPtrToVoid && !RPtrToVoid &&
4364          !Context.typesAreCompatible(lType, rType)) {
4365        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4366          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4367      }
4368      ImpCastExprToType(rex, lType);
4369      return ResultTy;
4370    }
4371    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
4372      if (!Context.areComparableObjCPointerTypes(lType, rType)) {
4373        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4374          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4375      }
4376      ImpCastExprToType(rex, lType);
4377      return ResultTy;
4378    }
4379  }
4380  if (lType->isAnyPointerType() && rType->isIntegerType()) {
4381    if (isRelational)
4382      Diag(Loc, diag::ext_typecheck_ordered_comparison_of_pointer_integer)
4383        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4384    else if (!RHSIsNull)
4385      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4386        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4387    ImpCastExprToType(rex, lType); // promote the integer to pointer
4388    return ResultTy;
4389  }
4390  if (lType->isIntegerType() && rType->isAnyPointerType()) {
4391    if (isRelational)
4392      Diag(Loc, diag::ext_typecheck_ordered_comparison_of_pointer_integer)
4393        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4394    else if (!LHSIsNull)
4395      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4396        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4397    ImpCastExprToType(lex, rType); // promote the integer to pointer
4398    return ResultTy;
4399  }
4400  // Handle block pointers.
4401  if (!isRelational && RHSIsNull
4402      && lType->isBlockPointerType() && rType->isIntegerType()) {
4403    ImpCastExprToType(rex, lType); // promote the integer to pointer
4404    return ResultTy;
4405  }
4406  if (!isRelational && LHSIsNull
4407      && lType->isIntegerType() && rType->isBlockPointerType()) {
4408    ImpCastExprToType(lex, rType); // promote the integer to pointer
4409    return ResultTy;
4410  }
4411  return InvalidOperands(Loc, lex, rex);
4412}
4413
4414/// CheckVectorCompareOperands - vector comparisons are a clang extension that
4415/// operates on extended vector types.  Instead of producing an IntTy result,
4416/// like a scalar comparison, a vector comparison produces a vector of integer
4417/// types.
4418QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
4419                                          SourceLocation Loc,
4420                                          bool isRelational) {
4421  // Check to make sure we're operating on vectors of the same type and width,
4422  // Allowing one side to be a scalar of element type.
4423  QualType vType = CheckVectorOperands(Loc, lex, rex);
4424  if (vType.isNull())
4425    return vType;
4426
4427  QualType lType = lex->getType();
4428  QualType rType = rex->getType();
4429
4430  // For non-floating point types, check for self-comparisons of the form
4431  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4432  // often indicate logic errors in the program.
4433  if (!lType->isFloatingType()) {
4434    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
4435      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
4436        if (DRL->getDecl() == DRR->getDecl())
4437          Diag(Loc, diag::warn_selfcomparison);
4438  }
4439
4440  // Check for comparisons of floating point operands using != and ==.
4441  if (!isRelational && lType->isFloatingType()) {
4442    assert (rType->isFloatingType());
4443    CheckFloatComparison(Loc,lex,rex);
4444  }
4445
4446  // Return the type for the comparison, which is the same as vector type for
4447  // integer vectors, or an integer type of identical size and number of
4448  // elements for floating point vectors.
4449  if (lType->isIntegerType())
4450    return lType;
4451
4452  const VectorType *VTy = lType->getAsVectorType();
4453  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
4454  if (TypeSize == Context.getTypeSize(Context.IntTy))
4455    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
4456  if (TypeSize == Context.getTypeSize(Context.LongTy))
4457    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
4458
4459  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
4460         "Unhandled vector element size in vector compare");
4461  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
4462}
4463
4464inline QualType Sema::CheckBitwiseOperands(
4465  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
4466{
4467  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4468    return CheckVectorOperands(Loc, lex, rex);
4469
4470  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4471
4472  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4473    return compType;
4474  return InvalidOperands(Loc, lex, rex);
4475}
4476
4477inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
4478  Expr *&lex, Expr *&rex, SourceLocation Loc)
4479{
4480  UsualUnaryConversions(lex);
4481  UsualUnaryConversions(rex);
4482
4483  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
4484    return Context.IntTy;
4485  return InvalidOperands(Loc, lex, rex);
4486}
4487
4488/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
4489/// is a read-only property; return true if so. A readonly property expression
4490/// depends on various declarations and thus must be treated specially.
4491///
4492static bool IsReadonlyProperty(Expr *E, Sema &S)
4493{
4494  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
4495    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
4496    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
4497      QualType BaseType = PropExpr->getBase()->getType();
4498      if (const ObjCObjectPointerType *OPT =
4499            BaseType->getAsObjCInterfacePointerType())
4500        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
4501          if (S.isPropertyReadonly(PDecl, IFace))
4502            return true;
4503    }
4504  }
4505  return false;
4506}
4507
4508/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
4509/// emit an error and return true.  If so, return false.
4510static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
4511  SourceLocation OrigLoc = Loc;
4512  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
4513                                                              &Loc);
4514  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
4515    IsLV = Expr::MLV_ReadonlyProperty;
4516  if (IsLV == Expr::MLV_Valid)
4517    return false;
4518
4519  unsigned Diag = 0;
4520  bool NeedType = false;
4521  switch (IsLV) { // C99 6.5.16p2
4522  default: assert(0 && "Unknown result from isModifiableLvalue!");
4523  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
4524  case Expr::MLV_ArrayType:
4525    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
4526    NeedType = true;
4527    break;
4528  case Expr::MLV_NotObjectType:
4529    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
4530    NeedType = true;
4531    break;
4532  case Expr::MLV_LValueCast:
4533    Diag = diag::err_typecheck_lvalue_casts_not_supported;
4534    break;
4535  case Expr::MLV_InvalidExpression:
4536    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
4537    break;
4538  case Expr::MLV_IncompleteType:
4539  case Expr::MLV_IncompleteVoidType:
4540    return S.RequireCompleteType(Loc, E->getType(),
4541                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
4542                                    E->getSourceRange());
4543  case Expr::MLV_DuplicateVectorComponents:
4544    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
4545    break;
4546  case Expr::MLV_NotBlockQualified:
4547    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
4548    break;
4549  case Expr::MLV_ReadonlyProperty:
4550    Diag = diag::error_readonly_property_assignment;
4551    break;
4552  case Expr::MLV_NoSetterProperty:
4553    Diag = diag::error_nosetter_property_assignment;
4554    break;
4555  }
4556
4557  SourceRange Assign;
4558  if (Loc != OrigLoc)
4559    Assign = SourceRange(OrigLoc, OrigLoc);
4560  if (NeedType)
4561    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
4562  else
4563    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
4564  return true;
4565}
4566
4567
4568
4569// C99 6.5.16.1
4570QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
4571                                       SourceLocation Loc,
4572                                       QualType CompoundType) {
4573  // Verify that LHS is a modifiable lvalue, and emit error if not.
4574  if (CheckForModifiableLvalue(LHS, Loc, *this))
4575    return QualType();
4576
4577  QualType LHSType = LHS->getType();
4578  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
4579
4580  AssignConvertType ConvTy;
4581  if (CompoundType.isNull()) {
4582    // Simple assignment "x = y".
4583    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
4584    // Special case of NSObject attributes on c-style pointer types.
4585    if (ConvTy == IncompatiblePointer &&
4586        ((Context.isObjCNSObjectType(LHSType) &&
4587          RHSType->isObjCObjectPointerType()) ||
4588         (Context.isObjCNSObjectType(RHSType) &&
4589          LHSType->isObjCObjectPointerType())))
4590      ConvTy = Compatible;
4591
4592    // If the RHS is a unary plus or minus, check to see if they = and + are
4593    // right next to each other.  If so, the user may have typo'd "x =+ 4"
4594    // instead of "x += 4".
4595    Expr *RHSCheck = RHS;
4596    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
4597      RHSCheck = ICE->getSubExpr();
4598    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
4599      if ((UO->getOpcode() == UnaryOperator::Plus ||
4600           UO->getOpcode() == UnaryOperator::Minus) &&
4601          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
4602          // Only if the two operators are exactly adjacent.
4603          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
4604          // And there is a space or other character before the subexpr of the
4605          // unary +/-.  We don't want to warn on "x=-1".
4606          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
4607          UO->getSubExpr()->getLocStart().isFileID()) {
4608        Diag(Loc, diag::warn_not_compound_assign)
4609          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
4610          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
4611      }
4612    }
4613  } else {
4614    // Compound assignment "x += y"
4615    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
4616  }
4617
4618  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
4619                               RHS, "assigning"))
4620    return QualType();
4621
4622  // C99 6.5.16p3: The type of an assignment expression is the type of the
4623  // left operand unless the left operand has qualified type, in which case
4624  // it is the unqualified version of the type of the left operand.
4625  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
4626  // is converted to the type of the assignment expression (above).
4627  // C++ 5.17p1: the type of the assignment expression is that of its left
4628  // operand.
4629  return LHSType.getUnqualifiedType();
4630}
4631
4632// C99 6.5.17
4633QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
4634  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
4635  DefaultFunctionArrayConversion(RHS);
4636
4637  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
4638  // incomplete in C++).
4639
4640  return RHS->getType();
4641}
4642
4643/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
4644/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
4645QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
4646                                              bool isInc) {
4647  if (Op->isTypeDependent())
4648    return Context.DependentTy;
4649
4650  QualType ResType = Op->getType();
4651  assert(!ResType.isNull() && "no type for increment/decrement expression");
4652
4653  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
4654    // Decrement of bool is not allowed.
4655    if (!isInc) {
4656      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
4657      return QualType();
4658    }
4659    // Increment of bool sets it to true, but is deprecated.
4660    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
4661  } else if (ResType->isRealType()) {
4662    // OK!
4663  } else if (ResType->isAnyPointerType()) {
4664    QualType PointeeTy = ResType->getPointeeType();
4665
4666    // C99 6.5.2.4p2, 6.5.6p2
4667    if (PointeeTy->isVoidType()) {
4668      if (getLangOptions().CPlusPlus) {
4669        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
4670          << Op->getSourceRange();
4671        return QualType();
4672      }
4673
4674      // Pointer to void is a GNU extension in C.
4675      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
4676    } else if (PointeeTy->isFunctionType()) {
4677      if (getLangOptions().CPlusPlus) {
4678        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
4679          << Op->getType() << Op->getSourceRange();
4680        return QualType();
4681      }
4682
4683      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
4684        << ResType << Op->getSourceRange();
4685    } else if (RequireCompleteType(OpLoc, PointeeTy,
4686                               diag::err_typecheck_arithmetic_incomplete_type,
4687                                   Op->getSourceRange(), SourceRange(),
4688                                   ResType))
4689      return QualType();
4690    // Diagnose bad cases where we step over interface counts.
4691    else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4692      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
4693        << PointeeTy << Op->getSourceRange();
4694      return QualType();
4695    }
4696  } else if (ResType->isComplexType()) {
4697    // C99 does not support ++/-- on complex types, we allow as an extension.
4698    Diag(OpLoc, diag::ext_integer_increment_complex)
4699      << ResType << Op->getSourceRange();
4700  } else {
4701    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
4702      << ResType << Op->getSourceRange();
4703    return QualType();
4704  }
4705  // At this point, we know we have a real, complex or pointer type.
4706  // Now make sure the operand is a modifiable lvalue.
4707  if (CheckForModifiableLvalue(Op, OpLoc, *this))
4708    return QualType();
4709  return ResType;
4710}
4711
4712/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
4713/// This routine allows us to typecheck complex/recursive expressions
4714/// where the declaration is needed for type checking. We only need to
4715/// handle cases when the expression references a function designator
4716/// or is an lvalue. Here are some examples:
4717///  - &(x) => x
4718///  - &*****f => f for f a function designator.
4719///  - &s.xx => s
4720///  - &s.zz[1].yy -> s, if zz is an array
4721///  - *(x + 1) -> x, if x is an array
4722///  - &"123"[2] -> 0
4723///  - & __real__ x -> x
4724static NamedDecl *getPrimaryDecl(Expr *E) {
4725  switch (E->getStmtClass()) {
4726  case Stmt::DeclRefExprClass:
4727  case Stmt::QualifiedDeclRefExprClass:
4728    return cast<DeclRefExpr>(E)->getDecl();
4729  case Stmt::MemberExprClass:
4730    // If this is an arrow operator, the address is an offset from
4731    // the base's value, so the object the base refers to is
4732    // irrelevant.
4733    if (cast<MemberExpr>(E)->isArrow())
4734      return 0;
4735    // Otherwise, the expression refers to a part of the base
4736    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
4737  case Stmt::ArraySubscriptExprClass: {
4738    // FIXME: This code shouldn't be necessary!  We should catch the implicit
4739    // promotion of register arrays earlier.
4740    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
4741    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
4742      if (ICE->getSubExpr()->getType()->isArrayType())
4743        return getPrimaryDecl(ICE->getSubExpr());
4744    }
4745    return 0;
4746  }
4747  case Stmt::UnaryOperatorClass: {
4748    UnaryOperator *UO = cast<UnaryOperator>(E);
4749
4750    switch(UO->getOpcode()) {
4751    case UnaryOperator::Real:
4752    case UnaryOperator::Imag:
4753    case UnaryOperator::Extension:
4754      return getPrimaryDecl(UO->getSubExpr());
4755    default:
4756      return 0;
4757    }
4758  }
4759  case Stmt::ParenExprClass:
4760    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
4761  case Stmt::ImplicitCastExprClass:
4762    // If the result of an implicit cast is an l-value, we care about
4763    // the sub-expression; otherwise, the result here doesn't matter.
4764    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
4765  default:
4766    return 0;
4767  }
4768}
4769
4770/// CheckAddressOfOperand - The operand of & must be either a function
4771/// designator or an lvalue designating an object. If it is an lvalue, the
4772/// object cannot be declared with storage class register or be a bit field.
4773/// Note: The usual conversions are *not* applied to the operand of the &
4774/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
4775/// In C++, the operand might be an overloaded function name, in which case
4776/// we allow the '&' but retain the overloaded-function type.
4777QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
4778  // Make sure to ignore parentheses in subsequent checks
4779  op = op->IgnoreParens();
4780
4781  if (op->isTypeDependent())
4782    return Context.DependentTy;
4783
4784  if (getLangOptions().C99) {
4785    // Implement C99-only parts of addressof rules.
4786    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
4787      if (uOp->getOpcode() == UnaryOperator::Deref)
4788        // Per C99 6.5.3.2, the address of a deref always returns a valid result
4789        // (assuming the deref expression is valid).
4790        return uOp->getSubExpr()->getType();
4791    }
4792    // Technically, there should be a check for array subscript
4793    // expressions here, but the result of one is always an lvalue anyway.
4794  }
4795  NamedDecl *dcl = getPrimaryDecl(op);
4796  Expr::isLvalueResult lval = op->isLvalue(Context);
4797
4798  if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
4799    // C99 6.5.3.2p1
4800    // The operand must be either an l-value or a function designator
4801    if (!op->getType()->isFunctionType()) {
4802      // FIXME: emit more specific diag...
4803      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
4804        << op->getSourceRange();
4805      return QualType();
4806    }
4807  } else if (op->getBitField()) { // C99 6.5.3.2p1
4808    // The operand cannot be a bit-field
4809    Diag(OpLoc, diag::err_typecheck_address_of)
4810      << "bit-field" << op->getSourceRange();
4811        return QualType();
4812  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
4813           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
4814    // The operand cannot be an element of a vector
4815    Diag(OpLoc, diag::err_typecheck_address_of)
4816      << "vector element" << op->getSourceRange();
4817    return QualType();
4818  } else if (isa<ObjCPropertyRefExpr>(op)) {
4819    // cannot take address of a property expression.
4820    Diag(OpLoc, diag::err_typecheck_address_of)
4821      << "property expression" << op->getSourceRange();
4822    return QualType();
4823  } else if (dcl) { // C99 6.5.3.2p1
4824    // We have an lvalue with a decl. Make sure the decl is not declared
4825    // with the register storage-class specifier.
4826    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
4827      if (vd->getStorageClass() == VarDecl::Register) {
4828        Diag(OpLoc, diag::err_typecheck_address_of)
4829          << "register variable" << op->getSourceRange();
4830        return QualType();
4831      }
4832    } else if (isa<OverloadedFunctionDecl>(dcl) ||
4833               isa<FunctionTemplateDecl>(dcl)) {
4834      return Context.OverloadTy;
4835    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
4836      // Okay: we can take the address of a field.
4837      // Could be a pointer to member, though, if there is an explicit
4838      // scope qualifier for the class.
4839      if (isa<QualifiedDeclRefExpr>(op)) {
4840        DeclContext *Ctx = dcl->getDeclContext();
4841        if (Ctx && Ctx->isRecord()) {
4842          if (FD->getType()->isReferenceType()) {
4843            Diag(OpLoc,
4844                 diag::err_cannot_form_pointer_to_member_of_reference_type)
4845              << FD->getDeclName() << FD->getType();
4846            return QualType();
4847          }
4848
4849          return Context.getMemberPointerType(op->getType(),
4850                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
4851        }
4852      }
4853    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
4854      // Okay: we can take the address of a function.
4855      // As above.
4856      if (isa<QualifiedDeclRefExpr>(op) && MD->isInstance())
4857        return Context.getMemberPointerType(op->getType(),
4858              Context.getTypeDeclType(MD->getParent()).getTypePtr());
4859    } else if (!isa<FunctionDecl>(dcl))
4860      assert(0 && "Unknown/unexpected decl type");
4861  }
4862
4863  if (lval == Expr::LV_IncompleteVoidType) {
4864    // Taking the address of a void variable is technically illegal, but we
4865    // allow it in cases which are otherwise valid.
4866    // Example: "extern void x; void* y = &x;".
4867    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
4868  }
4869
4870  // If the operand has type "type", the result has type "pointer to type".
4871  return Context.getPointerType(op->getType());
4872}
4873
4874QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
4875  if (Op->isTypeDependent())
4876    return Context.DependentTy;
4877
4878  UsualUnaryConversions(Op);
4879  QualType Ty = Op->getType();
4880
4881  // Note that per both C89 and C99, this is always legal, even if ptype is an
4882  // incomplete type or void.  It would be possible to warn about dereferencing
4883  // a void pointer, but it's completely well-defined, and such a warning is
4884  // unlikely to catch any mistakes.
4885  if (const PointerType *PT = Ty->getAs<PointerType>())
4886    return PT->getPointeeType();
4887
4888  if (const ObjCObjectPointerType *OPT = Ty->getAsObjCObjectPointerType())
4889    return OPT->getPointeeType();
4890
4891  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
4892    << Ty << Op->getSourceRange();
4893  return QualType();
4894}
4895
4896static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
4897  tok::TokenKind Kind) {
4898  BinaryOperator::Opcode Opc;
4899  switch (Kind) {
4900  default: assert(0 && "Unknown binop!");
4901  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
4902  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
4903  case tok::star:                 Opc = BinaryOperator::Mul; break;
4904  case tok::slash:                Opc = BinaryOperator::Div; break;
4905  case tok::percent:              Opc = BinaryOperator::Rem; break;
4906  case tok::plus:                 Opc = BinaryOperator::Add; break;
4907  case tok::minus:                Opc = BinaryOperator::Sub; break;
4908  case tok::lessless:             Opc = BinaryOperator::Shl; break;
4909  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
4910  case tok::lessequal:            Opc = BinaryOperator::LE; break;
4911  case tok::less:                 Opc = BinaryOperator::LT; break;
4912  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
4913  case tok::greater:              Opc = BinaryOperator::GT; break;
4914  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
4915  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
4916  case tok::amp:                  Opc = BinaryOperator::And; break;
4917  case tok::caret:                Opc = BinaryOperator::Xor; break;
4918  case tok::pipe:                 Opc = BinaryOperator::Or; break;
4919  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
4920  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
4921  case tok::equal:                Opc = BinaryOperator::Assign; break;
4922  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
4923  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
4924  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
4925  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
4926  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
4927  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
4928  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
4929  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
4930  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
4931  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
4932  case tok::comma:                Opc = BinaryOperator::Comma; break;
4933  }
4934  return Opc;
4935}
4936
4937static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
4938  tok::TokenKind Kind) {
4939  UnaryOperator::Opcode Opc;
4940  switch (Kind) {
4941  default: assert(0 && "Unknown unary op!");
4942  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
4943  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
4944  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
4945  case tok::star:         Opc = UnaryOperator::Deref; break;
4946  case tok::plus:         Opc = UnaryOperator::Plus; break;
4947  case tok::minus:        Opc = UnaryOperator::Minus; break;
4948  case tok::tilde:        Opc = UnaryOperator::Not; break;
4949  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
4950  case tok::kw___real:    Opc = UnaryOperator::Real; break;
4951  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
4952  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
4953  }
4954  return Opc;
4955}
4956
4957/// CreateBuiltinBinOp - Creates a new built-in binary operation with
4958/// operator @p Opc at location @c TokLoc. This routine only supports
4959/// built-in operations; ActOnBinOp handles overloaded operators.
4960Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
4961                                                  unsigned Op,
4962                                                  Expr *lhs, Expr *rhs) {
4963  QualType ResultTy;     // Result type of the binary operator.
4964  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
4965  // The following two variables are used for compound assignment operators
4966  QualType CompLHSTy;    // Type of LHS after promotions for computation
4967  QualType CompResultTy; // Type of computation result
4968
4969  switch (Opc) {
4970  case BinaryOperator::Assign:
4971    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
4972    break;
4973  case BinaryOperator::PtrMemD:
4974  case BinaryOperator::PtrMemI:
4975    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
4976                                            Opc == BinaryOperator::PtrMemI);
4977    break;
4978  case BinaryOperator::Mul:
4979  case BinaryOperator::Div:
4980    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
4981    break;
4982  case BinaryOperator::Rem:
4983    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
4984    break;
4985  case BinaryOperator::Add:
4986    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
4987    break;
4988  case BinaryOperator::Sub:
4989    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
4990    break;
4991  case BinaryOperator::Shl:
4992  case BinaryOperator::Shr:
4993    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
4994    break;
4995  case BinaryOperator::LE:
4996  case BinaryOperator::LT:
4997  case BinaryOperator::GE:
4998  case BinaryOperator::GT:
4999    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
5000    break;
5001  case BinaryOperator::EQ:
5002  case BinaryOperator::NE:
5003    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
5004    break;
5005  case BinaryOperator::And:
5006  case BinaryOperator::Xor:
5007  case BinaryOperator::Or:
5008    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
5009    break;
5010  case BinaryOperator::LAnd:
5011  case BinaryOperator::LOr:
5012    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
5013    break;
5014  case BinaryOperator::MulAssign:
5015  case BinaryOperator::DivAssign:
5016    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
5017    CompLHSTy = CompResultTy;
5018    if (!CompResultTy.isNull())
5019      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5020    break;
5021  case BinaryOperator::RemAssign:
5022    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
5023    CompLHSTy = CompResultTy;
5024    if (!CompResultTy.isNull())
5025      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5026    break;
5027  case BinaryOperator::AddAssign:
5028    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
5029    if (!CompResultTy.isNull())
5030      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5031    break;
5032  case BinaryOperator::SubAssign:
5033    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
5034    if (!CompResultTy.isNull())
5035      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5036    break;
5037  case BinaryOperator::ShlAssign:
5038  case BinaryOperator::ShrAssign:
5039    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
5040    CompLHSTy = CompResultTy;
5041    if (!CompResultTy.isNull())
5042      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5043    break;
5044  case BinaryOperator::AndAssign:
5045  case BinaryOperator::XorAssign:
5046  case BinaryOperator::OrAssign:
5047    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
5048    CompLHSTy = CompResultTy;
5049    if (!CompResultTy.isNull())
5050      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5051    break;
5052  case BinaryOperator::Comma:
5053    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
5054    break;
5055  }
5056  if (ResultTy.isNull())
5057    return ExprError();
5058  if (CompResultTy.isNull())
5059    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
5060  else
5061    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
5062                                                      CompLHSTy, CompResultTy,
5063                                                      OpLoc));
5064}
5065
5066// Binary Operators.  'Tok' is the token for the operator.
5067Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
5068                                          tok::TokenKind Kind,
5069                                          ExprArg LHS, ExprArg RHS) {
5070  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
5071  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
5072
5073  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
5074  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
5075
5076  if (getLangOptions().CPlusPlus &&
5077      (lhs->getType()->isOverloadableType() ||
5078       rhs->getType()->isOverloadableType())) {
5079    // Find all of the overloaded operators visible from this
5080    // point. We perform both an operator-name lookup from the local
5081    // scope and an argument-dependent lookup based on the types of
5082    // the arguments.
5083    FunctionSet Functions;
5084    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
5085    if (OverOp != OO_None) {
5086      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
5087                                   Functions);
5088      Expr *Args[2] = { lhs, rhs };
5089      DeclarationName OpName
5090        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5091      ArgumentDependentLookup(OpName, Args, 2, Functions);
5092    }
5093
5094    // Build the (potentially-overloaded, potentially-dependent)
5095    // binary operation.
5096    return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
5097  }
5098
5099  // Build a built-in binary operation.
5100  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
5101}
5102
5103Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
5104                                                    unsigned OpcIn,
5105                                                    ExprArg InputArg) {
5106  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5107
5108  // FIXME: Input is modified below, but InputArg is not updated appropriately.
5109  Expr *Input = (Expr *)InputArg.get();
5110  QualType resultType;
5111  switch (Opc) {
5112  case UnaryOperator::OffsetOf:
5113    assert(false && "Invalid unary operator");
5114    break;
5115
5116  case UnaryOperator::PreInc:
5117  case UnaryOperator::PreDec:
5118  case UnaryOperator::PostInc:
5119  case UnaryOperator::PostDec:
5120    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
5121                                                Opc == UnaryOperator::PreInc ||
5122                                                Opc == UnaryOperator::PostInc);
5123    break;
5124  case UnaryOperator::AddrOf:
5125    resultType = CheckAddressOfOperand(Input, OpLoc);
5126    break;
5127  case UnaryOperator::Deref:
5128    DefaultFunctionArrayConversion(Input);
5129    resultType = CheckIndirectionOperand(Input, OpLoc);
5130    break;
5131  case UnaryOperator::Plus:
5132  case UnaryOperator::Minus:
5133    UsualUnaryConversions(Input);
5134    resultType = Input->getType();
5135    if (resultType->isDependentType())
5136      break;
5137    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
5138      break;
5139    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
5140             resultType->isEnumeralType())
5141      break;
5142    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
5143             Opc == UnaryOperator::Plus &&
5144             resultType->isPointerType())
5145      break;
5146
5147    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5148      << resultType << Input->getSourceRange());
5149  case UnaryOperator::Not: // bitwise complement
5150    UsualUnaryConversions(Input);
5151    resultType = Input->getType();
5152    if (resultType->isDependentType())
5153      break;
5154    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
5155    if (resultType->isComplexType() || resultType->isComplexIntegerType())
5156      // C99 does not support '~' for complex conjugation.
5157      Diag(OpLoc, diag::ext_integer_complement_complex)
5158        << resultType << Input->getSourceRange();
5159    else if (!resultType->isIntegerType())
5160      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5161        << resultType << Input->getSourceRange());
5162    break;
5163  case UnaryOperator::LNot: // logical negation
5164    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
5165    DefaultFunctionArrayConversion(Input);
5166    resultType = Input->getType();
5167    if (resultType->isDependentType())
5168      break;
5169    if (!resultType->isScalarType()) // C99 6.5.3.3p1
5170      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5171        << resultType << Input->getSourceRange());
5172    // LNot always has type int. C99 6.5.3.3p5.
5173    // In C++, it's bool. C++ 5.3.1p8
5174    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
5175    break;
5176  case UnaryOperator::Real:
5177  case UnaryOperator::Imag:
5178    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
5179    break;
5180  case UnaryOperator::Extension:
5181    resultType = Input->getType();
5182    break;
5183  }
5184  if (resultType.isNull())
5185    return ExprError();
5186
5187  InputArg.release();
5188  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
5189}
5190
5191// Unary Operators.  'Tok' is the token for the operator.
5192Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
5193                                            tok::TokenKind Op, ExprArg input) {
5194  Expr *Input = (Expr*)input.get();
5195  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
5196
5197  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
5198    // Find all of the overloaded operators visible from this
5199    // point. We perform both an operator-name lookup from the local
5200    // scope and an argument-dependent lookup based on the types of
5201    // the arguments.
5202    FunctionSet Functions;
5203    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
5204    if (OverOp != OO_None) {
5205      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
5206                                   Functions);
5207      DeclarationName OpName
5208        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5209      ArgumentDependentLookup(OpName, &Input, 1, Functions);
5210    }
5211
5212    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
5213  }
5214
5215  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
5216}
5217
5218/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
5219Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
5220                                            SourceLocation LabLoc,
5221                                            IdentifierInfo *LabelII) {
5222  // Look up the record for this label identifier.
5223  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
5224
5225  // If we haven't seen this label yet, create a forward reference. It
5226  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
5227  if (LabelDecl == 0)
5228    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
5229
5230  // Create the AST node.  The address of a label always has type 'void*'.
5231  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
5232                                       Context.getPointerType(Context.VoidTy)));
5233}
5234
5235Sema::OwningExprResult
5236Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
5237                    SourceLocation RPLoc) { // "({..})"
5238  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
5239  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
5240  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
5241
5242  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
5243  if (isFileScope)
5244    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
5245
5246  // FIXME: there are a variety of strange constraints to enforce here, for
5247  // example, it is not possible to goto into a stmt expression apparently.
5248  // More semantic analysis is needed.
5249
5250  // If there are sub stmts in the compound stmt, take the type of the last one
5251  // as the type of the stmtexpr.
5252  QualType Ty = Context.VoidTy;
5253
5254  if (!Compound->body_empty()) {
5255    Stmt *LastStmt = Compound->body_back();
5256    // If LastStmt is a label, skip down through into the body.
5257    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
5258      LastStmt = Label->getSubStmt();
5259
5260    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
5261      Ty = LastExpr->getType();
5262  }
5263
5264  // FIXME: Check that expression type is complete/non-abstract; statement
5265  // expressions are not lvalues.
5266
5267  substmt.release();
5268  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
5269}
5270
5271Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
5272                                                  SourceLocation BuiltinLoc,
5273                                                  SourceLocation TypeLoc,
5274                                                  TypeTy *argty,
5275                                                  OffsetOfComponent *CompPtr,
5276                                                  unsigned NumComponents,
5277                                                  SourceLocation RPLoc) {
5278  // FIXME: This function leaks all expressions in the offset components on
5279  // error.
5280  QualType ArgTy = QualType::getFromOpaquePtr(argty);
5281  assert(!ArgTy.isNull() && "Missing type argument!");
5282
5283  bool Dependent = ArgTy->isDependentType();
5284
5285  // We must have at least one component that refers to the type, and the first
5286  // one is known to be a field designator.  Verify that the ArgTy represents
5287  // a struct/union/class.
5288  if (!Dependent && !ArgTy->isRecordType())
5289    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
5290
5291  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
5292  // with an incomplete type would be illegal.
5293
5294  // Otherwise, create a null pointer as the base, and iteratively process
5295  // the offsetof designators.
5296  QualType ArgTyPtr = Context.getPointerType(ArgTy);
5297  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
5298  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
5299                                    ArgTy, SourceLocation());
5300
5301  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
5302  // GCC extension, diagnose them.
5303  // FIXME: This diagnostic isn't actually visible because the location is in
5304  // a system header!
5305  if (NumComponents != 1)
5306    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
5307      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
5308
5309  if (!Dependent) {
5310    bool DidWarnAboutNonPOD = false;
5311
5312    // FIXME: Dependent case loses a lot of information here. And probably
5313    // leaks like a sieve.
5314    for (unsigned i = 0; i != NumComponents; ++i) {
5315      const OffsetOfComponent &OC = CompPtr[i];
5316      if (OC.isBrackets) {
5317        // Offset of an array sub-field.  TODO: Should we allow vector elements?
5318        const ArrayType *AT = Context.getAsArrayType(Res->getType());
5319        if (!AT) {
5320          Res->Destroy(Context);
5321          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
5322            << Res->getType());
5323        }
5324
5325        // FIXME: C++: Verify that operator[] isn't overloaded.
5326
5327        // Promote the array so it looks more like a normal array subscript
5328        // expression.
5329        DefaultFunctionArrayConversion(Res);
5330
5331        // C99 6.5.2.1p1
5332        Expr *Idx = static_cast<Expr*>(OC.U.E);
5333        // FIXME: Leaks Res
5334        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
5335          return ExprError(Diag(Idx->getLocStart(),
5336                                diag::err_typecheck_subscript_not_integer)
5337            << Idx->getSourceRange());
5338
5339        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
5340                                               OC.LocEnd);
5341        continue;
5342      }
5343
5344      const RecordType *RC = Res->getType()->getAs<RecordType>();
5345      if (!RC) {
5346        Res->Destroy(Context);
5347        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
5348          << Res->getType());
5349      }
5350
5351      // Get the decl corresponding to this.
5352      RecordDecl *RD = RC->getDecl();
5353      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5354        if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
5355          ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
5356            << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
5357            << Res->getType());
5358          DidWarnAboutNonPOD = true;
5359        }
5360      }
5361
5362      FieldDecl *MemberDecl
5363        = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
5364                                                          LookupMemberName)
5365                                        .getAsDecl());
5366      // FIXME: Leaks Res
5367      if (!MemberDecl)
5368        return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member)
5369         << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd));
5370
5371      // FIXME: C++: Verify that MemberDecl isn't a static field.
5372      // FIXME: Verify that MemberDecl isn't a bitfield.
5373      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
5374        Res = BuildAnonymousStructUnionMemberReference(
5375            SourceLocation(), MemberDecl, Res, SourceLocation()).takeAs<Expr>();
5376      } else {
5377        // MemberDecl->getType() doesn't get the right qualifiers, but it
5378        // doesn't matter here.
5379        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
5380                MemberDecl->getType().getNonReferenceType());
5381      }
5382    }
5383  }
5384
5385  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
5386                                           Context.getSizeType(), BuiltinLoc));
5387}
5388
5389
5390Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
5391                                                      TypeTy *arg1,TypeTy *arg2,
5392                                                      SourceLocation RPLoc) {
5393  QualType argT1 = QualType::getFromOpaquePtr(arg1);
5394  QualType argT2 = QualType::getFromOpaquePtr(arg2);
5395
5396  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
5397
5398  if (getLangOptions().CPlusPlus) {
5399    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
5400      << SourceRange(BuiltinLoc, RPLoc);
5401    return ExprError();
5402  }
5403
5404  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
5405                                                 argT1, argT2, RPLoc));
5406}
5407
5408Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
5409                                             ExprArg cond,
5410                                             ExprArg expr1, ExprArg expr2,
5411                                             SourceLocation RPLoc) {
5412  Expr *CondExpr = static_cast<Expr*>(cond.get());
5413  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
5414  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
5415
5416  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
5417
5418  QualType resType;
5419  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
5420    resType = Context.DependentTy;
5421  } else {
5422    // The conditional expression is required to be a constant expression.
5423    llvm::APSInt condEval(32);
5424    SourceLocation ExpLoc;
5425    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
5426      return ExprError(Diag(ExpLoc,
5427                       diag::err_typecheck_choose_expr_requires_constant)
5428        << CondExpr->getSourceRange());
5429
5430    // If the condition is > zero, then the AST type is the same as the LSHExpr.
5431    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
5432  }
5433
5434  cond.release(); expr1.release(); expr2.release();
5435  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
5436                                        resType, RPLoc));
5437}
5438
5439//===----------------------------------------------------------------------===//
5440// Clang Extensions.
5441//===----------------------------------------------------------------------===//
5442
5443/// ActOnBlockStart - This callback is invoked when a block literal is started.
5444void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
5445  // Analyze block parameters.
5446  BlockSemaInfo *BSI = new BlockSemaInfo();
5447
5448  // Add BSI to CurBlock.
5449  BSI->PrevBlockInfo = CurBlock;
5450  CurBlock = BSI;
5451
5452  BSI->ReturnType = QualType();
5453  BSI->TheScope = BlockScope;
5454  BSI->hasBlockDeclRefExprs = false;
5455  BSI->hasPrototype = false;
5456  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
5457  CurFunctionNeedsScopeChecking = false;
5458
5459  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
5460  PushDeclContext(BlockScope, BSI->TheDecl);
5461}
5462
5463void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
5464  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
5465
5466  if (ParamInfo.getNumTypeObjects() == 0
5467      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
5468    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5469    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5470
5471    if (T->isArrayType()) {
5472      Diag(ParamInfo.getSourceRange().getBegin(),
5473           diag::err_block_returns_array);
5474      return;
5475    }
5476
5477    // The parameter list is optional, if there was none, assume ().
5478    if (!T->isFunctionType())
5479      T = Context.getFunctionType(T, NULL, 0, 0, 0);
5480
5481    CurBlock->hasPrototype = true;
5482    CurBlock->isVariadic = false;
5483    // Check for a valid sentinel attribute on this block.
5484    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5485      Diag(ParamInfo.getAttributes()->getLoc(),
5486           diag::warn_attribute_sentinel_not_variadic) << 1;
5487      // FIXME: remove the attribute.
5488    }
5489    QualType RetTy = T.getTypePtr()->getAsFunctionType()->getResultType();
5490
5491    // Do not allow returning a objc interface by-value.
5492    if (RetTy->isObjCInterfaceType()) {
5493      Diag(ParamInfo.getSourceRange().getBegin(),
5494           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5495      return;
5496    }
5497    return;
5498  }
5499
5500  // Analyze arguments to block.
5501  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
5502         "Not a function declarator!");
5503  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
5504
5505  CurBlock->hasPrototype = FTI.hasPrototype;
5506  CurBlock->isVariadic = true;
5507
5508  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
5509  // no arguments, not a function that takes a single void argument.
5510  if (FTI.hasPrototype &&
5511      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5512     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
5513        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
5514    // empty arg list, don't push any params.
5515    CurBlock->isVariadic = false;
5516  } else if (FTI.hasPrototype) {
5517    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
5518      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
5519    CurBlock->isVariadic = FTI.isVariadic;
5520  }
5521  CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
5522                               CurBlock->Params.size());
5523  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
5524  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5525  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
5526       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
5527    // If this has an identifier, add it to the scope stack.
5528    if ((*AI)->getIdentifier())
5529      PushOnScopeChains(*AI, CurBlock->TheScope);
5530
5531  // Check for a valid sentinel attribute on this block.
5532  if (!CurBlock->isVariadic &&
5533      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5534    Diag(ParamInfo.getAttributes()->getLoc(),
5535         diag::warn_attribute_sentinel_not_variadic) << 1;
5536    // FIXME: remove the attribute.
5537  }
5538
5539  // Analyze the return type.
5540  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5541  QualType RetTy = T->getAsFunctionType()->getResultType();
5542
5543  // Do not allow returning a objc interface by-value.
5544  if (RetTy->isObjCInterfaceType()) {
5545    Diag(ParamInfo.getSourceRange().getBegin(),
5546         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5547  } else if (!RetTy->isDependentType())
5548    CurBlock->ReturnType = RetTy;
5549}
5550
5551/// ActOnBlockError - If there is an error parsing a block, this callback
5552/// is invoked to pop the information about the block from the action impl.
5553void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
5554  // Ensure that CurBlock is deleted.
5555  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
5556
5557  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
5558
5559  // Pop off CurBlock, handle nested blocks.
5560  PopDeclContext();
5561  CurBlock = CurBlock->PrevBlockInfo;
5562  // FIXME: Delete the ParmVarDecl objects as well???
5563}
5564
5565/// ActOnBlockStmtExpr - This is called when the body of a block statement
5566/// literal was successfully completed.  ^(int x){...}
5567Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
5568                                                StmtArg body, Scope *CurScope) {
5569  // If blocks are disabled, emit an error.
5570  if (!LangOpts.Blocks)
5571    Diag(CaretLoc, diag::err_blocks_disable);
5572
5573  // Ensure that CurBlock is deleted.
5574  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
5575
5576  PopDeclContext();
5577
5578  // Pop off CurBlock, handle nested blocks.
5579  CurBlock = CurBlock->PrevBlockInfo;
5580
5581  QualType RetTy = Context.VoidTy;
5582  if (!BSI->ReturnType.isNull())
5583    RetTy = BSI->ReturnType;
5584
5585  llvm::SmallVector<QualType, 8> ArgTypes;
5586  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
5587    ArgTypes.push_back(BSI->Params[i]->getType());
5588
5589  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
5590  QualType BlockTy;
5591  if (!BSI->hasPrototype)
5592    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
5593                                      NoReturn);
5594  else
5595    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
5596                                      BSI->isVariadic, 0, false, false, 0, 0,
5597                                      NoReturn);
5598
5599  // FIXME: Check that return/parameter types are complete/non-abstract
5600  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
5601  BlockTy = Context.getBlockPointerType(BlockTy);
5602
5603  // If needed, diagnose invalid gotos and switches in the block.
5604  if (CurFunctionNeedsScopeChecking)
5605    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
5606  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
5607
5608  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
5609  CheckFallThroughForBlock(BlockTy, BSI->TheDecl->getBody());
5610  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
5611                                       BSI->hasBlockDeclRefExprs));
5612}
5613
5614Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
5615                                        ExprArg expr, TypeTy *type,
5616                                        SourceLocation RPLoc) {
5617  QualType T = QualType::getFromOpaquePtr(type);
5618  Expr *E = static_cast<Expr*>(expr.get());
5619  Expr *OrigExpr = E;
5620
5621  InitBuiltinVaListType();
5622
5623  // Get the va_list type
5624  QualType VaListType = Context.getBuiltinVaListType();
5625  if (VaListType->isArrayType()) {
5626    // Deal with implicit array decay; for example, on x86-64,
5627    // va_list is an array, but it's supposed to decay to
5628    // a pointer for va_arg.
5629    VaListType = Context.getArrayDecayedType(VaListType);
5630    // Make sure the input expression also decays appropriately.
5631    UsualUnaryConversions(E);
5632  } else {
5633    // Otherwise, the va_list argument must be an l-value because
5634    // it is modified by va_arg.
5635    if (!E->isTypeDependent() &&
5636        CheckForModifiableLvalue(E, BuiltinLoc, *this))
5637      return ExprError();
5638  }
5639
5640  if (!E->isTypeDependent() &&
5641      !Context.hasSameType(VaListType, E->getType())) {
5642    return ExprError(Diag(E->getLocStart(),
5643                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
5644      << OrigExpr->getType() << E->getSourceRange());
5645  }
5646
5647  // FIXME: Check that type is complete/non-abstract
5648  // FIXME: Warn if a non-POD type is passed in.
5649
5650  expr.release();
5651  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
5652                                       RPLoc));
5653}
5654
5655Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
5656  // The type of __null will be int or long, depending on the size of
5657  // pointers on the target.
5658  QualType Ty;
5659  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
5660    Ty = Context.IntTy;
5661  else
5662    Ty = Context.LongTy;
5663
5664  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
5665}
5666
5667bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
5668                                    SourceLocation Loc,
5669                                    QualType DstType, QualType SrcType,
5670                                    Expr *SrcExpr, const char *Flavor) {
5671  // Decode the result (notice that AST's are still created for extensions).
5672  bool isInvalid = false;
5673  unsigned DiagKind;
5674  switch (ConvTy) {
5675  default: assert(0 && "Unknown conversion type");
5676  case Compatible: return false;
5677  case PointerToInt:
5678    DiagKind = diag::ext_typecheck_convert_pointer_int;
5679    break;
5680  case IntToPointer:
5681    DiagKind = diag::ext_typecheck_convert_int_pointer;
5682    break;
5683  case IncompatiblePointer:
5684    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
5685    break;
5686  case IncompatiblePointerSign:
5687    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
5688    break;
5689  case FunctionVoidPointer:
5690    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
5691    break;
5692  case CompatiblePointerDiscardsQualifiers:
5693    // If the qualifiers lost were because we were applying the
5694    // (deprecated) C++ conversion from a string literal to a char*
5695    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
5696    // Ideally, this check would be performed in
5697    // CheckPointerTypesForAssignment. However, that would require a
5698    // bit of refactoring (so that the second argument is an
5699    // expression, rather than a type), which should be done as part
5700    // of a larger effort to fix CheckPointerTypesForAssignment for
5701    // C++ semantics.
5702    if (getLangOptions().CPlusPlus &&
5703        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
5704      return false;
5705    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
5706    break;
5707  case IntToBlockPointer:
5708    DiagKind = diag::err_int_to_block_pointer;
5709    break;
5710  case IncompatibleBlockPointer:
5711    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
5712    break;
5713  case IncompatibleObjCQualifiedId:
5714    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
5715    // it can give a more specific diagnostic.
5716    DiagKind = diag::warn_incompatible_qualified_id;
5717    break;
5718  case IncompatibleVectors:
5719    DiagKind = diag::warn_incompatible_vectors;
5720    break;
5721  case Incompatible:
5722    DiagKind = diag::err_typecheck_convert_incompatible;
5723    isInvalid = true;
5724    break;
5725  }
5726
5727  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
5728    << SrcExpr->getSourceRange();
5729  return isInvalid;
5730}
5731
5732bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
5733  llvm::APSInt ICEResult;
5734  if (E->isIntegerConstantExpr(ICEResult, Context)) {
5735    if (Result)
5736      *Result = ICEResult;
5737    return false;
5738  }
5739
5740  Expr::EvalResult EvalResult;
5741
5742  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
5743      EvalResult.HasSideEffects) {
5744    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
5745
5746    if (EvalResult.Diag) {
5747      // We only show the note if it's not the usual "invalid subexpression"
5748      // or if it's actually in a subexpression.
5749      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
5750          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
5751        Diag(EvalResult.DiagLoc, EvalResult.Diag);
5752    }
5753
5754    return true;
5755  }
5756
5757  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
5758    E->getSourceRange();
5759
5760  if (EvalResult.Diag &&
5761      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
5762    Diag(EvalResult.DiagLoc, EvalResult.Diag);
5763
5764  if (Result)
5765    *Result = EvalResult.Val.getInt();
5766  return false;
5767}
5768
5769Sema::ExpressionEvaluationContext
5770Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
5771  // Introduce a new set of potentially referenced declarations to the stack.
5772  if (NewContext == PotentiallyPotentiallyEvaluated)
5773    PotentiallyReferencedDeclStack.push_back(PotentiallyReferencedDecls());
5774
5775  std::swap(ExprEvalContext, NewContext);
5776  return NewContext;
5777}
5778
5779void
5780Sema::PopExpressionEvaluationContext(ExpressionEvaluationContext OldContext,
5781                                     ExpressionEvaluationContext NewContext) {
5782  ExprEvalContext = NewContext;
5783
5784  if (OldContext == PotentiallyPotentiallyEvaluated) {
5785    // Mark any remaining declarations in the current position of the stack
5786    // as "referenced". If they were not meant to be referenced, semantic
5787    // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
5788    PotentiallyReferencedDecls RemainingDecls;
5789    RemainingDecls.swap(PotentiallyReferencedDeclStack.back());
5790    PotentiallyReferencedDeclStack.pop_back();
5791
5792    for (PotentiallyReferencedDecls::iterator I = RemainingDecls.begin(),
5793                                           IEnd = RemainingDecls.end();
5794         I != IEnd; ++I)
5795      MarkDeclarationReferenced(I->first, I->second);
5796  }
5797}
5798
5799/// \brief Note that the given declaration was referenced in the source code.
5800///
5801/// This routine should be invoke whenever a given declaration is referenced
5802/// in the source code, and where that reference occurred. If this declaration
5803/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
5804/// C99 6.9p3), then the declaration will be marked as used.
5805///
5806/// \param Loc the location where the declaration was referenced.
5807///
5808/// \param D the declaration that has been referenced by the source code.
5809void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
5810  assert(D && "No declaration?");
5811
5812  if (D->isUsed())
5813    return;
5814
5815  // Mark a parameter declaration "used", regardless of whether we're in a
5816  // template or not.
5817  if (isa<ParmVarDecl>(D))
5818    D->setUsed(true);
5819
5820  // Do not mark anything as "used" within a dependent context; wait for
5821  // an instantiation.
5822  if (CurContext->isDependentContext())
5823    return;
5824
5825  switch (ExprEvalContext) {
5826    case Unevaluated:
5827      // We are in an expression that is not potentially evaluated; do nothing.
5828      return;
5829
5830    case PotentiallyEvaluated:
5831      // We are in a potentially-evaluated expression, so this declaration is
5832      // "used"; handle this below.
5833      break;
5834
5835    case PotentiallyPotentiallyEvaluated:
5836      // We are in an expression that may be potentially evaluated; queue this
5837      // declaration reference until we know whether the expression is
5838      // potentially evaluated.
5839      PotentiallyReferencedDeclStack.back().push_back(std::make_pair(Loc, D));
5840      return;
5841  }
5842
5843  // Note that this declaration has been used.
5844  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
5845    unsigned TypeQuals;
5846    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
5847        if (!Constructor->isUsed())
5848          DefineImplicitDefaultConstructor(Loc, Constructor);
5849    } else if (Constructor->isImplicit() &&
5850               Constructor->isCopyConstructor(Context, TypeQuals)) {
5851      if (!Constructor->isUsed())
5852        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
5853    }
5854  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
5855    if (Destructor->isImplicit() && !Destructor->isUsed())
5856      DefineImplicitDestructor(Loc, Destructor);
5857
5858  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
5859    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
5860        MethodDecl->getOverloadedOperator() == OO_Equal) {
5861      if (!MethodDecl->isUsed())
5862        DefineImplicitOverloadedAssign(Loc, MethodDecl);
5863    }
5864  }
5865  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
5866    // Implicit instantiation of function templates and member functions of
5867    // class templates.
5868    if (!Function->getBody()) {
5869      // FIXME: distinguish between implicit instantiations of function
5870      // templates and explicit specializations (the latter don't get
5871      // instantiated, naturally).
5872      if (Function->getInstantiatedFromMemberFunction() ||
5873          Function->getPrimaryTemplate())
5874        PendingImplicitInstantiations.push_back(std::make_pair(Function, Loc));
5875    }
5876
5877
5878    // FIXME: keep track of references to static functions
5879    Function->setUsed(true);
5880    return;
5881  }
5882
5883  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
5884    // Implicit instantiation of static data members of class templates.
5885    // FIXME: distinguish between implicit instantiations (which we need to
5886    // actually instantiate) and explicit specializations.
5887    if (Var->isStaticDataMember() &&
5888        Var->getInstantiatedFromStaticDataMember())
5889      PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
5890
5891    // FIXME: keep track of references to static data?
5892
5893    D->setUsed(true);
5894    return;
5895}
5896}
5897
5898