SemaExpr.cpp revision fb2200e50a2a0ad9ebe37487a7259579b059cc70
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/AnalysisBasedWarnings.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/RecursiveASTVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/LiteralSupport.h"
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/Designator.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "clang/Sema/ParsedTemplate.h"
38#include "clang/Sema/Template.h"
39using namespace clang;
40using namespace sema;
41
42
43/// \brief Determine whether the use of this declaration is valid, and
44/// emit any corresponding diagnostics.
45///
46/// This routine diagnoses various problems with referencing
47/// declarations that can occur when using a declaration. For example,
48/// it might warn if a deprecated or unavailable declaration is being
49/// used, or produce an error (and return true) if a C++0x deleted
50/// function is being used.
51///
52/// If IgnoreDeprecated is set to true, this should not want about deprecated
53/// decls.
54///
55/// \returns true if there was an error (this declaration cannot be
56/// referenced), false otherwise.
57///
58bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
59  // See if the decl is deprecated.
60  if (D->getAttr<DeprecatedAttr>()) {
61    EmitDeprecationWarning(D, Loc);
62  }
63
64  // See if the decl is unavailable
65  if (D->getAttr<UnavailableAttr>()) {
66    Diag(Loc, diag::err_unavailable) << D->getDeclName();
67    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
68  }
69
70  // See if this is a deleted function.
71  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
72    if (FD->isDeleted()) {
73      Diag(Loc, diag::err_deleted_function_use);
74      Diag(D->getLocation(), diag::note_unavailable_here) << true;
75      return true;
76    }
77  }
78
79  return false;
80}
81
82/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
83/// (and other functions in future), which have been declared with sentinel
84/// attribute. It warns if call does not have the sentinel argument.
85///
86void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
87                                 Expr **Args, unsigned NumArgs) {
88  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
89  if (!attr)
90    return;
91
92  // FIXME: In C++0x, if any of the arguments are parameter pack
93  // expansions, we can't check for the sentinel now.
94  int sentinelPos = attr->getSentinel();
95  int nullPos = attr->getNullPos();
96
97  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
98  // base class. Then we won't be needing two versions of the same code.
99  unsigned int i = 0;
100  bool warnNotEnoughArgs = false;
101  int isMethod = 0;
102  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
103    // skip over named parameters.
104    ObjCMethodDecl::param_iterator P, E = MD->param_end();
105    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
106      if (nullPos)
107        --nullPos;
108      else
109        ++i;
110    }
111    warnNotEnoughArgs = (P != E || i >= NumArgs);
112    isMethod = 1;
113  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
114    // skip over named parameters.
115    ObjCMethodDecl::param_iterator P, E = FD->param_end();
116    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
117      if (nullPos)
118        --nullPos;
119      else
120        ++i;
121    }
122    warnNotEnoughArgs = (P != E || i >= NumArgs);
123  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
124    // block or function pointer call.
125    QualType Ty = V->getType();
126    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
127      const FunctionType *FT = Ty->isFunctionPointerType()
128      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
129      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
130      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
131        unsigned NumArgsInProto = Proto->getNumArgs();
132        unsigned k;
133        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
134          if (nullPos)
135            --nullPos;
136          else
137            ++i;
138        }
139        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
140      }
141      if (Ty->isBlockPointerType())
142        isMethod = 2;
143    } else
144      return;
145  } else
146    return;
147
148  if (warnNotEnoughArgs) {
149    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
150    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
151    return;
152  }
153  int sentinel = i;
154  while (sentinelPos > 0 && i < NumArgs-1) {
155    --sentinelPos;
156    ++i;
157  }
158  if (sentinelPos > 0) {
159    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
160    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
161    return;
162  }
163  while (i < NumArgs-1) {
164    ++i;
165    ++sentinel;
166  }
167  Expr *sentinelExpr = Args[sentinel];
168  if (!sentinelExpr) return;
169  if (sentinelExpr->isTypeDependent()) return;
170  if (sentinelExpr->isValueDependent()) return;
171  if (sentinelExpr->getType()->isAnyPointerType() &&
172      sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
173                                            Expr::NPC_ValueDependentIsNull))
174    return;
175
176  // Unfortunately, __null has type 'int'.
177  if (isa<GNUNullExpr>(sentinelExpr)) return;
178
179  Diag(Loc, diag::warn_missing_sentinel) << isMethod;
180  Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
181}
182
183SourceRange Sema::getExprRange(ExprTy *E) const {
184  Expr *Ex = (Expr *)E;
185  return Ex? Ex->getSourceRange() : SourceRange();
186}
187
188//===----------------------------------------------------------------------===//
189//  Standard Promotions and Conversions
190//===----------------------------------------------------------------------===//
191
192/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
193void Sema::DefaultFunctionArrayConversion(Expr *&E) {
194  QualType Ty = E->getType();
195  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
196
197  if (Ty->isFunctionType())
198    ImpCastExprToType(E, Context.getPointerType(Ty),
199                      CK_FunctionToPointerDecay);
200  else if (Ty->isArrayType()) {
201    // In C90 mode, arrays only promote to pointers if the array expression is
202    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
203    // type 'array of type' is converted to an expression that has type 'pointer
204    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
205    // that has type 'array of type' ...".  The relevant change is "an lvalue"
206    // (C90) to "an expression" (C99).
207    //
208    // C++ 4.2p1:
209    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
210    // T" can be converted to an rvalue of type "pointer to T".
211    //
212    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
213        E->isLvalue(Context) == Expr::LV_Valid)
214      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
215                        CK_ArrayToPointerDecay);
216  }
217}
218
219void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
220  DefaultFunctionArrayConversion(E);
221
222  QualType Ty = E->getType();
223  assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type");
224  if (!Ty->isDependentType() && Ty.hasQualifiers() &&
225      (!getLangOptions().CPlusPlus || !Ty->isRecordType()) &&
226      E->isLvalue(Context) == Expr::LV_Valid) {
227    // C++ [conv.lval]p1:
228    //   [...] If T is a non-class type, the type of the rvalue is the
229    //   cv-unqualified version of T. Otherwise, the type of the
230    //   rvalue is T
231    //
232    // C99 6.3.2.1p2:
233    //   If the lvalue has qualified type, the value has the unqualified
234    //   version of the type of the lvalue; otherwise, the value has the
235    //   type of the lvalue.
236    ImpCastExprToType(E, Ty.getUnqualifiedType(), CK_NoOp);
237  }
238}
239
240
241/// UsualUnaryConversions - Performs various conversions that are common to most
242/// operators (C99 6.3). The conversions of array and function types are
243/// sometimes surpressed. For example, the array->pointer conversion doesn't
244/// apply if the array is an argument to the sizeof or address (&) operators.
245/// In these instances, this routine should *not* be called.
246Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
247  QualType Ty = Expr->getType();
248  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
249
250  // C99 6.3.1.1p2:
251  //
252  //   The following may be used in an expression wherever an int or
253  //   unsigned int may be used:
254  //     - an object or expression with an integer type whose integer
255  //       conversion rank is less than or equal to the rank of int
256  //       and unsigned int.
257  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
258  //
259  //   If an int can represent all values of the original type, the
260  //   value is converted to an int; otherwise, it is converted to an
261  //   unsigned int. These are called the integer promotions. All
262  //   other types are unchanged by the integer promotions.
263  QualType PTy = Context.isPromotableBitField(Expr);
264  if (!PTy.isNull()) {
265    ImpCastExprToType(Expr, PTy, CK_IntegralCast);
266    return Expr;
267  }
268  if (Ty->isPromotableIntegerType()) {
269    QualType PT = Context.getPromotedIntegerType(Ty);
270    ImpCastExprToType(Expr, PT, CK_IntegralCast);
271    return Expr;
272  }
273
274  DefaultFunctionArrayLvalueConversion(Expr);
275  return Expr;
276}
277
278/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
279/// do not have a prototype. Arguments that have type float are promoted to
280/// double. All other argument types are converted by UsualUnaryConversions().
281void Sema::DefaultArgumentPromotion(Expr *&Expr) {
282  QualType Ty = Expr->getType();
283  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
284
285  // If this is a 'float' (CVR qualified or typedef) promote to double.
286  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
287    return ImpCastExprToType(Expr, Context.DoubleTy,
288                             CK_FloatingCast);
289
290  UsualUnaryConversions(Expr);
291}
292
293/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
294/// will warn if the resulting type is not a POD type, and rejects ObjC
295/// interfaces passed by value.  This returns true if the argument type is
296/// completely illegal.
297bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT,
298                                            FunctionDecl *FDecl) {
299  DefaultArgumentPromotion(Expr);
300
301  // __builtin_va_start takes the second argument as a "varargs" argument, but
302  // it doesn't actually do anything with it.  It doesn't need to be non-pod
303  // etc.
304  if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
305    return false;
306
307  if (Expr->getType()->isObjCObjectType() &&
308      DiagRuntimeBehavior(Expr->getLocStart(),
309        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
310          << Expr->getType() << CT))
311    return true;
312
313  if (!Expr->getType()->isPODType() &&
314      DiagRuntimeBehavior(Expr->getLocStart(),
315                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
316                            << Expr->getType() << CT))
317    return true;
318
319  return false;
320}
321
322
323/// UsualArithmeticConversions - Performs various conversions that are common to
324/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
325/// routine returns the first non-arithmetic type found. The client is
326/// responsible for emitting appropriate error diagnostics.
327/// FIXME: verify the conversion rules for "complex int" are consistent with
328/// GCC.
329QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
330                                          bool isCompAssign) {
331  if (!isCompAssign)
332    UsualUnaryConversions(lhsExpr);
333
334  UsualUnaryConversions(rhsExpr);
335
336  // For conversion purposes, we ignore any qualifiers.
337  // For example, "const float" and "float" are equivalent.
338  QualType lhs =
339    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
340  QualType rhs =
341    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
342
343  // If both types are identical, no conversion is needed.
344  if (lhs == rhs)
345    return lhs;
346
347  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
348  // The caller can deal with this (e.g. pointer + int).
349  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
350    return lhs;
351
352  // Perform bitfield promotions.
353  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
354  if (!LHSBitfieldPromoteTy.isNull())
355    lhs = LHSBitfieldPromoteTy;
356  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
357  if (!RHSBitfieldPromoteTy.isNull())
358    rhs = RHSBitfieldPromoteTy;
359
360  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
361  if (!isCompAssign)
362    ImpCastExprToType(lhsExpr, destType, CK_Unknown);
363  ImpCastExprToType(rhsExpr, destType, CK_Unknown);
364  return destType;
365}
366
367//===----------------------------------------------------------------------===//
368//  Semantic Analysis for various Expression Types
369//===----------------------------------------------------------------------===//
370
371
372/// ActOnStringLiteral - The specified tokens were lexed as pasted string
373/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
374/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
375/// multiple tokens.  However, the common case is that StringToks points to one
376/// string.
377///
378ExprResult
379Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
380  assert(NumStringToks && "Must have at least one string!");
381
382  StringLiteralParser Literal(StringToks, NumStringToks, PP);
383  if (Literal.hadError)
384    return ExprError();
385
386  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
387  for (unsigned i = 0; i != NumStringToks; ++i)
388    StringTokLocs.push_back(StringToks[i].getLocation());
389
390  QualType StrTy = Context.CharTy;
391  if (Literal.AnyWide) StrTy = Context.getWCharType();
392  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
393
394  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
395  if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
396    StrTy.addConst();
397
398  // Get an array type for the string, according to C99 6.4.5.  This includes
399  // the nul terminator character as well as the string length for pascal
400  // strings.
401  StrTy = Context.getConstantArrayType(StrTy,
402                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
403                                       ArrayType::Normal, 0);
404
405  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
406  return Owned(StringLiteral::Create(Context, Literal.GetString(),
407                                     Literal.GetStringLength(),
408                                     Literal.AnyWide, StrTy,
409                                     &StringTokLocs[0],
410                                     StringTokLocs.size()));
411}
412
413/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
414/// CurBlock to VD should cause it to be snapshotted (as we do for auto
415/// variables defined outside the block) or false if this is not needed (e.g.
416/// for values inside the block or for globals).
417///
418/// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records
419/// up-to-date.
420///
421static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock,
422                                              ValueDecl *VD) {
423  // If the value is defined inside the block, we couldn't snapshot it even if
424  // we wanted to.
425  if (CurBlock->TheDecl == VD->getDeclContext())
426    return false;
427
428  // If this is an enum constant or function, it is constant, don't snapshot.
429  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
430    return false;
431
432  // If this is a reference to an extern, static, or global variable, no need to
433  // snapshot it.
434  // FIXME: What about 'const' variables in C++?
435  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
436    if (!Var->hasLocalStorage())
437      return false;
438
439  // Blocks that have these can't be constant.
440  CurBlock->hasBlockDeclRefExprs = true;
441
442  // If we have nested blocks, the decl may be declared in an outer block (in
443  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
444  // be defined outside all of the current blocks (in which case the blocks do
445  // all get the bit).  Walk the nesting chain.
446  for (unsigned I = S.FunctionScopes.size() - 1; I; --I) {
447    BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]);
448
449    if (!NextBlock)
450      continue;
451
452    // If we found the defining block for the variable, don't mark the block as
453    // having a reference outside it.
454    if (NextBlock->TheDecl == VD->getDeclContext())
455      break;
456
457    // Otherwise, the DeclRef from the inner block causes the outer one to need
458    // a snapshot as well.
459    NextBlock->hasBlockDeclRefExprs = true;
460  }
461
462  return true;
463}
464
465
466ExprResult
467Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
468                       const CXXScopeSpec *SS) {
469  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
470  return BuildDeclRefExpr(D, Ty, NameInfo, SS);
471}
472
473/// BuildDeclRefExpr - Build a DeclRefExpr.
474ExprResult
475Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty,
476                       const DeclarationNameInfo &NameInfo,
477                       const CXXScopeSpec *SS) {
478  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
479    Diag(NameInfo.getLoc(),
480         diag::err_auto_variable_cannot_appear_in_own_initializer)
481      << D->getDeclName();
482    return ExprError();
483  }
484
485  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
486    if (isa<NonTypeTemplateParmDecl>(VD)) {
487      // Non-type template parameters can be referenced anywhere they are
488      // visible.
489      Ty = Ty.getNonLValueExprType(Context);
490    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
491      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
492        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
493          Diag(NameInfo.getLoc(),
494               diag::err_reference_to_local_var_in_enclosing_function)
495            << D->getIdentifier() << FD->getDeclName();
496          Diag(D->getLocation(), diag::note_local_variable_declared_here)
497            << D->getIdentifier();
498          return ExprError();
499        }
500      }
501    }
502  }
503
504  MarkDeclarationReferenced(NameInfo.getLoc(), D);
505
506  return Owned(DeclRefExpr::Create(Context,
507                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
508                                   SS? SS->getRange() : SourceRange(),
509                                   D, NameInfo, Ty));
510}
511
512/// \brief Given a field that represents a member of an anonymous
513/// struct/union, build the path from that field's context to the
514/// actual member.
515///
516/// Construct the sequence of field member references we'll have to
517/// perform to get to the field in the anonymous union/struct. The
518/// list of members is built from the field outward, so traverse it
519/// backwards to go from an object in the current context to the field
520/// we found.
521///
522/// \returns The variable from which the field access should begin,
523/// for an anonymous struct/union that is not a member of another
524/// class. Otherwise, returns NULL.
525VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
526                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
527  assert(Field->getDeclContext()->isRecord() &&
528         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
529         && "Field must be stored inside an anonymous struct or union");
530
531  Path.push_back(Field);
532  VarDecl *BaseObject = 0;
533  DeclContext *Ctx = Field->getDeclContext();
534  do {
535    RecordDecl *Record = cast<RecordDecl>(Ctx);
536    ValueDecl *AnonObject = Record->getAnonymousStructOrUnionObject();
537    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
538      Path.push_back(AnonField);
539    else {
540      BaseObject = cast<VarDecl>(AnonObject);
541      break;
542    }
543    Ctx = Ctx->getParent();
544  } while (Ctx->isRecord() &&
545           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
546
547  return BaseObject;
548}
549
550ExprResult
551Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
552                                               FieldDecl *Field,
553                                               Expr *BaseObjectExpr,
554                                               SourceLocation OpLoc) {
555  llvm::SmallVector<FieldDecl *, 4> AnonFields;
556  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
557                                                            AnonFields);
558
559  // Build the expression that refers to the base object, from
560  // which we will build a sequence of member references to each
561  // of the anonymous union objects and, eventually, the field we
562  // found via name lookup.
563  bool BaseObjectIsPointer = false;
564  Qualifiers BaseQuals;
565  if (BaseObject) {
566    // BaseObject is an anonymous struct/union variable (and is,
567    // therefore, not part of another non-anonymous record).
568    MarkDeclarationReferenced(Loc, BaseObject);
569    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
570                                               SourceLocation());
571    BaseQuals
572      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
573  } else if (BaseObjectExpr) {
574    // The caller provided the base object expression. Determine
575    // whether its a pointer and whether it adds any qualifiers to the
576    // anonymous struct/union fields we're looking into.
577    QualType ObjectType = BaseObjectExpr->getType();
578    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
579      BaseObjectIsPointer = true;
580      ObjectType = ObjectPtr->getPointeeType();
581    }
582    BaseQuals
583      = Context.getCanonicalType(ObjectType).getQualifiers();
584  } else {
585    // We've found a member of an anonymous struct/union that is
586    // inside a non-anonymous struct/union, so in a well-formed
587    // program our base object expression is "this".
588    DeclContext *DC = getFunctionLevelDeclContext();
589    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
590      if (!MD->isStatic()) {
591        QualType AnonFieldType
592          = Context.getTagDeclType(
593                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
594        QualType ThisType = Context.getTagDeclType(MD->getParent());
595        if ((Context.getCanonicalType(AnonFieldType)
596               == Context.getCanonicalType(ThisType)) ||
597            IsDerivedFrom(ThisType, AnonFieldType)) {
598          // Our base object expression is "this".
599          BaseObjectExpr = new (Context) CXXThisExpr(Loc,
600                                                     MD->getThisType(Context),
601                                                     /*isImplicit=*/true);
602          BaseObjectIsPointer = true;
603        }
604      } else {
605        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
606          << Field->getDeclName());
607      }
608      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
609    }
610
611    if (!BaseObjectExpr)
612      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
613        << Field->getDeclName());
614  }
615
616  // Build the implicit member references to the field of the
617  // anonymous struct/union.
618  Expr *Result = BaseObjectExpr;
619  Qualifiers ResultQuals = BaseQuals;
620  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
621         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
622       FI != FIEnd; ++FI) {
623    QualType MemberType = (*FI)->getType();
624    Qualifiers MemberTypeQuals =
625      Context.getCanonicalType(MemberType).getQualifiers();
626
627    // CVR attributes from the base are picked up by members,
628    // except that 'mutable' members don't pick up 'const'.
629    if ((*FI)->isMutable())
630      ResultQuals.removeConst();
631
632    // GC attributes are never picked up by members.
633    ResultQuals.removeObjCGCAttr();
634
635    // TR 18037 does not allow fields to be declared with address spaces.
636    assert(!MemberTypeQuals.hasAddressSpace());
637
638    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
639    if (NewQuals != MemberTypeQuals)
640      MemberType = Context.getQualifiedType(MemberType, NewQuals);
641
642    MarkDeclarationReferenced(Loc, *FI);
643    PerformObjectMemberConversion(Result, /*FIXME:Qualifier=*/0, *FI, *FI);
644    // FIXME: Might this end up being a qualified name?
645    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
646                                      OpLoc, MemberType);
647    BaseObjectIsPointer = false;
648    ResultQuals = NewQuals;
649  }
650
651  return Owned(Result);
652}
653
654/// Decomposes the given name into a DeclarationNameInfo, its location, and
655/// possibly a list of template arguments.
656///
657/// If this produces template arguments, it is permitted to call
658/// DecomposeTemplateName.
659///
660/// This actually loses a lot of source location information for
661/// non-standard name kinds; we should consider preserving that in
662/// some way.
663static void DecomposeUnqualifiedId(Sema &SemaRef,
664                                   const UnqualifiedId &Id,
665                                   TemplateArgumentListInfo &Buffer,
666                                   DeclarationNameInfo &NameInfo,
667                             const TemplateArgumentListInfo *&TemplateArgs) {
668  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
669    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
670    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
671
672    ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
673                                       Id.TemplateId->getTemplateArgs(),
674                                       Id.TemplateId->NumArgs);
675    SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
676    TemplateArgsPtr.release();
677
678    TemplateName TName = Id.TemplateId->Template.get();
679    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
680    NameInfo = SemaRef.Context.getNameForTemplate(TName, TNameLoc);
681    TemplateArgs = &Buffer;
682  } else {
683    NameInfo = SemaRef.GetNameFromUnqualifiedId(Id);
684    TemplateArgs = 0;
685  }
686}
687
688/// Determines whether the given record is "fully-formed" at the given
689/// location, i.e. whether a qualified lookup into it is assured of
690/// getting consistent results already.
691static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
692  if (!Record->hasDefinition())
693    return false;
694
695  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
696         E = Record->bases_end(); I != E; ++I) {
697    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
698    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
699    if (!BaseRT) return false;
700
701    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
702    if (!BaseRecord->hasDefinition() ||
703        !IsFullyFormedScope(SemaRef, BaseRecord))
704      return false;
705  }
706
707  return true;
708}
709
710/// Determines if the given class is provably not derived from all of
711/// the prospective base classes.
712static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
713                                     CXXRecordDecl *Record,
714                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
715  if (Bases.count(Record->getCanonicalDecl()))
716    return false;
717
718  RecordDecl *RD = Record->getDefinition();
719  if (!RD) return false;
720  Record = cast<CXXRecordDecl>(RD);
721
722  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
723         E = Record->bases_end(); I != E; ++I) {
724    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
725    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
726    if (!BaseRT) return false;
727
728    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
729    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
730      return false;
731  }
732
733  return true;
734}
735
736enum IMAKind {
737  /// The reference is definitely not an instance member access.
738  IMA_Static,
739
740  /// The reference may be an implicit instance member access.
741  IMA_Mixed,
742
743  /// The reference may be to an instance member, but it is invalid if
744  /// so, because the context is not an instance method.
745  IMA_Mixed_StaticContext,
746
747  /// The reference may be to an instance member, but it is invalid if
748  /// so, because the context is from an unrelated class.
749  IMA_Mixed_Unrelated,
750
751  /// The reference is definitely an implicit instance member access.
752  IMA_Instance,
753
754  /// The reference may be to an unresolved using declaration.
755  IMA_Unresolved,
756
757  /// The reference may be to an unresolved using declaration and the
758  /// context is not an instance method.
759  IMA_Unresolved_StaticContext,
760
761  /// The reference is to a member of an anonymous structure in a
762  /// non-class context.
763  IMA_AnonymousMember,
764
765  /// All possible referrents are instance members and the current
766  /// context is not an instance method.
767  IMA_Error_StaticContext,
768
769  /// All possible referrents are instance members of an unrelated
770  /// class.
771  IMA_Error_Unrelated
772};
773
774/// The given lookup names class member(s) and is not being used for
775/// an address-of-member expression.  Classify the type of access
776/// according to whether it's possible that this reference names an
777/// instance member.  This is best-effort; it is okay to
778/// conservatively answer "yes", in which case some errors will simply
779/// not be caught until template-instantiation.
780static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
781                                            const LookupResult &R) {
782  assert(!R.empty() && (*R.begin())->isCXXClassMember());
783
784  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
785  bool isStaticContext =
786    (!isa<CXXMethodDecl>(DC) ||
787     cast<CXXMethodDecl>(DC)->isStatic());
788
789  if (R.isUnresolvableResult())
790    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
791
792  // Collect all the declaring classes of instance members we find.
793  bool hasNonInstance = false;
794  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
795  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
796    NamedDecl *D = *I;
797    if (D->isCXXInstanceMember()) {
798      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
799
800      // If this is a member of an anonymous record, move out to the
801      // innermost non-anonymous struct or union.  If there isn't one,
802      // that's a special case.
803      while (R->isAnonymousStructOrUnion()) {
804        R = dyn_cast<CXXRecordDecl>(R->getParent());
805        if (!R) return IMA_AnonymousMember;
806      }
807      Classes.insert(R->getCanonicalDecl());
808    }
809    else
810      hasNonInstance = true;
811  }
812
813  // If we didn't find any instance members, it can't be an implicit
814  // member reference.
815  if (Classes.empty())
816    return IMA_Static;
817
818  // If the current context is not an instance method, it can't be
819  // an implicit member reference.
820  if (isStaticContext)
821    return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
822
823  // If we can prove that the current context is unrelated to all the
824  // declaring classes, it can't be an implicit member reference (in
825  // which case it's an error if any of those members are selected).
826  if (IsProvablyNotDerivedFrom(SemaRef,
827                               cast<CXXMethodDecl>(DC)->getParent(),
828                               Classes))
829    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
830
831  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
832}
833
834/// Diagnose a reference to a field with no object available.
835static void DiagnoseInstanceReference(Sema &SemaRef,
836                                      const CXXScopeSpec &SS,
837                                      const LookupResult &R) {
838  SourceLocation Loc = R.getNameLoc();
839  SourceRange Range(Loc);
840  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
841
842  if (R.getAsSingle<FieldDecl>()) {
843    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
844      if (MD->isStatic()) {
845        // "invalid use of member 'x' in static member function"
846        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
847          << Range << R.getLookupName();
848        return;
849      }
850    }
851
852    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
853      << R.getLookupName() << Range;
854    return;
855  }
856
857  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
858}
859
860/// Diagnose an empty lookup.
861///
862/// \return false if new lookup candidates were found
863bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
864                               CorrectTypoContext CTC) {
865  DeclarationName Name = R.getLookupName();
866
867  unsigned diagnostic = diag::err_undeclared_var_use;
868  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
869  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
870      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
871      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
872    diagnostic = diag::err_undeclared_use;
873    diagnostic_suggest = diag::err_undeclared_use_suggest;
874  }
875
876  // If the original lookup was an unqualified lookup, fake an
877  // unqualified lookup.  This is useful when (for example) the
878  // original lookup would not have found something because it was a
879  // dependent name.
880  for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
881       DC; DC = DC->getParent()) {
882    if (isa<CXXRecordDecl>(DC)) {
883      LookupQualifiedName(R, DC);
884
885      if (!R.empty()) {
886        // Don't give errors about ambiguities in this lookup.
887        R.suppressDiagnostics();
888
889        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
890        bool isInstance = CurMethod &&
891                          CurMethod->isInstance() &&
892                          DC == CurMethod->getParent();
893
894        // Give a code modification hint to insert 'this->'.
895        // TODO: fixit for inserting 'Base<T>::' in the other cases.
896        // Actually quite difficult!
897        if (isInstance) {
898          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
899              CallsUndergoingInstantiation.back()->getCallee());
900          CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
901              CurMethod->getInstantiatedFromMemberFunction());
902          if (DepMethod) {
903            Diag(R.getNameLoc(), diagnostic) << Name
904              << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
905            QualType DepThisType = DepMethod->getThisType(Context);
906            CXXThisExpr *DepThis = new (Context) CXXThisExpr(
907                                       R.getNameLoc(), DepThisType, false);
908            TemplateArgumentListInfo TList;
909            if (ULE->hasExplicitTemplateArgs())
910              ULE->copyTemplateArgumentsInto(TList);
911            CXXDependentScopeMemberExpr *DepExpr =
912                CXXDependentScopeMemberExpr::Create(
913                    Context, DepThis, DepThisType, true, SourceLocation(),
914                    ULE->getQualifier(), ULE->getQualifierRange(), NULL,
915                    R.getLookupNameInfo(), &TList);
916            CallsUndergoingInstantiation.back()->setCallee(DepExpr);
917          } else {
918            // FIXME: we should be able to handle this case too. It is correct
919            // to add this-> here. This is a workaround for PR7947.
920            Diag(R.getNameLoc(), diagnostic) << Name;
921          }
922        } else {
923          Diag(R.getNameLoc(), diagnostic) << Name;
924        }
925
926        // Do we really want to note all of these?
927        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
928          Diag((*I)->getLocation(), diag::note_dependent_var_use);
929
930        // Tell the callee to try to recover.
931        return false;
932      }
933
934      R.clear();
935    }
936  }
937
938  // We didn't find anything, so try to correct for a typo.
939  DeclarationName Corrected;
940  if (S && (Corrected = CorrectTypo(R, S, &SS, 0, false, CTC))) {
941    if (!R.empty()) {
942      if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
943        if (SS.isEmpty())
944          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
945            << FixItHint::CreateReplacement(R.getNameLoc(),
946                                            R.getLookupName().getAsString());
947        else
948          Diag(R.getNameLoc(), diag::err_no_member_suggest)
949            << Name << computeDeclContext(SS, false) << R.getLookupName()
950            << SS.getRange()
951            << FixItHint::CreateReplacement(R.getNameLoc(),
952                                            R.getLookupName().getAsString());
953        if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
954          Diag(ND->getLocation(), diag::note_previous_decl)
955            << ND->getDeclName();
956
957        // Tell the callee to try to recover.
958        return false;
959      }
960
961      if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
962        // FIXME: If we ended up with a typo for a type name or
963        // Objective-C class name, we're in trouble because the parser
964        // is in the wrong place to recover. Suggest the typo
965        // correction, but don't make it a fix-it since we're not going
966        // to recover well anyway.
967        if (SS.isEmpty())
968          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
969        else
970          Diag(R.getNameLoc(), diag::err_no_member_suggest)
971            << Name << computeDeclContext(SS, false) << R.getLookupName()
972            << SS.getRange();
973
974        // Don't try to recover; it won't work.
975        return true;
976      }
977    } else {
978      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
979      // because we aren't able to recover.
980      if (SS.isEmpty())
981        Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected;
982      else
983        Diag(R.getNameLoc(), diag::err_no_member_suggest)
984        << Name << computeDeclContext(SS, false) << Corrected
985        << SS.getRange();
986      return true;
987    }
988    R.clear();
989  }
990
991  // Emit a special diagnostic for failed member lookups.
992  // FIXME: computing the declaration context might fail here (?)
993  if (!SS.isEmpty()) {
994    Diag(R.getNameLoc(), diag::err_no_member)
995      << Name << computeDeclContext(SS, false)
996      << SS.getRange();
997    return true;
998  }
999
1000  // Give up, we can't recover.
1001  Diag(R.getNameLoc(), diagnostic) << Name;
1002  return true;
1003}
1004
1005static ObjCPropertyDecl *OkToSynthesizeProvisionalIvar(Sema &SemaRef,
1006                                                       IdentifierInfo *II,
1007                                                       SourceLocation NameLoc) {
1008  ObjCMethodDecl *CurMeth = SemaRef.getCurMethodDecl();
1009  ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1010  if (!IDecl)
1011    return 0;
1012  ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1013  if (!ClassImpDecl)
1014    return 0;
1015  ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II);
1016  if (!property)
1017    return 0;
1018  if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
1019    if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
1020      return 0;
1021  return property;
1022}
1023
1024static ObjCIvarDecl *SynthesizeProvisionalIvar(Sema &SemaRef,
1025                                               LookupResult &Lookup,
1026                                               IdentifierInfo *II,
1027                                               SourceLocation NameLoc) {
1028  ObjCMethodDecl *CurMeth = SemaRef.getCurMethodDecl();
1029  bool LookForIvars;
1030  if (Lookup.empty())
1031    LookForIvars = true;
1032  else if (CurMeth->isClassMethod())
1033    LookForIvars = false;
1034  else
1035    LookForIvars = (Lookup.isSingleResult() &&
1036                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1037  if (!LookForIvars)
1038    return 0;
1039
1040  ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1041  if (!IDecl)
1042    return 0;
1043  ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1044  if (!ClassImpDecl)
1045    return 0;
1046  bool DynamicImplSeen = false;
1047  ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II);
1048  if (!property)
1049    return 0;
1050  if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
1051    DynamicImplSeen =
1052      (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
1053  if (!DynamicImplSeen) {
1054    QualType PropType = SemaRef.Context.getCanonicalType(property->getType());
1055    ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(SemaRef.Context, ClassImpDecl,
1056                                              NameLoc,
1057                                              II, PropType, /*Dinfo=*/0,
1058                                              ObjCIvarDecl::Protected,
1059                                              (Expr *)0, true);
1060    ClassImpDecl->addDecl(Ivar);
1061    IDecl->makeDeclVisibleInContext(Ivar, false);
1062    property->setPropertyIvarDecl(Ivar);
1063    return Ivar;
1064  }
1065  return 0;
1066}
1067
1068ExprResult Sema::ActOnIdExpression(Scope *S,
1069                                   CXXScopeSpec &SS,
1070                                   UnqualifiedId &Id,
1071                                   bool HasTrailingLParen,
1072                                   bool isAddressOfOperand) {
1073  assert(!(isAddressOfOperand && HasTrailingLParen) &&
1074         "cannot be direct & operand and have a trailing lparen");
1075
1076  if (SS.isInvalid())
1077    return ExprError();
1078
1079  TemplateArgumentListInfo TemplateArgsBuffer;
1080
1081  // Decompose the UnqualifiedId into the following data.
1082  DeclarationNameInfo NameInfo;
1083  const TemplateArgumentListInfo *TemplateArgs;
1084  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1085
1086  DeclarationName Name = NameInfo.getName();
1087  IdentifierInfo *II = Name.getAsIdentifierInfo();
1088  SourceLocation NameLoc = NameInfo.getLoc();
1089
1090  // C++ [temp.dep.expr]p3:
1091  //   An id-expression is type-dependent if it contains:
1092  //     -- an identifier that was declared with a dependent type,
1093  //        (note: handled after lookup)
1094  //     -- a template-id that is dependent,
1095  //        (note: handled in BuildTemplateIdExpr)
1096  //     -- a conversion-function-id that specifies a dependent type,
1097  //     -- a nested-name-specifier that contains a class-name that
1098  //        names a dependent type.
1099  // Determine whether this is a member of an unknown specialization;
1100  // we need to handle these differently.
1101  bool DependentID = false;
1102  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1103      Name.getCXXNameType()->isDependentType()) {
1104    DependentID = true;
1105  } else if (SS.isSet()) {
1106    DeclContext *DC = computeDeclContext(SS, false);
1107    if (DC) {
1108      if (RequireCompleteDeclContext(SS, DC))
1109        return ExprError();
1110      // FIXME: We should be checking whether DC is the current instantiation.
1111      if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC))
1112        DependentID = !IsFullyFormedScope(*this, RD);
1113    } else {
1114      DependentID = true;
1115    }
1116  }
1117
1118  if (DependentID) {
1119    return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
1120                                      TemplateArgs);
1121  }
1122  bool IvarLookupFollowUp = false;
1123  // Perform the required lookup.
1124  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1125  if (TemplateArgs) {
1126    // Lookup the template name again to correctly establish the context in
1127    // which it was found. This is really unfortunate as we already did the
1128    // lookup to determine that it was a template name in the first place. If
1129    // this becomes a performance hit, we can work harder to preserve those
1130    // results until we get here but it's likely not worth it.
1131    bool MemberOfUnknownSpecialization;
1132    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1133                       MemberOfUnknownSpecialization);
1134  } else {
1135    IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1136    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1137
1138    // If this reference is in an Objective-C method, then we need to do
1139    // some special Objective-C lookup, too.
1140    if (IvarLookupFollowUp) {
1141      ExprResult E(LookupInObjCMethod(R, S, II, true));
1142      if (E.isInvalid())
1143        return ExprError();
1144
1145      Expr *Ex = E.takeAs<Expr>();
1146      if (Ex) return Owned(Ex);
1147      // Synthesize ivars lazily
1148      if (getLangOptions().ObjCNonFragileABI2) {
1149        if (SynthesizeProvisionalIvar(*this, R, II, NameLoc))
1150          return ActOnIdExpression(S, SS, Id, HasTrailingLParen,
1151                                   isAddressOfOperand);
1152      }
1153      // for further use, this must be set to false if in class method.
1154      IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
1155    }
1156  }
1157
1158  if (R.isAmbiguous())
1159    return ExprError();
1160
1161  // Determine whether this name might be a candidate for
1162  // argument-dependent lookup.
1163  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1164
1165  if (R.empty() && !ADL) {
1166    // Otherwise, this could be an implicitly declared function reference (legal
1167    // in C90, extension in C99, forbidden in C++).
1168    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1169      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1170      if (D) R.addDecl(D);
1171    }
1172
1173    // If this name wasn't predeclared and if this is not a function
1174    // call, diagnose the problem.
1175    if (R.empty()) {
1176      if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
1177        return ExprError();
1178
1179      assert(!R.empty() &&
1180             "DiagnoseEmptyLookup returned false but added no results");
1181
1182      // If we found an Objective-C instance variable, let
1183      // LookupInObjCMethod build the appropriate expression to
1184      // reference the ivar.
1185      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1186        R.clear();
1187        ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1188        assert(E.isInvalid() || E.get());
1189        return move(E);
1190      }
1191    }
1192  }
1193
1194  // This is guaranteed from this point on.
1195  assert(!R.empty() || ADL);
1196
1197  if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
1198    if (getLangOptions().ObjCNonFragileABI && IvarLookupFollowUp &&
1199        !getLangOptions().ObjCNonFragileABI2 &&
1200        Var->isFileVarDecl()) {
1201      ObjCPropertyDecl *Property =
1202        OkToSynthesizeProvisionalIvar(*this, II, NameLoc);
1203      if (Property) {
1204        Diag(NameLoc, diag::warn_ivar_variable_conflict) << Var->getDeclName();
1205        Diag(Property->getLocation(), diag::note_property_declare);
1206        Diag(Var->getLocation(), diag::note_global_declared_at);
1207      }
1208    }
1209  } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
1210    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1211      // C99 DR 316 says that, if a function type comes from a
1212      // function definition (without a prototype), that type is only
1213      // used for checking compatibility. Therefore, when referencing
1214      // the function, we pretend that we don't have the full function
1215      // type.
1216      if (DiagnoseUseOfDecl(Func, NameLoc))
1217        return ExprError();
1218
1219      QualType T = Func->getType();
1220      QualType NoProtoType = T;
1221      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
1222        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType(),
1223                                                     Proto->getExtInfo());
1224      return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
1225    }
1226  }
1227
1228  // Check whether this might be a C++ implicit instance member access.
1229  // C++ [class.mfct.non-static]p3:
1230  //   When an id-expression that is not part of a class member access
1231  //   syntax and not used to form a pointer to member is used in the
1232  //   body of a non-static member function of class X, if name lookup
1233  //   resolves the name in the id-expression to a non-static non-type
1234  //   member of some class C, the id-expression is transformed into a
1235  //   class member access expression using (*this) as the
1236  //   postfix-expression to the left of the . operator.
1237  //
1238  // But we don't actually need to do this for '&' operands if R
1239  // resolved to a function or overloaded function set, because the
1240  // expression is ill-formed if it actually works out to be a
1241  // non-static member function:
1242  //
1243  // C++ [expr.ref]p4:
1244  //   Otherwise, if E1.E2 refers to a non-static member function. . .
1245  //   [t]he expression can be used only as the left-hand operand of a
1246  //   member function call.
1247  //
1248  // There are other safeguards against such uses, but it's important
1249  // to get this right here so that we don't end up making a
1250  // spuriously dependent expression if we're inside a dependent
1251  // instance method.
1252  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1253    bool MightBeImplicitMember;
1254    if (!isAddressOfOperand)
1255      MightBeImplicitMember = true;
1256    else if (!SS.isEmpty())
1257      MightBeImplicitMember = false;
1258    else if (R.isOverloadedResult())
1259      MightBeImplicitMember = false;
1260    else if (R.isUnresolvableResult())
1261      MightBeImplicitMember = true;
1262    else
1263      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl());
1264
1265    if (MightBeImplicitMember)
1266      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
1267  }
1268
1269  if (TemplateArgs)
1270    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
1271
1272  return BuildDeclarationNameExpr(SS, R, ADL);
1273}
1274
1275/// Builds an expression which might be an implicit member expression.
1276ExprResult
1277Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
1278                                      LookupResult &R,
1279                                const TemplateArgumentListInfo *TemplateArgs) {
1280  switch (ClassifyImplicitMemberAccess(*this, R)) {
1281  case IMA_Instance:
1282    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
1283
1284  case IMA_AnonymousMember:
1285    assert(R.isSingleResult());
1286    return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
1287                                                    R.getAsSingle<FieldDecl>());
1288
1289  case IMA_Mixed:
1290  case IMA_Mixed_Unrelated:
1291  case IMA_Unresolved:
1292    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
1293
1294  case IMA_Static:
1295  case IMA_Mixed_StaticContext:
1296  case IMA_Unresolved_StaticContext:
1297    if (TemplateArgs)
1298      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
1299    return BuildDeclarationNameExpr(SS, R, false);
1300
1301  case IMA_Error_StaticContext:
1302  case IMA_Error_Unrelated:
1303    DiagnoseInstanceReference(*this, SS, R);
1304    return ExprError();
1305  }
1306
1307  llvm_unreachable("unexpected instance member access kind");
1308  return ExprError();
1309}
1310
1311/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1312/// declaration name, generally during template instantiation.
1313/// There's a large number of things which don't need to be done along
1314/// this path.
1315ExprResult
1316Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1317                                        const DeclarationNameInfo &NameInfo) {
1318  DeclContext *DC;
1319  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1320    return BuildDependentDeclRefExpr(SS, NameInfo, 0);
1321
1322  if (RequireCompleteDeclContext(SS, DC))
1323    return ExprError();
1324
1325  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1326  LookupQualifiedName(R, DC);
1327
1328  if (R.isAmbiguous())
1329    return ExprError();
1330
1331  if (R.empty()) {
1332    Diag(NameInfo.getLoc(), diag::err_no_member)
1333      << NameInfo.getName() << DC << SS.getRange();
1334    return ExprError();
1335  }
1336
1337  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1338}
1339
1340/// LookupInObjCMethod - The parser has read a name in, and Sema has
1341/// detected that we're currently inside an ObjC method.  Perform some
1342/// additional lookup.
1343///
1344/// Ideally, most of this would be done by lookup, but there's
1345/// actually quite a lot of extra work involved.
1346///
1347/// Returns a null sentinel to indicate trivial success.
1348ExprResult
1349Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1350                         IdentifierInfo *II, bool AllowBuiltinCreation) {
1351  SourceLocation Loc = Lookup.getNameLoc();
1352  ObjCMethodDecl *CurMethod = getCurMethodDecl();
1353
1354  // There are two cases to handle here.  1) scoped lookup could have failed,
1355  // in which case we should look for an ivar.  2) scoped lookup could have
1356  // found a decl, but that decl is outside the current instance method (i.e.
1357  // a global variable).  In these two cases, we do a lookup for an ivar with
1358  // this name, if the lookup sucedes, we replace it our current decl.
1359
1360  // If we're in a class method, we don't normally want to look for
1361  // ivars.  But if we don't find anything else, and there's an
1362  // ivar, that's an error.
1363  bool IsClassMethod = CurMethod->isClassMethod();
1364
1365  bool LookForIvars;
1366  if (Lookup.empty())
1367    LookForIvars = true;
1368  else if (IsClassMethod)
1369    LookForIvars = false;
1370  else
1371    LookForIvars = (Lookup.isSingleResult() &&
1372                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1373  ObjCInterfaceDecl *IFace = 0;
1374  if (LookForIvars) {
1375    IFace = CurMethod->getClassInterface();
1376    ObjCInterfaceDecl *ClassDeclared;
1377    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1378      // Diagnose using an ivar in a class method.
1379      if (IsClassMethod)
1380        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1381                         << IV->getDeclName());
1382
1383      // If we're referencing an invalid decl, just return this as a silent
1384      // error node.  The error diagnostic was already emitted on the decl.
1385      if (IV->isInvalidDecl())
1386        return ExprError();
1387
1388      // Check if referencing a field with __attribute__((deprecated)).
1389      if (DiagnoseUseOfDecl(IV, Loc))
1390        return ExprError();
1391
1392      // Diagnose the use of an ivar outside of the declaring class.
1393      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1394          ClassDeclared != IFace)
1395        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1396
1397      // FIXME: This should use a new expr for a direct reference, don't
1398      // turn this into Self->ivar, just return a BareIVarExpr or something.
1399      IdentifierInfo &II = Context.Idents.get("self");
1400      UnqualifiedId SelfName;
1401      SelfName.setIdentifier(&II, SourceLocation());
1402      CXXScopeSpec SelfScopeSpec;
1403      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
1404                                                    SelfName, false, false);
1405      MarkDeclarationReferenced(Loc, IV);
1406      return Owned(new (Context)
1407                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1408                                   SelfExpr.takeAs<Expr>(), true, true));
1409    }
1410  } else if (CurMethod->isInstanceMethod()) {
1411    // We should warn if a local variable hides an ivar.
1412    ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
1413    ObjCInterfaceDecl *ClassDeclared;
1414    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1415      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1416          IFace == ClassDeclared)
1417        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1418    }
1419  }
1420
1421  if (Lookup.empty() && II && AllowBuiltinCreation) {
1422    // FIXME. Consolidate this with similar code in LookupName.
1423    if (unsigned BuiltinID = II->getBuiltinID()) {
1424      if (!(getLangOptions().CPlusPlus &&
1425            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1426        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1427                                           S, Lookup.isForRedeclaration(),
1428                                           Lookup.getNameLoc());
1429        if (D) Lookup.addDecl(D);
1430      }
1431    }
1432  }
1433  // Sentinel value saying that we didn't do anything special.
1434  return Owned((Expr*) 0);
1435}
1436
1437/// \brief Cast a base object to a member's actual type.
1438///
1439/// Logically this happens in three phases:
1440///
1441/// * First we cast from the base type to the naming class.
1442///   The naming class is the class into which we were looking
1443///   when we found the member;  it's the qualifier type if a
1444///   qualifier was provided, and otherwise it's the base type.
1445///
1446/// * Next we cast from the naming class to the declaring class.
1447///   If the member we found was brought into a class's scope by
1448///   a using declaration, this is that class;  otherwise it's
1449///   the class declaring the member.
1450///
1451/// * Finally we cast from the declaring class to the "true"
1452///   declaring class of the member.  This conversion does not
1453///   obey access control.
1454bool
1455Sema::PerformObjectMemberConversion(Expr *&From,
1456                                    NestedNameSpecifier *Qualifier,
1457                                    NamedDecl *FoundDecl,
1458                                    NamedDecl *Member) {
1459  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
1460  if (!RD)
1461    return false;
1462
1463  QualType DestRecordType;
1464  QualType DestType;
1465  QualType FromRecordType;
1466  QualType FromType = From->getType();
1467  bool PointerConversions = false;
1468  if (isa<FieldDecl>(Member)) {
1469    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
1470
1471    if (FromType->getAs<PointerType>()) {
1472      DestType = Context.getPointerType(DestRecordType);
1473      FromRecordType = FromType->getPointeeType();
1474      PointerConversions = true;
1475    } else {
1476      DestType = DestRecordType;
1477      FromRecordType = FromType;
1478    }
1479  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
1480    if (Method->isStatic())
1481      return false;
1482
1483    DestType = Method->getThisType(Context);
1484    DestRecordType = DestType->getPointeeType();
1485
1486    if (FromType->getAs<PointerType>()) {
1487      FromRecordType = FromType->getPointeeType();
1488      PointerConversions = true;
1489    } else {
1490      FromRecordType = FromType;
1491      DestType = DestRecordType;
1492    }
1493  } else {
1494    // No conversion necessary.
1495    return false;
1496  }
1497
1498  if (DestType->isDependentType() || FromType->isDependentType())
1499    return false;
1500
1501  // If the unqualified types are the same, no conversion is necessary.
1502  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1503    return false;
1504
1505  SourceRange FromRange = From->getSourceRange();
1506  SourceLocation FromLoc = FromRange.getBegin();
1507
1508  ExprValueKind VK = CastCategory(From);
1509
1510  // C++ [class.member.lookup]p8:
1511  //   [...] Ambiguities can often be resolved by qualifying a name with its
1512  //   class name.
1513  //
1514  // If the member was a qualified name and the qualified referred to a
1515  // specific base subobject type, we'll cast to that intermediate type
1516  // first and then to the object in which the member is declared. That allows
1517  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1518  //
1519  //   class Base { public: int x; };
1520  //   class Derived1 : public Base { };
1521  //   class Derived2 : public Base { };
1522  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
1523  //
1524  //   void VeryDerived::f() {
1525  //     x = 17; // error: ambiguous base subobjects
1526  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
1527  //   }
1528  if (Qualifier) {
1529    QualType QType = QualType(Qualifier->getAsType(), 0);
1530    assert(!QType.isNull() && "lookup done with dependent qualifier?");
1531    assert(QType->isRecordType() && "lookup done with non-record type");
1532
1533    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
1534
1535    // In C++98, the qualifier type doesn't actually have to be a base
1536    // type of the object type, in which case we just ignore it.
1537    // Otherwise build the appropriate casts.
1538    if (IsDerivedFrom(FromRecordType, QRecordType)) {
1539      CXXCastPath BasePath;
1540      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
1541                                       FromLoc, FromRange, &BasePath))
1542        return true;
1543
1544      if (PointerConversions)
1545        QType = Context.getPointerType(QType);
1546      ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
1547                        VK, &BasePath);
1548
1549      FromType = QType;
1550      FromRecordType = QRecordType;
1551
1552      // If the qualifier type was the same as the destination type,
1553      // we're done.
1554      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1555        return false;
1556    }
1557  }
1558
1559  bool IgnoreAccess = false;
1560
1561  // If we actually found the member through a using declaration, cast
1562  // down to the using declaration's type.
1563  //
1564  // Pointer equality is fine here because only one declaration of a
1565  // class ever has member declarations.
1566  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
1567    assert(isa<UsingShadowDecl>(FoundDecl));
1568    QualType URecordType = Context.getTypeDeclType(
1569                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
1570
1571    // We only need to do this if the naming-class to declaring-class
1572    // conversion is non-trivial.
1573    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
1574      assert(IsDerivedFrom(FromRecordType, URecordType));
1575      CXXCastPath BasePath;
1576      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
1577                                       FromLoc, FromRange, &BasePath))
1578        return true;
1579
1580      QualType UType = URecordType;
1581      if (PointerConversions)
1582        UType = Context.getPointerType(UType);
1583      ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
1584                        VK, &BasePath);
1585      FromType = UType;
1586      FromRecordType = URecordType;
1587    }
1588
1589    // We don't do access control for the conversion from the
1590    // declaring class to the true declaring class.
1591    IgnoreAccess = true;
1592  }
1593
1594  CXXCastPath BasePath;
1595  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
1596                                   FromLoc, FromRange, &BasePath,
1597                                   IgnoreAccess))
1598    return true;
1599
1600  ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
1601                    VK, &BasePath);
1602  return false;
1603}
1604
1605/// \brief Build a MemberExpr AST node.
1606static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
1607                                   const CXXScopeSpec &SS, ValueDecl *Member,
1608                                   DeclAccessPair FoundDecl,
1609                                   const DeclarationNameInfo &MemberNameInfo,
1610                                   QualType Ty,
1611                          const TemplateArgumentListInfo *TemplateArgs = 0) {
1612  NestedNameSpecifier *Qualifier = 0;
1613  SourceRange QualifierRange;
1614  if (SS.isSet()) {
1615    Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
1616    QualifierRange = SS.getRange();
1617  }
1618
1619  return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
1620                            Member, FoundDecl, MemberNameInfo,
1621                            TemplateArgs, Ty);
1622}
1623
1624/// Builds an implicit member access expression.  The current context
1625/// is known to be an instance method, and the given unqualified lookup
1626/// set is known to contain only instance members, at least one of which
1627/// is from an appropriate type.
1628ExprResult
1629Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1630                              LookupResult &R,
1631                              const TemplateArgumentListInfo *TemplateArgs,
1632                              bool IsKnownInstance) {
1633  assert(!R.empty() && !R.isAmbiguous());
1634
1635  SourceLocation Loc = R.getNameLoc();
1636
1637  // We may have found a field within an anonymous union or struct
1638  // (C++ [class.union]).
1639  // FIXME: This needs to happen post-isImplicitMemberReference?
1640  // FIXME: template-ids inside anonymous structs?
1641  if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
1642    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1643      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1644
1645  // If this is known to be an instance access, go ahead and build a
1646  // 'this' expression now.
1647  DeclContext *DC = getFunctionLevelDeclContext();
1648  QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
1649  Expr *This = 0; // null signifies implicit access
1650  if (IsKnownInstance) {
1651    SourceLocation Loc = R.getNameLoc();
1652    if (SS.getRange().isValid())
1653      Loc = SS.getRange().getBegin();
1654    This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
1655  }
1656
1657  return BuildMemberReferenceExpr(This, ThisType,
1658                                  /*OpLoc*/ SourceLocation(),
1659                                  /*IsArrow*/ true,
1660                                  SS,
1661                                  /*FirstQualifierInScope*/ 0,
1662                                  R, TemplateArgs);
1663}
1664
1665bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
1666                                      const LookupResult &R,
1667                                      bool HasTrailingLParen) {
1668  // Only when used directly as the postfix-expression of a call.
1669  if (!HasTrailingLParen)
1670    return false;
1671
1672  // Never if a scope specifier was provided.
1673  if (SS.isSet())
1674    return false;
1675
1676  // Only in C++ or ObjC++.
1677  if (!getLangOptions().CPlusPlus)
1678    return false;
1679
1680  // Turn off ADL when we find certain kinds of declarations during
1681  // normal lookup:
1682  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1683    NamedDecl *D = *I;
1684
1685    // C++0x [basic.lookup.argdep]p3:
1686    //     -- a declaration of a class member
1687    // Since using decls preserve this property, we check this on the
1688    // original decl.
1689    if (D->isCXXClassMember())
1690      return false;
1691
1692    // C++0x [basic.lookup.argdep]p3:
1693    //     -- a block-scope function declaration that is not a
1694    //        using-declaration
1695    // NOTE: we also trigger this for function templates (in fact, we
1696    // don't check the decl type at all, since all other decl types
1697    // turn off ADL anyway).
1698    if (isa<UsingShadowDecl>(D))
1699      D = cast<UsingShadowDecl>(D)->getTargetDecl();
1700    else if (D->getDeclContext()->isFunctionOrMethod())
1701      return false;
1702
1703    // C++0x [basic.lookup.argdep]p3:
1704    //     -- a declaration that is neither a function or a function
1705    //        template
1706    // And also for builtin functions.
1707    if (isa<FunctionDecl>(D)) {
1708      FunctionDecl *FDecl = cast<FunctionDecl>(D);
1709
1710      // But also builtin functions.
1711      if (FDecl->getBuiltinID() && FDecl->isImplicit())
1712        return false;
1713    } else if (!isa<FunctionTemplateDecl>(D))
1714      return false;
1715  }
1716
1717  return true;
1718}
1719
1720
1721/// Diagnoses obvious problems with the use of the given declaration
1722/// as an expression.  This is only actually called for lookups that
1723/// were not overloaded, and it doesn't promise that the declaration
1724/// will in fact be used.
1725static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
1726  if (isa<TypedefDecl>(D)) {
1727    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
1728    return true;
1729  }
1730
1731  if (isa<ObjCInterfaceDecl>(D)) {
1732    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
1733    return true;
1734  }
1735
1736  if (isa<NamespaceDecl>(D)) {
1737    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
1738    return true;
1739  }
1740
1741  return false;
1742}
1743
1744ExprResult
1745Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1746                               LookupResult &R,
1747                               bool NeedsADL) {
1748  // If this is a single, fully-resolved result and we don't need ADL,
1749  // just build an ordinary singleton decl ref.
1750  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
1751    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
1752                                    R.getFoundDecl());
1753
1754  // We only need to check the declaration if there's exactly one
1755  // result, because in the overloaded case the results can only be
1756  // functions and function templates.
1757  if (R.isSingleResult() &&
1758      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
1759    return ExprError();
1760
1761  // Otherwise, just build an unresolved lookup expression.  Suppress
1762  // any lookup-related diagnostics; we'll hash these out later, when
1763  // we've picked a target.
1764  R.suppressDiagnostics();
1765
1766  bool Dependent
1767    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
1768  UnresolvedLookupExpr *ULE
1769    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1770                                   (NestedNameSpecifier*) SS.getScopeRep(),
1771                                   SS.getRange(), R.getLookupNameInfo(),
1772                                   NeedsADL, R.isOverloadedResult(),
1773                                   R.begin(), R.end());
1774
1775  return Owned(ULE);
1776}
1777
1778
1779/// \brief Complete semantic analysis for a reference to the given declaration.
1780ExprResult
1781Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1782                               const DeclarationNameInfo &NameInfo,
1783                               NamedDecl *D) {
1784  assert(D && "Cannot refer to a NULL declaration");
1785  assert(!isa<FunctionTemplateDecl>(D) &&
1786         "Cannot refer unambiguously to a function template");
1787
1788  SourceLocation Loc = NameInfo.getLoc();
1789  if (CheckDeclInExpr(*this, Loc, D))
1790    return ExprError();
1791
1792  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
1793    // Specifically diagnose references to class templates that are missing
1794    // a template argument list.
1795    Diag(Loc, diag::err_template_decl_ref)
1796      << Template << SS.getRange();
1797    Diag(Template->getLocation(), diag::note_template_decl_here);
1798    return ExprError();
1799  }
1800
1801  // Make sure that we're referring to a value.
1802  ValueDecl *VD = dyn_cast<ValueDecl>(D);
1803  if (!VD) {
1804    Diag(Loc, diag::err_ref_non_value)
1805      << D << SS.getRange();
1806    Diag(D->getLocation(), diag::note_declared_at);
1807    return ExprError();
1808  }
1809
1810  // Check whether this declaration can be used. Note that we suppress
1811  // this check when we're going to perform argument-dependent lookup
1812  // on this function name, because this might not be the function
1813  // that overload resolution actually selects.
1814  if (DiagnoseUseOfDecl(VD, Loc))
1815    return ExprError();
1816
1817  // Only create DeclRefExpr's for valid Decl's.
1818  if (VD->isInvalidDecl())
1819    return ExprError();
1820
1821  // If the identifier reference is inside a block, and it refers to a value
1822  // that is outside the block, create a BlockDeclRefExpr instead of a
1823  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1824  // the block is formed.
1825  //
1826  // We do not do this for things like enum constants, global variables, etc,
1827  // as they do not get snapshotted.
1828  //
1829  if (getCurBlock() &&
1830      ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) {
1831    if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
1832      Diag(Loc, diag::err_ref_vm_type);
1833      Diag(D->getLocation(), diag::note_declared_at);
1834      return ExprError();
1835    }
1836
1837    if (VD->getType()->isArrayType()) {
1838      Diag(Loc, diag::err_ref_array_type);
1839      Diag(D->getLocation(), diag::note_declared_at);
1840      return ExprError();
1841    }
1842
1843    MarkDeclarationReferenced(Loc, VD);
1844    QualType ExprTy = VD->getType().getNonReferenceType();
1845    // The BlocksAttr indicates the variable is bound by-reference.
1846    if (VD->getAttr<BlocksAttr>())
1847      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1848    // This is to record that a 'const' was actually synthesize and added.
1849    bool constAdded = !ExprTy.isConstQualified();
1850    // Variable will be bound by-copy, make it const within the closure.
1851
1852    ExprTy.addConst();
1853    QualType T = VD->getType();
1854    BlockDeclRefExpr *BDRE = new (Context) BlockDeclRefExpr(VD,
1855                                                            ExprTy, Loc, false,
1856                                                            constAdded);
1857    if (getLangOptions().CPlusPlus) {
1858      if (!T->isDependentType() && !T->isReferenceType()) {
1859        Expr *E = new (Context)
1860                    DeclRefExpr(const_cast<ValueDecl*>(BDRE->getDecl()), T,
1861                                          SourceLocation());
1862
1863        ExprResult Res = PerformCopyInitialization(
1864                          InitializedEntity::InitializeBlock(VD->getLocation(),
1865                                                         T, false),
1866                                                         SourceLocation(),
1867                                                         Owned(E));
1868        if (!Res.isInvalid()) {
1869          Res = MaybeCreateCXXExprWithTemporaries(Res.get());
1870          Expr *Init = Res.takeAs<Expr>();
1871          BDRE->setCopyConstructorExpr(Init);
1872        }
1873      }
1874    }
1875    return Owned(BDRE);
1876  }
1877  // If this reference is not in a block or if the referenced variable is
1878  // within the block, create a normal DeclRefExpr.
1879
1880  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(),
1881                          NameInfo, &SS);
1882}
1883
1884ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1885                                                 tok::TokenKind Kind) {
1886  PredefinedExpr::IdentType IT;
1887
1888  switch (Kind) {
1889  default: assert(0 && "Unknown simple primary expr!");
1890  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1891  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1892  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1893  }
1894
1895  // Pre-defined identifiers are of type char[x], where x is the length of the
1896  // string.
1897
1898  Decl *currentDecl = getCurFunctionOrMethodDecl();
1899  if (!currentDecl && getCurBlock())
1900    currentDecl = getCurBlock()->TheDecl;
1901  if (!currentDecl) {
1902    Diag(Loc, diag::ext_predef_outside_function);
1903    currentDecl = Context.getTranslationUnitDecl();
1904  }
1905
1906  QualType ResTy;
1907  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1908    ResTy = Context.DependentTy;
1909  } else {
1910    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
1911
1912    llvm::APInt LengthI(32, Length + 1);
1913    ResTy = Context.CharTy.withConst();
1914    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1915  }
1916  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1917}
1918
1919ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1920  llvm::SmallString<16> CharBuffer;
1921  bool Invalid = false;
1922  llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
1923  if (Invalid)
1924    return ExprError();
1925
1926  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
1927                            PP);
1928  if (Literal.hadError())
1929    return ExprError();
1930
1931  QualType Ty;
1932  if (!getLangOptions().CPlusPlus)
1933    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
1934  else if (Literal.isWide())
1935    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
1936  else if (Literal.isMultiChar())
1937    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
1938  else
1939    Ty = Context.CharTy;  // 'x' -> char in C++
1940
1941  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1942                                              Literal.isWide(),
1943                                              Ty, Tok.getLocation()));
1944}
1945
1946ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1947  // Fast path for a single digit (which is quite common).  A single digit
1948  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1949  if (Tok.getLength() == 1) {
1950    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1951    unsigned IntSize = Context.Target.getIntWidth();
1952    return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'),
1953                    Context.IntTy, Tok.getLocation()));
1954  }
1955
1956  llvm::SmallString<512> IntegerBuffer;
1957  // Add padding so that NumericLiteralParser can overread by one character.
1958  IntegerBuffer.resize(Tok.getLength()+1);
1959  const char *ThisTokBegin = &IntegerBuffer[0];
1960
1961  // Get the spelling of the token, which eliminates trigraphs, etc.
1962  bool Invalid = false;
1963  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
1964  if (Invalid)
1965    return ExprError();
1966
1967  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1968                               Tok.getLocation(), PP);
1969  if (Literal.hadError)
1970    return ExprError();
1971
1972  Expr *Res;
1973
1974  if (Literal.isFloatingLiteral()) {
1975    QualType Ty;
1976    if (Literal.isFloat)
1977      Ty = Context.FloatTy;
1978    else if (!Literal.isLong)
1979      Ty = Context.DoubleTy;
1980    else
1981      Ty = Context.LongDoubleTy;
1982
1983    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1984
1985    using llvm::APFloat;
1986    APFloat Val(Format);
1987
1988    APFloat::opStatus result = Literal.GetFloatValue(Val);
1989
1990    // Overflow is always an error, but underflow is only an error if
1991    // we underflowed to zero (APFloat reports denormals as underflow).
1992    if ((result & APFloat::opOverflow) ||
1993        ((result & APFloat::opUnderflow) && Val.isZero())) {
1994      unsigned diagnostic;
1995      llvm::SmallString<20> buffer;
1996      if (result & APFloat::opOverflow) {
1997        diagnostic = diag::warn_float_overflow;
1998        APFloat::getLargest(Format).toString(buffer);
1999      } else {
2000        diagnostic = diag::warn_float_underflow;
2001        APFloat::getSmallest(Format).toString(buffer);
2002      }
2003
2004      Diag(Tok.getLocation(), diagnostic)
2005        << Ty
2006        << llvm::StringRef(buffer.data(), buffer.size());
2007    }
2008
2009    bool isExact = (result == APFloat::opOK);
2010    Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation());
2011
2012  } else if (!Literal.isIntegerLiteral()) {
2013    return ExprError();
2014  } else {
2015    QualType Ty;
2016
2017    // long long is a C99 feature.
2018    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
2019        Literal.isLongLong)
2020      Diag(Tok.getLocation(), diag::ext_longlong);
2021
2022    // Get the value in the widest-possible width.
2023    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
2024
2025    if (Literal.GetIntegerValue(ResultVal)) {
2026      // If this value didn't fit into uintmax_t, warn and force to ull.
2027      Diag(Tok.getLocation(), diag::warn_integer_too_large);
2028      Ty = Context.UnsignedLongLongTy;
2029      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2030             "long long is not intmax_t?");
2031    } else {
2032      // If this value fits into a ULL, try to figure out what else it fits into
2033      // according to the rules of C99 6.4.4.1p5.
2034
2035      // Octal, Hexadecimal, and integers with a U suffix are allowed to
2036      // be an unsigned int.
2037      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2038
2039      // Check from smallest to largest, picking the smallest type we can.
2040      unsigned Width = 0;
2041      if (!Literal.isLong && !Literal.isLongLong) {
2042        // Are int/unsigned possibilities?
2043        unsigned IntSize = Context.Target.getIntWidth();
2044
2045        // Does it fit in a unsigned int?
2046        if (ResultVal.isIntN(IntSize)) {
2047          // Does it fit in a signed int?
2048          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2049            Ty = Context.IntTy;
2050          else if (AllowUnsigned)
2051            Ty = Context.UnsignedIntTy;
2052          Width = IntSize;
2053        }
2054      }
2055
2056      // Are long/unsigned long possibilities?
2057      if (Ty.isNull() && !Literal.isLongLong) {
2058        unsigned LongSize = Context.Target.getLongWidth();
2059
2060        // Does it fit in a unsigned long?
2061        if (ResultVal.isIntN(LongSize)) {
2062          // Does it fit in a signed long?
2063          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2064            Ty = Context.LongTy;
2065          else if (AllowUnsigned)
2066            Ty = Context.UnsignedLongTy;
2067          Width = LongSize;
2068        }
2069      }
2070
2071      // Finally, check long long if needed.
2072      if (Ty.isNull()) {
2073        unsigned LongLongSize = Context.Target.getLongLongWidth();
2074
2075        // Does it fit in a unsigned long long?
2076        if (ResultVal.isIntN(LongLongSize)) {
2077          // Does it fit in a signed long long?
2078          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
2079            Ty = Context.LongLongTy;
2080          else if (AllowUnsigned)
2081            Ty = Context.UnsignedLongLongTy;
2082          Width = LongLongSize;
2083        }
2084      }
2085
2086      // If we still couldn't decide a type, we probably have something that
2087      // does not fit in a signed long long, but has no U suffix.
2088      if (Ty.isNull()) {
2089        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2090        Ty = Context.UnsignedLongLongTy;
2091        Width = Context.Target.getLongLongWidth();
2092      }
2093
2094      if (ResultVal.getBitWidth() != Width)
2095        ResultVal.trunc(Width);
2096    }
2097    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2098  }
2099
2100  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2101  if (Literal.isImaginary)
2102    Res = new (Context) ImaginaryLiteral(Res,
2103                                        Context.getComplexType(Res->getType()));
2104
2105  return Owned(Res);
2106}
2107
2108ExprResult Sema::ActOnParenExpr(SourceLocation L,
2109                                              SourceLocation R, Expr *E) {
2110  assert((E != 0) && "ActOnParenExpr() missing expr");
2111  return Owned(new (Context) ParenExpr(L, R, E));
2112}
2113
2114/// The UsualUnaryConversions() function is *not* called by this routine.
2115/// See C99 6.3.2.1p[2-4] for more details.
2116bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
2117                                     SourceLocation OpLoc,
2118                                     const SourceRange &ExprRange,
2119                                     bool isSizeof) {
2120  if (exprType->isDependentType())
2121    return false;
2122
2123  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2124  //   the result is the size of the referenced type."
2125  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2126  //   result shall be the alignment of the referenced type."
2127  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
2128    exprType = Ref->getPointeeType();
2129
2130  // C99 6.5.3.4p1:
2131  if (exprType->isFunctionType()) {
2132    // alignof(function) is allowed as an extension.
2133    if (isSizeof)
2134      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
2135    return false;
2136  }
2137
2138  // Allow sizeof(void)/alignof(void) as an extension.
2139  if (exprType->isVoidType()) {
2140    Diag(OpLoc, diag::ext_sizeof_void_type)
2141      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
2142    return false;
2143  }
2144
2145  if (RequireCompleteType(OpLoc, exprType,
2146                          PDiag(diag::err_sizeof_alignof_incomplete_type)
2147                          << int(!isSizeof) << ExprRange))
2148    return true;
2149
2150  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2151  if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) {
2152    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
2153      << exprType << isSizeof << ExprRange;
2154    return true;
2155  }
2156
2157  if (Context.hasSameUnqualifiedType(exprType, Context.OverloadTy)) {
2158    Diag(OpLoc, diag::err_sizeof_alignof_overloaded_function_type)
2159      << !isSizeof << ExprRange;
2160    return true;
2161  }
2162
2163  return false;
2164}
2165
2166bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
2167                            const SourceRange &ExprRange) {
2168  E = E->IgnoreParens();
2169
2170  // alignof decl is always ok.
2171  if (isa<DeclRefExpr>(E))
2172    return false;
2173
2174  // Cannot know anything else if the expression is dependent.
2175  if (E->isTypeDependent())
2176    return false;
2177
2178  if (E->getBitField()) {
2179    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
2180    return true;
2181  }
2182
2183  // Alignment of a field access is always okay, so long as it isn't a
2184  // bit-field.
2185  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2186    if (isa<FieldDecl>(ME->getMemberDecl()))
2187      return false;
2188
2189  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
2190}
2191
2192/// \brief Build a sizeof or alignof expression given a type operand.
2193ExprResult
2194Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
2195                              SourceLocation OpLoc,
2196                              bool isSizeOf, SourceRange R) {
2197  if (!TInfo)
2198    return ExprError();
2199
2200  QualType T = TInfo->getType();
2201
2202  if (!T->isDependentType() &&
2203      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
2204    return ExprError();
2205
2206  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2207  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
2208                                               Context.getSizeType(), OpLoc,
2209                                               R.getEnd()));
2210}
2211
2212/// \brief Build a sizeof or alignof expression given an expression
2213/// operand.
2214ExprResult
2215Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
2216                              bool isSizeOf, SourceRange R) {
2217  // Verify that the operand is valid.
2218  bool isInvalid = false;
2219  if (E->isTypeDependent()) {
2220    // Delay type-checking for type-dependent expressions.
2221  } else if (!isSizeOf) {
2222    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
2223  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
2224    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
2225    isInvalid = true;
2226  } else {
2227    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
2228  }
2229
2230  if (isInvalid)
2231    return ExprError();
2232
2233  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2234  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
2235                                               Context.getSizeType(), OpLoc,
2236                                               R.getEnd()));
2237}
2238
2239/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
2240/// the same for @c alignof and @c __alignof
2241/// Note that the ArgRange is invalid if isType is false.
2242ExprResult
2243Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
2244                             void *TyOrEx, const SourceRange &ArgRange) {
2245  // If error parsing type, ignore.
2246  if (TyOrEx == 0) return ExprError();
2247
2248  if (isType) {
2249    TypeSourceInfo *TInfo;
2250    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
2251    return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
2252  }
2253
2254  Expr *ArgEx = (Expr *)TyOrEx;
2255  ExprResult Result
2256    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
2257
2258  return move(Result);
2259}
2260
2261QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
2262  if (V->isTypeDependent())
2263    return Context.DependentTy;
2264
2265  // These operators return the element type of a complex type.
2266  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
2267    return CT->getElementType();
2268
2269  // Otherwise they pass through real integer and floating point types here.
2270  if (V->getType()->isArithmeticType())
2271    return V->getType();
2272
2273  // Reject anything else.
2274  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
2275    << (isReal ? "__real" : "__imag");
2276  return QualType();
2277}
2278
2279
2280
2281ExprResult
2282Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
2283                          tok::TokenKind Kind, Expr *Input) {
2284  UnaryOperatorKind Opc;
2285  switch (Kind) {
2286  default: assert(0 && "Unknown unary op!");
2287  case tok::plusplus:   Opc = UO_PostInc; break;
2288  case tok::minusminus: Opc = UO_PostDec; break;
2289  }
2290
2291  return BuildUnaryOp(S, OpLoc, Opc, Input);
2292}
2293
2294ExprResult
2295Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
2296                              Expr *Idx, SourceLocation RLoc) {
2297  // Since this might be a postfix expression, get rid of ParenListExprs.
2298  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
2299  if (Result.isInvalid()) return ExprError();
2300  Base = Result.take();
2301
2302  Expr *LHSExp = Base, *RHSExp = Idx;
2303
2304  if (getLangOptions().CPlusPlus &&
2305      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
2306    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2307                                                  Context.DependentTy, RLoc));
2308  }
2309
2310  if (getLangOptions().CPlusPlus &&
2311      (LHSExp->getType()->isRecordType() ||
2312       LHSExp->getType()->isEnumeralType() ||
2313       RHSExp->getType()->isRecordType() ||
2314       RHSExp->getType()->isEnumeralType())) {
2315    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
2316  }
2317
2318  return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
2319}
2320
2321
2322ExprResult
2323Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
2324                                     Expr *Idx, SourceLocation RLoc) {
2325  Expr *LHSExp = Base;
2326  Expr *RHSExp = Idx;
2327
2328  // Perform default conversions.
2329  if (!LHSExp->getType()->getAs<VectorType>())
2330      DefaultFunctionArrayLvalueConversion(LHSExp);
2331  DefaultFunctionArrayLvalueConversion(RHSExp);
2332
2333  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
2334
2335  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
2336  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
2337  // in the subscript position. As a result, we need to derive the array base
2338  // and index from the expression types.
2339  Expr *BaseExpr, *IndexExpr;
2340  QualType ResultType;
2341  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
2342    BaseExpr = LHSExp;
2343    IndexExpr = RHSExp;
2344    ResultType = Context.DependentTy;
2345  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
2346    BaseExpr = LHSExp;
2347    IndexExpr = RHSExp;
2348    ResultType = PTy->getPointeeType();
2349  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
2350     // Handle the uncommon case of "123[Ptr]".
2351    BaseExpr = RHSExp;
2352    IndexExpr = LHSExp;
2353    ResultType = PTy->getPointeeType();
2354  } else if (const ObjCObjectPointerType *PTy =
2355               LHSTy->getAs<ObjCObjectPointerType>()) {
2356    BaseExpr = LHSExp;
2357    IndexExpr = RHSExp;
2358    ResultType = PTy->getPointeeType();
2359  } else if (const ObjCObjectPointerType *PTy =
2360               RHSTy->getAs<ObjCObjectPointerType>()) {
2361     // Handle the uncommon case of "123[Ptr]".
2362    BaseExpr = RHSExp;
2363    IndexExpr = LHSExp;
2364    ResultType = PTy->getPointeeType();
2365  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
2366    BaseExpr = LHSExp;    // vectors: V[123]
2367    IndexExpr = RHSExp;
2368
2369    // FIXME: need to deal with const...
2370    ResultType = VTy->getElementType();
2371  } else if (LHSTy->isArrayType()) {
2372    // If we see an array that wasn't promoted by
2373    // DefaultFunctionArrayLvalueConversion, it must be an array that
2374    // wasn't promoted because of the C90 rule that doesn't
2375    // allow promoting non-lvalue arrays.  Warn, then
2376    // force the promotion here.
2377    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2378        LHSExp->getSourceRange();
2379    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
2380                      CK_ArrayToPointerDecay);
2381    LHSTy = LHSExp->getType();
2382
2383    BaseExpr = LHSExp;
2384    IndexExpr = RHSExp;
2385    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
2386  } else if (RHSTy->isArrayType()) {
2387    // Same as previous, except for 123[f().a] case
2388    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2389        RHSExp->getSourceRange();
2390    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
2391                      CK_ArrayToPointerDecay);
2392    RHSTy = RHSExp->getType();
2393
2394    BaseExpr = RHSExp;
2395    IndexExpr = LHSExp;
2396    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
2397  } else {
2398    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
2399       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
2400  }
2401  // C99 6.5.2.1p1
2402  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
2403    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
2404                     << IndexExpr->getSourceRange());
2405
2406  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
2407       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
2408         && !IndexExpr->isTypeDependent())
2409    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
2410
2411  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
2412  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
2413  // type. Note that Functions are not objects, and that (in C99 parlance)
2414  // incomplete types are not object types.
2415  if (ResultType->isFunctionType()) {
2416    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
2417      << ResultType << BaseExpr->getSourceRange();
2418    return ExprError();
2419  }
2420
2421  if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) {
2422    // GNU extension: subscripting on pointer to void
2423    Diag(LLoc, diag::ext_gnu_void_ptr)
2424      << BaseExpr->getSourceRange();
2425  } else if (!ResultType->isDependentType() &&
2426      RequireCompleteType(LLoc, ResultType,
2427                          PDiag(diag::err_subscript_incomplete_type)
2428                            << BaseExpr->getSourceRange()))
2429    return ExprError();
2430
2431  // Diagnose bad cases where we step over interface counts.
2432  if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
2433    Diag(LLoc, diag::err_subscript_nonfragile_interface)
2434      << ResultType << BaseExpr->getSourceRange();
2435    return ExprError();
2436  }
2437
2438  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2439                                                ResultType, RLoc));
2440}
2441
2442QualType Sema::
2443CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
2444                        const IdentifierInfo *CompName,
2445                        SourceLocation CompLoc) {
2446  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
2447  // see FIXME there.
2448  //
2449  // FIXME: This logic can be greatly simplified by splitting it along
2450  // halving/not halving and reworking the component checking.
2451  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
2452
2453  // The vector accessor can't exceed the number of elements.
2454  const char *compStr = CompName->getNameStart();
2455
2456  // This flag determines whether or not the component is one of the four
2457  // special names that indicate a subset of exactly half the elements are
2458  // to be selected.
2459  bool HalvingSwizzle = false;
2460
2461  // This flag determines whether or not CompName has an 's' char prefix,
2462  // indicating that it is a string of hex values to be used as vector indices.
2463  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
2464
2465  // Check that we've found one of the special components, or that the component
2466  // names must come from the same set.
2467  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
2468      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
2469    HalvingSwizzle = true;
2470  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
2471    do
2472      compStr++;
2473    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
2474  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
2475    do
2476      compStr++;
2477    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
2478  }
2479
2480  if (!HalvingSwizzle && *compStr) {
2481    // We didn't get to the end of the string. This means the component names
2482    // didn't come from the same set *or* we encountered an illegal name.
2483    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
2484      << llvm::StringRef(compStr, 1) << SourceRange(CompLoc);
2485    return QualType();
2486  }
2487
2488  // Ensure no component accessor exceeds the width of the vector type it
2489  // operates on.
2490  if (!HalvingSwizzle) {
2491    compStr = CompName->getNameStart();
2492
2493    if (HexSwizzle)
2494      compStr++;
2495
2496    while (*compStr) {
2497      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
2498        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
2499          << baseType << SourceRange(CompLoc);
2500        return QualType();
2501      }
2502    }
2503  }
2504
2505  // The component accessor looks fine - now we need to compute the actual type.
2506  // The vector type is implied by the component accessor. For example,
2507  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
2508  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
2509  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
2510  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
2511                                     : CompName->getLength();
2512  if (HexSwizzle)
2513    CompSize--;
2514
2515  if (CompSize == 1)
2516    return vecType->getElementType();
2517
2518  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
2519  // Now look up the TypeDefDecl from the vector type. Without this,
2520  // diagostics look bad. We want extended vector types to appear built-in.
2521  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
2522    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
2523      return Context.getTypedefType(ExtVectorDecls[i]);
2524  }
2525  return VT; // should never get here (a typedef type should always be found).
2526}
2527
2528static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
2529                                                IdentifierInfo *Member,
2530                                                const Selector &Sel,
2531                                                ASTContext &Context) {
2532
2533  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
2534    return PD;
2535  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
2536    return OMD;
2537
2538  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
2539       E = PDecl->protocol_end(); I != E; ++I) {
2540    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
2541                                                     Context))
2542      return D;
2543  }
2544  return 0;
2545}
2546
2547static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
2548                                IdentifierInfo *Member,
2549                                const Selector &Sel,
2550                                ASTContext &Context) {
2551  // Check protocols on qualified interfaces.
2552  Decl *GDecl = 0;
2553  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2554       E = QIdTy->qual_end(); I != E; ++I) {
2555    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2556      GDecl = PD;
2557      break;
2558    }
2559    // Also must look for a getter name which uses property syntax.
2560    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
2561      GDecl = OMD;
2562      break;
2563    }
2564  }
2565  if (!GDecl) {
2566    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2567         E = QIdTy->qual_end(); I != E; ++I) {
2568      // Search in the protocol-qualifier list of current protocol.
2569      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2570      if (GDecl)
2571        return GDecl;
2572    }
2573  }
2574  return GDecl;
2575}
2576
2577ExprResult
2578Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
2579                               bool IsArrow, SourceLocation OpLoc,
2580                               const CXXScopeSpec &SS,
2581                               NamedDecl *FirstQualifierInScope,
2582                               const DeclarationNameInfo &NameInfo,
2583                               const TemplateArgumentListInfo *TemplateArgs) {
2584  // Even in dependent contexts, try to diagnose base expressions with
2585  // obviously wrong types, e.g.:
2586  //
2587  // T* t;
2588  // t.f;
2589  //
2590  // In Obj-C++, however, the above expression is valid, since it could be
2591  // accessing the 'f' property if T is an Obj-C interface. The extra check
2592  // allows this, while still reporting an error if T is a struct pointer.
2593  if (!IsArrow) {
2594    const PointerType *PT = BaseType->getAs<PointerType>();
2595    if (PT && (!getLangOptions().ObjC1 ||
2596               PT->getPointeeType()->isRecordType())) {
2597      assert(BaseExpr && "cannot happen with implicit member accesses");
2598      Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
2599        << BaseType << BaseExpr->getSourceRange();
2600      return ExprError();
2601    }
2602  }
2603
2604  assert(BaseType->isDependentType() ||
2605         NameInfo.getName().isDependentName() ||
2606         isDependentScopeSpecifier(SS));
2607
2608  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2609  // must have pointer type, and the accessed type is the pointee.
2610  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
2611                                                   IsArrow, OpLoc,
2612                                                   SS.getScopeRep(),
2613                                                   SS.getRange(),
2614                                                   FirstQualifierInScope,
2615                                                   NameInfo, TemplateArgs));
2616}
2617
2618/// We know that the given qualified member reference points only to
2619/// declarations which do not belong to the static type of the base
2620/// expression.  Diagnose the problem.
2621static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
2622                                             Expr *BaseExpr,
2623                                             QualType BaseType,
2624                                             const CXXScopeSpec &SS,
2625                                             const LookupResult &R) {
2626  // If this is an implicit member access, use a different set of
2627  // diagnostics.
2628  if (!BaseExpr)
2629    return DiagnoseInstanceReference(SemaRef, SS, R);
2630
2631  SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_of_unrelated)
2632    << SS.getRange() << R.getRepresentativeDecl() << BaseType;
2633}
2634
2635// Check whether the declarations we found through a nested-name
2636// specifier in a member expression are actually members of the base
2637// type.  The restriction here is:
2638//
2639//   C++ [expr.ref]p2:
2640//     ... In these cases, the id-expression shall name a
2641//     member of the class or of one of its base classes.
2642//
2643// So it's perfectly legitimate for the nested-name specifier to name
2644// an unrelated class, and for us to find an overload set including
2645// decls from classes which are not superclasses, as long as the decl
2646// we actually pick through overload resolution is from a superclass.
2647bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
2648                                         QualType BaseType,
2649                                         const CXXScopeSpec &SS,
2650                                         const LookupResult &R) {
2651  const RecordType *BaseRT = BaseType->getAs<RecordType>();
2652  if (!BaseRT) {
2653    // We can't check this yet because the base type is still
2654    // dependent.
2655    assert(BaseType->isDependentType());
2656    return false;
2657  }
2658  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
2659
2660  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2661    // If this is an implicit member reference and we find a
2662    // non-instance member, it's not an error.
2663    if (!BaseExpr && !(*I)->isCXXInstanceMember())
2664      return false;
2665
2666    // Note that we use the DC of the decl, not the underlying decl.
2667    DeclContext *DC = (*I)->getDeclContext();
2668    while (DC->isTransparentContext())
2669      DC = DC->getParent();
2670
2671    if (!DC->isRecord())
2672      continue;
2673
2674    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
2675    MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
2676
2677    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
2678      return false;
2679  }
2680
2681  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
2682  return true;
2683}
2684
2685static bool
2686LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
2687                         SourceRange BaseRange, const RecordType *RTy,
2688                         SourceLocation OpLoc, CXXScopeSpec &SS,
2689                         bool HasTemplateArgs) {
2690  RecordDecl *RDecl = RTy->getDecl();
2691  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
2692                              SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
2693                                    << BaseRange))
2694    return true;
2695
2696  if (HasTemplateArgs) {
2697    // LookupTemplateName doesn't expect these both to exist simultaneously.
2698    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
2699
2700    bool MOUS;
2701    SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
2702    return false;
2703  }
2704
2705  DeclContext *DC = RDecl;
2706  if (SS.isSet()) {
2707    // If the member name was a qualified-id, look into the
2708    // nested-name-specifier.
2709    DC = SemaRef.computeDeclContext(SS, false);
2710
2711    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
2712      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
2713        << SS.getRange() << DC;
2714      return true;
2715    }
2716
2717    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2718
2719    if (!isa<TypeDecl>(DC)) {
2720      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
2721        << DC << SS.getRange();
2722      return true;
2723    }
2724  }
2725
2726  // The record definition is complete, now look up the member.
2727  SemaRef.LookupQualifiedName(R, DC);
2728
2729  if (!R.empty())
2730    return false;
2731
2732  // We didn't find anything with the given name, so try to correct
2733  // for typos.
2734  DeclarationName Name = R.getLookupName();
2735  if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
2736      !R.empty() &&
2737      (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
2738    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
2739      << Name << DC << R.getLookupName() << SS.getRange()
2740      << FixItHint::CreateReplacement(R.getNameLoc(),
2741                                      R.getLookupName().getAsString());
2742    if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
2743      SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
2744        << ND->getDeclName();
2745    return false;
2746  } else {
2747    R.clear();
2748    R.setLookupName(Name);
2749  }
2750
2751  return false;
2752}
2753
2754ExprResult
2755Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
2756                               SourceLocation OpLoc, bool IsArrow,
2757                               CXXScopeSpec &SS,
2758                               NamedDecl *FirstQualifierInScope,
2759                               const DeclarationNameInfo &NameInfo,
2760                               const TemplateArgumentListInfo *TemplateArgs) {
2761  if (BaseType->isDependentType() ||
2762      (SS.isSet() && isDependentScopeSpecifier(SS)))
2763    return ActOnDependentMemberExpr(Base, BaseType,
2764                                    IsArrow, OpLoc,
2765                                    SS, FirstQualifierInScope,
2766                                    NameInfo, TemplateArgs);
2767
2768  LookupResult R(*this, NameInfo, LookupMemberName);
2769
2770  // Implicit member accesses.
2771  if (!Base) {
2772    QualType RecordTy = BaseType;
2773    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
2774    if (LookupMemberExprInRecord(*this, R, SourceRange(),
2775                                 RecordTy->getAs<RecordType>(),
2776                                 OpLoc, SS, TemplateArgs != 0))
2777      return ExprError();
2778
2779  // Explicit member accesses.
2780  } else {
2781    ExprResult Result =
2782      LookupMemberExpr(R, Base, IsArrow, OpLoc,
2783                       SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
2784
2785    if (Result.isInvalid()) {
2786      Owned(Base);
2787      return ExprError();
2788    }
2789
2790    if (Result.get())
2791      return move(Result);
2792
2793    // LookupMemberExpr can modify Base, and thus change BaseType
2794    BaseType = Base->getType();
2795  }
2796
2797  return BuildMemberReferenceExpr(Base, BaseType,
2798                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
2799                                  R, TemplateArgs);
2800}
2801
2802ExprResult
2803Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
2804                               SourceLocation OpLoc, bool IsArrow,
2805                               const CXXScopeSpec &SS,
2806                               NamedDecl *FirstQualifierInScope,
2807                               LookupResult &R,
2808                         const TemplateArgumentListInfo *TemplateArgs,
2809                               bool SuppressQualifierCheck) {
2810  QualType BaseType = BaseExprType;
2811  if (IsArrow) {
2812    assert(BaseType->isPointerType());
2813    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
2814  }
2815  R.setBaseObjectType(BaseType);
2816
2817  NestedNameSpecifier *Qualifier = SS.getScopeRep();
2818  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
2819  DeclarationName MemberName = MemberNameInfo.getName();
2820  SourceLocation MemberLoc = MemberNameInfo.getLoc();
2821
2822  if (R.isAmbiguous())
2823    return ExprError();
2824
2825  if (R.empty()) {
2826    // Rederive where we looked up.
2827    DeclContext *DC = (SS.isSet()
2828                       ? computeDeclContext(SS, false)
2829                       : BaseType->getAs<RecordType>()->getDecl());
2830
2831    Diag(R.getNameLoc(), diag::err_no_member)
2832      << MemberName << DC
2833      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
2834    return ExprError();
2835  }
2836
2837  // Diagnose lookups that find only declarations from a non-base
2838  // type.  This is possible for either qualified lookups (which may
2839  // have been qualified with an unrelated type) or implicit member
2840  // expressions (which were found with unqualified lookup and thus
2841  // may have come from an enclosing scope).  Note that it's okay for
2842  // lookup to find declarations from a non-base type as long as those
2843  // aren't the ones picked by overload resolution.
2844  if ((SS.isSet() || !BaseExpr ||
2845       (isa<CXXThisExpr>(BaseExpr) &&
2846        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
2847      !SuppressQualifierCheck &&
2848      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
2849    return ExprError();
2850
2851  // Construct an unresolved result if we in fact got an unresolved
2852  // result.
2853  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
2854    bool Dependent =
2855      BaseExprType->isDependentType() ||
2856      R.isUnresolvableResult() ||
2857      OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
2858
2859    // Suppress any lookup-related diagnostics; we'll do these when we
2860    // pick a member.
2861    R.suppressDiagnostics();
2862
2863    UnresolvedMemberExpr *MemExpr
2864      = UnresolvedMemberExpr::Create(Context, Dependent,
2865                                     R.isUnresolvableResult(),
2866                                     BaseExpr, BaseExprType,
2867                                     IsArrow, OpLoc,
2868                                     Qualifier, SS.getRange(),
2869                                     MemberNameInfo,
2870                                     TemplateArgs, R.begin(), R.end());
2871
2872    return Owned(MemExpr);
2873  }
2874
2875  assert(R.isSingleResult());
2876  DeclAccessPair FoundDecl = R.begin().getPair();
2877  NamedDecl *MemberDecl = R.getFoundDecl();
2878
2879  // FIXME: diagnose the presence of template arguments now.
2880
2881  // If the decl being referenced had an error, return an error for this
2882  // sub-expr without emitting another error, in order to avoid cascading
2883  // error cases.
2884  if (MemberDecl->isInvalidDecl())
2885    return ExprError();
2886
2887  // Handle the implicit-member-access case.
2888  if (!BaseExpr) {
2889    // If this is not an instance member, convert to a non-member access.
2890    if (!MemberDecl->isCXXInstanceMember())
2891      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
2892
2893    SourceLocation Loc = R.getNameLoc();
2894    if (SS.getRange().isValid())
2895      Loc = SS.getRange().getBegin();
2896    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
2897  }
2898
2899  bool ShouldCheckUse = true;
2900  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2901    // Don't diagnose the use of a virtual member function unless it's
2902    // explicitly qualified.
2903    if (MD->isVirtual() && !SS.isSet())
2904      ShouldCheckUse = false;
2905  }
2906
2907  // Check the use of this member.
2908  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
2909    Owned(BaseExpr);
2910    return ExprError();
2911  }
2912
2913  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2914    // We may have found a field within an anonymous union or struct
2915    // (C++ [class.union]).
2916    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
2917        !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
2918      return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2919                                                      BaseExpr, OpLoc);
2920
2921    // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2922    QualType MemberType = FD->getType();
2923    if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2924      MemberType = Ref->getPointeeType();
2925    else {
2926      Qualifiers BaseQuals = BaseType.getQualifiers();
2927      BaseQuals.removeObjCGCAttr();
2928      if (FD->isMutable()) BaseQuals.removeConst();
2929
2930      Qualifiers MemberQuals
2931        = Context.getCanonicalType(MemberType).getQualifiers();
2932
2933      Qualifiers Combined = BaseQuals + MemberQuals;
2934      if (Combined != MemberQuals)
2935        MemberType = Context.getQualifiedType(MemberType, Combined);
2936    }
2937
2938    MarkDeclarationReferenced(MemberLoc, FD);
2939    if (PerformObjectMemberConversion(BaseExpr, Qualifier, FoundDecl, FD))
2940      return ExprError();
2941    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2942                                 FD, FoundDecl, MemberNameInfo,
2943                                 MemberType));
2944  }
2945
2946  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2947    MarkDeclarationReferenced(MemberLoc, Var);
2948    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2949                                 Var, FoundDecl, MemberNameInfo,
2950                                 Var->getType().getNonReferenceType()));
2951  }
2952
2953  if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2954    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2955    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2956                                 MemberFn, FoundDecl, MemberNameInfo,
2957                                 MemberFn->getType()));
2958  }
2959
2960  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2961    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2962    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2963                                 Enum, FoundDecl, MemberNameInfo,
2964                                 Enum->getType()));
2965  }
2966
2967  Owned(BaseExpr);
2968
2969  // We found something that we didn't expect. Complain.
2970  if (isa<TypeDecl>(MemberDecl))
2971    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
2972      << MemberName << BaseType << int(IsArrow);
2973  else
2974    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
2975      << MemberName << BaseType << int(IsArrow);
2976
2977  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
2978    << MemberName;
2979  R.suppressDiagnostics();
2980  return ExprError();
2981}
2982
2983/// Look up the given member of the given non-type-dependent
2984/// expression.  This can return in one of two ways:
2985///  * If it returns a sentinel null-but-valid result, the caller will
2986///    assume that lookup was performed and the results written into
2987///    the provided structure.  It will take over from there.
2988///  * Otherwise, the returned expression will be produced in place of
2989///    an ordinary member expression.
2990///
2991/// The ObjCImpDecl bit is a gross hack that will need to be properly
2992/// fixed for ObjC++.
2993ExprResult
2994Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
2995                       bool &IsArrow, SourceLocation OpLoc,
2996                       CXXScopeSpec &SS,
2997                       Decl *ObjCImpDecl, bool HasTemplateArgs) {
2998  assert(BaseExpr && "no base expression");
2999
3000  // Perform default conversions.
3001  DefaultFunctionArrayConversion(BaseExpr);
3002
3003  QualType BaseType = BaseExpr->getType();
3004  assert(!BaseType->isDependentType());
3005
3006  DeclarationName MemberName = R.getLookupName();
3007  SourceLocation MemberLoc = R.getNameLoc();
3008
3009  // If the user is trying to apply -> or . to a function pointer
3010  // type, it's probably because they forgot parentheses to call that
3011  // function. Suggest the addition of those parentheses, build the
3012  // call, and continue on.
3013  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3014    if (const FunctionProtoType *Fun
3015          = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
3016      QualType ResultTy = Fun->getResultType();
3017      if (Fun->getNumArgs() == 0 &&
3018          ((!IsArrow && ResultTy->isRecordType()) ||
3019           (IsArrow && ResultTy->isPointerType() &&
3020            ResultTy->getAs<PointerType>()->getPointeeType()
3021                                                          ->isRecordType()))) {
3022        SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
3023        Diag(Loc, diag::err_member_reference_needs_call)
3024          << QualType(Fun, 0)
3025          << FixItHint::CreateInsertion(Loc, "()");
3026
3027        ExprResult NewBase
3028          = ActOnCallExpr(0, BaseExpr, Loc, MultiExprArg(*this, 0, 0), Loc);
3029        BaseExpr = 0;
3030        if (NewBase.isInvalid())
3031          return ExprError();
3032
3033        BaseExpr = NewBase.takeAs<Expr>();
3034        DefaultFunctionArrayConversion(BaseExpr);
3035        BaseType = BaseExpr->getType();
3036      }
3037    }
3038  }
3039
3040  // If this is an Objective-C pseudo-builtin and a definition is provided then
3041  // use that.
3042  if (BaseType->isObjCIdType()) {
3043    if (IsArrow) {
3044      // Handle the following exceptional case PObj->isa.
3045      if (const ObjCObjectPointerType *OPT =
3046          BaseType->getAs<ObjCObjectPointerType>()) {
3047        if (OPT->getObjectType()->isObjCId() &&
3048            MemberName.getAsIdentifierInfo()->isStr("isa"))
3049          return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
3050                                                 Context.getObjCClassType()));
3051      }
3052    }
3053    // We have an 'id' type. Rather than fall through, we check if this
3054    // is a reference to 'isa'.
3055    if (BaseType != Context.ObjCIdRedefinitionType) {
3056      BaseType = Context.ObjCIdRedefinitionType;
3057      ImpCastExprToType(BaseExpr, BaseType, CK_BitCast);
3058    }
3059  }
3060
3061  // If this is an Objective-C pseudo-builtin and a definition is provided then
3062  // use that.
3063  if (Context.isObjCSelType(BaseType)) {
3064    // We have an 'SEL' type. Rather than fall through, we check if this
3065    // is a reference to 'sel_id'.
3066    if (BaseType != Context.ObjCSelRedefinitionType) {
3067      BaseType = Context.ObjCSelRedefinitionType;
3068      ImpCastExprToType(BaseExpr, BaseType, CK_BitCast);
3069    }
3070  }
3071
3072  assert(!BaseType.isNull() && "no type for member expression");
3073
3074  // Handle properties on ObjC 'Class' types.
3075  if (!IsArrow && BaseType->isObjCClassType()) {
3076    // Also must look for a getter name which uses property syntax.
3077    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3078    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3079    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3080      ObjCInterfaceDecl *IFace = MD->getClassInterface();
3081      ObjCMethodDecl *Getter;
3082      // FIXME: need to also look locally in the implementation.
3083      if ((Getter = IFace->lookupClassMethod(Sel))) {
3084        // Check the use of this method.
3085        if (DiagnoseUseOfDecl(Getter, MemberLoc))
3086          return ExprError();
3087      }
3088      // If we found a getter then this may be a valid dot-reference, we
3089      // will look for the matching setter, in case it is needed.
3090      Selector SetterSel =
3091      SelectorTable::constructSetterName(PP.getIdentifierTable(),
3092                                         PP.getSelectorTable(), Member);
3093      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
3094      if (!Setter) {
3095        // If this reference is in an @implementation, also check for 'private'
3096        // methods.
3097        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
3098      }
3099      // Look through local category implementations associated with the class.
3100      if (!Setter)
3101        Setter = IFace->getCategoryClassMethod(SetterSel);
3102
3103      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
3104        return ExprError();
3105
3106      if (Getter || Setter) {
3107        QualType PType;
3108
3109        if (Getter)
3110          PType = Getter->getSendResultType();
3111        else
3112          // Get the expression type from Setter's incoming parameter.
3113          PType = (*(Setter->param_end() -1))->getType();
3114        // FIXME: we must check that the setter has property type.
3115        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
3116                                                  PType,
3117                                                  Setter, MemberLoc, BaseExpr));
3118      }
3119      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3120                       << MemberName << BaseType);
3121    }
3122  }
3123
3124  if (BaseType->isObjCClassType() &&
3125      BaseType != Context.ObjCClassRedefinitionType) {
3126    BaseType = Context.ObjCClassRedefinitionType;
3127    ImpCastExprToType(BaseExpr, BaseType, CK_BitCast);
3128  }
3129
3130  if (IsArrow) {
3131    if (const PointerType *PT = BaseType->getAs<PointerType>())
3132      BaseType = PT->getPointeeType();
3133    else if (BaseType->isObjCObjectPointerType())
3134      ;
3135    else if (BaseType->isRecordType()) {
3136      // Recover from arrow accesses to records, e.g.:
3137      //   struct MyRecord foo;
3138      //   foo->bar
3139      // This is actually well-formed in C++ if MyRecord has an
3140      // overloaded operator->, but that should have been dealt with
3141      // by now.
3142      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3143        << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3144        << FixItHint::CreateReplacement(OpLoc, ".");
3145      IsArrow = false;
3146    } else {
3147      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
3148        << BaseType << BaseExpr->getSourceRange();
3149      return ExprError();
3150    }
3151  } else {
3152    // Recover from dot accesses to pointers, e.g.:
3153    //   type *foo;
3154    //   foo.bar
3155    // This is actually well-formed in two cases:
3156    //   - 'type' is an Objective C type
3157    //   - 'bar' is a pseudo-destructor name which happens to refer to
3158    //     the appropriate pointer type
3159    if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
3160      const PointerType *PT = BaseType->getAs<PointerType>();
3161      if (PT && PT->getPointeeType()->isRecordType()) {
3162        Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3163          << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3164          << FixItHint::CreateReplacement(OpLoc, "->");
3165        BaseType = PT->getPointeeType();
3166        IsArrow = true;
3167      }
3168    }
3169  }
3170
3171  // Handle field access to simple records.
3172  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
3173    if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
3174                                 RTy, OpLoc, SS, HasTemplateArgs))
3175      return ExprError();
3176    return Owned((Expr*) 0);
3177  }
3178
3179  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
3180  // (*Obj).ivar.
3181  if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
3182      (!IsArrow && BaseType->isObjCObjectType())) {
3183    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
3184    ObjCInterfaceDecl *IDecl =
3185      OPT ? OPT->getInterfaceDecl()
3186          : BaseType->getAs<ObjCObjectType>()->getInterface();
3187    if (IDecl) {
3188      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3189
3190      ObjCInterfaceDecl *ClassDeclared;
3191      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
3192
3193      if (!IV) {
3194        // Attempt to correct for typos in ivar names.
3195        LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
3196                         LookupMemberName);
3197        if (CorrectTypo(Res, 0, 0, IDecl, false, CTC_MemberLookup) &&
3198            (IV = Res.getAsSingle<ObjCIvarDecl>())) {
3199          Diag(R.getNameLoc(),
3200               diag::err_typecheck_member_reference_ivar_suggest)
3201            << IDecl->getDeclName() << MemberName << IV->getDeclName()
3202            << FixItHint::CreateReplacement(R.getNameLoc(),
3203                                            IV->getNameAsString());
3204          Diag(IV->getLocation(), diag::note_previous_decl)
3205            << IV->getDeclName();
3206        } else {
3207          Res.clear();
3208          Res.setLookupName(Member);
3209        }
3210      }
3211
3212      if (IV) {
3213        // If the decl being referenced had an error, return an error for this
3214        // sub-expr without emitting another error, in order to avoid cascading
3215        // error cases.
3216        if (IV->isInvalidDecl())
3217          return ExprError();
3218
3219        // Check whether we can reference this field.
3220        if (DiagnoseUseOfDecl(IV, MemberLoc))
3221          return ExprError();
3222        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
3223            IV->getAccessControl() != ObjCIvarDecl::Package) {
3224          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
3225          if (ObjCMethodDecl *MD = getCurMethodDecl())
3226            ClassOfMethodDecl =  MD->getClassInterface();
3227          else if (ObjCImpDecl && getCurFunctionDecl()) {
3228            // Case of a c-function declared inside an objc implementation.
3229            // FIXME: For a c-style function nested inside an objc implementation
3230            // class, there is no implementation context available, so we pass
3231            // down the context as argument to this routine. Ideally, this context
3232            // need be passed down in the AST node and somehow calculated from the
3233            // AST for a function decl.
3234            if (ObjCImplementationDecl *IMPD =
3235                dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
3236              ClassOfMethodDecl = IMPD->getClassInterface();
3237            else if (ObjCCategoryImplDecl* CatImplClass =
3238                        dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
3239              ClassOfMethodDecl = CatImplClass->getClassInterface();
3240          }
3241
3242          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
3243            if (ClassDeclared != IDecl ||
3244                ClassOfMethodDecl != ClassDeclared)
3245              Diag(MemberLoc, diag::error_private_ivar_access)
3246                << IV->getDeclName();
3247          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
3248            // @protected
3249            Diag(MemberLoc, diag::error_protected_ivar_access)
3250              << IV->getDeclName();
3251        }
3252
3253        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
3254                                                   MemberLoc, BaseExpr,
3255                                                   IsArrow));
3256      }
3257      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
3258                         << IDecl->getDeclName() << MemberName
3259                         << BaseExpr->getSourceRange());
3260    }
3261  }
3262  // Handle properties on 'id' and qualified "id".
3263  if (!IsArrow && (BaseType->isObjCIdType() ||
3264                   BaseType->isObjCQualifiedIdType())) {
3265    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
3266    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3267
3268    // Check protocols on qualified interfaces.
3269    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3270    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
3271      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
3272        // Check the use of this declaration
3273        if (DiagnoseUseOfDecl(PD, MemberLoc))
3274          return ExprError();
3275
3276        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3277                                                       MemberLoc, BaseExpr));
3278      }
3279      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
3280        // Check the use of this method.
3281        if (DiagnoseUseOfDecl(OMD, MemberLoc))
3282          return ExprError();
3283
3284        return Owned(ObjCMessageExpr::Create(Context,
3285                                             OMD->getSendResultType(),
3286                                             OpLoc, BaseExpr, Sel,
3287                                             OMD, NULL, 0, MemberLoc));
3288      }
3289    }
3290
3291    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3292                       << MemberName << BaseType);
3293  }
3294
3295  // Handle Objective-C property access, which is "Obj.property" where Obj is a
3296  // pointer to a (potentially qualified) interface type.
3297  if (!IsArrow)
3298    if (const ObjCObjectPointerType *OPT =
3299          BaseType->getAsObjCInterfacePointerType())
3300      return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc);
3301
3302  // Handle the following exceptional case (*Obj).isa.
3303  if (!IsArrow &&
3304      BaseType->isObjCObjectType() &&
3305      BaseType->getAs<ObjCObjectType>()->isObjCId() &&
3306      MemberName.getAsIdentifierInfo()->isStr("isa"))
3307    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
3308                                           Context.getObjCClassType()));
3309
3310  // Handle 'field access' to vectors, such as 'V.xx'.
3311  if (BaseType->isExtVectorType()) {
3312    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3313    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
3314    if (ret.isNull())
3315      return ExprError();
3316    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
3317                                                    MemberLoc));
3318  }
3319
3320  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
3321    << BaseType << BaseExpr->getSourceRange();
3322
3323  return ExprError();
3324}
3325
3326/// The main callback when the parser finds something like
3327///   expression . [nested-name-specifier] identifier
3328///   expression -> [nested-name-specifier] identifier
3329/// where 'identifier' encompasses a fairly broad spectrum of
3330/// possibilities, including destructor and operator references.
3331///
3332/// \param OpKind either tok::arrow or tok::period
3333/// \param HasTrailingLParen whether the next token is '(', which
3334///   is used to diagnose mis-uses of special members that can
3335///   only be called
3336/// \param ObjCImpDecl the current ObjC @implementation decl;
3337///   this is an ugly hack around the fact that ObjC @implementations
3338///   aren't properly put in the context chain
3339ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
3340                                                   SourceLocation OpLoc,
3341                                                   tok::TokenKind OpKind,
3342                                                   CXXScopeSpec &SS,
3343                                                   UnqualifiedId &Id,
3344                                                   Decl *ObjCImpDecl,
3345                                                   bool HasTrailingLParen) {
3346  if (SS.isSet() && SS.isInvalid())
3347    return ExprError();
3348
3349  TemplateArgumentListInfo TemplateArgsBuffer;
3350
3351  // Decompose the name into its component parts.
3352  DeclarationNameInfo NameInfo;
3353  const TemplateArgumentListInfo *TemplateArgs;
3354  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
3355                         NameInfo, TemplateArgs);
3356
3357  DeclarationName Name = NameInfo.getName();
3358  bool IsArrow = (OpKind == tok::arrow);
3359
3360  NamedDecl *FirstQualifierInScope
3361    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
3362                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
3363
3364  // This is a postfix expression, so get rid of ParenListExprs.
3365  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3366  if (Result.isInvalid()) return ExprError();
3367  Base = Result.take();
3368
3369  if (Base->getType()->isDependentType() || Name.isDependentName() ||
3370      isDependentScopeSpecifier(SS)) {
3371    Result = ActOnDependentMemberExpr(Base, Base->getType(),
3372                                      IsArrow, OpLoc,
3373                                      SS, FirstQualifierInScope,
3374                                      NameInfo, TemplateArgs);
3375  } else {
3376    LookupResult R(*this, NameInfo, LookupMemberName);
3377    Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
3378                              SS, ObjCImpDecl, TemplateArgs != 0);
3379
3380    if (Result.isInvalid()) {
3381      Owned(Base);
3382      return ExprError();
3383    }
3384
3385    if (Result.get()) {
3386      // The only way a reference to a destructor can be used is to
3387      // immediately call it, which falls into this case.  If the
3388      // next token is not a '(', produce a diagnostic and build the
3389      // call now.
3390      if (!HasTrailingLParen &&
3391          Id.getKind() == UnqualifiedId::IK_DestructorName)
3392        return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
3393
3394      return move(Result);
3395    }
3396
3397    Result = BuildMemberReferenceExpr(Base, Base->getType(),
3398                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
3399                                      R, TemplateArgs);
3400  }
3401
3402  return move(Result);
3403}
3404
3405ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3406                                                    FunctionDecl *FD,
3407                                                    ParmVarDecl *Param) {
3408  if (Param->hasUnparsedDefaultArg()) {
3409    Diag(CallLoc,
3410          diag::err_use_of_default_argument_to_function_declared_later) <<
3411      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3412    Diag(UnparsedDefaultArgLocs[Param],
3413          diag::note_default_argument_declared_here);
3414    return ExprError();
3415  }
3416
3417  if (Param->hasUninstantiatedDefaultArg()) {
3418    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3419
3420    // Instantiate the expression.
3421    MultiLevelTemplateArgumentList ArgList
3422      = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3423
3424    std::pair<const TemplateArgument *, unsigned> Innermost
3425      = ArgList.getInnermost();
3426    InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
3427                               Innermost.second);
3428
3429    ExprResult Result = SubstExpr(UninstExpr, ArgList);
3430    if (Result.isInvalid())
3431      return ExprError();
3432
3433    // Check the expression as an initializer for the parameter.
3434    InitializedEntity Entity
3435      = InitializedEntity::InitializeParameter(Param);
3436    InitializationKind Kind
3437      = InitializationKind::CreateCopy(Param->getLocation(),
3438             /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
3439    Expr *ResultE = Result.takeAs<Expr>();
3440
3441    InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3442    Result = InitSeq.Perform(*this, Entity, Kind,
3443                             MultiExprArg(*this, &ResultE, 1));
3444    if (Result.isInvalid())
3445      return ExprError();
3446
3447    // Build the default argument expression.
3448    return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3449                                           Result.takeAs<Expr>()));
3450  }
3451
3452  // If the default expression creates temporaries, we need to
3453  // push them to the current stack of expression temporaries so they'll
3454  // be properly destroyed.
3455  // FIXME: We should really be rebuilding the default argument with new
3456  // bound temporaries; see the comment in PR5810.
3457  for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) {
3458    CXXTemporary *Temporary = Param->getDefaultArgTemporary(i);
3459    MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(),
3460                    const_cast<CXXDestructorDecl*>(Temporary->getDestructor()));
3461    ExprTemporaries.push_back(Temporary);
3462  }
3463
3464  // We already type-checked the argument, so we know it works.
3465  // Just mark all of the declarations in this potentially-evaluated expression
3466  // as being "referenced".
3467  MarkDeclarationsReferencedInExpr(Param->getDefaultArg());
3468  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3469}
3470
3471/// ConvertArgumentsForCall - Converts the arguments specified in
3472/// Args/NumArgs to the parameter types of the function FDecl with
3473/// function prototype Proto. Call is the call expression itself, and
3474/// Fn is the function expression. For a C++ member function, this
3475/// routine does not attempt to convert the object argument. Returns
3476/// true if the call is ill-formed.
3477bool
3478Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3479                              FunctionDecl *FDecl,
3480                              const FunctionProtoType *Proto,
3481                              Expr **Args, unsigned NumArgs,
3482                              SourceLocation RParenLoc) {
3483  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3484  // assignment, to the types of the corresponding parameter, ...
3485  unsigned NumArgsInProto = Proto->getNumArgs();
3486  bool Invalid = false;
3487
3488  // If too few arguments are available (and we don't have default
3489  // arguments for the remaining parameters), don't make the call.
3490  if (NumArgs < NumArgsInProto) {
3491    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
3492      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3493        << Fn->getType()->isBlockPointerType()
3494        << NumArgsInProto << NumArgs << Fn->getSourceRange();
3495    Call->setNumArgs(Context, NumArgsInProto);
3496  }
3497
3498  // If too many are passed and not variadic, error on the extras and drop
3499  // them.
3500  if (NumArgs > NumArgsInProto) {
3501    if (!Proto->isVariadic()) {
3502      Diag(Args[NumArgsInProto]->getLocStart(),
3503           diag::err_typecheck_call_too_many_args)
3504        << Fn->getType()->isBlockPointerType()
3505        << NumArgsInProto << NumArgs << Fn->getSourceRange()
3506        << SourceRange(Args[NumArgsInProto]->getLocStart(),
3507                       Args[NumArgs-1]->getLocEnd());
3508      // This deletes the extra arguments.
3509      Call->setNumArgs(Context, NumArgsInProto);
3510      return true;
3511    }
3512  }
3513  llvm::SmallVector<Expr *, 8> AllArgs;
3514  VariadicCallType CallType =
3515    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3516  if (Fn->getType()->isBlockPointerType())
3517    CallType = VariadicBlock; // Block
3518  else if (isa<MemberExpr>(Fn))
3519    CallType = VariadicMethod;
3520  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
3521                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3522  if (Invalid)
3523    return true;
3524  unsigned TotalNumArgs = AllArgs.size();
3525  for (unsigned i = 0; i < TotalNumArgs; ++i)
3526    Call->setArg(i, AllArgs[i]);
3527
3528  return false;
3529}
3530
3531bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3532                                  FunctionDecl *FDecl,
3533                                  const FunctionProtoType *Proto,
3534                                  unsigned FirstProtoArg,
3535                                  Expr **Args, unsigned NumArgs,
3536                                  llvm::SmallVector<Expr *, 8> &AllArgs,
3537                                  VariadicCallType CallType) {
3538  unsigned NumArgsInProto = Proto->getNumArgs();
3539  unsigned NumArgsToCheck = NumArgs;
3540  bool Invalid = false;
3541  if (NumArgs != NumArgsInProto)
3542    // Use default arguments for missing arguments
3543    NumArgsToCheck = NumArgsInProto;
3544  unsigned ArgIx = 0;
3545  // Continue to check argument types (even if we have too few/many args).
3546  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3547    QualType ProtoArgType = Proto->getArgType(i);
3548
3549    Expr *Arg;
3550    if (ArgIx < NumArgs) {
3551      Arg = Args[ArgIx++];
3552
3553      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3554                              ProtoArgType,
3555                              PDiag(diag::err_call_incomplete_argument)
3556                              << Arg->getSourceRange()))
3557        return true;
3558
3559      // Pass the argument
3560      ParmVarDecl *Param = 0;
3561      if (FDecl && i < FDecl->getNumParams())
3562        Param = FDecl->getParamDecl(i);
3563
3564
3565      InitializedEntity Entity =
3566        Param? InitializedEntity::InitializeParameter(Param)
3567             : InitializedEntity::InitializeParameter(ProtoArgType);
3568      ExprResult ArgE = PerformCopyInitialization(Entity,
3569                                                        SourceLocation(),
3570                                                        Owned(Arg));
3571      if (ArgE.isInvalid())
3572        return true;
3573
3574      Arg = ArgE.takeAs<Expr>();
3575    } else {
3576      ParmVarDecl *Param = FDecl->getParamDecl(i);
3577
3578      ExprResult ArgExpr =
3579        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3580      if (ArgExpr.isInvalid())
3581        return true;
3582
3583      Arg = ArgExpr.takeAs<Expr>();
3584    }
3585    AllArgs.push_back(Arg);
3586  }
3587
3588  // If this is a variadic call, handle args passed through "...".
3589  if (CallType != VariadicDoesNotApply) {
3590    // Promote the arguments (C99 6.5.2.2p7).
3591    for (unsigned i = ArgIx; i != NumArgs; ++i) {
3592      Expr *Arg = Args[i];
3593      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType, FDecl);
3594      AllArgs.push_back(Arg);
3595    }
3596  }
3597  return Invalid;
3598}
3599
3600/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3601/// This provides the location of the left/right parens and a list of comma
3602/// locations.
3603ExprResult
3604Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3605                    MultiExprArg args, SourceLocation RParenLoc) {
3606  unsigned NumArgs = args.size();
3607
3608  // Since this might be a postfix expression, get rid of ParenListExprs.
3609  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3610  if (Result.isInvalid()) return ExprError();
3611  Fn = Result.take();
3612
3613  Expr **Args = args.release();
3614
3615  if (getLangOptions().CPlusPlus) {
3616    // If this is a pseudo-destructor expression, build the call immediately.
3617    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3618      if (NumArgs > 0) {
3619        // Pseudo-destructor calls should not have any arguments.
3620        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3621          << FixItHint::CreateRemoval(
3622                                    SourceRange(Args[0]->getLocStart(),
3623                                                Args[NumArgs-1]->getLocEnd()));
3624
3625        NumArgs = 0;
3626      }
3627
3628      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3629                                          RParenLoc));
3630    }
3631
3632    // Determine whether this is a dependent call inside a C++ template,
3633    // in which case we won't do any semantic analysis now.
3634    // FIXME: Will need to cache the results of name lookup (including ADL) in
3635    // Fn.
3636    bool Dependent = false;
3637    if (Fn->isTypeDependent())
3638      Dependent = true;
3639    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
3640      Dependent = true;
3641
3642    if (Dependent)
3643      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3644                                          Context.DependentTy, RParenLoc));
3645
3646    // Determine whether this is a call to an object (C++ [over.call.object]).
3647    if (Fn->getType()->isRecordType())
3648      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3649                                                RParenLoc));
3650
3651    Expr *NakedFn = Fn->IgnoreParens();
3652
3653    // Determine whether this is a call to an unresolved member function.
3654    if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
3655      // If lookup was unresolved but not dependent (i.e. didn't find
3656      // an unresolved using declaration), it has to be an overloaded
3657      // function set, which means it must contain either multiple
3658      // declarations (all methods or method templates) or a single
3659      // method template.
3660      assert((MemE->getNumDecls() > 1) ||
3661             isa<FunctionTemplateDecl>(
3662                                 (*MemE->decls_begin())->getUnderlyingDecl()));
3663      (void)MemE;
3664
3665      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3666                                       RParenLoc);
3667    }
3668
3669    // Determine whether this is a call to a member function.
3670    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
3671      NamedDecl *MemDecl = MemExpr->getMemberDecl();
3672      if (isa<CXXMethodDecl>(MemDecl))
3673        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3674                                         RParenLoc);
3675    }
3676
3677    // Determine whether this is a call to a pointer-to-member function.
3678    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
3679      if (BO->getOpcode() == BO_PtrMemD ||
3680          BO->getOpcode() == BO_PtrMemI) {
3681        if (const FunctionProtoType *FPT
3682                                = BO->getType()->getAs<FunctionProtoType>()) {
3683          QualType ResultTy = FPT->getCallResultType(Context);
3684
3685          CXXMemberCallExpr *TheCall
3686            = new (Context) CXXMemberCallExpr(Context, BO, Args,
3687                                              NumArgs, ResultTy,
3688                                              RParenLoc);
3689
3690          if (CheckCallReturnType(FPT->getResultType(),
3691                                  BO->getRHS()->getSourceRange().getBegin(),
3692                                  TheCall, 0))
3693            return ExprError();
3694
3695          if (ConvertArgumentsForCall(TheCall, BO, 0, FPT, Args, NumArgs,
3696                                      RParenLoc))
3697            return ExprError();
3698
3699          return MaybeBindToTemporary(TheCall);
3700        }
3701        return ExprError(Diag(Fn->getLocStart(),
3702                              diag::err_typecheck_call_not_function)
3703                              << Fn->getType() << Fn->getSourceRange());
3704      }
3705    }
3706  }
3707
3708  // If we're directly calling a function, get the appropriate declaration.
3709  // Also, in C++, keep track of whether we should perform argument-dependent
3710  // lookup and whether there were any explicitly-specified template arguments.
3711
3712  Expr *NakedFn = Fn->IgnoreParens();
3713  if (isa<UnresolvedLookupExpr>(NakedFn)) {
3714    UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
3715    return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
3716                                   RParenLoc);
3717  }
3718
3719  NamedDecl *NDecl = 0;
3720  if (isa<DeclRefExpr>(NakedFn))
3721    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3722
3723  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
3724}
3725
3726/// BuildResolvedCallExpr - Build a call to a resolved expression,
3727/// i.e. an expression not of \p OverloadTy.  The expression should
3728/// unary-convert to an expression of function-pointer or
3729/// block-pointer type.
3730///
3731/// \param NDecl the declaration being called, if available
3732ExprResult
3733Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3734                            SourceLocation LParenLoc,
3735                            Expr **Args, unsigned NumArgs,
3736                            SourceLocation RParenLoc) {
3737  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3738
3739  // Promote the function operand.
3740  UsualUnaryConversions(Fn);
3741
3742  // Make the call expr early, before semantic checks.  This guarantees cleanup
3743  // of arguments and function on error.
3744  CallExpr *TheCall = new (Context) CallExpr(Context, Fn,
3745                                             Args, NumArgs,
3746                                             Context.BoolTy,
3747                                             RParenLoc);
3748
3749  const FunctionType *FuncT;
3750  if (!Fn->getType()->isBlockPointerType()) {
3751    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3752    // have type pointer to function".
3753    const PointerType *PT = Fn->getType()->getAs<PointerType>();
3754    if (PT == 0)
3755      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3756        << Fn->getType() << Fn->getSourceRange());
3757    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3758  } else { // This is a block call.
3759    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
3760                getAs<FunctionType>();
3761  }
3762  if (FuncT == 0)
3763    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3764      << Fn->getType() << Fn->getSourceRange());
3765
3766  // Check for a valid return type
3767  if (CheckCallReturnType(FuncT->getResultType(),
3768                          Fn->getSourceRange().getBegin(), TheCall,
3769                          FDecl))
3770    return ExprError();
3771
3772  // We know the result type of the call, set it.
3773  TheCall->setType(FuncT->getCallResultType(Context));
3774
3775  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3776    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
3777                                RParenLoc))
3778      return ExprError();
3779  } else {
3780    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3781
3782    if (FDecl) {
3783      // Check if we have too few/too many template arguments, based
3784      // on our knowledge of the function definition.
3785      const FunctionDecl *Def = 0;
3786      if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
3787        const FunctionProtoType *Proto =
3788            Def->getType()->getAs<FunctionProtoType>();
3789        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
3790          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3791            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3792        }
3793      }
3794    }
3795
3796    // Promote the arguments (C99 6.5.2.2p6).
3797    for (unsigned i = 0; i != NumArgs; i++) {
3798      Expr *Arg = Args[i];
3799      DefaultArgumentPromotion(Arg);
3800      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3801                              Arg->getType(),
3802                              PDiag(diag::err_call_incomplete_argument)
3803                                << Arg->getSourceRange()))
3804        return ExprError();
3805      TheCall->setArg(i, Arg);
3806    }
3807  }
3808
3809  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3810    if (!Method->isStatic())
3811      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3812        << Fn->getSourceRange());
3813
3814  // Check for sentinels
3815  if (NDecl)
3816    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3817
3818  // Do special checking on direct calls to functions.
3819  if (FDecl) {
3820    if (CheckFunctionCall(FDecl, TheCall))
3821      return ExprError();
3822
3823    if (unsigned BuiltinID = FDecl->getBuiltinID())
3824      return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3825  } else if (NDecl) {
3826    if (CheckBlockCall(NDecl, TheCall))
3827      return ExprError();
3828  }
3829
3830  return MaybeBindToTemporary(TheCall);
3831}
3832
3833ExprResult
3834Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
3835                           SourceLocation RParenLoc, Expr *InitExpr) {
3836  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3837  // FIXME: put back this assert when initializers are worked out.
3838  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3839
3840  TypeSourceInfo *TInfo;
3841  QualType literalType = GetTypeFromParser(Ty, &TInfo);
3842  if (!TInfo)
3843    TInfo = Context.getTrivialTypeSourceInfo(literalType);
3844
3845  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
3846}
3847
3848ExprResult
3849Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3850                               SourceLocation RParenLoc, Expr *literalExpr) {
3851  QualType literalType = TInfo->getType();
3852
3853  if (literalType->isArrayType()) {
3854    if (literalType->isVariableArrayType())
3855      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3856        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3857  } else if (!literalType->isDependentType() &&
3858             RequireCompleteType(LParenLoc, literalType,
3859                      PDiag(diag::err_typecheck_decl_incomplete_type)
3860                        << SourceRange(LParenLoc,
3861                                       literalExpr->getSourceRange().getEnd())))
3862    return ExprError();
3863
3864  InitializedEntity Entity
3865    = InitializedEntity::InitializeTemporary(literalType);
3866  InitializationKind Kind
3867    = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
3868                                     /*IsCStyleCast=*/true);
3869  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
3870  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3871                                       MultiExprArg(*this, &literalExpr, 1),
3872                                            &literalType);
3873  if (Result.isInvalid())
3874    return ExprError();
3875  literalExpr = Result.get();
3876
3877  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3878  if (isFileScope) { // 6.5.2.5p3
3879    if (CheckForConstantInitializer(literalExpr, literalType))
3880      return ExprError();
3881  }
3882
3883  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
3884                                                 literalExpr, isFileScope));
3885}
3886
3887ExprResult
3888Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3889                    SourceLocation RBraceLoc) {
3890  unsigned NumInit = initlist.size();
3891  Expr **InitList = initlist.release();
3892
3893  // Semantic analysis for initializers is done by ActOnDeclarator() and
3894  // CheckInitializer() - it requires knowledge of the object being intialized.
3895
3896  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
3897                                               NumInit, RBraceLoc);
3898  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3899  return Owned(E);
3900}
3901
3902static CastKind getScalarCastKind(ASTContext &Context,
3903                                            QualType SrcTy, QualType DestTy) {
3904  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
3905    return CK_NoOp;
3906
3907  if (SrcTy->hasPointerRepresentation()) {
3908    if (DestTy->hasPointerRepresentation())
3909      return DestTy->isObjCObjectPointerType() ?
3910                CK_AnyPointerToObjCPointerCast :
3911                CK_BitCast;
3912    if (DestTy->isIntegerType())
3913      return CK_PointerToIntegral;
3914  }
3915
3916  if (SrcTy->isIntegerType()) {
3917    if (DestTy->isIntegerType())
3918      return CK_IntegralCast;
3919    if (DestTy->hasPointerRepresentation())
3920      return CK_IntegralToPointer;
3921    if (DestTy->isRealFloatingType())
3922      return CK_IntegralToFloating;
3923  }
3924
3925  if (SrcTy->isRealFloatingType()) {
3926    if (DestTy->isRealFloatingType())
3927      return CK_FloatingCast;
3928    if (DestTy->isIntegerType())
3929      return CK_FloatingToIntegral;
3930  }
3931
3932  // FIXME: Assert here.
3933  // assert(false && "Unhandled cast combination!");
3934  return CK_Unknown;
3935}
3936
3937/// CheckCastTypes - Check type constraints for casting between types.
3938bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3939                          CastKind& Kind,
3940                          CXXCastPath &BasePath,
3941                          bool FunctionalStyle) {
3942  if (getLangOptions().CPlusPlus)
3943    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, BasePath,
3944                              FunctionalStyle);
3945
3946  DefaultFunctionArrayLvalueConversion(castExpr);
3947
3948  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3949  // type needs to be scalar.
3950  if (castType->isVoidType()) {
3951    // Cast to void allows any expr type.
3952    Kind = CK_ToVoid;
3953    return false;
3954  }
3955
3956  if (RequireCompleteType(TyR.getBegin(), castType,
3957                          diag::err_typecheck_cast_to_incomplete))
3958    return true;
3959
3960  if (!castType->isScalarType() && !castType->isVectorType()) {
3961    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
3962        (castType->isStructureType() || castType->isUnionType())) {
3963      // GCC struct/union extension: allow cast to self.
3964      // FIXME: Check that the cast destination type is complete.
3965      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3966        << castType << castExpr->getSourceRange();
3967      Kind = CK_NoOp;
3968      return false;
3969    }
3970
3971    if (castType->isUnionType()) {
3972      // GCC cast to union extension
3973      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3974      RecordDecl::field_iterator Field, FieldEnd;
3975      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3976           Field != FieldEnd; ++Field) {
3977        if (Context.hasSameUnqualifiedType(Field->getType(),
3978                                           castExpr->getType())) {
3979          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3980            << castExpr->getSourceRange();
3981          break;
3982        }
3983      }
3984      if (Field == FieldEnd)
3985        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3986          << castExpr->getType() << castExpr->getSourceRange();
3987      Kind = CK_ToUnion;
3988      return false;
3989    }
3990
3991    // Reject any other conversions to non-scalar types.
3992    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3993      << castType << castExpr->getSourceRange();
3994  }
3995
3996  if (!castExpr->getType()->isScalarType() &&
3997      !castExpr->getType()->isVectorType()) {
3998    return Diag(castExpr->getLocStart(),
3999                diag::err_typecheck_expect_scalar_operand)
4000      << castExpr->getType() << castExpr->getSourceRange();
4001  }
4002
4003  if (castType->isExtVectorType())
4004    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
4005
4006  if (castType->isVectorType())
4007    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
4008  if (castExpr->getType()->isVectorType())
4009    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
4010
4011  if (isa<ObjCSelectorExpr>(castExpr))
4012    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
4013
4014  if (!castType->isArithmeticType()) {
4015    QualType castExprType = castExpr->getType();
4016    if (!castExprType->isIntegralType(Context) &&
4017        castExprType->isArithmeticType())
4018      return Diag(castExpr->getLocStart(),
4019                  diag::err_cast_pointer_from_non_pointer_int)
4020        << castExprType << castExpr->getSourceRange();
4021  } else if (!castExpr->getType()->isArithmeticType()) {
4022    if (!castType->isIntegralType(Context) && castType->isArithmeticType())
4023      return Diag(castExpr->getLocStart(),
4024                  diag::err_cast_pointer_to_non_pointer_int)
4025        << castType << castExpr->getSourceRange();
4026  }
4027
4028  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
4029
4030  if (Kind == CK_Unknown || Kind == CK_BitCast)
4031    CheckCastAlign(castExpr, castType, TyR);
4032
4033  return false;
4034}
4035
4036bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4037                           CastKind &Kind) {
4038  assert(VectorTy->isVectorType() && "Not a vector type!");
4039
4040  if (Ty->isVectorType() || Ty->isIntegerType()) {
4041    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4042      return Diag(R.getBegin(),
4043                  Ty->isVectorType() ?
4044                  diag::err_invalid_conversion_between_vectors :
4045                  diag::err_invalid_conversion_between_vector_and_integer)
4046        << VectorTy << Ty << R;
4047  } else
4048    return Diag(R.getBegin(),
4049                diag::err_invalid_conversion_between_vector_and_scalar)
4050      << VectorTy << Ty << R;
4051
4052  Kind = CK_BitCast;
4053  return false;
4054}
4055
4056bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
4057                              CastKind &Kind) {
4058  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4059
4060  QualType SrcTy = CastExpr->getType();
4061
4062  // If SrcTy is a VectorType, the total size must match to explicitly cast to
4063  // an ExtVectorType.
4064  if (SrcTy->isVectorType()) {
4065    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
4066      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4067        << DestTy << SrcTy << R;
4068    Kind = CK_BitCast;
4069    return false;
4070  }
4071
4072  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
4073  // conversion will take place first from scalar to elt type, and then
4074  // splat from elt type to vector.
4075  if (SrcTy->isPointerType())
4076    return Diag(R.getBegin(),
4077                diag::err_invalid_conversion_between_vector_and_scalar)
4078      << DestTy << SrcTy << R;
4079
4080  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4081  ImpCastExprToType(CastExpr, DestElemTy,
4082                    getScalarCastKind(Context, SrcTy, DestElemTy));
4083
4084  Kind = CK_VectorSplat;
4085  return false;
4086}
4087
4088ExprResult
4089Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, ParsedType Ty,
4090                    SourceLocation RParenLoc, Expr *castExpr) {
4091  assert((Ty != 0) && (castExpr != 0) &&
4092         "ActOnCastExpr(): missing type or expr");
4093
4094  TypeSourceInfo *castTInfo;
4095  QualType castType = GetTypeFromParser(Ty, &castTInfo);
4096  if (!castTInfo)
4097    castTInfo = Context.getTrivialTypeSourceInfo(castType);
4098
4099  // If the Expr being casted is a ParenListExpr, handle it specially.
4100  if (isa<ParenListExpr>(castExpr))
4101    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, castExpr,
4102                                    castTInfo);
4103
4104  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr);
4105}
4106
4107ExprResult
4108Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
4109                          SourceLocation RParenLoc, Expr *castExpr) {
4110  CastKind Kind = CK_Unknown;
4111  CXXCastPath BasePath;
4112  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
4113                     Kind, BasePath))
4114    return ExprError();
4115
4116  return Owned(CStyleCastExpr::Create(Context,
4117                                    Ty->getType().getNonLValueExprType(Context),
4118                                      Kind, castExpr, &BasePath, Ty,
4119                                      LParenLoc, RParenLoc));
4120}
4121
4122/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
4123/// of comma binary operators.
4124ExprResult
4125Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) {
4126  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
4127  if (!E)
4128    return Owned(expr);
4129
4130  ExprResult Result(E->getExpr(0));
4131
4132  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4133    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4134                        E->getExpr(i));
4135
4136  if (Result.isInvalid()) return ExprError();
4137
4138  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4139}
4140
4141ExprResult
4142Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
4143                               SourceLocation RParenLoc, Expr *Op,
4144                               TypeSourceInfo *TInfo) {
4145  ParenListExpr *PE = cast<ParenListExpr>(Op);
4146  QualType Ty = TInfo->getType();
4147  bool isAltiVecLiteral = false;
4148
4149  // Check for an altivec literal,
4150  // i.e. all the elements are integer constants.
4151  if (getLangOptions().AltiVec && Ty->isVectorType()) {
4152    if (PE->getNumExprs() == 0) {
4153      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
4154      return ExprError();
4155    }
4156    if (PE->getNumExprs() == 1) {
4157      if (!PE->getExpr(0)->getType()->isVectorType())
4158        isAltiVecLiteral = true;
4159    }
4160    else
4161      isAltiVecLiteral = true;
4162  }
4163
4164  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
4165  // then handle it as such.
4166  if (isAltiVecLiteral) {
4167    llvm::SmallVector<Expr *, 8> initExprs;
4168    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
4169      initExprs.push_back(PE->getExpr(i));
4170
4171    // FIXME: This means that pretty-printing the final AST will produce curly
4172    // braces instead of the original commas.
4173    InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc,
4174                                                 &initExprs[0],
4175                                                 initExprs.size(), RParenLoc);
4176    E->setType(Ty);
4177    return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, E);
4178  } else {
4179    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4180    // sequence of BinOp comma operators.
4181    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Op);
4182    if (Result.isInvalid()) return ExprError();
4183    return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Result.take());
4184  }
4185}
4186
4187ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
4188                                                  SourceLocation R,
4189                                                  MultiExprArg Val,
4190                                                  ParsedType TypeOfCast) {
4191  unsigned nexprs = Val.size();
4192  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4193  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4194  Expr *expr;
4195  if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
4196    expr = new (Context) ParenExpr(L, R, exprs[0]);
4197  else
4198    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4199  return Owned(expr);
4200}
4201
4202/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
4203/// In that case, lhs = cond.
4204/// C99 6.5.15
4205QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
4206                                        SourceLocation QuestionLoc) {
4207  // C++ is sufficiently different to merit its own checker.
4208  if (getLangOptions().CPlusPlus)
4209    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
4210
4211  UsualUnaryConversions(Cond);
4212  UsualUnaryConversions(LHS);
4213  UsualUnaryConversions(RHS);
4214  QualType CondTy = Cond->getType();
4215  QualType LHSTy = LHS->getType();
4216  QualType RHSTy = RHS->getType();
4217
4218  // first, check the condition.
4219  if (!CondTy->isScalarType()) { // C99 6.5.15p2
4220    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4221      << CondTy;
4222    return QualType();
4223  }
4224
4225  // Now check the two expressions.
4226  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4227    return CheckVectorOperands(QuestionLoc, LHS, RHS);
4228
4229  // If both operands have arithmetic type, do the usual arithmetic conversions
4230  // to find a common type: C99 6.5.15p3,5.
4231  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4232    UsualArithmeticConversions(LHS, RHS);
4233    return LHS->getType();
4234  }
4235
4236  // If both operands are the same structure or union type, the result is that
4237  // type.
4238  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4239    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4240      if (LHSRT->getDecl() == RHSRT->getDecl())
4241        // "If both the operands have structure or union type, the result has
4242        // that type."  This implies that CV qualifiers are dropped.
4243        return LHSTy.getUnqualifiedType();
4244    // FIXME: Type of conditional expression must be complete in C mode.
4245  }
4246
4247  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4248  // The following || allows only one side to be void (a GCC-ism).
4249  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4250    if (!LHSTy->isVoidType())
4251      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4252        << RHS->getSourceRange();
4253    if (!RHSTy->isVoidType())
4254      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4255        << LHS->getSourceRange();
4256    ImpCastExprToType(LHS, Context.VoidTy, CK_ToVoid);
4257    ImpCastExprToType(RHS, Context.VoidTy, CK_ToVoid);
4258    return Context.VoidTy;
4259  }
4260  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4261  // the type of the other operand."
4262  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
4263      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4264    // promote the null to a pointer.
4265    ImpCastExprToType(RHS, LHSTy, CK_Unknown);
4266    return LHSTy;
4267  }
4268  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
4269      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4270    ImpCastExprToType(LHS, RHSTy, CK_Unknown);
4271    return RHSTy;
4272  }
4273
4274  // All objective-c pointer type analysis is done here.
4275  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4276                                                        QuestionLoc);
4277  if (!compositeType.isNull())
4278    return compositeType;
4279
4280
4281  // Handle block pointer types.
4282  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
4283    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4284      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4285        QualType destType = Context.getPointerType(Context.VoidTy);
4286        ImpCastExprToType(LHS, destType, CK_BitCast);
4287        ImpCastExprToType(RHS, destType, CK_BitCast);
4288        return destType;
4289      }
4290      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4291      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4292      return QualType();
4293    }
4294    // We have 2 block pointer types.
4295    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4296      // Two identical block pointer types are always compatible.
4297      return LHSTy;
4298    }
4299    // The block pointer types aren't identical, continue checking.
4300    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
4301    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
4302
4303    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4304                                    rhptee.getUnqualifiedType())) {
4305      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4306      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4307      // In this situation, we assume void* type. No especially good
4308      // reason, but this is what gcc does, and we do have to pick
4309      // to get a consistent AST.
4310      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4311      ImpCastExprToType(LHS, incompatTy, CK_BitCast);
4312      ImpCastExprToType(RHS, incompatTy, CK_BitCast);
4313      return incompatTy;
4314    }
4315    // The block pointer types are compatible.
4316    ImpCastExprToType(LHS, LHSTy, CK_BitCast);
4317    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4318    return LHSTy;
4319  }
4320
4321  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4322  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4323    // get the "pointed to" types
4324    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4325    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4326
4327    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4328    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4329      // Figure out necessary qualifiers (C99 6.5.15p6)
4330      QualType destPointee
4331        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4332      QualType destType = Context.getPointerType(destPointee);
4333      // Add qualifiers if necessary.
4334      ImpCastExprToType(LHS, destType, CK_NoOp);
4335      // Promote to void*.
4336      ImpCastExprToType(RHS, destType, CK_BitCast);
4337      return destType;
4338    }
4339    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4340      QualType destPointee
4341        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4342      QualType destType = Context.getPointerType(destPointee);
4343      // Add qualifiers if necessary.
4344      ImpCastExprToType(RHS, destType, CK_NoOp);
4345      // Promote to void*.
4346      ImpCastExprToType(LHS, destType, CK_BitCast);
4347      return destType;
4348    }
4349
4350    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4351      // Two identical pointer types are always compatible.
4352      return LHSTy;
4353    }
4354    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4355                                    rhptee.getUnqualifiedType())) {
4356      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4357        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4358      // In this situation, we assume void* type. No especially good
4359      // reason, but this is what gcc does, and we do have to pick
4360      // to get a consistent AST.
4361      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4362      ImpCastExprToType(LHS, incompatTy, CK_BitCast);
4363      ImpCastExprToType(RHS, incompatTy, CK_BitCast);
4364      return incompatTy;
4365    }
4366    // The pointer types are compatible.
4367    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
4368    // differently qualified versions of compatible types, the result type is
4369    // a pointer to an appropriately qualified version of the *composite*
4370    // type.
4371    // FIXME: Need to calculate the composite type.
4372    // FIXME: Need to add qualifiers
4373    ImpCastExprToType(LHS, LHSTy, CK_BitCast);
4374    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4375    return LHSTy;
4376  }
4377
4378  // GCC compatibility: soften pointer/integer mismatch.
4379  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
4380    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4381      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4382    ImpCastExprToType(LHS, RHSTy, CK_IntegralToPointer);
4383    return RHSTy;
4384  }
4385  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
4386    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4387      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4388    ImpCastExprToType(RHS, LHSTy, CK_IntegralToPointer);
4389    return LHSTy;
4390  }
4391
4392  // Otherwise, the operands are not compatible.
4393  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4394    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4395  return QualType();
4396}
4397
4398/// FindCompositeObjCPointerType - Helper method to find composite type of
4399/// two objective-c pointer types of the two input expressions.
4400QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
4401                                        SourceLocation QuestionLoc) {
4402  QualType LHSTy = LHS->getType();
4403  QualType RHSTy = RHS->getType();
4404
4405  // Handle things like Class and struct objc_class*.  Here we case the result
4406  // to the pseudo-builtin, because that will be implicitly cast back to the
4407  // redefinition type if an attempt is made to access its fields.
4408  if (LHSTy->isObjCClassType() &&
4409      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4410    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4411    return LHSTy;
4412  }
4413  if (RHSTy->isObjCClassType() &&
4414      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4415    ImpCastExprToType(LHS, RHSTy, CK_BitCast);
4416    return RHSTy;
4417  }
4418  // And the same for struct objc_object* / id
4419  if (LHSTy->isObjCIdType() &&
4420      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4421    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4422    return LHSTy;
4423  }
4424  if (RHSTy->isObjCIdType() &&
4425      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4426    ImpCastExprToType(LHS, RHSTy, CK_BitCast);
4427    return RHSTy;
4428  }
4429  // And the same for struct objc_selector* / SEL
4430  if (Context.isObjCSelType(LHSTy) &&
4431      (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4432    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4433    return LHSTy;
4434  }
4435  if (Context.isObjCSelType(RHSTy) &&
4436      (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4437    ImpCastExprToType(LHS, RHSTy, CK_BitCast);
4438    return RHSTy;
4439  }
4440  // Check constraints for Objective-C object pointers types.
4441  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4442
4443    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4444      // Two identical object pointer types are always compatible.
4445      return LHSTy;
4446    }
4447    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
4448    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
4449    QualType compositeType = LHSTy;
4450
4451    // If both operands are interfaces and either operand can be
4452    // assigned to the other, use that type as the composite
4453    // type. This allows
4454    //   xxx ? (A*) a : (B*) b
4455    // where B is a subclass of A.
4456    //
4457    // Additionally, as for assignment, if either type is 'id'
4458    // allow silent coercion. Finally, if the types are
4459    // incompatible then make sure to use 'id' as the composite
4460    // type so the result is acceptable for sending messages to.
4461
4462    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4463    // It could return the composite type.
4464    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4465      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4466    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4467      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4468    } else if ((LHSTy->isObjCQualifiedIdType() ||
4469                RHSTy->isObjCQualifiedIdType()) &&
4470               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4471      // Need to handle "id<xx>" explicitly.
4472      // GCC allows qualified id and any Objective-C type to devolve to
4473      // id. Currently localizing to here until clear this should be
4474      // part of ObjCQualifiedIdTypesAreCompatible.
4475      compositeType = Context.getObjCIdType();
4476    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4477      compositeType = Context.getObjCIdType();
4478    } else if (!(compositeType =
4479                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4480      ;
4481    else {
4482      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4483      << LHSTy << RHSTy
4484      << LHS->getSourceRange() << RHS->getSourceRange();
4485      QualType incompatTy = Context.getObjCIdType();
4486      ImpCastExprToType(LHS, incompatTy, CK_BitCast);
4487      ImpCastExprToType(RHS, incompatTy, CK_BitCast);
4488      return incompatTy;
4489    }
4490    // The object pointer types are compatible.
4491    ImpCastExprToType(LHS, compositeType, CK_BitCast);
4492    ImpCastExprToType(RHS, compositeType, CK_BitCast);
4493    return compositeType;
4494  }
4495  // Check Objective-C object pointer types and 'void *'
4496  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4497    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4498    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4499    QualType destPointee
4500    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4501    QualType destType = Context.getPointerType(destPointee);
4502    // Add qualifiers if necessary.
4503    ImpCastExprToType(LHS, destType, CK_NoOp);
4504    // Promote to void*.
4505    ImpCastExprToType(RHS, destType, CK_BitCast);
4506    return destType;
4507  }
4508  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4509    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4510    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4511    QualType destPointee
4512    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4513    QualType destType = Context.getPointerType(destPointee);
4514    // Add qualifiers if necessary.
4515    ImpCastExprToType(RHS, destType, CK_NoOp);
4516    // Promote to void*.
4517    ImpCastExprToType(LHS, destType, CK_BitCast);
4518    return destType;
4519  }
4520  return QualType();
4521}
4522
4523/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
4524/// in the case of a the GNU conditional expr extension.
4525ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
4526                                                  SourceLocation ColonLoc,
4527                                                  Expr *CondExpr, Expr *LHSExpr,
4528                                                  Expr *RHSExpr) {
4529  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
4530  // was the condition.
4531  bool isLHSNull = LHSExpr == 0;
4532  Expr *SAVEExpr = 0;
4533  if (isLHSNull) {
4534    LHSExpr = SAVEExpr = CondExpr;
4535  }
4536
4537  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
4538                                             RHSExpr, QuestionLoc);
4539  if (result.isNull())
4540    return ExprError();
4541
4542  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
4543                                                 LHSExpr, ColonLoc,
4544                                                 RHSExpr, SAVEExpr,
4545                                                 result));
4546}
4547
4548// CheckPointerTypesForAssignment - This is a very tricky routine (despite
4549// being closely modeled after the C99 spec:-). The odd characteristic of this
4550// routine is it effectively iqnores the qualifiers on the top level pointee.
4551// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
4552// FIXME: add a couple examples in this comment.
4553Sema::AssignConvertType
4554Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4555  QualType lhptee, rhptee;
4556
4557  if ((lhsType->isObjCClassType() &&
4558       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4559     (rhsType->isObjCClassType() &&
4560       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4561      return Compatible;
4562  }
4563
4564  // get the "pointed to" type (ignoring qualifiers at the top level)
4565  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
4566  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
4567
4568  // make sure we operate on the canonical type
4569  lhptee = Context.getCanonicalType(lhptee);
4570  rhptee = Context.getCanonicalType(rhptee);
4571
4572  AssignConvertType ConvTy = Compatible;
4573
4574  // C99 6.5.16.1p1: This following citation is common to constraints
4575  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
4576  // qualifiers of the type *pointed to* by the right;
4577  // FIXME: Handle ExtQualType
4578  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4579    ConvTy = CompatiblePointerDiscardsQualifiers;
4580
4581  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
4582  // incomplete type and the other is a pointer to a qualified or unqualified
4583  // version of void...
4584  if (lhptee->isVoidType()) {
4585    if (rhptee->isIncompleteOrObjectType())
4586      return ConvTy;
4587
4588    // As an extension, we allow cast to/from void* to function pointer.
4589    assert(rhptee->isFunctionType());
4590    return FunctionVoidPointer;
4591  }
4592
4593  if (rhptee->isVoidType()) {
4594    if (lhptee->isIncompleteOrObjectType())
4595      return ConvTy;
4596
4597    // As an extension, we allow cast to/from void* to function pointer.
4598    assert(lhptee->isFunctionType());
4599    return FunctionVoidPointer;
4600  }
4601  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
4602  // unqualified versions of compatible types, ...
4603  lhptee = lhptee.getUnqualifiedType();
4604  rhptee = rhptee.getUnqualifiedType();
4605  if (!Context.typesAreCompatible(lhptee, rhptee)) {
4606    // Check if the pointee types are compatible ignoring the sign.
4607    // We explicitly check for char so that we catch "char" vs
4608    // "unsigned char" on systems where "char" is unsigned.
4609    if (lhptee->isCharType())
4610      lhptee = Context.UnsignedCharTy;
4611    else if (lhptee->hasSignedIntegerRepresentation())
4612      lhptee = Context.getCorrespondingUnsignedType(lhptee);
4613
4614    if (rhptee->isCharType())
4615      rhptee = Context.UnsignedCharTy;
4616    else if (rhptee->hasSignedIntegerRepresentation())
4617      rhptee = Context.getCorrespondingUnsignedType(rhptee);
4618
4619    if (lhptee == rhptee) {
4620      // Types are compatible ignoring the sign. Qualifier incompatibility
4621      // takes priority over sign incompatibility because the sign
4622      // warning can be disabled.
4623      if (ConvTy != Compatible)
4624        return ConvTy;
4625      return IncompatiblePointerSign;
4626    }
4627
4628    // If we are a multi-level pointer, it's possible that our issue is simply
4629    // one of qualification - e.g. char ** -> const char ** is not allowed. If
4630    // the eventual target type is the same and the pointers have the same
4631    // level of indirection, this must be the issue.
4632    if (lhptee->isPointerType() && rhptee->isPointerType()) {
4633      do {
4634        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
4635        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
4636
4637        lhptee = Context.getCanonicalType(lhptee);
4638        rhptee = Context.getCanonicalType(rhptee);
4639      } while (lhptee->isPointerType() && rhptee->isPointerType());
4640
4641      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
4642        return IncompatibleNestedPointerQualifiers;
4643    }
4644
4645    // General pointer incompatibility takes priority over qualifiers.
4646    return IncompatiblePointer;
4647  }
4648  return ConvTy;
4649}
4650
4651/// CheckBlockPointerTypesForAssignment - This routine determines whether two
4652/// block pointer types are compatible or whether a block and normal pointer
4653/// are compatible. It is more restrict than comparing two function pointer
4654// types.
4655Sema::AssignConvertType
4656Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
4657                                          QualType rhsType) {
4658  QualType lhptee, rhptee;
4659
4660  // get the "pointed to" type (ignoring qualifiers at the top level)
4661  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
4662  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
4663
4664  // make sure we operate on the canonical type
4665  lhptee = Context.getCanonicalType(lhptee);
4666  rhptee = Context.getCanonicalType(rhptee);
4667
4668  AssignConvertType ConvTy = Compatible;
4669
4670  // For blocks we enforce that qualifiers are identical.
4671  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
4672    ConvTy = CompatiblePointerDiscardsQualifiers;
4673
4674  if (!getLangOptions().CPlusPlus) {
4675    if (!Context.typesAreBlockPointerCompatible(lhsType, rhsType))
4676      return IncompatibleBlockPointer;
4677  }
4678  else if (!Context.typesAreCompatible(lhptee, rhptee))
4679    return IncompatibleBlockPointer;
4680  return ConvTy;
4681}
4682
4683/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
4684/// for assignment compatibility.
4685Sema::AssignConvertType
4686Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4687  if (lhsType->isObjCBuiltinType()) {
4688    // Class is not compatible with ObjC object pointers.
4689    if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
4690        !rhsType->isObjCQualifiedClassType())
4691      return IncompatiblePointer;
4692    return Compatible;
4693  }
4694  if (rhsType->isObjCBuiltinType()) {
4695    // Class is not compatible with ObjC object pointers.
4696    if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
4697        !lhsType->isObjCQualifiedClassType())
4698      return IncompatiblePointer;
4699    return Compatible;
4700  }
4701  QualType lhptee =
4702  lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4703  QualType rhptee =
4704  rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4705  // make sure we operate on the canonical type
4706  lhptee = Context.getCanonicalType(lhptee);
4707  rhptee = Context.getCanonicalType(rhptee);
4708  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4709    return CompatiblePointerDiscardsQualifiers;
4710
4711  if (Context.typesAreCompatible(lhsType, rhsType))
4712    return Compatible;
4713  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
4714    return IncompatibleObjCQualifiedId;
4715  return IncompatiblePointer;
4716}
4717
4718/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
4719/// has code to accommodate several GCC extensions when type checking
4720/// pointers. Here are some objectionable examples that GCC considers warnings:
4721///
4722///  int a, *pint;
4723///  short *pshort;
4724///  struct foo *pfoo;
4725///
4726///  pint = pshort; // warning: assignment from incompatible pointer type
4727///  a = pint; // warning: assignment makes integer from pointer without a cast
4728///  pint = a; // warning: assignment makes pointer from integer without a cast
4729///  pint = pfoo; // warning: assignment from incompatible pointer type
4730///
4731/// As a result, the code for dealing with pointers is more complex than the
4732/// C99 spec dictates.
4733///
4734Sema::AssignConvertType
4735Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
4736  // Get canonical types.  We're not formatting these types, just comparing
4737  // them.
4738  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
4739  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
4740
4741  if (lhsType == rhsType)
4742    return Compatible; // Common case: fast path an exact match.
4743
4744  if ((lhsType->isObjCClassType() &&
4745       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4746     (rhsType->isObjCClassType() &&
4747       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4748      return Compatible;
4749  }
4750
4751  // If the left-hand side is a reference type, then we are in a
4752  // (rare!) case where we've allowed the use of references in C,
4753  // e.g., as a parameter type in a built-in function. In this case,
4754  // just make sure that the type referenced is compatible with the
4755  // right-hand side type. The caller is responsible for adjusting
4756  // lhsType so that the resulting expression does not have reference
4757  // type.
4758  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
4759    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
4760      return Compatible;
4761    return Incompatible;
4762  }
4763  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
4764  // to the same ExtVector type.
4765  if (lhsType->isExtVectorType()) {
4766    if (rhsType->isExtVectorType())
4767      return lhsType == rhsType ? Compatible : Incompatible;
4768    if (rhsType->isArithmeticType())
4769      return Compatible;
4770  }
4771
4772  if (lhsType->isVectorType() || rhsType->isVectorType()) {
4773    if (lhsType->isVectorType() && rhsType->isVectorType()) {
4774      // If we are allowing lax vector conversions, and LHS and RHS are both
4775      // vectors, the total size only needs to be the same. This is a bitcast;
4776      // no bits are changed but the result type is different.
4777      if (getLangOptions().LaxVectorConversions &&
4778         (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType)))
4779        return IncompatibleVectors;
4780
4781      // Allow assignments of an AltiVec vector type to an equivalent GCC
4782      // vector type and vice versa
4783      if (Context.areCompatibleVectorTypes(lhsType, rhsType))
4784        return Compatible;
4785    }
4786    return Incompatible;
4787  }
4788
4789  if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
4790      !(getLangOptions().CPlusPlus && lhsType->isEnumeralType()))
4791    return Compatible;
4792
4793  if (isa<PointerType>(lhsType)) {
4794    if (rhsType->isIntegerType())
4795      return IntToPointer;
4796
4797    if (isa<PointerType>(rhsType))
4798      return CheckPointerTypesForAssignment(lhsType, rhsType);
4799
4800    // In general, C pointers are not compatible with ObjC object pointers.
4801    if (isa<ObjCObjectPointerType>(rhsType)) {
4802      if (lhsType->isVoidPointerType()) // an exception to the rule.
4803        return Compatible;
4804      return IncompatiblePointer;
4805    }
4806    if (rhsType->getAs<BlockPointerType>()) {
4807      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4808        return Compatible;
4809
4810      // Treat block pointers as objects.
4811      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
4812        return Compatible;
4813    }
4814    return Incompatible;
4815  }
4816
4817  if (isa<BlockPointerType>(lhsType)) {
4818    if (rhsType->isIntegerType())
4819      return IntToBlockPointer;
4820
4821    // Treat block pointers as objects.
4822    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
4823      return Compatible;
4824
4825    if (rhsType->isBlockPointerType())
4826      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
4827
4828    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4829      if (RHSPT->getPointeeType()->isVoidType())
4830        return Compatible;
4831    }
4832    return Incompatible;
4833  }
4834
4835  if (isa<ObjCObjectPointerType>(lhsType)) {
4836    if (rhsType->isIntegerType())
4837      return IntToPointer;
4838
4839    // In general, C pointers are not compatible with ObjC object pointers.
4840    if (isa<PointerType>(rhsType)) {
4841      if (rhsType->isVoidPointerType()) // an exception to the rule.
4842        return Compatible;
4843      return IncompatiblePointer;
4844    }
4845    if (rhsType->isObjCObjectPointerType()) {
4846      return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
4847    }
4848    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4849      if (RHSPT->getPointeeType()->isVoidType())
4850        return Compatible;
4851    }
4852    // Treat block pointers as objects.
4853    if (rhsType->isBlockPointerType())
4854      return Compatible;
4855    return Incompatible;
4856  }
4857  if (isa<PointerType>(rhsType)) {
4858    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4859    if (lhsType == Context.BoolTy)
4860      return Compatible;
4861
4862    if (lhsType->isIntegerType())
4863      return PointerToInt;
4864
4865    if (isa<PointerType>(lhsType))
4866      return CheckPointerTypesForAssignment(lhsType, rhsType);
4867
4868    if (isa<BlockPointerType>(lhsType) &&
4869        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4870      return Compatible;
4871    return Incompatible;
4872  }
4873  if (isa<ObjCObjectPointerType>(rhsType)) {
4874    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4875    if (lhsType == Context.BoolTy)
4876      return Compatible;
4877
4878    if (lhsType->isIntegerType())
4879      return PointerToInt;
4880
4881    // In general, C pointers are not compatible with ObjC object pointers.
4882    if (isa<PointerType>(lhsType)) {
4883      if (lhsType->isVoidPointerType()) // an exception to the rule.
4884        return Compatible;
4885      return IncompatiblePointer;
4886    }
4887    if (isa<BlockPointerType>(lhsType) &&
4888        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4889      return Compatible;
4890    return Incompatible;
4891  }
4892
4893  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
4894    if (Context.typesAreCompatible(lhsType, rhsType))
4895      return Compatible;
4896  }
4897  return Incompatible;
4898}
4899
4900/// \brief Constructs a transparent union from an expression that is
4901/// used to initialize the transparent union.
4902static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
4903                                      QualType UnionType, FieldDecl *Field) {
4904  // Build an initializer list that designates the appropriate member
4905  // of the transparent union.
4906  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
4907                                                   &E, 1,
4908                                                   SourceLocation());
4909  Initializer->setType(UnionType);
4910  Initializer->setInitializedFieldInUnion(Field);
4911
4912  // Build a compound literal constructing a value of the transparent
4913  // union type from this initializer list.
4914  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
4915  E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
4916                                  Initializer, false);
4917}
4918
4919Sema::AssignConvertType
4920Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
4921  QualType FromType = rExpr->getType();
4922
4923  // If the ArgType is a Union type, we want to handle a potential
4924  // transparent_union GCC extension.
4925  const RecordType *UT = ArgType->getAsUnionType();
4926  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
4927    return Incompatible;
4928
4929  // The field to initialize within the transparent union.
4930  RecordDecl *UD = UT->getDecl();
4931  FieldDecl *InitField = 0;
4932  // It's compatible if the expression matches any of the fields.
4933  for (RecordDecl::field_iterator it = UD->field_begin(),
4934         itend = UD->field_end();
4935       it != itend; ++it) {
4936    if (it->getType()->isPointerType()) {
4937      // If the transparent union contains a pointer type, we allow:
4938      // 1) void pointer
4939      // 2) null pointer constant
4940      if (FromType->isPointerType())
4941        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
4942          ImpCastExprToType(rExpr, it->getType(), CK_BitCast);
4943          InitField = *it;
4944          break;
4945        }
4946
4947      if (rExpr->isNullPointerConstant(Context,
4948                                       Expr::NPC_ValueDependentIsNull)) {
4949        ImpCastExprToType(rExpr, it->getType(), CK_IntegralToPointer);
4950        InitField = *it;
4951        break;
4952      }
4953    }
4954
4955    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
4956          == Compatible) {
4957      ImpCastExprToType(rExpr, it->getType(), CK_Unknown);
4958      InitField = *it;
4959      break;
4960    }
4961  }
4962
4963  if (!InitField)
4964    return Incompatible;
4965
4966  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
4967  return Compatible;
4968}
4969
4970Sema::AssignConvertType
4971Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
4972  if (getLangOptions().CPlusPlus) {
4973    if (!lhsType->isRecordType()) {
4974      // C++ 5.17p3: If the left operand is not of class type, the
4975      // expression is implicitly converted (C++ 4) to the
4976      // cv-unqualified type of the left operand.
4977      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
4978                                    AA_Assigning))
4979        return Incompatible;
4980      return Compatible;
4981    }
4982
4983    // FIXME: Currently, we fall through and treat C++ classes like C
4984    // structures.
4985  }
4986
4987  // C99 6.5.16.1p1: the left operand is a pointer and the right is
4988  // a null pointer constant.
4989  if ((lhsType->isPointerType() ||
4990       lhsType->isObjCObjectPointerType() ||
4991       lhsType->isBlockPointerType())
4992      && rExpr->isNullPointerConstant(Context,
4993                                      Expr::NPC_ValueDependentIsNull)) {
4994    ImpCastExprToType(rExpr, lhsType, CK_Unknown);
4995    return Compatible;
4996  }
4997
4998  // This check seems unnatural, however it is necessary to ensure the proper
4999  // conversion of functions/arrays. If the conversion were done for all
5000  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
5001  // expressions that suppress this implicit conversion (&, sizeof).
5002  //
5003  // Suppress this for references: C++ 8.5.3p5.
5004  if (!lhsType->isReferenceType())
5005    DefaultFunctionArrayLvalueConversion(rExpr);
5006
5007  Sema::AssignConvertType result =
5008    CheckAssignmentConstraints(lhsType, rExpr->getType());
5009
5010  // C99 6.5.16.1p2: The value of the right operand is converted to the
5011  // type of the assignment expression.
5012  // CheckAssignmentConstraints allows the left-hand side to be a reference,
5013  // so that we can use references in built-in functions even in C.
5014  // The getNonReferenceType() call makes sure that the resulting expression
5015  // does not have reference type.
5016  if (result != Incompatible && rExpr->getType() != lhsType)
5017    ImpCastExprToType(rExpr, lhsType.getNonLValueExprType(Context),
5018                      CK_Unknown);
5019  return result;
5020}
5021
5022QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
5023  Diag(Loc, diag::err_typecheck_invalid_operands)
5024    << lex->getType() << rex->getType()
5025    << lex->getSourceRange() << rex->getSourceRange();
5026  return QualType();
5027}
5028
5029QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
5030  // For conversion purposes, we ignore any qualifiers.
5031  // For example, "const float" and "float" are equivalent.
5032  QualType lhsType =
5033    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
5034  QualType rhsType =
5035    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
5036
5037  // If the vector types are identical, return.
5038  if (lhsType == rhsType)
5039    return lhsType;
5040
5041  // Handle the case of a vector & extvector type of the same size and element
5042  // type.  It would be nice if we only had one vector type someday.
5043  if (getLangOptions().LaxVectorConversions) {
5044    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
5045      if (const VectorType *RV = rhsType->getAs<VectorType>()) {
5046        if (LV->getElementType() == RV->getElementType() &&
5047            LV->getNumElements() == RV->getNumElements()) {
5048          if (lhsType->isExtVectorType()) {
5049            ImpCastExprToType(rex, lhsType, CK_BitCast);
5050            return lhsType;
5051          }
5052
5053          ImpCastExprToType(lex, rhsType, CK_BitCast);
5054          return rhsType;
5055        } else if (Context.getTypeSize(lhsType) ==Context.getTypeSize(rhsType)){
5056          // If we are allowing lax vector conversions, and LHS and RHS are both
5057          // vectors, the total size only needs to be the same. This is a
5058          // bitcast; no bits are changed but the result type is different.
5059          ImpCastExprToType(rex, lhsType, CK_BitCast);
5060          return lhsType;
5061        }
5062      }
5063    }
5064  }
5065
5066  // Handle the case of equivalent AltiVec and GCC vector types
5067  if (lhsType->isVectorType() && rhsType->isVectorType() &&
5068      Context.areCompatibleVectorTypes(lhsType, rhsType)) {
5069    ImpCastExprToType(lex, rhsType, CK_BitCast);
5070    return rhsType;
5071  }
5072
5073  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
5074  // swap back (so that we don't reverse the inputs to a subtract, for instance.
5075  bool swapped = false;
5076  if (rhsType->isExtVectorType()) {
5077    swapped = true;
5078    std::swap(rex, lex);
5079    std::swap(rhsType, lhsType);
5080  }
5081
5082  // Handle the case of an ext vector and scalar.
5083  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
5084    QualType EltTy = LV->getElementType();
5085    if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
5086      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
5087        ImpCastExprToType(rex, lhsType, CK_IntegralCast);
5088        if (swapped) std::swap(rex, lex);
5089        return lhsType;
5090      }
5091    }
5092    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
5093        rhsType->isRealFloatingType()) {
5094      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
5095        ImpCastExprToType(rex, lhsType, CK_FloatingCast);
5096        if (swapped) std::swap(rex, lex);
5097        return lhsType;
5098      }
5099    }
5100  }
5101
5102  // Vectors of different size or scalar and non-ext-vector are errors.
5103  Diag(Loc, diag::err_typecheck_vector_not_convertable)
5104    << lex->getType() << rex->getType()
5105    << lex->getSourceRange() << rex->getSourceRange();
5106  return QualType();
5107}
5108
5109QualType Sema::CheckMultiplyDivideOperands(
5110  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
5111  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5112    return CheckVectorOperands(Loc, lex, rex);
5113
5114  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5115
5116  if (!lex->getType()->isArithmeticType() ||
5117      !rex->getType()->isArithmeticType())
5118    return InvalidOperands(Loc, lex, rex);
5119
5120  // Check for division by zero.
5121  if (isDiv &&
5122      rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
5123    DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
5124                                     << rex->getSourceRange());
5125
5126  return compType;
5127}
5128
5129QualType Sema::CheckRemainderOperands(
5130  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5131  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5132    if (lex->getType()->hasIntegerRepresentation() &&
5133        rex->getType()->hasIntegerRepresentation())
5134      return CheckVectorOperands(Loc, lex, rex);
5135    return InvalidOperands(Loc, lex, rex);
5136  }
5137
5138  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5139
5140  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
5141    return InvalidOperands(Loc, lex, rex);
5142
5143  // Check for remainder by zero.
5144  if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
5145    DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
5146                                 << rex->getSourceRange());
5147
5148  return compType;
5149}
5150
5151QualType Sema::CheckAdditionOperands( // C99 6.5.6
5152  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
5153  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5154    QualType compType = CheckVectorOperands(Loc, lex, rex);
5155    if (CompLHSTy) *CompLHSTy = compType;
5156    return compType;
5157  }
5158
5159  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5160
5161  // handle the common case first (both operands are arithmetic).
5162  if (lex->getType()->isArithmeticType() &&
5163      rex->getType()->isArithmeticType()) {
5164    if (CompLHSTy) *CompLHSTy = compType;
5165    return compType;
5166  }
5167
5168  // Put any potential pointer into PExp
5169  Expr* PExp = lex, *IExp = rex;
5170  if (IExp->getType()->isAnyPointerType())
5171    std::swap(PExp, IExp);
5172
5173  if (PExp->getType()->isAnyPointerType()) {
5174
5175    if (IExp->getType()->isIntegerType()) {
5176      QualType PointeeTy = PExp->getType()->getPointeeType();
5177
5178      // Check for arithmetic on pointers to incomplete types.
5179      if (PointeeTy->isVoidType()) {
5180        if (getLangOptions().CPlusPlus) {
5181          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5182            << lex->getSourceRange() << rex->getSourceRange();
5183          return QualType();
5184        }
5185
5186        // GNU extension: arithmetic on pointer to void
5187        Diag(Loc, diag::ext_gnu_void_ptr)
5188          << lex->getSourceRange() << rex->getSourceRange();
5189      } else if (PointeeTy->isFunctionType()) {
5190        if (getLangOptions().CPlusPlus) {
5191          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5192            << lex->getType() << lex->getSourceRange();
5193          return QualType();
5194        }
5195
5196        // GNU extension: arithmetic on pointer to function
5197        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5198          << lex->getType() << lex->getSourceRange();
5199      } else {
5200        // Check if we require a complete type.
5201        if (((PExp->getType()->isPointerType() &&
5202              !PExp->getType()->isDependentType()) ||
5203              PExp->getType()->isObjCObjectPointerType()) &&
5204             RequireCompleteType(Loc, PointeeTy,
5205                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5206                             << PExp->getSourceRange()
5207                             << PExp->getType()))
5208          return QualType();
5209      }
5210      // Diagnose bad cases where we step over interface counts.
5211      if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5212        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5213          << PointeeTy << PExp->getSourceRange();
5214        return QualType();
5215      }
5216
5217      if (CompLHSTy) {
5218        QualType LHSTy = Context.isPromotableBitField(lex);
5219        if (LHSTy.isNull()) {
5220          LHSTy = lex->getType();
5221          if (LHSTy->isPromotableIntegerType())
5222            LHSTy = Context.getPromotedIntegerType(LHSTy);
5223        }
5224        *CompLHSTy = LHSTy;
5225      }
5226      return PExp->getType();
5227    }
5228  }
5229
5230  return InvalidOperands(Loc, lex, rex);
5231}
5232
5233// C99 6.5.6
5234QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
5235                                        SourceLocation Loc, QualType* CompLHSTy) {
5236  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5237    QualType compType = CheckVectorOperands(Loc, lex, rex);
5238    if (CompLHSTy) *CompLHSTy = compType;
5239    return compType;
5240  }
5241
5242  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5243
5244  // Enforce type constraints: C99 6.5.6p3.
5245
5246  // Handle the common case first (both operands are arithmetic).
5247  if (lex->getType()->isArithmeticType()
5248      && rex->getType()->isArithmeticType()) {
5249    if (CompLHSTy) *CompLHSTy = compType;
5250    return compType;
5251  }
5252
5253  // Either ptr - int   or   ptr - ptr.
5254  if (lex->getType()->isAnyPointerType()) {
5255    QualType lpointee = lex->getType()->getPointeeType();
5256
5257    // The LHS must be an completely-defined object type.
5258
5259    bool ComplainAboutVoid = false;
5260    Expr *ComplainAboutFunc = 0;
5261    if (lpointee->isVoidType()) {
5262      if (getLangOptions().CPlusPlus) {
5263        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5264          << lex->getSourceRange() << rex->getSourceRange();
5265        return QualType();
5266      }
5267
5268      // GNU C extension: arithmetic on pointer to void
5269      ComplainAboutVoid = true;
5270    } else if (lpointee->isFunctionType()) {
5271      if (getLangOptions().CPlusPlus) {
5272        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5273          << lex->getType() << lex->getSourceRange();
5274        return QualType();
5275      }
5276
5277      // GNU C extension: arithmetic on pointer to function
5278      ComplainAboutFunc = lex;
5279    } else if (!lpointee->isDependentType() &&
5280               RequireCompleteType(Loc, lpointee,
5281                                   PDiag(diag::err_typecheck_sub_ptr_object)
5282                                     << lex->getSourceRange()
5283                                     << lex->getType()))
5284      return QualType();
5285
5286    // Diagnose bad cases where we step over interface counts.
5287    if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5288      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5289        << lpointee << lex->getSourceRange();
5290      return QualType();
5291    }
5292
5293    // The result type of a pointer-int computation is the pointer type.
5294    if (rex->getType()->isIntegerType()) {
5295      if (ComplainAboutVoid)
5296        Diag(Loc, diag::ext_gnu_void_ptr)
5297          << lex->getSourceRange() << rex->getSourceRange();
5298      if (ComplainAboutFunc)
5299        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5300          << ComplainAboutFunc->getType()
5301          << ComplainAboutFunc->getSourceRange();
5302
5303      if (CompLHSTy) *CompLHSTy = lex->getType();
5304      return lex->getType();
5305    }
5306
5307    // Handle pointer-pointer subtractions.
5308    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
5309      QualType rpointee = RHSPTy->getPointeeType();
5310
5311      // RHS must be a completely-type object type.
5312      // Handle the GNU void* extension.
5313      if (rpointee->isVoidType()) {
5314        if (getLangOptions().CPlusPlus) {
5315          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5316            << lex->getSourceRange() << rex->getSourceRange();
5317          return QualType();
5318        }
5319
5320        ComplainAboutVoid = true;
5321      } else if (rpointee->isFunctionType()) {
5322        if (getLangOptions().CPlusPlus) {
5323          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5324            << rex->getType() << rex->getSourceRange();
5325          return QualType();
5326        }
5327
5328        // GNU extension: arithmetic on pointer to function
5329        if (!ComplainAboutFunc)
5330          ComplainAboutFunc = rex;
5331      } else if (!rpointee->isDependentType() &&
5332                 RequireCompleteType(Loc, rpointee,
5333                                     PDiag(diag::err_typecheck_sub_ptr_object)
5334                                       << rex->getSourceRange()
5335                                       << rex->getType()))
5336        return QualType();
5337
5338      if (getLangOptions().CPlusPlus) {
5339        // Pointee types must be the same: C++ [expr.add]
5340        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
5341          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5342            << lex->getType() << rex->getType()
5343            << lex->getSourceRange() << rex->getSourceRange();
5344          return QualType();
5345        }
5346      } else {
5347        // Pointee types must be compatible C99 6.5.6p3
5348        if (!Context.typesAreCompatible(
5349                Context.getCanonicalType(lpointee).getUnqualifiedType(),
5350                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
5351          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5352            << lex->getType() << rex->getType()
5353            << lex->getSourceRange() << rex->getSourceRange();
5354          return QualType();
5355        }
5356      }
5357
5358      if (ComplainAboutVoid)
5359        Diag(Loc, diag::ext_gnu_void_ptr)
5360          << lex->getSourceRange() << rex->getSourceRange();
5361      if (ComplainAboutFunc)
5362        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5363          << ComplainAboutFunc->getType()
5364          << ComplainAboutFunc->getSourceRange();
5365
5366      if (CompLHSTy) *CompLHSTy = lex->getType();
5367      return Context.getPointerDiffType();
5368    }
5369  }
5370
5371  return InvalidOperands(Loc, lex, rex);
5372}
5373
5374// C99 6.5.7
5375QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5376                                  bool isCompAssign) {
5377  // C99 6.5.7p2: Each of the operands shall have integer type.
5378  if (!lex->getType()->hasIntegerRepresentation() ||
5379      !rex->getType()->hasIntegerRepresentation())
5380    return InvalidOperands(Loc, lex, rex);
5381
5382  // Vector shifts promote their scalar inputs to vector type.
5383  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5384    return CheckVectorOperands(Loc, lex, rex);
5385
5386  // Shifts don't perform usual arithmetic conversions, they just do integer
5387  // promotions on each operand. C99 6.5.7p3
5388  QualType LHSTy = Context.isPromotableBitField(lex);
5389  if (LHSTy.isNull()) {
5390    LHSTy = lex->getType();
5391    if (LHSTy->isPromotableIntegerType())
5392      LHSTy = Context.getPromotedIntegerType(LHSTy);
5393  }
5394  if (!isCompAssign)
5395    ImpCastExprToType(lex, LHSTy, CK_IntegralCast);
5396
5397  UsualUnaryConversions(rex);
5398
5399  // Sanity-check shift operands
5400  llvm::APSInt Right;
5401  // Check right/shifter operand
5402  if (!rex->isValueDependent() &&
5403      rex->isIntegerConstantExpr(Right, Context)) {
5404    if (Right.isNegative())
5405      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
5406    else {
5407      llvm::APInt LeftBits(Right.getBitWidth(),
5408                          Context.getTypeSize(lex->getType()));
5409      if (Right.uge(LeftBits))
5410        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
5411    }
5412  }
5413
5414  // "The type of the result is that of the promoted left operand."
5415  return LHSTy;
5416}
5417
5418static bool IsWithinTemplateSpecialization(Decl *D) {
5419  if (DeclContext *DC = D->getDeclContext()) {
5420    if (isa<ClassTemplateSpecializationDecl>(DC))
5421      return true;
5422    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
5423      return FD->isFunctionTemplateSpecialization();
5424  }
5425  return false;
5426}
5427
5428// C99 6.5.8, C++ [expr.rel]
5429QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5430                                    unsigned OpaqueOpc, bool isRelational) {
5431  BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
5432
5433  // Handle vector comparisons separately.
5434  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5435    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
5436
5437  QualType lType = lex->getType();
5438  QualType rType = rex->getType();
5439
5440  if (!lType->hasFloatingRepresentation() &&
5441      !(lType->isBlockPointerType() && isRelational) &&
5442      !lex->getLocStart().isMacroID() &&
5443      !rex->getLocStart().isMacroID()) {
5444    // For non-floating point types, check for self-comparisons of the form
5445    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5446    // often indicate logic errors in the program.
5447    //
5448    // NOTE: Don't warn about comparison expressions resulting from macro
5449    // expansion. Also don't warn about comparisons which are only self
5450    // comparisons within a template specialization. The warnings should catch
5451    // obvious cases in the definition of the template anyways. The idea is to
5452    // warn when the typed comparison operator will always evaluate to the same
5453    // result.
5454    Expr *LHSStripped = lex->IgnoreParens();
5455    Expr *RHSStripped = rex->IgnoreParens();
5456    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
5457      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
5458        if (DRL->getDecl() == DRR->getDecl() &&
5459            !IsWithinTemplateSpecialization(DRL->getDecl())) {
5460          DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
5461                              << 0 // self-
5462                              << (Opc == BO_EQ
5463                                  || Opc == BO_LE
5464                                  || Opc == BO_GE));
5465        } else if (lType->isArrayType() && rType->isArrayType() &&
5466                   !DRL->getDecl()->getType()->isReferenceType() &&
5467                   !DRR->getDecl()->getType()->isReferenceType()) {
5468            // what is it always going to eval to?
5469            char always_evals_to;
5470            switch(Opc) {
5471            case BO_EQ: // e.g. array1 == array2
5472              always_evals_to = 0; // false
5473              break;
5474            case BO_NE: // e.g. array1 != array2
5475              always_evals_to = 1; // true
5476              break;
5477            default:
5478              // best we can say is 'a constant'
5479              always_evals_to = 2; // e.g. array1 <= array2
5480              break;
5481            }
5482            DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
5483                                << 1 // array
5484                                << always_evals_to);
5485        }
5486      }
5487    }
5488
5489    if (isa<CastExpr>(LHSStripped))
5490      LHSStripped = LHSStripped->IgnoreParenCasts();
5491    if (isa<CastExpr>(RHSStripped))
5492      RHSStripped = RHSStripped->IgnoreParenCasts();
5493
5494    // Warn about comparisons against a string constant (unless the other
5495    // operand is null), the user probably wants strcmp.
5496    Expr *literalString = 0;
5497    Expr *literalStringStripped = 0;
5498    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
5499        !RHSStripped->isNullPointerConstant(Context,
5500                                            Expr::NPC_ValueDependentIsNull)) {
5501      literalString = lex;
5502      literalStringStripped = LHSStripped;
5503    } else if ((isa<StringLiteral>(RHSStripped) ||
5504                isa<ObjCEncodeExpr>(RHSStripped)) &&
5505               !LHSStripped->isNullPointerConstant(Context,
5506                                            Expr::NPC_ValueDependentIsNull)) {
5507      literalString = rex;
5508      literalStringStripped = RHSStripped;
5509    }
5510
5511    if (literalString) {
5512      std::string resultComparison;
5513      switch (Opc) {
5514      case BO_LT: resultComparison = ") < 0"; break;
5515      case BO_GT: resultComparison = ") > 0"; break;
5516      case BO_LE: resultComparison = ") <= 0"; break;
5517      case BO_GE: resultComparison = ") >= 0"; break;
5518      case BO_EQ: resultComparison = ") == 0"; break;
5519      case BO_NE: resultComparison = ") != 0"; break;
5520      default: assert(false && "Invalid comparison operator");
5521      }
5522
5523      DiagRuntimeBehavior(Loc,
5524        PDiag(diag::warn_stringcompare)
5525          << isa<ObjCEncodeExpr>(literalStringStripped)
5526          << literalString->getSourceRange());
5527    }
5528  }
5529
5530  // C99 6.5.8p3 / C99 6.5.9p4
5531  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
5532    UsualArithmeticConversions(lex, rex);
5533  else {
5534    UsualUnaryConversions(lex);
5535    UsualUnaryConversions(rex);
5536  }
5537
5538  lType = lex->getType();
5539  rType = rex->getType();
5540
5541  // The result of comparisons is 'bool' in C++, 'int' in C.
5542  QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
5543
5544  if (isRelational) {
5545    if (lType->isRealType() && rType->isRealType())
5546      return ResultTy;
5547  } else {
5548    // Check for comparisons of floating point operands using != and ==.
5549    if (lType->hasFloatingRepresentation())
5550      CheckFloatComparison(Loc,lex,rex);
5551
5552    if (lType->isArithmeticType() && rType->isArithmeticType())
5553      return ResultTy;
5554  }
5555
5556  bool LHSIsNull = lex->isNullPointerConstant(Context,
5557                                              Expr::NPC_ValueDependentIsNull);
5558  bool RHSIsNull = rex->isNullPointerConstant(Context,
5559                                              Expr::NPC_ValueDependentIsNull);
5560
5561  // All of the following pointer-related warnings are GCC extensions, except
5562  // when handling null pointer constants.
5563  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
5564    QualType LCanPointeeTy =
5565      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
5566    QualType RCanPointeeTy =
5567      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
5568
5569    if (getLangOptions().CPlusPlus) {
5570      if (LCanPointeeTy == RCanPointeeTy)
5571        return ResultTy;
5572      if (!isRelational &&
5573          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5574        // Valid unless comparison between non-null pointer and function pointer
5575        // This is a gcc extension compatibility comparison.
5576        // In a SFINAE context, we treat this as a hard error to maintain
5577        // conformance with the C++ standard.
5578        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5579            && !LHSIsNull && !RHSIsNull) {
5580          Diag(Loc,
5581               isSFINAEContext()?
5582                   diag::err_typecheck_comparison_of_fptr_to_void
5583                 : diag::ext_typecheck_comparison_of_fptr_to_void)
5584            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5585
5586          if (isSFINAEContext())
5587            return QualType();
5588
5589          ImpCastExprToType(rex, lType, CK_BitCast);
5590          return ResultTy;
5591        }
5592      }
5593      // C++ [expr.rel]p2:
5594      //   [...] Pointer conversions (4.10) and qualification
5595      //   conversions (4.4) are performed on pointer operands (or on
5596      //   a pointer operand and a null pointer constant) to bring
5597      //   them to their composite pointer type. [...]
5598      //
5599      // C++ [expr.eq]p1 uses the same notion for (in)equality
5600      // comparisons of pointers.
5601      bool NonStandardCompositeType = false;
5602      QualType T = FindCompositePointerType(Loc, lex, rex,
5603                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5604      if (T.isNull()) {
5605        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5606          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5607        return QualType();
5608      } else if (NonStandardCompositeType) {
5609        Diag(Loc,
5610             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5611          << lType << rType << T
5612          << lex->getSourceRange() << rex->getSourceRange();
5613      }
5614
5615      ImpCastExprToType(lex, T, CK_BitCast);
5616      ImpCastExprToType(rex, T, CK_BitCast);
5617      return ResultTy;
5618    }
5619    // C99 6.5.9p2 and C99 6.5.8p2
5620    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
5621                                   RCanPointeeTy.getUnqualifiedType())) {
5622      // Valid unless a relational comparison of function pointers
5623      if (isRelational && LCanPointeeTy->isFunctionType()) {
5624        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
5625          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5626      }
5627    } else if (!isRelational &&
5628               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5629      // Valid unless comparison between non-null pointer and function pointer
5630      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5631          && !LHSIsNull && !RHSIsNull) {
5632        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5633          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5634      }
5635    } else {
5636      // Invalid
5637      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5638        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5639    }
5640    if (LCanPointeeTy != RCanPointeeTy)
5641      ImpCastExprToType(rex, lType, CK_BitCast);
5642    return ResultTy;
5643  }
5644
5645  if (getLangOptions().CPlusPlus) {
5646    // Comparison of pointers with null pointer constants and equality
5647    // comparisons of member pointers to null pointer constants.
5648    if (RHSIsNull &&
5649        (lType->isPointerType() ||
5650         (!isRelational && lType->isMemberPointerType()))) {
5651      ImpCastExprToType(rex, lType,
5652                        lType->isMemberPointerType()
5653                          ? CK_NullToMemberPointer
5654                          : CK_IntegralToPointer);
5655      return ResultTy;
5656    }
5657    if (LHSIsNull &&
5658        (rType->isPointerType() ||
5659         (!isRelational && rType->isMemberPointerType()))) {
5660      ImpCastExprToType(lex, rType,
5661                        rType->isMemberPointerType()
5662                          ? CK_NullToMemberPointer
5663                          : CK_IntegralToPointer);
5664      return ResultTy;
5665    }
5666
5667    // Comparison of member pointers.
5668    if (!isRelational &&
5669        lType->isMemberPointerType() && rType->isMemberPointerType()) {
5670      // C++ [expr.eq]p2:
5671      //   In addition, pointers to members can be compared, or a pointer to
5672      //   member and a null pointer constant. Pointer to member conversions
5673      //   (4.11) and qualification conversions (4.4) are performed to bring
5674      //   them to a common type. If one operand is a null pointer constant,
5675      //   the common type is the type of the other operand. Otherwise, the
5676      //   common type is a pointer to member type similar (4.4) to the type
5677      //   of one of the operands, with a cv-qualification signature (4.4)
5678      //   that is the union of the cv-qualification signatures of the operand
5679      //   types.
5680      bool NonStandardCompositeType = false;
5681      QualType T = FindCompositePointerType(Loc, lex, rex,
5682                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5683      if (T.isNull()) {
5684        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5685          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5686        return QualType();
5687      } else if (NonStandardCompositeType) {
5688        Diag(Loc,
5689             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5690          << lType << rType << T
5691          << lex->getSourceRange() << rex->getSourceRange();
5692      }
5693
5694      ImpCastExprToType(lex, T, CK_BitCast);
5695      ImpCastExprToType(rex, T, CK_BitCast);
5696      return ResultTy;
5697    }
5698
5699    // Comparison of nullptr_t with itself.
5700    if (lType->isNullPtrType() && rType->isNullPtrType())
5701      return ResultTy;
5702  }
5703
5704  // Handle block pointer types.
5705  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
5706    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
5707    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
5708
5709    if (!LHSIsNull && !RHSIsNull &&
5710        !Context.typesAreCompatible(lpointee, rpointee)) {
5711      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5712        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5713    }
5714    ImpCastExprToType(rex, lType, CK_BitCast);
5715    return ResultTy;
5716  }
5717  // Allow block pointers to be compared with null pointer constants.
5718  if (!isRelational
5719      && ((lType->isBlockPointerType() && rType->isPointerType())
5720          || (lType->isPointerType() && rType->isBlockPointerType()))) {
5721    if (!LHSIsNull && !RHSIsNull) {
5722      if (!((rType->isPointerType() && rType->getAs<PointerType>()
5723             ->getPointeeType()->isVoidType())
5724            || (lType->isPointerType() && lType->getAs<PointerType>()
5725                ->getPointeeType()->isVoidType())))
5726        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5727          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5728    }
5729    ImpCastExprToType(rex, lType, CK_BitCast);
5730    return ResultTy;
5731  }
5732
5733  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
5734    if (lType->isPointerType() || rType->isPointerType()) {
5735      const PointerType *LPT = lType->getAs<PointerType>();
5736      const PointerType *RPT = rType->getAs<PointerType>();
5737      bool LPtrToVoid = LPT ?
5738        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
5739      bool RPtrToVoid = RPT ?
5740        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
5741
5742      if (!LPtrToVoid && !RPtrToVoid &&
5743          !Context.typesAreCompatible(lType, rType)) {
5744        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5745          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5746      }
5747      ImpCastExprToType(rex, lType, CK_BitCast);
5748      return ResultTy;
5749    }
5750    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
5751      if (!Context.areComparableObjCPointerTypes(lType, rType))
5752        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5753          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5754      ImpCastExprToType(rex, lType, CK_BitCast);
5755      return ResultTy;
5756    }
5757  }
5758  if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
5759      (lType->isIntegerType() && rType->isAnyPointerType())) {
5760    unsigned DiagID = 0;
5761    bool isError = false;
5762    if ((LHSIsNull && lType->isIntegerType()) ||
5763        (RHSIsNull && rType->isIntegerType())) {
5764      if (isRelational && !getLangOptions().CPlusPlus)
5765        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5766    } else if (isRelational && !getLangOptions().CPlusPlus)
5767      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5768    else if (getLangOptions().CPlusPlus) {
5769      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
5770      isError = true;
5771    } else
5772      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5773
5774    if (DiagID) {
5775      Diag(Loc, DiagID)
5776        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5777      if (isError)
5778        return QualType();
5779    }
5780
5781    if (lType->isIntegerType())
5782      ImpCastExprToType(lex, rType, CK_IntegralToPointer);
5783    else
5784      ImpCastExprToType(rex, lType, CK_IntegralToPointer);
5785    return ResultTy;
5786  }
5787
5788  // Handle block pointers.
5789  if (!isRelational && RHSIsNull
5790      && lType->isBlockPointerType() && rType->isIntegerType()) {
5791    ImpCastExprToType(rex, lType, CK_IntegralToPointer);
5792    return ResultTy;
5793  }
5794  if (!isRelational && LHSIsNull
5795      && lType->isIntegerType() && rType->isBlockPointerType()) {
5796    ImpCastExprToType(lex, rType, CK_IntegralToPointer);
5797    return ResultTy;
5798  }
5799  return InvalidOperands(Loc, lex, rex);
5800}
5801
5802/// CheckVectorCompareOperands - vector comparisons are a clang extension that
5803/// operates on extended vector types.  Instead of producing an IntTy result,
5804/// like a scalar comparison, a vector comparison produces a vector of integer
5805/// types.
5806QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
5807                                          SourceLocation Loc,
5808                                          bool isRelational) {
5809  // Check to make sure we're operating on vectors of the same type and width,
5810  // Allowing one side to be a scalar of element type.
5811  QualType vType = CheckVectorOperands(Loc, lex, rex);
5812  if (vType.isNull())
5813    return vType;
5814
5815  QualType lType = lex->getType();
5816  QualType rType = rex->getType();
5817
5818  // For non-floating point types, check for self-comparisons of the form
5819  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5820  // often indicate logic errors in the program.
5821  if (!lType->hasFloatingRepresentation()) {
5822    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
5823      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
5824        if (DRL->getDecl() == DRR->getDecl())
5825          DiagRuntimeBehavior(Loc,
5826                              PDiag(diag::warn_comparison_always)
5827                                << 0 // self-
5828                                << 2 // "a constant"
5829                              );
5830  }
5831
5832  // Check for comparisons of floating point operands using != and ==.
5833  if (!isRelational && lType->hasFloatingRepresentation()) {
5834    assert (rType->hasFloatingRepresentation());
5835    CheckFloatComparison(Loc,lex,rex);
5836  }
5837
5838  // Return the type for the comparison, which is the same as vector type for
5839  // integer vectors, or an integer type of identical size and number of
5840  // elements for floating point vectors.
5841  if (lType->hasIntegerRepresentation())
5842    return lType;
5843
5844  const VectorType *VTy = lType->getAs<VectorType>();
5845  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
5846  if (TypeSize == Context.getTypeSize(Context.IntTy))
5847    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
5848  if (TypeSize == Context.getTypeSize(Context.LongTy))
5849    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
5850
5851  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
5852         "Unhandled vector element size in vector compare");
5853  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
5854}
5855
5856inline QualType Sema::CheckBitwiseOperands(
5857  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5858  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5859    if (lex->getType()->hasIntegerRepresentation() &&
5860        rex->getType()->hasIntegerRepresentation())
5861      return CheckVectorOperands(Loc, lex, rex);
5862
5863    return InvalidOperands(Loc, lex, rex);
5864  }
5865
5866  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5867
5868  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
5869    return compType;
5870  return InvalidOperands(Loc, lex, rex);
5871}
5872
5873inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
5874  Expr *&lex, Expr *&rex, SourceLocation Loc, unsigned Opc) {
5875
5876  // Diagnose cases where the user write a logical and/or but probably meant a
5877  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
5878  // is a constant.
5879  if (lex->getType()->isIntegerType() && !lex->getType()->isBooleanType() &&
5880      rex->getType()->isIntegerType() && !rex->isValueDependent() &&
5881      // Don't warn in macros.
5882      !Loc.isMacroID()) {
5883    // If the RHS can be constant folded, and if it constant folds to something
5884    // that isn't 0 or 1 (which indicate a potential logical operation that
5885    // happened to fold to true/false) then warn.
5886    Expr::EvalResult Result;
5887    if (rex->Evaluate(Result, Context) && !Result.HasSideEffects &&
5888        Result.Val.getInt() != 0 && Result.Val.getInt() != 1) {
5889      Diag(Loc, diag::warn_logical_instead_of_bitwise)
5890       << rex->getSourceRange()
5891        << (Opc == BO_LAnd ? "&&" : "||")
5892        << (Opc == BO_LAnd ? "&" : "|");
5893    }
5894  }
5895
5896  if (!Context.getLangOptions().CPlusPlus) {
5897    UsualUnaryConversions(lex);
5898    UsualUnaryConversions(rex);
5899
5900    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
5901      return InvalidOperands(Loc, lex, rex);
5902
5903    return Context.IntTy;
5904  }
5905
5906  // The following is safe because we only use this method for
5907  // non-overloadable operands.
5908
5909  // C++ [expr.log.and]p1
5910  // C++ [expr.log.or]p1
5911  // The operands are both contextually converted to type bool.
5912  if (PerformContextuallyConvertToBool(lex) ||
5913      PerformContextuallyConvertToBool(rex))
5914    return InvalidOperands(Loc, lex, rex);
5915
5916  // C++ [expr.log.and]p2
5917  // C++ [expr.log.or]p2
5918  // The result is a bool.
5919  return Context.BoolTy;
5920}
5921
5922/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
5923/// is a read-only property; return true if so. A readonly property expression
5924/// depends on various declarations and thus must be treated specially.
5925///
5926static bool IsReadonlyProperty(Expr *E, Sema &S) {
5927  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
5928    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
5929    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
5930      QualType BaseType = PropExpr->getBase()->getType();
5931      if (const ObjCObjectPointerType *OPT =
5932            BaseType->getAsObjCInterfacePointerType())
5933        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
5934          if (S.isPropertyReadonly(PDecl, IFace))
5935            return true;
5936    }
5937  }
5938  return false;
5939}
5940
5941/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
5942/// emit an error and return true.  If so, return false.
5943static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
5944  SourceLocation OrigLoc = Loc;
5945  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
5946                                                              &Loc);
5947  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
5948    IsLV = Expr::MLV_ReadonlyProperty;
5949  if (IsLV == Expr::MLV_Valid)
5950    return false;
5951
5952  unsigned Diag = 0;
5953  bool NeedType = false;
5954  switch (IsLV) { // C99 6.5.16p2
5955  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
5956  case Expr::MLV_ArrayType:
5957    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
5958    NeedType = true;
5959    break;
5960  case Expr::MLV_NotObjectType:
5961    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
5962    NeedType = true;
5963    break;
5964  case Expr::MLV_LValueCast:
5965    Diag = diag::err_typecheck_lvalue_casts_not_supported;
5966    break;
5967  case Expr::MLV_Valid:
5968    llvm_unreachable("did not take early return for MLV_Valid");
5969  case Expr::MLV_InvalidExpression:
5970  case Expr::MLV_MemberFunction:
5971  case Expr::MLV_ClassTemporary:
5972    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
5973    break;
5974  case Expr::MLV_IncompleteType:
5975  case Expr::MLV_IncompleteVoidType:
5976    return S.RequireCompleteType(Loc, E->getType(),
5977              S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
5978                  << E->getSourceRange());
5979  case Expr::MLV_DuplicateVectorComponents:
5980    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
5981    break;
5982  case Expr::MLV_NotBlockQualified:
5983    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
5984    break;
5985  case Expr::MLV_ReadonlyProperty:
5986    Diag = diag::error_readonly_property_assignment;
5987    break;
5988  case Expr::MLV_NoSetterProperty:
5989    Diag = diag::error_nosetter_property_assignment;
5990    break;
5991  case Expr::MLV_SubObjCPropertySetting:
5992    Diag = diag::error_no_subobject_property_setting;
5993    break;
5994  }
5995
5996  SourceRange Assign;
5997  if (Loc != OrigLoc)
5998    Assign = SourceRange(OrigLoc, OrigLoc);
5999  if (NeedType)
6000    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
6001  else
6002    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
6003  return true;
6004}
6005
6006
6007
6008// C99 6.5.16.1
6009QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
6010                                       SourceLocation Loc,
6011                                       QualType CompoundType) {
6012  // Verify that LHS is a modifiable lvalue, and emit error if not.
6013  if (CheckForModifiableLvalue(LHS, Loc, *this))
6014    return QualType();
6015
6016  QualType LHSType = LHS->getType();
6017  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
6018  AssignConvertType ConvTy;
6019  if (CompoundType.isNull()) {
6020    QualType LHSTy(LHSType);
6021    // Simple assignment "x = y".
6022    ConvertPropertyAssignment(LHS, RHS, LHSTy);
6023    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
6024    // Special case of NSObject attributes on c-style pointer types.
6025    if (ConvTy == IncompatiblePointer &&
6026        ((Context.isObjCNSObjectType(LHSType) &&
6027          RHSType->isObjCObjectPointerType()) ||
6028         (Context.isObjCNSObjectType(RHSType) &&
6029          LHSType->isObjCObjectPointerType())))
6030      ConvTy = Compatible;
6031
6032    // If the RHS is a unary plus or minus, check to see if they = and + are
6033    // right next to each other.  If so, the user may have typo'd "x =+ 4"
6034    // instead of "x += 4".
6035    Expr *RHSCheck = RHS;
6036    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
6037      RHSCheck = ICE->getSubExpr();
6038    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
6039      if ((UO->getOpcode() == UO_Plus ||
6040           UO->getOpcode() == UO_Minus) &&
6041          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
6042          // Only if the two operators are exactly adjacent.
6043          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
6044          // And there is a space or other character before the subexpr of the
6045          // unary +/-.  We don't want to warn on "x=-1".
6046          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
6047          UO->getSubExpr()->getLocStart().isFileID()) {
6048        Diag(Loc, diag::warn_not_compound_assign)
6049          << (UO->getOpcode() == UO_Plus ? "+" : "-")
6050          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
6051      }
6052    }
6053  } else {
6054    // Compound assignment "x += y"
6055    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
6056  }
6057
6058  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
6059                               RHS, AA_Assigning))
6060    return QualType();
6061
6062
6063  // Check to see if the destination operand is a dereferenced null pointer.  If
6064  // so, and if not volatile-qualified, this is undefined behavior that the
6065  // optimizer will delete, so warn about it.  People sometimes try to use this
6066  // to get a deterministic trap and are surprised by clang's behavior.  This
6067  // only handles the pattern "*null = whatever", which is a very syntactic
6068  // check.
6069  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS->IgnoreParenCasts()))
6070    if (UO->getOpcode() == UO_Deref &&
6071        UO->getSubExpr()->IgnoreParenCasts()->
6072          isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) &&
6073        !UO->getType().isVolatileQualified()) {
6074    Diag(UO->getOperatorLoc(), diag::warn_indirection_through_null)
6075        << UO->getSubExpr()->getSourceRange();
6076    Diag(UO->getOperatorLoc(), diag::note_indirection_through_null);
6077  }
6078
6079  // C99 6.5.16p3: The type of an assignment expression is the type of the
6080  // left operand unless the left operand has qualified type, in which case
6081  // it is the unqualified version of the type of the left operand.
6082  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
6083  // is converted to the type of the assignment expression (above).
6084  // C++ 5.17p1: the type of the assignment expression is that of its left
6085  // operand.
6086  return LHSType.getUnqualifiedType();
6087}
6088
6089// C99 6.5.17
6090QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
6091  DiagnoseUnusedExprResult(LHS);
6092
6093  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
6094  // C++ does not perform this conversion (C++ [expr.comma]p1).
6095  if (!getLangOptions().CPlusPlus)
6096    DefaultFunctionArrayLvalueConversion(RHS);
6097
6098  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
6099  // incomplete in C++).
6100
6101  return RHS->getType();
6102}
6103
6104/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
6105/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
6106QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
6107                                              bool isInc, bool isPrefix) {
6108  if (Op->isTypeDependent())
6109    return Context.DependentTy;
6110
6111  QualType ResType = Op->getType();
6112  assert(!ResType.isNull() && "no type for increment/decrement expression");
6113
6114  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
6115    // Decrement of bool is not allowed.
6116    if (!isInc) {
6117      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
6118      return QualType();
6119    }
6120    // Increment of bool sets it to true, but is deprecated.
6121    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
6122  } else if (ResType->isRealType()) {
6123    // OK!
6124  } else if (ResType->isAnyPointerType()) {
6125    QualType PointeeTy = ResType->getPointeeType();
6126
6127    // C99 6.5.2.4p2, 6.5.6p2
6128    if (PointeeTy->isVoidType()) {
6129      if (getLangOptions().CPlusPlus) {
6130        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
6131          << Op->getSourceRange();
6132        return QualType();
6133      }
6134
6135      // Pointer to void is a GNU extension in C.
6136      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
6137    } else if (PointeeTy->isFunctionType()) {
6138      if (getLangOptions().CPlusPlus) {
6139        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
6140          << Op->getType() << Op->getSourceRange();
6141        return QualType();
6142      }
6143
6144      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
6145        << ResType << Op->getSourceRange();
6146    } else if (RequireCompleteType(OpLoc, PointeeTy,
6147                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
6148                             << Op->getSourceRange()
6149                             << ResType))
6150      return QualType();
6151    // Diagnose bad cases where we step over interface counts.
6152    else if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
6153      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
6154        << PointeeTy << Op->getSourceRange();
6155      return QualType();
6156    }
6157  } else if (ResType->isAnyComplexType()) {
6158    // C99 does not support ++/-- on complex types, we allow as an extension.
6159    Diag(OpLoc, diag::ext_integer_increment_complex)
6160      << ResType << Op->getSourceRange();
6161  } else {
6162    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
6163      << ResType << int(isInc) << Op->getSourceRange();
6164    return QualType();
6165  }
6166  // At this point, we know we have a real, complex or pointer type.
6167  // Now make sure the operand is a modifiable lvalue.
6168  if (CheckForModifiableLvalue(Op, OpLoc, *this))
6169    return QualType();
6170  // In C++, a prefix increment is the same type as the operand. Otherwise
6171  // (in C or with postfix), the increment is the unqualified type of the
6172  // operand.
6173  return isPrefix && getLangOptions().CPlusPlus
6174    ? ResType : ResType.getUnqualifiedType();
6175}
6176
6177void Sema::ConvertPropertyAssignment(Expr *LHS, Expr *&RHS, QualType& LHSTy) {
6178  bool copyInit = false;
6179  if (const ObjCImplicitSetterGetterRefExpr *OISGE =
6180      dyn_cast<ObjCImplicitSetterGetterRefExpr>(LHS)) {
6181    // If using property-dot syntax notation for assignment, and there is a
6182    // setter, RHS expression is being passed to the setter argument. So,
6183    // type conversion (and comparison) is RHS to setter's argument type.
6184    if (const ObjCMethodDecl *SetterMD = OISGE->getSetterMethod()) {
6185      ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
6186      LHSTy = (*P)->getType();
6187    }
6188    copyInit = (getLangOptions().CPlusPlus && LHSTy->isRecordType());
6189  }
6190  else
6191      copyInit = (getLangOptions().CPlusPlus && isa<ObjCPropertyRefExpr>(LHS) &&
6192                  LHSTy->isRecordType());
6193  if (copyInit) {
6194    InitializedEntity Entity =
6195    InitializedEntity::InitializeParameter(LHSTy);
6196    Expr *Arg = RHS;
6197    ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(),
6198                                                Owned(Arg));
6199    if (!ArgE.isInvalid())
6200      RHS = ArgE.takeAs<Expr>();
6201  }
6202}
6203
6204
6205/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
6206/// This routine allows us to typecheck complex/recursive expressions
6207/// where the declaration is needed for type checking. We only need to
6208/// handle cases when the expression references a function designator
6209/// or is an lvalue. Here are some examples:
6210///  - &(x) => x
6211///  - &*****f => f for f a function designator.
6212///  - &s.xx => s
6213///  - &s.zz[1].yy -> s, if zz is an array
6214///  - *(x + 1) -> x, if x is an array
6215///  - &"123"[2] -> 0
6216///  - & __real__ x -> x
6217static NamedDecl *getPrimaryDecl(Expr *E) {
6218  switch (E->getStmtClass()) {
6219  case Stmt::DeclRefExprClass:
6220    return cast<DeclRefExpr>(E)->getDecl();
6221  case Stmt::MemberExprClass:
6222    // If this is an arrow operator, the address is an offset from
6223    // the base's value, so the object the base refers to is
6224    // irrelevant.
6225    if (cast<MemberExpr>(E)->isArrow())
6226      return 0;
6227    // Otherwise, the expression refers to a part of the base
6228    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
6229  case Stmt::ArraySubscriptExprClass: {
6230    // FIXME: This code shouldn't be necessary!  We should catch the implicit
6231    // promotion of register arrays earlier.
6232    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
6233    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
6234      if (ICE->getSubExpr()->getType()->isArrayType())
6235        return getPrimaryDecl(ICE->getSubExpr());
6236    }
6237    return 0;
6238  }
6239  case Stmt::UnaryOperatorClass: {
6240    UnaryOperator *UO = cast<UnaryOperator>(E);
6241
6242    switch(UO->getOpcode()) {
6243    case UO_Real:
6244    case UO_Imag:
6245    case UO_Extension:
6246      return getPrimaryDecl(UO->getSubExpr());
6247    default:
6248      return 0;
6249    }
6250  }
6251  case Stmt::ParenExprClass:
6252    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
6253  case Stmt::ImplicitCastExprClass:
6254    // If the result of an implicit cast is an l-value, we care about
6255    // the sub-expression; otherwise, the result here doesn't matter.
6256    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
6257  default:
6258    return 0;
6259  }
6260}
6261
6262/// CheckAddressOfOperand - The operand of & must be either a function
6263/// designator or an lvalue designating an object. If it is an lvalue, the
6264/// object cannot be declared with storage class register or be a bit field.
6265/// Note: The usual conversions are *not* applied to the operand of the &
6266/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
6267/// In C++, the operand might be an overloaded function name, in which case
6268/// we allow the '&' but retain the overloaded-function type.
6269QualType Sema::CheckAddressOfOperand(Expr *OrigOp, SourceLocation OpLoc) {
6270  if (OrigOp->isTypeDependent())
6271    return Context.DependentTy;
6272  if (OrigOp->getType() == Context.OverloadTy)
6273    return Context.OverloadTy;
6274
6275  // Make sure to ignore parentheses in subsequent checks
6276  Expr *op = OrigOp->IgnoreParens();
6277
6278  if (getLangOptions().C99) {
6279    // Implement C99-only parts of addressof rules.
6280    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
6281      if (uOp->getOpcode() == UO_Deref)
6282        // Per C99 6.5.3.2, the address of a deref always returns a valid result
6283        // (assuming the deref expression is valid).
6284        return uOp->getSubExpr()->getType();
6285    }
6286    // Technically, there should be a check for array subscript
6287    // expressions here, but the result of one is always an lvalue anyway.
6288  }
6289  NamedDecl *dcl = getPrimaryDecl(op);
6290  Expr::isLvalueResult lval = op->isLvalue(Context);
6291
6292  if (lval == Expr::LV_ClassTemporary) {
6293    Diag(OpLoc, isSFINAEContext()? diag::err_typecheck_addrof_class_temporary
6294                                 : diag::ext_typecheck_addrof_class_temporary)
6295      << op->getType() << op->getSourceRange();
6296    if (isSFINAEContext())
6297      return QualType();
6298  } else if (isa<ObjCSelectorExpr>(op)) {
6299    return Context.getPointerType(op->getType());
6300  } else if (lval == Expr::LV_MemberFunction) {
6301    // If it's an instance method, make a member pointer.
6302    // The expression must have exactly the form &A::foo.
6303
6304    // If the underlying expression isn't a decl ref, give up.
6305    if (!isa<DeclRefExpr>(op)) {
6306      Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
6307        << OrigOp->getSourceRange();
6308      return QualType();
6309    }
6310    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
6311    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
6312
6313    // The id-expression was parenthesized.
6314    if (OrigOp != DRE) {
6315      Diag(OpLoc, diag::err_parens_pointer_member_function)
6316        << OrigOp->getSourceRange();
6317
6318    // The method was named without a qualifier.
6319    } else if (!DRE->getQualifier()) {
6320      Diag(OpLoc, diag::err_unqualified_pointer_member_function)
6321        << op->getSourceRange();
6322    }
6323
6324    return Context.getMemberPointerType(op->getType(),
6325              Context.getTypeDeclType(MD->getParent()).getTypePtr());
6326  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
6327    // C99 6.5.3.2p1
6328    // The operand must be either an l-value or a function designator
6329    if (!op->getType()->isFunctionType()) {
6330      // FIXME: emit more specific diag...
6331      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
6332        << op->getSourceRange();
6333      return QualType();
6334    }
6335  } else if (op->getBitField()) { // C99 6.5.3.2p1
6336    // The operand cannot be a bit-field
6337    Diag(OpLoc, diag::err_typecheck_address_of)
6338      << "bit-field" << op->getSourceRange();
6339        return QualType();
6340  } else if (op->refersToVectorElement()) {
6341    // The operand cannot be an element of a vector
6342    Diag(OpLoc, diag::err_typecheck_address_of)
6343      << "vector element" << op->getSourceRange();
6344    return QualType();
6345  } else if (isa<ObjCPropertyRefExpr>(op)) {
6346    // cannot take address of a property expression.
6347    Diag(OpLoc, diag::err_typecheck_address_of)
6348      << "property expression" << op->getSourceRange();
6349    return QualType();
6350  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
6351    // FIXME: Can LHS ever be null here?
6352    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
6353      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
6354  } else if (dcl) { // C99 6.5.3.2p1
6355    // We have an lvalue with a decl. Make sure the decl is not declared
6356    // with the register storage-class specifier.
6357    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
6358      // in C++ it is not error to take address of a register
6359      // variable (c++03 7.1.1P3)
6360      if (vd->getStorageClass() == SC_Register &&
6361          !getLangOptions().CPlusPlus) {
6362        Diag(OpLoc, diag::err_typecheck_address_of)
6363          << "register variable" << op->getSourceRange();
6364        return QualType();
6365      }
6366    } else if (isa<FunctionTemplateDecl>(dcl)) {
6367      return Context.OverloadTy;
6368    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
6369      // Okay: we can take the address of a field.
6370      // Could be a pointer to member, though, if there is an explicit
6371      // scope qualifier for the class.
6372      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
6373        DeclContext *Ctx = dcl->getDeclContext();
6374        if (Ctx && Ctx->isRecord()) {
6375          if (FD->getType()->isReferenceType()) {
6376            Diag(OpLoc,
6377                 diag::err_cannot_form_pointer_to_member_of_reference_type)
6378              << FD->getDeclName() << FD->getType();
6379            return QualType();
6380          }
6381
6382          return Context.getMemberPointerType(op->getType(),
6383                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
6384        }
6385      }
6386    } else if (!isa<FunctionDecl>(dcl))
6387      assert(0 && "Unknown/unexpected decl type");
6388  }
6389
6390  if (lval == Expr::LV_IncompleteVoidType) {
6391    // Taking the address of a void variable is technically illegal, but we
6392    // allow it in cases which are otherwise valid.
6393    // Example: "extern void x; void* y = &x;".
6394    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
6395  }
6396
6397  // If the operand has type "type", the result has type "pointer to type".
6398  if (op->getType()->isObjCObjectType())
6399    return Context.getObjCObjectPointerType(op->getType());
6400  return Context.getPointerType(op->getType());
6401}
6402
6403/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
6404QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
6405  if (Op->isTypeDependent())
6406    return Context.DependentTy;
6407
6408  UsualUnaryConversions(Op);
6409  QualType OpTy = Op->getType();
6410  QualType Result;
6411
6412  // Note that per both C89 and C99, indirection is always legal, even if OpTy
6413  // is an incomplete type or void.  It would be possible to warn about
6414  // dereferencing a void pointer, but it's completely well-defined, and such a
6415  // warning is unlikely to catch any mistakes.
6416  if (const PointerType *PT = OpTy->getAs<PointerType>())
6417    Result = PT->getPointeeType();
6418  else if (const ObjCObjectPointerType *OPT =
6419             OpTy->getAs<ObjCObjectPointerType>())
6420    Result = OPT->getPointeeType();
6421
6422  if (Result.isNull()) {
6423    Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
6424      << OpTy << Op->getSourceRange();
6425    return QualType();
6426  }
6427
6428  return Result;
6429}
6430
6431static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
6432  tok::TokenKind Kind) {
6433  BinaryOperatorKind Opc;
6434  switch (Kind) {
6435  default: assert(0 && "Unknown binop!");
6436  case tok::periodstar:           Opc = BO_PtrMemD; break;
6437  case tok::arrowstar:            Opc = BO_PtrMemI; break;
6438  case tok::star:                 Opc = BO_Mul; break;
6439  case tok::slash:                Opc = BO_Div; break;
6440  case tok::percent:              Opc = BO_Rem; break;
6441  case tok::plus:                 Opc = BO_Add; break;
6442  case tok::minus:                Opc = BO_Sub; break;
6443  case tok::lessless:             Opc = BO_Shl; break;
6444  case tok::greatergreater:       Opc = BO_Shr; break;
6445  case tok::lessequal:            Opc = BO_LE; break;
6446  case tok::less:                 Opc = BO_LT; break;
6447  case tok::greaterequal:         Opc = BO_GE; break;
6448  case tok::greater:              Opc = BO_GT; break;
6449  case tok::exclaimequal:         Opc = BO_NE; break;
6450  case tok::equalequal:           Opc = BO_EQ; break;
6451  case tok::amp:                  Opc = BO_And; break;
6452  case tok::caret:                Opc = BO_Xor; break;
6453  case tok::pipe:                 Opc = BO_Or; break;
6454  case tok::ampamp:               Opc = BO_LAnd; break;
6455  case tok::pipepipe:             Opc = BO_LOr; break;
6456  case tok::equal:                Opc = BO_Assign; break;
6457  case tok::starequal:            Opc = BO_MulAssign; break;
6458  case tok::slashequal:           Opc = BO_DivAssign; break;
6459  case tok::percentequal:         Opc = BO_RemAssign; break;
6460  case tok::plusequal:            Opc = BO_AddAssign; break;
6461  case tok::minusequal:           Opc = BO_SubAssign; break;
6462  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
6463  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
6464  case tok::ampequal:             Opc = BO_AndAssign; break;
6465  case tok::caretequal:           Opc = BO_XorAssign; break;
6466  case tok::pipeequal:            Opc = BO_OrAssign; break;
6467  case tok::comma:                Opc = BO_Comma; break;
6468  }
6469  return Opc;
6470}
6471
6472static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
6473  tok::TokenKind Kind) {
6474  UnaryOperatorKind Opc;
6475  switch (Kind) {
6476  default: assert(0 && "Unknown unary op!");
6477  case tok::plusplus:     Opc = UO_PreInc; break;
6478  case tok::minusminus:   Opc = UO_PreDec; break;
6479  case tok::amp:          Opc = UO_AddrOf; break;
6480  case tok::star:         Opc = UO_Deref; break;
6481  case tok::plus:         Opc = UO_Plus; break;
6482  case tok::minus:        Opc = UO_Minus; break;
6483  case tok::tilde:        Opc = UO_Not; break;
6484  case tok::exclaim:      Opc = UO_LNot; break;
6485  case tok::kw___real:    Opc = UO_Real; break;
6486  case tok::kw___imag:    Opc = UO_Imag; break;
6487  case tok::kw___extension__: Opc = UO_Extension; break;
6488  }
6489  return Opc;
6490}
6491
6492/// CreateBuiltinBinOp - Creates a new built-in binary operation with
6493/// operator @p Opc at location @c TokLoc. This routine only supports
6494/// built-in operations; ActOnBinOp handles overloaded operators.
6495ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
6496                                    unsigned Op,
6497                                    Expr *lhs, Expr *rhs) {
6498  QualType ResultTy;     // Result type of the binary operator.
6499  BinaryOperatorKind Opc = (BinaryOperatorKind) Op;
6500  // The following two variables are used for compound assignment operators
6501  QualType CompLHSTy;    // Type of LHS after promotions for computation
6502  QualType CompResultTy; // Type of computation result
6503
6504  switch (Opc) {
6505  case BO_Assign:
6506    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
6507    break;
6508  case BO_PtrMemD:
6509  case BO_PtrMemI:
6510    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
6511                                            Opc == BO_PtrMemI);
6512    break;
6513  case BO_Mul:
6514  case BO_Div:
6515    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
6516                                           Opc == BO_Div);
6517    break;
6518  case BO_Rem:
6519    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
6520    break;
6521  case BO_Add:
6522    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
6523    break;
6524  case BO_Sub:
6525    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
6526    break;
6527  case BO_Shl:
6528  case BO_Shr:
6529    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
6530    break;
6531  case BO_LE:
6532  case BO_LT:
6533  case BO_GE:
6534  case BO_GT:
6535    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
6536    break;
6537  case BO_EQ:
6538  case BO_NE:
6539    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
6540    break;
6541  case BO_And:
6542  case BO_Xor:
6543  case BO_Or:
6544    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
6545    break;
6546  case BO_LAnd:
6547  case BO_LOr:
6548    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
6549    break;
6550  case BO_MulAssign:
6551  case BO_DivAssign:
6552    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
6553                                              Opc == BO_DivAssign);
6554    CompLHSTy = CompResultTy;
6555    if (!CompResultTy.isNull())
6556      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6557    break;
6558  case BO_RemAssign:
6559    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
6560    CompLHSTy = CompResultTy;
6561    if (!CompResultTy.isNull())
6562      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6563    break;
6564  case BO_AddAssign:
6565    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6566    if (!CompResultTy.isNull())
6567      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6568    break;
6569  case BO_SubAssign:
6570    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6571    if (!CompResultTy.isNull())
6572      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6573    break;
6574  case BO_ShlAssign:
6575  case BO_ShrAssign:
6576    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
6577    CompLHSTy = CompResultTy;
6578    if (!CompResultTy.isNull())
6579      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6580    break;
6581  case BO_AndAssign:
6582  case BO_XorAssign:
6583  case BO_OrAssign:
6584    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
6585    CompLHSTy = CompResultTy;
6586    if (!CompResultTy.isNull())
6587      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6588    break;
6589  case BO_Comma:
6590    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
6591    break;
6592  }
6593  if (ResultTy.isNull())
6594    return ExprError();
6595  if (ResultTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
6596    if (Opc >= BO_Assign && Opc <= BO_OrAssign)
6597          Diag(OpLoc, diag::err_assignment_requires_nonfragile_object)
6598                << ResultTy;
6599  }
6600  if (CompResultTy.isNull())
6601    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
6602  else
6603    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
6604                                                      CompLHSTy, CompResultTy,
6605                                                      OpLoc));
6606}
6607
6608/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
6609/// ParenRange in parentheses.
6610static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6611                               const PartialDiagnostic &PD,
6612                               const PartialDiagnostic &FirstNote,
6613                               SourceRange FirstParenRange,
6614                               const PartialDiagnostic &SecondNote,
6615                               SourceRange SecondParenRange) {
6616  Self.Diag(Loc, PD);
6617
6618  if (!FirstNote.getDiagID())
6619    return;
6620
6621  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd());
6622  if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6623    // We can't display the parentheses, so just return.
6624    return;
6625  }
6626
6627  Self.Diag(Loc, FirstNote)
6628    << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(")
6629    << FixItHint::CreateInsertion(EndLoc, ")");
6630
6631  if (!SecondNote.getDiagID())
6632    return;
6633
6634  EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
6635  if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6636    // We can't display the parentheses, so just dig the
6637    // warning/error and return.
6638    Self.Diag(Loc, SecondNote);
6639    return;
6640  }
6641
6642  Self.Diag(Loc, SecondNote)
6643    << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(")
6644    << FixItHint::CreateInsertion(EndLoc, ")");
6645}
6646
6647/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
6648/// operators are mixed in a way that suggests that the programmer forgot that
6649/// comparison operators have higher precedence. The most typical example of
6650/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
6651static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
6652                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
6653  typedef BinaryOperator BinOp;
6654  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
6655                rhsopc = static_cast<BinOp::Opcode>(-1);
6656  if (BinOp *BO = dyn_cast<BinOp>(lhs))
6657    lhsopc = BO->getOpcode();
6658  if (BinOp *BO = dyn_cast<BinOp>(rhs))
6659    rhsopc = BO->getOpcode();
6660
6661  // Subs are not binary operators.
6662  if (lhsopc == -1 && rhsopc == -1)
6663    return;
6664
6665  // Bitwise operations are sometimes used as eager logical ops.
6666  // Don't diagnose this.
6667  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
6668      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
6669    return;
6670
6671  if (BinOp::isComparisonOp(lhsopc))
6672    SuggestParentheses(Self, OpLoc,
6673      Self.PDiag(diag::warn_precedence_bitwise_rel)
6674          << SourceRange(lhs->getLocStart(), OpLoc)
6675          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
6676      Self.PDiag(diag::note_precedence_bitwise_first)
6677          << BinOp::getOpcodeStr(Opc),
6678      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()),
6679      Self.PDiag(diag::note_precedence_bitwise_silence)
6680          << BinOp::getOpcodeStr(lhsopc),
6681                       lhs->getSourceRange());
6682  else if (BinOp::isComparisonOp(rhsopc))
6683    SuggestParentheses(Self, OpLoc,
6684      Self.PDiag(diag::warn_precedence_bitwise_rel)
6685          << SourceRange(OpLoc, rhs->getLocEnd())
6686          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
6687      Self.PDiag(diag::note_precedence_bitwise_first)
6688        << BinOp::getOpcodeStr(Opc),
6689      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()),
6690      Self.PDiag(diag::note_precedence_bitwise_silence)
6691        << BinOp::getOpcodeStr(rhsopc),
6692                       rhs->getSourceRange());
6693}
6694
6695/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
6696/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
6697/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
6698static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
6699                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
6700  if (BinaryOperator::isBitwiseOp(Opc))
6701    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
6702}
6703
6704// Binary Operators.  'Tok' is the token for the operator.
6705ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
6706                            tok::TokenKind Kind,
6707                            Expr *lhs, Expr *rhs) {
6708  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
6709  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
6710  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
6711
6712  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
6713  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
6714
6715  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
6716}
6717
6718ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
6719                            BinaryOperatorKind Opc,
6720                            Expr *lhs, Expr *rhs) {
6721  if (getLangOptions().CPlusPlus &&
6722      ((!isa<ObjCImplicitSetterGetterRefExpr>(lhs) &&
6723        !isa<ObjCPropertyRefExpr>(lhs))
6724        || rhs->isTypeDependent() || Opc != BO_Assign) &&
6725      (lhs->getType()->isOverloadableType() ||
6726       rhs->getType()->isOverloadableType())) {
6727    // Find all of the overloaded operators visible from this
6728    // point. We perform both an operator-name lookup from the local
6729    // scope and an argument-dependent lookup based on the types of
6730    // the arguments.
6731    UnresolvedSet<16> Functions;
6732    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
6733    if (S && OverOp != OO_None)
6734      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
6735                                   Functions);
6736
6737    // Build the (potentially-overloaded, potentially-dependent)
6738    // binary operation.
6739    return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
6740  }
6741
6742  // Build a built-in binary operation.
6743  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
6744}
6745
6746ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
6747                                                    unsigned OpcIn,
6748                                                    Expr *Input) {
6749  UnaryOperatorKind Opc = static_cast<UnaryOperatorKind>(OpcIn);
6750
6751  QualType resultType;
6752  switch (Opc) {
6753  case UO_PreInc:
6754  case UO_PreDec:
6755  case UO_PostInc:
6756  case UO_PostDec:
6757    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
6758                                                Opc == UO_PreInc ||
6759                                                Opc == UO_PostInc,
6760                                                Opc == UO_PreInc ||
6761                                                Opc == UO_PreDec);
6762    break;
6763  case UO_AddrOf:
6764    resultType = CheckAddressOfOperand(Input, OpLoc);
6765    break;
6766  case UO_Deref:
6767    DefaultFunctionArrayLvalueConversion(Input);
6768    resultType = CheckIndirectionOperand(Input, OpLoc);
6769    break;
6770  case UO_Plus:
6771  case UO_Minus:
6772    UsualUnaryConversions(Input);
6773    resultType = Input->getType();
6774    if (resultType->isDependentType())
6775      break;
6776    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
6777        resultType->isVectorType())
6778      break;
6779    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
6780             resultType->isEnumeralType())
6781      break;
6782    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
6783             Opc == UO_Plus &&
6784             resultType->isPointerType())
6785      break;
6786
6787    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6788      << resultType << Input->getSourceRange());
6789  case UO_Not: // bitwise complement
6790    UsualUnaryConversions(Input);
6791    resultType = Input->getType();
6792    if (resultType->isDependentType())
6793      break;
6794    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
6795    if (resultType->isComplexType() || resultType->isComplexIntegerType())
6796      // C99 does not support '~' for complex conjugation.
6797      Diag(OpLoc, diag::ext_integer_complement_complex)
6798        << resultType << Input->getSourceRange();
6799    else if (!resultType->hasIntegerRepresentation())
6800      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6801        << resultType << Input->getSourceRange());
6802    break;
6803  case UO_LNot: // logical negation
6804    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
6805    DefaultFunctionArrayLvalueConversion(Input);
6806    resultType = Input->getType();
6807    if (resultType->isDependentType())
6808      break;
6809    if (!resultType->isScalarType()) // C99 6.5.3.3p1
6810      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6811        << resultType << Input->getSourceRange());
6812    // LNot always has type int. C99 6.5.3.3p5.
6813    // In C++, it's bool. C++ 5.3.1p8
6814    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
6815    break;
6816  case UO_Real:
6817  case UO_Imag:
6818    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UO_Real);
6819    break;
6820  case UO_Extension:
6821    resultType = Input->getType();
6822    break;
6823  }
6824  if (resultType.isNull())
6825    return ExprError();
6826
6827  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
6828}
6829
6830ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
6831                              UnaryOperatorKind Opc,
6832                              Expr *Input) {
6833  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
6834      UnaryOperator::getOverloadedOperator(Opc) != OO_None) {
6835    // Find all of the overloaded operators visible from this
6836    // point. We perform both an operator-name lookup from the local
6837    // scope and an argument-dependent lookup based on the types of
6838    // the arguments.
6839    UnresolvedSet<16> Functions;
6840    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
6841    if (S && OverOp != OO_None)
6842      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
6843                                   Functions);
6844
6845    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
6846  }
6847
6848  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
6849}
6850
6851// Unary Operators.  'Tok' is the token for the operator.
6852ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
6853                                            tok::TokenKind Op, Expr *Input) {
6854  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
6855}
6856
6857/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
6858ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
6859                                            SourceLocation LabLoc,
6860                                            IdentifierInfo *LabelII) {
6861  // Look up the record for this label identifier.
6862  LabelStmt *&LabelDecl = getCurFunction()->LabelMap[LabelII];
6863
6864  // If we haven't seen this label yet, create a forward reference. It
6865  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
6866  if (LabelDecl == 0)
6867    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
6868
6869  // Create the AST node.  The address of a label always has type 'void*'.
6870  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
6871                                       Context.getPointerType(Context.VoidTy)));
6872}
6873
6874ExprResult
6875Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
6876                    SourceLocation RPLoc) { // "({..})"
6877  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
6878  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
6879
6880  bool isFileScope
6881    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
6882  if (isFileScope)
6883    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
6884
6885  // FIXME: there are a variety of strange constraints to enforce here, for
6886  // example, it is not possible to goto into a stmt expression apparently.
6887  // More semantic analysis is needed.
6888
6889  // If there are sub stmts in the compound stmt, take the type of the last one
6890  // as the type of the stmtexpr.
6891  QualType Ty = Context.VoidTy;
6892
6893  if (!Compound->body_empty()) {
6894    Stmt *LastStmt = Compound->body_back();
6895    // If LastStmt is a label, skip down through into the body.
6896    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
6897      LastStmt = Label->getSubStmt();
6898
6899    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
6900      Ty = LastExpr->getType();
6901  }
6902
6903  // FIXME: Check that expression type is complete/non-abstract; statement
6904  // expressions are not lvalues.
6905
6906  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
6907}
6908
6909ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
6910                                                  TypeSourceInfo *TInfo,
6911                                                  OffsetOfComponent *CompPtr,
6912                                                  unsigned NumComponents,
6913                                                  SourceLocation RParenLoc) {
6914  QualType ArgTy = TInfo->getType();
6915  bool Dependent = ArgTy->isDependentType();
6916  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
6917
6918  // We must have at least one component that refers to the type, and the first
6919  // one is known to be a field designator.  Verify that the ArgTy represents
6920  // a struct/union/class.
6921  if (!Dependent && !ArgTy->isRecordType())
6922    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
6923                       << ArgTy << TypeRange);
6924
6925  // Type must be complete per C99 7.17p3 because a declaring a variable
6926  // with an incomplete type would be ill-formed.
6927  if (!Dependent
6928      && RequireCompleteType(BuiltinLoc, ArgTy,
6929                             PDiag(diag::err_offsetof_incomplete_type)
6930                               << TypeRange))
6931    return ExprError();
6932
6933  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
6934  // GCC extension, diagnose them.
6935  // FIXME: This diagnostic isn't actually visible because the location is in
6936  // a system header!
6937  if (NumComponents != 1)
6938    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
6939      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
6940
6941  bool DidWarnAboutNonPOD = false;
6942  QualType CurrentType = ArgTy;
6943  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
6944  llvm::SmallVector<OffsetOfNode, 4> Comps;
6945  llvm::SmallVector<Expr*, 4> Exprs;
6946  for (unsigned i = 0; i != NumComponents; ++i) {
6947    const OffsetOfComponent &OC = CompPtr[i];
6948    if (OC.isBrackets) {
6949      // Offset of an array sub-field.  TODO: Should we allow vector elements?
6950      if (!CurrentType->isDependentType()) {
6951        const ArrayType *AT = Context.getAsArrayType(CurrentType);
6952        if(!AT)
6953          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
6954                           << CurrentType);
6955        CurrentType = AT->getElementType();
6956      } else
6957        CurrentType = Context.DependentTy;
6958
6959      // The expression must be an integral expression.
6960      // FIXME: An integral constant expression?
6961      Expr *Idx = static_cast<Expr*>(OC.U.E);
6962      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
6963          !Idx->getType()->isIntegerType())
6964        return ExprError(Diag(Idx->getLocStart(),
6965                              diag::err_typecheck_subscript_not_integer)
6966                         << Idx->getSourceRange());
6967
6968      // Record this array index.
6969      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
6970      Exprs.push_back(Idx);
6971      continue;
6972    }
6973
6974    // Offset of a field.
6975    if (CurrentType->isDependentType()) {
6976      // We have the offset of a field, but we can't look into the dependent
6977      // type. Just record the identifier of the field.
6978      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
6979      CurrentType = Context.DependentTy;
6980      continue;
6981    }
6982
6983    // We need to have a complete type to look into.
6984    if (RequireCompleteType(OC.LocStart, CurrentType,
6985                            diag::err_offsetof_incomplete_type))
6986      return ExprError();
6987
6988    // Look for the designated field.
6989    const RecordType *RC = CurrentType->getAs<RecordType>();
6990    if (!RC)
6991      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
6992                       << CurrentType);
6993    RecordDecl *RD = RC->getDecl();
6994
6995    // C++ [lib.support.types]p5:
6996    //   The macro offsetof accepts a restricted set of type arguments in this
6997    //   International Standard. type shall be a POD structure or a POD union
6998    //   (clause 9).
6999    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
7000      if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
7001          DiagRuntimeBehavior(BuiltinLoc,
7002                              PDiag(diag::warn_offsetof_non_pod_type)
7003                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
7004                              << CurrentType))
7005        DidWarnAboutNonPOD = true;
7006    }
7007
7008    // Look for the field.
7009    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
7010    LookupQualifiedName(R, RD);
7011    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
7012    if (!MemberDecl)
7013      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
7014                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
7015                                                              OC.LocEnd));
7016
7017    // C99 7.17p3:
7018    //   (If the specified member is a bit-field, the behavior is undefined.)
7019    //
7020    // We diagnose this as an error.
7021    if (MemberDecl->getBitWidth()) {
7022      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
7023        << MemberDecl->getDeclName()
7024        << SourceRange(BuiltinLoc, RParenLoc);
7025      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
7026      return ExprError();
7027    }
7028
7029    RecordDecl *Parent = MemberDecl->getParent();
7030    bool AnonStructUnion = Parent->isAnonymousStructOrUnion();
7031    if (AnonStructUnion) {
7032      do {
7033        Parent = cast<RecordDecl>(Parent->getParent());
7034      } while (Parent->isAnonymousStructOrUnion());
7035    }
7036
7037    // If the member was found in a base class, introduce OffsetOfNodes for
7038    // the base class indirections.
7039    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
7040                       /*DetectVirtual=*/false);
7041    if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
7042      CXXBasePath &Path = Paths.front();
7043      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
7044           B != BEnd; ++B)
7045        Comps.push_back(OffsetOfNode(B->Base));
7046    }
7047
7048    if (AnonStructUnion) {
7049      llvm::SmallVector<FieldDecl*, 4> Path;
7050      BuildAnonymousStructUnionMemberPath(MemberDecl, Path);
7051      unsigned n = Path.size();
7052      for (int j = n - 1; j > -1; --j)
7053        Comps.push_back(OffsetOfNode(OC.LocStart, Path[j], OC.LocEnd));
7054    } else {
7055      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
7056    }
7057    CurrentType = MemberDecl->getType().getNonReferenceType();
7058  }
7059
7060  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
7061                                    TInfo, Comps.data(), Comps.size(),
7062                                    Exprs.data(), Exprs.size(), RParenLoc));
7063}
7064
7065ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
7066                                                  SourceLocation BuiltinLoc,
7067                                                  SourceLocation TypeLoc,
7068                                                  ParsedType argty,
7069                                                  OffsetOfComponent *CompPtr,
7070                                                  unsigned NumComponents,
7071                                                  SourceLocation RPLoc) {
7072
7073  TypeSourceInfo *ArgTInfo;
7074  QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
7075  if (ArgTy.isNull())
7076    return ExprError();
7077
7078  if (!ArgTInfo)
7079    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
7080
7081  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
7082                              RPLoc);
7083}
7084
7085
7086ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
7087                                                      ParsedType arg1,ParsedType arg2,
7088                                                      SourceLocation RPLoc) {
7089  TypeSourceInfo *argTInfo1;
7090  QualType argT1 = GetTypeFromParser(arg1, &argTInfo1);
7091  TypeSourceInfo *argTInfo2;
7092  QualType argT2 = GetTypeFromParser(arg2, &argTInfo2);
7093
7094  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
7095
7096  return BuildTypesCompatibleExpr(BuiltinLoc, argTInfo1, argTInfo2, RPLoc);
7097}
7098
7099ExprResult
7100Sema::BuildTypesCompatibleExpr(SourceLocation BuiltinLoc,
7101                               TypeSourceInfo *argTInfo1,
7102                               TypeSourceInfo *argTInfo2,
7103                               SourceLocation RPLoc) {
7104  if (getLangOptions().CPlusPlus) {
7105    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
7106      << SourceRange(BuiltinLoc, RPLoc);
7107    return ExprError();
7108  }
7109
7110  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
7111                                                 argTInfo1, argTInfo2, RPLoc));
7112}
7113
7114
7115ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
7116                                             Expr *CondExpr,
7117                                             Expr *LHSExpr, Expr *RHSExpr,
7118                                             SourceLocation RPLoc) {
7119  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
7120
7121  QualType resType;
7122  bool ValueDependent = false;
7123  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
7124    resType = Context.DependentTy;
7125    ValueDependent = true;
7126  } else {
7127    // The conditional expression is required to be a constant expression.
7128    llvm::APSInt condEval(32);
7129    SourceLocation ExpLoc;
7130    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
7131      return ExprError(Diag(ExpLoc,
7132                       diag::err_typecheck_choose_expr_requires_constant)
7133        << CondExpr->getSourceRange());
7134
7135    // If the condition is > zero, then the AST type is the same as the LSHExpr.
7136    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
7137    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
7138                                             : RHSExpr->isValueDependent();
7139  }
7140
7141  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
7142                                        resType, RPLoc,
7143                                        resType->isDependentType(),
7144                                        ValueDependent));
7145}
7146
7147//===----------------------------------------------------------------------===//
7148// Clang Extensions.
7149//===----------------------------------------------------------------------===//
7150
7151/// ActOnBlockStart - This callback is invoked when a block literal is started.
7152void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
7153  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
7154  PushBlockScope(BlockScope, Block);
7155  CurContext->addDecl(Block);
7156  if (BlockScope)
7157    PushDeclContext(BlockScope, Block);
7158  else
7159    CurContext = Block;
7160}
7161
7162void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
7163  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
7164  BlockScopeInfo *CurBlock = getCurBlock();
7165
7166  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
7167  CurBlock->TheDecl->setSignatureAsWritten(Sig);
7168  QualType T = Sig->getType();
7169
7170  bool isVariadic;
7171  QualType RetTy;
7172  if (const FunctionType *Fn = T->getAs<FunctionType>()) {
7173    CurBlock->FunctionType = T;
7174    RetTy = Fn->getResultType();
7175    isVariadic =
7176      !isa<FunctionProtoType>(Fn) || cast<FunctionProtoType>(Fn)->isVariadic();
7177  } else {
7178    RetTy = T;
7179    isVariadic = false;
7180  }
7181
7182  CurBlock->TheDecl->setIsVariadic(isVariadic);
7183
7184  // Don't allow returning an array by value.
7185  if (RetTy->isArrayType()) {
7186    Diag(ParamInfo.getSourceRange().getBegin(), diag::err_block_returns_array);
7187    return;
7188  }
7189
7190  // Don't allow returning a objc interface by value.
7191  if (RetTy->isObjCObjectType()) {
7192    Diag(ParamInfo.getSourceRange().getBegin(),
7193         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
7194    return;
7195  }
7196
7197  // Context.DependentTy is used as a placeholder for a missing block
7198  // return type.  TODO:  what should we do with declarators like:
7199  //   ^ * { ... }
7200  // If the answer is "apply template argument deduction"....
7201  if (RetTy != Context.DependentTy)
7202    CurBlock->ReturnType = RetTy;
7203
7204  // Push block parameters from the declarator if we had them.
7205  llvm::SmallVector<ParmVarDecl*, 8> Params;
7206  if (isa<FunctionProtoType>(T)) {
7207    FunctionProtoTypeLoc TL = cast<FunctionProtoTypeLoc>(Sig->getTypeLoc());
7208    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
7209      ParmVarDecl *Param = TL.getArg(I);
7210      if (Param->getIdentifier() == 0 &&
7211          !Param->isImplicit() &&
7212          !Param->isInvalidDecl() &&
7213          !getLangOptions().CPlusPlus)
7214        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
7215      Params.push_back(Param);
7216    }
7217
7218  // Fake up parameter variables if we have a typedef, like
7219  //   ^ fntype { ... }
7220  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
7221    for (FunctionProtoType::arg_type_iterator
7222           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
7223      ParmVarDecl *Param =
7224        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
7225                                   ParamInfo.getSourceRange().getBegin(),
7226                                   *I);
7227      Params.push_back(Param);
7228    }
7229  }
7230
7231  // Set the parameters on the block decl.
7232  if (!Params.empty())
7233    CurBlock->TheDecl->setParams(Params.data(), Params.size());
7234
7235  // Finally we can process decl attributes.
7236  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
7237
7238  if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
7239    Diag(ParamInfo.getAttributes()->getLoc(),
7240         diag::warn_attribute_sentinel_not_variadic) << 1;
7241    // FIXME: remove the attribute.
7242  }
7243
7244  // Put the parameter variables in scope.  We can bail out immediately
7245  // if we don't have any.
7246  if (Params.empty())
7247    return;
7248
7249  bool ShouldCheckShadow =
7250    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
7251
7252  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
7253         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
7254    (*AI)->setOwningFunction(CurBlock->TheDecl);
7255
7256    // If this has an identifier, add it to the scope stack.
7257    if ((*AI)->getIdentifier()) {
7258      if (ShouldCheckShadow)
7259        CheckShadow(CurBlock->TheScope, *AI);
7260
7261      PushOnScopeChains(*AI, CurBlock->TheScope);
7262    }
7263  }
7264}
7265
7266/// ActOnBlockError - If there is an error parsing a block, this callback
7267/// is invoked to pop the information about the block from the action impl.
7268void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
7269  // Pop off CurBlock, handle nested blocks.
7270  PopDeclContext();
7271  PopFunctionOrBlockScope();
7272  // FIXME: Delete the ParmVarDecl objects as well???
7273}
7274
7275/// ActOnBlockStmtExpr - This is called when the body of a block statement
7276/// literal was successfully completed.  ^(int x){...}
7277ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
7278                                                Stmt *Body, Scope *CurScope) {
7279  // If blocks are disabled, emit an error.
7280  if (!LangOpts.Blocks)
7281    Diag(CaretLoc, diag::err_blocks_disable);
7282
7283  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
7284
7285  PopDeclContext();
7286
7287  QualType RetTy = Context.VoidTy;
7288  if (!BSI->ReturnType.isNull())
7289    RetTy = BSI->ReturnType;
7290
7291  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
7292  QualType BlockTy;
7293
7294  // If the user wrote a function type in some form, try to use that.
7295  if (!BSI->FunctionType.isNull()) {
7296    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
7297
7298    FunctionType::ExtInfo Ext = FTy->getExtInfo();
7299    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
7300
7301    // Turn protoless block types into nullary block types.
7302    if (isa<FunctionNoProtoType>(FTy)) {
7303      BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
7304                                        false, false, 0, 0, Ext);
7305
7306    // Otherwise, if we don't need to change anything about the function type,
7307    // preserve its sugar structure.
7308    } else if (FTy->getResultType() == RetTy &&
7309               (!NoReturn || FTy->getNoReturnAttr())) {
7310      BlockTy = BSI->FunctionType;
7311
7312    // Otherwise, make the minimal modifications to the function type.
7313    } else {
7314      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
7315      BlockTy = Context.getFunctionType(RetTy,
7316                                        FPT->arg_type_begin(),
7317                                        FPT->getNumArgs(),
7318                                        FPT->isVariadic(),
7319                                        /*quals*/ 0,
7320                                        FPT->hasExceptionSpec(),
7321                                        FPT->hasAnyExceptionSpec(),
7322                                        FPT->getNumExceptions(),
7323                                        FPT->exception_begin(),
7324                                        Ext);
7325    }
7326
7327  // If we don't have a function type, just build one from nothing.
7328  } else {
7329    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
7330                                      false, false, 0, 0,
7331                             FunctionType::ExtInfo(NoReturn, 0, CC_Default));
7332  }
7333
7334  // FIXME: Check that return/parameter types are complete/non-abstract
7335  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
7336                           BSI->TheDecl->param_end());
7337  BlockTy = Context.getBlockPointerType(BlockTy);
7338
7339  // If needed, diagnose invalid gotos and switches in the block.
7340  if (getCurFunction()->NeedsScopeChecking() && !hasAnyErrorsInThisFunction())
7341    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
7342
7343  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
7344
7345  bool Good = true;
7346  // Check goto/label use.
7347  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
7348         I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
7349    LabelStmt *L = I->second;
7350
7351    // Verify that we have no forward references left.  If so, there was a goto
7352    // or address of a label taken, but no definition of it.
7353    if (L->getSubStmt() != 0)
7354      continue;
7355
7356    // Emit error.
7357    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
7358    Good = false;
7359  }
7360  if (!Good) {
7361    PopFunctionOrBlockScope();
7362    return ExprError();
7363  }
7364
7365  BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy,
7366                                              BSI->hasBlockDeclRefExprs);
7367
7368  // Issue any analysis-based warnings.
7369  const sema::AnalysisBasedWarnings::Policy &WP =
7370    AnalysisWarnings.getDefaultPolicy();
7371  AnalysisWarnings.IssueWarnings(WP, Result);
7372
7373  PopFunctionOrBlockScope();
7374  return Owned(Result);
7375}
7376
7377ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
7378                                        Expr *expr, ParsedType type,
7379                                        SourceLocation RPLoc) {
7380  TypeSourceInfo *TInfo;
7381  QualType T = GetTypeFromParser(type, &TInfo);
7382  return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc);
7383}
7384
7385ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
7386                                            Expr *E, TypeSourceInfo *TInfo,
7387                                            SourceLocation RPLoc) {
7388  Expr *OrigExpr = E;
7389
7390  InitBuiltinVaListType();
7391
7392  // Get the va_list type
7393  QualType VaListType = Context.getBuiltinVaListType();
7394  if (VaListType->isArrayType()) {
7395    // Deal with implicit array decay; for example, on x86-64,
7396    // va_list is an array, but it's supposed to decay to
7397    // a pointer for va_arg.
7398    VaListType = Context.getArrayDecayedType(VaListType);
7399    // Make sure the input expression also decays appropriately.
7400    UsualUnaryConversions(E);
7401  } else {
7402    // Otherwise, the va_list argument must be an l-value because
7403    // it is modified by va_arg.
7404    if (!E->isTypeDependent() &&
7405        CheckForModifiableLvalue(E, BuiltinLoc, *this))
7406      return ExprError();
7407  }
7408
7409  if (!E->isTypeDependent() &&
7410      !Context.hasSameType(VaListType, E->getType())) {
7411    return ExprError(Diag(E->getLocStart(),
7412                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
7413      << OrigExpr->getType() << E->getSourceRange());
7414  }
7415
7416  // FIXME: Check that type is complete/non-abstract
7417  // FIXME: Warn if a non-POD type is passed in.
7418
7419  QualType T = TInfo->getType().getNonLValueExprType(Context);
7420  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
7421}
7422
7423ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
7424  // The type of __null will be int or long, depending on the size of
7425  // pointers on the target.
7426  QualType Ty;
7427  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
7428    Ty = Context.IntTy;
7429  else
7430    Ty = Context.LongTy;
7431
7432  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
7433}
7434
7435static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
7436                                           Expr *SrcExpr, FixItHint &Hint) {
7437  if (!SemaRef.getLangOptions().ObjC1)
7438    return;
7439
7440  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
7441  if (!PT)
7442    return;
7443
7444  // Check if the destination is of type 'id'.
7445  if (!PT->isObjCIdType()) {
7446    // Check if the destination is the 'NSString' interface.
7447    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
7448    if (!ID || !ID->getIdentifier()->isStr("NSString"))
7449      return;
7450  }
7451
7452  // Strip off any parens and casts.
7453  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
7454  if (!SL || SL->isWide())
7455    return;
7456
7457  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
7458}
7459
7460bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
7461                                    SourceLocation Loc,
7462                                    QualType DstType, QualType SrcType,
7463                                    Expr *SrcExpr, AssignmentAction Action,
7464                                    bool *Complained) {
7465  if (Complained)
7466    *Complained = false;
7467
7468  // Decode the result (notice that AST's are still created for extensions).
7469  bool isInvalid = false;
7470  unsigned DiagKind;
7471  FixItHint Hint;
7472
7473  switch (ConvTy) {
7474  default: assert(0 && "Unknown conversion type");
7475  case Compatible: return false;
7476  case PointerToInt:
7477    DiagKind = diag::ext_typecheck_convert_pointer_int;
7478    break;
7479  case IntToPointer:
7480    DiagKind = diag::ext_typecheck_convert_int_pointer;
7481    break;
7482  case IncompatiblePointer:
7483    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
7484    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
7485    break;
7486  case IncompatiblePointerSign:
7487    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
7488    break;
7489  case FunctionVoidPointer:
7490    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
7491    break;
7492  case CompatiblePointerDiscardsQualifiers:
7493    // If the qualifiers lost were because we were applying the
7494    // (deprecated) C++ conversion from a string literal to a char*
7495    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
7496    // Ideally, this check would be performed in
7497    // CheckPointerTypesForAssignment. However, that would require a
7498    // bit of refactoring (so that the second argument is an
7499    // expression, rather than a type), which should be done as part
7500    // of a larger effort to fix CheckPointerTypesForAssignment for
7501    // C++ semantics.
7502    if (getLangOptions().CPlusPlus &&
7503        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
7504      return false;
7505    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
7506    break;
7507  case IncompatibleNestedPointerQualifiers:
7508    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
7509    break;
7510  case IntToBlockPointer:
7511    DiagKind = diag::err_int_to_block_pointer;
7512    break;
7513  case IncompatibleBlockPointer:
7514    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
7515    break;
7516  case IncompatibleObjCQualifiedId:
7517    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
7518    // it can give a more specific diagnostic.
7519    DiagKind = diag::warn_incompatible_qualified_id;
7520    break;
7521  case IncompatibleVectors:
7522    DiagKind = diag::warn_incompatible_vectors;
7523    break;
7524  case Incompatible:
7525    DiagKind = diag::err_typecheck_convert_incompatible;
7526    isInvalid = true;
7527    break;
7528  }
7529
7530  QualType FirstType, SecondType;
7531  switch (Action) {
7532  case AA_Assigning:
7533  case AA_Initializing:
7534    // The destination type comes first.
7535    FirstType = DstType;
7536    SecondType = SrcType;
7537    break;
7538
7539  case AA_Returning:
7540  case AA_Passing:
7541  case AA_Converting:
7542  case AA_Sending:
7543  case AA_Casting:
7544    // The source type comes first.
7545    FirstType = SrcType;
7546    SecondType = DstType;
7547    break;
7548  }
7549
7550  Diag(Loc, DiagKind) << FirstType << SecondType << Action
7551    << SrcExpr->getSourceRange() << Hint;
7552  if (Complained)
7553    *Complained = true;
7554  return isInvalid;
7555}
7556
7557bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
7558  llvm::APSInt ICEResult;
7559  if (E->isIntegerConstantExpr(ICEResult, Context)) {
7560    if (Result)
7561      *Result = ICEResult;
7562    return false;
7563  }
7564
7565  Expr::EvalResult EvalResult;
7566
7567  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
7568      EvalResult.HasSideEffects) {
7569    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
7570
7571    if (EvalResult.Diag) {
7572      // We only show the note if it's not the usual "invalid subexpression"
7573      // or if it's actually in a subexpression.
7574      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
7575          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
7576        Diag(EvalResult.DiagLoc, EvalResult.Diag);
7577    }
7578
7579    return true;
7580  }
7581
7582  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
7583    E->getSourceRange();
7584
7585  if (EvalResult.Diag &&
7586      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
7587    Diag(EvalResult.DiagLoc, EvalResult.Diag);
7588
7589  if (Result)
7590    *Result = EvalResult.Val.getInt();
7591  return false;
7592}
7593
7594void
7595Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
7596  ExprEvalContexts.push_back(
7597        ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
7598}
7599
7600void
7601Sema::PopExpressionEvaluationContext() {
7602  // Pop the current expression evaluation context off the stack.
7603  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
7604  ExprEvalContexts.pop_back();
7605
7606  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
7607    if (Rec.PotentiallyReferenced) {
7608      // Mark any remaining declarations in the current position of the stack
7609      // as "referenced". If they were not meant to be referenced, semantic
7610      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
7611      for (PotentiallyReferencedDecls::iterator
7612             I = Rec.PotentiallyReferenced->begin(),
7613             IEnd = Rec.PotentiallyReferenced->end();
7614           I != IEnd; ++I)
7615        MarkDeclarationReferenced(I->first, I->second);
7616    }
7617
7618    if (Rec.PotentiallyDiagnosed) {
7619      // Emit any pending diagnostics.
7620      for (PotentiallyEmittedDiagnostics::iterator
7621                I = Rec.PotentiallyDiagnosed->begin(),
7622             IEnd = Rec.PotentiallyDiagnosed->end();
7623           I != IEnd; ++I)
7624        Diag(I->first, I->second);
7625    }
7626  }
7627
7628  // When are coming out of an unevaluated context, clear out any
7629  // temporaries that we may have created as part of the evaluation of
7630  // the expression in that context: they aren't relevant because they
7631  // will never be constructed.
7632  if (Rec.Context == Unevaluated &&
7633      ExprTemporaries.size() > Rec.NumTemporaries)
7634    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
7635                          ExprTemporaries.end());
7636
7637  // Destroy the popped expression evaluation record.
7638  Rec.Destroy();
7639}
7640
7641/// \brief Note that the given declaration was referenced in the source code.
7642///
7643/// This routine should be invoke whenever a given declaration is referenced
7644/// in the source code, and where that reference occurred. If this declaration
7645/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
7646/// C99 6.9p3), then the declaration will be marked as used.
7647///
7648/// \param Loc the location where the declaration was referenced.
7649///
7650/// \param D the declaration that has been referenced by the source code.
7651void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
7652  assert(D && "No declaration?");
7653
7654  if (D->isUsed(false))
7655    return;
7656
7657  // Mark a parameter or variable declaration "used", regardless of whether we're in a
7658  // template or not. The reason for this is that unevaluated expressions
7659  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
7660  // -Wunused-parameters)
7661  if (isa<ParmVarDecl>(D) ||
7662      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
7663    D->setUsed(true);
7664    return;
7665  }
7666
7667  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
7668    return;
7669
7670  // Do not mark anything as "used" within a dependent context; wait for
7671  // an instantiation.
7672  if (CurContext->isDependentContext())
7673    return;
7674
7675  switch (ExprEvalContexts.back().Context) {
7676    case Unevaluated:
7677      // We are in an expression that is not potentially evaluated; do nothing.
7678      return;
7679
7680    case PotentiallyEvaluated:
7681      // We are in a potentially-evaluated expression, so this declaration is
7682      // "used"; handle this below.
7683      break;
7684
7685    case PotentiallyPotentiallyEvaluated:
7686      // We are in an expression that may be potentially evaluated; queue this
7687      // declaration reference until we know whether the expression is
7688      // potentially evaluated.
7689      ExprEvalContexts.back().addReferencedDecl(Loc, D);
7690      return;
7691
7692    case PotentiallyEvaluatedIfUsed:
7693      // Referenced declarations will only be used if the construct in the
7694      // containing expression is used.
7695      return;
7696  }
7697
7698  // Note that this declaration has been used.
7699  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
7700    unsigned TypeQuals;
7701    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
7702      if (Constructor->getParent()->hasTrivialConstructor())
7703        return;
7704      if (!Constructor->isUsed(false))
7705        DefineImplicitDefaultConstructor(Loc, Constructor);
7706    } else if (Constructor->isImplicit() &&
7707               Constructor->isCopyConstructor(TypeQuals)) {
7708      if (!Constructor->isUsed(false))
7709        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
7710    }
7711
7712    MarkVTableUsed(Loc, Constructor->getParent());
7713  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
7714    if (Destructor->isImplicit() && !Destructor->isUsed(false))
7715      DefineImplicitDestructor(Loc, Destructor);
7716    if (Destructor->isVirtual())
7717      MarkVTableUsed(Loc, Destructor->getParent());
7718  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
7719    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
7720        MethodDecl->getOverloadedOperator() == OO_Equal) {
7721      if (!MethodDecl->isUsed(false))
7722        DefineImplicitCopyAssignment(Loc, MethodDecl);
7723    } else if (MethodDecl->isVirtual())
7724      MarkVTableUsed(Loc, MethodDecl->getParent());
7725  }
7726  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
7727    // Implicit instantiation of function templates and member functions of
7728    // class templates.
7729    if (Function->isImplicitlyInstantiable()) {
7730      bool AlreadyInstantiated = false;
7731      if (FunctionTemplateSpecializationInfo *SpecInfo
7732                                = Function->getTemplateSpecializationInfo()) {
7733        if (SpecInfo->getPointOfInstantiation().isInvalid())
7734          SpecInfo->setPointOfInstantiation(Loc);
7735        else if (SpecInfo->getTemplateSpecializationKind()
7736                   == TSK_ImplicitInstantiation)
7737          AlreadyInstantiated = true;
7738      } else if (MemberSpecializationInfo *MSInfo
7739                                  = Function->getMemberSpecializationInfo()) {
7740        if (MSInfo->getPointOfInstantiation().isInvalid())
7741          MSInfo->setPointOfInstantiation(Loc);
7742        else if (MSInfo->getTemplateSpecializationKind()
7743                   == TSK_ImplicitInstantiation)
7744          AlreadyInstantiated = true;
7745      }
7746
7747      if (!AlreadyInstantiated) {
7748        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
7749            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
7750          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
7751                                                                      Loc));
7752        else
7753          PendingInstantiations.push_back(std::make_pair(Function, Loc));
7754      }
7755    } else // Walk redefinitions, as some of them may be instantiable.
7756      for (FunctionDecl::redecl_iterator i(Function->redecls_begin()),
7757           e(Function->redecls_end()); i != e; ++i) {
7758        if (!i->isUsed(false) && i->isImplicitlyInstantiable())
7759          MarkDeclarationReferenced(Loc, *i);
7760      }
7761
7762    // FIXME: keep track of references to static functions
7763
7764    // Recursive functions should be marked when used from another function.
7765    if (CurContext != Function)
7766      Function->setUsed(true);
7767
7768    return;
7769  }
7770
7771  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
7772    // Implicit instantiation of static data members of class templates.
7773    if (Var->isStaticDataMember() &&
7774        Var->getInstantiatedFromStaticDataMember()) {
7775      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
7776      assert(MSInfo && "Missing member specialization information?");
7777      if (MSInfo->getPointOfInstantiation().isInvalid() &&
7778          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
7779        MSInfo->setPointOfInstantiation(Loc);
7780        PendingInstantiations.push_back(std::make_pair(Var, Loc));
7781      }
7782    }
7783
7784    // FIXME: keep track of references to static data?
7785
7786    D->setUsed(true);
7787    return;
7788  }
7789}
7790
7791namespace {
7792  // Mark all of the declarations referenced
7793  // FIXME: Not fully implemented yet! We need to have a better understanding
7794  // of when we're entering
7795  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
7796    Sema &S;
7797    SourceLocation Loc;
7798
7799  public:
7800    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
7801
7802    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
7803
7804    bool TraverseTemplateArgument(const TemplateArgument &Arg);
7805    bool TraverseRecordType(RecordType *T);
7806  };
7807}
7808
7809bool MarkReferencedDecls::TraverseTemplateArgument(
7810  const TemplateArgument &Arg) {
7811  if (Arg.getKind() == TemplateArgument::Declaration) {
7812    S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
7813  }
7814
7815  return Inherited::TraverseTemplateArgument(Arg);
7816}
7817
7818bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
7819  if (ClassTemplateSpecializationDecl *Spec
7820                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
7821    const TemplateArgumentList &Args = Spec->getTemplateArgs();
7822    return TraverseTemplateArguments(Args.getFlatArgumentList(),
7823                                     Args.flat_size());
7824  }
7825
7826  return true;
7827}
7828
7829void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
7830  MarkReferencedDecls Marker(*this, Loc);
7831  Marker.TraverseType(Context.getCanonicalType(T));
7832}
7833
7834namespace {
7835  /// \brief Helper class that marks all of the declarations referenced by
7836  /// potentially-evaluated subexpressions as "referenced".
7837  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
7838    Sema &S;
7839
7840  public:
7841    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
7842
7843    explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { }
7844
7845    void VisitDeclRefExpr(DeclRefExpr *E) {
7846      S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
7847    }
7848
7849    void VisitMemberExpr(MemberExpr *E) {
7850      S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl());
7851      Inherited::VisitMemberExpr(E);
7852    }
7853
7854    void VisitCXXNewExpr(CXXNewExpr *E) {
7855      if (E->getConstructor())
7856        S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
7857      if (E->getOperatorNew())
7858        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew());
7859      if (E->getOperatorDelete())
7860        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
7861      Inherited::VisitCXXNewExpr(E);
7862    }
7863
7864    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
7865      if (E->getOperatorDelete())
7866        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
7867      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
7868      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
7869        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
7870        S.MarkDeclarationReferenced(E->getLocStart(),
7871                                    S.LookupDestructor(Record));
7872      }
7873
7874      Inherited::VisitCXXDeleteExpr(E);
7875    }
7876
7877    void VisitCXXConstructExpr(CXXConstructExpr *E) {
7878      S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
7879      Inherited::VisitCXXConstructExpr(E);
7880    }
7881
7882    void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
7883      S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
7884    }
7885  };
7886}
7887
7888/// \brief Mark any declarations that appear within this expression or any
7889/// potentially-evaluated subexpressions as "referenced".
7890void Sema::MarkDeclarationsReferencedInExpr(Expr *E) {
7891  EvaluatedExprMarker(*this).Visit(E);
7892}
7893
7894/// \brief Emit a diagnostic that describes an effect on the run-time behavior
7895/// of the program being compiled.
7896///
7897/// This routine emits the given diagnostic when the code currently being
7898/// type-checked is "potentially evaluated", meaning that there is a
7899/// possibility that the code will actually be executable. Code in sizeof()
7900/// expressions, code used only during overload resolution, etc., are not
7901/// potentially evaluated. This routine will suppress such diagnostics or,
7902/// in the absolutely nutty case of potentially potentially evaluated
7903/// expressions (C++ typeid), queue the diagnostic to potentially emit it
7904/// later.
7905///
7906/// This routine should be used for all diagnostics that describe the run-time
7907/// behavior of a program, such as passing a non-POD value through an ellipsis.
7908/// Failure to do so will likely result in spurious diagnostics or failures
7909/// during overload resolution or within sizeof/alignof/typeof/typeid.
7910bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
7911                               const PartialDiagnostic &PD) {
7912  switch (ExprEvalContexts.back().Context ) {
7913  case Unevaluated:
7914    // The argument will never be evaluated, so don't complain.
7915    break;
7916
7917  case PotentiallyEvaluated:
7918  case PotentiallyEvaluatedIfUsed:
7919    Diag(Loc, PD);
7920    return true;
7921
7922  case PotentiallyPotentiallyEvaluated:
7923    ExprEvalContexts.back().addDiagnostic(Loc, PD);
7924    break;
7925  }
7926
7927  return false;
7928}
7929
7930bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
7931                               CallExpr *CE, FunctionDecl *FD) {
7932  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
7933    return false;
7934
7935  PartialDiagnostic Note =
7936    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
7937    << FD->getDeclName() : PDiag();
7938  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
7939
7940  if (RequireCompleteType(Loc, ReturnType,
7941                          FD ?
7942                          PDiag(diag::err_call_function_incomplete_return)
7943                            << CE->getSourceRange() << FD->getDeclName() :
7944                          PDiag(diag::err_call_incomplete_return)
7945                            << CE->getSourceRange(),
7946                          std::make_pair(NoteLoc, Note)))
7947    return true;
7948
7949  return false;
7950}
7951
7952// Diagnose the common s/=/==/ typo.  Note that adding parentheses
7953// will prevent this condition from triggering, which is what we want.
7954void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
7955  SourceLocation Loc;
7956
7957  unsigned diagnostic = diag::warn_condition_is_assignment;
7958
7959  if (isa<BinaryOperator>(E)) {
7960    BinaryOperator *Op = cast<BinaryOperator>(E);
7961    if (Op->getOpcode() != BO_Assign)
7962      return;
7963
7964    // Greylist some idioms by putting them into a warning subcategory.
7965    if (ObjCMessageExpr *ME
7966          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
7967      Selector Sel = ME->getSelector();
7968
7969      // self = [<foo> init...]
7970      if (isSelfExpr(Op->getLHS())
7971          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
7972        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7973
7974      // <foo> = [<bar> nextObject]
7975      else if (Sel.isUnarySelector() &&
7976               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
7977        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7978    }
7979
7980    Loc = Op->getOperatorLoc();
7981  } else if (isa<CXXOperatorCallExpr>(E)) {
7982    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
7983    if (Op->getOperator() != OO_Equal)
7984      return;
7985
7986    Loc = Op->getOperatorLoc();
7987  } else {
7988    // Not an assignment.
7989    return;
7990  }
7991
7992  SourceLocation Open = E->getSourceRange().getBegin();
7993  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
7994
7995  Diag(Loc, diagnostic) << E->getSourceRange();
7996  Diag(Loc, diag::note_condition_assign_to_comparison)
7997    << FixItHint::CreateReplacement(Loc, "==");
7998  Diag(Loc, diag::note_condition_assign_silence)
7999    << FixItHint::CreateInsertion(Open, "(")
8000    << FixItHint::CreateInsertion(Close, ")");
8001}
8002
8003bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
8004  DiagnoseAssignmentAsCondition(E);
8005
8006  if (!E->isTypeDependent()) {
8007    DefaultFunctionArrayLvalueConversion(E);
8008
8009    QualType T = E->getType();
8010
8011    if (getLangOptions().CPlusPlus) {
8012      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
8013        return true;
8014    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
8015      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
8016        << T << E->getSourceRange();
8017      return true;
8018    }
8019  }
8020
8021  return false;
8022}
8023
8024ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
8025                                       Expr *Sub) {
8026  if (!Sub)
8027    return ExprError();
8028
8029  if (CheckBooleanCondition(Sub, Loc))
8030    return ExprError();
8031
8032  return Owned(Sub);
8033}
8034