SemaExprObjC.cpp revision 16e46dd0c284296cea819dfbf67942ecef02894d
1//===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective-C expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/ScopeInfo.h"
18#include "clang/Sema/Initialization.h"
19#include "clang/Analysis/DomainSpecific/CocoaConventions.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprObjC.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "llvm/ADT/SmallString.h"
26#include "clang/Lex/Preprocessor.h"
27
28using namespace clang;
29using namespace sema;
30using llvm::makeArrayRef;
31
32ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs,
33                                        Expr **strings,
34                                        unsigned NumStrings) {
35  StringLiteral **Strings = reinterpret_cast<StringLiteral**>(strings);
36
37  // Most ObjC strings are formed out of a single piece.  However, we *can*
38  // have strings formed out of multiple @ strings with multiple pptokens in
39  // each one, e.g. @"foo" "bar" @"baz" "qux"   which need to be turned into one
40  // StringLiteral for ObjCStringLiteral to hold onto.
41  StringLiteral *S = Strings[0];
42
43  // If we have a multi-part string, merge it all together.
44  if (NumStrings != 1) {
45    // Concatenate objc strings.
46    llvm::SmallString<128> StrBuf;
47    SmallVector<SourceLocation, 8> StrLocs;
48
49    for (unsigned i = 0; i != NumStrings; ++i) {
50      S = Strings[i];
51
52      // ObjC strings can't be wide or UTF.
53      if (!S->isAscii()) {
54        Diag(S->getLocStart(), diag::err_cfstring_literal_not_string_constant)
55          << S->getSourceRange();
56        return true;
57      }
58
59      // Append the string.
60      StrBuf += S->getString();
61
62      // Get the locations of the string tokens.
63      StrLocs.append(S->tokloc_begin(), S->tokloc_end());
64    }
65
66    // Create the aggregate string with the appropriate content and location
67    // information.
68    S = StringLiteral::Create(Context, StrBuf,
69                              StringLiteral::Ascii, /*Pascal=*/false,
70                              Context.getPointerType(Context.CharTy),
71                              &StrLocs[0], StrLocs.size());
72  }
73
74  // Verify that this composite string is acceptable for ObjC strings.
75  if (CheckObjCString(S))
76    return true;
77
78  // Initialize the constant string interface lazily. This assumes
79  // the NSString interface is seen in this translation unit. Note: We
80  // don't use NSConstantString, since the runtime team considers this
81  // interface private (even though it appears in the header files).
82  QualType Ty = Context.getObjCConstantStringInterface();
83  if (!Ty.isNull()) {
84    Ty = Context.getObjCObjectPointerType(Ty);
85  } else if (getLangOptions().NoConstantCFStrings) {
86    IdentifierInfo *NSIdent=0;
87    std::string StringClass(getLangOptions().ObjCConstantStringClass);
88
89    if (StringClass.empty())
90      NSIdent = &Context.Idents.get("NSConstantString");
91    else
92      NSIdent = &Context.Idents.get(StringClass);
93
94    NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLocs[0],
95                                     LookupOrdinaryName);
96    if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
97      Context.setObjCConstantStringInterface(StrIF);
98      Ty = Context.getObjCConstantStringInterface();
99      Ty = Context.getObjCObjectPointerType(Ty);
100    } else {
101      // If there is no NSConstantString interface defined then treat this
102      // as error and recover from it.
103      Diag(S->getLocStart(), diag::err_no_nsconstant_string_class) << NSIdent
104        << S->getSourceRange();
105      Ty = Context.getObjCIdType();
106    }
107  } else {
108    IdentifierInfo *NSIdent = &Context.Idents.get("NSString");
109    NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLocs[0],
110                                     LookupOrdinaryName);
111    if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
112      Context.setObjCConstantStringInterface(StrIF);
113      Ty = Context.getObjCConstantStringInterface();
114      Ty = Context.getObjCObjectPointerType(Ty);
115    } else {
116      // If there is no NSString interface defined then treat constant
117      // strings as untyped objects and let the runtime figure it out later.
118      Ty = Context.getObjCIdType();
119    }
120  }
121
122  return new (Context) ObjCStringLiteral(S, Ty, AtLocs[0]);
123}
124
125ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc,
126                                      TypeSourceInfo *EncodedTypeInfo,
127                                      SourceLocation RParenLoc) {
128  QualType EncodedType = EncodedTypeInfo->getType();
129  QualType StrTy;
130  if (EncodedType->isDependentType())
131    StrTy = Context.DependentTy;
132  else {
133    if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled.
134        !EncodedType->isVoidType()) // void is handled too.
135      if (RequireCompleteType(AtLoc, EncodedType,
136                         PDiag(diag::err_incomplete_type_objc_at_encode)
137                             << EncodedTypeInfo->getTypeLoc().getSourceRange()))
138        return ExprError();
139
140    std::string Str;
141    Context.getObjCEncodingForType(EncodedType, Str);
142
143    // The type of @encode is the same as the type of the corresponding string,
144    // which is an array type.
145    StrTy = Context.CharTy;
146    // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
147    if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
148      StrTy.addConst();
149    StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Str.size()+1),
150                                         ArrayType::Normal, 0);
151  }
152
153  return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc);
154}
155
156ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc,
157                                           SourceLocation EncodeLoc,
158                                           SourceLocation LParenLoc,
159                                           ParsedType ty,
160                                           SourceLocation RParenLoc) {
161  // FIXME: Preserve type source info ?
162  TypeSourceInfo *TInfo;
163  QualType EncodedType = GetTypeFromParser(ty, &TInfo);
164  if (!TInfo)
165    TInfo = Context.getTrivialTypeSourceInfo(EncodedType,
166                                             PP.getLocForEndOfToken(LParenLoc));
167
168  return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc);
169}
170
171ExprResult Sema::ParseObjCSelectorExpression(Selector Sel,
172                                             SourceLocation AtLoc,
173                                             SourceLocation SelLoc,
174                                             SourceLocation LParenLoc,
175                                             SourceLocation RParenLoc) {
176  ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel,
177                             SourceRange(LParenLoc, RParenLoc), false, false);
178  if (!Method)
179    Method = LookupFactoryMethodInGlobalPool(Sel,
180                                          SourceRange(LParenLoc, RParenLoc));
181  if (!Method)
182    Diag(SelLoc, diag::warn_undeclared_selector) << Sel;
183
184  if (!Method ||
185      Method->getImplementationControl() != ObjCMethodDecl::Optional) {
186    llvm::DenseMap<Selector, SourceLocation>::iterator Pos
187      = ReferencedSelectors.find(Sel);
188    if (Pos == ReferencedSelectors.end())
189      ReferencedSelectors.insert(std::make_pair(Sel, SelLoc));
190  }
191
192  // In ARC, forbid the user from using @selector for
193  // retain/release/autorelease/dealloc/retainCount.
194  if (getLangOptions().ObjCAutoRefCount) {
195    switch (Sel.getMethodFamily()) {
196    case OMF_retain:
197    case OMF_release:
198    case OMF_autorelease:
199    case OMF_retainCount:
200    case OMF_dealloc:
201      Diag(AtLoc, diag::err_arc_illegal_selector) <<
202        Sel << SourceRange(LParenLoc, RParenLoc);
203      break;
204
205    case OMF_None:
206    case OMF_alloc:
207    case OMF_copy:
208    case OMF_finalize:
209    case OMF_init:
210    case OMF_mutableCopy:
211    case OMF_new:
212    case OMF_self:
213    case OMF_performSelector:
214      break;
215    }
216  }
217  QualType Ty = Context.getObjCSelType();
218  return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc);
219}
220
221ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId,
222                                             SourceLocation AtLoc,
223                                             SourceLocation ProtoLoc,
224                                             SourceLocation LParenLoc,
225                                             SourceLocation RParenLoc) {
226  ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoLoc);
227  if (!PDecl) {
228    Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId;
229    return true;
230  }
231
232  QualType Ty = Context.getObjCProtoType();
233  if (Ty.isNull())
234    return true;
235  Ty = Context.getObjCObjectPointerType(Ty);
236  return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, RParenLoc);
237}
238
239/// Try to capture an implicit reference to 'self'.
240ObjCMethodDecl *Sema::tryCaptureObjCSelf() {
241  // Ignore block scopes: we can capture through them.
242  DeclContext *DC = CurContext;
243  while (true) {
244    if (isa<BlockDecl>(DC)) DC = cast<BlockDecl>(DC)->getDeclContext();
245    else if (isa<EnumDecl>(DC)) DC = cast<EnumDecl>(DC)->getDeclContext();
246    else break;
247  }
248
249  // If we're not in an ObjC method, error out.  Note that, unlike the
250  // C++ case, we don't require an instance method --- class methods
251  // still have a 'self', and we really do still need to capture it!
252  ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC);
253  if (!method)
254    return 0;
255
256  ImplicitParamDecl *self = method->getSelfDecl();
257  assert(self && "capturing 'self' in non-definition?");
258
259  // Mark that we're closing on 'this' in all the block scopes, if applicable.
260  for (unsigned idx = FunctionScopes.size() - 1;
261       isa<BlockScopeInfo>(FunctionScopes[idx]);
262       --idx) {
263    BlockScopeInfo *blockScope = cast<BlockScopeInfo>(FunctionScopes[idx]);
264    unsigned &captureIndex = blockScope->CaptureMap[self];
265    if (captureIndex) break;
266
267    bool nested = isa<BlockScopeInfo>(FunctionScopes[idx-1]);
268    blockScope->AddCapture(self, /*byref*/ false, nested, /*copy*/ 0);
269    captureIndex = blockScope->Captures.size(); // +1
270  }
271
272  return method;
273}
274
275static QualType stripObjCInstanceType(ASTContext &Context, QualType T) {
276  if (T == Context.getObjCInstanceType())
277    return Context.getObjCIdType();
278
279  return T;
280}
281
282QualType Sema::getMessageSendResultType(QualType ReceiverType,
283                                        ObjCMethodDecl *Method,
284                                    bool isClassMessage, bool isSuperMessage) {
285  assert(Method && "Must have a method");
286  if (!Method->hasRelatedResultType())
287    return Method->getSendResultType();
288
289  // If a method has a related return type:
290  //   - if the method found is an instance method, but the message send
291  //     was a class message send, T is the declared return type of the method
292  //     found
293  if (Method->isInstanceMethod() && isClassMessage)
294    return stripObjCInstanceType(Context, Method->getSendResultType());
295
296  //   - if the receiver is super, T is a pointer to the class of the
297  //     enclosing method definition
298  if (isSuperMessage) {
299    if (ObjCMethodDecl *CurMethod = getCurMethodDecl())
300      if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface())
301        return Context.getObjCObjectPointerType(
302                                        Context.getObjCInterfaceType(Class));
303  }
304
305  //   - if the receiver is the name of a class U, T is a pointer to U
306  if (ReceiverType->getAs<ObjCInterfaceType>() ||
307      ReceiverType->isObjCQualifiedInterfaceType())
308    return Context.getObjCObjectPointerType(ReceiverType);
309  //   - if the receiver is of type Class or qualified Class type,
310  //     T is the declared return type of the method.
311  if (ReceiverType->isObjCClassType() ||
312      ReceiverType->isObjCQualifiedClassType())
313    return stripObjCInstanceType(Context, Method->getSendResultType());
314
315  //   - if the receiver is id, qualified id, Class, or qualified Class, T
316  //     is the receiver type, otherwise
317  //   - T is the type of the receiver expression.
318  return ReceiverType;
319}
320
321void Sema::EmitRelatedResultTypeNote(const Expr *E) {
322  E = E->IgnoreParenImpCasts();
323  const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E);
324  if (!MsgSend)
325    return;
326
327  const ObjCMethodDecl *Method = MsgSend->getMethodDecl();
328  if (!Method)
329    return;
330
331  if (!Method->hasRelatedResultType())
332    return;
333
334  if (Context.hasSameUnqualifiedType(Method->getResultType()
335                                                        .getNonReferenceType(),
336                                     MsgSend->getType()))
337    return;
338
339  if (!Context.hasSameUnqualifiedType(Method->getResultType(),
340                                      Context.getObjCInstanceType()))
341    return;
342
343  Diag(Method->getLocation(), diag::note_related_result_type_inferred)
344    << Method->isInstanceMethod() << Method->getSelector()
345    << MsgSend->getType();
346}
347
348bool Sema::CheckMessageArgumentTypes(QualType ReceiverType,
349                                     Expr **Args, unsigned NumArgs,
350                                     Selector Sel, ObjCMethodDecl *Method,
351                                     bool isClassMessage, bool isSuperMessage,
352                                     SourceLocation lbrac, SourceLocation rbrac,
353                                     QualType &ReturnType, ExprValueKind &VK) {
354  if (!Method) {
355    // Apply default argument promotion as for (C99 6.5.2.2p6).
356    for (unsigned i = 0; i != NumArgs; i++) {
357      if (Args[i]->isTypeDependent())
358        continue;
359
360      ExprResult Result = DefaultArgumentPromotion(Args[i]);
361      if (Result.isInvalid())
362        return true;
363      Args[i] = Result.take();
364    }
365
366    unsigned DiagID;
367    if (getLangOptions().ObjCAutoRefCount)
368      DiagID = diag::err_arc_method_not_found;
369    else
370      DiagID = isClassMessage ? diag::warn_class_method_not_found
371                              : diag::warn_inst_method_not_found;
372    if (!getLangOptions().DebuggerSupport)
373      Diag(lbrac, DiagID)
374        << Sel << isClassMessage << SourceRange(lbrac, rbrac);
375
376    // In debuggers, we want to use __unknown_anytype for these
377    // results so that clients can cast them.
378    if (getLangOptions().DebuggerSupport) {
379      ReturnType = Context.UnknownAnyTy;
380    } else {
381      ReturnType = Context.getObjCIdType();
382    }
383    VK = VK_RValue;
384    return false;
385  }
386
387  ReturnType = getMessageSendResultType(ReceiverType, Method, isClassMessage,
388                                        isSuperMessage);
389  VK = Expr::getValueKindForType(Method->getResultType());
390
391  unsigned NumNamedArgs = Sel.getNumArgs();
392  // Method might have more arguments than selector indicates. This is due
393  // to addition of c-style arguments in method.
394  if (Method->param_size() > Sel.getNumArgs())
395    NumNamedArgs = Method->param_size();
396  // FIXME. This need be cleaned up.
397  if (NumArgs < NumNamedArgs) {
398    Diag(lbrac, diag::err_typecheck_call_too_few_args)
399      << 2 << NumNamedArgs << NumArgs;
400    return false;
401  }
402
403  bool IsError = false;
404  for (unsigned i = 0; i < NumNamedArgs; i++) {
405    // We can't do any type-checking on a type-dependent argument.
406    if (Args[i]->isTypeDependent())
407      continue;
408
409    Expr *argExpr = Args[i];
410
411    ParmVarDecl *param = Method->param_begin()[i];
412    assert(argExpr && "CheckMessageArgumentTypes(): missing expression");
413
414    // Strip the unbridged-cast placeholder expression off unless it's
415    // a consumed argument.
416    if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
417        !param->hasAttr<CFConsumedAttr>())
418      argExpr = stripARCUnbridgedCast(argExpr);
419
420    if (RequireCompleteType(argExpr->getSourceRange().getBegin(),
421                            param->getType(),
422                            PDiag(diag::err_call_incomplete_argument)
423                              << argExpr->getSourceRange()))
424      return true;
425
426    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
427                                                                      param);
428    ExprResult ArgE = PerformCopyInitialization(Entity, lbrac, Owned(argExpr));
429    if (ArgE.isInvalid())
430      IsError = true;
431    else
432      Args[i] = ArgE.takeAs<Expr>();
433  }
434
435  // Promote additional arguments to variadic methods.
436  if (Method->isVariadic()) {
437    for (unsigned i = NumNamedArgs; i < NumArgs; ++i) {
438      if (Args[i]->isTypeDependent())
439        continue;
440
441      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
442      IsError |= Arg.isInvalid();
443      Args[i] = Arg.take();
444    }
445  } else {
446    // Check for extra arguments to non-variadic methods.
447    if (NumArgs != NumNamedArgs) {
448      Diag(Args[NumNamedArgs]->getLocStart(),
449           diag::err_typecheck_call_too_many_args)
450        << 2 /*method*/ << NumNamedArgs << NumArgs
451        << Method->getSourceRange()
452        << SourceRange(Args[NumNamedArgs]->getLocStart(),
453                       Args[NumArgs-1]->getLocEnd());
454    }
455  }
456
457  DiagnoseSentinelCalls(Method, lbrac, Args, NumArgs);
458
459  // Do additional checkings on method.
460  IsError |= CheckObjCMethodCall(Method, lbrac, Args, NumArgs);
461
462  return IsError;
463}
464
465bool Sema::isSelfExpr(Expr *receiver) {
466  // 'self' is objc 'self' in an objc method only.
467  ObjCMethodDecl *method =
468    dyn_cast<ObjCMethodDecl>(CurContext->getNonClosureAncestor());
469  if (!method) return false;
470
471  receiver = receiver->IgnoreParenLValueCasts();
472  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver))
473    if (DRE->getDecl() == method->getSelfDecl())
474      return true;
475  return false;
476}
477
478// Helper method for ActOnClassMethod/ActOnInstanceMethod.
479// Will search "local" class/category implementations for a method decl.
480// If failed, then we search in class's root for an instance method.
481// Returns 0 if no method is found.
482ObjCMethodDecl *Sema::LookupPrivateClassMethod(Selector Sel,
483                                          ObjCInterfaceDecl *ClassDecl) {
484  ObjCMethodDecl *Method = 0;
485  // lookup in class and all superclasses
486  while (ClassDecl && !Method) {
487    if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
488      Method = ImpDecl->getClassMethod(Sel);
489
490    // Look through local category implementations associated with the class.
491    if (!Method)
492      Method = ClassDecl->getCategoryClassMethod(Sel);
493
494    // Before we give up, check if the selector is an instance method.
495    // But only in the root. This matches gcc's behaviour and what the
496    // runtime expects.
497    if (!Method && !ClassDecl->getSuperClass()) {
498      Method = ClassDecl->lookupInstanceMethod(Sel);
499      // Look through local category implementations associated
500      // with the root class.
501      if (!Method)
502        Method = LookupPrivateInstanceMethod(Sel, ClassDecl);
503    }
504
505    ClassDecl = ClassDecl->getSuperClass();
506  }
507  return Method;
508}
509
510ObjCMethodDecl *Sema::LookupPrivateInstanceMethod(Selector Sel,
511                                              ObjCInterfaceDecl *ClassDecl) {
512  if (!ClassDecl->hasDefinition())
513    return 0;
514
515  ObjCMethodDecl *Method = 0;
516  while (ClassDecl && !Method) {
517    // If we have implementations in scope, check "private" methods.
518    if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
519      Method = ImpDecl->getInstanceMethod(Sel);
520
521    // Look through local category implementations associated with the class.
522    if (!Method)
523      Method = ClassDecl->getCategoryInstanceMethod(Sel);
524    ClassDecl = ClassDecl->getSuperClass();
525  }
526  return Method;
527}
528
529/// LookupMethodInType - Look up a method in an ObjCObjectType.
530ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type,
531                                               bool isInstance) {
532  const ObjCObjectType *objType = type->castAs<ObjCObjectType>();
533  if (ObjCInterfaceDecl *iface = objType->getInterface()) {
534    // Look it up in the main interface (and categories, etc.)
535    if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance))
536      return method;
537
538    // Okay, look for "private" methods declared in any
539    // @implementations we've seen.
540    if (isInstance) {
541      if (ObjCMethodDecl *method = LookupPrivateInstanceMethod(sel, iface))
542        return method;
543    } else {
544      if (ObjCMethodDecl *method = LookupPrivateClassMethod(sel, iface))
545        return method;
546    }
547  }
548
549  // Check qualifiers.
550  for (ObjCObjectType::qual_iterator
551         i = objType->qual_begin(), e = objType->qual_end(); i != e; ++i)
552    if (ObjCMethodDecl *method = (*i)->lookupMethod(sel, isInstance))
553      return method;
554
555  return 0;
556}
557
558/// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier
559/// list of a qualified objective pointer type.
560ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel,
561                                              const ObjCObjectPointerType *OPT,
562                                              bool Instance)
563{
564  ObjCMethodDecl *MD = 0;
565  for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
566       E = OPT->qual_end(); I != E; ++I) {
567    ObjCProtocolDecl *PROTO = (*I);
568    if ((MD = PROTO->lookupMethod(Sel, Instance))) {
569      return MD;
570    }
571  }
572  return 0;
573}
574
575/// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an
576/// objective C interface.  This is a property reference expression.
577ExprResult Sema::
578HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
579                          Expr *BaseExpr, SourceLocation OpLoc,
580                          DeclarationName MemberName,
581                          SourceLocation MemberLoc,
582                          SourceLocation SuperLoc, QualType SuperType,
583                          bool Super) {
584  const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
585  ObjCInterfaceDecl *IFace = IFaceT->getDecl();
586
587  if (MemberName.getNameKind() != DeclarationName::Identifier) {
588    Diag(MemberLoc, diag::err_invalid_property_name)
589      << MemberName << QualType(OPT, 0);
590    return ExprError();
591  }
592
593  IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
594  SourceRange BaseRange = Super? SourceRange(SuperLoc)
595                               : BaseExpr->getSourceRange();
596  if (RequireCompleteType(MemberLoc, OPT->getPointeeType(),
597                          PDiag(diag::err_property_not_found_forward_class)
598                            << MemberName << BaseRange))
599    return ExprError();
600
601  // Search for a declared property first.
602  if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
603    // Check whether we can reference this property.
604    if (DiagnoseUseOfDecl(PD, MemberLoc))
605      return ExprError();
606
607    if (Super)
608      return Owned(new (Context) ObjCPropertyRefExpr(PD, Context.PseudoObjectTy,
609                                                     VK_LValue, OK_ObjCProperty,
610                                                     MemberLoc,
611                                                     SuperLoc, SuperType));
612    else
613      return Owned(new (Context) ObjCPropertyRefExpr(PD, Context.PseudoObjectTy,
614                                                     VK_LValue, OK_ObjCProperty,
615                                                     MemberLoc, BaseExpr));
616  }
617  // Check protocols on qualified interfaces.
618  for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
619       E = OPT->qual_end(); I != E; ++I)
620    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
621      // Check whether we can reference this property.
622      if (DiagnoseUseOfDecl(PD, MemberLoc))
623        return ExprError();
624
625      if (Super)
626        return Owned(new (Context) ObjCPropertyRefExpr(PD,
627                                                       Context.PseudoObjectTy,
628                                                       VK_LValue,
629                                                       OK_ObjCProperty,
630                                                       MemberLoc,
631                                                       SuperLoc, SuperType));
632      else
633        return Owned(new (Context) ObjCPropertyRefExpr(PD,
634                                                       Context.PseudoObjectTy,
635                                                       VK_LValue,
636                                                       OK_ObjCProperty,
637                                                       MemberLoc,
638                                                       BaseExpr));
639    }
640  // If that failed, look for an "implicit" property by seeing if the nullary
641  // selector is implemented.
642
643  // FIXME: The logic for looking up nullary and unary selectors should be
644  // shared with the code in ActOnInstanceMessage.
645
646  Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
647  ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
648
649  // May be founf in property's qualified list.
650  if (!Getter)
651    Getter = LookupMethodInQualifiedType(Sel, OPT, true);
652
653  // If this reference is in an @implementation, check for 'private' methods.
654  if (!Getter)
655    Getter = IFace->lookupPrivateMethod(Sel);
656
657  // Look through local category implementations associated with the class.
658  if (!Getter)
659    Getter = IFace->getCategoryInstanceMethod(Sel);
660  if (Getter) {
661    // Check if we can reference this property.
662    if (DiagnoseUseOfDecl(Getter, MemberLoc))
663      return ExprError();
664  }
665  // If we found a getter then this may be a valid dot-reference, we
666  // will look for the matching setter, in case it is needed.
667  Selector SetterSel =
668    SelectorTable::constructSetterName(PP.getIdentifierTable(),
669                                       PP.getSelectorTable(), Member);
670  ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
671
672  // May be founf in property's qualified list.
673  if (!Setter)
674    Setter = LookupMethodInQualifiedType(SetterSel, OPT, true);
675
676  if (!Setter) {
677    // If this reference is in an @implementation, also check for 'private'
678    // methods.
679    Setter = IFace->lookupPrivateMethod(SetterSel);
680  }
681  // Look through local category implementations associated with the class.
682  if (!Setter)
683    Setter = IFace->getCategoryInstanceMethod(SetterSel);
684
685  if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
686    return ExprError();
687
688  if (Getter || Setter) {
689    if (Super)
690      return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
691                                                     Context.PseudoObjectTy,
692                                                     VK_LValue, OK_ObjCProperty,
693                                                     MemberLoc,
694                                                     SuperLoc, SuperType));
695    else
696      return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
697                                                     Context.PseudoObjectTy,
698                                                     VK_LValue, OK_ObjCProperty,
699                                                     MemberLoc, BaseExpr));
700
701  }
702
703  // Attempt to correct for typos in property names.
704  DeclFilterCCC<ObjCPropertyDecl> Validator;
705  if (TypoCorrection Corrected = CorrectTypo(
706      DeclarationNameInfo(MemberName, MemberLoc), LookupOrdinaryName, NULL,
707      NULL, Validator, IFace, false, OPT)) {
708    ObjCPropertyDecl *Property =
709        Corrected.getCorrectionDeclAs<ObjCPropertyDecl>();
710    DeclarationName TypoResult = Corrected.getCorrection();
711    Diag(MemberLoc, diag::err_property_not_found_suggest)
712      << MemberName << QualType(OPT, 0) << TypoResult
713      << FixItHint::CreateReplacement(MemberLoc, TypoResult.getAsString());
714    Diag(Property->getLocation(), diag::note_previous_decl)
715      << Property->getDeclName();
716    return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc,
717                                     TypoResult, MemberLoc,
718                                     SuperLoc, SuperType, Super);
719  }
720  ObjCInterfaceDecl *ClassDeclared;
721  if (ObjCIvarDecl *Ivar =
722      IFace->lookupInstanceVariable(Member, ClassDeclared)) {
723    QualType T = Ivar->getType();
724    if (const ObjCObjectPointerType * OBJPT =
725        T->getAsObjCInterfacePointerType()) {
726      if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(),
727                              PDiag(diag::err_property_not_as_forward_class)
728                                << MemberName << BaseExpr->getSourceRange()))
729        return ExprError();
730    }
731    Diag(MemberLoc,
732         diag::err_ivar_access_using_property_syntax_suggest)
733    << MemberName << QualType(OPT, 0) << Ivar->getDeclName()
734    << FixItHint::CreateReplacement(OpLoc, "->");
735    return ExprError();
736  }
737
738  Diag(MemberLoc, diag::err_property_not_found)
739    << MemberName << QualType(OPT, 0);
740  if (Setter)
741    Diag(Setter->getLocation(), diag::note_getter_unavailable)
742          << MemberName << BaseExpr->getSourceRange();
743  return ExprError();
744}
745
746
747
748ExprResult Sema::
749ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
750                          IdentifierInfo &propertyName,
751                          SourceLocation receiverNameLoc,
752                          SourceLocation propertyNameLoc) {
753
754  IdentifierInfo *receiverNamePtr = &receiverName;
755  ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr,
756                                                  receiverNameLoc);
757
758  bool IsSuper = false;
759  if (IFace == 0) {
760    // If the "receiver" is 'super' in a method, handle it as an expression-like
761    // property reference.
762    if (receiverNamePtr->isStr("super")) {
763      IsSuper = true;
764
765      if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf()) {
766        if (CurMethod->isInstanceMethod()) {
767          QualType T =
768            Context.getObjCInterfaceType(CurMethod->getClassInterface());
769          T = Context.getObjCObjectPointerType(T);
770
771          return HandleExprPropertyRefExpr(T->getAsObjCInterfacePointerType(),
772                                           /*BaseExpr*/0,
773                                           SourceLocation()/*OpLoc*/,
774                                           &propertyName,
775                                           propertyNameLoc,
776                                           receiverNameLoc, T, true);
777        }
778
779        // Otherwise, if this is a class method, try dispatching to our
780        // superclass.
781        IFace = CurMethod->getClassInterface()->getSuperClass();
782      }
783    }
784
785    if (IFace == 0) {
786      Diag(receiverNameLoc, diag::err_expected_ident_or_lparen);
787      return ExprError();
788    }
789  }
790
791  // Search for a declared property first.
792  Selector Sel = PP.getSelectorTable().getNullarySelector(&propertyName);
793  ObjCMethodDecl *Getter = IFace->lookupClassMethod(Sel);
794
795  // If this reference is in an @implementation, check for 'private' methods.
796  if (!Getter)
797    if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
798      if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
799        if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
800          Getter = ImpDecl->getClassMethod(Sel);
801
802  if (Getter) {
803    // FIXME: refactor/share with ActOnMemberReference().
804    // Check if we can reference this property.
805    if (DiagnoseUseOfDecl(Getter, propertyNameLoc))
806      return ExprError();
807  }
808
809  // Look for the matching setter, in case it is needed.
810  Selector SetterSel =
811    SelectorTable::constructSetterName(PP.getIdentifierTable(),
812                                       PP.getSelectorTable(), &propertyName);
813
814  ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
815  if (!Setter) {
816    // If this reference is in an @implementation, also check for 'private'
817    // methods.
818    if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
819      if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
820        if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
821          Setter = ImpDecl->getClassMethod(SetterSel);
822  }
823  // Look through local category implementations associated with the class.
824  if (!Setter)
825    Setter = IFace->getCategoryClassMethod(SetterSel);
826
827  if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc))
828    return ExprError();
829
830  if (Getter || Setter) {
831    if (IsSuper)
832    return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
833                                                   Context.PseudoObjectTy,
834                                                   VK_LValue, OK_ObjCProperty,
835                                                   propertyNameLoc,
836                                                   receiverNameLoc,
837                                          Context.getObjCInterfaceType(IFace)));
838
839    return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
840                                                   Context.PseudoObjectTy,
841                                                   VK_LValue, OK_ObjCProperty,
842                                                   propertyNameLoc,
843                                                   receiverNameLoc, IFace));
844  }
845  return ExprError(Diag(propertyNameLoc, diag::err_property_not_found)
846                     << &propertyName << Context.getObjCInterfaceType(IFace));
847}
848
849namespace {
850
851class ObjCInterfaceOrSuperCCC : public CorrectionCandidateCallback {
852 public:
853  ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) {
854    // Determine whether "super" is acceptable in the current context.
855    if (Method && Method->getClassInterface())
856      WantObjCSuper = Method->getClassInterface()->getSuperClass();
857  }
858
859  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
860    return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() ||
861        candidate.isKeyword("super");
862  }
863};
864
865}
866
867Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S,
868                                               IdentifierInfo *Name,
869                                               SourceLocation NameLoc,
870                                               bool IsSuper,
871                                               bool HasTrailingDot,
872                                               ParsedType &ReceiverType) {
873  ReceiverType = ParsedType();
874
875  // If the identifier is "super" and there is no trailing dot, we're
876  // messaging super. If the identifier is "super" and there is a
877  // trailing dot, it's an instance message.
878  if (IsSuper && S->isInObjcMethodScope())
879    return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage;
880
881  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
882  LookupName(Result, S);
883
884  switch (Result.getResultKind()) {
885  case LookupResult::NotFound:
886    // Normal name lookup didn't find anything. If we're in an
887    // Objective-C method, look for ivars. If we find one, we're done!
888    // FIXME: This is a hack. Ivar lookup should be part of normal
889    // lookup.
890    if (ObjCMethodDecl *Method = getCurMethodDecl()) {
891      if (!Method->getClassInterface()) {
892        // Fall back: let the parser try to parse it as an instance message.
893        return ObjCInstanceMessage;
894      }
895
896      ObjCInterfaceDecl *ClassDeclared;
897      if (Method->getClassInterface()->lookupInstanceVariable(Name,
898                                                              ClassDeclared))
899        return ObjCInstanceMessage;
900    }
901
902    // Break out; we'll perform typo correction below.
903    break;
904
905  case LookupResult::NotFoundInCurrentInstantiation:
906  case LookupResult::FoundOverloaded:
907  case LookupResult::FoundUnresolvedValue:
908  case LookupResult::Ambiguous:
909    Result.suppressDiagnostics();
910    return ObjCInstanceMessage;
911
912  case LookupResult::Found: {
913    // If the identifier is a class or not, and there is a trailing dot,
914    // it's an instance message.
915    if (HasTrailingDot)
916      return ObjCInstanceMessage;
917    // We found something. If it's a type, then we have a class
918    // message. Otherwise, it's an instance message.
919    NamedDecl *ND = Result.getFoundDecl();
920    QualType T;
921    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND))
922      T = Context.getObjCInterfaceType(Class);
923    else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND))
924      T = Context.getTypeDeclType(Type);
925    else
926      return ObjCInstanceMessage;
927
928    //  We have a class message, and T is the type we're
929    //  messaging. Build source-location information for it.
930    TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
931    ReceiverType = CreateParsedType(T, TSInfo);
932    return ObjCClassMessage;
933  }
934  }
935
936  ObjCInterfaceOrSuperCCC Validator(getCurMethodDecl());
937  if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
938                                             Result.getLookupKind(), S, NULL,
939                                             Validator)) {
940    if (Corrected.isKeyword()) {
941      // If we've found the keyword "super" (the only keyword that would be
942      // returned by CorrectTypo), this is a send to super.
943      Diag(NameLoc, diag::err_unknown_receiver_suggest)
944        << Name << Corrected.getCorrection()
945        << FixItHint::CreateReplacement(SourceRange(NameLoc), "super");
946      return ObjCSuperMessage;
947    } else if (ObjCInterfaceDecl *Class =
948               Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
949      // If we found a declaration, correct when it refers to an Objective-C
950      // class.
951      Diag(NameLoc, diag::err_unknown_receiver_suggest)
952        << Name << Corrected.getCorrection()
953        << FixItHint::CreateReplacement(SourceRange(NameLoc),
954                                        Class->getNameAsString());
955      Diag(Class->getLocation(), diag::note_previous_decl)
956        << Corrected.getCorrection();
957
958      QualType T = Context.getObjCInterfaceType(Class);
959      TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
960      ReceiverType = CreateParsedType(T, TSInfo);
961      return ObjCClassMessage;
962    }
963  }
964
965  // Fall back: let the parser try to parse it as an instance message.
966  return ObjCInstanceMessage;
967}
968
969ExprResult Sema::ActOnSuperMessage(Scope *S,
970                                   SourceLocation SuperLoc,
971                                   Selector Sel,
972                                   SourceLocation LBracLoc,
973                                   ArrayRef<SourceLocation> SelectorLocs,
974                                   SourceLocation RBracLoc,
975                                   MultiExprArg Args) {
976  // Determine whether we are inside a method or not.
977  ObjCMethodDecl *Method = tryCaptureObjCSelf();
978  if (!Method) {
979    Diag(SuperLoc, diag::err_invalid_receiver_to_message_super);
980    return ExprError();
981  }
982
983  ObjCInterfaceDecl *Class = Method->getClassInterface();
984  if (!Class) {
985    Diag(SuperLoc, diag::error_no_super_class_message)
986      << Method->getDeclName();
987    return ExprError();
988  }
989
990  ObjCInterfaceDecl *Super = Class->getSuperClass();
991  if (!Super) {
992    // The current class does not have a superclass.
993    Diag(SuperLoc, diag::error_root_class_cannot_use_super)
994      << Class->getIdentifier();
995    return ExprError();
996  }
997
998  // We are in a method whose class has a superclass, so 'super'
999  // is acting as a keyword.
1000  if (Method->isInstanceMethod()) {
1001    if (Sel.getMethodFamily() == OMF_dealloc)
1002      ObjCShouldCallSuperDealloc = false;
1003    if (Sel.getMethodFamily() == OMF_finalize)
1004      ObjCShouldCallSuperFinalize = false;
1005
1006    // Since we are in an instance method, this is an instance
1007    // message to the superclass instance.
1008    QualType SuperTy = Context.getObjCInterfaceType(Super);
1009    SuperTy = Context.getObjCObjectPointerType(SuperTy);
1010    return BuildInstanceMessage(0, SuperTy, SuperLoc,
1011                                Sel, /*Method=*/0,
1012                                LBracLoc, SelectorLocs, RBracLoc, move(Args));
1013  }
1014
1015  // Since we are in a class method, this is a class message to
1016  // the superclass.
1017  return BuildClassMessage(/*ReceiverTypeInfo=*/0,
1018                           Context.getObjCInterfaceType(Super),
1019                           SuperLoc, Sel, /*Method=*/0,
1020                           LBracLoc, SelectorLocs, RBracLoc, move(Args));
1021}
1022
1023
1024ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType,
1025                                           bool isSuperReceiver,
1026                                           SourceLocation Loc,
1027                                           Selector Sel,
1028                                           ObjCMethodDecl *Method,
1029                                           MultiExprArg Args) {
1030  TypeSourceInfo *receiverTypeInfo = 0;
1031  if (!ReceiverType.isNull())
1032    receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType);
1033
1034  return BuildClassMessage(receiverTypeInfo, ReceiverType,
1035                          /*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(),
1036                           Sel, Method, Loc, Loc, Loc, Args,
1037                           /*isImplicit=*/true);
1038
1039}
1040
1041/// \brief Build an Objective-C class message expression.
1042///
1043/// This routine takes care of both normal class messages and
1044/// class messages to the superclass.
1045///
1046/// \param ReceiverTypeInfo Type source information that describes the
1047/// receiver of this message. This may be NULL, in which case we are
1048/// sending to the superclass and \p SuperLoc must be a valid source
1049/// location.
1050
1051/// \param ReceiverType The type of the object receiving the
1052/// message. When \p ReceiverTypeInfo is non-NULL, this is the same
1053/// type as that refers to. For a superclass send, this is the type of
1054/// the superclass.
1055///
1056/// \param SuperLoc The location of the "super" keyword in a
1057/// superclass message.
1058///
1059/// \param Sel The selector to which the message is being sent.
1060///
1061/// \param Method The method that this class message is invoking, if
1062/// already known.
1063///
1064/// \param LBracLoc The location of the opening square bracket ']'.
1065///
1066/// \param RBrac The location of the closing square bracket ']'.
1067///
1068/// \param Args The message arguments.
1069ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
1070                                   QualType ReceiverType,
1071                                   SourceLocation SuperLoc,
1072                                   Selector Sel,
1073                                   ObjCMethodDecl *Method,
1074                                   SourceLocation LBracLoc,
1075                                   ArrayRef<SourceLocation> SelectorLocs,
1076                                   SourceLocation RBracLoc,
1077                                   MultiExprArg ArgsIn,
1078                                   bool isImplicit) {
1079  SourceLocation Loc = SuperLoc.isValid()? SuperLoc
1080    : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin();
1081  if (LBracLoc.isInvalid()) {
1082    Diag(Loc, diag::err_missing_open_square_message_send)
1083      << FixItHint::CreateInsertion(Loc, "[");
1084    LBracLoc = Loc;
1085  }
1086
1087  if (ReceiverType->isDependentType()) {
1088    // If the receiver type is dependent, we can't type-check anything
1089    // at this point. Build a dependent expression.
1090    unsigned NumArgs = ArgsIn.size();
1091    Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
1092    assert(SuperLoc.isInvalid() && "Message to super with dependent type");
1093    return Owned(ObjCMessageExpr::Create(Context, ReceiverType,
1094                                         VK_RValue, LBracLoc, ReceiverTypeInfo,
1095                                         Sel, SelectorLocs, /*Method=*/0,
1096                                         makeArrayRef(Args, NumArgs),RBracLoc,
1097                                         isImplicit));
1098  }
1099
1100  // Find the class to which we are sending this message.
1101  ObjCInterfaceDecl *Class = 0;
1102  const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>();
1103  if (!ClassType || !(Class = ClassType->getInterface())) {
1104    Diag(Loc, diag::err_invalid_receiver_class_message)
1105      << ReceiverType;
1106    return ExprError();
1107  }
1108  assert(Class && "We don't know which class we're messaging?");
1109  // objc++ diagnoses during typename annotation.
1110  if (!getLangOptions().CPlusPlus)
1111    (void)DiagnoseUseOfDecl(Class, Loc);
1112  // Find the method we are messaging.
1113  if (!Method) {
1114    SourceRange TypeRange
1115      = SuperLoc.isValid()? SourceRange(SuperLoc)
1116                          : ReceiverTypeInfo->getTypeLoc().getSourceRange();
1117    if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class),
1118                            (getLangOptions().ObjCAutoRefCount
1119                               ? PDiag(diag::err_arc_receiver_forward_class)
1120                               : PDiag(diag::warn_receiver_forward_class))
1121                                   << TypeRange)) {
1122      // A forward class used in messaging is treated as a 'Class'
1123      Method = LookupFactoryMethodInGlobalPool(Sel,
1124                                               SourceRange(LBracLoc, RBracLoc));
1125      if (Method && !getLangOptions().ObjCAutoRefCount)
1126        Diag(Method->getLocation(), diag::note_method_sent_forward_class)
1127          << Method->getDeclName();
1128    }
1129    if (!Method)
1130      Method = Class->lookupClassMethod(Sel);
1131
1132    // If we have an implementation in scope, check "private" methods.
1133    if (!Method)
1134      Method = LookupPrivateClassMethod(Sel, Class);
1135
1136    if (Method && DiagnoseUseOfDecl(Method, Loc))
1137      return ExprError();
1138  }
1139
1140  // Check the argument types and determine the result type.
1141  QualType ReturnType;
1142  ExprValueKind VK = VK_RValue;
1143
1144  unsigned NumArgs = ArgsIn.size();
1145  Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
1146  if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, Method, true,
1147                                SuperLoc.isValid(), LBracLoc, RBracLoc,
1148                                ReturnType, VK))
1149    return ExprError();
1150
1151  if (Method && !Method->getResultType()->isVoidType() &&
1152      RequireCompleteType(LBracLoc, Method->getResultType(),
1153                          diag::err_illegal_message_expr_incomplete_type))
1154    return ExprError();
1155
1156  // Construct the appropriate ObjCMessageExpr.
1157  Expr *Result;
1158  if (SuperLoc.isValid())
1159    Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
1160                                     SuperLoc, /*IsInstanceSuper=*/false,
1161                                     ReceiverType, Sel, SelectorLocs,
1162                                     Method, makeArrayRef(Args, NumArgs),
1163                                     RBracLoc, isImplicit);
1164  else
1165    Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
1166                                     ReceiverTypeInfo, Sel, SelectorLocs,
1167                                     Method, makeArrayRef(Args, NumArgs),
1168                                     RBracLoc, isImplicit);
1169  return MaybeBindToTemporary(Result);
1170}
1171
1172// ActOnClassMessage - used for both unary and keyword messages.
1173// ArgExprs is optional - if it is present, the number of expressions
1174// is obtained from Sel.getNumArgs().
1175ExprResult Sema::ActOnClassMessage(Scope *S,
1176                                   ParsedType Receiver,
1177                                   Selector Sel,
1178                                   SourceLocation LBracLoc,
1179                                   ArrayRef<SourceLocation> SelectorLocs,
1180                                   SourceLocation RBracLoc,
1181                                   MultiExprArg Args) {
1182  TypeSourceInfo *ReceiverTypeInfo;
1183  QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo);
1184  if (ReceiverType.isNull())
1185    return ExprError();
1186
1187
1188  if (!ReceiverTypeInfo)
1189    ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc);
1190
1191  return BuildClassMessage(ReceiverTypeInfo, ReceiverType,
1192                           /*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0,
1193                           LBracLoc, SelectorLocs, RBracLoc, move(Args));
1194}
1195
1196ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver,
1197                                              QualType ReceiverType,
1198                                              SourceLocation Loc,
1199                                              Selector Sel,
1200                                              ObjCMethodDecl *Method,
1201                                              MultiExprArg Args) {
1202  return BuildInstanceMessage(Receiver, ReceiverType,
1203                              /*SuperLoc=*/!Receiver ? Loc : SourceLocation(),
1204                              Sel, Method, Loc, Loc, Loc, Args,
1205                              /*isImplicit=*/true);
1206}
1207
1208/// \brief Build an Objective-C instance message expression.
1209///
1210/// This routine takes care of both normal instance messages and
1211/// instance messages to the superclass instance.
1212///
1213/// \param Receiver The expression that computes the object that will
1214/// receive this message. This may be empty, in which case we are
1215/// sending to the superclass instance and \p SuperLoc must be a valid
1216/// source location.
1217///
1218/// \param ReceiverType The (static) type of the object receiving the
1219/// message. When a \p Receiver expression is provided, this is the
1220/// same type as that expression. For a superclass instance send, this
1221/// is a pointer to the type of the superclass.
1222///
1223/// \param SuperLoc The location of the "super" keyword in a
1224/// superclass instance message.
1225///
1226/// \param Sel The selector to which the message is being sent.
1227///
1228/// \param Method The method that this instance message is invoking, if
1229/// already known.
1230///
1231/// \param LBracLoc The location of the opening square bracket ']'.
1232///
1233/// \param RBrac The location of the closing square bracket ']'.
1234///
1235/// \param Args The message arguments.
1236ExprResult Sema::BuildInstanceMessage(Expr *Receiver,
1237                                      QualType ReceiverType,
1238                                      SourceLocation SuperLoc,
1239                                      Selector Sel,
1240                                      ObjCMethodDecl *Method,
1241                                      SourceLocation LBracLoc,
1242                                      ArrayRef<SourceLocation> SelectorLocs,
1243                                      SourceLocation RBracLoc,
1244                                      MultiExprArg ArgsIn,
1245                                      bool isImplicit) {
1246  // The location of the receiver.
1247  SourceLocation Loc = SuperLoc.isValid()? SuperLoc : Receiver->getLocStart();
1248
1249  if (LBracLoc.isInvalid()) {
1250    Diag(Loc, diag::err_missing_open_square_message_send)
1251      << FixItHint::CreateInsertion(Loc, "[");
1252    LBracLoc = Loc;
1253  }
1254
1255  // If we have a receiver expression, perform appropriate promotions
1256  // and determine receiver type.
1257  if (Receiver) {
1258    if (Receiver->hasPlaceholderType()) {
1259      ExprResult Result;
1260      if (Receiver->getType() == Context.UnknownAnyTy)
1261        Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType());
1262      else
1263        Result = CheckPlaceholderExpr(Receiver);
1264      if (Result.isInvalid()) return ExprError();
1265      Receiver = Result.take();
1266    }
1267
1268    if (Receiver->isTypeDependent()) {
1269      // If the receiver is type-dependent, we can't type-check anything
1270      // at this point. Build a dependent expression.
1271      unsigned NumArgs = ArgsIn.size();
1272      Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
1273      assert(SuperLoc.isInvalid() && "Message to super with dependent type");
1274      return Owned(ObjCMessageExpr::Create(Context, Context.DependentTy,
1275                                           VK_RValue, LBracLoc, Receiver, Sel,
1276                                           SelectorLocs, /*Method=*/0,
1277                                           makeArrayRef(Args, NumArgs),
1278                                           RBracLoc, isImplicit));
1279    }
1280
1281    // If necessary, apply function/array conversion to the receiver.
1282    // C99 6.7.5.3p[7,8].
1283    ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver);
1284    if (Result.isInvalid())
1285      return ExprError();
1286    Receiver = Result.take();
1287    ReceiverType = Receiver->getType();
1288  }
1289
1290  if (!Method) {
1291    // Handle messages to id.
1292    bool receiverIsId = ReceiverType->isObjCIdType();
1293    if (receiverIsId || ReceiverType->isBlockPointerType() ||
1294        (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) {
1295      Method = LookupInstanceMethodInGlobalPool(Sel,
1296                                                SourceRange(LBracLoc, RBracLoc),
1297                                                receiverIsId);
1298      if (!Method)
1299        Method = LookupFactoryMethodInGlobalPool(Sel,
1300                                                 SourceRange(LBracLoc, RBracLoc),
1301                                                 receiverIsId);
1302      if (Method)
1303        DiagnoseAvailabilityOfDecl(Method, Loc, 0);
1304
1305    } else if (ReceiverType->isObjCClassType() ||
1306               ReceiverType->isObjCQualifiedClassType()) {
1307      // Handle messages to Class.
1308      // We allow sending a message to a qualified Class ("Class<foo>"), which
1309      // is ok as long as one of the protocols implements the selector (if not, warn).
1310      if (const ObjCObjectPointerType *QClassTy
1311            = ReceiverType->getAsObjCQualifiedClassType()) {
1312        // Search protocols for class methods.
1313        Method = LookupMethodInQualifiedType(Sel, QClassTy, false);
1314        if (!Method) {
1315          Method = LookupMethodInQualifiedType(Sel, QClassTy, true);
1316          // warn if instance method found for a Class message.
1317          if (Method) {
1318            Diag(Loc, diag::warn_instance_method_on_class_found)
1319              << Method->getSelector() << Sel;
1320            Diag(Method->getLocation(), diag::note_method_declared_at);
1321          }
1322        }
1323      } else {
1324        if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
1325          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) {
1326            // First check the public methods in the class interface.
1327            Method = ClassDecl->lookupClassMethod(Sel);
1328
1329            if (!Method)
1330              Method = LookupPrivateClassMethod(Sel, ClassDecl);
1331          }
1332          if (Method && DiagnoseUseOfDecl(Method, Loc))
1333            return ExprError();
1334        }
1335        if (!Method) {
1336          // If not messaging 'self', look for any factory method named 'Sel'.
1337          if (!Receiver || !isSelfExpr(Receiver)) {
1338            Method = LookupFactoryMethodInGlobalPool(Sel,
1339                                                SourceRange(LBracLoc, RBracLoc),
1340                                                     true);
1341            if (!Method) {
1342              // If no class (factory) method was found, check if an _instance_
1343              // method of the same name exists in the root class only.
1344              Method = LookupInstanceMethodInGlobalPool(Sel,
1345                                               SourceRange(LBracLoc, RBracLoc),
1346                                                        true);
1347              if (Method)
1348                  if (const ObjCInterfaceDecl *ID =
1349                      dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) {
1350                    if (ID->getSuperClass())
1351                      Diag(Loc, diag::warn_root_inst_method_not_found)
1352                      << Sel << SourceRange(LBracLoc, RBracLoc);
1353                  }
1354            }
1355          }
1356        }
1357      }
1358    } else {
1359      ObjCInterfaceDecl* ClassDecl = 0;
1360
1361      // We allow sending a message to a qualified ID ("id<foo>"), which is ok as
1362      // long as one of the protocols implements the selector (if not, warn).
1363      if (const ObjCObjectPointerType *QIdTy
1364                                   = ReceiverType->getAsObjCQualifiedIdType()) {
1365        // Search protocols for instance methods.
1366        Method = LookupMethodInQualifiedType(Sel, QIdTy, true);
1367        if (!Method)
1368          Method = LookupMethodInQualifiedType(Sel, QIdTy, false);
1369      } else if (const ObjCObjectPointerType *OCIType
1370                   = ReceiverType->getAsObjCInterfacePointerType()) {
1371        // We allow sending a message to a pointer to an interface (an object).
1372        ClassDecl = OCIType->getInterfaceDecl();
1373
1374        // Try to complete the type. Under ARC, this is a hard error from which
1375        // we don't try to recover.
1376        const ObjCInterfaceDecl *forwardClass = 0;
1377        if (RequireCompleteType(Loc, OCIType->getPointeeType(),
1378              getLangOptions().ObjCAutoRefCount
1379                ? PDiag(diag::err_arc_receiver_forward_instance)
1380                    << (Receiver ? Receiver->getSourceRange()
1381                                 : SourceRange(SuperLoc))
1382                : PDiag())) {
1383          if (getLangOptions().ObjCAutoRefCount)
1384            return ExprError();
1385
1386          forwardClass = OCIType->getInterfaceDecl();
1387          Method = 0;
1388        } else {
1389          Method = ClassDecl->lookupInstanceMethod(Sel);
1390        }
1391
1392        if (!Method)
1393          // Search protocol qualifiers.
1394          Method = LookupMethodInQualifiedType(Sel, OCIType, true);
1395
1396        if (!Method) {
1397          // If we have implementations in scope, check "private" methods.
1398          Method = LookupPrivateInstanceMethod(Sel, ClassDecl);
1399
1400          if (!Method && getLangOptions().ObjCAutoRefCount) {
1401            Diag(Loc, diag::err_arc_may_not_respond)
1402              << OCIType->getPointeeType() << Sel;
1403            return ExprError();
1404          }
1405
1406          if (!Method && (!Receiver || !isSelfExpr(Receiver))) {
1407            // If we still haven't found a method, look in the global pool. This
1408            // behavior isn't very desirable, however we need it for GCC
1409            // compatibility. FIXME: should we deviate??
1410            if (OCIType->qual_empty()) {
1411              Method = LookupInstanceMethodInGlobalPool(Sel,
1412                                                 SourceRange(LBracLoc, RBracLoc));
1413              if (Method && !forwardClass)
1414                Diag(Loc, diag::warn_maynot_respond)
1415                  << OCIType->getInterfaceDecl()->getIdentifier() << Sel;
1416            }
1417          }
1418        }
1419        if (Method && DiagnoseUseOfDecl(Method, Loc, forwardClass))
1420          return ExprError();
1421      } else if (!getLangOptions().ObjCAutoRefCount &&
1422                 !Context.getObjCIdType().isNull() &&
1423                 (ReceiverType->isPointerType() ||
1424                  ReceiverType->isIntegerType())) {
1425        // Implicitly convert integers and pointers to 'id' but emit a warning.
1426        // But not in ARC.
1427        Diag(Loc, diag::warn_bad_receiver_type)
1428          << ReceiverType
1429          << Receiver->getSourceRange();
1430        if (ReceiverType->isPointerType())
1431          Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
1432                            CK_CPointerToObjCPointerCast).take();
1433        else {
1434          // TODO: specialized warning on null receivers?
1435          bool IsNull = Receiver->isNullPointerConstant(Context,
1436                                              Expr::NPC_ValueDependentIsNull);
1437          Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
1438                            IsNull ? CK_NullToPointer : CK_IntegralToPointer).take();
1439        }
1440        ReceiverType = Receiver->getType();
1441      } else {
1442        ExprResult ReceiverRes;
1443        if (getLangOptions().CPlusPlus)
1444          ReceiverRes = PerformContextuallyConvertToObjCPointer(Receiver);
1445        if (ReceiverRes.isUsable()) {
1446          Receiver = ReceiverRes.take();
1447          return BuildInstanceMessage(Receiver,
1448                                      ReceiverType,
1449                                      SuperLoc,
1450                                      Sel,
1451                                      Method,
1452                                      LBracLoc,
1453                                      SelectorLocs,
1454                                      RBracLoc,
1455                                      move(ArgsIn));
1456        } else {
1457          // Reject other random receiver types (e.g. structs).
1458          Diag(Loc, diag::err_bad_receiver_type)
1459            << ReceiverType << Receiver->getSourceRange();
1460          return ExprError();
1461        }
1462      }
1463    }
1464  }
1465
1466  // Check the message arguments.
1467  unsigned NumArgs = ArgsIn.size();
1468  Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
1469  QualType ReturnType;
1470  ExprValueKind VK = VK_RValue;
1471  bool ClassMessage = (ReceiverType->isObjCClassType() ||
1472                       ReceiverType->isObjCQualifiedClassType());
1473  if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, Method,
1474                                ClassMessage, SuperLoc.isValid(),
1475                                LBracLoc, RBracLoc, ReturnType, VK))
1476    return ExprError();
1477
1478  if (Method && !Method->getResultType()->isVoidType() &&
1479      RequireCompleteType(LBracLoc, Method->getResultType(),
1480                          diag::err_illegal_message_expr_incomplete_type))
1481    return ExprError();
1482
1483  SourceLocation SelLoc = SelectorLocs.front();
1484
1485  // In ARC, forbid the user from sending messages to
1486  // retain/release/autorelease/dealloc/retainCount explicitly.
1487  if (getLangOptions().ObjCAutoRefCount) {
1488    ObjCMethodFamily family =
1489      (Method ? Method->getMethodFamily() : Sel.getMethodFamily());
1490    switch (family) {
1491    case OMF_init:
1492      if (Method)
1493        checkInitMethod(Method, ReceiverType);
1494
1495    case OMF_None:
1496    case OMF_alloc:
1497    case OMF_copy:
1498    case OMF_finalize:
1499    case OMF_mutableCopy:
1500    case OMF_new:
1501    case OMF_self:
1502      break;
1503
1504    case OMF_dealloc:
1505    case OMF_retain:
1506    case OMF_release:
1507    case OMF_autorelease:
1508    case OMF_retainCount:
1509      Diag(Loc, diag::err_arc_illegal_explicit_message)
1510        << Sel << SelLoc;
1511      break;
1512
1513    case OMF_performSelector:
1514      if (Method && NumArgs >= 1) {
1515        if (ObjCSelectorExpr *SelExp = dyn_cast<ObjCSelectorExpr>(Args[0])) {
1516          Selector ArgSel = SelExp->getSelector();
1517          ObjCMethodDecl *SelMethod =
1518            LookupInstanceMethodInGlobalPool(ArgSel,
1519                                             SelExp->getSourceRange());
1520          if (!SelMethod)
1521            SelMethod =
1522              LookupFactoryMethodInGlobalPool(ArgSel,
1523                                              SelExp->getSourceRange());
1524          if (SelMethod) {
1525            ObjCMethodFamily SelFamily = SelMethod->getMethodFamily();
1526            switch (SelFamily) {
1527              case OMF_alloc:
1528              case OMF_copy:
1529              case OMF_mutableCopy:
1530              case OMF_new:
1531              case OMF_self:
1532              case OMF_init:
1533                // Issue error, unless ns_returns_not_retained.
1534                if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) {
1535                  // selector names a +1 method
1536                  Diag(SelLoc,
1537                       diag::err_arc_perform_selector_retains);
1538                  Diag(SelMethod->getLocation(), diag::note_method_declared_at);
1539                }
1540                break;
1541              default:
1542                // +0 call. OK. unless ns_returns_retained.
1543                if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) {
1544                  // selector names a +1 method
1545                  Diag(SelLoc,
1546                       diag::err_arc_perform_selector_retains);
1547                  Diag(SelMethod->getLocation(), diag::note_method_declared_at);
1548                }
1549                break;
1550            }
1551          }
1552        } else {
1553          // error (may leak).
1554          Diag(SelLoc, diag::warn_arc_perform_selector_leaks);
1555          Diag(Args[0]->getExprLoc(), diag::note_used_here);
1556        }
1557      }
1558      break;
1559    }
1560  }
1561
1562  // Construct the appropriate ObjCMessageExpr instance.
1563  ObjCMessageExpr *Result;
1564  if (SuperLoc.isValid())
1565    Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
1566                                     SuperLoc,  /*IsInstanceSuper=*/true,
1567                                     ReceiverType, Sel, SelectorLocs, Method,
1568                                     makeArrayRef(Args, NumArgs), RBracLoc,
1569                                     isImplicit);
1570  else
1571    Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
1572                                     Receiver, Sel, SelectorLocs, Method,
1573                                     makeArrayRef(Args, NumArgs), RBracLoc,
1574                                     isImplicit);
1575
1576  if (getLangOptions().ObjCAutoRefCount) {
1577    // In ARC, annotate delegate init calls.
1578    if (Result->getMethodFamily() == OMF_init &&
1579        (SuperLoc.isValid() || isSelfExpr(Receiver))) {
1580      // Only consider init calls *directly* in init implementations,
1581      // not within blocks.
1582      ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext);
1583      if (method && method->getMethodFamily() == OMF_init) {
1584        // The implicit assignment to self means we also don't want to
1585        // consume the result.
1586        Result->setDelegateInitCall(true);
1587        return Owned(Result);
1588      }
1589    }
1590
1591    // In ARC, check for message sends which are likely to introduce
1592    // retain cycles.
1593    checkRetainCycles(Result);
1594  }
1595
1596  return MaybeBindToTemporary(Result);
1597}
1598
1599// ActOnInstanceMessage - used for both unary and keyword messages.
1600// ArgExprs is optional - if it is present, the number of expressions
1601// is obtained from Sel.getNumArgs().
1602ExprResult Sema::ActOnInstanceMessage(Scope *S,
1603                                      Expr *Receiver,
1604                                      Selector Sel,
1605                                      SourceLocation LBracLoc,
1606                                      ArrayRef<SourceLocation> SelectorLocs,
1607                                      SourceLocation RBracLoc,
1608                                      MultiExprArg Args) {
1609  if (!Receiver)
1610    return ExprError();
1611
1612  return BuildInstanceMessage(Receiver, Receiver->getType(),
1613                              /*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0,
1614                              LBracLoc, SelectorLocs, RBracLoc, move(Args));
1615}
1616
1617enum ARCConversionTypeClass {
1618  /// int, void, struct A
1619  ACTC_none,
1620
1621  /// id, void (^)()
1622  ACTC_retainable,
1623
1624  /// id*, id***, void (^*)(),
1625  ACTC_indirectRetainable,
1626
1627  /// void* might be a normal C type, or it might a CF type.
1628  ACTC_voidPtr,
1629
1630  /// struct A*
1631  ACTC_coreFoundation
1632};
1633static bool isAnyRetainable(ARCConversionTypeClass ACTC) {
1634  return (ACTC == ACTC_retainable ||
1635          ACTC == ACTC_coreFoundation ||
1636          ACTC == ACTC_voidPtr);
1637}
1638static bool isAnyCLike(ARCConversionTypeClass ACTC) {
1639  return ACTC == ACTC_none ||
1640         ACTC == ACTC_voidPtr ||
1641         ACTC == ACTC_coreFoundation;
1642}
1643
1644static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) {
1645  bool isIndirect = false;
1646
1647  // Ignore an outermost reference type.
1648  if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1649    type = ref->getPointeeType();
1650    isIndirect = true;
1651  }
1652
1653  // Drill through pointers and arrays recursively.
1654  while (true) {
1655    if (const PointerType *ptr = type->getAs<PointerType>()) {
1656      type = ptr->getPointeeType();
1657
1658      // The first level of pointer may be the innermost pointer on a CF type.
1659      if (!isIndirect) {
1660        if (type->isVoidType()) return ACTC_voidPtr;
1661        if (type->isRecordType()) return ACTC_coreFoundation;
1662      }
1663    } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) {
1664      type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0);
1665    } else {
1666      break;
1667    }
1668    isIndirect = true;
1669  }
1670
1671  if (isIndirect) {
1672    if (type->isObjCARCBridgableType())
1673      return ACTC_indirectRetainable;
1674    return ACTC_none;
1675  }
1676
1677  if (type->isObjCARCBridgableType())
1678    return ACTC_retainable;
1679
1680  return ACTC_none;
1681}
1682
1683namespace {
1684  /// A result from the cast checker.
1685  enum ACCResult {
1686    /// Cannot be casted.
1687    ACC_invalid,
1688
1689    /// Can be safely retained or not retained.
1690    ACC_bottom,
1691
1692    /// Can be casted at +0.
1693    ACC_plusZero,
1694
1695    /// Can be casted at +1.
1696    ACC_plusOne
1697  };
1698  ACCResult merge(ACCResult left, ACCResult right) {
1699    if (left == right) return left;
1700    if (left == ACC_bottom) return right;
1701    if (right == ACC_bottom) return left;
1702    return ACC_invalid;
1703  }
1704
1705  /// A checker which white-lists certain expressions whose conversion
1706  /// to or from retainable type would otherwise be forbidden in ARC.
1707  class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> {
1708    typedef StmtVisitor<ARCCastChecker, ACCResult> super;
1709
1710    ASTContext &Context;
1711    ARCConversionTypeClass SourceClass;
1712    ARCConversionTypeClass TargetClass;
1713
1714    static bool isCFType(QualType type) {
1715      // Someday this can use ns_bridged.  For now, it has to do this.
1716      return type->isCARCBridgableType();
1717    }
1718
1719  public:
1720    ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source,
1721                   ARCConversionTypeClass target)
1722      : Context(Context), SourceClass(source), TargetClass(target) {}
1723
1724    using super::Visit;
1725    ACCResult Visit(Expr *e) {
1726      return super::Visit(e->IgnoreParens());
1727    }
1728
1729    ACCResult VisitStmt(Stmt *s) {
1730      return ACC_invalid;
1731    }
1732
1733    /// Null pointer constants can be casted however you please.
1734    ACCResult VisitExpr(Expr *e) {
1735      if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1736        return ACC_bottom;
1737      return ACC_invalid;
1738    }
1739
1740    /// Objective-C string literals can be safely casted.
1741    ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) {
1742      // If we're casting to any retainable type, go ahead.  Global
1743      // strings are immune to retains, so this is bottom.
1744      if (isAnyRetainable(TargetClass)) return ACC_bottom;
1745
1746      return ACC_invalid;
1747    }
1748
1749    /// Look through certain implicit and explicit casts.
1750    ACCResult VisitCastExpr(CastExpr *e) {
1751      switch (e->getCastKind()) {
1752        case CK_NullToPointer:
1753          return ACC_bottom;
1754
1755        case CK_NoOp:
1756        case CK_LValueToRValue:
1757        case CK_BitCast:
1758        case CK_CPointerToObjCPointerCast:
1759        case CK_BlockPointerToObjCPointerCast:
1760        case CK_AnyPointerToBlockPointerCast:
1761          return Visit(e->getSubExpr());
1762
1763        default:
1764          return ACC_invalid;
1765      }
1766    }
1767
1768    /// Look through unary extension.
1769    ACCResult VisitUnaryExtension(UnaryOperator *e) {
1770      return Visit(e->getSubExpr());
1771    }
1772
1773    /// Ignore the LHS of a comma operator.
1774    ACCResult VisitBinComma(BinaryOperator *e) {
1775      return Visit(e->getRHS());
1776    }
1777
1778    /// Conditional operators are okay if both sides are okay.
1779    ACCResult VisitConditionalOperator(ConditionalOperator *e) {
1780      ACCResult left = Visit(e->getTrueExpr());
1781      if (left == ACC_invalid) return ACC_invalid;
1782      return merge(left, Visit(e->getFalseExpr()));
1783    }
1784
1785    /// Look through pseudo-objects.
1786    ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) {
1787      // If we're getting here, we should always have a result.
1788      return Visit(e->getResultExpr());
1789    }
1790
1791    /// Statement expressions are okay if their result expression is okay.
1792    ACCResult VisitStmtExpr(StmtExpr *e) {
1793      return Visit(e->getSubStmt()->body_back());
1794    }
1795
1796    /// Some declaration references are okay.
1797    ACCResult VisitDeclRefExpr(DeclRefExpr *e) {
1798      // References to global constants from system headers are okay.
1799      // These are things like 'kCFStringTransformToLatin'.  They are
1800      // can also be assumed to be immune to retains.
1801      VarDecl *var = dyn_cast<VarDecl>(e->getDecl());
1802      if (isAnyRetainable(TargetClass) &&
1803          isAnyRetainable(SourceClass) &&
1804          var &&
1805          var->getStorageClass() == SC_Extern &&
1806          var->getType().isConstQualified() &&
1807          Context.getSourceManager().isInSystemHeader(var->getLocation())) {
1808        return ACC_bottom;
1809      }
1810
1811      // Nothing else.
1812      return ACC_invalid;
1813    }
1814
1815    /// Some calls are okay.
1816    ACCResult VisitCallExpr(CallExpr *e) {
1817      if (FunctionDecl *fn = e->getDirectCallee())
1818        if (ACCResult result = checkCallToFunction(fn))
1819          return result;
1820
1821      return super::VisitCallExpr(e);
1822    }
1823
1824    ACCResult checkCallToFunction(FunctionDecl *fn) {
1825      // Require a CF*Ref return type.
1826      if (!isCFType(fn->getResultType()))
1827        return ACC_invalid;
1828
1829      if (!isAnyRetainable(TargetClass))
1830        return ACC_invalid;
1831
1832      // Honor an explicit 'not retained' attribute.
1833      if (fn->hasAttr<CFReturnsNotRetainedAttr>())
1834        return ACC_plusZero;
1835
1836      // Honor an explicit 'retained' attribute, except that for
1837      // now we're not going to permit implicit handling of +1 results,
1838      // because it's a bit frightening.
1839      if (fn->hasAttr<CFReturnsRetainedAttr>())
1840        return ACC_invalid; // ACC_plusOne if we start accepting this
1841
1842      // Recognize this specific builtin function, which is used by CFSTR.
1843      unsigned builtinID = fn->getBuiltinID();
1844      if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString)
1845        return ACC_bottom;
1846
1847      // Otherwise, don't do anything implicit with an unaudited function.
1848      if (!fn->hasAttr<CFAuditedTransferAttr>())
1849        return ACC_invalid;
1850
1851      // Otherwise, it's +0 unless it follows the create convention.
1852      if (ento::coreFoundation::followsCreateRule(fn))
1853        return ACC_invalid; // ACC_plusOne if we start accepting this
1854
1855      return ACC_plusZero;
1856    }
1857
1858    ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) {
1859      return checkCallToMethod(e->getMethodDecl());
1860    }
1861
1862    ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) {
1863      ObjCMethodDecl *method;
1864      if (e->isExplicitProperty())
1865        method = e->getExplicitProperty()->getGetterMethodDecl();
1866      else
1867        method = e->getImplicitPropertyGetter();
1868      return checkCallToMethod(method);
1869    }
1870
1871    ACCResult checkCallToMethod(ObjCMethodDecl *method) {
1872      if (!method) return ACC_invalid;
1873
1874      // Check for message sends to functions returning CF types.  We
1875      // just obey the Cocoa conventions with these, even though the
1876      // return type is CF.
1877      if (!isAnyRetainable(TargetClass) || !isCFType(method->getResultType()))
1878        return ACC_invalid;
1879
1880      // If the method is explicitly marked not-retained, it's +0.
1881      if (method->hasAttr<CFReturnsNotRetainedAttr>())
1882        return ACC_plusZero;
1883
1884      // If the method is explicitly marked as returning retained, or its
1885      // selector follows a +1 Cocoa convention, treat it as +1.
1886      if (method->hasAttr<CFReturnsRetainedAttr>())
1887        return ACC_plusOne;
1888
1889      switch (method->getSelector().getMethodFamily()) {
1890      case OMF_alloc:
1891      case OMF_copy:
1892      case OMF_mutableCopy:
1893      case OMF_new:
1894        return ACC_plusOne;
1895
1896      default:
1897        // Otherwise, treat it as +0.
1898        return ACC_plusZero;
1899      }
1900    }
1901  };
1902}
1903
1904static void
1905diagnoseObjCARCConversion(Sema &S, SourceRange castRange,
1906                          QualType castType, ARCConversionTypeClass castACTC,
1907                          Expr *castExpr, ARCConversionTypeClass exprACTC,
1908                          Sema::CheckedConversionKind CCK) {
1909  SourceLocation loc =
1910    (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc());
1911
1912  if (S.makeUnavailableInSystemHeader(loc,
1913                "converts between Objective-C and C pointers in -fobjc-arc"))
1914    return;
1915
1916  QualType castExprType = castExpr->getType();
1917
1918  unsigned srcKind = 0;
1919  switch (exprACTC) {
1920  case ACTC_none:
1921  case ACTC_coreFoundation:
1922  case ACTC_voidPtr:
1923    srcKind = (castExprType->isPointerType() ? 1 : 0);
1924    break;
1925  case ACTC_retainable:
1926    srcKind = (castExprType->isBlockPointerType() ? 2 : 3);
1927    break;
1928  case ACTC_indirectRetainable:
1929    srcKind = 4;
1930    break;
1931  }
1932
1933  // Check whether this could be fixed with a bridge cast.
1934  SourceLocation afterLParen = S.PP.getLocForEndOfToken(castRange.getBegin());
1935  SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc;
1936
1937  // Bridge from an ARC type to a CF type.
1938  if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) {
1939    S.Diag(loc, diag::err_arc_cast_requires_bridge)
1940      << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit
1941      << 2 // of C pointer type
1942      << castExprType
1943      << unsigned(castType->isBlockPointerType()) // to ObjC|block type
1944      << castType
1945      << castRange
1946      << castExpr->getSourceRange();
1947
1948    S.Diag(noteLoc, diag::note_arc_bridge)
1949      << (CCK != Sema::CCK_CStyleCast ? FixItHint() :
1950            FixItHint::CreateInsertion(afterLParen, "__bridge "));
1951    S.Diag(noteLoc, diag::note_arc_bridge_transfer)
1952      << castExprType
1953      << (CCK != Sema::CCK_CStyleCast ? FixItHint() :
1954            FixItHint::CreateInsertion(afterLParen, "CFBridgeRelease "));
1955
1956    return;
1957  }
1958
1959  // Bridge from a CF type to an ARC type.
1960  if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) {
1961    S.Diag(loc, diag::err_arc_cast_requires_bridge)
1962      << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit
1963      << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type
1964      << castExprType
1965      << 2 // to C pointer type
1966      << castType
1967      << castRange
1968      << castExpr->getSourceRange();
1969
1970    S.Diag(noteLoc, diag::note_arc_bridge)
1971      << (CCK != Sema::CCK_CStyleCast ? FixItHint() :
1972            FixItHint::CreateInsertion(afterLParen, "__bridge "));
1973    S.Diag(noteLoc, diag::note_arc_bridge_retained)
1974      << castType
1975      << (CCK != Sema::CCK_CStyleCast ? FixItHint() :
1976            FixItHint::CreateInsertion(afterLParen, "CFBridgeRetain "));
1977
1978    return;
1979  }
1980
1981  S.Diag(loc, diag::err_arc_mismatched_cast)
1982    << (CCK != Sema::CCK_ImplicitConversion)
1983    << srcKind << castExprType << castType
1984    << castRange << castExpr->getSourceRange();
1985}
1986
1987Sema::ARCConversionResult
1988Sema::CheckObjCARCConversion(SourceRange castRange, QualType castType,
1989                             Expr *&castExpr, CheckedConversionKind CCK) {
1990  QualType castExprType = castExpr->getType();
1991
1992  // For the purposes of the classification, we assume reference types
1993  // will bind to temporaries.
1994  QualType effCastType = castType;
1995  if (const ReferenceType *ref = castType->getAs<ReferenceType>())
1996    effCastType = ref->getPointeeType();
1997
1998  ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType);
1999  ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType);
2000  if (exprACTC == castACTC) {
2001    // check for viablity and report error if casting an rvalue to a
2002    // life-time qualifier.
2003    if ((castACTC == ACTC_retainable) &&
2004        (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) &&
2005        (castType != castExprType)) {
2006      const Type *DT = castType.getTypePtr();
2007      QualType QDT = castType;
2008      // We desugar some types but not others. We ignore those
2009      // that cannot happen in a cast; i.e. auto, and those which
2010      // should not be de-sugared; i.e typedef.
2011      if (const ParenType *PT = dyn_cast<ParenType>(DT))
2012        QDT = PT->desugar();
2013      else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT))
2014        QDT = TP->desugar();
2015      else if (const AttributedType *AT = dyn_cast<AttributedType>(DT))
2016        QDT = AT->desugar();
2017      if (QDT != castType &&
2018          QDT.getObjCLifetime() !=  Qualifiers::OCL_None) {
2019        SourceLocation loc =
2020          (castRange.isValid() ? castRange.getBegin()
2021                              : castExpr->getExprLoc());
2022        Diag(loc, diag::err_arc_nolifetime_behavior);
2023      }
2024    }
2025    return ACR_okay;
2026  }
2027
2028  if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay;
2029
2030  // Allow all of these types to be cast to integer types (but not
2031  // vice-versa).
2032  if (castACTC == ACTC_none && castType->isIntegralType(Context))
2033    return ACR_okay;
2034
2035  // Allow casts between pointers to lifetime types (e.g., __strong id*)
2036  // and pointers to void (e.g., cv void *). Casting from void* to lifetime*
2037  // must be explicit.
2038  if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr)
2039    return ACR_okay;
2040  if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr &&
2041      CCK != CCK_ImplicitConversion)
2042    return ACR_okay;
2043
2044  switch (ARCCastChecker(Context, exprACTC, castACTC).Visit(castExpr)) {
2045  // For invalid casts, fall through.
2046  case ACC_invalid:
2047    break;
2048
2049  // Do nothing for both bottom and +0.
2050  case ACC_bottom:
2051  case ACC_plusZero:
2052    return ACR_okay;
2053
2054  // If the result is +1, consume it here.
2055  case ACC_plusOne:
2056    castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(),
2057                                        CK_ARCConsumeObject, castExpr,
2058                                        0, VK_RValue);
2059    ExprNeedsCleanups = true;
2060    return ACR_okay;
2061  }
2062
2063  // If this is a non-implicit cast from id or block type to a
2064  // CoreFoundation type, delay complaining in case the cast is used
2065  // in an acceptable context.
2066  if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) &&
2067      CCK != CCK_ImplicitConversion)
2068    return ACR_unbridged;
2069
2070  diagnoseObjCARCConversion(*this, castRange, castType, castACTC,
2071                            castExpr, exprACTC, CCK);
2072  return ACR_okay;
2073}
2074
2075/// Given that we saw an expression with the ARCUnbridgedCastTy
2076/// placeholder type, complain bitterly.
2077void Sema::diagnoseARCUnbridgedCast(Expr *e) {
2078  // We expect the spurious ImplicitCastExpr to already have been stripped.
2079  assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
2080  CastExpr *realCast = cast<CastExpr>(e->IgnoreParens());
2081
2082  SourceRange castRange;
2083  QualType castType;
2084  CheckedConversionKind CCK;
2085
2086  if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) {
2087    castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc());
2088    castType = cast->getTypeAsWritten();
2089    CCK = CCK_CStyleCast;
2090  } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) {
2091    castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange();
2092    castType = cast->getTypeAsWritten();
2093    CCK = CCK_OtherCast;
2094  } else {
2095    castType = cast->getType();
2096    CCK = CCK_ImplicitConversion;
2097  }
2098
2099  ARCConversionTypeClass castACTC =
2100    classifyTypeForARCConversion(castType.getNonReferenceType());
2101
2102  Expr *castExpr = realCast->getSubExpr();
2103  assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable);
2104
2105  diagnoseObjCARCConversion(*this, castRange, castType, castACTC,
2106                            castExpr, ACTC_retainable, CCK);
2107}
2108
2109/// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast
2110/// type, remove the placeholder cast.
2111Expr *Sema::stripARCUnbridgedCast(Expr *e) {
2112  assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
2113
2114  if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) {
2115    Expr *sub = stripARCUnbridgedCast(pe->getSubExpr());
2116    return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub);
2117  } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) {
2118    assert(uo->getOpcode() == UO_Extension);
2119    Expr *sub = stripARCUnbridgedCast(uo->getSubExpr());
2120    return new (Context) UnaryOperator(sub, UO_Extension, sub->getType(),
2121                                   sub->getValueKind(), sub->getObjectKind(),
2122                                       uo->getOperatorLoc());
2123  } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) {
2124    assert(!gse->isResultDependent());
2125
2126    unsigned n = gse->getNumAssocs();
2127    SmallVector<Expr*, 4> subExprs(n);
2128    SmallVector<TypeSourceInfo*, 4> subTypes(n);
2129    for (unsigned i = 0; i != n; ++i) {
2130      subTypes[i] = gse->getAssocTypeSourceInfo(i);
2131      Expr *sub = gse->getAssocExpr(i);
2132      if (i == gse->getResultIndex())
2133        sub = stripARCUnbridgedCast(sub);
2134      subExprs[i] = sub;
2135    }
2136
2137    return new (Context) GenericSelectionExpr(Context, gse->getGenericLoc(),
2138                                              gse->getControllingExpr(),
2139                                              subTypes.data(), subExprs.data(),
2140                                              n, gse->getDefaultLoc(),
2141                                              gse->getRParenLoc(),
2142                                       gse->containsUnexpandedParameterPack(),
2143                                              gse->getResultIndex());
2144  } else {
2145    assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!");
2146    return cast<ImplicitCastExpr>(e)->getSubExpr();
2147  }
2148}
2149
2150bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType,
2151                                                 QualType exprType) {
2152  QualType canCastType =
2153    Context.getCanonicalType(castType).getUnqualifiedType();
2154  QualType canExprType =
2155    Context.getCanonicalType(exprType).getUnqualifiedType();
2156  if (isa<ObjCObjectPointerType>(canCastType) &&
2157      castType.getObjCLifetime() == Qualifiers::OCL_Weak &&
2158      canExprType->isObjCObjectPointerType()) {
2159    if (const ObjCObjectPointerType *ObjT =
2160        canExprType->getAs<ObjCObjectPointerType>())
2161      if (ObjT->getInterfaceDecl()->isArcWeakrefUnavailable())
2162        return false;
2163  }
2164  return true;
2165}
2166
2167/// Look for an ObjCReclaimReturnedObject cast and destroy it.
2168static Expr *maybeUndoReclaimObject(Expr *e) {
2169  // For now, we just undo operands that are *immediately* reclaim
2170  // expressions, which prevents the vast majority of potential
2171  // problems here.  To catch them all, we'd need to rebuild arbitrary
2172  // value-propagating subexpressions --- we can't reliably rebuild
2173  // in-place because of expression sharing.
2174  if (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2175    if (ice->getCastKind() == CK_ARCReclaimReturnedObject)
2176      return ice->getSubExpr();
2177
2178  return e;
2179}
2180
2181ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc,
2182                                      ObjCBridgeCastKind Kind,
2183                                      SourceLocation BridgeKeywordLoc,
2184                                      TypeSourceInfo *TSInfo,
2185                                      Expr *SubExpr) {
2186  ExprResult SubResult = UsualUnaryConversions(SubExpr);
2187  if (SubResult.isInvalid()) return ExprError();
2188  SubExpr = SubResult.take();
2189
2190  QualType T = TSInfo->getType();
2191  QualType FromType = SubExpr->getType();
2192
2193  CastKind CK;
2194
2195  bool MustConsume = false;
2196  if (T->isDependentType() || SubExpr->isTypeDependent()) {
2197    // Okay: we'll build a dependent expression type.
2198    CK = CK_Dependent;
2199  } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) {
2200    // Casting CF -> id
2201    CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast
2202                                  : CK_CPointerToObjCPointerCast);
2203    switch (Kind) {
2204    case OBC_Bridge:
2205      break;
2206
2207    case OBC_BridgeRetained:
2208      Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
2209        << 2
2210        << FromType
2211        << (T->isBlockPointerType()? 1 : 0)
2212        << T
2213        << SubExpr->getSourceRange()
2214        << Kind;
2215      Diag(BridgeKeywordLoc, diag::note_arc_bridge)
2216        << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge");
2217      Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer)
2218        << FromType
2219        << FixItHint::CreateReplacement(BridgeKeywordLoc,
2220                                        "CFBridgeRelease ");
2221
2222      Kind = OBC_Bridge;
2223      break;
2224
2225    case OBC_BridgeTransfer:
2226      // We must consume the Objective-C object produced by the cast.
2227      MustConsume = true;
2228      break;
2229    }
2230  } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) {
2231    // Okay: id -> CF
2232    CK = CK_BitCast;
2233    switch (Kind) {
2234    case OBC_Bridge:
2235      // Reclaiming a value that's going to be __bridge-casted to CF
2236      // is very dangerous, so we don't do it.
2237      SubExpr = maybeUndoReclaimObject(SubExpr);
2238      break;
2239
2240    case OBC_BridgeRetained:
2241      // Produce the object before casting it.
2242      SubExpr = ImplicitCastExpr::Create(Context, FromType,
2243                                         CK_ARCProduceObject,
2244                                         SubExpr, 0, VK_RValue);
2245      break;
2246
2247    case OBC_BridgeTransfer:
2248      Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
2249        << (FromType->isBlockPointerType()? 1 : 0)
2250        << FromType
2251        << 2
2252        << T
2253        << SubExpr->getSourceRange()
2254        << Kind;
2255
2256      Diag(BridgeKeywordLoc, diag::note_arc_bridge)
2257        << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge ");
2258      Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained)
2259        << T
2260        << FixItHint::CreateReplacement(BridgeKeywordLoc, "CFBridgeRetain ");
2261
2262      Kind = OBC_Bridge;
2263      break;
2264    }
2265  } else {
2266    Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible)
2267      << FromType << T << Kind
2268      << SubExpr->getSourceRange()
2269      << TSInfo->getTypeLoc().getSourceRange();
2270    return ExprError();
2271  }
2272
2273  Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK,
2274                                                   BridgeKeywordLoc,
2275                                                   TSInfo, SubExpr);
2276
2277  if (MustConsume) {
2278    ExprNeedsCleanups = true;
2279    Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result,
2280                                      0, VK_RValue);
2281  }
2282
2283  return Result;
2284}
2285
2286ExprResult Sema::ActOnObjCBridgedCast(Scope *S,
2287                                      SourceLocation LParenLoc,
2288                                      ObjCBridgeCastKind Kind,
2289                                      SourceLocation BridgeKeywordLoc,
2290                                      ParsedType Type,
2291                                      SourceLocation RParenLoc,
2292                                      Expr *SubExpr) {
2293  TypeSourceInfo *TSInfo = 0;
2294  QualType T = GetTypeFromParser(Type, &TSInfo);
2295  if (!TSInfo)
2296    TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc);
2297  return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo,
2298                              SubExpr);
2299}
2300