SemaExpr.cpp revision f18d4c8326553440fb01bfeb368b2bc60996cfc2
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30//  Standard Promotions and Conversions
31//===----------------------------------------------------------------------===//
32
33/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
34void Sema::DefaultFunctionArrayConversion(Expr *&E) {
35  QualType Ty = E->getType();
36  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
37
38  if (Ty->isFunctionType())
39    ImpCastExprToType(E, Context.getPointerType(Ty));
40  else if (Ty->isArrayType()) {
41    // In C90 mode, arrays only promote to pointers if the array expression is
42    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
43    // type 'array of type' is converted to an expression that has type 'pointer
44    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
45    // that has type 'array of type' ...".  The relevant change is "an lvalue"
46    // (C90) to "an expression" (C99).
47    //
48    // C++ 4.2p1:
49    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
50    // T" can be converted to an rvalue of type "pointer to T".
51    //
52    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
53        E->isLvalue(Context) == Expr::LV_Valid)
54      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
55  }
56}
57
58/// UsualUnaryConversions - Performs various conversions that are common to most
59/// operators (C99 6.3). The conversions of array and function types are
60/// sometimes surpressed. For example, the array->pointer conversion doesn't
61/// apply if the array is an argument to the sizeof or address (&) operators.
62/// In these instances, this routine should *not* be called.
63Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
64  QualType Ty = Expr->getType();
65  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
66
67  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
68    ImpCastExprToType(Expr, Context.IntTy);
69  else
70    DefaultFunctionArrayConversion(Expr);
71
72  return Expr;
73}
74
75/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
76/// do not have a prototype. Arguments that have type float are promoted to
77/// double. All other argument types are converted by UsualUnaryConversions().
78void Sema::DefaultArgumentPromotion(Expr *&Expr) {
79  QualType Ty = Expr->getType();
80  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
81
82  // If this is a 'float' (CVR qualified or typedef) promote to double.
83  if (const BuiltinType *BT = Ty->getAsBuiltinType())
84    if (BT->getKind() == BuiltinType::Float)
85      return ImpCastExprToType(Expr, Context.DoubleTy);
86
87  UsualUnaryConversions(Expr);
88}
89
90/// UsualArithmeticConversions - Performs various conversions that are common to
91/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
92/// routine returns the first non-arithmetic type found. The client is
93/// responsible for emitting appropriate error diagnostics.
94/// FIXME: verify the conversion rules for "complex int" are consistent with
95/// GCC.
96QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
97                                          bool isCompAssign) {
98  if (!isCompAssign) {
99    UsualUnaryConversions(lhsExpr);
100    UsualUnaryConversions(rhsExpr);
101  }
102
103  // For conversion purposes, we ignore any qualifiers.
104  // For example, "const float" and "float" are equivalent.
105  QualType lhs =
106    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
107  QualType rhs =
108    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
109
110  // If both types are identical, no conversion is needed.
111  if (lhs == rhs)
112    return lhs;
113
114  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
115  // The caller can deal with this (e.g. pointer + int).
116  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
117    return lhs;
118
119  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
120  if (!isCompAssign) {
121    ImpCastExprToType(lhsExpr, destType);
122    ImpCastExprToType(rhsExpr, destType);
123  }
124  return destType;
125}
126
127QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
128  // Perform the usual unary conversions. We do this early so that
129  // integral promotions to "int" can allow us to exit early, in the
130  // lhs == rhs check. Also, for conversion purposes, we ignore any
131  // qualifiers.  For example, "const float" and "float" are
132  // equivalent.
133  if (lhs->isPromotableIntegerType()) lhs = Context.IntTy;
134  else                                lhs = lhs.getUnqualifiedType();
135  if (rhs->isPromotableIntegerType()) rhs = Context.IntTy;
136  else                                rhs = rhs.getUnqualifiedType();
137
138  // If both types are identical, no conversion is needed.
139  if (lhs == rhs)
140    return lhs;
141
142  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
143  // The caller can deal with this (e.g. pointer + int).
144  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
145    return lhs;
146
147  // At this point, we have two different arithmetic types.
148
149  // Handle complex types first (C99 6.3.1.8p1).
150  if (lhs->isComplexType() || rhs->isComplexType()) {
151    // if we have an integer operand, the result is the complex type.
152    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
153      // convert the rhs to the lhs complex type.
154      return lhs;
155    }
156    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
157      // convert the lhs to the rhs complex type.
158      return rhs;
159    }
160    // This handles complex/complex, complex/float, or float/complex.
161    // When both operands are complex, the shorter operand is converted to the
162    // type of the longer, and that is the type of the result. This corresponds
163    // to what is done when combining two real floating-point operands.
164    // The fun begins when size promotion occur across type domains.
165    // From H&S 6.3.4: When one operand is complex and the other is a real
166    // floating-point type, the less precise type is converted, within it's
167    // real or complex domain, to the precision of the other type. For example,
168    // when combining a "long double" with a "double _Complex", the
169    // "double _Complex" is promoted to "long double _Complex".
170    int result = Context.getFloatingTypeOrder(lhs, rhs);
171
172    if (result > 0) { // The left side is bigger, convert rhs.
173      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
174    } else if (result < 0) { // The right side is bigger, convert lhs.
175      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
176    }
177    // At this point, lhs and rhs have the same rank/size. Now, make sure the
178    // domains match. This is a requirement for our implementation, C99
179    // does not require this promotion.
180    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
181      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
182        return rhs;
183      } else { // handle "_Complex double, double".
184        return lhs;
185      }
186    }
187    return lhs; // The domain/size match exactly.
188  }
189  // Now handle "real" floating types (i.e. float, double, long double).
190  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
191    // if we have an integer operand, the result is the real floating type.
192    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
193      // convert rhs to the lhs floating point type.
194      return lhs;
195    }
196    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
197      // convert lhs to the rhs floating point type.
198      return rhs;
199    }
200    // We have two real floating types, float/complex combos were handled above.
201    // Convert the smaller operand to the bigger result.
202    int result = Context.getFloatingTypeOrder(lhs, rhs);
203
204    if (result > 0) { // convert the rhs
205      return lhs;
206    }
207    if (result < 0) { // convert the lhs
208      return rhs;
209    }
210    assert(0 && "Sema::UsualArithmeticConversionsType(): illegal float comparison");
211  }
212  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
213    // Handle GCC complex int extension.
214    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
215    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
216
217    if (lhsComplexInt && rhsComplexInt) {
218      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
219                                      rhsComplexInt->getElementType()) >= 0) {
220        // convert the rhs
221        return lhs;
222      }
223      return rhs;
224    } else if (lhsComplexInt && rhs->isIntegerType()) {
225      // convert the rhs to the lhs complex type.
226      return lhs;
227    } else if (rhsComplexInt && lhs->isIntegerType()) {
228      // convert the lhs to the rhs complex type.
229      return rhs;
230    }
231  }
232  // Finally, we have two differing integer types.
233  // The rules for this case are in C99 6.3.1.8
234  int compare = Context.getIntegerTypeOrder(lhs, rhs);
235  bool lhsSigned = lhs->isSignedIntegerType(),
236       rhsSigned = rhs->isSignedIntegerType();
237  QualType destType;
238  if (lhsSigned == rhsSigned) {
239    // Same signedness; use the higher-ranked type
240    destType = compare >= 0 ? lhs : rhs;
241  } else if (compare != (lhsSigned ? 1 : -1)) {
242    // The unsigned type has greater than or equal rank to the
243    // signed type, so use the unsigned type
244    destType = lhsSigned ? rhs : lhs;
245  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
246    // The two types are different widths; if we are here, that
247    // means the signed type is larger than the unsigned type, so
248    // use the signed type.
249    destType = lhsSigned ? lhs : rhs;
250  } else {
251    // The signed type is higher-ranked than the unsigned type,
252    // but isn't actually any bigger (like unsigned int and long
253    // on most 32-bit systems).  Use the unsigned type corresponding
254    // to the signed type.
255    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
256  }
257  return destType;
258}
259
260//===----------------------------------------------------------------------===//
261//  Semantic Analysis for various Expression Types
262//===----------------------------------------------------------------------===//
263
264
265/// ActOnStringLiteral - The specified tokens were lexed as pasted string
266/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
267/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
268/// multiple tokens.  However, the common case is that StringToks points to one
269/// string.
270///
271Action::ExprResult
272Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
273  assert(NumStringToks && "Must have at least one string!");
274
275  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
276  if (Literal.hadError)
277    return ExprResult(true);
278
279  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
280  for (unsigned i = 0; i != NumStringToks; ++i)
281    StringTokLocs.push_back(StringToks[i].getLocation());
282
283  // Verify that pascal strings aren't too large.
284  if (Literal.Pascal && Literal.GetStringLength() > 256)
285    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long)
286      << SourceRange(StringToks[0].getLocation(),
287                     StringToks[NumStringToks-1].getLocation());
288
289  QualType StrTy = Context.CharTy;
290  if (Literal.AnyWide) StrTy = Context.getWCharType();
291  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
292
293  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
294  if (getLangOptions().CPlusPlus)
295    StrTy.addConst();
296
297  // Get an array type for the string, according to C99 6.4.5.  This includes
298  // the nul terminator character as well as the string length for pascal
299  // strings.
300  StrTy = Context.getConstantArrayType(StrTy,
301                                   llvm::APInt(32, Literal.GetStringLength()+1),
302                                       ArrayType::Normal, 0);
303
304  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
305  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
306                           Literal.AnyWide, StrTy,
307                           StringToks[0].getLocation(),
308                           StringToks[NumStringToks-1].getLocation());
309}
310
311/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
312/// CurBlock to VD should cause it to be snapshotted (as we do for auto
313/// variables defined outside the block) or false if this is not needed (e.g.
314/// for values inside the block or for globals).
315///
316/// FIXME: This will create BlockDeclRefExprs for global variables,
317/// function references, etc which is suboptimal :) and breaks
318/// things like "integer constant expression" tests.
319static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
320                                              ValueDecl *VD) {
321  // If the value is defined inside the block, we couldn't snapshot it even if
322  // we wanted to.
323  if (CurBlock->TheDecl == VD->getDeclContext())
324    return false;
325
326  // If this is an enum constant or function, it is constant, don't snapshot.
327  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
328    return false;
329
330  // If this is a reference to an extern, static, or global variable, no need to
331  // snapshot it.
332  // FIXME: What about 'const' variables in C++?
333  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
334    return Var->hasLocalStorage();
335
336  return true;
337}
338
339
340
341/// ActOnIdentifierExpr - The parser read an identifier in expression context,
342/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
343/// identifier is used in a function call context.
344/// LookupCtx is only used for a C++ qualified-id (foo::bar) to indicate the
345/// class or namespace that the identifier must be a member of.
346Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
347                                           IdentifierInfo &II,
348                                           bool HasTrailingLParen,
349                                           const CXXScopeSpec *SS) {
350  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS);
351}
352
353/// ActOnDeclarationNameExpr - The parser has read some kind of name
354/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
355/// performs lookup on that name and returns an expression that refers
356/// to that name. This routine isn't directly called from the parser,
357/// because the parser doesn't know about DeclarationName. Rather,
358/// this routine is called by ActOnIdentifierExpr,
359/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
360/// which form the DeclarationName from the corresponding syntactic
361/// forms.
362///
363/// HasTrailingLParen indicates whether this identifier is used in a
364/// function call context.  LookupCtx is only used for a C++
365/// qualified-id (foo::bar) to indicate the class or namespace that
366/// the identifier must be a member of.
367Sema::ExprResult Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
368                                                DeclarationName Name,
369                                                bool HasTrailingLParen,
370                                                const CXXScopeSpec *SS) {
371  // Could be enum-constant, value decl, instance variable, etc.
372  Decl *D;
373  if (SS && !SS->isEmpty()) {
374    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
375    if (DC == 0)
376      return true;
377    D = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
378  } else
379    D = LookupDecl(Name, Decl::IDNS_Ordinary, S);
380
381  // If this reference is in an Objective-C method, then ivar lookup happens as
382  // well.
383  IdentifierInfo *II = Name.getAsIdentifierInfo();
384  if (II && getCurMethodDecl()) {
385    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
386    // There are two cases to handle here.  1) scoped lookup could have failed,
387    // in which case we should look for an ivar.  2) scoped lookup could have
388    // found a decl, but that decl is outside the current method (i.e. a global
389    // variable).  In these two cases, we do a lookup for an ivar with this
390    // name, if the lookup suceeds, we replace it our current decl.
391    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
392      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
393      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II)) {
394        // FIXME: This should use a new expr for a direct reference, don't turn
395        // this into Self->ivar, just return a BareIVarExpr or something.
396        IdentifierInfo &II = Context.Idents.get("self");
397        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
398        return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
399                                 static_cast<Expr*>(SelfExpr.Val), true, true);
400      }
401    }
402    // Needed to implement property "super.method" notation.
403    if (SD == 0 && II->isStr("super")) {
404      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
405                     getCurMethodDecl()->getClassInterface()));
406      return new ObjCSuperExpr(Loc, T);
407    }
408  }
409  if (D == 0) {
410    // Otherwise, this could be an implicitly declared function reference (legal
411    // in C90, extension in C99).
412    if (HasTrailingLParen && II &&
413        !getLangOptions().CPlusPlus) // Not in C++.
414      D = ImplicitlyDefineFunction(Loc, *II, S);
415    else {
416      // If this name wasn't predeclared and if this is not a function call,
417      // diagnose the problem.
418      if (SS && !SS->isEmpty())
419        return Diag(Loc, diag::err_typecheck_no_member)
420          << Name.getAsString() << SS->getRange();
421      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
422               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
423        return Diag(Loc, diag::err_undeclared_use) << Name.getAsString();
424      else
425        return Diag(Loc, diag::err_undeclared_var_use) << Name.getAsString();
426    }
427  }
428
429  if (CXXFieldDecl *FD = dyn_cast<CXXFieldDecl>(D)) {
430    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
431      if (MD->isStatic())
432        // "invalid use of member 'x' in static member function"
433        return Diag(Loc, diag::err_invalid_member_use_in_static_method)
434           << FD->getName();
435      if (cast<CXXRecordDecl>(MD->getParent()) != FD->getParent())
436        // "invalid use of nonstatic data member 'x'"
437        return Diag(Loc, diag::err_invalid_non_static_member_use)
438          << FD->getName();
439
440      if (FD->isInvalidDecl())
441        return true;
442
443      // FIXME: Handle 'mutable'.
444      return new DeclRefExpr(FD,
445        FD->getType().getWithAdditionalQualifiers(MD->getTypeQualifiers()),Loc);
446    }
447
448    return Diag(Loc, diag::err_invalid_non_static_member_use) << FD->getName();
449  }
450  if (isa<TypedefDecl>(D))
451    return Diag(Loc, diag::err_unexpected_typedef) << Name.getAsString();
452  if (isa<ObjCInterfaceDecl>(D))
453    return Diag(Loc, diag::err_unexpected_interface) << Name.getAsString();
454  if (isa<NamespaceDecl>(D))
455    return Diag(Loc, diag::err_unexpected_namespace) << Name.getAsString();
456
457  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
458  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
459    return new DeclRefExpr(Ovl, Context.OverloadTy, Loc);
460
461  ValueDecl *VD = cast<ValueDecl>(D);
462
463  // check if referencing an identifier with __attribute__((deprecated)).
464  if (VD->getAttr<DeprecatedAttr>())
465    Diag(Loc, diag::warn_deprecated) << VD->getName();
466
467  // Only create DeclRefExpr's for valid Decl's.
468  if (VD->isInvalidDecl())
469    return true;
470
471  // If the identifier reference is inside a block, and it refers to a value
472  // that is outside the block, create a BlockDeclRefExpr instead of a
473  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
474  // the block is formed.
475  //
476  // We do not do this for things like enum constants, global variables, etc,
477  // as they do not get snapshotted.
478  //
479  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
480    // The BlocksAttr indicates the variable is bound by-reference.
481    if (VD->getAttr<BlocksAttr>())
482      return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(),
483                                  Loc, true);
484
485    // Variable will be bound by-copy, make it const within the closure.
486    VD->getType().addConst();
487    return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(),
488                                Loc, false);
489  }
490  // If this reference is not in a block or if the referenced variable is
491  // within the block, create a normal DeclRefExpr.
492  return new DeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc);
493}
494
495Sema::ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
496                                           tok::TokenKind Kind) {
497  PredefinedExpr::IdentType IT;
498
499  switch (Kind) {
500  default: assert(0 && "Unknown simple primary expr!");
501  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
502  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
503  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
504  }
505
506  // Verify that this is in a function context.
507  if (getCurFunctionDecl() == 0 && getCurMethodDecl() == 0)
508    return Diag(Loc, diag::err_predef_outside_function);
509
510  // Pre-defined identifiers are of type char[x], where x is the length of the
511  // string.
512  unsigned Length;
513  if (getCurFunctionDecl())
514    Length = getCurFunctionDecl()->getIdentifier()->getLength();
515  else
516    Length = getCurMethodDecl()->getSynthesizedMethodSize();
517
518  llvm::APInt LengthI(32, Length + 1);
519  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
520  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
521  return new PredefinedExpr(Loc, ResTy, IT);
522}
523
524Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
525  llvm::SmallString<16> CharBuffer;
526  CharBuffer.resize(Tok.getLength());
527  const char *ThisTokBegin = &CharBuffer[0];
528  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
529
530  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
531                            Tok.getLocation(), PP);
532  if (Literal.hadError())
533    return ExprResult(true);
534
535  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
536
537  return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
538                              Tok.getLocation());
539}
540
541Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
542  // fast path for a single digit (which is quite common). A single digit
543  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
544  if (Tok.getLength() == 1) {
545    const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
546
547    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
548    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
549                                         Context.IntTy,
550                                         Tok.getLocation()));
551  }
552  llvm::SmallString<512> IntegerBuffer;
553  // Add padding so that NumericLiteralParser can overread by one character.
554  IntegerBuffer.resize(Tok.getLength()+1);
555  const char *ThisTokBegin = &IntegerBuffer[0];
556
557  // Get the spelling of the token, which eliminates trigraphs, etc.
558  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
559
560  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
561                               Tok.getLocation(), PP);
562  if (Literal.hadError)
563    return ExprResult(true);
564
565  Expr *Res;
566
567  if (Literal.isFloatingLiteral()) {
568    QualType Ty;
569    if (Literal.isFloat)
570      Ty = Context.FloatTy;
571    else if (!Literal.isLong)
572      Ty = Context.DoubleTy;
573    else
574      Ty = Context.LongDoubleTy;
575
576    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
577
578    // isExact will be set by GetFloatValue().
579    bool isExact = false;
580    Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
581                              Ty, Tok.getLocation());
582
583  } else if (!Literal.isIntegerLiteral()) {
584    return ExprResult(true);
585  } else {
586    QualType Ty;
587
588    // long long is a C99 feature.
589    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
590        Literal.isLongLong)
591      Diag(Tok.getLocation(), diag::ext_longlong);
592
593    // Get the value in the widest-possible width.
594    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
595
596    if (Literal.GetIntegerValue(ResultVal)) {
597      // If this value didn't fit into uintmax_t, warn and force to ull.
598      Diag(Tok.getLocation(), diag::warn_integer_too_large);
599      Ty = Context.UnsignedLongLongTy;
600      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
601             "long long is not intmax_t?");
602    } else {
603      // If this value fits into a ULL, try to figure out what else it fits into
604      // according to the rules of C99 6.4.4.1p5.
605
606      // Octal, Hexadecimal, and integers with a U suffix are allowed to
607      // be an unsigned int.
608      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
609
610      // Check from smallest to largest, picking the smallest type we can.
611      unsigned Width = 0;
612      if (!Literal.isLong && !Literal.isLongLong) {
613        // Are int/unsigned possibilities?
614        unsigned IntSize = Context.Target.getIntWidth();
615
616        // Does it fit in a unsigned int?
617        if (ResultVal.isIntN(IntSize)) {
618          // Does it fit in a signed int?
619          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
620            Ty = Context.IntTy;
621          else if (AllowUnsigned)
622            Ty = Context.UnsignedIntTy;
623          Width = IntSize;
624        }
625      }
626
627      // Are long/unsigned long possibilities?
628      if (Ty.isNull() && !Literal.isLongLong) {
629        unsigned LongSize = Context.Target.getLongWidth();
630
631        // Does it fit in a unsigned long?
632        if (ResultVal.isIntN(LongSize)) {
633          // Does it fit in a signed long?
634          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
635            Ty = Context.LongTy;
636          else if (AllowUnsigned)
637            Ty = Context.UnsignedLongTy;
638          Width = LongSize;
639        }
640      }
641
642      // Finally, check long long if needed.
643      if (Ty.isNull()) {
644        unsigned LongLongSize = Context.Target.getLongLongWidth();
645
646        // Does it fit in a unsigned long long?
647        if (ResultVal.isIntN(LongLongSize)) {
648          // Does it fit in a signed long long?
649          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
650            Ty = Context.LongLongTy;
651          else if (AllowUnsigned)
652            Ty = Context.UnsignedLongLongTy;
653          Width = LongLongSize;
654        }
655      }
656
657      // If we still couldn't decide a type, we probably have something that
658      // does not fit in a signed long long, but has no U suffix.
659      if (Ty.isNull()) {
660        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
661        Ty = Context.UnsignedLongLongTy;
662        Width = Context.Target.getLongLongWidth();
663      }
664
665      if (ResultVal.getBitWidth() != Width)
666        ResultVal.trunc(Width);
667    }
668
669    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
670  }
671
672  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
673  if (Literal.isImaginary)
674    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
675
676  return Res;
677}
678
679Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
680                                        ExprTy *Val) {
681  Expr *E = (Expr *)Val;
682  assert((E != 0) && "ActOnParenExpr() missing expr");
683  return new ParenExpr(L, R, E);
684}
685
686/// The UsualUnaryConversions() function is *not* called by this routine.
687/// See C99 6.3.2.1p[2-4] for more details.
688bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
689                                     SourceLocation OpLoc,
690                                     const SourceRange &ExprRange,
691                                     bool isSizeof) {
692  // C99 6.5.3.4p1:
693  if (isa<FunctionType>(exprType) && isSizeof)
694    // alignof(function) is allowed.
695    Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
696  else if (exprType->isVoidType())
697    Diag(OpLoc, diag::ext_sizeof_void_type)
698      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
699  else if (exprType->isIncompleteType())
700    return Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
701                                  diag::err_alignof_incomplete_type)
702      << exprType.getAsString() << ExprRange;
703
704  return false;
705}
706
707/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
708/// the same for @c alignof and @c __alignof
709/// Note that the ArgRange is invalid if isType is false.
710Action::ExprResult
711Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
712                             void *TyOrEx, const SourceRange &ArgRange) {
713  // If error parsing type, ignore.
714  if (TyOrEx == 0) return true;
715
716  QualType ArgTy;
717  SourceRange Range;
718  if (isType) {
719    ArgTy = QualType::getFromOpaquePtr(TyOrEx);
720    Range = ArgRange;
721  } else {
722    // Get the end location.
723    Expr *ArgEx = (Expr *)TyOrEx;
724    Range = ArgEx->getSourceRange();
725    ArgTy = ArgEx->getType();
726  }
727
728  // Verify that the operand is valid.
729  if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof))
730    return true;
731
732  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
733  return new SizeOfAlignOfExpr(isSizeof, isType, TyOrEx, Context.getSizeType(),
734                               OpLoc, Range.getEnd());
735}
736
737QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
738  DefaultFunctionArrayConversion(V);
739
740  // These operators return the element type of a complex type.
741  if (const ComplexType *CT = V->getType()->getAsComplexType())
742    return CT->getElementType();
743
744  // Otherwise they pass through real integer and floating point types here.
745  if (V->getType()->isArithmeticType())
746    return V->getType();
747
748  // Reject anything else.
749  Diag(Loc, diag::err_realimag_invalid_type) << V->getType().getAsString();
750  return QualType();
751}
752
753
754
755Action::ExprResult Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
756                                             tok::TokenKind Kind,
757                                             ExprTy *Input) {
758  Expr *Arg = (Expr *)Input;
759
760  UnaryOperator::Opcode Opc;
761  switch (Kind) {
762  default: assert(0 && "Unknown unary op!");
763  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
764  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
765  }
766
767  if (getLangOptions().CPlusPlus &&
768      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
769    // Which overloaded operator?
770    OverloadedOperatorKind OverOp =
771      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
772
773    // C++ [over.inc]p1:
774    //
775    //     [...] If the function is a member function with one
776    //     parameter (which shall be of type int) or a non-member
777    //     function with two parameters (the second of which shall be
778    //     of type int), it defines the postfix increment operator ++
779    //     for objects of that type. When the postfix increment is
780    //     called as a result of using the ++ operator, the int
781    //     argument will have value zero.
782    Expr *Args[2] = {
783      Arg,
784      new IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
785                                     /*isSigned=*/true),
786                         Context.IntTy, SourceLocation())
787    };
788
789    // Build the candidate set for overloading
790    OverloadCandidateSet CandidateSet;
791    AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
792
793    // Perform overload resolution.
794    OverloadCandidateSet::iterator Best;
795    switch (BestViableFunction(CandidateSet, Best)) {
796    case OR_Success: {
797      // We found a built-in operator or an overloaded operator.
798      FunctionDecl *FnDecl = Best->Function;
799
800      if (FnDecl) {
801        // We matched an overloaded operator. Build a call to that
802        // operator.
803
804        // Convert the arguments.
805        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
806          if (PerformObjectArgumentInitialization(Arg, Method))
807            return true;
808        } else {
809          // Convert the arguments.
810          if (PerformCopyInitialization(Arg,
811                                        FnDecl->getParamDecl(0)->getType(),
812                                        "passing"))
813            return true;
814        }
815
816        // Determine the result type
817        QualType ResultTy
818          = FnDecl->getType()->getAsFunctionType()->getResultType();
819        ResultTy = ResultTy.getNonReferenceType();
820
821        // Build the actual expression node.
822        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
823                                       SourceLocation());
824        UsualUnaryConversions(FnExpr);
825
826        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, OpLoc);
827      } else {
828        // We matched a built-in operator. Convert the arguments, then
829        // break out so that we will build the appropriate built-in
830        // operator node.
831        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
832                                      "passing"))
833          return true;
834
835        break;
836      }
837    }
838
839    case OR_No_Viable_Function:
840      // No viable function; fall through to handling this as a
841      // built-in operator, which will produce an error message for us.
842      break;
843
844    case OR_Ambiguous:
845      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
846          << UnaryOperator::getOpcodeStr(Opc)
847          << Arg->getSourceRange();
848      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
849      return true;
850    }
851
852    // Either we found no viable overloaded operator or we matched a
853    // built-in operator. In either case, fall through to trying to
854    // build a built-in operation.
855  }
856
857  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc);
858  if (result.isNull())
859    return true;
860  return new UnaryOperator(Arg, Opc, result, OpLoc);
861}
862
863Action::ExprResult Sema::
864ActOnArraySubscriptExpr(Scope *S, ExprTy *Base, SourceLocation LLoc,
865                        ExprTy *Idx, SourceLocation RLoc) {
866  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
867
868  if (getLangOptions().CPlusPlus &&
869      LHSExp->getType()->isRecordType() ||
870      LHSExp->getType()->isEnumeralType() ||
871      RHSExp->getType()->isRecordType() ||
872      RHSExp->getType()->isRecordType()) {
873    // Add the appropriate overloaded operators (C++ [over.match.oper])
874    // to the candidate set.
875    OverloadCandidateSet CandidateSet;
876    Expr *Args[2] = { LHSExp, RHSExp };
877    AddOperatorCandidates(OO_Subscript, S, Args, 2, CandidateSet);
878
879    // Perform overload resolution.
880    OverloadCandidateSet::iterator Best;
881    switch (BestViableFunction(CandidateSet, Best)) {
882    case OR_Success: {
883      // We found a built-in operator or an overloaded operator.
884      FunctionDecl *FnDecl = Best->Function;
885
886      if (FnDecl) {
887        // We matched an overloaded operator. Build a call to that
888        // operator.
889
890        // Convert the arguments.
891        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
892          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
893              PerformCopyInitialization(RHSExp,
894                                        FnDecl->getParamDecl(0)->getType(),
895                                        "passing"))
896            return true;
897        } else {
898          // Convert the arguments.
899          if (PerformCopyInitialization(LHSExp,
900                                        FnDecl->getParamDecl(0)->getType(),
901                                        "passing") ||
902              PerformCopyInitialization(RHSExp,
903                                        FnDecl->getParamDecl(1)->getType(),
904                                        "passing"))
905            return true;
906        }
907
908        // Determine the result type
909        QualType ResultTy
910          = FnDecl->getType()->getAsFunctionType()->getResultType();
911        ResultTy = ResultTy.getNonReferenceType();
912
913        // Build the actual expression node.
914        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
915                                       SourceLocation());
916        UsualUnaryConversions(FnExpr);
917
918        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, LLoc);
919      } else {
920        // We matched a built-in operator. Convert the arguments, then
921        // break out so that we will build the appropriate built-in
922        // operator node.
923        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
924                                      "passing") ||
925            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
926                                      "passing"))
927          return true;
928
929        break;
930      }
931    }
932
933    case OR_No_Viable_Function:
934      // No viable function; fall through to handling this as a
935      // built-in operator, which will produce an error message for us.
936      break;
937
938    case OR_Ambiguous:
939      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
940          << "[]"
941          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
942      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
943      return true;
944    }
945
946    // Either we found no viable overloaded operator or we matched a
947    // built-in operator. In either case, fall through to trying to
948    // build a built-in operation.
949  }
950
951  // Perform default conversions.
952  DefaultFunctionArrayConversion(LHSExp);
953  DefaultFunctionArrayConversion(RHSExp);
954
955  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
956
957  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
958  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
959  // in the subscript position. As a result, we need to derive the array base
960  // and index from the expression types.
961  Expr *BaseExpr, *IndexExpr;
962  QualType ResultType;
963  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
964    BaseExpr = LHSExp;
965    IndexExpr = RHSExp;
966    // FIXME: need to deal with const...
967    ResultType = PTy->getPointeeType();
968  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
969     // Handle the uncommon case of "123[Ptr]".
970    BaseExpr = RHSExp;
971    IndexExpr = LHSExp;
972    // FIXME: need to deal with const...
973    ResultType = PTy->getPointeeType();
974  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
975    BaseExpr = LHSExp;    // vectors: V[123]
976    IndexExpr = RHSExp;
977
978    // Component access limited to variables (reject vec4.rg[1]).
979    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
980        !isa<ExtVectorElementExpr>(BaseExpr))
981      return Diag(LLoc, diag::err_ext_vector_component_access)
982        << SourceRange(LLoc, RLoc);
983    // FIXME: need to deal with const...
984    ResultType = VTy->getElementType();
985  } else {
986    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value)
987      << RHSExp->getSourceRange();
988  }
989  // C99 6.5.2.1p1
990  if (!IndexExpr->getType()->isIntegerType())
991    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript)
992      << IndexExpr->getSourceRange();
993
994  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
995  // the following check catches trying to index a pointer to a function (e.g.
996  // void (*)(int)) and pointers to incomplete types.  Functions are not
997  // objects in C99.
998  if (!ResultType->isObjectType())
999    return Diag(BaseExpr->getLocStart(),
1000                diag::err_typecheck_subscript_not_object)
1001      << BaseExpr->getType().getAsString() << BaseExpr->getSourceRange();
1002
1003  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
1004}
1005
1006QualType Sema::
1007CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1008                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1009  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1010
1011  // This flag determines whether or not the component is to be treated as a
1012  // special name, or a regular GLSL-style component access.
1013  bool SpecialComponent = false;
1014
1015  // The vector accessor can't exceed the number of elements.
1016  const char *compStr = CompName.getName();
1017  if (strlen(compStr) > vecType->getNumElements()) {
1018    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1019      << baseType.getAsString() << SourceRange(CompLoc);
1020    return QualType();
1021  }
1022
1023  // Check that we've found one of the special components, or that the component
1024  // names must come from the same set.
1025  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1026      !strcmp(compStr, "e") || !strcmp(compStr, "o")) {
1027    SpecialComponent = true;
1028  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1029    do
1030      compStr++;
1031    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1032  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
1033    do
1034      compStr++;
1035    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
1036  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
1037    do
1038      compStr++;
1039    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
1040  }
1041
1042  if (!SpecialComponent && *compStr) {
1043    // We didn't get to the end of the string. This means the component names
1044    // didn't come from the same set *or* we encountered an illegal name.
1045    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1046      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1047    return QualType();
1048  }
1049  // Each component accessor can't exceed the vector type.
1050  compStr = CompName.getName();
1051  while (*compStr) {
1052    if (vecType->isAccessorWithinNumElements(*compStr))
1053      compStr++;
1054    else
1055      break;
1056  }
1057  if (!SpecialComponent && *compStr) {
1058    // We didn't get to the end of the string. This means a component accessor
1059    // exceeds the number of elements in the vector.
1060    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1061      << baseType.getAsString() << SourceRange(CompLoc);
1062    return QualType();
1063  }
1064
1065  // If we have a special component name, verify that the current vector length
1066  // is an even number, since all special component names return exactly half
1067  // the elements.
1068  if (SpecialComponent && (vecType->getNumElements() & 1U)) {
1069    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1070      << baseType.getAsString() << SourceRange(CompLoc);
1071    return QualType();
1072  }
1073
1074  // The component accessor looks fine - now we need to compute the actual type.
1075  // The vector type is implied by the component accessor. For example,
1076  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1077  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1078  unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
1079                                       : CompName.getLength();
1080  if (CompSize == 1)
1081    return vecType->getElementType();
1082
1083  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1084  // Now look up the TypeDefDecl from the vector type. Without this,
1085  // diagostics look bad. We want extended vector types to appear built-in.
1086  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1087    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1088      return Context.getTypedefType(ExtVectorDecls[i]);
1089  }
1090  return VT; // should never get here (a typedef type should always be found).
1091}
1092
1093Action::ExprResult Sema::
1094ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
1095                         tok::TokenKind OpKind, SourceLocation MemberLoc,
1096                         IdentifierInfo &Member) {
1097  Expr *BaseExpr = static_cast<Expr *>(Base);
1098  assert(BaseExpr && "no record expression");
1099
1100  // Perform default conversions.
1101  DefaultFunctionArrayConversion(BaseExpr);
1102
1103  QualType BaseType = BaseExpr->getType();
1104  assert(!BaseType.isNull() && "no type for member expression");
1105
1106  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1107  // must have pointer type, and the accessed type is the pointee.
1108  if (OpKind == tok::arrow) {
1109    if (const PointerType *PT = BaseType->getAsPointerType())
1110      BaseType = PT->getPointeeType();
1111    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
1112      return BuildOverloadedArrowExpr(BaseExpr, OpLoc, MemberLoc, Member);
1113    else
1114      return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1115        << BaseType.getAsString() << BaseExpr->getSourceRange();
1116  }
1117
1118  // Handle field access to simple records.  This also handles access to fields
1119  // of the ObjC 'id' struct.
1120  if (const RecordType *RTy = BaseType->getAsRecordType()) {
1121    RecordDecl *RDecl = RTy->getDecl();
1122    if (RTy->isIncompleteType())
1123      return Diag(OpLoc, diag::err_typecheck_incomplete_tag)
1124               << RDecl->getName() << BaseExpr->getSourceRange();
1125    // The record definition is complete, now make sure the member is valid.
1126    FieldDecl *MemberDecl = RDecl->getMember(&Member);
1127    if (!MemberDecl)
1128      return Diag(MemberLoc, diag::err_typecheck_no_member)
1129               << &Member << BaseExpr->getSourceRange();
1130
1131    // Figure out the type of the member; see C99 6.5.2.3p3
1132    // FIXME: Handle address space modifiers
1133    QualType MemberType = MemberDecl->getType();
1134    unsigned combinedQualifiers =
1135        MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
1136    if (CXXFieldDecl *CXXMember = dyn_cast<CXXFieldDecl>(MemberDecl)) {
1137      if (CXXMember->isMutable())
1138        combinedQualifiers &= ~QualType::Const;
1139    }
1140    MemberType = MemberType.getQualifiedType(combinedQualifiers);
1141
1142    return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl,
1143                          MemberLoc, MemberType);
1144  }
1145
1146  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
1147  // (*Obj).ivar.
1148  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
1149    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member))
1150      return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
1151                                 OpKind == tok::arrow);
1152    return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1153             << IFTy->getDecl()->getName() << &Member
1154             << BaseExpr->getSourceRange();
1155  }
1156
1157  // Handle Objective-C property access, which is "Obj.property" where Obj is a
1158  // pointer to a (potentially qualified) interface type.
1159  const PointerType *PTy;
1160  const ObjCInterfaceType *IFTy;
1161  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
1162      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
1163    ObjCInterfaceDecl *IFace = IFTy->getDecl();
1164
1165    // Search for a declared property first.
1166    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
1167      return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1168
1169    // Check protocols on qualified interfaces.
1170    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
1171         E = IFTy->qual_end(); I != E; ++I)
1172      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1173        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1174
1175    // If that failed, look for an "implicit" property by seeing if the nullary
1176    // selector is implemented.
1177
1178    // FIXME: The logic for looking up nullary and unary selectors should be
1179    // shared with the code in ActOnInstanceMessage.
1180
1181    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1182    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1183
1184    // If this reference is in an @implementation, check for 'private' methods.
1185    if (!Getter)
1186      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1187        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1188          if (ObjCImplementationDecl *ImpDecl =
1189              ObjCImplementations[ClassDecl->getIdentifier()])
1190            Getter = ImpDecl->getInstanceMethod(Sel);
1191
1192    // Look through local category implementations associated with the class.
1193    if (!Getter) {
1194      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
1195        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1196          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
1197      }
1198    }
1199    if (Getter) {
1200      // If we found a getter then this may be a valid dot-reference, we
1201      // will look for the matching setter, if it is needed. But we don't
1202      // know this yet.
1203      return new ObjCKVCRefExpr(Getter, Getter->getResultType(),
1204                                MemberLoc, BaseExpr);
1205    }
1206  }
1207  // Handle properties on qualified "id" protocols.
1208  const ObjCQualifiedIdType *QIdTy;
1209  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
1210    // Check protocols on qualified interfaces.
1211    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1212         E = QIdTy->qual_end(); I != E; ++I)
1213      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1214        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1215  }
1216  // Handle 'field access' to vectors, such as 'V.xx'.
1217  if (BaseType->isExtVectorType() && OpKind == tok::period) {
1218    // Component access limited to variables (reject vec4.rg.g).
1219    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
1220        !isa<ExtVectorElementExpr>(BaseExpr))
1221      return Diag(MemberLoc, diag::err_ext_vector_component_access)
1222               << BaseExpr->getSourceRange();
1223    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1224    if (ret.isNull())
1225      return true;
1226    return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
1227  }
1228
1229  return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
1230          << BaseType.getAsString() << BaseExpr->getSourceRange();
1231}
1232
1233/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
1234/// This provides the location of the left/right parens and a list of comma
1235/// locations.
1236Action::ExprResult Sema::
1237ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
1238              ExprTy **args, unsigned NumArgs,
1239              SourceLocation *CommaLocs, SourceLocation RParenLoc) {
1240  Expr *Fn = static_cast<Expr *>(fn);
1241  Expr **Args = reinterpret_cast<Expr**>(args);
1242  assert(Fn && "no function call expression");
1243  FunctionDecl *FDecl = NULL;
1244  OverloadedFunctionDecl *Ovl = NULL;
1245
1246  // If we're directly calling a function or a set of overloaded
1247  // functions, get the appropriate declaration.
1248  {
1249    DeclRefExpr *DRExpr = NULL;
1250    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
1251      DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr());
1252    else
1253      DRExpr = dyn_cast<DeclRefExpr>(Fn);
1254
1255    if (DRExpr) {
1256      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
1257      Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
1258    }
1259  }
1260
1261  // If we have a set of overloaded functions, perform overload
1262  // resolution to pick the function.
1263  if (Ovl) {
1264    OverloadCandidateSet CandidateSet;
1265    AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
1266    OverloadCandidateSet::iterator Best;
1267    switch (BestViableFunction(CandidateSet, Best)) {
1268    case OR_Success:
1269      {
1270        // Success! Let the remainder of this function build a call to
1271        // the function selected by overload resolution.
1272        FDecl = Best->Function;
1273        Expr *NewFn = new DeclRefExpr(FDecl, FDecl->getType(),
1274                                      Fn->getSourceRange().getBegin());
1275        delete Fn;
1276        Fn = NewFn;
1277      }
1278      break;
1279
1280    case OR_No_Viable_Function:
1281      Diag(Fn->getSourceRange().getBegin(),
1282           diag::err_ovl_no_viable_function_in_call)
1283        << Ovl->getName() << (unsigned)CandidateSet.size()
1284        << Fn->getSourceRange();
1285      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1286      return true;
1287
1288    case OR_Ambiguous:
1289      Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
1290        << Ovl->getName() << Fn->getSourceRange();
1291      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1292      return true;
1293    }
1294  }
1295
1296  if (getLangOptions().CPlusPlus && Fn->getType()->isRecordType())
1297    return BuildCallToObjectOfClassType(Fn, LParenLoc, Args, NumArgs,
1298                                        CommaLocs, RParenLoc);
1299
1300  // Promote the function operand.
1301  UsualUnaryConversions(Fn);
1302
1303  // Make the call expr early, before semantic checks.  This guarantees cleanup
1304  // of arguments and function on error.
1305  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
1306                                                 Context.BoolTy, RParenLoc));
1307  const FunctionType *FuncT;
1308  if (!Fn->getType()->isBlockPointerType()) {
1309    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
1310    // have type pointer to function".
1311    const PointerType *PT = Fn->getType()->getAsPointerType();
1312    if (PT == 0)
1313      return Diag(LParenLoc, diag::err_typecheck_call_not_function)
1314        << Fn->getType().getAsString() << Fn->getSourceRange();
1315    FuncT = PT->getPointeeType()->getAsFunctionType();
1316  } else { // This is a block call.
1317    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
1318                getAsFunctionType();
1319  }
1320  if (FuncT == 0)
1321    return Diag(LParenLoc, diag::err_typecheck_call_not_function)
1322      << Fn->getType().getAsString() << Fn->getSourceRange();
1323
1324  // We know the result type of the call, set it.
1325  TheCall->setType(FuncT->getResultType().getNonReferenceType());
1326
1327  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
1328    // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
1329    // assignment, to the types of the corresponding parameter, ...
1330    unsigned NumArgsInProto = Proto->getNumArgs();
1331    unsigned NumArgsToCheck = NumArgs;
1332
1333    // If too few arguments are available (and we don't have default
1334    // arguments for the remaining parameters), don't make the call.
1335    if (NumArgs < NumArgsInProto) {
1336      if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
1337        return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
1338          << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
1339      // Use default arguments for missing arguments
1340      NumArgsToCheck = NumArgsInProto;
1341      TheCall->setNumArgs(NumArgsInProto);
1342    }
1343
1344    // If too many are passed and not variadic, error on the extras and drop
1345    // them.
1346    if (NumArgs > NumArgsInProto) {
1347      if (!Proto->isVariadic()) {
1348        Diag(Args[NumArgsInProto]->getLocStart(),
1349             diag::err_typecheck_call_too_many_args)
1350          << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
1351          << SourceRange(Args[NumArgsInProto]->getLocStart(),
1352                         Args[NumArgs-1]->getLocEnd());
1353        // This deletes the extra arguments.
1354        TheCall->setNumArgs(NumArgsInProto);
1355      }
1356      NumArgsToCheck = NumArgsInProto;
1357    }
1358
1359    // Continue to check argument types (even if we have too few/many args).
1360    for (unsigned i = 0; i != NumArgsToCheck; i++) {
1361      QualType ProtoArgType = Proto->getArgType(i);
1362
1363      Expr *Arg;
1364      if (i < NumArgs)
1365        Arg = Args[i];
1366      else
1367        Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
1368      QualType ArgType = Arg->getType();
1369
1370      // Pass the argument.
1371      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
1372        return true;
1373
1374      TheCall->setArg(i, Arg);
1375    }
1376
1377    // If this is a variadic call, handle args passed through "...".
1378    if (Proto->isVariadic()) {
1379      // Promote the arguments (C99 6.5.2.2p7).
1380      for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1381        Expr *Arg = Args[i];
1382        DefaultArgumentPromotion(Arg);
1383        TheCall->setArg(i, Arg);
1384      }
1385    }
1386  } else {
1387    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
1388
1389    // Promote the arguments (C99 6.5.2.2p6).
1390    for (unsigned i = 0; i != NumArgs; i++) {
1391      Expr *Arg = Args[i];
1392      DefaultArgumentPromotion(Arg);
1393      TheCall->setArg(i, Arg);
1394    }
1395  }
1396
1397  // Do special checking on direct calls to functions.
1398  if (FDecl)
1399    return CheckFunctionCall(FDecl, TheCall.take());
1400
1401  return TheCall.take();
1402}
1403
1404Action::ExprResult Sema::
1405ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
1406                     SourceLocation RParenLoc, ExprTy *InitExpr) {
1407  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
1408  QualType literalType = QualType::getFromOpaquePtr(Ty);
1409  // FIXME: put back this assert when initializers are worked out.
1410  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
1411  Expr *literalExpr = static_cast<Expr*>(InitExpr);
1412
1413  if (literalType->isArrayType()) {
1414    if (literalType->isVariableArrayType())
1415      return Diag(LParenLoc, diag::err_variable_object_no_init)
1416        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd());
1417  } else if (literalType->isIncompleteType()) {
1418    return Diag(LParenLoc, diag::err_typecheck_decl_incomplete_type)
1419      << literalType.getAsString()
1420      << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd());
1421  }
1422
1423  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
1424                            "temporary"))
1425    return true;
1426
1427  bool isFileScope = !getCurFunctionDecl() && !getCurMethodDecl();
1428  if (isFileScope) { // 6.5.2.5p3
1429    if (CheckForConstantInitializer(literalExpr, literalType))
1430      return true;
1431  }
1432  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr,
1433                                 isFileScope);
1434}
1435
1436Action::ExprResult Sema::
1437ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
1438              InitListDesignations &Designators,
1439              SourceLocation RBraceLoc) {
1440  Expr **InitList = reinterpret_cast<Expr**>(initlist);
1441
1442  // Semantic analysis for initializers is done by ActOnDeclarator() and
1443  // CheckInitializer() - it requires knowledge of the object being intialized.
1444
1445  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc,
1446                                     Designators.hasAnyDesignators());
1447  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
1448  return E;
1449}
1450
1451/// CheckCastTypes - Check type constraints for casting between types.
1452bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
1453  UsualUnaryConversions(castExpr);
1454
1455  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
1456  // type needs to be scalar.
1457  if (castType->isVoidType()) {
1458    // Cast to void allows any expr type.
1459  } else if (!castType->isScalarType() && !castType->isVectorType()) {
1460    // GCC struct/union extension: allow cast to self.
1461    if (Context.getCanonicalType(castType) !=
1462        Context.getCanonicalType(castExpr->getType()) ||
1463        (!castType->isStructureType() && !castType->isUnionType())) {
1464      // Reject any other conversions to non-scalar types.
1465      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
1466        << castType.getAsString() << castExpr->getSourceRange();
1467    }
1468
1469    // accept this, but emit an ext-warn.
1470    Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
1471      << castType.getAsString() << castExpr->getSourceRange();
1472  } else if (!castExpr->getType()->isScalarType() &&
1473             !castExpr->getType()->isVectorType()) {
1474    return Diag(castExpr->getLocStart(),
1475                diag::err_typecheck_expect_scalar_operand)
1476      << castExpr->getType().getAsString() << castExpr->getSourceRange();
1477  } else if (castExpr->getType()->isVectorType()) {
1478    if (CheckVectorCast(TyR, castExpr->getType(), castType))
1479      return true;
1480  } else if (castType->isVectorType()) {
1481    if (CheckVectorCast(TyR, castType, castExpr->getType()))
1482      return true;
1483  }
1484  return false;
1485}
1486
1487bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
1488  assert(VectorTy->isVectorType() && "Not a vector type!");
1489
1490  if (Ty->isVectorType() || Ty->isIntegerType()) {
1491    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
1492      return Diag(R.getBegin(),
1493                  Ty->isVectorType() ?
1494                  diag::err_invalid_conversion_between_vectors :
1495                  diag::err_invalid_conversion_between_vector_and_integer)
1496        << VectorTy.getAsString() << Ty.getAsString() << R;
1497  } else
1498    return Diag(R.getBegin(),
1499                diag::err_invalid_conversion_between_vector_and_scalar)
1500      << VectorTy.getAsString() << Ty.getAsString() << R;
1501
1502  return false;
1503}
1504
1505Action::ExprResult Sema::
1506ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
1507              SourceLocation RParenLoc, ExprTy *Op) {
1508  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
1509
1510  Expr *castExpr = static_cast<Expr*>(Op);
1511  QualType castType = QualType::getFromOpaquePtr(Ty);
1512
1513  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
1514    return true;
1515  return new CStyleCastExpr(castType, castExpr, castType, LParenLoc, RParenLoc);
1516}
1517
1518/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
1519/// In that case, lex = cond.
1520inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
1521  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
1522  UsualUnaryConversions(cond);
1523  UsualUnaryConversions(lex);
1524  UsualUnaryConversions(rex);
1525  QualType condT = cond->getType();
1526  QualType lexT = lex->getType();
1527  QualType rexT = rex->getType();
1528
1529  // first, check the condition.
1530  if (!condT->isScalarType()) { // C99 6.5.15p2
1531    Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
1532      << condT.getAsString();
1533    return QualType();
1534  }
1535
1536  // Now check the two expressions.
1537
1538  // If both operands have arithmetic type, do the usual arithmetic conversions
1539  // to find a common type: C99 6.5.15p3,5.
1540  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
1541    UsualArithmeticConversions(lex, rex);
1542    return lex->getType();
1543  }
1544
1545  // If both operands are the same structure or union type, the result is that
1546  // type.
1547  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
1548    if (const RecordType *RHSRT = rexT->getAsRecordType())
1549      if (LHSRT->getDecl() == RHSRT->getDecl())
1550        // "If both the operands have structure or union type, the result has
1551        // that type."  This implies that CV qualifiers are dropped.
1552        return lexT.getUnqualifiedType();
1553  }
1554
1555  // C99 6.5.15p5: "If both operands have void type, the result has void type."
1556  // The following || allows only one side to be void (a GCC-ism).
1557  if (lexT->isVoidType() || rexT->isVoidType()) {
1558    if (!lexT->isVoidType())
1559      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void)
1560        << rex->getSourceRange();
1561    if (!rexT->isVoidType())
1562      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void)
1563        << lex->getSourceRange();
1564    ImpCastExprToType(lex, Context.VoidTy);
1565    ImpCastExprToType(rex, Context.VoidTy);
1566    return Context.VoidTy;
1567  }
1568  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
1569  // the type of the other operand."
1570  if ((lexT->isPointerType() || lexT->isBlockPointerType() ||
1571       Context.isObjCObjectPointerType(lexT)) &&
1572      rex->isNullPointerConstant(Context)) {
1573    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
1574    return lexT;
1575  }
1576  if ((rexT->isPointerType() || rexT->isBlockPointerType() ||
1577       Context.isObjCObjectPointerType(rexT)) &&
1578      lex->isNullPointerConstant(Context)) {
1579    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
1580    return rexT;
1581  }
1582  // Handle the case where both operands are pointers before we handle null
1583  // pointer constants in case both operands are null pointer constants.
1584  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
1585    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
1586      // get the "pointed to" types
1587      QualType lhptee = LHSPT->getPointeeType();
1588      QualType rhptee = RHSPT->getPointeeType();
1589
1590      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
1591      if (lhptee->isVoidType() &&
1592          rhptee->isIncompleteOrObjectType()) {
1593        // Figure out necessary qualifiers (C99 6.5.15p6)
1594        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
1595        QualType destType = Context.getPointerType(destPointee);
1596        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1597        ImpCastExprToType(rex, destType); // promote to void*
1598        return destType;
1599      }
1600      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
1601        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
1602        QualType destType = Context.getPointerType(destPointee);
1603        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1604        ImpCastExprToType(rex, destType); // promote to void*
1605        return destType;
1606      }
1607
1608      QualType compositeType = lexT;
1609
1610      // If either type is an Objective-C object type then check
1611      // compatibility according to Objective-C.
1612      if (Context.isObjCObjectPointerType(lexT) ||
1613          Context.isObjCObjectPointerType(rexT)) {
1614        // If both operands are interfaces and either operand can be
1615        // assigned to the other, use that type as the composite
1616        // type. This allows
1617        //   xxx ? (A*) a : (B*) b
1618        // where B is a subclass of A.
1619        //
1620        // Additionally, as for assignment, if either type is 'id'
1621        // allow silent coercion. Finally, if the types are
1622        // incompatible then make sure to use 'id' as the composite
1623        // type so the result is acceptable for sending messages to.
1624
1625        // FIXME: This code should not be localized to here. Also this
1626        // should use a compatible check instead of abusing the
1627        // canAssignObjCInterfaces code.
1628        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1629        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1630        if (LHSIface && RHSIface &&
1631            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1632          compositeType = lexT;
1633        } else if (LHSIface && RHSIface &&
1634                   Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1635          compositeType = rexT;
1636        } else if (Context.isObjCIdType(lhptee) ||
1637                   Context.isObjCIdType(rhptee)) {
1638          // FIXME: This code looks wrong, because isObjCIdType checks
1639          // the struct but getObjCIdType returns the pointer to
1640          // struct. This is horrible and should be fixed.
1641          compositeType = Context.getObjCIdType();
1642        } else {
1643          QualType incompatTy = Context.getObjCIdType();
1644          ImpCastExprToType(lex, incompatTy);
1645          ImpCastExprToType(rex, incompatTy);
1646          return incompatTy;
1647        }
1648      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1649                                             rhptee.getUnqualifiedType())) {
1650        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers)
1651          << lexT.getAsString() << rexT.getAsString()
1652          << lex->getSourceRange() << rex->getSourceRange();
1653        // In this situation, we assume void* type. No especially good
1654        // reason, but this is what gcc does, and we do have to pick
1655        // to get a consistent AST.
1656        QualType incompatTy = Context.getPointerType(Context.VoidTy);
1657        ImpCastExprToType(lex, incompatTy);
1658        ImpCastExprToType(rex, incompatTy);
1659        return incompatTy;
1660      }
1661      // The pointer types are compatible.
1662      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
1663      // differently qualified versions of compatible types, the result type is
1664      // a pointer to an appropriately qualified version of the *composite*
1665      // type.
1666      // FIXME: Need to calculate the composite type.
1667      // FIXME: Need to add qualifiers
1668      ImpCastExprToType(lex, compositeType);
1669      ImpCastExprToType(rex, compositeType);
1670      return compositeType;
1671    }
1672  }
1673  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
1674  // evaluates to "struct objc_object *" (and is handled above when comparing
1675  // id with statically typed objects).
1676  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
1677    // GCC allows qualified id and any Objective-C type to devolve to
1678    // id. Currently localizing to here until clear this should be
1679    // part of ObjCQualifiedIdTypesAreCompatible.
1680    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) ||
1681        (lexT->isObjCQualifiedIdType() &&
1682         Context.isObjCObjectPointerType(rexT)) ||
1683        (rexT->isObjCQualifiedIdType() &&
1684         Context.isObjCObjectPointerType(lexT))) {
1685      // FIXME: This is not the correct composite type. This only
1686      // happens to work because id can more or less be used anywhere,
1687      // however this may change the type of method sends.
1688      // FIXME: gcc adds some type-checking of the arguments and emits
1689      // (confusing) incompatible comparison warnings in some
1690      // cases. Investigate.
1691      QualType compositeType = Context.getObjCIdType();
1692      ImpCastExprToType(lex, compositeType);
1693      ImpCastExprToType(rex, compositeType);
1694      return compositeType;
1695    }
1696  }
1697
1698  // Selection between block pointer types is ok as long as they are the same.
1699  if (lexT->isBlockPointerType() && rexT->isBlockPointerType() &&
1700      Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT))
1701    return lexT;
1702
1703  // Otherwise, the operands are not compatible.
1704  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands)
1705    << lexT.getAsString() << rexT.getAsString()
1706    << lex->getSourceRange() << rex->getSourceRange();
1707  return QualType();
1708}
1709
1710/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
1711/// in the case of a the GNU conditional expr extension.
1712Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
1713                                            SourceLocation ColonLoc,
1714                                            ExprTy *Cond, ExprTy *LHS,
1715                                            ExprTy *RHS) {
1716  Expr *CondExpr = (Expr *) Cond;
1717  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
1718
1719  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
1720  // was the condition.
1721  bool isLHSNull = LHSExpr == 0;
1722  if (isLHSNull)
1723    LHSExpr = CondExpr;
1724
1725  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
1726                                             RHSExpr, QuestionLoc);
1727  if (result.isNull())
1728    return true;
1729  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
1730                                 RHSExpr, result);
1731}
1732
1733
1734// CheckPointerTypesForAssignment - This is a very tricky routine (despite
1735// being closely modeled after the C99 spec:-). The odd characteristic of this
1736// routine is it effectively iqnores the qualifiers on the top level pointee.
1737// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
1738// FIXME: add a couple examples in this comment.
1739Sema::AssignConvertType
1740Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
1741  QualType lhptee, rhptee;
1742
1743  // get the "pointed to" type (ignoring qualifiers at the top level)
1744  lhptee = lhsType->getAsPointerType()->getPointeeType();
1745  rhptee = rhsType->getAsPointerType()->getPointeeType();
1746
1747  // make sure we operate on the canonical type
1748  lhptee = Context.getCanonicalType(lhptee);
1749  rhptee = Context.getCanonicalType(rhptee);
1750
1751  AssignConvertType ConvTy = Compatible;
1752
1753  // C99 6.5.16.1p1: This following citation is common to constraints
1754  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
1755  // qualifiers of the type *pointed to* by the right;
1756  // FIXME: Handle ASQualType
1757  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
1758    ConvTy = CompatiblePointerDiscardsQualifiers;
1759
1760  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
1761  // incomplete type and the other is a pointer to a qualified or unqualified
1762  // version of void...
1763  if (lhptee->isVoidType()) {
1764    if (rhptee->isIncompleteOrObjectType())
1765      return ConvTy;
1766
1767    // As an extension, we allow cast to/from void* to function pointer.
1768    assert(rhptee->isFunctionType());
1769    return FunctionVoidPointer;
1770  }
1771
1772  if (rhptee->isVoidType()) {
1773    if (lhptee->isIncompleteOrObjectType())
1774      return ConvTy;
1775
1776    // As an extension, we allow cast to/from void* to function pointer.
1777    assert(lhptee->isFunctionType());
1778    return FunctionVoidPointer;
1779  }
1780
1781  // Check for ObjC interfaces
1782  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1783  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1784  if (LHSIface && RHSIface &&
1785      Context.canAssignObjCInterfaces(LHSIface, RHSIface))
1786    return ConvTy;
1787
1788  // ID acts sort of like void* for ObjC interfaces
1789  if (LHSIface && Context.isObjCIdType(rhptee))
1790    return ConvTy;
1791  if (RHSIface && Context.isObjCIdType(lhptee))
1792    return ConvTy;
1793
1794  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
1795  // unqualified versions of compatible types, ...
1796  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1797                                  rhptee.getUnqualifiedType()))
1798    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
1799  return ConvTy;
1800}
1801
1802/// CheckBlockPointerTypesForAssignment - This routine determines whether two
1803/// block pointer types are compatible or whether a block and normal pointer
1804/// are compatible. It is more restrict than comparing two function pointer
1805// types.
1806Sema::AssignConvertType
1807Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
1808                                          QualType rhsType) {
1809  QualType lhptee, rhptee;
1810
1811  // get the "pointed to" type (ignoring qualifiers at the top level)
1812  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
1813  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
1814
1815  // make sure we operate on the canonical type
1816  lhptee = Context.getCanonicalType(lhptee);
1817  rhptee = Context.getCanonicalType(rhptee);
1818
1819  AssignConvertType ConvTy = Compatible;
1820
1821  // For blocks we enforce that qualifiers are identical.
1822  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
1823    ConvTy = CompatiblePointerDiscardsQualifiers;
1824
1825  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
1826    return IncompatibleBlockPointer;
1827  return ConvTy;
1828}
1829
1830/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
1831/// has code to accommodate several GCC extensions when type checking
1832/// pointers. Here are some objectionable examples that GCC considers warnings:
1833///
1834///  int a, *pint;
1835///  short *pshort;
1836///  struct foo *pfoo;
1837///
1838///  pint = pshort; // warning: assignment from incompatible pointer type
1839///  a = pint; // warning: assignment makes integer from pointer without a cast
1840///  pint = a; // warning: assignment makes pointer from integer without a cast
1841///  pint = pfoo; // warning: assignment from incompatible pointer type
1842///
1843/// As a result, the code for dealing with pointers is more complex than the
1844/// C99 spec dictates.
1845///
1846Sema::AssignConvertType
1847Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
1848  // Get canonical types.  We're not formatting these types, just comparing
1849  // them.
1850  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
1851  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
1852
1853  if (lhsType == rhsType)
1854    return Compatible; // Common case: fast path an exact match.
1855
1856  // If the left-hand side is a reference type, then we are in a
1857  // (rare!) case where we've allowed the use of references in C,
1858  // e.g., as a parameter type in a built-in function. In this case,
1859  // just make sure that the type referenced is compatible with the
1860  // right-hand side type. The caller is responsible for adjusting
1861  // lhsType so that the resulting expression does not have reference
1862  // type.
1863  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
1864    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
1865      return Compatible;
1866    return Incompatible;
1867  }
1868
1869  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
1870    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
1871      return Compatible;
1872    // Relax integer conversions like we do for pointers below.
1873    if (rhsType->isIntegerType())
1874      return IntToPointer;
1875    if (lhsType->isIntegerType())
1876      return PointerToInt;
1877    return IncompatibleObjCQualifiedId;
1878  }
1879
1880  if (lhsType->isVectorType() || rhsType->isVectorType()) {
1881    // For ExtVector, allow vector splats; float -> <n x float>
1882    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
1883      if (LV->getElementType() == rhsType)
1884        return Compatible;
1885
1886    // If we are allowing lax vector conversions, and LHS and RHS are both
1887    // vectors, the total size only needs to be the same. This is a bitcast;
1888    // no bits are changed but the result type is different.
1889    if (getLangOptions().LaxVectorConversions &&
1890        lhsType->isVectorType() && rhsType->isVectorType()) {
1891      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
1892        return Compatible;
1893    }
1894    return Incompatible;
1895  }
1896
1897  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
1898    return Compatible;
1899
1900  if (isa<PointerType>(lhsType)) {
1901    if (rhsType->isIntegerType())
1902      return IntToPointer;
1903
1904    if (isa<PointerType>(rhsType))
1905      return CheckPointerTypesForAssignment(lhsType, rhsType);
1906
1907    if (rhsType->getAsBlockPointerType()) {
1908      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
1909        return BlockVoidPointer;
1910
1911      // Treat block pointers as objects.
1912      if (getLangOptions().ObjC1 &&
1913          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
1914        return Compatible;
1915    }
1916    return Incompatible;
1917  }
1918
1919  if (isa<BlockPointerType>(lhsType)) {
1920    if (rhsType->isIntegerType())
1921      return IntToPointer;
1922
1923    // Treat block pointers as objects.
1924    if (getLangOptions().ObjC1 &&
1925        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
1926      return Compatible;
1927
1928    if (rhsType->isBlockPointerType())
1929      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
1930
1931    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
1932      if (RHSPT->getPointeeType()->isVoidType())
1933        return BlockVoidPointer;
1934    }
1935    return Incompatible;
1936  }
1937
1938  if (isa<PointerType>(rhsType)) {
1939    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
1940    if (lhsType == Context.BoolTy)
1941      return Compatible;
1942
1943    if (lhsType->isIntegerType())
1944      return PointerToInt;
1945
1946    if (isa<PointerType>(lhsType))
1947      return CheckPointerTypesForAssignment(lhsType, rhsType);
1948
1949    if (isa<BlockPointerType>(lhsType) &&
1950        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
1951      return BlockVoidPointer;
1952    return Incompatible;
1953  }
1954
1955  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
1956    if (Context.typesAreCompatible(lhsType, rhsType))
1957      return Compatible;
1958  }
1959  return Incompatible;
1960}
1961
1962Sema::AssignConvertType
1963Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
1964  if (getLangOptions().CPlusPlus) {
1965    if (!lhsType->isRecordType()) {
1966      // C++ 5.17p3: If the left operand is not of class type, the
1967      // expression is implicitly converted (C++ 4) to the
1968      // cv-unqualified type of the left operand.
1969      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType()))
1970        return Incompatible;
1971      else
1972        return Compatible;
1973    }
1974
1975    // FIXME: Currently, we fall through and treat C++ classes like C
1976    // structures.
1977  }
1978
1979  // C99 6.5.16.1p1: the left operand is a pointer and the right is
1980  // a null pointer constant.
1981  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
1982       lhsType->isBlockPointerType())
1983      && rExpr->isNullPointerConstant(Context)) {
1984    ImpCastExprToType(rExpr, lhsType);
1985    return Compatible;
1986  }
1987
1988  // We don't allow conversion of non-null-pointer constants to integers.
1989  if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
1990    return IntToBlockPointer;
1991
1992  // This check seems unnatural, however it is necessary to ensure the proper
1993  // conversion of functions/arrays. If the conversion were done for all
1994  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
1995  // expressions that surpress this implicit conversion (&, sizeof).
1996  //
1997  // Suppress this for references: C++ 8.5.3p5.
1998  if (!lhsType->isReferenceType())
1999    DefaultFunctionArrayConversion(rExpr);
2000
2001  Sema::AssignConvertType result =
2002    CheckAssignmentConstraints(lhsType, rExpr->getType());
2003
2004  // C99 6.5.16.1p2: The value of the right operand is converted to the
2005  // type of the assignment expression.
2006  // CheckAssignmentConstraints allows the left-hand side to be a reference,
2007  // so that we can use references in built-in functions even in C.
2008  // The getNonReferenceType() call makes sure that the resulting expression
2009  // does not have reference type.
2010  if (rExpr->getType() != lhsType)
2011    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
2012  return result;
2013}
2014
2015Sema::AssignConvertType
2016Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
2017  return CheckAssignmentConstraints(lhsType, rhsType);
2018}
2019
2020QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
2021  Diag(Loc, diag::err_typecheck_invalid_operands)
2022    << lex->getType().getAsString() << rex->getType().getAsString()
2023    << lex->getSourceRange() << rex->getSourceRange();
2024  return QualType();
2025}
2026
2027inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
2028                                                              Expr *&rex) {
2029  // For conversion purposes, we ignore any qualifiers.
2030  // For example, "const float" and "float" are equivalent.
2031  QualType lhsType =
2032    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
2033  QualType rhsType =
2034    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
2035
2036  // If the vector types are identical, return.
2037  if (lhsType == rhsType)
2038    return lhsType;
2039
2040  // Handle the case of a vector & extvector type of the same size and element
2041  // type.  It would be nice if we only had one vector type someday.
2042  if (getLangOptions().LaxVectorConversions)
2043    if (const VectorType *LV = lhsType->getAsVectorType())
2044      if (const VectorType *RV = rhsType->getAsVectorType())
2045        if (LV->getElementType() == RV->getElementType() &&
2046            LV->getNumElements() == RV->getNumElements())
2047          return lhsType->isExtVectorType() ? lhsType : rhsType;
2048
2049  // If the lhs is an extended vector and the rhs is a scalar of the same type
2050  // or a literal, promote the rhs to the vector type.
2051  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
2052    QualType eltType = V->getElementType();
2053
2054    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
2055        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
2056        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
2057      ImpCastExprToType(rex, lhsType);
2058      return lhsType;
2059    }
2060  }
2061
2062  // If the rhs is an extended vector and the lhs is a scalar of the same type,
2063  // promote the lhs to the vector type.
2064  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
2065    QualType eltType = V->getElementType();
2066
2067    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
2068        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
2069        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
2070      ImpCastExprToType(lex, rhsType);
2071      return rhsType;
2072    }
2073  }
2074
2075  // You cannot convert between vector values of different size.
2076  Diag(Loc, diag::err_typecheck_vector_not_convertable)
2077    << lex->getType().getAsString() << rex->getType().getAsString()
2078    << lex->getSourceRange() << rex->getSourceRange();
2079  return QualType();
2080}
2081
2082inline QualType Sema::CheckMultiplyDivideOperands(
2083  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2084{
2085  QualType lhsType = lex->getType(), rhsType = rex->getType();
2086
2087  if (lhsType->isVectorType() || rhsType->isVectorType())
2088    return CheckVectorOperands(Loc, lex, rex);
2089
2090  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2091
2092  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2093    return compType;
2094  return InvalidOperands(Loc, lex, rex);
2095}
2096
2097inline QualType Sema::CheckRemainderOperands(
2098  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2099{
2100  QualType lhsType = lex->getType(), rhsType = rex->getType();
2101
2102  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2103
2104  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2105    return compType;
2106  return InvalidOperands(Loc, lex, rex);
2107}
2108
2109inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
2110  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2111{
2112  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2113    return CheckVectorOperands(Loc, lex, rex);
2114
2115  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2116
2117  // handle the common case first (both operands are arithmetic).
2118  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2119    return compType;
2120
2121  // Put any potential pointer into PExp
2122  Expr* PExp = lex, *IExp = rex;
2123  if (IExp->getType()->isPointerType())
2124    std::swap(PExp, IExp);
2125
2126  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
2127    if (IExp->getType()->isIntegerType()) {
2128      // Check for arithmetic on pointers to incomplete types
2129      if (!PTy->getPointeeType()->isObjectType()) {
2130        if (PTy->getPointeeType()->isVoidType()) {
2131          Diag(Loc, diag::ext_gnu_void_ptr)
2132            << lex->getSourceRange() << rex->getSourceRange();
2133        } else {
2134          Diag(Loc, diag::err_typecheck_arithmetic_incomplete_type)
2135            << lex->getType().getAsString() << lex->getSourceRange();
2136          return QualType();
2137        }
2138      }
2139      return PExp->getType();
2140    }
2141  }
2142
2143  return InvalidOperands(Loc, lex, rex);
2144}
2145
2146// C99 6.5.6
2147QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
2148                                        SourceLocation Loc, bool isCompAssign) {
2149  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2150    return CheckVectorOperands(Loc, lex, rex);
2151
2152  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2153
2154  // Enforce type constraints: C99 6.5.6p3.
2155
2156  // Handle the common case first (both operands are arithmetic).
2157  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2158    return compType;
2159
2160  // Either ptr - int   or   ptr - ptr.
2161  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
2162    QualType lpointee = LHSPTy->getPointeeType();
2163
2164    // The LHS must be an object type, not incomplete, function, etc.
2165    if (!lpointee->isObjectType()) {
2166      // Handle the GNU void* extension.
2167      if (lpointee->isVoidType()) {
2168        Diag(Loc, diag::ext_gnu_void_ptr)
2169          << lex->getSourceRange() << rex->getSourceRange();
2170      } else {
2171        Diag(Loc, diag::err_typecheck_sub_ptr_object)
2172          << lex->getType().getAsString() << lex->getSourceRange();
2173        return QualType();
2174      }
2175    }
2176
2177    // The result type of a pointer-int computation is the pointer type.
2178    if (rex->getType()->isIntegerType())
2179      return lex->getType();
2180
2181    // Handle pointer-pointer subtractions.
2182    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
2183      QualType rpointee = RHSPTy->getPointeeType();
2184
2185      // RHS must be an object type, unless void (GNU).
2186      if (!rpointee->isObjectType()) {
2187        // Handle the GNU void* extension.
2188        if (rpointee->isVoidType()) {
2189          if (!lpointee->isVoidType())
2190            Diag(Loc, diag::ext_gnu_void_ptr)
2191              << lex->getSourceRange() << rex->getSourceRange();
2192        } else {
2193          Diag(Loc, diag::err_typecheck_sub_ptr_object)
2194            << rex->getType().getAsString() << rex->getSourceRange();
2195          return QualType();
2196        }
2197      }
2198
2199      // Pointee types must be compatible.
2200      if (!Context.typesAreCompatible(
2201              Context.getCanonicalType(lpointee).getUnqualifiedType(),
2202              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
2203        Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
2204          << lex->getType().getAsString() << rex->getType().getAsString()
2205          << lex->getSourceRange() << rex->getSourceRange();
2206        return QualType();
2207      }
2208
2209      return Context.getPointerDiffType();
2210    }
2211  }
2212
2213  return InvalidOperands(Loc, lex, rex);
2214}
2215
2216// C99 6.5.7
2217QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
2218                                  bool isCompAssign) {
2219  // C99 6.5.7p2: Each of the operands shall have integer type.
2220  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
2221    return InvalidOperands(Loc, lex, rex);
2222
2223  // Shifts don't perform usual arithmetic conversions, they just do integer
2224  // promotions on each operand. C99 6.5.7p3
2225  if (!isCompAssign)
2226    UsualUnaryConversions(lex);
2227  UsualUnaryConversions(rex);
2228
2229  // "The type of the result is that of the promoted left operand."
2230  return lex->getType();
2231}
2232
2233static bool areComparableObjCInterfaces(QualType LHS, QualType RHS,
2234                                        ASTContext& Context) {
2235  const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
2236  const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
2237  // ID acts sort of like void* for ObjC interfaces
2238  if (LHSIface && Context.isObjCIdType(RHS))
2239    return true;
2240  if (RHSIface && Context.isObjCIdType(LHS))
2241    return true;
2242  if (!LHSIface || !RHSIface)
2243    return false;
2244  return Context.canAssignObjCInterfaces(LHSIface, RHSIface) ||
2245         Context.canAssignObjCInterfaces(RHSIface, LHSIface);
2246}
2247
2248// C99 6.5.8
2249QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
2250                                    bool isRelational) {
2251  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2252    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
2253
2254  // C99 6.5.8p3 / C99 6.5.9p4
2255  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2256    UsualArithmeticConversions(lex, rex);
2257  else {
2258    UsualUnaryConversions(lex);
2259    UsualUnaryConversions(rex);
2260  }
2261  QualType lType = lex->getType();
2262  QualType rType = rex->getType();
2263
2264  // For non-floating point types, check for self-comparisons of the form
2265  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2266  // often indicate logic errors in the program.
2267  if (!lType->isFloatingType()) {
2268    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2269      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2270        if (DRL->getDecl() == DRR->getDecl())
2271          Diag(Loc, diag::warn_selfcomparison);
2272  }
2273
2274  // The result of comparisons is 'bool' in C++, 'int' in C.
2275  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy : Context.IntTy;
2276
2277  if (isRelational) {
2278    if (lType->isRealType() && rType->isRealType())
2279      return ResultTy;
2280  } else {
2281    // Check for comparisons of floating point operands using != and ==.
2282    if (lType->isFloatingType()) {
2283      assert (rType->isFloatingType());
2284      CheckFloatComparison(Loc,lex,rex);
2285    }
2286
2287    if (lType->isArithmeticType() && rType->isArithmeticType())
2288      return ResultTy;
2289  }
2290
2291  bool LHSIsNull = lex->isNullPointerConstant(Context);
2292  bool RHSIsNull = rex->isNullPointerConstant(Context);
2293
2294  // All of the following pointer related warnings are GCC extensions, except
2295  // when handling null pointer constants. One day, we can consider making them
2296  // errors (when -pedantic-errors is enabled).
2297  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
2298    QualType LCanPointeeTy =
2299      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
2300    QualType RCanPointeeTy =
2301      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
2302
2303    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
2304        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
2305        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
2306                                    RCanPointeeTy.getUnqualifiedType()) &&
2307        !areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) {
2308      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
2309        << lType.getAsString() << rType.getAsString()
2310        << lex->getSourceRange() << rex->getSourceRange();
2311    }
2312    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2313    return ResultTy;
2314  }
2315  // Handle block pointer types.
2316  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
2317    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
2318    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
2319
2320    if (!LHSIsNull && !RHSIsNull &&
2321        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
2322      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
2323        << lType.getAsString() << rType.getAsString()
2324        << lex->getSourceRange() << rex->getSourceRange();
2325    }
2326    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2327    return ResultTy;
2328  }
2329  // Allow block pointers to be compared with null pointer constants.
2330  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
2331      (lType->isPointerType() && rType->isBlockPointerType())) {
2332    if (!LHSIsNull && !RHSIsNull) {
2333      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
2334        << lType.getAsString() << rType.getAsString()
2335        << lex->getSourceRange() << rex->getSourceRange();
2336    }
2337    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2338    return ResultTy;
2339  }
2340
2341  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
2342    if (lType->isPointerType() || rType->isPointerType()) {
2343      const PointerType *LPT = lType->getAsPointerType();
2344      const PointerType *RPT = rType->getAsPointerType();
2345      bool LPtrToVoid = LPT ?
2346        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
2347      bool RPtrToVoid = RPT ?
2348        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
2349
2350      if (!LPtrToVoid && !RPtrToVoid &&
2351          !Context.typesAreCompatible(lType, rType)) {
2352        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
2353          << lType.getAsString() << rType.getAsString()
2354          << lex->getSourceRange() << rex->getSourceRange();
2355        ImpCastExprToType(rex, lType);
2356        return ResultTy;
2357      }
2358      ImpCastExprToType(rex, lType);
2359      return ResultTy;
2360    }
2361    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
2362      ImpCastExprToType(rex, lType);
2363      return ResultTy;
2364    } else {
2365      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
2366        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
2367          << lType.getAsString() << rType.getAsString()
2368          << lex->getSourceRange() << rex->getSourceRange();
2369        ImpCastExprToType(rex, lType);
2370        return ResultTy;
2371      }
2372    }
2373  }
2374  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
2375       rType->isIntegerType()) {
2376    if (!RHSIsNull)
2377      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2378        << lType.getAsString() << rType.getAsString()
2379        << lex->getSourceRange() << rex->getSourceRange();
2380    ImpCastExprToType(rex, lType); // promote the integer to pointer
2381    return ResultTy;
2382  }
2383  if (lType->isIntegerType() &&
2384      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
2385    if (!LHSIsNull)
2386      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2387        << lType.getAsString() << rType.getAsString()
2388        << lex->getSourceRange() << rex->getSourceRange();
2389    ImpCastExprToType(lex, rType); // promote the integer to pointer
2390    return ResultTy;
2391  }
2392  // Handle block pointers.
2393  if (lType->isBlockPointerType() && rType->isIntegerType()) {
2394    if (!RHSIsNull)
2395      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2396        << lType.getAsString() << rType.getAsString()
2397        << lex->getSourceRange() << rex->getSourceRange();
2398    ImpCastExprToType(rex, lType); // promote the integer to pointer
2399    return ResultTy;
2400  }
2401  if (lType->isIntegerType() && rType->isBlockPointerType()) {
2402    if (!LHSIsNull)
2403      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2404        << lType.getAsString() << rType.getAsString()
2405        << lex->getSourceRange() << rex->getSourceRange();
2406    ImpCastExprToType(lex, rType); // promote the integer to pointer
2407    return ResultTy;
2408  }
2409  return InvalidOperands(Loc, lex, rex);
2410}
2411
2412/// CheckVectorCompareOperands - vector comparisons are a clang extension that
2413/// operates on extended vector types.  Instead of producing an IntTy result,
2414/// like a scalar comparison, a vector comparison produces a vector of integer
2415/// types.
2416QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
2417                                          SourceLocation Loc,
2418                                          bool isRelational) {
2419  // Check to make sure we're operating on vectors of the same type and width,
2420  // Allowing one side to be a scalar of element type.
2421  QualType vType = CheckVectorOperands(Loc, lex, rex);
2422  if (vType.isNull())
2423    return vType;
2424
2425  QualType lType = lex->getType();
2426  QualType rType = rex->getType();
2427
2428  // For non-floating point types, check for self-comparisons of the form
2429  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2430  // often indicate logic errors in the program.
2431  if (!lType->isFloatingType()) {
2432    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2433      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2434        if (DRL->getDecl() == DRR->getDecl())
2435          Diag(Loc, diag::warn_selfcomparison);
2436  }
2437
2438  // Check for comparisons of floating point operands using != and ==.
2439  if (!isRelational && lType->isFloatingType()) {
2440    assert (rType->isFloatingType());
2441    CheckFloatComparison(Loc,lex,rex);
2442  }
2443
2444  // Return the type for the comparison, which is the same as vector type for
2445  // integer vectors, or an integer type of identical size and number of
2446  // elements for floating point vectors.
2447  if (lType->isIntegerType())
2448    return lType;
2449
2450  const VectorType *VTy = lType->getAsVectorType();
2451
2452  // FIXME: need to deal with non-32b int / non-64b long long
2453  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
2454  if (TypeSize == 32) {
2455    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
2456  }
2457  assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
2458  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
2459}
2460
2461inline QualType Sema::CheckBitwiseOperands(
2462  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2463{
2464  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2465    return CheckVectorOperands(Loc, lex, rex);
2466
2467  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2468
2469  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2470    return compType;
2471  return InvalidOperands(Loc, lex, rex);
2472}
2473
2474inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
2475  Expr *&lex, Expr *&rex, SourceLocation Loc)
2476{
2477  UsualUnaryConversions(lex);
2478  UsualUnaryConversions(rex);
2479
2480  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
2481    return Context.IntTy;
2482  return InvalidOperands(Loc, lex, rex);
2483}
2484
2485/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
2486/// emit an error and return true.  If so, return false.
2487static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
2488  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context);
2489  if (IsLV == Expr::MLV_Valid)
2490    return false;
2491
2492  unsigned Diag = 0;
2493  bool NeedType = false;
2494  switch (IsLV) { // C99 6.5.16p2
2495  default: assert(0 && "Unknown result from isModifiableLvalue!");
2496  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
2497  case Expr::MLV_ArrayType:
2498    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
2499    NeedType = true;
2500    break;
2501  case Expr::MLV_NotObjectType:
2502    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
2503    NeedType = true;
2504    break;
2505  case Expr::MLV_LValueCast:
2506    Diag = diag::err_typecheck_lvalue_casts_not_supported;
2507    break;
2508  case Expr::MLV_InvalidExpression:
2509    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
2510    break;
2511  case Expr::MLV_IncompleteType:
2512  case Expr::MLV_IncompleteVoidType:
2513    Diag = diag::err_typecheck_incomplete_type_not_modifiable_lvalue;
2514    NeedType = true;
2515    break;
2516  case Expr::MLV_DuplicateVectorComponents:
2517    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
2518    break;
2519  case Expr::MLV_NotBlockQualified:
2520    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
2521    break;
2522  case Expr::MLV_ReadonlyProperty:
2523    Diag = diag::error_readonly_property_assignment;
2524    break;
2525  }
2526
2527  if (NeedType)
2528    S.Diag(Loc, Diag) << E->getType().getAsString() << E->getSourceRange();
2529  else
2530    S.Diag(Loc, Diag) << E->getSourceRange();
2531  return true;
2532}
2533
2534
2535
2536// C99 6.5.16.1
2537QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
2538                                       SourceLocation Loc,
2539                                       QualType CompoundType) {
2540  // Verify that LHS is a modifiable lvalue, and emit error if not.
2541  if (CheckForModifiableLvalue(LHS, Loc, *this))
2542    return QualType();
2543
2544  QualType LHSType = LHS->getType();
2545  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
2546
2547  AssignConvertType ConvTy;
2548  if (CompoundType.isNull()) {
2549    // Simple assignment "x = y".
2550    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
2551
2552    // If the RHS is a unary plus or minus, check to see if they = and + are
2553    // right next to each other.  If so, the user may have typo'd "x =+ 4"
2554    // instead of "x += 4".
2555    Expr *RHSCheck = RHS;
2556    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
2557      RHSCheck = ICE->getSubExpr();
2558    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
2559      if ((UO->getOpcode() == UnaryOperator::Plus ||
2560           UO->getOpcode() == UnaryOperator::Minus) &&
2561          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
2562          // Only if the two operators are exactly adjacent.
2563          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
2564        Diag(Loc, diag::warn_not_compound_assign)
2565          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
2566          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
2567    }
2568  } else {
2569    // Compound assignment "x += y"
2570    ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
2571  }
2572
2573  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
2574                               RHS, "assigning"))
2575    return QualType();
2576
2577  // C99 6.5.16p3: The type of an assignment expression is the type of the
2578  // left operand unless the left operand has qualified type, in which case
2579  // it is the unqualified version of the type of the left operand.
2580  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
2581  // is converted to the type of the assignment expression (above).
2582  // C++ 5.17p1: the type of the assignment expression is that of its left
2583  // oprdu.
2584  return LHSType.getUnqualifiedType();
2585}
2586
2587// C99 6.5.17
2588QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
2589  // FIXME: what is required for LHS?
2590
2591  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
2592  DefaultFunctionArrayConversion(RHS);
2593  return RHS->getType();
2594}
2595
2596/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
2597/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
2598QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc) {
2599  QualType ResType = Op->getType();
2600  assert(!ResType.isNull() && "no type for increment/decrement expression");
2601
2602  // C99 6.5.2.4p1: We allow complex as a GCC extension.
2603  if (ResType->isRealType()) {
2604    // OK!
2605  } else if (const PointerType *PT = ResType->getAsPointerType()) {
2606    // C99 6.5.2.4p2, 6.5.6p2
2607    if (PT->getPointeeType()->isObjectType()) {
2608      // Pointer to object is ok!
2609    } else if (PT->getPointeeType()->isVoidType()) {
2610      // Pointer to void is extension.
2611      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
2612    } else {
2613      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type)
2614        << ResType.getAsString() << Op->getSourceRange();
2615      return QualType();
2616    }
2617  } else if (ResType->isComplexType()) {
2618    // C99 does not support ++/-- on complex types, we allow as an extension.
2619    Diag(OpLoc, diag::ext_integer_increment_complex)
2620      << ResType.getAsString() << Op->getSourceRange();
2621  } else {
2622    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
2623      << ResType.getAsString() << Op->getSourceRange();
2624    return QualType();
2625  }
2626  // At this point, we know we have a real, complex or pointer type.
2627  // Now make sure the operand is a modifiable lvalue.
2628  if (CheckForModifiableLvalue(Op, OpLoc, *this))
2629    return QualType();
2630  return ResType;
2631}
2632
2633/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
2634/// This routine allows us to typecheck complex/recursive expressions
2635/// where the declaration is needed for type checking. We only need to
2636/// handle cases when the expression references a function designator
2637/// or is an lvalue. Here are some examples:
2638///  - &(x) => x
2639///  - &*****f => f for f a function designator.
2640///  - &s.xx => s
2641///  - &s.zz[1].yy -> s, if zz is an array
2642///  - *(x + 1) -> x, if x is an array
2643///  - &"123"[2] -> 0
2644///  - & __real__ x -> x
2645static NamedDecl *getPrimaryDecl(Expr *E) {
2646  switch (E->getStmtClass()) {
2647  case Stmt::DeclRefExprClass:
2648    return cast<DeclRefExpr>(E)->getDecl();
2649  case Stmt::MemberExprClass:
2650    // Fields cannot be declared with a 'register' storage class.
2651    // &X->f is always ok, even if X is declared register.
2652    if (cast<MemberExpr>(E)->isArrow())
2653      return 0;
2654    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
2655  case Stmt::ArraySubscriptExprClass: {
2656    // &X[4] and &4[X] refers to X if X is not a pointer.
2657
2658    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
2659    ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
2660    if (!VD || VD->getType()->isPointerType())
2661      return 0;
2662    else
2663      return VD;
2664  }
2665  case Stmt::UnaryOperatorClass: {
2666    UnaryOperator *UO = cast<UnaryOperator>(E);
2667
2668    switch(UO->getOpcode()) {
2669    case UnaryOperator::Deref: {
2670      // *(X + 1) refers to X if X is not a pointer.
2671      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
2672        ValueDecl *VD = dyn_cast<ValueDecl>(D);
2673        if (!VD || VD->getType()->isPointerType())
2674          return 0;
2675        return VD;
2676      }
2677      return 0;
2678    }
2679    case UnaryOperator::Real:
2680    case UnaryOperator::Imag:
2681    case UnaryOperator::Extension:
2682      return getPrimaryDecl(UO->getSubExpr());
2683    default:
2684      return 0;
2685    }
2686  }
2687  case Stmt::BinaryOperatorClass: {
2688    BinaryOperator *BO = cast<BinaryOperator>(E);
2689
2690    // Handle cases involving pointer arithmetic. The result of an
2691    // Assign or AddAssign is not an lvalue so they can be ignored.
2692
2693    // (x + n) or (n + x) => x
2694    if (BO->getOpcode() == BinaryOperator::Add) {
2695      if (BO->getLHS()->getType()->isPointerType()) {
2696        return getPrimaryDecl(BO->getLHS());
2697      } else if (BO->getRHS()->getType()->isPointerType()) {
2698        return getPrimaryDecl(BO->getRHS());
2699      }
2700    }
2701
2702    return 0;
2703  }
2704  case Stmt::ParenExprClass:
2705    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
2706  case Stmt::ImplicitCastExprClass:
2707    // &X[4] when X is an array, has an implicit cast from array to pointer.
2708    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
2709  default:
2710    return 0;
2711  }
2712}
2713
2714/// CheckAddressOfOperand - The operand of & must be either a function
2715/// designator or an lvalue designating an object. If it is an lvalue, the
2716/// object cannot be declared with storage class register or be a bit field.
2717/// Note: The usual conversions are *not* applied to the operand of the &
2718/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
2719/// In C++, the operand might be an overloaded function name, in which case
2720/// we allow the '&' but retain the overloaded-function type.
2721QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
2722  if (getLangOptions().C99) {
2723    // Implement C99-only parts of addressof rules.
2724    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
2725      if (uOp->getOpcode() == UnaryOperator::Deref)
2726        // Per C99 6.5.3.2, the address of a deref always returns a valid result
2727        // (assuming the deref expression is valid).
2728        return uOp->getSubExpr()->getType();
2729    }
2730    // Technically, there should be a check for array subscript
2731    // expressions here, but the result of one is always an lvalue anyway.
2732  }
2733  NamedDecl *dcl = getPrimaryDecl(op);
2734  Expr::isLvalueResult lval = op->isLvalue(Context);
2735
2736  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
2737    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
2738      // FIXME: emit more specific diag...
2739      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
2740        << op->getSourceRange();
2741      return QualType();
2742    }
2743  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
2744    if (MemExpr->getMemberDecl()->isBitField()) {
2745      Diag(OpLoc, diag::err_typecheck_address_of)
2746        << "bit-field" << op->getSourceRange();
2747      return QualType();
2748    }
2749  // Check for Apple extension for accessing vector components.
2750  } else if (isa<ArraySubscriptExpr>(op) &&
2751           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
2752    Diag(OpLoc, diag::err_typecheck_address_of)
2753      << "vector" << op->getSourceRange();
2754    return QualType();
2755  } else if (dcl) { // C99 6.5.3.2p1
2756    // We have an lvalue with a decl. Make sure the decl is not declared
2757    // with the register storage-class specifier.
2758    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
2759      if (vd->getStorageClass() == VarDecl::Register) {
2760        Diag(OpLoc, diag::err_typecheck_address_of)
2761          << "register variable" << op->getSourceRange();
2762        return QualType();
2763      }
2764    } else if (isa<OverloadedFunctionDecl>(dcl))
2765      return Context.OverloadTy;
2766    else
2767      assert(0 && "Unknown/unexpected decl type");
2768  }
2769
2770  // If the operand has type "type", the result has type "pointer to type".
2771  return Context.getPointerType(op->getType());
2772}
2773
2774QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
2775  UsualUnaryConversions(op);
2776  QualType qType = op->getType();
2777
2778  if (const PointerType *PT = qType->getAsPointerType()) {
2779    // Note that per both C89 and C99, this is always legal, even
2780    // if ptype is an incomplete type or void.
2781    // It would be possible to warn about dereferencing a
2782    // void pointer, but it's completely well-defined,
2783    // and such a warning is unlikely to catch any mistakes.
2784    return PT->getPointeeType();
2785  }
2786  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
2787    << qType.getAsString() << op->getSourceRange();
2788  return QualType();
2789}
2790
2791static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
2792  tok::TokenKind Kind) {
2793  BinaryOperator::Opcode Opc;
2794  switch (Kind) {
2795  default: assert(0 && "Unknown binop!");
2796  case tok::star:                 Opc = BinaryOperator::Mul; break;
2797  case tok::slash:                Opc = BinaryOperator::Div; break;
2798  case tok::percent:              Opc = BinaryOperator::Rem; break;
2799  case tok::plus:                 Opc = BinaryOperator::Add; break;
2800  case tok::minus:                Opc = BinaryOperator::Sub; break;
2801  case tok::lessless:             Opc = BinaryOperator::Shl; break;
2802  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
2803  case tok::lessequal:            Opc = BinaryOperator::LE; break;
2804  case tok::less:                 Opc = BinaryOperator::LT; break;
2805  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
2806  case tok::greater:              Opc = BinaryOperator::GT; break;
2807  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
2808  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
2809  case tok::amp:                  Opc = BinaryOperator::And; break;
2810  case tok::caret:                Opc = BinaryOperator::Xor; break;
2811  case tok::pipe:                 Opc = BinaryOperator::Or; break;
2812  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
2813  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
2814  case tok::equal:                Opc = BinaryOperator::Assign; break;
2815  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
2816  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
2817  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
2818  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
2819  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
2820  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
2821  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
2822  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
2823  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
2824  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
2825  case tok::comma:                Opc = BinaryOperator::Comma; break;
2826  }
2827  return Opc;
2828}
2829
2830static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
2831  tok::TokenKind Kind) {
2832  UnaryOperator::Opcode Opc;
2833  switch (Kind) {
2834  default: assert(0 && "Unknown unary op!");
2835  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
2836  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
2837  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
2838  case tok::star:         Opc = UnaryOperator::Deref; break;
2839  case tok::plus:         Opc = UnaryOperator::Plus; break;
2840  case tok::minus:        Opc = UnaryOperator::Minus; break;
2841  case tok::tilde:        Opc = UnaryOperator::Not; break;
2842  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
2843  case tok::kw___real:    Opc = UnaryOperator::Real; break;
2844  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
2845  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
2846  }
2847  return Opc;
2848}
2849
2850/// CreateBuiltinBinOp - Creates a new built-in binary operation with
2851/// operator @p Opc at location @c TokLoc. This routine only supports
2852/// built-in operations; ActOnBinOp handles overloaded operators.
2853Action::ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
2854                                            unsigned Op,
2855                                            Expr *lhs, Expr *rhs) {
2856  QualType ResultTy;  // Result type of the binary operator.
2857  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
2858  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
2859
2860  switch (Opc) {
2861  default:
2862    assert(0 && "Unknown binary expr!");
2863  case BinaryOperator::Assign:
2864    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
2865    break;
2866  case BinaryOperator::Mul:
2867  case BinaryOperator::Div:
2868    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
2869    break;
2870  case BinaryOperator::Rem:
2871    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
2872    break;
2873  case BinaryOperator::Add:
2874    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
2875    break;
2876  case BinaryOperator::Sub:
2877    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
2878    break;
2879  case BinaryOperator::Shl:
2880  case BinaryOperator::Shr:
2881    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
2882    break;
2883  case BinaryOperator::LE:
2884  case BinaryOperator::LT:
2885  case BinaryOperator::GE:
2886  case BinaryOperator::GT:
2887    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true);
2888    break;
2889  case BinaryOperator::EQ:
2890  case BinaryOperator::NE:
2891    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false);
2892    break;
2893  case BinaryOperator::And:
2894  case BinaryOperator::Xor:
2895  case BinaryOperator::Or:
2896    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
2897    break;
2898  case BinaryOperator::LAnd:
2899  case BinaryOperator::LOr:
2900    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
2901    break;
2902  case BinaryOperator::MulAssign:
2903  case BinaryOperator::DivAssign:
2904    CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
2905    if (!CompTy.isNull())
2906      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
2907    break;
2908  case BinaryOperator::RemAssign:
2909    CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
2910    if (!CompTy.isNull())
2911      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
2912    break;
2913  case BinaryOperator::AddAssign:
2914    CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true);
2915    if (!CompTy.isNull())
2916      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
2917    break;
2918  case BinaryOperator::SubAssign:
2919    CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true);
2920    if (!CompTy.isNull())
2921      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
2922    break;
2923  case BinaryOperator::ShlAssign:
2924  case BinaryOperator::ShrAssign:
2925    CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
2926    if (!CompTy.isNull())
2927      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
2928    break;
2929  case BinaryOperator::AndAssign:
2930  case BinaryOperator::XorAssign:
2931  case BinaryOperator::OrAssign:
2932    CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
2933    if (!CompTy.isNull())
2934      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
2935    break;
2936  case BinaryOperator::Comma:
2937    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
2938    break;
2939  }
2940  if (ResultTy.isNull())
2941    return true;
2942  if (CompTy.isNull())
2943    return new BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc);
2944  else
2945    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, OpLoc);
2946}
2947
2948// Binary Operators.  'Tok' is the token for the operator.
2949Action::ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
2950                                    tok::TokenKind Kind,
2951                                    ExprTy *LHS, ExprTy *RHS) {
2952  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
2953  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
2954
2955  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
2956  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
2957
2958  if (getLangOptions().CPlusPlus &&
2959      (lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType() ||
2960       rhs->getType()->isRecordType() || rhs->getType()->isEnumeralType())) {
2961    // If this is one of the assignment operators, we only perform
2962    // overload resolution if the left-hand side is a class or
2963    // enumeration type (C++ [expr.ass]p3).
2964    if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
2965        !(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType())) {
2966      return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
2967    }
2968
2969    // Determine which overloaded operator we're dealing with.
2970    static const OverloadedOperatorKind OverOps[] = {
2971      OO_Star, OO_Slash, OO_Percent,
2972      OO_Plus, OO_Minus,
2973      OO_LessLess, OO_GreaterGreater,
2974      OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2975      OO_EqualEqual, OO_ExclaimEqual,
2976      OO_Amp,
2977      OO_Caret,
2978      OO_Pipe,
2979      OO_AmpAmp,
2980      OO_PipePipe,
2981      OO_Equal, OO_StarEqual,
2982      OO_SlashEqual, OO_PercentEqual,
2983      OO_PlusEqual, OO_MinusEqual,
2984      OO_LessLessEqual, OO_GreaterGreaterEqual,
2985      OO_AmpEqual, OO_CaretEqual,
2986      OO_PipeEqual,
2987      OO_Comma
2988    };
2989    OverloadedOperatorKind OverOp = OverOps[Opc];
2990
2991    // Add the appropriate overloaded operators (C++ [over.match.oper])
2992    // to the candidate set.
2993    OverloadCandidateSet CandidateSet;
2994    Expr *Args[2] = { lhs, rhs };
2995    AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
2996
2997    // Perform overload resolution.
2998    OverloadCandidateSet::iterator Best;
2999    switch (BestViableFunction(CandidateSet, Best)) {
3000    case OR_Success: {
3001      // We found a built-in operator or an overloaded operator.
3002      FunctionDecl *FnDecl = Best->Function;
3003
3004      if (FnDecl) {
3005        // We matched an overloaded operator. Build a call to that
3006        // operator.
3007
3008        // Convert the arguments.
3009        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3010          if (PerformObjectArgumentInitialization(lhs, Method) ||
3011              PerformCopyInitialization(rhs, FnDecl->getParamDecl(0)->getType(),
3012                                        "passing"))
3013            return true;
3014        } else {
3015          // Convert the arguments.
3016          if (PerformCopyInitialization(lhs, FnDecl->getParamDecl(0)->getType(),
3017                                        "passing") ||
3018              PerformCopyInitialization(rhs, FnDecl->getParamDecl(1)->getType(),
3019                                        "passing"))
3020            return true;
3021        }
3022
3023        // Determine the result type
3024        QualType ResultTy
3025          = FnDecl->getType()->getAsFunctionType()->getResultType();
3026        ResultTy = ResultTy.getNonReferenceType();
3027
3028        // Build the actual expression node.
3029        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
3030                                       SourceLocation());
3031        UsualUnaryConversions(FnExpr);
3032
3033        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, TokLoc);
3034      } else {
3035        // We matched a built-in operator. Convert the arguments, then
3036        // break out so that we will build the appropriate built-in
3037        // operator node.
3038        if (PerformCopyInitialization(lhs, Best->BuiltinTypes.ParamTypes[0],
3039                                      "passing") ||
3040            PerformCopyInitialization(rhs, Best->BuiltinTypes.ParamTypes[1],
3041                                      "passing"))
3042          return true;
3043
3044        break;
3045      }
3046    }
3047
3048    case OR_No_Viable_Function:
3049      // No viable function; fall through to handling this as a
3050      // built-in operator, which will produce an error message for us.
3051      break;
3052
3053    case OR_Ambiguous:
3054      Diag(TokLoc,  diag::err_ovl_ambiguous_oper)
3055          << BinaryOperator::getOpcodeStr(Opc)
3056          << lhs->getSourceRange() << rhs->getSourceRange();
3057      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3058      return true;
3059    }
3060
3061    // Either we found no viable overloaded operator or we matched a
3062    // built-in operator. In either case, fall through to trying to
3063    // build a built-in operation.
3064  }
3065
3066  // Build a built-in binary operation.
3067  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3068}
3069
3070// Unary Operators.  'Tok' is the token for the operator.
3071Action::ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
3072                                      tok::TokenKind Op, ExprTy *input) {
3073  Expr *Input = (Expr*)input;
3074  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
3075
3076  if (getLangOptions().CPlusPlus &&
3077      (Input->getType()->isRecordType()
3078       || Input->getType()->isEnumeralType())) {
3079    // Determine which overloaded operator we're dealing with.
3080    static const OverloadedOperatorKind OverOps[] = {
3081      OO_None, OO_None,
3082      OO_PlusPlus, OO_MinusMinus,
3083      OO_Amp, OO_Star,
3084      OO_Plus, OO_Minus,
3085      OO_Tilde, OO_Exclaim,
3086      OO_None, OO_None,
3087      OO_None,
3088      OO_None
3089    };
3090    OverloadedOperatorKind OverOp = OverOps[Opc];
3091
3092    // Add the appropriate overloaded operators (C++ [over.match.oper])
3093    // to the candidate set.
3094    OverloadCandidateSet CandidateSet;
3095    if (OverOp != OO_None)
3096      AddOperatorCandidates(OverOp, S, &Input, 1, CandidateSet);
3097
3098    // Perform overload resolution.
3099    OverloadCandidateSet::iterator Best;
3100    switch (BestViableFunction(CandidateSet, Best)) {
3101    case OR_Success: {
3102      // We found a built-in operator or an overloaded operator.
3103      FunctionDecl *FnDecl = Best->Function;
3104
3105      if (FnDecl) {
3106        // We matched an overloaded operator. Build a call to that
3107        // operator.
3108
3109        // Convert the arguments.
3110        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3111          if (PerformObjectArgumentInitialization(Input, Method))
3112            return true;
3113        } else {
3114          // Convert the arguments.
3115          if (PerformCopyInitialization(Input,
3116                                        FnDecl->getParamDecl(0)->getType(),
3117                                        "passing"))
3118            return true;
3119        }
3120
3121        // Determine the result type
3122        QualType ResultTy
3123          = FnDecl->getType()->getAsFunctionType()->getResultType();
3124        ResultTy = ResultTy.getNonReferenceType();
3125
3126        // Build the actual expression node.
3127        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
3128                                       SourceLocation());
3129        UsualUnaryConversions(FnExpr);
3130
3131        return new CXXOperatorCallExpr(FnExpr, &Input, 1, ResultTy, OpLoc);
3132      } else {
3133        // We matched a built-in operator. Convert the arguments, then
3134        // break out so that we will build the appropriate built-in
3135        // operator node.
3136        if (PerformCopyInitialization(Input, Best->BuiltinTypes.ParamTypes[0],
3137                                      "passing"))
3138          return true;
3139
3140        break;
3141      }
3142    }
3143
3144    case OR_No_Viable_Function:
3145      // No viable function; fall through to handling this as a
3146      // built-in operator, which will produce an error message for us.
3147      break;
3148
3149    case OR_Ambiguous:
3150      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3151          << UnaryOperator::getOpcodeStr(Opc)
3152          << Input->getSourceRange();
3153      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3154      return true;
3155    }
3156
3157    // Either we found no viable overloaded operator or we matched a
3158    // built-in operator. In either case, fall through to trying to
3159    // build a built-in operation.
3160  }
3161
3162
3163  QualType resultType;
3164  switch (Opc) {
3165  default:
3166    assert(0 && "Unimplemented unary expr!");
3167  case UnaryOperator::PreInc:
3168  case UnaryOperator::PreDec:
3169    resultType = CheckIncrementDecrementOperand(Input, OpLoc);
3170    break;
3171  case UnaryOperator::AddrOf:
3172    resultType = CheckAddressOfOperand(Input, OpLoc);
3173    break;
3174  case UnaryOperator::Deref:
3175    DefaultFunctionArrayConversion(Input);
3176    resultType = CheckIndirectionOperand(Input, OpLoc);
3177    break;
3178  case UnaryOperator::Plus:
3179  case UnaryOperator::Minus:
3180    UsualUnaryConversions(Input);
3181    resultType = Input->getType();
3182    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
3183      break;
3184    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
3185             resultType->isEnumeralType())
3186      break;
3187    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
3188             Opc == UnaryOperator::Plus &&
3189             resultType->isPointerType())
3190      break;
3191
3192    return Diag(OpLoc, diag::err_typecheck_unary_expr)
3193          << resultType.getAsString();
3194  case UnaryOperator::Not: // bitwise complement
3195    UsualUnaryConversions(Input);
3196    resultType = Input->getType();
3197    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
3198    if (resultType->isComplexType() || resultType->isComplexIntegerType())
3199      // C99 does not support '~' for complex conjugation.
3200      Diag(OpLoc, diag::ext_integer_complement_complex)
3201        << resultType.getAsString() << Input->getSourceRange();
3202    else if (!resultType->isIntegerType())
3203      return Diag(OpLoc, diag::err_typecheck_unary_expr)
3204        << resultType.getAsString() << Input->getSourceRange();
3205    break;
3206  case UnaryOperator::LNot: // logical negation
3207    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
3208    DefaultFunctionArrayConversion(Input);
3209    resultType = Input->getType();
3210    if (!resultType->isScalarType()) // C99 6.5.3.3p1
3211      return Diag(OpLoc, diag::err_typecheck_unary_expr)
3212        << resultType.getAsString();
3213    // LNot always has type int. C99 6.5.3.3p5.
3214    resultType = Context.IntTy;
3215    break;
3216  case UnaryOperator::Real:
3217  case UnaryOperator::Imag:
3218    resultType = CheckRealImagOperand(Input, OpLoc);
3219    break;
3220  case UnaryOperator::Extension:
3221    resultType = Input->getType();
3222    break;
3223  }
3224  if (resultType.isNull())
3225    return true;
3226  return new UnaryOperator(Input, Opc, resultType, OpLoc);
3227}
3228
3229/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
3230Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
3231                                      SourceLocation LabLoc,
3232                                      IdentifierInfo *LabelII) {
3233  // Look up the record for this label identifier.
3234  LabelStmt *&LabelDecl = LabelMap[LabelII];
3235
3236  // If we haven't seen this label yet, create a forward reference. It
3237  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
3238  if (LabelDecl == 0)
3239    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
3240
3241  // Create the AST node.  The address of a label always has type 'void*'.
3242  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
3243                           Context.getPointerType(Context.VoidTy));
3244}
3245
3246Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
3247                                     SourceLocation RPLoc) { // "({..})"
3248  Stmt *SubStmt = static_cast<Stmt*>(substmt);
3249  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
3250  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
3251
3252  // FIXME: there are a variety of strange constraints to enforce here, for
3253  // example, it is not possible to goto into a stmt expression apparently.
3254  // More semantic analysis is needed.
3255
3256  // FIXME: the last statement in the compount stmt has its value used.  We
3257  // should not warn about it being unused.
3258
3259  // If there are sub stmts in the compound stmt, take the type of the last one
3260  // as the type of the stmtexpr.
3261  QualType Ty = Context.VoidTy;
3262
3263  if (!Compound->body_empty()) {
3264    Stmt *LastStmt = Compound->body_back();
3265    // If LastStmt is a label, skip down through into the body.
3266    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
3267      LastStmt = Label->getSubStmt();
3268
3269    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
3270      Ty = LastExpr->getType();
3271  }
3272
3273  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
3274}
3275
3276Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
3277                                            SourceLocation TypeLoc,
3278                                            TypeTy *argty,
3279                                            OffsetOfComponent *CompPtr,
3280                                            unsigned NumComponents,
3281                                            SourceLocation RPLoc) {
3282  QualType ArgTy = QualType::getFromOpaquePtr(argty);
3283  assert(!ArgTy.isNull() && "Missing type argument!");
3284
3285  // We must have at least one component that refers to the type, and the first
3286  // one is known to be a field designator.  Verify that the ArgTy represents
3287  // a struct/union/class.
3288  if (!ArgTy->isRecordType())
3289    return Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy.getAsString();
3290
3291  // Otherwise, create a compound literal expression as the base, and
3292  // iteratively process the offsetof designators.
3293  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
3294
3295  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
3296  // GCC extension, diagnose them.
3297  if (NumComponents != 1)
3298    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
3299      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
3300
3301  for (unsigned i = 0; i != NumComponents; ++i) {
3302    const OffsetOfComponent &OC = CompPtr[i];
3303    if (OC.isBrackets) {
3304      // Offset of an array sub-field.  TODO: Should we allow vector elements?
3305      const ArrayType *AT = Context.getAsArrayType(Res->getType());
3306      if (!AT) {
3307        delete Res;
3308        return Diag(OC.LocEnd, diag::err_offsetof_array_type)
3309          << Res->getType().getAsString();
3310      }
3311
3312      // FIXME: C++: Verify that operator[] isn't overloaded.
3313
3314      // C99 6.5.2.1p1
3315      Expr *Idx = static_cast<Expr*>(OC.U.E);
3316      if (!Idx->getType()->isIntegerType())
3317        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript)
3318          << Idx->getSourceRange();
3319
3320      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
3321      continue;
3322    }
3323
3324    const RecordType *RC = Res->getType()->getAsRecordType();
3325    if (!RC) {
3326      delete Res;
3327      return Diag(OC.LocEnd, diag::err_offsetof_record_type)
3328        << Res->getType().getAsString();
3329    }
3330
3331    // Get the decl corresponding to this.
3332    RecordDecl *RD = RC->getDecl();
3333    FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
3334    if (!MemberDecl)
3335      return Diag(BuiltinLoc, diag::err_typecheck_no_member)
3336       << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd);
3337
3338    // FIXME: C++: Verify that MemberDecl isn't a static field.
3339    // FIXME: Verify that MemberDecl isn't a bitfield.
3340    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
3341    // matter here.
3342    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd,
3343                         MemberDecl->getType().getNonReferenceType());
3344  }
3345
3346  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
3347                           BuiltinLoc);
3348}
3349
3350
3351Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
3352                                                TypeTy *arg1, TypeTy *arg2,
3353                                                SourceLocation RPLoc) {
3354  QualType argT1 = QualType::getFromOpaquePtr(arg1);
3355  QualType argT2 = QualType::getFromOpaquePtr(arg2);
3356
3357  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
3358
3359  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
3360}
3361
3362Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
3363                                       ExprTy *expr1, ExprTy *expr2,
3364                                       SourceLocation RPLoc) {
3365  Expr *CondExpr = static_cast<Expr*>(cond);
3366  Expr *LHSExpr = static_cast<Expr*>(expr1);
3367  Expr *RHSExpr = static_cast<Expr*>(expr2);
3368
3369  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
3370
3371  // The conditional expression is required to be a constant expression.
3372  llvm::APSInt condEval(32);
3373  SourceLocation ExpLoc;
3374  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
3375    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant)
3376      << CondExpr->getSourceRange();
3377
3378  // If the condition is > zero, then the AST type is the same as the LSHExpr.
3379  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
3380                                               RHSExpr->getType();
3381  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
3382}
3383
3384//===----------------------------------------------------------------------===//
3385// Clang Extensions.
3386//===----------------------------------------------------------------------===//
3387
3388/// ActOnBlockStart - This callback is invoked when a block literal is started.
3389void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
3390  // Analyze block parameters.
3391  BlockSemaInfo *BSI = new BlockSemaInfo();
3392
3393  // Add BSI to CurBlock.
3394  BSI->PrevBlockInfo = CurBlock;
3395  CurBlock = BSI;
3396
3397  BSI->ReturnType = 0;
3398  BSI->TheScope = BlockScope;
3399
3400  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
3401  PushDeclContext(BSI->TheDecl);
3402}
3403
3404void Sema::ActOnBlockArguments(Declarator &ParamInfo) {
3405  // Analyze arguments to block.
3406  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3407         "Not a function declarator!");
3408  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
3409
3410  CurBlock->hasPrototype = FTI.hasPrototype;
3411  CurBlock->isVariadic = true;
3412
3413  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
3414  // no arguments, not a function that takes a single void argument.
3415  if (FTI.hasPrototype &&
3416      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3417      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
3418        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
3419    // empty arg list, don't push any params.
3420    CurBlock->isVariadic = false;
3421  } else if (FTI.hasPrototype) {
3422    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
3423      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
3424    CurBlock->isVariadic = FTI.isVariadic;
3425  }
3426  CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
3427
3428  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
3429       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
3430    // If this has an identifier, add it to the scope stack.
3431    if ((*AI)->getIdentifier())
3432      PushOnScopeChains(*AI, CurBlock->TheScope);
3433}
3434
3435/// ActOnBlockError - If there is an error parsing a block, this callback
3436/// is invoked to pop the information about the block from the action impl.
3437void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
3438  // Ensure that CurBlock is deleted.
3439  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
3440
3441  // Pop off CurBlock, handle nested blocks.
3442  CurBlock = CurBlock->PrevBlockInfo;
3443
3444  // FIXME: Delete the ParmVarDecl objects as well???
3445
3446}
3447
3448/// ActOnBlockStmtExpr - This is called when the body of a block statement
3449/// literal was successfully completed.  ^(int x){...}
3450Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
3451                                          Scope *CurScope) {
3452  // Ensure that CurBlock is deleted.
3453  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
3454  llvm::OwningPtr<CompoundStmt> Body(static_cast<CompoundStmt*>(body));
3455
3456  PopDeclContext();
3457
3458  // Pop off CurBlock, handle nested blocks.
3459  CurBlock = CurBlock->PrevBlockInfo;
3460
3461  QualType RetTy = Context.VoidTy;
3462  if (BSI->ReturnType)
3463    RetTy = QualType(BSI->ReturnType, 0);
3464
3465  llvm::SmallVector<QualType, 8> ArgTypes;
3466  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
3467    ArgTypes.push_back(BSI->Params[i]->getType());
3468
3469  QualType BlockTy;
3470  if (!BSI->hasPrototype)
3471    BlockTy = Context.getFunctionTypeNoProto(RetTy);
3472  else
3473    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
3474                                      BSI->isVariadic, 0);
3475
3476  BlockTy = Context.getBlockPointerType(BlockTy);
3477
3478  BSI->TheDecl->setBody(Body.take());
3479  return new BlockExpr(BSI->TheDecl, BlockTy);
3480}
3481
3482/// ExprsMatchFnType - return true if the Exprs in array Args have
3483/// QualTypes that match the QualTypes of the arguments of the FnType.
3484/// The number of arguments has already been validated to match the number of
3485/// arguments in FnType.
3486static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType,
3487                             ASTContext &Context) {
3488  unsigned NumParams = FnType->getNumArgs();
3489  for (unsigned i = 0; i != NumParams; ++i) {
3490    QualType ExprTy = Context.getCanonicalType(Args[i]->getType());
3491    QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i));
3492
3493    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
3494      return false;
3495  }
3496  return true;
3497}
3498
3499Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
3500                                         SourceLocation *CommaLocs,
3501                                         SourceLocation BuiltinLoc,
3502                                         SourceLocation RParenLoc) {
3503  // __builtin_overload requires at least 2 arguments
3504  if (NumArgs < 2)
3505    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3506      << SourceRange(BuiltinLoc, RParenLoc);
3507
3508  // The first argument is required to be a constant expression.  It tells us
3509  // the number of arguments to pass to each of the functions to be overloaded.
3510  Expr **Args = reinterpret_cast<Expr**>(args);
3511  Expr *NParamsExpr = Args[0];
3512  llvm::APSInt constEval(32);
3513  SourceLocation ExpLoc;
3514  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
3515    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
3516      << NParamsExpr->getSourceRange();
3517
3518  // Verify that the number of parameters is > 0
3519  unsigned NumParams = constEval.getZExtValue();
3520  if (NumParams == 0)
3521    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
3522      << NParamsExpr->getSourceRange();
3523  // Verify that we have at least 1 + NumParams arguments to the builtin.
3524  if ((NumParams + 1) > NumArgs)
3525    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3526      << SourceRange(BuiltinLoc, RParenLoc);
3527
3528  // Figure out the return type, by matching the args to one of the functions
3529  // listed after the parameters.
3530  OverloadExpr *OE = 0;
3531  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
3532    // UsualUnaryConversions will convert the function DeclRefExpr into a
3533    // pointer to function.
3534    Expr *Fn = UsualUnaryConversions(Args[i]);
3535    const FunctionTypeProto *FnType = 0;
3536    if (const PointerType *PT = Fn->getType()->getAsPointerType())
3537      FnType = PT->getPointeeType()->getAsFunctionTypeProto();
3538
3539    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
3540    // parameters, and the number of parameters must match the value passed to
3541    // the builtin.
3542    if (!FnType || (FnType->getNumArgs() != NumParams))
3543      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype)
3544        << Fn->getSourceRange();
3545
3546    // Scan the parameter list for the FunctionType, checking the QualType of
3547    // each parameter against the QualTypes of the arguments to the builtin.
3548    // If they match, return a new OverloadExpr.
3549    if (ExprsMatchFnType(Args+1, FnType, Context)) {
3550      if (OE)
3551        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match)
3552          << OE->getFn()->getSourceRange();
3553      // Remember our match, and continue processing the remaining arguments
3554      // to catch any errors.
3555      OE = new OverloadExpr(Args, NumArgs, i,
3556                            FnType->getResultType().getNonReferenceType(),
3557                            BuiltinLoc, RParenLoc);
3558    }
3559  }
3560  // Return the newly created OverloadExpr node, if we succeded in matching
3561  // exactly one of the candidate functions.
3562  if (OE)
3563    return OE;
3564
3565  // If we didn't find a matching function Expr in the __builtin_overload list
3566  // the return an error.
3567  std::string typeNames;
3568  for (unsigned i = 0; i != NumParams; ++i) {
3569    if (i != 0) typeNames += ", ";
3570    typeNames += Args[i+1]->getType().getAsString();
3571  }
3572
3573  return Diag(BuiltinLoc, diag::err_overload_no_match)
3574    << typeNames << SourceRange(BuiltinLoc, RParenLoc);
3575}
3576
3577Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
3578                                  ExprTy *expr, TypeTy *type,
3579                                  SourceLocation RPLoc) {
3580  Expr *E = static_cast<Expr*>(expr);
3581  QualType T = QualType::getFromOpaquePtr(type);
3582
3583  InitBuiltinVaListType();
3584
3585  // Get the va_list type
3586  QualType VaListType = Context.getBuiltinVaListType();
3587  // Deal with implicit array decay; for example, on x86-64,
3588  // va_list is an array, but it's supposed to decay to
3589  // a pointer for va_arg.
3590  if (VaListType->isArrayType())
3591    VaListType = Context.getArrayDecayedType(VaListType);
3592  // Make sure the input expression also decays appropriately.
3593  UsualUnaryConversions(E);
3594
3595  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
3596    return Diag(E->getLocStart(),
3597                diag::err_first_argument_to_va_arg_not_of_type_va_list)
3598      << E->getType().getAsString() << E->getSourceRange();
3599
3600  // FIXME: Warn if a non-POD type is passed in.
3601
3602  return new VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc);
3603}
3604
3605bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
3606                                    SourceLocation Loc,
3607                                    QualType DstType, QualType SrcType,
3608                                    Expr *SrcExpr, const char *Flavor) {
3609  // Decode the result (notice that AST's are still created for extensions).
3610  bool isInvalid = false;
3611  unsigned DiagKind;
3612  switch (ConvTy) {
3613  default: assert(0 && "Unknown conversion type");
3614  case Compatible: return false;
3615  case PointerToInt:
3616    DiagKind = diag::ext_typecheck_convert_pointer_int;
3617    break;
3618  case IntToPointer:
3619    DiagKind = diag::ext_typecheck_convert_int_pointer;
3620    break;
3621  case IncompatiblePointer:
3622    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
3623    break;
3624  case FunctionVoidPointer:
3625    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
3626    break;
3627  case CompatiblePointerDiscardsQualifiers:
3628    // If the qualifiers lost were because we were applying the
3629    // (deprecated) C++ conversion from a string literal to a char*
3630    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
3631    // Ideally, this check would be performed in
3632    // CheckPointerTypesForAssignment. However, that would require a
3633    // bit of refactoring (so that the second argument is an
3634    // expression, rather than a type), which should be done as part
3635    // of a larger effort to fix CheckPointerTypesForAssignment for
3636    // C++ semantics.
3637    if (getLangOptions().CPlusPlus &&
3638        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
3639      return false;
3640    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
3641    break;
3642  case IntToBlockPointer:
3643    DiagKind = diag::err_int_to_block_pointer;
3644    break;
3645  case IncompatibleBlockPointer:
3646    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
3647    break;
3648  case BlockVoidPointer:
3649    DiagKind = diag::ext_typecheck_convert_pointer_void_block;
3650    break;
3651  case IncompatibleObjCQualifiedId:
3652    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
3653    // it can give a more specific diagnostic.
3654    DiagKind = diag::warn_incompatible_qualified_id;
3655    break;
3656  case Incompatible:
3657    DiagKind = diag::err_typecheck_convert_incompatible;
3658    isInvalid = true;
3659    break;
3660  }
3661
3662  Diag(Loc, DiagKind) << DstType.getAsString() << SrcType.getAsString()
3663    << Flavor << SrcExpr->getSourceRange();
3664  return isInvalid;
3665}
3666