SemaExpr.cpp revision f814d8848e89ffab19dc4e66858ccaa9359e9aec
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaUtil.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Lex/LiteralSupport.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/OwningPtr.h"
27#include "llvm/ADT/SmallString.h"
28#include "llvm/ADT/StringExtras.h"
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32//  Standard Promotions and Conversions
33//===----------------------------------------------------------------------===//
34
35/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
36/// do not have a prototype. Arguments that have type float are promoted to
37/// double. All other argument types are converted by UsualUnaryConversions().
38void Sema::DefaultArgumentPromotion(Expr *&Expr) {
39  QualType Ty = Expr->getType();
40  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
41
42  // If this is a 'float' (CVR qualified or typedef) promote to double.
43  if (const BuiltinType *BT = Ty->getAsBuiltinType())
44    if (BT->getKind() == BuiltinType::Float)
45      return ImpCastExprToType(Expr, Context.DoubleTy);
46
47  UsualUnaryConversions(Expr);
48}
49
50/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
51void Sema::DefaultFunctionArrayConversion(Expr *&E) {
52  QualType Ty = E->getType();
53  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
54
55  if (const ReferenceType *ref = Ty->getAsReferenceType()) {
56    ImpCastExprToType(E, ref->getPointeeType()); // C++ [expr]
57    Ty = E->getType();
58  }
59  if (Ty->isFunctionType())
60    ImpCastExprToType(E, Context.getPointerType(Ty));
61  else if (Ty->isArrayType()) {
62    // In C90 mode, arrays only promote to pointers if the array expression is
63    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
64    // type 'array of type' is converted to an expression that has type 'pointer
65    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
66    // that has type 'array of type' ...".  The relevant change is "an lvalue"
67    // (C90) to "an expression" (C99).
68    if (getLangOptions().C99 || E->isLvalue() == Expr::LV_Valid)
69      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
70  }
71}
72
73/// UsualUnaryConversions - Performs various conversions that are common to most
74/// operators (C99 6.3). The conversions of array and function types are
75/// sometimes surpressed. For example, the array->pointer conversion doesn't
76/// apply if the array is an argument to the sizeof or address (&) operators.
77/// In these instances, this routine should *not* be called.
78Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
79  QualType Ty = Expr->getType();
80  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
81
82  if (const ReferenceType *Ref = Ty->getAsReferenceType()) {
83    ImpCastExprToType(Expr, Ref->getPointeeType()); // C++ [expr]
84    Ty = Expr->getType();
85  }
86  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
87    ImpCastExprToType(Expr, Context.IntTy);
88  else
89    DefaultFunctionArrayConversion(Expr);
90
91  return Expr;
92}
93
94/// UsualArithmeticConversions - Performs various conversions that are common to
95/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
96/// routine returns the first non-arithmetic type found. The client is
97/// responsible for emitting appropriate error diagnostics.
98/// FIXME: verify the conversion rules for "complex int" are consistent with
99/// GCC.
100QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
101                                          bool isCompAssign) {
102  if (!isCompAssign) {
103    UsualUnaryConversions(lhsExpr);
104    UsualUnaryConversions(rhsExpr);
105  }
106  // For conversion purposes, we ignore any qualifiers.
107  // For example, "const float" and "float" are equivalent.
108  QualType lhs = lhsExpr->getType().getCanonicalType().getUnqualifiedType();
109  QualType rhs = rhsExpr->getType().getCanonicalType().getUnqualifiedType();
110
111  // If both types are identical, no conversion is needed.
112  if (lhs == rhs)
113    return lhs;
114
115  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
116  // The caller can deal with this (e.g. pointer + int).
117  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
118    return lhs;
119
120  // At this point, we have two different arithmetic types.
121
122  // Handle complex types first (C99 6.3.1.8p1).
123  if (lhs->isComplexType() || rhs->isComplexType()) {
124    // if we have an integer operand, the result is the complex type.
125    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
126      // convert the rhs to the lhs complex type.
127      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
128      return lhs;
129    }
130    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
131      // convert the lhs to the rhs complex type.
132      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
133      return rhs;
134    }
135    // This handles complex/complex, complex/float, or float/complex.
136    // When both operands are complex, the shorter operand is converted to the
137    // type of the longer, and that is the type of the result. This corresponds
138    // to what is done when combining two real floating-point operands.
139    // The fun begins when size promotion occur across type domains.
140    // From H&S 6.3.4: When one operand is complex and the other is a real
141    // floating-point type, the less precise type is converted, within it's
142    // real or complex domain, to the precision of the other type. For example,
143    // when combining a "long double" with a "double _Complex", the
144    // "double _Complex" is promoted to "long double _Complex".
145    int result = Context.getFloatingTypeOrder(lhs, rhs);
146
147    if (result > 0) { // The left side is bigger, convert rhs.
148      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
149      if (!isCompAssign)
150        ImpCastExprToType(rhsExpr, rhs);
151    } else if (result < 0) { // The right side is bigger, convert lhs.
152      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
153      if (!isCompAssign)
154        ImpCastExprToType(lhsExpr, lhs);
155    }
156    // At this point, lhs and rhs have the same rank/size. Now, make sure the
157    // domains match. This is a requirement for our implementation, C99
158    // does not require this promotion.
159    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
160      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
161        if (!isCompAssign)
162          ImpCastExprToType(lhsExpr, rhs);
163        return rhs;
164      } else { // handle "_Complex double, double".
165        if (!isCompAssign)
166          ImpCastExprToType(rhsExpr, lhs);
167        return lhs;
168      }
169    }
170    return lhs; // The domain/size match exactly.
171  }
172  // Now handle "real" floating types (i.e. float, double, long double).
173  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
174    // if we have an integer operand, the result is the real floating type.
175    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
176      // convert rhs to the lhs floating point type.
177      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
178      return lhs;
179    }
180    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
181      // convert lhs to the rhs floating point type.
182      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
183      return rhs;
184    }
185    // We have two real floating types, float/complex combos were handled above.
186    // Convert the smaller operand to the bigger result.
187    int result = Context.getFloatingTypeOrder(lhs, rhs);
188
189    if (result > 0) { // convert the rhs
190      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
191      return lhs;
192    }
193    if (result < 0) { // convert the lhs
194      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
195      return rhs;
196    }
197    assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison");
198  }
199  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
200    // Handle GCC complex int extension.
201    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
202    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
203
204    if (lhsComplexInt && rhsComplexInt) {
205      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
206                                      rhsComplexInt->getElementType()) >= 0) {
207        // convert the rhs
208        if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
209        return lhs;
210      }
211      if (!isCompAssign)
212        ImpCastExprToType(lhsExpr, rhs); // convert the lhs
213      return rhs;
214    } else if (lhsComplexInt && rhs->isIntegerType()) {
215      // convert the rhs to the lhs complex type.
216      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
217      return lhs;
218    } else if (rhsComplexInt && lhs->isIntegerType()) {
219      // convert the lhs to the rhs complex type.
220      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
221      return rhs;
222    }
223  }
224  // Finally, we have two differing integer types.
225  // The rules for this case are in C99 6.3.1.8
226  int compare = Context.getIntegerTypeOrder(lhs, rhs);
227  bool lhsSigned = lhs->isSignedIntegerType(),
228       rhsSigned = rhs->isSignedIntegerType();
229  QualType destType;
230  if (lhsSigned == rhsSigned) {
231    // Same signedness; use the higher-ranked type
232    destType = compare >= 0 ? lhs : rhs;
233  } else if (compare != (lhsSigned ? 1 : -1)) {
234    // The unsigned type has greater than or equal rank to the
235    // signed type, so use the unsigned type
236    destType = lhsSigned ? rhs : lhs;
237  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
238    // The two types are different widths; if we are here, that
239    // means the signed type is larger than the unsigned type, so
240    // use the signed type.
241    destType = lhsSigned ? lhs : rhs;
242  } else {
243    // The signed type is higher-ranked than the unsigned type,
244    // but isn't actually any bigger (like unsigned int and long
245    // on most 32-bit systems).  Use the unsigned type corresponding
246    // to the signed type.
247    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
248  }
249  if (!isCompAssign) {
250    ImpCastExprToType(lhsExpr, destType);
251    ImpCastExprToType(rhsExpr, destType);
252  }
253  return destType;
254}
255
256//===----------------------------------------------------------------------===//
257//  Semantic Analysis for various Expression Types
258//===----------------------------------------------------------------------===//
259
260
261/// ActOnStringLiteral - The specified tokens were lexed as pasted string
262/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
263/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
264/// multiple tokens.  However, the common case is that StringToks points to one
265/// string.
266///
267Action::ExprResult
268Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
269  assert(NumStringToks && "Must have at least one string!");
270
271  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
272  if (Literal.hadError)
273    return ExprResult(true);
274
275  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
276  for (unsigned i = 0; i != NumStringToks; ++i)
277    StringTokLocs.push_back(StringToks[i].getLocation());
278
279  // Verify that pascal strings aren't too large.
280  if (Literal.Pascal && Literal.GetStringLength() > 256)
281    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long,
282                SourceRange(StringToks[0].getLocation(),
283                            StringToks[NumStringToks-1].getLocation()));
284
285  QualType StrTy = Context.CharTy;
286  if (Literal.AnyWide) StrTy = Context.getWcharType();
287  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
288
289  // Get an array type for the string, according to C99 6.4.5.  This includes
290  // the nul terminator character as well as the string length for pascal
291  // strings.
292  StrTy = Context.getConstantArrayType(StrTy,
293                                   llvm::APInt(32, Literal.GetStringLength()+1),
294                                       ArrayType::Normal, 0);
295
296  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
297  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
298                           Literal.AnyWide, StrTy,
299                           StringToks[0].getLocation(),
300                           StringToks[NumStringToks-1].getLocation());
301}
302
303
304/// ActOnIdentifierExpr - The parser read an identifier in expression context,
305/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
306/// identifier is used in a function call context.
307Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
308                                           IdentifierInfo &II,
309                                           bool HasTrailingLParen) {
310  // Could be enum-constant, value decl, instance variable, etc.
311  Decl *D = LookupDecl(&II, Decl::IDNS_Ordinary, S);
312
313  // If this reference is in an Objective-C method, then ivar lookup happens as
314  // well.
315  if (getCurMethodDecl()) {
316    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
317    // There are two cases to handle here.  1) scoped lookup could have failed,
318    // in which case we should look for an ivar.  2) scoped lookup could have
319    // found a decl, but that decl is outside the current method (i.e. a global
320    // variable).  In these two cases, we do a lookup for an ivar with this
321    // name, if the lookup suceeds, we replace it our current decl.
322    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
323      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
324      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II)) {
325        // FIXME: This should use a new expr for a direct reference, don't turn
326        // this into Self->ivar, just return a BareIVarExpr or something.
327        IdentifierInfo &II = Context.Idents.get("self");
328        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
329        return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
330                                 static_cast<Expr*>(SelfExpr.Val), true, true);
331      }
332    }
333    if (SD == 0 && !strcmp(II.getName(), "super")) {
334      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
335                     getCurMethodDecl()->getClassInterface()));
336      return new ObjCSuperRefExpr(T, Loc);
337    }
338  }
339
340  if (D == 0) {
341    // Otherwise, this could be an implicitly declared function reference (legal
342    // in C90, extension in C99).
343    if (HasTrailingLParen &&
344        !getLangOptions().CPlusPlus) // Not in C++.
345      D = ImplicitlyDefineFunction(Loc, II, S);
346    else {
347      // If this name wasn't predeclared and if this is not a function call,
348      // diagnose the problem.
349      return Diag(Loc, diag::err_undeclared_var_use, II.getName());
350    }
351  }
352
353  if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
354    // check if referencing an identifier with __attribute__((deprecated)).
355    if (VD->getAttr<DeprecatedAttr>())
356      Diag(Loc, diag::warn_deprecated, VD->getName());
357
358    // Only create DeclRefExpr's for valid Decl's.
359    if (VD->isInvalidDecl())
360      return true;
361    return new DeclRefExpr(VD, VD->getType(), Loc);
362  }
363
364  if (CXXFieldDecl *FD = dyn_cast<CXXFieldDecl>(D)) {
365    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
366      if (MD->isStatic())
367        // "invalid use of member 'x' in static member function"
368        return Diag(Loc, diag::err_invalid_member_use_in_static_method,
369                    FD->getName());
370      if (cast<CXXRecordDecl>(MD->getParent()) != FD->getParent())
371        // "invalid use of nonstatic data member 'x'"
372        return Diag(Loc, diag::err_invalid_non_static_member_use,
373                    FD->getName());
374
375      if (FD->isInvalidDecl())
376        return true;
377
378      // FIXME: Use DeclRefExpr or a new Expr for a direct CXXField reference.
379      ExprResult ThisExpr = ActOnCXXThis(SourceLocation());
380      return new MemberExpr(static_cast<Expr*>(ThisExpr.Val),
381                            true, FD, Loc, FD->getType());
382    }
383
384    return Diag(Loc, diag::err_invalid_non_static_member_use, FD->getName());
385  }
386
387  if (isa<TypedefDecl>(D))
388    return Diag(Loc, diag::err_unexpected_typedef, II.getName());
389  if (isa<ObjCInterfaceDecl>(D))
390    return Diag(Loc, diag::err_unexpected_interface, II.getName());
391  if (isa<NamespaceDecl>(D))
392    return Diag(Loc, diag::err_unexpected_namespace, II.getName());
393
394  assert(0 && "Invalid decl");
395  abort();
396}
397
398Sema::ExprResult Sema::ActOnPreDefinedExpr(SourceLocation Loc,
399                                           tok::TokenKind Kind) {
400  PreDefinedExpr::IdentType IT;
401
402  switch (Kind) {
403  default: assert(0 && "Unknown simple primary expr!");
404  case tok::kw___func__: IT = PreDefinedExpr::Func; break; // [C99 6.4.2.2]
405  case tok::kw___FUNCTION__: IT = PreDefinedExpr::Function; break;
406  case tok::kw___PRETTY_FUNCTION__: IT = PreDefinedExpr::PrettyFunction; break;
407  }
408
409  // Verify that this is in a function context.
410  if (getCurFunctionDecl() == 0 && getCurMethodDecl() == 0)
411    return Diag(Loc, diag::err_predef_outside_function);
412
413  // Pre-defined identifiers are of type char[x], where x is the length of the
414  // string.
415  unsigned Length;
416  if (getCurFunctionDecl())
417    Length = getCurFunctionDecl()->getIdentifier()->getLength();
418  else
419    Length = getCurMethodDecl()->getSynthesizedMethodSize();
420
421  llvm::APInt LengthI(32, Length + 1);
422  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
423  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
424  return new PreDefinedExpr(Loc, ResTy, IT);
425}
426
427Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
428  llvm::SmallString<16> CharBuffer;
429  CharBuffer.resize(Tok.getLength());
430  const char *ThisTokBegin = &CharBuffer[0];
431  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
432
433  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
434                            Tok.getLocation(), PP);
435  if (Literal.hadError())
436    return ExprResult(true);
437
438  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
439
440  return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
441                              Tok.getLocation());
442}
443
444Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
445  // fast path for a single digit (which is quite common). A single digit
446  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
447  if (Tok.getLength() == 1) {
448    const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
449
450    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
451    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
452                                         Context.IntTy,
453                                         Tok.getLocation()));
454  }
455  llvm::SmallString<512> IntegerBuffer;
456  IntegerBuffer.resize(Tok.getLength());
457  const char *ThisTokBegin = &IntegerBuffer[0];
458
459  // Get the spelling of the token, which eliminates trigraphs, etc.
460  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
461  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
462                               Tok.getLocation(), PP);
463  if (Literal.hadError)
464    return ExprResult(true);
465
466  Expr *Res;
467
468  if (Literal.isFloatingLiteral()) {
469    QualType Ty;
470    if (Literal.isFloat)
471      Ty = Context.FloatTy;
472    else if (!Literal.isLong)
473      Ty = Context.DoubleTy;
474    else
475      Ty = Context.LongDoubleTy;
476
477    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
478
479    // isExact will be set by GetFloatValue().
480    bool isExact = false;
481    Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
482                              Ty, Tok.getLocation());
483
484  } else if (!Literal.isIntegerLiteral()) {
485    return ExprResult(true);
486  } else {
487    QualType Ty;
488
489    // long long is a C99 feature.
490    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
491        Literal.isLongLong)
492      Diag(Tok.getLocation(), diag::ext_longlong);
493
494    // Get the value in the widest-possible width.
495    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
496
497    if (Literal.GetIntegerValue(ResultVal)) {
498      // If this value didn't fit into uintmax_t, warn and force to ull.
499      Diag(Tok.getLocation(), diag::warn_integer_too_large);
500      Ty = Context.UnsignedLongLongTy;
501      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
502             "long long is not intmax_t?");
503    } else {
504      // If this value fits into a ULL, try to figure out what else it fits into
505      // according to the rules of C99 6.4.4.1p5.
506
507      // Octal, Hexadecimal, and integers with a U suffix are allowed to
508      // be an unsigned int.
509      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
510
511      // Check from smallest to largest, picking the smallest type we can.
512      unsigned Width = 0;
513      if (!Literal.isLong && !Literal.isLongLong) {
514        // Are int/unsigned possibilities?
515        unsigned IntSize = Context.Target.getIntWidth();
516
517        // Does it fit in a unsigned int?
518        if (ResultVal.isIntN(IntSize)) {
519          // Does it fit in a signed int?
520          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
521            Ty = Context.IntTy;
522          else if (AllowUnsigned)
523            Ty = Context.UnsignedIntTy;
524          Width = IntSize;
525        }
526      }
527
528      // Are long/unsigned long possibilities?
529      if (Ty.isNull() && !Literal.isLongLong) {
530        unsigned LongSize = Context.Target.getLongWidth();
531
532        // Does it fit in a unsigned long?
533        if (ResultVal.isIntN(LongSize)) {
534          // Does it fit in a signed long?
535          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
536            Ty = Context.LongTy;
537          else if (AllowUnsigned)
538            Ty = Context.UnsignedLongTy;
539          Width = LongSize;
540        }
541      }
542
543      // Finally, check long long if needed.
544      if (Ty.isNull()) {
545        unsigned LongLongSize = Context.Target.getLongLongWidth();
546
547        // Does it fit in a unsigned long long?
548        if (ResultVal.isIntN(LongLongSize)) {
549          // Does it fit in a signed long long?
550          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
551            Ty = Context.LongLongTy;
552          else if (AllowUnsigned)
553            Ty = Context.UnsignedLongLongTy;
554          Width = LongLongSize;
555        }
556      }
557
558      // If we still couldn't decide a type, we probably have something that
559      // does not fit in a signed long long, but has no U suffix.
560      if (Ty.isNull()) {
561        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
562        Ty = Context.UnsignedLongLongTy;
563        Width = Context.Target.getLongLongWidth();
564      }
565
566      if (ResultVal.getBitWidth() != Width)
567        ResultVal.trunc(Width);
568    }
569
570    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
571  }
572
573  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
574  if (Literal.isImaginary)
575    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
576
577  return Res;
578}
579
580Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
581                                        ExprTy *Val) {
582  Expr *E = (Expr *)Val;
583  assert((E != 0) && "ActOnParenExpr() missing expr");
584  return new ParenExpr(L, R, E);
585}
586
587/// The UsualUnaryConversions() function is *not* called by this routine.
588/// See C99 6.3.2.1p[2-4] for more details.
589QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
590                                         SourceLocation OpLoc,
591                                         const SourceRange &ExprRange,
592                                         bool isSizeof) {
593  // C99 6.5.3.4p1:
594  if (isa<FunctionType>(exprType) && isSizeof)
595    // alignof(function) is allowed.
596    Diag(OpLoc, diag::ext_sizeof_function_type, ExprRange);
597  else if (exprType->isVoidType())
598    Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof",
599         ExprRange);
600  else if (exprType->isIncompleteType()) {
601    Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
602                           diag::err_alignof_incomplete_type,
603         exprType.getAsString(), ExprRange);
604    return QualType(); // error
605  }
606  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
607  return Context.getSizeType();
608}
609
610Action::ExprResult Sema::
611ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
612                           SourceLocation LPLoc, TypeTy *Ty,
613                           SourceLocation RPLoc) {
614  // If error parsing type, ignore.
615  if (Ty == 0) return true;
616
617  // Verify that this is a valid expression.
618  QualType ArgTy = QualType::getFromOpaquePtr(Ty);
619
620  QualType resultType =
621    CheckSizeOfAlignOfOperand(ArgTy, OpLoc, SourceRange(LPLoc, RPLoc),isSizeof);
622
623  if (resultType.isNull())
624    return true;
625  return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
626}
627
628QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
629  DefaultFunctionArrayConversion(V);
630
631  // These operators return the element type of a complex type.
632  if (const ComplexType *CT = V->getType()->getAsComplexType())
633    return CT->getElementType();
634
635  // Otherwise they pass through real integer and floating point types here.
636  if (V->getType()->isArithmeticType())
637    return V->getType();
638
639  // Reject anything else.
640  Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString());
641  return QualType();
642}
643
644
645
646Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc,
647                                             tok::TokenKind Kind,
648                                             ExprTy *Input) {
649  UnaryOperator::Opcode Opc;
650  switch (Kind) {
651  default: assert(0 && "Unknown unary op!");
652  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
653  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
654  }
655  QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
656  if (result.isNull())
657    return true;
658  return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
659}
660
661Action::ExprResult Sema::
662ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
663                        ExprTy *Idx, SourceLocation RLoc) {
664  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
665
666  // Perform default conversions.
667  DefaultFunctionArrayConversion(LHSExp);
668  DefaultFunctionArrayConversion(RHSExp);
669
670  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
671
672  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
673  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
674  // in the subscript position. As a result, we need to derive the array base
675  // and index from the expression types.
676  Expr *BaseExpr, *IndexExpr;
677  QualType ResultType;
678  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
679    BaseExpr = LHSExp;
680    IndexExpr = RHSExp;
681    // FIXME: need to deal with const...
682    ResultType = PTy->getPointeeType();
683  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
684     // Handle the uncommon case of "123[Ptr]".
685    BaseExpr = RHSExp;
686    IndexExpr = LHSExp;
687    // FIXME: need to deal with const...
688    ResultType = PTy->getPointeeType();
689  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
690    BaseExpr = LHSExp;    // vectors: V[123]
691    IndexExpr = RHSExp;
692
693    // Component access limited to variables (reject vec4.rg[1]).
694    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
695        !isa<ExtVectorElementExpr>(BaseExpr))
696      return Diag(LLoc, diag::err_ext_vector_component_access,
697                  SourceRange(LLoc, RLoc));
698    // FIXME: need to deal with const...
699    ResultType = VTy->getElementType();
700  } else {
701    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
702                RHSExp->getSourceRange());
703  }
704  // C99 6.5.2.1p1
705  if (!IndexExpr->getType()->isIntegerType())
706    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
707                IndexExpr->getSourceRange());
708
709  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
710  // the following check catches trying to index a pointer to a function (e.g.
711  // void (*)(int)) and pointers to incomplete types.  Functions are not
712  // objects in C99.
713  if (!ResultType->isObjectType())
714    return Diag(BaseExpr->getLocStart(),
715                diag::err_typecheck_subscript_not_object,
716                BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
717
718  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
719}
720
721QualType Sema::
722CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
723                        IdentifierInfo &CompName, SourceLocation CompLoc) {
724  const ExtVectorType *vecType = baseType->getAsExtVectorType();
725
726  // This flag determines whether or not the component is to be treated as a
727  // special name, or a regular GLSL-style component access.
728  bool SpecialComponent = false;
729
730  // The vector accessor can't exceed the number of elements.
731  const char *compStr = CompName.getName();
732  if (strlen(compStr) > vecType->getNumElements()) {
733    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
734                baseType.getAsString(), SourceRange(CompLoc));
735    return QualType();
736  }
737
738  // Check that we've found one of the special components, or that the component
739  // names must come from the same set.
740  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
741      !strcmp(compStr, "e") || !strcmp(compStr, "o")) {
742    SpecialComponent = true;
743  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
744    do
745      compStr++;
746    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
747  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
748    do
749      compStr++;
750    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
751  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
752    do
753      compStr++;
754    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
755  }
756
757  if (!SpecialComponent && *compStr) {
758    // We didn't get to the end of the string. This means the component names
759    // didn't come from the same set *or* we encountered an illegal name.
760    Diag(OpLoc, diag::err_ext_vector_component_name_illegal,
761         std::string(compStr,compStr+1), SourceRange(CompLoc));
762    return QualType();
763  }
764  // Each component accessor can't exceed the vector type.
765  compStr = CompName.getName();
766  while (*compStr) {
767    if (vecType->isAccessorWithinNumElements(*compStr))
768      compStr++;
769    else
770      break;
771  }
772  if (!SpecialComponent && *compStr) {
773    // We didn't get to the end of the string. This means a component accessor
774    // exceeds the number of elements in the vector.
775    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
776                baseType.getAsString(), SourceRange(CompLoc));
777    return QualType();
778  }
779
780  // If we have a special component name, verify that the current vector length
781  // is an even number, since all special component names return exactly half
782  // the elements.
783  if (SpecialComponent && (vecType->getNumElements() & 1U)) {
784    return QualType();
785  }
786
787  // The component accessor looks fine - now we need to compute the actual type.
788  // The vector type is implied by the component accessor. For example,
789  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
790  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
791  unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
792                                       : strlen(CompName.getName());
793  if (CompSize == 1)
794    return vecType->getElementType();
795
796  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
797  // Now look up the TypeDefDecl from the vector type. Without this,
798  // diagostics look bad. We want extended vector types to appear built-in.
799  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
800    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
801      return Context.getTypedefType(ExtVectorDecls[i]);
802  }
803  return VT; // should never get here (a typedef type should always be found).
804}
805
806Action::ExprResult Sema::
807ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
808                         tok::TokenKind OpKind, SourceLocation MemberLoc,
809                         IdentifierInfo &Member) {
810  Expr *BaseExpr = static_cast<Expr *>(Base);
811  assert(BaseExpr && "no record expression");
812
813  // Perform default conversions.
814  DefaultFunctionArrayConversion(BaseExpr);
815
816  QualType BaseType = BaseExpr->getType();
817  assert(!BaseType.isNull() && "no type for member expression");
818
819  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
820  // must have pointer type, and the accessed type is the pointee.
821  if (OpKind == tok::arrow) {
822    if (const PointerType *PT = BaseType->getAsPointerType())
823      BaseType = PT->getPointeeType();
824    else
825      return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow,
826                  BaseType.getAsString(), BaseExpr->getSourceRange());
827  }
828
829  // Handle field access to simple records.  This also handles access to fields
830  // of the ObjC 'id' struct.
831  if (const RecordType *RTy = BaseType->getAsRecordType()) {
832    RecordDecl *RDecl = RTy->getDecl();
833    if (RTy->isIncompleteType())
834      return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
835                  BaseExpr->getSourceRange());
836    // The record definition is complete, now make sure the member is valid.
837    FieldDecl *MemberDecl = RDecl->getMember(&Member);
838    if (!MemberDecl)
839      return Diag(MemberLoc, diag::err_typecheck_no_member, Member.getName(),
840                  BaseExpr->getSourceRange());
841
842    // Figure out the type of the member; see C99 6.5.2.3p3
843    // FIXME: Handle address space modifiers
844    QualType MemberType = MemberDecl->getType();
845    unsigned combinedQualifiers =
846        MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
847    MemberType = MemberType.getQualifiedType(combinedQualifiers);
848
849    return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl,
850                          MemberLoc, MemberType);
851  }
852
853  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
854  // (*Obj).ivar.
855  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
856    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member))
857      return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
858                                 OpKind == tok::arrow);
859    return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar,
860                IFTy->getDecl()->getName(), Member.getName(),
861                BaseExpr->getSourceRange());
862  }
863
864  // Handle Objective-C property access, which is "Obj.property" where Obj is a
865  // pointer to a (potentially qualified) interface type.
866  const PointerType *PTy;
867  const ObjCInterfaceType *IFTy;
868  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
869      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
870    ObjCInterfaceDecl *IFace = IFTy->getDecl();
871
872    // FIXME: The logic for looking up nullary and unary selectors should be
873    // shared with the code in ActOnInstanceMessage.
874
875    // Before we look for explicit property declarations, we check for
876    // nullary methods (which allow '.' notation).
877    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
878    if (ObjCMethodDecl *MD = IFace->lookupInstanceMethod(Sel))
879      return new ObjCPropertyRefExpr(MD, MD->getResultType(),
880                                     MemberLoc, BaseExpr);
881
882    // If this reference is in an @implementation, check for 'private' methods.
883    if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
884      if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
885        if (ObjCImplementationDecl *ImpDecl =
886              ObjCImplementations[ClassDecl->getIdentifier()])
887          if (ObjCMethodDecl *MD = ImpDecl->getInstanceMethod(Sel))
888            return new ObjCPropertyRefExpr(MD, MD->getResultType(),
889                                           MemberLoc, BaseExpr);
890    }
891
892    // FIXME: Need to deal with setter methods that take 1 argument. E.g.:
893    // @interface NSBundle : NSObject {}
894    // - (NSString *)bundlePath;
895    // - (void)setBundlePath:(NSString *)x;
896    // @end
897    // void someMethod() { frameworkBundle.bundlePath = 0; }
898    //
899    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
900      return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
901
902    // Lastly, check protocols on qualified interfaces.
903    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
904         E = IFTy->qual_end(); I != E; ++I)
905      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
906        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
907  }
908
909  // Handle 'field access' to vectors, such as 'V.xx'.
910  if (BaseType->isExtVectorType() && OpKind == tok::period) {
911    // Component access limited to variables (reject vec4.rg.g).
912    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
913        !isa<ExtVectorElementExpr>(BaseExpr))
914      return Diag(MemberLoc, diag::err_ext_vector_component_access,
915                  BaseExpr->getSourceRange());
916    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
917    if (ret.isNull())
918      return true;
919    return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
920  }
921
922  return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union,
923              BaseType.getAsString(), BaseExpr->getSourceRange());
924}
925
926/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
927/// This provides the location of the left/right parens and a list of comma
928/// locations.
929Action::ExprResult Sema::
930ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
931              ExprTy **args, unsigned NumArgs,
932              SourceLocation *CommaLocs, SourceLocation RParenLoc) {
933  Expr *Fn = static_cast<Expr *>(fn);
934  Expr **Args = reinterpret_cast<Expr**>(args);
935  assert(Fn && "no function call expression");
936  FunctionDecl *FDecl = NULL;
937
938  // Promote the function operand.
939  UsualUnaryConversions(Fn);
940
941  // If we're directly calling a function, get the declaration for
942  // that function.
943  if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
944    if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr()))
945      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
946
947  // Make the call expr early, before semantic checks.  This guarantees cleanup
948  // of arguments and function on error.
949  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
950                                                 Context.BoolTy, RParenLoc));
951
952  // C99 6.5.2.2p1 - "The expression that denotes the called function shall have
953  // type pointer to function".
954  const PointerType *PT = Fn->getType()->getAsPointerType();
955  if (PT == 0)
956    return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
957                SourceRange(Fn->getLocStart(), RParenLoc));
958  const FunctionType *FuncT = PT->getPointeeType()->getAsFunctionType();
959  if (FuncT == 0)
960    return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
961                SourceRange(Fn->getLocStart(), RParenLoc));
962
963  // We know the result type of the call, set it.
964  TheCall->setType(FuncT->getResultType());
965
966  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
967    // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
968    // assignment, to the types of the corresponding parameter, ...
969    unsigned NumArgsInProto = Proto->getNumArgs();
970    unsigned NumArgsToCheck = NumArgs;
971
972    // If too few arguments are available (and we don't have default
973    // arguments for the remaining parameters), don't make the call.
974    if (NumArgs < NumArgsInProto) {
975      if (FDecl && NumArgs >= FDecl->getMinRequiredArguments()) {
976        // Use default arguments for missing arguments
977        NumArgsToCheck = NumArgsInProto;
978        TheCall->setNumArgs(NumArgsInProto);
979      } else
980        return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
981                    Fn->getSourceRange());
982    }
983
984    // If too many are passed and not variadic, error on the extras and drop
985    // them.
986    if (NumArgs > NumArgsInProto) {
987      if (!Proto->isVariadic()) {
988        Diag(Args[NumArgsInProto]->getLocStart(),
989             diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
990             SourceRange(Args[NumArgsInProto]->getLocStart(),
991                         Args[NumArgs-1]->getLocEnd()));
992        // This deletes the extra arguments.
993        TheCall->setNumArgs(NumArgsInProto);
994      }
995      NumArgsToCheck = NumArgsInProto;
996    }
997
998    // Continue to check argument types (even if we have too few/many args).
999    for (unsigned i = 0; i != NumArgsToCheck; i++) {
1000      QualType ProtoArgType = Proto->getArgType(i);
1001
1002      Expr *Arg;
1003      if (i < NumArgs)
1004        Arg = Args[i];
1005      else
1006        Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
1007      QualType ArgType = Arg->getType();
1008
1009      // Compute implicit casts from the operand to the formal argument type.
1010      AssignConvertType ConvTy =
1011        CheckSingleAssignmentConstraints(ProtoArgType, Arg);
1012      TheCall->setArg(i, Arg);
1013
1014      if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType,
1015                                   ArgType, Arg, "passing"))
1016        return true;
1017    }
1018
1019    // If this is a variadic call, handle args passed through "...".
1020    if (Proto->isVariadic()) {
1021      // Promote the arguments (C99 6.5.2.2p7).
1022      for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1023        Expr *Arg = Args[i];
1024        DefaultArgumentPromotion(Arg);
1025        TheCall->setArg(i, Arg);
1026      }
1027    }
1028  } else {
1029    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
1030
1031    // Promote the arguments (C99 6.5.2.2p6).
1032    for (unsigned i = 0; i != NumArgs; i++) {
1033      Expr *Arg = Args[i];
1034      DefaultArgumentPromotion(Arg);
1035      TheCall->setArg(i, Arg);
1036    }
1037  }
1038
1039  // Do special checking on direct calls to functions.
1040  if (FDecl)
1041    return CheckFunctionCall(FDecl, TheCall.take());
1042
1043  return TheCall.take();
1044}
1045
1046Action::ExprResult Sema::
1047ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
1048                     SourceLocation RParenLoc, ExprTy *InitExpr) {
1049  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
1050  QualType literalType = QualType::getFromOpaquePtr(Ty);
1051  // FIXME: put back this assert when initializers are worked out.
1052  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
1053  Expr *literalExpr = static_cast<Expr*>(InitExpr);
1054
1055  if (literalType->isArrayType()) {
1056    if (literalType->getAsVariableArrayType())
1057      return Diag(LParenLoc,
1058                  diag::err_variable_object_no_init,
1059                  SourceRange(LParenLoc,
1060                              literalExpr->getSourceRange().getEnd()));
1061  } else if (literalType->isIncompleteType()) {
1062    return Diag(LParenLoc,
1063                diag::err_typecheck_decl_incomplete_type,
1064                literalType.getAsString(),
1065                SourceRange(LParenLoc,
1066                            literalExpr->getSourceRange().getEnd()));
1067  }
1068
1069  if (CheckInitializerTypes(literalExpr, literalType))
1070    return true;
1071
1072  bool isFileScope = !getCurFunctionDecl() && !getCurMethodDecl();
1073  if (isFileScope) { // 6.5.2.5p3
1074    if (CheckForConstantInitializer(literalExpr, literalType))
1075      return true;
1076  }
1077  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope);
1078}
1079
1080Action::ExprResult Sema::
1081ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
1082              SourceLocation RBraceLoc) {
1083  Expr **InitList = reinterpret_cast<Expr**>(initlist);
1084
1085  // Semantic analysis for initializers is done by ActOnDeclarator() and
1086  // CheckInitializer() - it requires knowledge of the object being intialized.
1087
1088  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc);
1089  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
1090  return E;
1091}
1092
1093bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
1094  assert(VectorTy->isVectorType() && "Not a vector type!");
1095
1096  if (Ty->isVectorType() || Ty->isIntegerType()) {
1097    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
1098      return Diag(R.getBegin(),
1099                  Ty->isVectorType() ?
1100                  diag::err_invalid_conversion_between_vectors :
1101                  diag::err_invalid_conversion_between_vector_and_integer,
1102                  VectorTy.getAsString().c_str(),
1103                  Ty.getAsString().c_str(), R);
1104  } else
1105    return Diag(R.getBegin(),
1106                diag::err_invalid_conversion_between_vector_and_scalar,
1107                VectorTy.getAsString().c_str(),
1108                Ty.getAsString().c_str(), R);
1109
1110  return false;
1111}
1112
1113Action::ExprResult Sema::
1114ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
1115              SourceLocation RParenLoc, ExprTy *Op) {
1116  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
1117
1118  Expr *castExpr = static_cast<Expr*>(Op);
1119  QualType castType = QualType::getFromOpaquePtr(Ty);
1120
1121  UsualUnaryConversions(castExpr);
1122
1123  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
1124  // type needs to be scalar.
1125  if (!castType->isVoidType()) {  // Cast to void allows any expr type.
1126    if (!castType->isScalarType() && !castType->isVectorType()) {
1127      // GCC struct/union extension.
1128      if (castType == castExpr->getType() &&
1129          castType->isStructureType() || castType->isUnionType()) {
1130        Diag(LParenLoc, diag::ext_typecheck_cast_nonscalar,
1131             SourceRange(LParenLoc, RParenLoc));
1132        return new CastExpr(castType, castExpr, LParenLoc);
1133      } else
1134        return Diag(LParenLoc, diag::err_typecheck_cond_expect_scalar,
1135                    castType.getAsString(), SourceRange(LParenLoc, RParenLoc));
1136    }
1137    if (!castExpr->getType()->isScalarType() &&
1138        !castExpr->getType()->isVectorType())
1139      return Diag(castExpr->getLocStart(),
1140                  diag::err_typecheck_expect_scalar_operand,
1141                  castExpr->getType().getAsString(),castExpr->getSourceRange());
1142
1143    if (castExpr->getType()->isVectorType()) {
1144      if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc),
1145                          castExpr->getType(), castType))
1146        return true;
1147    } else if (castType->isVectorType()) {
1148      if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc),
1149                          castType, castExpr->getType()))
1150        return true;
1151    }
1152  }
1153  return new CastExpr(castType, castExpr, LParenLoc);
1154}
1155
1156/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
1157/// In that case, lex = cond.
1158inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
1159  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
1160  UsualUnaryConversions(cond);
1161  UsualUnaryConversions(lex);
1162  UsualUnaryConversions(rex);
1163  QualType condT = cond->getType();
1164  QualType lexT = lex->getType();
1165  QualType rexT = rex->getType();
1166
1167  // first, check the condition.
1168  if (!condT->isScalarType()) { // C99 6.5.15p2
1169    Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
1170         condT.getAsString());
1171    return QualType();
1172  }
1173
1174  // Now check the two expressions.
1175
1176  // If both operands have arithmetic type, do the usual arithmetic conversions
1177  // to find a common type: C99 6.5.15p3,5.
1178  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
1179    UsualArithmeticConversions(lex, rex);
1180    return lex->getType();
1181  }
1182
1183  // If both operands are the same structure or union type, the result is that
1184  // type.
1185  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
1186    if (const RecordType *RHSRT = rexT->getAsRecordType())
1187      if (LHSRT->getDecl() == RHSRT->getDecl())
1188        // "If both the operands have structure or union type, the result has
1189        // that type."  This implies that CV qualifiers are dropped.
1190        return lexT.getUnqualifiedType();
1191  }
1192
1193  // C99 6.5.15p5: "If both operands have void type, the result has void type."
1194  // The following || allows only one side to be void (a GCC-ism).
1195  if (lexT->isVoidType() || rexT->isVoidType()) {
1196    if (!lexT->isVoidType())
1197      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void,
1198           rex->getSourceRange());
1199    if (!rexT->isVoidType())
1200      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void,
1201           lex->getSourceRange());
1202    ImpCastExprToType(lex, Context.VoidTy);
1203    ImpCastExprToType(rex, Context.VoidTy);
1204    return Context.VoidTy;
1205  }
1206  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
1207  // the type of the other operand."
1208  if (lexT->isPointerType() && rex->isNullPointerConstant(Context)) {
1209    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
1210    return lexT;
1211  }
1212  if (rexT->isPointerType() && lex->isNullPointerConstant(Context)) {
1213    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
1214    return rexT;
1215  }
1216  // Handle the case where both operands are pointers before we handle null
1217  // pointer constants in case both operands are null pointer constants.
1218  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
1219    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
1220      // get the "pointed to" types
1221      QualType lhptee = LHSPT->getPointeeType();
1222      QualType rhptee = RHSPT->getPointeeType();
1223
1224      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
1225      if (lhptee->isVoidType() &&
1226          rhptee->isIncompleteOrObjectType()) {
1227        // Figure out necessary qualifiers (C99 6.5.15p6)
1228        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
1229        QualType destType = Context.getPointerType(destPointee);
1230        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1231        ImpCastExprToType(rex, destType); // promote to void*
1232        return destType;
1233      }
1234      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
1235        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
1236        QualType destType = Context.getPointerType(destPointee);
1237        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1238        ImpCastExprToType(rex, destType); // promote to void*
1239        return destType;
1240      }
1241
1242      if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1243                                      rhptee.getUnqualifiedType())) {
1244        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers,
1245             lexT.getAsString(), rexT.getAsString(),
1246             lex->getSourceRange(), rex->getSourceRange());
1247        // In this situation, we assume void* type. No especially good
1248        // reason, but this is what gcc does, and we do have to pick
1249        // to get a consistent AST.
1250        QualType voidPtrTy = Context.getPointerType(Context.VoidTy);
1251        ImpCastExprToType(lex, voidPtrTy);
1252        ImpCastExprToType(rex, voidPtrTy);
1253        return voidPtrTy;
1254      }
1255      // The pointer types are compatible.
1256      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
1257      // differently qualified versions of compatible types, the result type is
1258      // a pointer to an appropriately qualified version of the *composite*
1259      // type.
1260      // FIXME: Need to calculate the composite type.
1261      // FIXME: Need to add qualifiers
1262      QualType compositeType = lexT;
1263      ImpCastExprToType(lex, compositeType);
1264      ImpCastExprToType(rex, compositeType);
1265      return compositeType;
1266    }
1267  }
1268  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
1269  // evaluates to "struct objc_object *" (and is handled above when comparing
1270  // id with statically typed objects). FIXME: Do we need an ImpCastExprToType?
1271  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
1272    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true))
1273      return Context.getObjCIdType();
1274  }
1275  // Otherwise, the operands are not compatible.
1276  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
1277       lexT.getAsString(), rexT.getAsString(),
1278       lex->getSourceRange(), rex->getSourceRange());
1279  return QualType();
1280}
1281
1282/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
1283/// in the case of a the GNU conditional expr extension.
1284Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
1285                                            SourceLocation ColonLoc,
1286                                            ExprTy *Cond, ExprTy *LHS,
1287                                            ExprTy *RHS) {
1288  Expr *CondExpr = (Expr *) Cond;
1289  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
1290
1291  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
1292  // was the condition.
1293  bool isLHSNull = LHSExpr == 0;
1294  if (isLHSNull)
1295    LHSExpr = CondExpr;
1296
1297  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
1298                                             RHSExpr, QuestionLoc);
1299  if (result.isNull())
1300    return true;
1301  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
1302                                 RHSExpr, result);
1303}
1304
1305
1306// CheckPointerTypesForAssignment - This is a very tricky routine (despite
1307// being closely modeled after the C99 spec:-). The odd characteristic of this
1308// routine is it effectively iqnores the qualifiers on the top level pointee.
1309// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
1310// FIXME: add a couple examples in this comment.
1311Sema::AssignConvertType
1312Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
1313  QualType lhptee, rhptee;
1314
1315  // get the "pointed to" type (ignoring qualifiers at the top level)
1316  lhptee = lhsType->getAsPointerType()->getPointeeType();
1317  rhptee = rhsType->getAsPointerType()->getPointeeType();
1318
1319  // make sure we operate on the canonical type
1320  lhptee = lhptee.getCanonicalType();
1321  rhptee = rhptee.getCanonicalType();
1322
1323  AssignConvertType ConvTy = Compatible;
1324
1325  // C99 6.5.16.1p1: This following citation is common to constraints
1326  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
1327  // qualifiers of the type *pointed to* by the right;
1328  // FIXME: Handle ASQualType
1329  if ((lhptee.getCVRQualifiers() & rhptee.getCVRQualifiers()) !=
1330       rhptee.getCVRQualifiers())
1331    ConvTy = CompatiblePointerDiscardsQualifiers;
1332
1333  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
1334  // incomplete type and the other is a pointer to a qualified or unqualified
1335  // version of void...
1336  if (lhptee->isVoidType()) {
1337    if (rhptee->isIncompleteOrObjectType())
1338      return ConvTy;
1339
1340    // As an extension, we allow cast to/from void* to function pointer.
1341    assert(rhptee->isFunctionType());
1342    return FunctionVoidPointer;
1343  }
1344
1345  if (rhptee->isVoidType()) {
1346    if (lhptee->isIncompleteOrObjectType())
1347      return ConvTy;
1348
1349    // As an extension, we allow cast to/from void* to function pointer.
1350    assert(lhptee->isFunctionType());
1351    return FunctionVoidPointer;
1352  }
1353
1354  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
1355  // unqualified versions of compatible types, ...
1356  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1357                                  rhptee.getUnqualifiedType()))
1358    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
1359  return ConvTy;
1360}
1361
1362/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
1363/// has code to accommodate several GCC extensions when type checking
1364/// pointers. Here are some objectionable examples that GCC considers warnings:
1365///
1366///  int a, *pint;
1367///  short *pshort;
1368///  struct foo *pfoo;
1369///
1370///  pint = pshort; // warning: assignment from incompatible pointer type
1371///  a = pint; // warning: assignment makes integer from pointer without a cast
1372///  pint = a; // warning: assignment makes pointer from integer without a cast
1373///  pint = pfoo; // warning: assignment from incompatible pointer type
1374///
1375/// As a result, the code for dealing with pointers is more complex than the
1376/// C99 spec dictates.
1377///
1378Sema::AssignConvertType
1379Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
1380  // Get canonical types.  We're not formatting these types, just comparing
1381  // them.
1382  lhsType = lhsType.getCanonicalType().getUnqualifiedType();
1383  rhsType = rhsType.getCanonicalType().getUnqualifiedType();
1384
1385  if (lhsType == rhsType)
1386    return Compatible; // Common case: fast path an exact match.
1387
1388  if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
1389    if (Context.typesAreCompatible(lhsType, rhsType))
1390      return Compatible;
1391    return Incompatible;
1392  }
1393
1394  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
1395    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
1396      return Compatible;
1397    // Relax integer conversions like we do for pointers below.
1398    if (rhsType->isIntegerType())
1399      return IntToPointer;
1400    if (lhsType->isIntegerType())
1401      return PointerToInt;
1402    return Incompatible;
1403  }
1404
1405  if (lhsType->isVectorType() || rhsType->isVectorType()) {
1406    // For ExtVector, allow vector splats; float -> <n x float>
1407    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
1408      if (LV->getElementType() == rhsType)
1409        return Compatible;
1410
1411    // If we are allowing lax vector conversions, and LHS and RHS are both
1412    // vectors, the total size only needs to be the same. This is a bitcast;
1413    // no bits are changed but the result type is different.
1414    if (getLangOptions().LaxVectorConversions &&
1415        lhsType->isVectorType() && rhsType->isVectorType()) {
1416      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
1417        return Compatible;
1418    }
1419    return Incompatible;
1420  }
1421
1422  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
1423    return Compatible;
1424
1425  if (isa<PointerType>(lhsType)) {
1426    if (rhsType->isIntegerType())
1427      return IntToPointer;
1428
1429    if (isa<PointerType>(rhsType))
1430      return CheckPointerTypesForAssignment(lhsType, rhsType);
1431    return Incompatible;
1432  }
1433
1434  if (isa<PointerType>(rhsType)) {
1435    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
1436    if (lhsType == Context.BoolTy)
1437      return Compatible;
1438
1439    if (lhsType->isIntegerType())
1440      return PointerToInt;
1441
1442    if (isa<PointerType>(lhsType))
1443      return CheckPointerTypesForAssignment(lhsType, rhsType);
1444    return Incompatible;
1445  }
1446
1447  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
1448    if (Context.typesAreCompatible(lhsType, rhsType))
1449      return Compatible;
1450  }
1451  return Incompatible;
1452}
1453
1454Sema::AssignConvertType
1455Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
1456  // C99 6.5.16.1p1: the left operand is a pointer and the right is
1457  // a null pointer constant.
1458  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType())
1459      && rExpr->isNullPointerConstant(Context)) {
1460    ImpCastExprToType(rExpr, lhsType);
1461    return Compatible;
1462  }
1463  // This check seems unnatural, however it is necessary to ensure the proper
1464  // conversion of functions/arrays. If the conversion were done for all
1465  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
1466  // expressions that surpress this implicit conversion (&, sizeof).
1467  //
1468  // Suppress this for references: C99 8.5.3p5.  FIXME: revisit when references
1469  // are better understood.
1470  if (!lhsType->isReferenceType())
1471    DefaultFunctionArrayConversion(rExpr);
1472
1473  Sema::AssignConvertType result =
1474    CheckAssignmentConstraints(lhsType, rExpr->getType());
1475
1476  // C99 6.5.16.1p2: The value of the right operand is converted to the
1477  // type of the assignment expression.
1478  if (rExpr->getType() != lhsType)
1479    ImpCastExprToType(rExpr, lhsType);
1480  return result;
1481}
1482
1483Sema::AssignConvertType
1484Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
1485  return CheckAssignmentConstraints(lhsType, rhsType);
1486}
1487
1488QualType Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
1489  Diag(loc, diag::err_typecheck_invalid_operands,
1490       lex->getType().getAsString(), rex->getType().getAsString(),
1491       lex->getSourceRange(), rex->getSourceRange());
1492  return QualType();
1493}
1494
1495inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
1496                                                              Expr *&rex) {
1497  // For conversion purposes, we ignore any qualifiers.
1498  // For example, "const float" and "float" are equivalent.
1499  QualType lhsType = lex->getType().getCanonicalType().getUnqualifiedType();
1500  QualType rhsType = rex->getType().getCanonicalType().getUnqualifiedType();
1501
1502  // If the vector types are identical, return.
1503  if (lhsType == rhsType)
1504    return lhsType;
1505
1506  // Handle the case of a vector & extvector type of the same size and element
1507  // type.  It would be nice if we only had one vector type someday.
1508  if (getLangOptions().LaxVectorConversions)
1509    if (const VectorType *LV = lhsType->getAsVectorType())
1510      if (const VectorType *RV = rhsType->getAsVectorType())
1511        if (LV->getElementType() == RV->getElementType() &&
1512            LV->getNumElements() == RV->getNumElements())
1513          return lhsType->isExtVectorType() ? lhsType : rhsType;
1514
1515  // If the lhs is an extended vector and the rhs is a scalar of the same type
1516  // or a literal, promote the rhs to the vector type.
1517  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
1518    QualType eltType = V->getElementType();
1519
1520    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
1521        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
1522        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
1523      ImpCastExprToType(rex, lhsType);
1524      return lhsType;
1525    }
1526  }
1527
1528  // If the rhs is an extended vector and the lhs is a scalar of the same type,
1529  // promote the lhs to the vector type.
1530  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
1531    QualType eltType = V->getElementType();
1532
1533    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
1534        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
1535        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
1536      ImpCastExprToType(lex, rhsType);
1537      return rhsType;
1538    }
1539  }
1540
1541  // You cannot convert between vector values of different size.
1542  Diag(loc, diag::err_typecheck_vector_not_convertable,
1543       lex->getType().getAsString(), rex->getType().getAsString(),
1544       lex->getSourceRange(), rex->getSourceRange());
1545  return QualType();
1546}
1547
1548inline QualType Sema::CheckMultiplyDivideOperands(
1549  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1550{
1551  QualType lhsType = lex->getType(), rhsType = rex->getType();
1552
1553  if (lhsType->isVectorType() || rhsType->isVectorType())
1554    return CheckVectorOperands(loc, lex, rex);
1555
1556  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1557
1558  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1559    return compType;
1560  return InvalidOperands(loc, lex, rex);
1561}
1562
1563inline QualType Sema::CheckRemainderOperands(
1564  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1565{
1566  QualType lhsType = lex->getType(), rhsType = rex->getType();
1567
1568  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1569
1570  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1571    return compType;
1572  return InvalidOperands(loc, lex, rex);
1573}
1574
1575inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
1576  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1577{
1578  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1579    return CheckVectorOperands(loc, lex, rex);
1580
1581  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1582
1583  // handle the common case first (both operands are arithmetic).
1584  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1585    return compType;
1586
1587  // Put any potential pointer into PExp
1588  Expr* PExp = lex, *IExp = rex;
1589  if (IExp->getType()->isPointerType())
1590    std::swap(PExp, IExp);
1591
1592  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
1593    if (IExp->getType()->isIntegerType()) {
1594      // Check for arithmetic on pointers to incomplete types
1595      if (!PTy->getPointeeType()->isObjectType()) {
1596        if (PTy->getPointeeType()->isVoidType()) {
1597          Diag(loc, diag::ext_gnu_void_ptr,
1598               lex->getSourceRange(), rex->getSourceRange());
1599        } else {
1600          Diag(loc, diag::err_typecheck_arithmetic_incomplete_type,
1601               lex->getType().getAsString(), lex->getSourceRange());
1602          return QualType();
1603        }
1604      }
1605      return PExp->getType();
1606    }
1607  }
1608
1609  return InvalidOperands(loc, lex, rex);
1610}
1611
1612// C99 6.5.6
1613QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
1614                                        SourceLocation loc, bool isCompAssign) {
1615  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1616    return CheckVectorOperands(loc, lex, rex);
1617
1618  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1619
1620  // Enforce type constraints: C99 6.5.6p3.
1621
1622  // Handle the common case first (both operands are arithmetic).
1623  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1624    return compType;
1625
1626  // Either ptr - int   or   ptr - ptr.
1627  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
1628    QualType lpointee = LHSPTy->getPointeeType();
1629
1630    // The LHS must be an object type, not incomplete, function, etc.
1631    if (!lpointee->isObjectType()) {
1632      // Handle the GNU void* extension.
1633      if (lpointee->isVoidType()) {
1634        Diag(loc, diag::ext_gnu_void_ptr,
1635             lex->getSourceRange(), rex->getSourceRange());
1636      } else {
1637        Diag(loc, diag::err_typecheck_sub_ptr_object,
1638             lex->getType().getAsString(), lex->getSourceRange());
1639        return QualType();
1640      }
1641    }
1642
1643    // The result type of a pointer-int computation is the pointer type.
1644    if (rex->getType()->isIntegerType())
1645      return lex->getType();
1646
1647    // Handle pointer-pointer subtractions.
1648    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
1649      QualType rpointee = RHSPTy->getPointeeType();
1650
1651      // RHS must be an object type, unless void (GNU).
1652      if (!rpointee->isObjectType()) {
1653        // Handle the GNU void* extension.
1654        if (rpointee->isVoidType()) {
1655          if (!lpointee->isVoidType())
1656            Diag(loc, diag::ext_gnu_void_ptr,
1657                 lex->getSourceRange(), rex->getSourceRange());
1658        } else {
1659          Diag(loc, diag::err_typecheck_sub_ptr_object,
1660               rex->getType().getAsString(), rex->getSourceRange());
1661          return QualType();
1662        }
1663      }
1664
1665      // Pointee types must be compatible.
1666      if (!Context.typesAreCompatible(lpointee.getUnqualifiedType(),
1667                                      rpointee.getUnqualifiedType())) {
1668        Diag(loc, diag::err_typecheck_sub_ptr_compatible,
1669             lex->getType().getAsString(), rex->getType().getAsString(),
1670             lex->getSourceRange(), rex->getSourceRange());
1671        return QualType();
1672      }
1673
1674      return Context.getPointerDiffType();
1675    }
1676  }
1677
1678  return InvalidOperands(loc, lex, rex);
1679}
1680
1681// C99 6.5.7
1682QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
1683                                  bool isCompAssign) {
1684  // C99 6.5.7p2: Each of the operands shall have integer type.
1685  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
1686    return InvalidOperands(loc, lex, rex);
1687
1688  // Shifts don't perform usual arithmetic conversions, they just do integer
1689  // promotions on each operand. C99 6.5.7p3
1690  if (!isCompAssign)
1691    UsualUnaryConversions(lex);
1692  UsualUnaryConversions(rex);
1693
1694  // "The type of the result is that of the promoted left operand."
1695  return lex->getType();
1696}
1697
1698// C99 6.5.8
1699QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
1700                                    bool isRelational) {
1701  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1702    return CheckVectorCompareOperands(lex, rex, loc, isRelational);
1703
1704  // C99 6.5.8p3 / C99 6.5.9p4
1705  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1706    UsualArithmeticConversions(lex, rex);
1707  else {
1708    UsualUnaryConversions(lex);
1709    UsualUnaryConversions(rex);
1710  }
1711  QualType lType = lex->getType();
1712  QualType rType = rex->getType();
1713
1714  // For non-floating point types, check for self-comparisons of the form
1715  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
1716  // often indicate logic errors in the program.
1717  if (!lType->isFloatingType()) {
1718    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
1719      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
1720        if (DRL->getDecl() == DRR->getDecl())
1721          Diag(loc, diag::warn_selfcomparison);
1722  }
1723
1724  if (isRelational) {
1725    if (lType->isRealType() && rType->isRealType())
1726      return Context.IntTy;
1727  } else {
1728    // Check for comparisons of floating point operands using != and ==.
1729    if (lType->isFloatingType()) {
1730      assert (rType->isFloatingType());
1731      CheckFloatComparison(loc,lex,rex);
1732    }
1733
1734    if (lType->isArithmeticType() && rType->isArithmeticType())
1735      return Context.IntTy;
1736  }
1737
1738  bool LHSIsNull = lex->isNullPointerConstant(Context);
1739  bool RHSIsNull = rex->isNullPointerConstant(Context);
1740
1741  // All of the following pointer related warnings are GCC extensions, except
1742  // when handling null pointer constants. One day, we can consider making them
1743  // errors (when -pedantic-errors is enabled).
1744  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
1745    QualType LCanPointeeTy =
1746      lType->getAsPointerType()->getPointeeType().getCanonicalType();
1747    QualType RCanPointeeTy =
1748      rType->getAsPointerType()->getPointeeType().getCanonicalType();
1749
1750    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
1751        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
1752        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
1753                                    RCanPointeeTy.getUnqualifiedType())) {
1754      Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
1755           lType.getAsString(), rType.getAsString(),
1756           lex->getSourceRange(), rex->getSourceRange());
1757    }
1758    ImpCastExprToType(rex, lType); // promote the pointer to pointer
1759    return Context.IntTy;
1760  }
1761  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
1762    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
1763      ImpCastExprToType(rex, lType);
1764      return Context.IntTy;
1765    }
1766  }
1767  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
1768       rType->isIntegerType()) {
1769    if (!RHSIsNull)
1770      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1771           lType.getAsString(), rType.getAsString(),
1772           lex->getSourceRange(), rex->getSourceRange());
1773    ImpCastExprToType(rex, lType); // promote the integer to pointer
1774    return Context.IntTy;
1775  }
1776  if (lType->isIntegerType() &&
1777      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
1778    if (!LHSIsNull)
1779      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1780           lType.getAsString(), rType.getAsString(),
1781           lex->getSourceRange(), rex->getSourceRange());
1782    ImpCastExprToType(lex, rType); // promote the integer to pointer
1783    return Context.IntTy;
1784  }
1785  return InvalidOperands(loc, lex, rex);
1786}
1787
1788/// CheckVectorCompareOperands - vector comparisons are a clang extension that
1789/// operates on extended vector types.  Instead of producing an IntTy result,
1790/// like a scalar comparison, a vector comparison produces a vector of integer
1791/// types.
1792QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
1793                                          SourceLocation loc,
1794                                          bool isRelational) {
1795  // Check to make sure we're operating on vectors of the same type and width,
1796  // Allowing one side to be a scalar of element type.
1797  QualType vType = CheckVectorOperands(loc, lex, rex);
1798  if (vType.isNull())
1799    return vType;
1800
1801  QualType lType = lex->getType();
1802  QualType rType = rex->getType();
1803
1804  // For non-floating point types, check for self-comparisons of the form
1805  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
1806  // often indicate logic errors in the program.
1807  if (!lType->isFloatingType()) {
1808    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
1809      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
1810        if (DRL->getDecl() == DRR->getDecl())
1811          Diag(loc, diag::warn_selfcomparison);
1812  }
1813
1814  // Check for comparisons of floating point operands using != and ==.
1815  if (!isRelational && lType->isFloatingType()) {
1816    assert (rType->isFloatingType());
1817    CheckFloatComparison(loc,lex,rex);
1818  }
1819
1820  // Return the type for the comparison, which is the same as vector type for
1821  // integer vectors, or an integer type of identical size and number of
1822  // elements for floating point vectors.
1823  if (lType->isIntegerType())
1824    return lType;
1825
1826  const VectorType *VTy = lType->getAsVectorType();
1827
1828  // FIXME: need to deal with non-32b int / non-64b long long
1829  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
1830  if (TypeSize == 32) {
1831    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
1832  }
1833  assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
1834  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
1835}
1836
1837inline QualType Sema::CheckBitwiseOperands(
1838  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1839{
1840  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1841    return CheckVectorOperands(loc, lex, rex);
1842
1843  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1844
1845  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1846    return compType;
1847  return InvalidOperands(loc, lex, rex);
1848}
1849
1850inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
1851  Expr *&lex, Expr *&rex, SourceLocation loc)
1852{
1853  UsualUnaryConversions(lex);
1854  UsualUnaryConversions(rex);
1855
1856  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
1857    return Context.IntTy;
1858  return InvalidOperands(loc, lex, rex);
1859}
1860
1861inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
1862  Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType)
1863{
1864  QualType lhsType = lex->getType();
1865  QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
1866  Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue();
1867
1868  switch (mlval) { // C99 6.5.16p2
1869  case Expr::MLV_Valid:
1870    break;
1871  case Expr::MLV_ConstQualified:
1872    Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
1873    return QualType();
1874  case Expr::MLV_ArrayType:
1875    Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
1876         lhsType.getAsString(), lex->getSourceRange());
1877    return QualType();
1878  case Expr::MLV_NotObjectType:
1879    Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
1880         lhsType.getAsString(), lex->getSourceRange());
1881    return QualType();
1882  case Expr::MLV_InvalidExpression:
1883    Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
1884         lex->getSourceRange());
1885    return QualType();
1886  case Expr::MLV_IncompleteType:
1887  case Expr::MLV_IncompleteVoidType:
1888    Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
1889         lhsType.getAsString(), lex->getSourceRange());
1890    return QualType();
1891  case Expr::MLV_DuplicateVectorComponents:
1892    Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
1893         lex->getSourceRange());
1894    return QualType();
1895  }
1896
1897  AssignConvertType ConvTy;
1898  if (compoundType.isNull())
1899    ConvTy = CheckSingleAssignmentConstraints(lhsType, rex);
1900  else
1901    ConvTy = CheckCompoundAssignmentConstraints(lhsType, rhsType);
1902
1903  if (DiagnoseAssignmentResult(ConvTy, loc, lhsType, rhsType,
1904                               rex, "assigning"))
1905    return QualType();
1906
1907  // C99 6.5.16p3: The type of an assignment expression is the type of the
1908  // left operand unless the left operand has qualified type, in which case
1909  // it is the unqualified version of the type of the left operand.
1910  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
1911  // is converted to the type of the assignment expression (above).
1912  // C++ 5.17p1: the type of the assignment expression is that of its left
1913  // oprdu.
1914  return lhsType.getUnqualifiedType();
1915}
1916
1917inline QualType Sema::CheckCommaOperands( // C99 6.5.17
1918  Expr *&lex, Expr *&rex, SourceLocation loc) {
1919
1920  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
1921  DefaultFunctionArrayConversion(rex);
1922  return rex->getType();
1923}
1924
1925/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
1926/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
1927QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
1928  QualType resType = op->getType();
1929  assert(!resType.isNull() && "no type for increment/decrement expression");
1930
1931  // C99 6.5.2.4p1: We allow complex as a GCC extension.
1932  if (const PointerType *pt = resType->getAsPointerType()) {
1933    if (pt->getPointeeType()->isVoidType()) {
1934      Diag(OpLoc, diag::ext_gnu_void_ptr, op->getSourceRange());
1935    } else if (!pt->getPointeeType()->isObjectType()) {
1936      // C99 6.5.2.4p2, 6.5.6p2
1937      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
1938           resType.getAsString(), op->getSourceRange());
1939      return QualType();
1940    }
1941  } else if (!resType->isRealType()) {
1942    if (resType->isComplexType())
1943      // C99 does not support ++/-- on complex types.
1944      Diag(OpLoc, diag::ext_integer_increment_complex,
1945           resType.getAsString(), op->getSourceRange());
1946    else {
1947      Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
1948           resType.getAsString(), op->getSourceRange());
1949      return QualType();
1950    }
1951  }
1952  // At this point, we know we have a real, complex or pointer type.
1953  // Now make sure the operand is a modifiable lvalue.
1954  Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue();
1955  if (mlval != Expr::MLV_Valid) {
1956    // FIXME: emit a more precise diagnostic...
1957    Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
1958         op->getSourceRange());
1959    return QualType();
1960  }
1961  return resType;
1962}
1963
1964/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
1965/// This routine allows us to typecheck complex/recursive expressions
1966/// where the declaration is needed for type checking. Here are some
1967/// examples: &s.xx, &s.zz[1].yy, &(1+2), &(XX), &"123"[2].
1968static ValueDecl *getPrimaryDecl(Expr *E) {
1969  switch (E->getStmtClass()) {
1970  case Stmt::DeclRefExprClass:
1971    return cast<DeclRefExpr>(E)->getDecl();
1972  case Stmt::MemberExprClass:
1973    // Fields cannot be declared with a 'register' storage class.
1974    // &X->f is always ok, even if X is declared register.
1975    if (cast<MemberExpr>(E)->isArrow())
1976      return 0;
1977    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
1978  case Stmt::ArraySubscriptExprClass: {
1979    // &X[4] and &4[X] is invalid if X is invalid and X is not a pointer.
1980
1981    ValueDecl *VD = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
1982    if (!VD || VD->getType()->isPointerType())
1983      return 0;
1984    else
1985      return VD;
1986  }
1987  case Stmt::UnaryOperatorClass:
1988    return getPrimaryDecl(cast<UnaryOperator>(E)->getSubExpr());
1989  case Stmt::ParenExprClass:
1990    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
1991  case Stmt::ImplicitCastExprClass:
1992    // &X[4] when X is an array, has an implicit cast from array to pointer.
1993    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
1994  default:
1995    return 0;
1996  }
1997}
1998
1999/// CheckAddressOfOperand - The operand of & must be either a function
2000/// designator or an lvalue designating an object. If it is an lvalue, the
2001/// object cannot be declared with storage class register or be a bit field.
2002/// Note: The usual conversions are *not* applied to the operand of the &
2003/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
2004QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
2005  if (getLangOptions().C99) {
2006    // Implement C99-only parts of addressof rules.
2007    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
2008      if (uOp->getOpcode() == UnaryOperator::Deref)
2009        // Per C99 6.5.3.2, the address of a deref always returns a valid result
2010        // (assuming the deref expression is valid).
2011        return uOp->getSubExpr()->getType();
2012    }
2013    // Technically, there should be a check for array subscript
2014    // expressions here, but the result of one is always an lvalue anyway.
2015  }
2016  ValueDecl *dcl = getPrimaryDecl(op);
2017  Expr::isLvalueResult lval = op->isLvalue();
2018
2019  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
2020    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
2021      // FIXME: emit more specific diag...
2022      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
2023           op->getSourceRange());
2024      return QualType();
2025    }
2026  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
2027    if (MemExpr->getMemberDecl()->isBitField()) {
2028      Diag(OpLoc, diag::err_typecheck_address_of,
2029           std::string("bit-field"), op->getSourceRange());
2030      return QualType();
2031    }
2032  // Check for Apple extension for accessing vector components.
2033  } else if (isa<ArraySubscriptExpr>(op) &&
2034           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
2035    Diag(OpLoc, diag::err_typecheck_address_of,
2036         std::string("vector"), op->getSourceRange());
2037    return QualType();
2038  } else if (dcl) { // C99 6.5.3.2p1
2039    // We have an lvalue with a decl. Make sure the decl is not declared
2040    // with the register storage-class specifier.
2041    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
2042      if (vd->getStorageClass() == VarDecl::Register) {
2043        Diag(OpLoc, diag::err_typecheck_address_of,
2044             std::string("register variable"), op->getSourceRange());
2045        return QualType();
2046      }
2047    } else
2048      assert(0 && "Unknown/unexpected decl type");
2049  }
2050  // If the operand has type "type", the result has type "pointer to type".
2051  return Context.getPointerType(op->getType());
2052}
2053
2054QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
2055  UsualUnaryConversions(op);
2056  QualType qType = op->getType();
2057
2058  if (const PointerType *PT = qType->getAsPointerType()) {
2059    // Note that per both C89 and C99, this is always legal, even
2060    // if ptype is an incomplete type or void.
2061    // It would be possible to warn about dereferencing a
2062    // void pointer, but it's completely well-defined,
2063    // and such a warning is unlikely to catch any mistakes.
2064    return PT->getPointeeType();
2065  }
2066  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
2067       qType.getAsString(), op->getSourceRange());
2068  return QualType();
2069}
2070
2071static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
2072  tok::TokenKind Kind) {
2073  BinaryOperator::Opcode Opc;
2074  switch (Kind) {
2075  default: assert(0 && "Unknown binop!");
2076  case tok::star:                 Opc = BinaryOperator::Mul; break;
2077  case tok::slash:                Opc = BinaryOperator::Div; break;
2078  case tok::percent:              Opc = BinaryOperator::Rem; break;
2079  case tok::plus:                 Opc = BinaryOperator::Add; break;
2080  case tok::minus:                Opc = BinaryOperator::Sub; break;
2081  case tok::lessless:             Opc = BinaryOperator::Shl; break;
2082  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
2083  case tok::lessequal:            Opc = BinaryOperator::LE; break;
2084  case tok::less:                 Opc = BinaryOperator::LT; break;
2085  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
2086  case tok::greater:              Opc = BinaryOperator::GT; break;
2087  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
2088  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
2089  case tok::amp:                  Opc = BinaryOperator::And; break;
2090  case tok::caret:                Opc = BinaryOperator::Xor; break;
2091  case tok::pipe:                 Opc = BinaryOperator::Or; break;
2092  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
2093  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
2094  case tok::equal:                Opc = BinaryOperator::Assign; break;
2095  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
2096  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
2097  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
2098  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
2099  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
2100  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
2101  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
2102  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
2103  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
2104  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
2105  case tok::comma:                Opc = BinaryOperator::Comma; break;
2106  }
2107  return Opc;
2108}
2109
2110static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
2111  tok::TokenKind Kind) {
2112  UnaryOperator::Opcode Opc;
2113  switch (Kind) {
2114  default: assert(0 && "Unknown unary op!");
2115  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
2116  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
2117  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
2118  case tok::star:         Opc = UnaryOperator::Deref; break;
2119  case tok::plus:         Opc = UnaryOperator::Plus; break;
2120  case tok::minus:        Opc = UnaryOperator::Minus; break;
2121  case tok::tilde:        Opc = UnaryOperator::Not; break;
2122  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
2123  case tok::kw_sizeof:    Opc = UnaryOperator::SizeOf; break;
2124  case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
2125  case tok::kw___real:    Opc = UnaryOperator::Real; break;
2126  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
2127  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
2128  }
2129  return Opc;
2130}
2131
2132// Binary Operators.  'Tok' is the token for the operator.
2133Action::ExprResult Sema::ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
2134                                    ExprTy *LHS, ExprTy *RHS) {
2135  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
2136  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
2137
2138  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
2139  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
2140
2141  QualType ResultTy;  // Result type of the binary operator.
2142  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
2143
2144  switch (Opc) {
2145  default:
2146    assert(0 && "Unknown binary expr!");
2147  case BinaryOperator::Assign:
2148    ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
2149    break;
2150  case BinaryOperator::Mul:
2151  case BinaryOperator::Div:
2152    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
2153    break;
2154  case BinaryOperator::Rem:
2155    ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
2156    break;
2157  case BinaryOperator::Add:
2158    ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
2159    break;
2160  case BinaryOperator::Sub:
2161    ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
2162    break;
2163  case BinaryOperator::Shl:
2164  case BinaryOperator::Shr:
2165    ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
2166    break;
2167  case BinaryOperator::LE:
2168  case BinaryOperator::LT:
2169  case BinaryOperator::GE:
2170  case BinaryOperator::GT:
2171    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true);
2172    break;
2173  case BinaryOperator::EQ:
2174  case BinaryOperator::NE:
2175    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false);
2176    break;
2177  case BinaryOperator::And:
2178  case BinaryOperator::Xor:
2179  case BinaryOperator::Or:
2180    ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
2181    break;
2182  case BinaryOperator::LAnd:
2183  case BinaryOperator::LOr:
2184    ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
2185    break;
2186  case BinaryOperator::MulAssign:
2187  case BinaryOperator::DivAssign:
2188    CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true);
2189    if (!CompTy.isNull())
2190      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2191    break;
2192  case BinaryOperator::RemAssign:
2193    CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true);
2194    if (!CompTy.isNull())
2195      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2196    break;
2197  case BinaryOperator::AddAssign:
2198    CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true);
2199    if (!CompTy.isNull())
2200      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2201    break;
2202  case BinaryOperator::SubAssign:
2203    CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true);
2204    if (!CompTy.isNull())
2205      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2206    break;
2207  case BinaryOperator::ShlAssign:
2208  case BinaryOperator::ShrAssign:
2209    CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true);
2210    if (!CompTy.isNull())
2211      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2212    break;
2213  case BinaryOperator::AndAssign:
2214  case BinaryOperator::XorAssign:
2215  case BinaryOperator::OrAssign:
2216    CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true);
2217    if (!CompTy.isNull())
2218      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2219    break;
2220  case BinaryOperator::Comma:
2221    ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
2222    break;
2223  }
2224  if (ResultTy.isNull())
2225    return true;
2226  if (CompTy.isNull())
2227    return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc);
2228  else
2229    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc);
2230}
2231
2232// Unary Operators.  'Tok' is the token for the operator.
2233Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
2234                                      ExprTy *input) {
2235  Expr *Input = (Expr*)input;
2236  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
2237  QualType resultType;
2238  switch (Opc) {
2239  default:
2240    assert(0 && "Unimplemented unary expr!");
2241  case UnaryOperator::PreInc:
2242  case UnaryOperator::PreDec:
2243    resultType = CheckIncrementDecrementOperand(Input, OpLoc);
2244    break;
2245  case UnaryOperator::AddrOf:
2246    resultType = CheckAddressOfOperand(Input, OpLoc);
2247    break;
2248  case UnaryOperator::Deref:
2249    DefaultFunctionArrayConversion(Input);
2250    resultType = CheckIndirectionOperand(Input, OpLoc);
2251    break;
2252  case UnaryOperator::Plus:
2253  case UnaryOperator::Minus:
2254    UsualUnaryConversions(Input);
2255    resultType = Input->getType();
2256    if (!resultType->isArithmeticType())  // C99 6.5.3.3p1
2257      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2258                  resultType.getAsString());
2259    break;
2260  case UnaryOperator::Not: // bitwise complement
2261    UsualUnaryConversions(Input);
2262    resultType = Input->getType();
2263    // C99 6.5.3.3p1. We allow complex as a GCC extension.
2264    if (!resultType->isIntegerType()) {
2265      if (resultType->isComplexType())
2266        // C99 does not support '~' for complex conjugation.
2267        Diag(OpLoc, diag::ext_integer_complement_complex,
2268                    resultType.getAsString());
2269      else
2270        return Diag(OpLoc, diag::err_typecheck_unary_expr,
2271                    resultType.getAsString());
2272    }
2273    break;
2274  case UnaryOperator::LNot: // logical negation
2275    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
2276    DefaultFunctionArrayConversion(Input);
2277    resultType = Input->getType();
2278    if (!resultType->isScalarType()) // C99 6.5.3.3p1
2279      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2280                  resultType.getAsString());
2281    // LNot always has type int. C99 6.5.3.3p5.
2282    resultType = Context.IntTy;
2283    break;
2284  case UnaryOperator::SizeOf:
2285    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc,
2286                                           Input->getSourceRange(), true);
2287    break;
2288  case UnaryOperator::AlignOf:
2289    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc,
2290                                           Input->getSourceRange(), false);
2291    break;
2292  case UnaryOperator::Real:
2293  case UnaryOperator::Imag:
2294    resultType = CheckRealImagOperand(Input, OpLoc);
2295    break;
2296  case UnaryOperator::Extension:
2297    resultType = Input->getType();
2298    break;
2299  }
2300  if (resultType.isNull())
2301    return true;
2302  return new UnaryOperator(Input, Opc, resultType, OpLoc);
2303}
2304
2305/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
2306Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
2307                                      SourceLocation LabLoc,
2308                                      IdentifierInfo *LabelII) {
2309  // Look up the record for this label identifier.
2310  LabelStmt *&LabelDecl = LabelMap[LabelII];
2311
2312  // If we haven't seen this label yet, create a forward reference.
2313  if (LabelDecl == 0)
2314    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
2315
2316  // Create the AST node.  The address of a label always has type 'void*'.
2317  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
2318                           Context.getPointerType(Context.VoidTy));
2319}
2320
2321Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
2322                                     SourceLocation RPLoc) { // "({..})"
2323  Stmt *SubStmt = static_cast<Stmt*>(substmt);
2324  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
2325  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
2326
2327  // FIXME: there are a variety of strange constraints to enforce here, for
2328  // example, it is not possible to goto into a stmt expression apparently.
2329  // More semantic analysis is needed.
2330
2331  // FIXME: the last statement in the compount stmt has its value used.  We
2332  // should not warn about it being unused.
2333
2334  // If there are sub stmts in the compound stmt, take the type of the last one
2335  // as the type of the stmtexpr.
2336  QualType Ty = Context.VoidTy;
2337
2338  if (!Compound->body_empty())
2339    if (Expr *LastExpr = dyn_cast<Expr>(Compound->body_back()))
2340      Ty = LastExpr->getType();
2341
2342  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
2343}
2344
2345Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
2346                                            SourceLocation TypeLoc,
2347                                            TypeTy *argty,
2348                                            OffsetOfComponent *CompPtr,
2349                                            unsigned NumComponents,
2350                                            SourceLocation RPLoc) {
2351  QualType ArgTy = QualType::getFromOpaquePtr(argty);
2352  assert(!ArgTy.isNull() && "Missing type argument!");
2353
2354  // We must have at least one component that refers to the type, and the first
2355  // one is known to be a field designator.  Verify that the ArgTy represents
2356  // a struct/union/class.
2357  if (!ArgTy->isRecordType())
2358    return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString());
2359
2360  // Otherwise, create a compound literal expression as the base, and
2361  // iteratively process the offsetof designators.
2362  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
2363
2364  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
2365  // GCC extension, diagnose them.
2366  if (NumComponents != 1)
2367    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator,
2368         SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd));
2369
2370  for (unsigned i = 0; i != NumComponents; ++i) {
2371    const OffsetOfComponent &OC = CompPtr[i];
2372    if (OC.isBrackets) {
2373      // Offset of an array sub-field.  TODO: Should we allow vector elements?
2374      const ArrayType *AT = Res->getType()->getAsArrayType();
2375      if (!AT) {
2376        delete Res;
2377        return Diag(OC.LocEnd, diag::err_offsetof_array_type,
2378                    Res->getType().getAsString());
2379      }
2380
2381      // FIXME: C++: Verify that operator[] isn't overloaded.
2382
2383      // C99 6.5.2.1p1
2384      Expr *Idx = static_cast<Expr*>(OC.U.E);
2385      if (!Idx->getType()->isIntegerType())
2386        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript,
2387                    Idx->getSourceRange());
2388
2389      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
2390      continue;
2391    }
2392
2393    const RecordType *RC = Res->getType()->getAsRecordType();
2394    if (!RC) {
2395      delete Res;
2396      return Diag(OC.LocEnd, diag::err_offsetof_record_type,
2397                  Res->getType().getAsString());
2398    }
2399
2400    // Get the decl corresponding to this.
2401    RecordDecl *RD = RC->getDecl();
2402    FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
2403    if (!MemberDecl)
2404      return Diag(BuiltinLoc, diag::err_typecheck_no_member,
2405                  OC.U.IdentInfo->getName(),
2406                  SourceRange(OC.LocStart, OC.LocEnd));
2407
2408    // FIXME: C++: Verify that MemberDecl isn't a static field.
2409    // FIXME: Verify that MemberDecl isn't a bitfield.
2410    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
2411    // matter here.
2412    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType());
2413  }
2414
2415  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
2416                           BuiltinLoc);
2417}
2418
2419
2420Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
2421                                                TypeTy *arg1, TypeTy *arg2,
2422                                                SourceLocation RPLoc) {
2423  QualType argT1 = QualType::getFromOpaquePtr(arg1);
2424  QualType argT2 = QualType::getFromOpaquePtr(arg2);
2425
2426  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
2427
2428  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
2429}
2430
2431Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
2432                                       ExprTy *expr1, ExprTy *expr2,
2433                                       SourceLocation RPLoc) {
2434  Expr *CondExpr = static_cast<Expr*>(cond);
2435  Expr *LHSExpr = static_cast<Expr*>(expr1);
2436  Expr *RHSExpr = static_cast<Expr*>(expr2);
2437
2438  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
2439
2440  // The conditional expression is required to be a constant expression.
2441  llvm::APSInt condEval(32);
2442  SourceLocation ExpLoc;
2443  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
2444    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
2445                 CondExpr->getSourceRange());
2446
2447  // If the condition is > zero, then the AST type is the same as the LSHExpr.
2448  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
2449                                               RHSExpr->getType();
2450  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
2451}
2452
2453/// ExprsMatchFnType - return true if the Exprs in array Args have
2454/// QualTypes that match the QualTypes of the arguments of the FnType.
2455/// The number of arguments has already been validated to match the number of
2456/// arguments in FnType.
2457static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType) {
2458  unsigned NumParams = FnType->getNumArgs();
2459  for (unsigned i = 0; i != NumParams; ++i) {
2460    QualType ExprTy = Args[i]->getType().getCanonicalType();
2461    QualType ParmTy = FnType->getArgType(i).getCanonicalType();
2462
2463    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
2464      return false;
2465  }
2466  return true;
2467}
2468
2469Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
2470                                         SourceLocation *CommaLocs,
2471                                         SourceLocation BuiltinLoc,
2472                                         SourceLocation RParenLoc) {
2473  // __builtin_overload requires at least 2 arguments
2474  if (NumArgs < 2)
2475    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2476                SourceRange(BuiltinLoc, RParenLoc));
2477
2478  // The first argument is required to be a constant expression.  It tells us
2479  // the number of arguments to pass to each of the functions to be overloaded.
2480  Expr **Args = reinterpret_cast<Expr**>(args);
2481  Expr *NParamsExpr = Args[0];
2482  llvm::APSInt constEval(32);
2483  SourceLocation ExpLoc;
2484  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
2485    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2486                NParamsExpr->getSourceRange());
2487
2488  // Verify that the number of parameters is > 0
2489  unsigned NumParams = constEval.getZExtValue();
2490  if (NumParams == 0)
2491    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2492                NParamsExpr->getSourceRange());
2493  // Verify that we have at least 1 + NumParams arguments to the builtin.
2494  if ((NumParams + 1) > NumArgs)
2495    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2496                SourceRange(BuiltinLoc, RParenLoc));
2497
2498  // Figure out the return type, by matching the args to one of the functions
2499  // listed after the parameters.
2500  OverloadExpr *OE = 0;
2501  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
2502    // UsualUnaryConversions will convert the function DeclRefExpr into a
2503    // pointer to function.
2504    Expr *Fn = UsualUnaryConversions(Args[i]);
2505    FunctionTypeProto *FnType = 0;
2506    if (const PointerType *PT = Fn->getType()->getAsPointerType()) {
2507      QualType PointeeType = PT->getPointeeType().getCanonicalType();
2508      FnType = dyn_cast<FunctionTypeProto>(PointeeType);
2509    }
2510
2511    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
2512    // parameters, and the number of parameters must match the value passed to
2513    // the builtin.
2514    if (!FnType || (FnType->getNumArgs() != NumParams))
2515      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype,
2516                  Fn->getSourceRange());
2517
2518    // Scan the parameter list for the FunctionType, checking the QualType of
2519    // each parameter against the QualTypes of the arguments to the builtin.
2520    // If they match, return a new OverloadExpr.
2521    if (ExprsMatchFnType(Args+1, FnType)) {
2522      if (OE)
2523        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match,
2524                    OE->getFn()->getSourceRange());
2525      // Remember our match, and continue processing the remaining arguments
2526      // to catch any errors.
2527      OE = new OverloadExpr(Args, NumArgs, i, FnType->getResultType(),
2528                            BuiltinLoc, RParenLoc);
2529    }
2530  }
2531  // Return the newly created OverloadExpr node, if we succeded in matching
2532  // exactly one of the candidate functions.
2533  if (OE)
2534    return OE;
2535
2536  // If we didn't find a matching function Expr in the __builtin_overload list
2537  // the return an error.
2538  std::string typeNames;
2539  for (unsigned i = 0; i != NumParams; ++i) {
2540    if (i != 0) typeNames += ", ";
2541    typeNames += Args[i+1]->getType().getAsString();
2542  }
2543
2544  return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames,
2545              SourceRange(BuiltinLoc, RParenLoc));
2546}
2547
2548Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
2549                                  ExprTy *expr, TypeTy *type,
2550                                  SourceLocation RPLoc) {
2551  Expr *E = static_cast<Expr*>(expr);
2552  QualType T = QualType::getFromOpaquePtr(type);
2553
2554  InitBuiltinVaListType();
2555
2556  if (CheckAssignmentConstraints(Context.getBuiltinVaListType(), E->getType())
2557      != Compatible)
2558    return Diag(E->getLocStart(),
2559                diag::err_first_argument_to_va_arg_not_of_type_va_list,
2560                E->getType().getAsString(),
2561                E->getSourceRange());
2562
2563  // FIXME: Warn if a non-POD type is passed in.
2564
2565  return new VAArgExpr(BuiltinLoc, E, T, RPLoc);
2566}
2567
2568bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
2569                                    SourceLocation Loc,
2570                                    QualType DstType, QualType SrcType,
2571                                    Expr *SrcExpr, const char *Flavor) {
2572  // Decode the result (notice that AST's are still created for extensions).
2573  bool isInvalid = false;
2574  unsigned DiagKind;
2575  switch (ConvTy) {
2576  default: assert(0 && "Unknown conversion type");
2577  case Compatible: return false;
2578  case PointerToInt:
2579    DiagKind = diag::ext_typecheck_convert_pointer_int;
2580    break;
2581  case IntToPointer:
2582    DiagKind = diag::ext_typecheck_convert_int_pointer;
2583    break;
2584  case IncompatiblePointer:
2585    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
2586    break;
2587  case FunctionVoidPointer:
2588    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
2589    break;
2590  case CompatiblePointerDiscardsQualifiers:
2591    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
2592    break;
2593  case Incompatible:
2594    DiagKind = diag::err_typecheck_convert_incompatible;
2595    isInvalid = true;
2596    break;
2597  }
2598
2599  Diag(Loc, DiagKind, DstType.getAsString(), SrcType.getAsString(), Flavor,
2600       SrcExpr->getSourceRange());
2601  return isInvalid;
2602}
2603