1//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis member access expressions.
11//
12//===----------------------------------------------------------------------===//
13#include "clang/Sema/SemaInternal.h"
14#include "clang/AST/ASTLambda.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Sema/Lookup.h"
22#include "clang/Sema/Scope.h"
23#include "clang/Sema/ScopeInfo.h"
24
25using namespace clang;
26using namespace sema;
27
28typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
29static bool BaseIsNotInSet(const CXXRecordDecl *Base, void *BasesPtr) {
30  const BaseSet &Bases = *reinterpret_cast<const BaseSet*>(BasesPtr);
31  return !Bases.count(Base->getCanonicalDecl());
32}
33
34/// Determines if the given class is provably not derived from all of
35/// the prospective base classes.
36static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
37                                     const BaseSet &Bases) {
38  void *BasesPtr = const_cast<void*>(reinterpret_cast<const void*>(&Bases));
39  return BaseIsNotInSet(Record, BasesPtr) &&
40         Record->forallBases(BaseIsNotInSet, BasesPtr);
41}
42
43enum IMAKind {
44  /// The reference is definitely not an instance member access.
45  IMA_Static,
46
47  /// The reference may be an implicit instance member access.
48  IMA_Mixed,
49
50  /// The reference may be to an instance member, but it might be invalid if
51  /// so, because the context is not an instance method.
52  IMA_Mixed_StaticContext,
53
54  /// The reference may be to an instance member, but it is invalid if
55  /// so, because the context is from an unrelated class.
56  IMA_Mixed_Unrelated,
57
58  /// The reference is definitely an implicit instance member access.
59  IMA_Instance,
60
61  /// The reference may be to an unresolved using declaration.
62  IMA_Unresolved,
63
64  /// The reference is a contextually-permitted abstract member reference.
65  IMA_Abstract,
66
67  /// The reference may be to an unresolved using declaration and the
68  /// context is not an instance method.
69  IMA_Unresolved_StaticContext,
70
71  // The reference refers to a field which is not a member of the containing
72  // class, which is allowed because we're in C++11 mode and the context is
73  // unevaluated.
74  IMA_Field_Uneval_Context,
75
76  /// All possible referrents are instance members and the current
77  /// context is not an instance method.
78  IMA_Error_StaticContext,
79
80  /// All possible referrents are instance members of an unrelated
81  /// class.
82  IMA_Error_Unrelated
83};
84
85/// The given lookup names class member(s) and is not being used for
86/// an address-of-member expression.  Classify the type of access
87/// according to whether it's possible that this reference names an
88/// instance member.  This is best-effort in dependent contexts; it is okay to
89/// conservatively answer "yes", in which case some errors will simply
90/// not be caught until template-instantiation.
91static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
92                                            Scope *CurScope,
93                                            const LookupResult &R) {
94  assert(!R.empty() && (*R.begin())->isCXXClassMember());
95
96  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
97
98  bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
99    (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
100
101  if (R.isUnresolvableResult())
102    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
103
104  // Collect all the declaring classes of instance members we find.
105  bool hasNonInstance = false;
106  bool isField = false;
107  BaseSet Classes;
108  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
109    NamedDecl *D = *I;
110
111    if (D->isCXXInstanceMember()) {
112      if (dyn_cast<FieldDecl>(D) || dyn_cast<MSPropertyDecl>(D)
113          || dyn_cast<IndirectFieldDecl>(D))
114        isField = true;
115
116      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
117      Classes.insert(R->getCanonicalDecl());
118    }
119    else
120      hasNonInstance = true;
121  }
122
123  // If we didn't find any instance members, it can't be an implicit
124  // member reference.
125  if (Classes.empty())
126    return IMA_Static;
127
128  // C++11 [expr.prim.general]p12:
129  //   An id-expression that denotes a non-static data member or non-static
130  //   member function of a class can only be used:
131  //   (...)
132  //   - if that id-expression denotes a non-static data member and it
133  //     appears in an unevaluated operand.
134  //
135  // This rule is specific to C++11.  However, we also permit this form
136  // in unevaluated inline assembly operands, like the operand to a SIZE.
137  IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
138  assert(!AbstractInstanceResult);
139  switch (SemaRef.ExprEvalContexts.back().Context) {
140  case Sema::Unevaluated:
141    if (isField && SemaRef.getLangOpts().CPlusPlus11)
142      AbstractInstanceResult = IMA_Field_Uneval_Context;
143    break;
144
145  case Sema::UnevaluatedAbstract:
146    AbstractInstanceResult = IMA_Abstract;
147    break;
148
149  case Sema::ConstantEvaluated:
150  case Sema::PotentiallyEvaluated:
151  case Sema::PotentiallyEvaluatedIfUsed:
152    break;
153  }
154
155  // If the current context is not an instance method, it can't be
156  // an implicit member reference.
157  if (isStaticContext) {
158    if (hasNonInstance)
159      return IMA_Mixed_StaticContext;
160
161    return AbstractInstanceResult ? AbstractInstanceResult
162                                  : IMA_Error_StaticContext;
163  }
164
165  CXXRecordDecl *contextClass;
166  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
167    contextClass = MD->getParent()->getCanonicalDecl();
168  else
169    contextClass = cast<CXXRecordDecl>(DC);
170
171  // [class.mfct.non-static]p3:
172  // ...is used in the body of a non-static member function of class X,
173  // if name lookup (3.4.1) resolves the name in the id-expression to a
174  // non-static non-type member of some class C [...]
175  // ...if C is not X or a base class of X, the class member access expression
176  // is ill-formed.
177  if (R.getNamingClass() &&
178      contextClass->getCanonicalDecl() !=
179        R.getNamingClass()->getCanonicalDecl()) {
180    // If the naming class is not the current context, this was a qualified
181    // member name lookup, and it's sufficient to check that we have the naming
182    // class as a base class.
183    Classes.clear();
184    Classes.insert(R.getNamingClass()->getCanonicalDecl());
185  }
186
187  // If we can prove that the current context is unrelated to all the
188  // declaring classes, it can't be an implicit member reference (in
189  // which case it's an error if any of those members are selected).
190  if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
191    return hasNonInstance ? IMA_Mixed_Unrelated :
192           AbstractInstanceResult ? AbstractInstanceResult :
193                                    IMA_Error_Unrelated;
194
195  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
196}
197
198/// Diagnose a reference to a field with no object available.
199static void diagnoseInstanceReference(Sema &SemaRef,
200                                      const CXXScopeSpec &SS,
201                                      NamedDecl *Rep,
202                                      const DeclarationNameInfo &nameInfo) {
203  SourceLocation Loc = nameInfo.getLoc();
204  SourceRange Range(Loc);
205  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
206
207  DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
208  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
209  CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
210  CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
211
212  bool InStaticMethod = Method && Method->isStatic();
213  bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
214
215  if (IsField && InStaticMethod)
216    // "invalid use of member 'x' in static member function"
217    SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
218        << Range << nameInfo.getName();
219  else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
220           !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
221    // Unqualified lookup in a non-static member function found a member of an
222    // enclosing class.
223    SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
224      << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
225  else if (IsField)
226    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
227      << nameInfo.getName() << Range;
228  else
229    SemaRef.Diag(Loc, diag::err_member_call_without_object)
230      << Range;
231}
232
233/// Builds an expression which might be an implicit member expression.
234ExprResult
235Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
236                                      SourceLocation TemplateKWLoc,
237                                      LookupResult &R,
238                                const TemplateArgumentListInfo *TemplateArgs) {
239  switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
240  case IMA_Instance:
241    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true);
242
243  case IMA_Mixed:
244  case IMA_Mixed_Unrelated:
245  case IMA_Unresolved:
246    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false);
247
248  case IMA_Field_Uneval_Context:
249    Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
250      << R.getLookupNameInfo().getName();
251    // Fall through.
252  case IMA_Static:
253  case IMA_Abstract:
254  case IMA_Mixed_StaticContext:
255  case IMA_Unresolved_StaticContext:
256    if (TemplateArgs || TemplateKWLoc.isValid())
257      return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
258    return BuildDeclarationNameExpr(SS, R, false);
259
260  case IMA_Error_StaticContext:
261  case IMA_Error_Unrelated:
262    diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
263                              R.getLookupNameInfo());
264    return ExprError();
265  }
266
267  llvm_unreachable("unexpected instance member access kind");
268}
269
270/// Determine whether input char is from rgba component set.
271static bool
272IsRGBA(char c) {
273  switch (c) {
274  case 'r':
275  case 'g':
276  case 'b':
277  case 'a':
278    return true;
279  default:
280    return false;
281  }
282}
283
284/// Check an ext-vector component access expression.
285///
286/// VK should be set in advance to the value kind of the base
287/// expression.
288static QualType
289CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
290                        SourceLocation OpLoc, const IdentifierInfo *CompName,
291                        SourceLocation CompLoc) {
292  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
293  // see FIXME there.
294  //
295  // FIXME: This logic can be greatly simplified by splitting it along
296  // halving/not halving and reworking the component checking.
297  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
298
299  // The vector accessor can't exceed the number of elements.
300  const char *compStr = CompName->getNameStart();
301
302  // This flag determines whether or not the component is one of the four
303  // special names that indicate a subset of exactly half the elements are
304  // to be selected.
305  bool HalvingSwizzle = false;
306
307  // This flag determines whether or not CompName has an 's' char prefix,
308  // indicating that it is a string of hex values to be used as vector indices.
309  bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
310
311  bool HasRepeated = false;
312  bool HasIndex[16] = {};
313
314  int Idx;
315
316  // Check that we've found one of the special components, or that the component
317  // names must come from the same set.
318  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
319      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
320    HalvingSwizzle = true;
321  } else if (!HexSwizzle &&
322             (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
323    bool HasRGBA = IsRGBA(*compStr);
324    do {
325      if (HasRGBA != IsRGBA(*compStr))
326        break;
327      if (HasIndex[Idx]) HasRepeated = true;
328      HasIndex[Idx] = true;
329      compStr++;
330    } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
331  } else {
332    if (HexSwizzle) compStr++;
333    while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
334      if (HasIndex[Idx]) HasRepeated = true;
335      HasIndex[Idx] = true;
336      compStr++;
337    }
338  }
339
340  if (!HalvingSwizzle && *compStr) {
341    // We didn't get to the end of the string. This means the component names
342    // didn't come from the same set *or* we encountered an illegal name.
343    S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
344      << StringRef(compStr, 1) << SourceRange(CompLoc);
345    return QualType();
346  }
347
348  // Ensure no component accessor exceeds the width of the vector type it
349  // operates on.
350  if (!HalvingSwizzle) {
351    compStr = CompName->getNameStart();
352
353    if (HexSwizzle)
354      compStr++;
355
356    while (*compStr) {
357      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
358        S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
359          << baseType << SourceRange(CompLoc);
360        return QualType();
361      }
362    }
363  }
364
365  // The component accessor looks fine - now we need to compute the actual type.
366  // The vector type is implied by the component accessor. For example,
367  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
368  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
369  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
370  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
371                                     : CompName->getLength();
372  if (HexSwizzle)
373    CompSize--;
374
375  if (CompSize == 1)
376    return vecType->getElementType();
377
378  if (HasRepeated) VK = VK_RValue;
379
380  QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
381  // Now look up the TypeDefDecl from the vector type. Without this,
382  // diagostics look bad. We want extended vector types to appear built-in.
383  for (Sema::ExtVectorDeclsType::iterator
384         I = S.ExtVectorDecls.begin(S.getExternalSource()),
385         E = S.ExtVectorDecls.end();
386       I != E; ++I) {
387    if ((*I)->getUnderlyingType() == VT)
388      return S.Context.getTypedefType(*I);
389  }
390
391  return VT; // should never get here (a typedef type should always be found).
392}
393
394static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
395                                                IdentifierInfo *Member,
396                                                const Selector &Sel,
397                                                ASTContext &Context) {
398  if (Member)
399    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
400      return PD;
401  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
402    return OMD;
403
404  for (const auto *I : PDecl->protocols()) {
405    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
406                                                           Context))
407      return D;
408  }
409  return nullptr;
410}
411
412static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
413                                      IdentifierInfo *Member,
414                                      const Selector &Sel,
415                                      ASTContext &Context) {
416  // Check protocols on qualified interfaces.
417  Decl *GDecl = nullptr;
418  for (const auto *I : QIdTy->quals()) {
419    if (Member)
420      if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(Member)) {
421        GDecl = PD;
422        break;
423      }
424    // Also must look for a getter or setter name which uses property syntax.
425    if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
426      GDecl = OMD;
427      break;
428    }
429  }
430  if (!GDecl) {
431    for (const auto *I : QIdTy->quals()) {
432      // Search in the protocol-qualifier list of current protocol.
433      GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
434      if (GDecl)
435        return GDecl;
436    }
437  }
438  return GDecl;
439}
440
441ExprResult
442Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
443                               bool IsArrow, SourceLocation OpLoc,
444                               const CXXScopeSpec &SS,
445                               SourceLocation TemplateKWLoc,
446                               NamedDecl *FirstQualifierInScope,
447                               const DeclarationNameInfo &NameInfo,
448                               const TemplateArgumentListInfo *TemplateArgs) {
449  // Even in dependent contexts, try to diagnose base expressions with
450  // obviously wrong types, e.g.:
451  //
452  // T* t;
453  // t.f;
454  //
455  // In Obj-C++, however, the above expression is valid, since it could be
456  // accessing the 'f' property if T is an Obj-C interface. The extra check
457  // allows this, while still reporting an error if T is a struct pointer.
458  if (!IsArrow) {
459    const PointerType *PT = BaseType->getAs<PointerType>();
460    if (PT && (!getLangOpts().ObjC1 ||
461               PT->getPointeeType()->isRecordType())) {
462      assert(BaseExpr && "cannot happen with implicit member accesses");
463      Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
464        << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
465      return ExprError();
466    }
467  }
468
469  assert(BaseType->isDependentType() ||
470         NameInfo.getName().isDependentName() ||
471         isDependentScopeSpecifier(SS));
472
473  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
474  // must have pointer type, and the accessed type is the pointee.
475  return CXXDependentScopeMemberExpr::Create(
476      Context, BaseExpr, BaseType, IsArrow, OpLoc,
477      SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
478      NameInfo, TemplateArgs);
479}
480
481/// We know that the given qualified member reference points only to
482/// declarations which do not belong to the static type of the base
483/// expression.  Diagnose the problem.
484static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
485                                             Expr *BaseExpr,
486                                             QualType BaseType,
487                                             const CXXScopeSpec &SS,
488                                             NamedDecl *rep,
489                                       const DeclarationNameInfo &nameInfo) {
490  // If this is an implicit member access, use a different set of
491  // diagnostics.
492  if (!BaseExpr)
493    return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
494
495  SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
496    << SS.getRange() << rep << BaseType;
497}
498
499// Check whether the declarations we found through a nested-name
500// specifier in a member expression are actually members of the base
501// type.  The restriction here is:
502//
503//   C++ [expr.ref]p2:
504//     ... In these cases, the id-expression shall name a
505//     member of the class or of one of its base classes.
506//
507// So it's perfectly legitimate for the nested-name specifier to name
508// an unrelated class, and for us to find an overload set including
509// decls from classes which are not superclasses, as long as the decl
510// we actually pick through overload resolution is from a superclass.
511bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
512                                         QualType BaseType,
513                                         const CXXScopeSpec &SS,
514                                         const LookupResult &R) {
515  CXXRecordDecl *BaseRecord =
516    cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
517  if (!BaseRecord) {
518    // We can't check this yet because the base type is still
519    // dependent.
520    assert(BaseType->isDependentType());
521    return false;
522  }
523
524  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
525    // If this is an implicit member reference and we find a
526    // non-instance member, it's not an error.
527    if (!BaseExpr && !(*I)->isCXXInstanceMember())
528      return false;
529
530    // Note that we use the DC of the decl, not the underlying decl.
531    DeclContext *DC = (*I)->getDeclContext();
532    while (DC->isTransparentContext())
533      DC = DC->getParent();
534
535    if (!DC->isRecord())
536      continue;
537
538    CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
539    if (BaseRecord->getCanonicalDecl() == MemberRecord ||
540        !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
541      return false;
542  }
543
544  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
545                                   R.getRepresentativeDecl(),
546                                   R.getLookupNameInfo());
547  return true;
548}
549
550namespace {
551
552// Callback to only accept typo corrections that are either a ValueDecl or a
553// FunctionTemplateDecl and are declared in the current record or, for a C++
554// classes, one of its base classes.
555class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
556 public:
557  explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
558      : Record(RTy->getDecl()) {}
559
560  bool ValidateCandidate(const TypoCorrection &candidate) override {
561    NamedDecl *ND = candidate.getCorrectionDecl();
562    // Don't accept candidates that cannot be member functions, constants,
563    // variables, or templates.
564    if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
565      return false;
566
567    // Accept candidates that occur in the current record.
568    if (Record->containsDecl(ND))
569      return true;
570
571    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) {
572      // Accept candidates that occur in any of the current class' base classes.
573      for (const auto &BS : RD->bases()) {
574        if (const RecordType *BSTy = dyn_cast_or_null<RecordType>(
575                BS.getType().getTypePtrOrNull())) {
576          if (BSTy->getDecl()->containsDecl(ND))
577            return true;
578        }
579      }
580    }
581
582    return false;
583  }
584
585 private:
586  const RecordDecl *const Record;
587};
588
589}
590
591static bool
592LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
593                         SourceRange BaseRange, const RecordType *RTy,
594                         SourceLocation OpLoc, CXXScopeSpec &SS,
595                         bool HasTemplateArgs) {
596  RecordDecl *RDecl = RTy->getDecl();
597  if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
598      SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
599                                  diag::err_typecheck_incomplete_tag,
600                                  BaseRange))
601    return true;
602
603  if (HasTemplateArgs) {
604    // LookupTemplateName doesn't expect these both to exist simultaneously.
605    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
606
607    bool MOUS;
608    SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS);
609    return false;
610  }
611
612  DeclContext *DC = RDecl;
613  if (SS.isSet()) {
614    // If the member name was a qualified-id, look into the
615    // nested-name-specifier.
616    DC = SemaRef.computeDeclContext(SS, false);
617
618    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
619      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
620        << SS.getRange() << DC;
621      return true;
622    }
623
624    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
625
626    if (!isa<TypeDecl>(DC)) {
627      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
628        << DC << SS.getRange();
629      return true;
630    }
631  }
632
633  // The record definition is complete, now look up the member.
634  SemaRef.LookupQualifiedName(R, DC);
635
636  if (!R.empty())
637    return false;
638
639  // We didn't find anything with the given name, so try to correct
640  // for typos.
641  DeclarationName Name = R.getLookupName();
642  RecordMemberExprValidatorCCC Validator(RTy);
643  TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(),
644                                                 R.getLookupKind(), nullptr,
645                                                 &SS, Validator,
646                                                 Sema::CTK_ErrorRecovery, DC);
647  R.clear();
648  if (Corrected.isResolved() && !Corrected.isKeyword()) {
649    R.setLookupName(Corrected.getCorrection());
650    for (TypoCorrection::decl_iterator DI = Corrected.begin(),
651                                       DIEnd = Corrected.end();
652         DI != DIEnd; ++DI) {
653      R.addDecl(*DI);
654    }
655    R.resolveKind();
656
657    // If we're typo-correcting to an overloaded name, we don't yet have enough
658    // information to do overload resolution, so we don't know which previous
659    // declaration to point to.
660    if (Corrected.isOverloaded())
661      Corrected.setCorrectionDecl(nullptr);
662    bool DroppedSpecifier =
663        Corrected.WillReplaceSpecifier() &&
664        Name.getAsString() == Corrected.getAsString(SemaRef.getLangOpts());
665    SemaRef.diagnoseTypo(Corrected,
666                         SemaRef.PDiag(diag::err_no_member_suggest)
667                           << Name << DC << DroppedSpecifier << SS.getRange());
668  }
669
670  return false;
671}
672
673static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
674                                   ExprResult &BaseExpr, bool &IsArrow,
675                                   SourceLocation OpLoc, CXXScopeSpec &SS,
676                                   Decl *ObjCImpDecl, bool HasTemplateArgs);
677
678ExprResult
679Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
680                               SourceLocation OpLoc, bool IsArrow,
681                               CXXScopeSpec &SS,
682                               SourceLocation TemplateKWLoc,
683                               NamedDecl *FirstQualifierInScope,
684                               const DeclarationNameInfo &NameInfo,
685                               const TemplateArgumentListInfo *TemplateArgs,
686                               ActOnMemberAccessExtraArgs *ExtraArgs) {
687  if (BaseType->isDependentType() ||
688      (SS.isSet() && isDependentScopeSpecifier(SS)))
689    return ActOnDependentMemberExpr(Base, BaseType,
690                                    IsArrow, OpLoc,
691                                    SS, TemplateKWLoc, FirstQualifierInScope,
692                                    NameInfo, TemplateArgs);
693
694  LookupResult R(*this, NameInfo, LookupMemberName);
695
696  // Implicit member accesses.
697  if (!Base) {
698    QualType RecordTy = BaseType;
699    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
700    if (LookupMemberExprInRecord(*this, R, SourceRange(),
701                                 RecordTy->getAs<RecordType>(),
702                                 OpLoc, SS, TemplateArgs != nullptr))
703      return ExprError();
704
705  // Explicit member accesses.
706  } else {
707    ExprResult BaseResult = Base;
708    ExprResult Result = LookupMemberExpr(
709        *this, R, BaseResult, IsArrow, OpLoc, SS,
710        ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
711        TemplateArgs != nullptr);
712
713    if (BaseResult.isInvalid())
714      return ExprError();
715    Base = BaseResult.get();
716
717    if (Result.isInvalid())
718      return ExprError();
719
720    if (Result.get())
721      return Result;
722
723    // LookupMemberExpr can modify Base, and thus change BaseType
724    BaseType = Base->getType();
725  }
726
727  return BuildMemberReferenceExpr(Base, BaseType,
728                                  OpLoc, IsArrow, SS, TemplateKWLoc,
729                                  FirstQualifierInScope, R, TemplateArgs,
730                                  false, ExtraArgs);
731}
732
733static ExprResult
734BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
735                        const CXXScopeSpec &SS, FieldDecl *Field,
736                        DeclAccessPair FoundDecl,
737                        const DeclarationNameInfo &MemberNameInfo);
738
739ExprResult
740Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
741                                               SourceLocation loc,
742                                               IndirectFieldDecl *indirectField,
743                                               DeclAccessPair foundDecl,
744                                               Expr *baseObjectExpr,
745                                               SourceLocation opLoc) {
746  // First, build the expression that refers to the base object.
747
748  bool baseObjectIsPointer = false;
749  Qualifiers baseQuals;
750
751  // Case 1:  the base of the indirect field is not a field.
752  VarDecl *baseVariable = indirectField->getVarDecl();
753  CXXScopeSpec EmptySS;
754  if (baseVariable) {
755    assert(baseVariable->getType()->isRecordType());
756
757    // In principle we could have a member access expression that
758    // accesses an anonymous struct/union that's a static member of
759    // the base object's class.  However, under the current standard,
760    // static data members cannot be anonymous structs or unions.
761    // Supporting this is as easy as building a MemberExpr here.
762    assert(!baseObjectExpr && "anonymous struct/union is static data member?");
763
764    DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
765
766    ExprResult result
767      = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
768    if (result.isInvalid()) return ExprError();
769
770    baseObjectExpr = result.get();
771    baseObjectIsPointer = false;
772    baseQuals = baseObjectExpr->getType().getQualifiers();
773
774    // Case 2: the base of the indirect field is a field and the user
775    // wrote a member expression.
776  } else if (baseObjectExpr) {
777    // The caller provided the base object expression. Determine
778    // whether its a pointer and whether it adds any qualifiers to the
779    // anonymous struct/union fields we're looking into.
780    QualType objectType = baseObjectExpr->getType();
781
782    if (const PointerType *ptr = objectType->getAs<PointerType>()) {
783      baseObjectIsPointer = true;
784      objectType = ptr->getPointeeType();
785    } else {
786      baseObjectIsPointer = false;
787    }
788    baseQuals = objectType.getQualifiers();
789
790    // Case 3: the base of the indirect field is a field and we should
791    // build an implicit member access.
792  } else {
793    // We've found a member of an anonymous struct/union that is
794    // inside a non-anonymous struct/union, so in a well-formed
795    // program our base object expression is "this".
796    QualType ThisTy = getCurrentThisType();
797    if (ThisTy.isNull()) {
798      Diag(loc, diag::err_invalid_member_use_in_static_method)
799        << indirectField->getDeclName();
800      return ExprError();
801    }
802
803    // Our base object expression is "this".
804    CheckCXXThisCapture(loc);
805    baseObjectExpr
806      = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
807    baseObjectIsPointer = true;
808    baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
809  }
810
811  // Build the implicit member references to the field of the
812  // anonymous struct/union.
813  Expr *result = baseObjectExpr;
814  IndirectFieldDecl::chain_iterator
815  FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
816
817  // Build the first member access in the chain with full information.
818  if (!baseVariable) {
819    FieldDecl *field = cast<FieldDecl>(*FI);
820
821    // Make a nameInfo that properly uses the anonymous name.
822    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
823
824    result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
825                                     EmptySS, field, foundDecl,
826                                     memberNameInfo).get();
827    if (!result)
828      return ExprError();
829
830    // FIXME: check qualified member access
831  }
832
833  // In all cases, we should now skip the first declaration in the chain.
834  ++FI;
835
836  while (FI != FEnd) {
837    FieldDecl *field = cast<FieldDecl>(*FI++);
838
839    // FIXME: these are somewhat meaningless
840    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
841    DeclAccessPair fakeFoundDecl =
842        DeclAccessPair::make(field, field->getAccess());
843
844    result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
845                                     (FI == FEnd? SS : EmptySS), field,
846                                     fakeFoundDecl, memberNameInfo).get();
847  }
848
849  return result;
850}
851
852static ExprResult
853BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
854                       const CXXScopeSpec &SS,
855                       MSPropertyDecl *PD,
856                       const DeclarationNameInfo &NameInfo) {
857  // Property names are always simple identifiers and therefore never
858  // require any interesting additional storage.
859  return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
860                                           S.Context.PseudoObjectTy, VK_LValue,
861                                           SS.getWithLocInContext(S.Context),
862                                           NameInfo.getLoc());
863}
864
865/// \brief Build a MemberExpr AST node.
866static MemberExpr *
867BuildMemberExpr(Sema &SemaRef, ASTContext &C, Expr *Base, bool isArrow,
868                const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
869                ValueDecl *Member, DeclAccessPair FoundDecl,
870                const DeclarationNameInfo &MemberNameInfo, QualType Ty,
871                ExprValueKind VK, ExprObjectKind OK,
872                const TemplateArgumentListInfo *TemplateArgs = nullptr) {
873  assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
874  MemberExpr *E =
875      MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
876                         TemplateKWLoc, Member, FoundDecl, MemberNameInfo,
877                         TemplateArgs, Ty, VK, OK);
878  SemaRef.MarkMemberReferenced(E);
879  return E;
880}
881
882ExprResult
883Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
884                               SourceLocation OpLoc, bool IsArrow,
885                               const CXXScopeSpec &SS,
886                               SourceLocation TemplateKWLoc,
887                               NamedDecl *FirstQualifierInScope,
888                               LookupResult &R,
889                               const TemplateArgumentListInfo *TemplateArgs,
890                               bool SuppressQualifierCheck,
891                               ActOnMemberAccessExtraArgs *ExtraArgs) {
892  QualType BaseType = BaseExprType;
893  if (IsArrow) {
894    assert(BaseType->isPointerType());
895    BaseType = BaseType->castAs<PointerType>()->getPointeeType();
896  }
897  R.setBaseObjectType(BaseType);
898
899  LambdaScopeInfo *const CurLSI = getCurLambda();
900  // If this is an implicit member reference and the overloaded
901  // name refers to both static and non-static member functions
902  // (i.e. BaseExpr is null) and if we are currently processing a lambda,
903  // check if we should/can capture 'this'...
904  // Keep this example in mind:
905  //  struct X {
906  //   void f(int) { }
907  //   static void f(double) { }
908  //
909  //   int g() {
910  //     auto L = [=](auto a) {
911  //       return [](int i) {
912  //         return [=](auto b) {
913  //           f(b);
914  //           //f(decltype(a){});
915  //         };
916  //       };
917  //     };
918  //     auto M = L(0.0);
919  //     auto N = M(3);
920  //     N(5.32); // OK, must not error.
921  //     return 0;
922  //   }
923  //  };
924  //
925  if (!BaseExpr && CurLSI) {
926    SourceLocation Loc = R.getNameLoc();
927    if (SS.getRange().isValid())
928      Loc = SS.getRange().getBegin();
929    DeclContext *EnclosingFunctionCtx = CurContext->getParent()->getParent();
930    // If the enclosing function is not dependent, then this lambda is
931    // capture ready, so if we can capture this, do so.
932    if (!EnclosingFunctionCtx->isDependentContext()) {
933      // If the current lambda and all enclosing lambdas can capture 'this' -
934      // then go ahead and capture 'this' (since our unresolved overload set
935      // contains both static and non-static member functions).
936      if (!CheckCXXThisCapture(Loc, /*Explcit*/false, /*Diagnose*/false))
937        CheckCXXThisCapture(Loc);
938    } else if (CurContext->isDependentContext()) {
939      // ... since this is an implicit member reference, that might potentially
940      // involve a 'this' capture, mark 'this' for potential capture in
941      // enclosing lambdas.
942      if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
943        CurLSI->addPotentialThisCapture(Loc);
944    }
945  }
946  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
947  DeclarationName MemberName = MemberNameInfo.getName();
948  SourceLocation MemberLoc = MemberNameInfo.getLoc();
949
950  if (R.isAmbiguous())
951    return ExprError();
952
953  if (R.empty()) {
954    // Rederive where we looked up.
955    DeclContext *DC = (SS.isSet()
956                       ? computeDeclContext(SS, false)
957                       : BaseType->getAs<RecordType>()->getDecl());
958
959    if (ExtraArgs) {
960      ExprResult RetryExpr;
961      if (!IsArrow && BaseExpr) {
962        SFINAETrap Trap(*this, true);
963        ParsedType ObjectType;
964        bool MayBePseudoDestructor = false;
965        RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
966                                                 OpLoc, tok::arrow, ObjectType,
967                                                 MayBePseudoDestructor);
968        if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
969          CXXScopeSpec TempSS(SS);
970          RetryExpr = ActOnMemberAccessExpr(
971              ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
972              TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl,
973              ExtraArgs->HasTrailingLParen);
974        }
975        if (Trap.hasErrorOccurred())
976          RetryExpr = ExprError();
977      }
978      if (RetryExpr.isUsable()) {
979        Diag(OpLoc, diag::err_no_member_overloaded_arrow)
980          << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
981        return RetryExpr;
982      }
983    }
984
985    Diag(R.getNameLoc(), diag::err_no_member)
986      << MemberName << DC
987      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
988    return ExprError();
989  }
990
991  // Diagnose lookups that find only declarations from a non-base
992  // type.  This is possible for either qualified lookups (which may
993  // have been qualified with an unrelated type) or implicit member
994  // expressions (which were found with unqualified lookup and thus
995  // may have come from an enclosing scope).  Note that it's okay for
996  // lookup to find declarations from a non-base type as long as those
997  // aren't the ones picked by overload resolution.
998  if ((SS.isSet() || !BaseExpr ||
999       (isa<CXXThisExpr>(BaseExpr) &&
1000        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
1001      !SuppressQualifierCheck &&
1002      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
1003    return ExprError();
1004
1005  // Construct an unresolved result if we in fact got an unresolved
1006  // result.
1007  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
1008    // Suppress any lookup-related diagnostics; we'll do these when we
1009    // pick a member.
1010    R.suppressDiagnostics();
1011
1012    UnresolvedMemberExpr *MemExpr
1013      = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
1014                                     BaseExpr, BaseExprType,
1015                                     IsArrow, OpLoc,
1016                                     SS.getWithLocInContext(Context),
1017                                     TemplateKWLoc, MemberNameInfo,
1018                                     TemplateArgs, R.begin(), R.end());
1019
1020    return MemExpr;
1021  }
1022
1023  assert(R.isSingleResult());
1024  DeclAccessPair FoundDecl = R.begin().getPair();
1025  NamedDecl *MemberDecl = R.getFoundDecl();
1026
1027  // FIXME: diagnose the presence of template arguments now.
1028
1029  // If the decl being referenced had an error, return an error for this
1030  // sub-expr without emitting another error, in order to avoid cascading
1031  // error cases.
1032  if (MemberDecl->isInvalidDecl())
1033    return ExprError();
1034
1035  // Handle the implicit-member-access case.
1036  if (!BaseExpr) {
1037    // If this is not an instance member, convert to a non-member access.
1038    if (!MemberDecl->isCXXInstanceMember())
1039      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
1040
1041    SourceLocation Loc = R.getNameLoc();
1042    if (SS.getRange().isValid())
1043      Loc = SS.getRange().getBegin();
1044    CheckCXXThisCapture(Loc);
1045    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
1046  }
1047
1048  bool ShouldCheckUse = true;
1049  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1050    // Don't diagnose the use of a virtual member function unless it's
1051    // explicitly qualified.
1052    if (MD->isVirtual() && !SS.isSet())
1053      ShouldCheckUse = false;
1054  }
1055
1056  // Check the use of this member.
1057  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1058    return ExprError();
1059
1060  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
1061    return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
1062                                   SS, FD, FoundDecl, MemberNameInfo);
1063
1064  if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
1065    return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
1066                                  MemberNameInfo);
1067
1068  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
1069    // We may have found a field within an anonymous union or struct
1070    // (C++ [class.union]).
1071    return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
1072                                                    FoundDecl, BaseExpr,
1073                                                    OpLoc);
1074
1075  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
1076    return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, TemplateKWLoc,
1077                           Var, FoundDecl, MemberNameInfo,
1078                           Var->getType().getNonReferenceType(), VK_LValue,
1079                           OK_Ordinary);
1080  }
1081
1082  if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1083    ExprValueKind valueKind;
1084    QualType type;
1085    if (MemberFn->isInstance()) {
1086      valueKind = VK_RValue;
1087      type = Context.BoundMemberTy;
1088    } else {
1089      valueKind = VK_LValue;
1090      type = MemberFn->getType();
1091    }
1092
1093    return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, TemplateKWLoc,
1094                           MemberFn, FoundDecl, MemberNameInfo, type, valueKind,
1095                           OK_Ordinary);
1096  }
1097  assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1098
1099  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1100    return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, TemplateKWLoc,
1101                           Enum, FoundDecl, MemberNameInfo, Enum->getType(),
1102                           VK_RValue, OK_Ordinary);
1103  }
1104
1105  // We found something that we didn't expect. Complain.
1106  if (isa<TypeDecl>(MemberDecl))
1107    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1108      << MemberName << BaseType << int(IsArrow);
1109  else
1110    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1111      << MemberName << BaseType << int(IsArrow);
1112
1113  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1114    << MemberName;
1115  R.suppressDiagnostics();
1116  return ExprError();
1117}
1118
1119/// Given that normal member access failed on the given expression,
1120/// and given that the expression's type involves builtin-id or
1121/// builtin-Class, decide whether substituting in the redefinition
1122/// types would be profitable.  The redefinition type is whatever
1123/// this translation unit tried to typedef to id/Class;  we store
1124/// it to the side and then re-use it in places like this.
1125static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1126  const ObjCObjectPointerType *opty
1127    = base.get()->getType()->getAs<ObjCObjectPointerType>();
1128  if (!opty) return false;
1129
1130  const ObjCObjectType *ty = opty->getObjectType();
1131
1132  QualType redef;
1133  if (ty->isObjCId()) {
1134    redef = S.Context.getObjCIdRedefinitionType();
1135  } else if (ty->isObjCClass()) {
1136    redef = S.Context.getObjCClassRedefinitionType();
1137  } else {
1138    return false;
1139  }
1140
1141  // Do the substitution as long as the redefinition type isn't just a
1142  // possibly-qualified pointer to builtin-id or builtin-Class again.
1143  opty = redef->getAs<ObjCObjectPointerType>();
1144  if (opty && !opty->getObjectType()->getInterface())
1145    return false;
1146
1147  base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
1148  return true;
1149}
1150
1151static bool isRecordType(QualType T) {
1152  return T->isRecordType();
1153}
1154static bool isPointerToRecordType(QualType T) {
1155  if (const PointerType *PT = T->getAs<PointerType>())
1156    return PT->getPointeeType()->isRecordType();
1157  return false;
1158}
1159
1160/// Perform conversions on the LHS of a member access expression.
1161ExprResult
1162Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1163  if (IsArrow && !Base->getType()->isFunctionType())
1164    return DefaultFunctionArrayLvalueConversion(Base);
1165
1166  return CheckPlaceholderExpr(Base);
1167}
1168
1169/// Look up the given member of the given non-type-dependent
1170/// expression.  This can return in one of two ways:
1171///  * If it returns a sentinel null-but-valid result, the caller will
1172///    assume that lookup was performed and the results written into
1173///    the provided structure.  It will take over from there.
1174///  * Otherwise, the returned expression will be produced in place of
1175///    an ordinary member expression.
1176///
1177/// The ObjCImpDecl bit is a gross hack that will need to be properly
1178/// fixed for ObjC++.
1179static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
1180                                   ExprResult &BaseExpr, bool &IsArrow,
1181                                   SourceLocation OpLoc, CXXScopeSpec &SS,
1182                                   Decl *ObjCImpDecl, bool HasTemplateArgs) {
1183  assert(BaseExpr.get() && "no base expression");
1184
1185  // Perform default conversions.
1186  BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
1187  if (BaseExpr.isInvalid())
1188    return ExprError();
1189
1190  QualType BaseType = BaseExpr.get()->getType();
1191  assert(!BaseType->isDependentType());
1192
1193  DeclarationName MemberName = R.getLookupName();
1194  SourceLocation MemberLoc = R.getNameLoc();
1195
1196  // For later type-checking purposes, turn arrow accesses into dot
1197  // accesses.  The only access type we support that doesn't follow
1198  // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1199  // and those never use arrows, so this is unaffected.
1200  if (IsArrow) {
1201    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1202      BaseType = Ptr->getPointeeType();
1203    else if (const ObjCObjectPointerType *Ptr
1204               = BaseType->getAs<ObjCObjectPointerType>())
1205      BaseType = Ptr->getPointeeType();
1206    else if (BaseType->isRecordType()) {
1207      // Recover from arrow accesses to records, e.g.:
1208      //   struct MyRecord foo;
1209      //   foo->bar
1210      // This is actually well-formed in C++ if MyRecord has an
1211      // overloaded operator->, but that should have been dealt with
1212      // by now--or a diagnostic message already issued if a problem
1213      // was encountered while looking for the overloaded operator->.
1214      if (!S.getLangOpts().CPlusPlus) {
1215        S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1216          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1217          << FixItHint::CreateReplacement(OpLoc, ".");
1218      }
1219      IsArrow = false;
1220    } else if (BaseType->isFunctionType()) {
1221      goto fail;
1222    } else {
1223      S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1224        << BaseType << BaseExpr.get()->getSourceRange();
1225      return ExprError();
1226    }
1227  }
1228
1229  // Handle field access to simple records.
1230  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1231    if (LookupMemberExprInRecord(S, R, BaseExpr.get()->getSourceRange(),
1232                                 RTy, OpLoc, SS, HasTemplateArgs))
1233      return ExprError();
1234
1235    // Returning valid-but-null is how we indicate to the caller that
1236    // the lookup result was filled in.
1237    return ExprResult((Expr *)nullptr);
1238  }
1239
1240  // Handle ivar access to Objective-C objects.
1241  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1242    if (!SS.isEmpty() && !SS.isInvalid()) {
1243      S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1244        << 1 << SS.getScopeRep()
1245        << FixItHint::CreateRemoval(SS.getRange());
1246      SS.clear();
1247    }
1248
1249    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1250
1251    // There are three cases for the base type:
1252    //   - builtin id (qualified or unqualified)
1253    //   - builtin Class (qualified or unqualified)
1254    //   - an interface
1255    ObjCInterfaceDecl *IDecl = OTy->getInterface();
1256    if (!IDecl) {
1257      if (S.getLangOpts().ObjCAutoRefCount &&
1258          (OTy->isObjCId() || OTy->isObjCClass()))
1259        goto fail;
1260      // There's an implicit 'isa' ivar on all objects.
1261      // But we only actually find it this way on objects of type 'id',
1262      // apparently.
1263      if (OTy->isObjCId() && Member->isStr("isa"))
1264        return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
1265                                           OpLoc, S.Context.getObjCClassType());
1266      if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1267        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1268                                ObjCImpDecl, HasTemplateArgs);
1269      goto fail;
1270    }
1271
1272    if (S.RequireCompleteType(OpLoc, BaseType,
1273                              diag::err_typecheck_incomplete_tag,
1274                              BaseExpr.get()))
1275      return ExprError();
1276
1277    ObjCInterfaceDecl *ClassDeclared = nullptr;
1278    ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1279
1280    if (!IV) {
1281      // Attempt to correct for typos in ivar names.
1282      DeclFilterCCC<ObjCIvarDecl> Validator;
1283      Validator.IsObjCIvarLookup = IsArrow;
1284      if (TypoCorrection Corrected = S.CorrectTypo(
1285              R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
1286              Validator, Sema::CTK_ErrorRecovery, IDecl)) {
1287        IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1288        S.diagnoseTypo(
1289            Corrected,
1290            S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1291                << IDecl->getDeclName() << MemberName);
1292
1293        // Figure out the class that declares the ivar.
1294        assert(!ClassDeclared);
1295        Decl *D = cast<Decl>(IV->getDeclContext());
1296        if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
1297          D = CAT->getClassInterface();
1298        ClassDeclared = cast<ObjCInterfaceDecl>(D);
1299      } else {
1300        if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
1301          S.Diag(MemberLoc, diag::err_property_found_suggest)
1302              << Member << BaseExpr.get()->getType()
1303              << FixItHint::CreateReplacement(OpLoc, ".");
1304          return ExprError();
1305        }
1306
1307        S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1308            << IDecl->getDeclName() << MemberName
1309            << BaseExpr.get()->getSourceRange();
1310        return ExprError();
1311      }
1312    }
1313
1314    assert(ClassDeclared);
1315
1316    // If the decl being referenced had an error, return an error for this
1317    // sub-expr without emitting another error, in order to avoid cascading
1318    // error cases.
1319    if (IV->isInvalidDecl())
1320      return ExprError();
1321
1322    // Check whether we can reference this field.
1323    if (S.DiagnoseUseOfDecl(IV, MemberLoc))
1324      return ExprError();
1325    if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1326        IV->getAccessControl() != ObjCIvarDecl::Package) {
1327      ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1328      if (ObjCMethodDecl *MD = S.getCurMethodDecl())
1329        ClassOfMethodDecl =  MD->getClassInterface();
1330      else if (ObjCImpDecl && S.getCurFunctionDecl()) {
1331        // Case of a c-function declared inside an objc implementation.
1332        // FIXME: For a c-style function nested inside an objc implementation
1333        // class, there is no implementation context available, so we pass
1334        // down the context as argument to this routine. Ideally, this context
1335        // need be passed down in the AST node and somehow calculated from the
1336        // AST for a function decl.
1337        if (ObjCImplementationDecl *IMPD =
1338              dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1339          ClassOfMethodDecl = IMPD->getClassInterface();
1340        else if (ObjCCategoryImplDecl* CatImplClass =
1341                   dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1342          ClassOfMethodDecl = CatImplClass->getClassInterface();
1343      }
1344      if (!S.getLangOpts().DebuggerSupport) {
1345        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1346          if (!declaresSameEntity(ClassDeclared, IDecl) ||
1347              !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1348            S.Diag(MemberLoc, diag::error_private_ivar_access)
1349              << IV->getDeclName();
1350        } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1351          // @protected
1352          S.Diag(MemberLoc, diag::error_protected_ivar_access)
1353              << IV->getDeclName();
1354      }
1355    }
1356    bool warn = true;
1357    if (S.getLangOpts().ObjCAutoRefCount) {
1358      Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1359      if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1360        if (UO->getOpcode() == UO_Deref)
1361          BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1362
1363      if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1364        if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1365          S.Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
1366          warn = false;
1367        }
1368    }
1369    if (warn) {
1370      if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
1371        ObjCMethodFamily MF = MD->getMethodFamily();
1372        warn = (MF != OMF_init && MF != OMF_dealloc &&
1373                MF != OMF_finalize &&
1374                !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1375      }
1376      if (warn)
1377        S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1378    }
1379
1380    ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
1381        IV, IV->getType(), MemberLoc, OpLoc, BaseExpr.get(), IsArrow);
1382
1383    if (S.getLangOpts().ObjCAutoRefCount) {
1384      if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1385        if (!S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
1386          S.recordUseOfEvaluatedWeak(Result);
1387      }
1388    }
1389
1390    return Result;
1391  }
1392
1393  // Objective-C property access.
1394  const ObjCObjectPointerType *OPT;
1395  if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1396    if (!SS.isEmpty() && !SS.isInvalid()) {
1397      S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1398          << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
1399      SS.clear();
1400    }
1401
1402    // This actually uses the base as an r-value.
1403    BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
1404    if (BaseExpr.isInvalid())
1405      return ExprError();
1406
1407    assert(S.Context.hasSameUnqualifiedType(BaseType,
1408                                            BaseExpr.get()->getType()));
1409
1410    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1411
1412    const ObjCObjectType *OT = OPT->getObjectType();
1413
1414    // id, with and without qualifiers.
1415    if (OT->isObjCId()) {
1416      // Check protocols on qualified interfaces.
1417      Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1418      if (Decl *PMDecl =
1419              FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
1420        if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1421          // Check the use of this declaration
1422          if (S.DiagnoseUseOfDecl(PD, MemberLoc))
1423            return ExprError();
1424
1425          return new (S.Context)
1426              ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
1427                                  OK_ObjCProperty, MemberLoc, BaseExpr.get());
1428        }
1429
1430        if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1431          // Check the use of this method.
1432          if (S.DiagnoseUseOfDecl(OMD, MemberLoc))
1433            return ExprError();
1434          Selector SetterSel =
1435            SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1436                                                   S.PP.getSelectorTable(),
1437                                                   Member);
1438          ObjCMethodDecl *SMD = nullptr;
1439          if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
1440                                                     /*Property id*/ nullptr,
1441                                                     SetterSel, S.Context))
1442            SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1443
1444          return new (S.Context)
1445              ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
1446                                  OK_ObjCProperty, MemberLoc, BaseExpr.get());
1447        }
1448      }
1449      // Use of id.member can only be for a property reference. Do not
1450      // use the 'id' redefinition in this case.
1451      if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1452        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1453                                ObjCImpDecl, HasTemplateArgs);
1454
1455      return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1456                         << MemberName << BaseType);
1457    }
1458
1459    // 'Class', unqualified only.
1460    if (OT->isObjCClass()) {
1461      // Only works in a method declaration (??!).
1462      ObjCMethodDecl *MD = S.getCurMethodDecl();
1463      if (!MD) {
1464        if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1465          return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1466                                  ObjCImpDecl, HasTemplateArgs);
1467
1468        goto fail;
1469      }
1470
1471      // Also must look for a getter name which uses property syntax.
1472      Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1473      ObjCInterfaceDecl *IFace = MD->getClassInterface();
1474      ObjCMethodDecl *Getter;
1475      if ((Getter = IFace->lookupClassMethod(Sel))) {
1476        // Check the use of this method.
1477        if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
1478          return ExprError();
1479      } else
1480        Getter = IFace->lookupPrivateMethod(Sel, false);
1481      // If we found a getter then this may be a valid dot-reference, we
1482      // will look for the matching setter, in case it is needed.
1483      Selector SetterSel =
1484        SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1485                                               S.PP.getSelectorTable(),
1486                                               Member);
1487      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1488      if (!Setter) {
1489        // If this reference is in an @implementation, also check for 'private'
1490        // methods.
1491        Setter = IFace->lookupPrivateMethod(SetterSel, false);
1492      }
1493
1494      if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
1495        return ExprError();
1496
1497      if (Getter || Setter) {
1498        return new (S.Context) ObjCPropertyRefExpr(
1499            Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
1500            OK_ObjCProperty, MemberLoc, BaseExpr.get());
1501      }
1502
1503      if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1504        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1505                                ObjCImpDecl, HasTemplateArgs);
1506
1507      return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1508                         << MemberName << BaseType);
1509    }
1510
1511    // Normal property access.
1512    return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
1513                                       MemberLoc, SourceLocation(), QualType(),
1514                                       false);
1515  }
1516
1517  // Handle 'field access' to vectors, such as 'V.xx'.
1518  if (BaseType->isExtVectorType()) {
1519    // FIXME: this expr should store IsArrow.
1520    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1521    ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1522    QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
1523                                           Member, MemberLoc);
1524    if (ret.isNull())
1525      return ExprError();
1526
1527    return new (S.Context)
1528        ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
1529  }
1530
1531  // Adjust builtin-sel to the appropriate redefinition type if that's
1532  // not just a pointer to builtin-sel again.
1533  if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1534      !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1535    BaseExpr = S.ImpCastExprToType(
1536        BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
1537    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1538                            ObjCImpDecl, HasTemplateArgs);
1539  }
1540
1541  // Failure cases.
1542 fail:
1543
1544  // Recover from dot accesses to pointers, e.g.:
1545  //   type *foo;
1546  //   foo.bar
1547  // This is actually well-formed in two cases:
1548  //   - 'type' is an Objective C type
1549  //   - 'bar' is a pseudo-destructor name which happens to refer to
1550  //     the appropriate pointer type
1551  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1552    if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1553        MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1554      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1555          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1556          << FixItHint::CreateReplacement(OpLoc, "->");
1557
1558      // Recurse as an -> access.
1559      IsArrow = true;
1560      return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1561                              ObjCImpDecl, HasTemplateArgs);
1562    }
1563  }
1564
1565  // If the user is trying to apply -> or . to a function name, it's probably
1566  // because they forgot parentheses to call that function.
1567  if (S.tryToRecoverWithCall(
1568          BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
1569          /*complain*/ false,
1570          IsArrow ? &isPointerToRecordType : &isRecordType)) {
1571    if (BaseExpr.isInvalid())
1572      return ExprError();
1573    BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
1574    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1575                            ObjCImpDecl, HasTemplateArgs);
1576  }
1577
1578  S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1579    << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1580
1581  return ExprError();
1582}
1583
1584/// The main callback when the parser finds something like
1585///   expression . [nested-name-specifier] identifier
1586///   expression -> [nested-name-specifier] identifier
1587/// where 'identifier' encompasses a fairly broad spectrum of
1588/// possibilities, including destructor and operator references.
1589///
1590/// \param OpKind either tok::arrow or tok::period
1591/// \param HasTrailingLParen whether the next token is '(', which
1592///   is used to diagnose mis-uses of special members that can
1593///   only be called
1594/// \param ObjCImpDecl the current Objective-C \@implementation
1595///   decl; this is an ugly hack around the fact that Objective-C
1596///   \@implementations aren't properly put in the context chain
1597ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1598                                       SourceLocation OpLoc,
1599                                       tok::TokenKind OpKind,
1600                                       CXXScopeSpec &SS,
1601                                       SourceLocation TemplateKWLoc,
1602                                       UnqualifiedId &Id,
1603                                       Decl *ObjCImpDecl,
1604                                       bool HasTrailingLParen) {
1605  if (SS.isSet() && SS.isInvalid())
1606    return ExprError();
1607
1608  // The only way a reference to a destructor can be used is to
1609  // immediately call it. If the next token is not a '(', produce
1610  // a diagnostic and build the call now.
1611  if (!HasTrailingLParen &&
1612      Id.getKind() == UnqualifiedId::IK_DestructorName) {
1613    ExprResult DtorAccess =
1614        ActOnMemberAccessExpr(S, Base, OpLoc, OpKind, SS, TemplateKWLoc, Id,
1615                              ObjCImpDecl, /*HasTrailingLParen*/true);
1616    if (DtorAccess.isInvalid())
1617      return DtorAccess;
1618    return DiagnoseDtorReference(Id.getLocStart(), DtorAccess.get());
1619  }
1620
1621  // Warn about the explicit constructor calls Microsoft extension.
1622  if (getLangOpts().MicrosoftExt &&
1623      Id.getKind() == UnqualifiedId::IK_ConstructorName)
1624    Diag(Id.getSourceRange().getBegin(),
1625         diag::ext_ms_explicit_constructor_call);
1626
1627  TemplateArgumentListInfo TemplateArgsBuffer;
1628
1629  // Decompose the name into its component parts.
1630  DeclarationNameInfo NameInfo;
1631  const TemplateArgumentListInfo *TemplateArgs;
1632  DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1633                         NameInfo, TemplateArgs);
1634
1635  DeclarationName Name = NameInfo.getName();
1636  bool IsArrow = (OpKind == tok::arrow);
1637
1638  NamedDecl *FirstQualifierInScope
1639    = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
1640
1641  // This is a postfix expression, so get rid of ParenListExprs.
1642  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1643  if (Result.isInvalid()) return ExprError();
1644  Base = Result.get();
1645
1646  if (Base->getType()->isDependentType() || Name.isDependentName() ||
1647      isDependentScopeSpecifier(SS)) {
1648    return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
1649                                    TemplateKWLoc, FirstQualifierInScope,
1650                                    NameInfo, TemplateArgs);
1651  }
1652
1653  ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl,
1654                                          HasTrailingLParen};
1655  return BuildMemberReferenceExpr(Base, Base->getType(), OpLoc, IsArrow, SS,
1656                                  TemplateKWLoc, FirstQualifierInScope,
1657                                  NameInfo, TemplateArgs, &ExtraArgs);
1658}
1659
1660static ExprResult
1661BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
1662                        const CXXScopeSpec &SS, FieldDecl *Field,
1663                        DeclAccessPair FoundDecl,
1664                        const DeclarationNameInfo &MemberNameInfo) {
1665  // x.a is an l-value if 'a' has a reference type. Otherwise:
1666  // x.a is an l-value/x-value/pr-value if the base is (and note
1667  //   that *x is always an l-value), except that if the base isn't
1668  //   an ordinary object then we must have an rvalue.
1669  ExprValueKind VK = VK_LValue;
1670  ExprObjectKind OK = OK_Ordinary;
1671  if (!IsArrow) {
1672    if (BaseExpr->getObjectKind() == OK_Ordinary)
1673      VK = BaseExpr->getValueKind();
1674    else
1675      VK = VK_RValue;
1676  }
1677  if (VK != VK_RValue && Field->isBitField())
1678    OK = OK_BitField;
1679
1680  // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1681  QualType MemberType = Field->getType();
1682  if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1683    MemberType = Ref->getPointeeType();
1684    VK = VK_LValue;
1685  } else {
1686    QualType BaseType = BaseExpr->getType();
1687    if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1688
1689    Qualifiers BaseQuals = BaseType.getQualifiers();
1690
1691    // GC attributes are never picked up by members.
1692    BaseQuals.removeObjCGCAttr();
1693
1694    // CVR attributes from the base are picked up by members,
1695    // except that 'mutable' members don't pick up 'const'.
1696    if (Field->isMutable()) BaseQuals.removeConst();
1697
1698    Qualifiers MemberQuals
1699    = S.Context.getCanonicalType(MemberType).getQualifiers();
1700
1701    assert(!MemberQuals.hasAddressSpace());
1702
1703
1704    Qualifiers Combined = BaseQuals + MemberQuals;
1705    if (Combined != MemberQuals)
1706      MemberType = S.Context.getQualifiedType(MemberType, Combined);
1707  }
1708
1709  S.UnusedPrivateFields.remove(Field);
1710
1711  ExprResult Base =
1712  S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1713                                  FoundDecl, Field);
1714  if (Base.isInvalid())
1715    return ExprError();
1716  return BuildMemberExpr(S, S.Context, Base.get(), IsArrow, SS,
1717                         /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
1718                         MemberNameInfo, MemberType, VK, OK);
1719}
1720
1721/// Builds an implicit member access expression.  The current context
1722/// is known to be an instance method, and the given unqualified lookup
1723/// set is known to contain only instance members, at least one of which
1724/// is from an appropriate type.
1725ExprResult
1726Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1727                              SourceLocation TemplateKWLoc,
1728                              LookupResult &R,
1729                              const TemplateArgumentListInfo *TemplateArgs,
1730                              bool IsKnownInstance) {
1731  assert(!R.empty() && !R.isAmbiguous());
1732
1733  SourceLocation loc = R.getNameLoc();
1734
1735  // If this is known to be an instance access, go ahead and build an
1736  // implicit 'this' expression now.
1737  // 'this' expression now.
1738  QualType ThisTy = getCurrentThisType();
1739  assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1740
1741  Expr *baseExpr = nullptr; // null signifies implicit access
1742  if (IsKnownInstance) {
1743    SourceLocation Loc = R.getNameLoc();
1744    if (SS.getRange().isValid())
1745      Loc = SS.getRange().getBegin();
1746    CheckCXXThisCapture(Loc);
1747    baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
1748  }
1749
1750  return BuildMemberReferenceExpr(baseExpr, ThisTy,
1751                                  /*OpLoc*/ SourceLocation(),
1752                                  /*IsArrow*/ true,
1753                                  SS, TemplateKWLoc,
1754                                  /*FirstQualifierInScope*/ nullptr,
1755                                  R, TemplateArgs);
1756}
1757