SemaInit.cpp revision 0fedc2fc0a4dc1cf55ece57b339ca0e20d342ff0
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14// This file also implements Sema::CheckInitializerTypes.
15//
16//===----------------------------------------------------------------------===//
17
18#include "SemaInit.h"
19#include "Lookup.h"
20#include "Sema.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/Designator.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "llvm/Support/ErrorHandling.h"
28#include <map>
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
36  const ArrayType *AT = Context.getAsArrayType(DeclType);
37  if (!AT) return 0;
38
39  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
40    return 0;
41
42  // See if this is a string literal or @encode.
43  Init = Init->IgnoreParens();
44
45  // Handle @encode, which is a narrow string.
46  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
47    return Init;
48
49  // Otherwise we can only handle string literals.
50  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
51  if (SL == 0) return 0;
52
53  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
54  // char array can be initialized with a narrow string.
55  // Only allow char x[] = "foo";  not char x[] = L"foo";
56  if (!SL->isWide())
57    return ElemTy->isCharType() ? Init : 0;
58
59  // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
60  // correction from DR343): "An array with element type compatible with a
61  // qualified or unqualified version of wchar_t may be initialized by a wide
62  // string literal, optionally enclosed in braces."
63  if (Context.typesAreCompatible(Context.getWCharType(),
64                                 ElemTy.getUnqualifiedType()))
65    return Init;
66
67  return 0;
68}
69
70static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
71  // Get the length of the string as parsed.
72  uint64_t StrLength =
73    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
74
75
76  const ArrayType *AT = S.Context.getAsArrayType(DeclT);
77  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
78    // C99 6.7.8p14. We have an array of character type with unknown size
79    // being initialized to a string literal.
80    llvm::APSInt ConstVal(32);
81    ConstVal = StrLength;
82    // Return a new array type (C99 6.7.8p22).
83    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
84                                           ConstVal,
85                                           ArrayType::Normal, 0);
86    return;
87  }
88
89  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
90
91  // C99 6.7.8p14. We have an array of character type with known size.  However,
92  // the size may be smaller or larger than the string we are initializing.
93  // FIXME: Avoid truncation for 64-bit length strings.
94  if (StrLength-1 > CAT->getSize().getZExtValue())
95    S.Diag(Str->getSourceRange().getBegin(),
96           diag::warn_initializer_string_for_char_array_too_long)
97      << Str->getSourceRange();
98
99  // Set the type to the actual size that we are initializing.  If we have
100  // something like:
101  //   char x[1] = "foo";
102  // then this will set the string literal's type to char[1].
103  Str->setType(DeclT);
104}
105
106//===----------------------------------------------------------------------===//
107// Semantic checking for initializer lists.
108//===----------------------------------------------------------------------===//
109
110/// @brief Semantic checking for initializer lists.
111///
112/// The InitListChecker class contains a set of routines that each
113/// handle the initialization of a certain kind of entity, e.g.,
114/// arrays, vectors, struct/union types, scalars, etc. The
115/// InitListChecker itself performs a recursive walk of the subobject
116/// structure of the type to be initialized, while stepping through
117/// the initializer list one element at a time. The IList and Index
118/// parameters to each of the Check* routines contain the active
119/// (syntactic) initializer list and the index into that initializer
120/// list that represents the current initializer. Each routine is
121/// responsible for moving that Index forward as it consumes elements.
122///
123/// Each Check* routine also has a StructuredList/StructuredIndex
124/// arguments, which contains the current the "structured" (semantic)
125/// initializer list and the index into that initializer list where we
126/// are copying initializers as we map them over to the semantic
127/// list. Once we have completed our recursive walk of the subobject
128/// structure, we will have constructed a full semantic initializer
129/// list.
130///
131/// C99 designators cause changes in the initializer list traversal,
132/// because they make the initialization "jump" into a specific
133/// subobject and then continue the initialization from that
134/// point. CheckDesignatedInitializer() recursively steps into the
135/// designated subobject and manages backing out the recursion to
136/// initialize the subobjects after the one designated.
137namespace {
138class InitListChecker {
139  Sema &SemaRef;
140  bool hadError;
141  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
142  InitListExpr *FullyStructuredList;
143
144  void CheckImplicitInitList(const InitializedEntity &Entity,
145                             InitListExpr *ParentIList, QualType T,
146                             unsigned &Index, InitListExpr *StructuredList,
147                             unsigned &StructuredIndex,
148                             bool TopLevelObject = false);
149  void CheckExplicitInitList(const InitializedEntity &Entity,
150                             InitListExpr *IList, QualType &T,
151                             unsigned &Index, InitListExpr *StructuredList,
152                             unsigned &StructuredIndex,
153                             bool TopLevelObject = false);
154  void CheckListElementTypes(const InitializedEntity &Entity,
155                             InitListExpr *IList, QualType &DeclType,
156                             bool SubobjectIsDesignatorContext,
157                             unsigned &Index,
158                             InitListExpr *StructuredList,
159                             unsigned &StructuredIndex,
160                             bool TopLevelObject = false);
161  void CheckSubElementType(const InitializedEntity &Entity,
162                           InitListExpr *IList, QualType ElemType,
163                           unsigned &Index,
164                           InitListExpr *StructuredList,
165                           unsigned &StructuredIndex);
166  void CheckScalarType(const InitializedEntity &Entity,
167                       InitListExpr *IList, QualType DeclType,
168                       unsigned &Index,
169                       InitListExpr *StructuredList,
170                       unsigned &StructuredIndex);
171  void CheckReferenceType(const InitializedEntity &Entity,
172                          InitListExpr *IList, QualType DeclType,
173                          unsigned &Index,
174                          InitListExpr *StructuredList,
175                          unsigned &StructuredIndex);
176  void CheckVectorType(const InitializedEntity &Entity,
177                       InitListExpr *IList, QualType DeclType, unsigned &Index,
178                       InitListExpr *StructuredList,
179                       unsigned &StructuredIndex);
180  void CheckStructUnionTypes(const InitializedEntity &Entity,
181                             InitListExpr *IList, QualType DeclType,
182                             RecordDecl::field_iterator Field,
183                             bool SubobjectIsDesignatorContext, unsigned &Index,
184                             InitListExpr *StructuredList,
185                             unsigned &StructuredIndex,
186                             bool TopLevelObject = false);
187  void CheckArrayType(const InitializedEntity &Entity,
188                      InitListExpr *IList, QualType &DeclType,
189                      llvm::APSInt elementIndex,
190                      bool SubobjectIsDesignatorContext, unsigned &Index,
191                      InitListExpr *StructuredList,
192                      unsigned &StructuredIndex);
193  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
194                                  InitListExpr *IList, DesignatedInitExpr *DIE,
195                                  unsigned DesigIdx,
196                                  QualType &CurrentObjectType,
197                                  RecordDecl::field_iterator *NextField,
198                                  llvm::APSInt *NextElementIndex,
199                                  unsigned &Index,
200                                  InitListExpr *StructuredList,
201                                  unsigned &StructuredIndex,
202                                  bool FinishSubobjectInit,
203                                  bool TopLevelObject);
204  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
205                                           QualType CurrentObjectType,
206                                           InitListExpr *StructuredList,
207                                           unsigned StructuredIndex,
208                                           SourceRange InitRange);
209  void UpdateStructuredListElement(InitListExpr *StructuredList,
210                                   unsigned &StructuredIndex,
211                                   Expr *expr);
212  int numArrayElements(QualType DeclType);
213  int numStructUnionElements(QualType DeclType);
214
215  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
216                               const InitializedEntity &ParentEntity,
217                               InitListExpr *ILE, bool &RequiresSecondPass);
218  void FillInValueInitializations(const InitializedEntity &Entity,
219                                  InitListExpr *ILE, bool &RequiresSecondPass);
220public:
221  InitListChecker(Sema &S, const InitializedEntity &Entity,
222                  InitListExpr *IL, QualType &T);
223  bool HadError() { return hadError; }
224
225  // @brief Retrieves the fully-structured initializer list used for
226  // semantic analysis and code generation.
227  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
228};
229} // end anonymous namespace
230
231void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
232                                        const InitializedEntity &ParentEntity,
233                                              InitListExpr *ILE,
234                                              bool &RequiresSecondPass) {
235  SourceLocation Loc = ILE->getSourceRange().getBegin();
236  unsigned NumInits = ILE->getNumInits();
237  InitializedEntity MemberEntity
238    = InitializedEntity::InitializeMember(Field, &ParentEntity);
239  if (Init >= NumInits || !ILE->getInit(Init)) {
240    // FIXME: We probably don't need to handle references
241    // specially here, since value-initialization of references is
242    // handled in InitializationSequence.
243    if (Field->getType()->isReferenceType()) {
244      // C++ [dcl.init.aggr]p9:
245      //   If an incomplete or empty initializer-list leaves a
246      //   member of reference type uninitialized, the program is
247      //   ill-formed.
248      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
249        << Field->getType()
250        << ILE->getSyntacticForm()->getSourceRange();
251      SemaRef.Diag(Field->getLocation(),
252                   diag::note_uninit_reference_member);
253      hadError = true;
254      return;
255    }
256
257    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
258                                                              true);
259    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
260    if (!InitSeq) {
261      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
262      hadError = true;
263      return;
264    }
265
266    Sema::OwningExprResult MemberInit
267      = InitSeq.Perform(SemaRef, MemberEntity, Kind,
268                        Sema::MultiExprArg(SemaRef, 0, 0));
269    if (MemberInit.isInvalid()) {
270      hadError = true;
271      return;
272    }
273
274    if (hadError) {
275      // Do nothing
276    } else if (Init < NumInits) {
277      ILE->setInit(Init, MemberInit.takeAs<Expr>());
278    } else if (InitSeq.getKind()
279                 == InitializationSequence::ConstructorInitialization) {
280      // Value-initialization requires a constructor call, so
281      // extend the initializer list to include the constructor
282      // call and make a note that we'll need to take another pass
283      // through the initializer list.
284      ILE->updateInit(Init, MemberInit.takeAs<Expr>());
285      RequiresSecondPass = true;
286    }
287  } else if (InitListExpr *InnerILE
288               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
289    FillInValueInitializations(MemberEntity, InnerILE,
290                               RequiresSecondPass);
291}
292
293/// Recursively replaces NULL values within the given initializer list
294/// with expressions that perform value-initialization of the
295/// appropriate type.
296void
297InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
298                                            InitListExpr *ILE,
299                                            bool &RequiresSecondPass) {
300  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
301         "Should not have void type");
302  SourceLocation Loc = ILE->getSourceRange().getBegin();
303  if (ILE->getSyntacticForm())
304    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
305
306  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
307    if (RType->getDecl()->isUnion() &&
308        ILE->getInitializedFieldInUnion())
309      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
310                              Entity, ILE, RequiresSecondPass);
311    else {
312      unsigned Init = 0;
313      for (RecordDecl::field_iterator
314             Field = RType->getDecl()->field_begin(),
315             FieldEnd = RType->getDecl()->field_end();
316           Field != FieldEnd; ++Field) {
317        if (Field->isUnnamedBitfield())
318          continue;
319
320        if (hadError)
321          return;
322
323        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
324        if (hadError)
325          return;
326
327        ++Init;
328
329        // Only look at the first initialization of a union.
330        if (RType->getDecl()->isUnion())
331          break;
332      }
333    }
334
335    return;
336  }
337
338  QualType ElementType;
339
340  InitializedEntity ElementEntity = Entity;
341  unsigned NumInits = ILE->getNumInits();
342  unsigned NumElements = NumInits;
343  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
344    ElementType = AType->getElementType();
345    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
346      NumElements = CAType->getSize().getZExtValue();
347    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
348                                                         0, Entity);
349  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
350    ElementType = VType->getElementType();
351    NumElements = VType->getNumElements();
352    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
353                                                         0, Entity);
354  } else
355    ElementType = ILE->getType();
356
357
358  for (unsigned Init = 0; Init != NumElements; ++Init) {
359    if (hadError)
360      return;
361
362    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
363        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
364      ElementEntity.setElementIndex(Init);
365
366    if (Init >= NumInits || !ILE->getInit(Init)) {
367      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
368                                                                true);
369      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
370      if (!InitSeq) {
371        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
372        hadError = true;
373        return;
374      }
375
376      Sema::OwningExprResult ElementInit
377        = InitSeq.Perform(SemaRef, ElementEntity, Kind,
378                          Sema::MultiExprArg(SemaRef, 0, 0));
379      if (ElementInit.isInvalid()) {
380        hadError = true;
381        return;
382      }
383
384      if (hadError) {
385        // Do nothing
386      } else if (Init < NumInits) {
387        ILE->setInit(Init, ElementInit.takeAs<Expr>());
388      } else if (InitSeq.getKind()
389                   == InitializationSequence::ConstructorInitialization) {
390        // Value-initialization requires a constructor call, so
391        // extend the initializer list to include the constructor
392        // call and make a note that we'll need to take another pass
393        // through the initializer list.
394        ILE->updateInit(Init, ElementInit.takeAs<Expr>());
395        RequiresSecondPass = true;
396      }
397    } else if (InitListExpr *InnerILE
398                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
399      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
400  }
401}
402
403
404InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
405                                 InitListExpr *IL, QualType &T)
406  : SemaRef(S) {
407  hadError = false;
408
409  unsigned newIndex = 0;
410  unsigned newStructuredIndex = 0;
411  FullyStructuredList
412    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
413  CheckExplicitInitList(Entity, IL, T, newIndex,
414                        FullyStructuredList, newStructuredIndex,
415                        /*TopLevelObject=*/true);
416
417  if (!hadError) {
418    bool RequiresSecondPass = false;
419    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
420    if (RequiresSecondPass && !hadError)
421      FillInValueInitializations(Entity, FullyStructuredList,
422                                 RequiresSecondPass);
423  }
424}
425
426int InitListChecker::numArrayElements(QualType DeclType) {
427  // FIXME: use a proper constant
428  int maxElements = 0x7FFFFFFF;
429  if (const ConstantArrayType *CAT =
430        SemaRef.Context.getAsConstantArrayType(DeclType)) {
431    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
432  }
433  return maxElements;
434}
435
436int InitListChecker::numStructUnionElements(QualType DeclType) {
437  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
438  int InitializableMembers = 0;
439  for (RecordDecl::field_iterator
440         Field = structDecl->field_begin(),
441         FieldEnd = structDecl->field_end();
442       Field != FieldEnd; ++Field) {
443    if ((*Field)->getIdentifier() || !(*Field)->isBitField())
444      ++InitializableMembers;
445  }
446  if (structDecl->isUnion())
447    return std::min(InitializableMembers, 1);
448  return InitializableMembers - structDecl->hasFlexibleArrayMember();
449}
450
451void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
452                                            InitListExpr *ParentIList,
453                                            QualType T, unsigned &Index,
454                                            InitListExpr *StructuredList,
455                                            unsigned &StructuredIndex,
456                                            bool TopLevelObject) {
457  int maxElements = 0;
458
459  if (T->isArrayType())
460    maxElements = numArrayElements(T);
461  else if (T->isStructureType() || T->isUnionType())
462    maxElements = numStructUnionElements(T);
463  else if (T->isVectorType())
464    maxElements = T->getAs<VectorType>()->getNumElements();
465  else
466    assert(0 && "CheckImplicitInitList(): Illegal type");
467
468  if (maxElements == 0) {
469    SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
470                  diag::err_implicit_empty_initializer);
471    ++Index;
472    hadError = true;
473    return;
474  }
475
476  // Build a structured initializer list corresponding to this subobject.
477  InitListExpr *StructuredSubobjectInitList
478    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
479                                 StructuredIndex,
480          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
481                      ParentIList->getSourceRange().getEnd()));
482  unsigned StructuredSubobjectInitIndex = 0;
483
484  // Check the element types and build the structural subobject.
485  unsigned StartIndex = Index;
486  CheckListElementTypes(Entity, ParentIList, T,
487                        /*SubobjectIsDesignatorContext=*/false, Index,
488                        StructuredSubobjectInitList,
489                        StructuredSubobjectInitIndex,
490                        TopLevelObject);
491  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
492  StructuredSubobjectInitList->setType(T);
493
494  // Update the structured sub-object initializer so that it's ending
495  // range corresponds with the end of the last initializer it used.
496  if (EndIndex < ParentIList->getNumInits()) {
497    SourceLocation EndLoc
498      = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
499    StructuredSubobjectInitList->setRBraceLoc(EndLoc);
500  }
501
502  // Warn about missing braces.
503  if (T->isArrayType() || T->isRecordType()) {
504    SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
505                 diag::warn_missing_braces)
506    << StructuredSubobjectInitList->getSourceRange()
507    << FixItHint::CreateInsertion(StructuredSubobjectInitList->getLocStart(),
508                                  "{")
509    << FixItHint::CreateInsertion(SemaRef.PP.getLocForEndOfToken(
510                                      StructuredSubobjectInitList->getLocEnd()),
511                                  "}");
512  }
513}
514
515void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
516                                            InitListExpr *IList, QualType &T,
517                                            unsigned &Index,
518                                            InitListExpr *StructuredList,
519                                            unsigned &StructuredIndex,
520                                            bool TopLevelObject) {
521  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
522  SyntacticToSemantic[IList] = StructuredList;
523  StructuredList->setSyntacticForm(IList);
524  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
525                        Index, StructuredList, StructuredIndex, TopLevelObject);
526  IList->setType(T.getNonReferenceType());
527  StructuredList->setType(T.getNonReferenceType());
528  if (hadError)
529    return;
530
531  if (Index < IList->getNumInits()) {
532    // We have leftover initializers
533    if (StructuredIndex == 1 &&
534        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
535      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
536      if (SemaRef.getLangOptions().CPlusPlus) {
537        DK = diag::err_excess_initializers_in_char_array_initializer;
538        hadError = true;
539      }
540      // Special-case
541      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
542        << IList->getInit(Index)->getSourceRange();
543    } else if (!T->isIncompleteType()) {
544      // Don't complain for incomplete types, since we'll get an error
545      // elsewhere
546      QualType CurrentObjectType = StructuredList->getType();
547      int initKind =
548        CurrentObjectType->isArrayType()? 0 :
549        CurrentObjectType->isVectorType()? 1 :
550        CurrentObjectType->isScalarType()? 2 :
551        CurrentObjectType->isUnionType()? 3 :
552        4;
553
554      unsigned DK = diag::warn_excess_initializers;
555      if (SemaRef.getLangOptions().CPlusPlus) {
556        DK = diag::err_excess_initializers;
557        hadError = true;
558      }
559      if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
560        DK = diag::err_excess_initializers;
561        hadError = true;
562      }
563
564      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
565        << initKind << IList->getInit(Index)->getSourceRange();
566    }
567  }
568
569  if (T->isScalarType() && !TopLevelObject)
570    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
571      << IList->getSourceRange()
572      << FixItHint::CreateRemoval(IList->getLocStart())
573      << FixItHint::CreateRemoval(IList->getLocEnd());
574}
575
576void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
577                                            InitListExpr *IList,
578                                            QualType &DeclType,
579                                            bool SubobjectIsDesignatorContext,
580                                            unsigned &Index,
581                                            InitListExpr *StructuredList,
582                                            unsigned &StructuredIndex,
583                                            bool TopLevelObject) {
584  if (DeclType->isScalarType()) {
585    CheckScalarType(Entity, IList, DeclType, Index,
586                    StructuredList, StructuredIndex);
587  } else if (DeclType->isVectorType()) {
588    CheckVectorType(Entity, IList, DeclType, Index,
589                    StructuredList, StructuredIndex);
590  } else if (DeclType->isAggregateType()) {
591    if (DeclType->isRecordType()) {
592      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
593      CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
594                            SubobjectIsDesignatorContext, Index,
595                            StructuredList, StructuredIndex,
596                            TopLevelObject);
597    } else if (DeclType->isArrayType()) {
598      llvm::APSInt Zero(
599                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
600                      false);
601      CheckArrayType(Entity, IList, DeclType, Zero,
602                     SubobjectIsDesignatorContext, Index,
603                     StructuredList, StructuredIndex);
604    } else
605      assert(0 && "Aggregate that isn't a structure or array?!");
606  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
607    // This type is invalid, issue a diagnostic.
608    ++Index;
609    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
610      << DeclType;
611    hadError = true;
612  } else if (DeclType->isRecordType()) {
613    // C++ [dcl.init]p14:
614    //   [...] If the class is an aggregate (8.5.1), and the initializer
615    //   is a brace-enclosed list, see 8.5.1.
616    //
617    // Note: 8.5.1 is handled below; here, we diagnose the case where
618    // we have an initializer list and a destination type that is not
619    // an aggregate.
620    // FIXME: In C++0x, this is yet another form of initialization.
621    SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
622      << DeclType << IList->getSourceRange();
623    hadError = true;
624  } else if (DeclType->isReferenceType()) {
625    CheckReferenceType(Entity, IList, DeclType, Index,
626                       StructuredList, StructuredIndex);
627  } else {
628    // In C, all types are either scalars or aggregates, but
629    // additional handling is needed here for C++ (and possibly others?).
630    assert(0 && "Unsupported initializer type");
631  }
632}
633
634void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
635                                          InitListExpr *IList,
636                                          QualType ElemType,
637                                          unsigned &Index,
638                                          InitListExpr *StructuredList,
639                                          unsigned &StructuredIndex) {
640  Expr *expr = IList->getInit(Index);
641  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
642    unsigned newIndex = 0;
643    unsigned newStructuredIndex = 0;
644    InitListExpr *newStructuredList
645      = getStructuredSubobjectInit(IList, Index, ElemType,
646                                   StructuredList, StructuredIndex,
647                                   SubInitList->getSourceRange());
648    CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
649                          newStructuredList, newStructuredIndex);
650    ++StructuredIndex;
651    ++Index;
652  } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
653    CheckStringInit(Str, ElemType, SemaRef);
654    UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
655    ++Index;
656  } else if (ElemType->isScalarType()) {
657    CheckScalarType(Entity, IList, ElemType, Index,
658                    StructuredList, StructuredIndex);
659  } else if (ElemType->isReferenceType()) {
660    CheckReferenceType(Entity, IList, ElemType, Index,
661                       StructuredList, StructuredIndex);
662  } else {
663    if (SemaRef.getLangOptions().CPlusPlus) {
664      // C++ [dcl.init.aggr]p12:
665      //   All implicit type conversions (clause 4) are considered when
666      //   initializing the aggregate member with an ini- tializer from
667      //   an initializer-list. If the initializer can initialize a
668      //   member, the member is initialized. [...]
669
670      // FIXME: Better EqualLoc?
671      InitializationKind Kind =
672        InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
673      InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
674
675      if (Seq) {
676        Sema::OwningExprResult Result =
677          Seq.Perform(SemaRef, Entity, Kind,
678                      Sema::MultiExprArg(SemaRef, (void **)&expr, 1));
679        if (Result.isInvalid())
680          hadError = true;
681
682        UpdateStructuredListElement(StructuredList, StructuredIndex,
683                                    Result.takeAs<Expr>());
684        ++Index;
685        return;
686      }
687
688      // Fall through for subaggregate initialization
689    } else {
690      // C99 6.7.8p13:
691      //
692      //   The initializer for a structure or union object that has
693      //   automatic storage duration shall be either an initializer
694      //   list as described below, or a single expression that has
695      //   compatible structure or union type. In the latter case, the
696      //   initial value of the object, including unnamed members, is
697      //   that of the expression.
698      if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
699          SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) {
700        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
701        ++Index;
702        return;
703      }
704
705      // Fall through for subaggregate initialization
706    }
707
708    // C++ [dcl.init.aggr]p12:
709    //
710    //   [...] Otherwise, if the member is itself a non-empty
711    //   subaggregate, brace elision is assumed and the initializer is
712    //   considered for the initialization of the first member of
713    //   the subaggregate.
714    if (ElemType->isAggregateType() || ElemType->isVectorType()) {
715      CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
716                            StructuredIndex);
717      ++StructuredIndex;
718    } else {
719      // We cannot initialize this element, so let
720      // PerformCopyInitialization produce the appropriate diagnostic.
721      SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
722                                        SemaRef.Owned(expr));
723      IList->setInit(Index, 0);
724      hadError = true;
725      ++Index;
726      ++StructuredIndex;
727    }
728  }
729}
730
731void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
732                                      InitListExpr *IList, QualType DeclType,
733                                      unsigned &Index,
734                                      InitListExpr *StructuredList,
735                                      unsigned &StructuredIndex) {
736  if (Index < IList->getNumInits()) {
737    Expr *expr = IList->getInit(Index);
738    if (isa<InitListExpr>(expr)) {
739      SemaRef.Diag(IList->getLocStart(),
740                    diag::err_many_braces_around_scalar_init)
741        << IList->getSourceRange();
742      hadError = true;
743      ++Index;
744      ++StructuredIndex;
745      return;
746    } else if (isa<DesignatedInitExpr>(expr)) {
747      SemaRef.Diag(expr->getSourceRange().getBegin(),
748                    diag::err_designator_for_scalar_init)
749        << DeclType << expr->getSourceRange();
750      hadError = true;
751      ++Index;
752      ++StructuredIndex;
753      return;
754    }
755
756    Sema::OwningExprResult Result =
757      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
758                                        SemaRef.Owned(expr));
759
760    Expr *ResultExpr = 0;
761
762    if (Result.isInvalid())
763      hadError = true; // types weren't compatible.
764    else {
765      ResultExpr = Result.takeAs<Expr>();
766
767      if (ResultExpr != expr) {
768        // The type was promoted, update initializer list.
769        IList->setInit(Index, ResultExpr);
770      }
771    }
772    if (hadError)
773      ++StructuredIndex;
774    else
775      UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
776    ++Index;
777  } else {
778    SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
779      << IList->getSourceRange();
780    hadError = true;
781    ++Index;
782    ++StructuredIndex;
783    return;
784  }
785}
786
787void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
788                                         InitListExpr *IList, QualType DeclType,
789                                         unsigned &Index,
790                                         InitListExpr *StructuredList,
791                                         unsigned &StructuredIndex) {
792  if (Index < IList->getNumInits()) {
793    Expr *expr = IList->getInit(Index);
794    if (isa<InitListExpr>(expr)) {
795      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
796        << DeclType << IList->getSourceRange();
797      hadError = true;
798      ++Index;
799      ++StructuredIndex;
800      return;
801    }
802
803    Sema::OwningExprResult Result =
804      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
805                                        SemaRef.Owned(expr));
806
807    if (Result.isInvalid())
808      hadError = true;
809
810    expr = Result.takeAs<Expr>();
811    IList->setInit(Index, expr);
812
813    if (hadError)
814      ++StructuredIndex;
815    else
816      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
817    ++Index;
818  } else {
819    // FIXME: It would be wonderful if we could point at the actual member. In
820    // general, it would be useful to pass location information down the stack,
821    // so that we know the location (or decl) of the "current object" being
822    // initialized.
823    SemaRef.Diag(IList->getLocStart(),
824                  diag::err_init_reference_member_uninitialized)
825      << DeclType
826      << IList->getSourceRange();
827    hadError = true;
828    ++Index;
829    ++StructuredIndex;
830    return;
831  }
832}
833
834void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
835                                      InitListExpr *IList, QualType DeclType,
836                                      unsigned &Index,
837                                      InitListExpr *StructuredList,
838                                      unsigned &StructuredIndex) {
839  if (Index < IList->getNumInits()) {
840    const VectorType *VT = DeclType->getAs<VectorType>();
841    unsigned maxElements = VT->getNumElements();
842    unsigned numEltsInit = 0;
843    QualType elementType = VT->getElementType();
844
845    if (!SemaRef.getLangOptions().OpenCL) {
846      InitializedEntity ElementEntity =
847        InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
848
849      for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
850        // Don't attempt to go past the end of the init list
851        if (Index >= IList->getNumInits())
852          break;
853
854        ElementEntity.setElementIndex(Index);
855        CheckSubElementType(ElementEntity, IList, elementType, Index,
856                            StructuredList, StructuredIndex);
857      }
858    } else {
859      InitializedEntity ElementEntity =
860        InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
861
862      // OpenCL initializers allows vectors to be constructed from vectors.
863      for (unsigned i = 0; i < maxElements; ++i) {
864        // Don't attempt to go past the end of the init list
865        if (Index >= IList->getNumInits())
866          break;
867
868        ElementEntity.setElementIndex(Index);
869
870        QualType IType = IList->getInit(Index)->getType();
871        if (!IType->isVectorType()) {
872          CheckSubElementType(ElementEntity, IList, elementType, Index,
873                              StructuredList, StructuredIndex);
874          ++numEltsInit;
875        } else {
876          const VectorType *IVT = IType->getAs<VectorType>();
877          unsigned numIElts = IVT->getNumElements();
878          QualType VecType = SemaRef.Context.getExtVectorType(elementType,
879                                                              numIElts);
880          CheckSubElementType(ElementEntity, IList, VecType, Index,
881                              StructuredList, StructuredIndex);
882          numEltsInit += numIElts;
883        }
884      }
885    }
886
887    // OpenCL & AltiVec require all elements to be initialized.
888    if (numEltsInit != maxElements)
889      if (SemaRef.getLangOptions().OpenCL || SemaRef.getLangOptions().AltiVec)
890        SemaRef.Diag(IList->getSourceRange().getBegin(),
891                     diag::err_vector_incorrect_num_initializers)
892          << (numEltsInit < maxElements) << maxElements << numEltsInit;
893  }
894}
895
896void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
897                                     InitListExpr *IList, QualType &DeclType,
898                                     llvm::APSInt elementIndex,
899                                     bool SubobjectIsDesignatorContext,
900                                     unsigned &Index,
901                                     InitListExpr *StructuredList,
902                                     unsigned &StructuredIndex) {
903  // Check for the special-case of initializing an array with a string.
904  if (Index < IList->getNumInits()) {
905    if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
906                                 SemaRef.Context)) {
907      CheckStringInit(Str, DeclType, SemaRef);
908      // We place the string literal directly into the resulting
909      // initializer list. This is the only place where the structure
910      // of the structured initializer list doesn't match exactly,
911      // because doing so would involve allocating one character
912      // constant for each string.
913      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
914      StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
915      ++Index;
916      return;
917    }
918  }
919  if (const VariableArrayType *VAT =
920        SemaRef.Context.getAsVariableArrayType(DeclType)) {
921    // Check for VLAs; in standard C it would be possible to check this
922    // earlier, but I don't know where clang accepts VLAs (gcc accepts
923    // them in all sorts of strange places).
924    SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
925                  diag::err_variable_object_no_init)
926      << VAT->getSizeExpr()->getSourceRange();
927    hadError = true;
928    ++Index;
929    ++StructuredIndex;
930    return;
931  }
932
933  // We might know the maximum number of elements in advance.
934  llvm::APSInt maxElements(elementIndex.getBitWidth(),
935                           elementIndex.isUnsigned());
936  bool maxElementsKnown = false;
937  if (const ConstantArrayType *CAT =
938        SemaRef.Context.getAsConstantArrayType(DeclType)) {
939    maxElements = CAT->getSize();
940    elementIndex.extOrTrunc(maxElements.getBitWidth());
941    elementIndex.setIsUnsigned(maxElements.isUnsigned());
942    maxElementsKnown = true;
943  }
944
945  QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
946                             ->getElementType();
947  while (Index < IList->getNumInits()) {
948    Expr *Init = IList->getInit(Index);
949    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
950      // If we're not the subobject that matches up with the '{' for
951      // the designator, we shouldn't be handling the
952      // designator. Return immediately.
953      if (!SubobjectIsDesignatorContext)
954        return;
955
956      // Handle this designated initializer. elementIndex will be
957      // updated to be the next array element we'll initialize.
958      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
959                                     DeclType, 0, &elementIndex, Index,
960                                     StructuredList, StructuredIndex, true,
961                                     false)) {
962        hadError = true;
963        continue;
964      }
965
966      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
967        maxElements.extend(elementIndex.getBitWidth());
968      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
969        elementIndex.extend(maxElements.getBitWidth());
970      elementIndex.setIsUnsigned(maxElements.isUnsigned());
971
972      // If the array is of incomplete type, keep track of the number of
973      // elements in the initializer.
974      if (!maxElementsKnown && elementIndex > maxElements)
975        maxElements = elementIndex;
976
977      continue;
978    }
979
980    // If we know the maximum number of elements, and we've already
981    // hit it, stop consuming elements in the initializer list.
982    if (maxElementsKnown && elementIndex == maxElements)
983      break;
984
985    InitializedEntity ElementEntity =
986      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
987                                           Entity);
988    // Check this element.
989    CheckSubElementType(ElementEntity, IList, elementType, Index,
990                        StructuredList, StructuredIndex);
991    ++elementIndex;
992
993    // If the array is of incomplete type, keep track of the number of
994    // elements in the initializer.
995    if (!maxElementsKnown && elementIndex > maxElements)
996      maxElements = elementIndex;
997  }
998  if (!hadError && DeclType->isIncompleteArrayType()) {
999    // If this is an incomplete array type, the actual type needs to
1000    // be calculated here.
1001    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1002    if (maxElements == Zero) {
1003      // Sizing an array implicitly to zero is not allowed by ISO C,
1004      // but is supported by GNU.
1005      SemaRef.Diag(IList->getLocStart(),
1006                    diag::ext_typecheck_zero_array_size);
1007    }
1008
1009    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1010                                                     ArrayType::Normal, 0);
1011  }
1012}
1013
1014void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1015                                            InitListExpr *IList,
1016                                            QualType DeclType,
1017                                            RecordDecl::field_iterator Field,
1018                                            bool SubobjectIsDesignatorContext,
1019                                            unsigned &Index,
1020                                            InitListExpr *StructuredList,
1021                                            unsigned &StructuredIndex,
1022                                            bool TopLevelObject) {
1023  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1024
1025  // If the record is invalid, some of it's members are invalid. To avoid
1026  // confusion, we forgo checking the intializer for the entire record.
1027  if (structDecl->isInvalidDecl()) {
1028    hadError = true;
1029    return;
1030  }
1031
1032  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1033    // Value-initialize the first named member of the union.
1034    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1035    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1036         Field != FieldEnd; ++Field) {
1037      if (Field->getDeclName()) {
1038        StructuredList->setInitializedFieldInUnion(*Field);
1039        break;
1040      }
1041    }
1042    return;
1043  }
1044
1045  // If structDecl is a forward declaration, this loop won't do
1046  // anything except look at designated initializers; That's okay,
1047  // because an error should get printed out elsewhere. It might be
1048  // worthwhile to skip over the rest of the initializer, though.
1049  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1050  RecordDecl::field_iterator FieldEnd = RD->field_end();
1051  bool InitializedSomething = false;
1052  bool CheckForMissingFields = true;
1053  while (Index < IList->getNumInits()) {
1054    Expr *Init = IList->getInit(Index);
1055
1056    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1057      // If we're not the subobject that matches up with the '{' for
1058      // the designator, we shouldn't be handling the
1059      // designator. Return immediately.
1060      if (!SubobjectIsDesignatorContext)
1061        return;
1062
1063      // Handle this designated initializer. Field will be updated to
1064      // the next field that we'll be initializing.
1065      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1066                                     DeclType, &Field, 0, Index,
1067                                     StructuredList, StructuredIndex,
1068                                     true, TopLevelObject))
1069        hadError = true;
1070
1071      InitializedSomething = true;
1072
1073      // Disable check for missing fields when designators are used.
1074      // This matches gcc behaviour.
1075      CheckForMissingFields = false;
1076      continue;
1077    }
1078
1079    if (Field == FieldEnd) {
1080      // We've run out of fields. We're done.
1081      break;
1082    }
1083
1084    // We've already initialized a member of a union. We're done.
1085    if (InitializedSomething && DeclType->isUnionType())
1086      break;
1087
1088    // If we've hit the flexible array member at the end, we're done.
1089    if (Field->getType()->isIncompleteArrayType())
1090      break;
1091
1092    if (Field->isUnnamedBitfield()) {
1093      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1094      ++Field;
1095      continue;
1096    }
1097
1098    InitializedEntity MemberEntity =
1099      InitializedEntity::InitializeMember(*Field, &Entity);
1100    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1101                        StructuredList, StructuredIndex);
1102    InitializedSomething = true;
1103
1104    if (DeclType->isUnionType()) {
1105      // Initialize the first field within the union.
1106      StructuredList->setInitializedFieldInUnion(*Field);
1107    }
1108
1109    ++Field;
1110  }
1111
1112  // Emit warnings for missing struct field initializers.
1113  if (CheckForMissingFields && Field != FieldEnd &&
1114      !Field->getType()->isIncompleteArrayType() && !DeclType->isUnionType()) {
1115    // It is possible we have one or more unnamed bitfields remaining.
1116    // Find first (if any) named field and emit warning.
1117    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1118         it != end; ++it) {
1119      if (!it->isUnnamedBitfield()) {
1120        SemaRef.Diag(IList->getSourceRange().getEnd(),
1121                     diag::warn_missing_field_initializers) << it->getName();
1122        break;
1123      }
1124    }
1125  }
1126
1127  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1128      Index >= IList->getNumInits())
1129    return;
1130
1131  // Handle GNU flexible array initializers.
1132  if (!TopLevelObject &&
1133      (!isa<InitListExpr>(IList->getInit(Index)) ||
1134       cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1135    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1136                  diag::err_flexible_array_init_nonempty)
1137      << IList->getInit(Index)->getSourceRange().getBegin();
1138    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1139      << *Field;
1140    hadError = true;
1141    ++Index;
1142    return;
1143  } else {
1144    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1145                 diag::ext_flexible_array_init)
1146      << IList->getInit(Index)->getSourceRange().getBegin();
1147    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1148      << *Field;
1149  }
1150
1151  InitializedEntity MemberEntity =
1152    InitializedEntity::InitializeMember(*Field, &Entity);
1153
1154  if (isa<InitListExpr>(IList->getInit(Index)))
1155    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1156                        StructuredList, StructuredIndex);
1157  else
1158    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1159                          StructuredList, StructuredIndex);
1160}
1161
1162/// \brief Expand a field designator that refers to a member of an
1163/// anonymous struct or union into a series of field designators that
1164/// refers to the field within the appropriate subobject.
1165///
1166/// Field/FieldIndex will be updated to point to the (new)
1167/// currently-designated field.
1168static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1169                                           DesignatedInitExpr *DIE,
1170                                           unsigned DesigIdx,
1171                                           FieldDecl *Field,
1172                                        RecordDecl::field_iterator &FieldIter,
1173                                           unsigned &FieldIndex) {
1174  typedef DesignatedInitExpr::Designator Designator;
1175
1176  // Build the path from the current object to the member of the
1177  // anonymous struct/union (backwards).
1178  llvm::SmallVector<FieldDecl *, 4> Path;
1179  SemaRef.BuildAnonymousStructUnionMemberPath(Field, Path);
1180
1181  // Build the replacement designators.
1182  llvm::SmallVector<Designator, 4> Replacements;
1183  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
1184         FI = Path.rbegin(), FIEnd = Path.rend();
1185       FI != FIEnd; ++FI) {
1186    if (FI + 1 == FIEnd)
1187      Replacements.push_back(Designator((IdentifierInfo *)0,
1188                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1189                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1190    else
1191      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1192                                        SourceLocation()));
1193    Replacements.back().setField(*FI);
1194  }
1195
1196  // Expand the current designator into the set of replacement
1197  // designators, so we have a full subobject path down to where the
1198  // member of the anonymous struct/union is actually stored.
1199  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1200                        &Replacements[0] + Replacements.size());
1201
1202  // Update FieldIter/FieldIndex;
1203  RecordDecl *Record = cast<RecordDecl>(Path.back()->getDeclContext());
1204  FieldIter = Record->field_begin();
1205  FieldIndex = 0;
1206  for (RecordDecl::field_iterator FEnd = Record->field_end();
1207       FieldIter != FEnd; ++FieldIter) {
1208    if (FieldIter->isUnnamedBitfield())
1209        continue;
1210
1211    if (*FieldIter == Path.back())
1212      return;
1213
1214    ++FieldIndex;
1215  }
1216
1217  assert(false && "Unable to find anonymous struct/union field");
1218}
1219
1220/// @brief Check the well-formedness of a C99 designated initializer.
1221///
1222/// Determines whether the designated initializer @p DIE, which
1223/// resides at the given @p Index within the initializer list @p
1224/// IList, is well-formed for a current object of type @p DeclType
1225/// (C99 6.7.8). The actual subobject that this designator refers to
1226/// within the current subobject is returned in either
1227/// @p NextField or @p NextElementIndex (whichever is appropriate).
1228///
1229/// @param IList  The initializer list in which this designated
1230/// initializer occurs.
1231///
1232/// @param DIE The designated initializer expression.
1233///
1234/// @param DesigIdx  The index of the current designator.
1235///
1236/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1237/// into which the designation in @p DIE should refer.
1238///
1239/// @param NextField  If non-NULL and the first designator in @p DIE is
1240/// a field, this will be set to the field declaration corresponding
1241/// to the field named by the designator.
1242///
1243/// @param NextElementIndex  If non-NULL and the first designator in @p
1244/// DIE is an array designator or GNU array-range designator, this
1245/// will be set to the last index initialized by this designator.
1246///
1247/// @param Index  Index into @p IList where the designated initializer
1248/// @p DIE occurs.
1249///
1250/// @param StructuredList  The initializer list expression that
1251/// describes all of the subobject initializers in the order they'll
1252/// actually be initialized.
1253///
1254/// @returns true if there was an error, false otherwise.
1255bool
1256InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1257                                            InitListExpr *IList,
1258                                      DesignatedInitExpr *DIE,
1259                                      unsigned DesigIdx,
1260                                      QualType &CurrentObjectType,
1261                                      RecordDecl::field_iterator *NextField,
1262                                      llvm::APSInt *NextElementIndex,
1263                                      unsigned &Index,
1264                                      InitListExpr *StructuredList,
1265                                      unsigned &StructuredIndex,
1266                                            bool FinishSubobjectInit,
1267                                            bool TopLevelObject) {
1268  if (DesigIdx == DIE->size()) {
1269    // Check the actual initialization for the designated object type.
1270    bool prevHadError = hadError;
1271
1272    // Temporarily remove the designator expression from the
1273    // initializer list that the child calls see, so that we don't try
1274    // to re-process the designator.
1275    unsigned OldIndex = Index;
1276    IList->setInit(OldIndex, DIE->getInit());
1277
1278    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1279                        StructuredList, StructuredIndex);
1280
1281    // Restore the designated initializer expression in the syntactic
1282    // form of the initializer list.
1283    if (IList->getInit(OldIndex) != DIE->getInit())
1284      DIE->setInit(IList->getInit(OldIndex));
1285    IList->setInit(OldIndex, DIE);
1286
1287    return hadError && !prevHadError;
1288  }
1289
1290  bool IsFirstDesignator = (DesigIdx == 0);
1291  assert((IsFirstDesignator || StructuredList) &&
1292         "Need a non-designated initializer list to start from");
1293
1294  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1295  // Determine the structural initializer list that corresponds to the
1296  // current subobject.
1297  StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1298    : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1299                                 StructuredList, StructuredIndex,
1300                                 SourceRange(D->getStartLocation(),
1301                                             DIE->getSourceRange().getEnd()));
1302  assert(StructuredList && "Expected a structured initializer list");
1303
1304  if (D->isFieldDesignator()) {
1305    // C99 6.7.8p7:
1306    //
1307    //   If a designator has the form
1308    //
1309    //      . identifier
1310    //
1311    //   then the current object (defined below) shall have
1312    //   structure or union type and the identifier shall be the
1313    //   name of a member of that type.
1314    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1315    if (!RT) {
1316      SourceLocation Loc = D->getDotLoc();
1317      if (Loc.isInvalid())
1318        Loc = D->getFieldLoc();
1319      SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1320        << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1321      ++Index;
1322      return true;
1323    }
1324
1325    // Note: we perform a linear search of the fields here, despite
1326    // the fact that we have a faster lookup method, because we always
1327    // need to compute the field's index.
1328    FieldDecl *KnownField = D->getField();
1329    IdentifierInfo *FieldName = D->getFieldName();
1330    unsigned FieldIndex = 0;
1331    RecordDecl::field_iterator
1332      Field = RT->getDecl()->field_begin(),
1333      FieldEnd = RT->getDecl()->field_end();
1334    for (; Field != FieldEnd; ++Field) {
1335      if (Field->isUnnamedBitfield())
1336        continue;
1337
1338      if (KnownField == *Field || Field->getIdentifier() == FieldName)
1339        break;
1340
1341      ++FieldIndex;
1342    }
1343
1344    if (Field == FieldEnd) {
1345      // There was no normal field in the struct with the designated
1346      // name. Perform another lookup for this name, which may find
1347      // something that we can't designate (e.g., a member function),
1348      // may find nothing, or may find a member of an anonymous
1349      // struct/union.
1350      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1351      FieldDecl *ReplacementField = 0;
1352      if (Lookup.first == Lookup.second) {
1353        // Name lookup didn't find anything. Determine whether this
1354        // was a typo for another field name.
1355        LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
1356                       Sema::LookupMemberName);
1357        if (SemaRef.CorrectTypo(R, /*Scope=*/0, /*SS=*/0, RT->getDecl()) &&
1358            (ReplacementField = R.getAsSingle<FieldDecl>()) &&
1359            ReplacementField->getDeclContext()->getLookupContext()
1360                                                      ->Equals(RT->getDecl())) {
1361          SemaRef.Diag(D->getFieldLoc(),
1362                       diag::err_field_designator_unknown_suggest)
1363            << FieldName << CurrentObjectType << R.getLookupName()
1364            << FixItHint::CreateReplacement(D->getFieldLoc(),
1365                                            R.getLookupName().getAsString());
1366          SemaRef.Diag(ReplacementField->getLocation(),
1367                       diag::note_previous_decl)
1368            << ReplacementField->getDeclName();
1369        } else {
1370          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1371            << FieldName << CurrentObjectType;
1372          ++Index;
1373          return true;
1374        }
1375      } else if (!KnownField) {
1376        // Determine whether we found a field at all.
1377        ReplacementField = dyn_cast<FieldDecl>(*Lookup.first);
1378      }
1379
1380      if (!ReplacementField) {
1381        // Name lookup found something, but it wasn't a field.
1382        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1383          << FieldName;
1384        SemaRef.Diag((*Lookup.first)->getLocation(),
1385                      diag::note_field_designator_found);
1386        ++Index;
1387        return true;
1388      }
1389
1390      if (!KnownField &&
1391          cast<RecordDecl>((ReplacementField)->getDeclContext())
1392                                                 ->isAnonymousStructOrUnion()) {
1393        // Handle an field designator that refers to a member of an
1394        // anonymous struct or union.
1395        ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx,
1396                                       ReplacementField,
1397                                       Field, FieldIndex);
1398        D = DIE->getDesignator(DesigIdx);
1399      } else if (!KnownField) {
1400        // The replacement field comes from typo correction; find it
1401        // in the list of fields.
1402        FieldIndex = 0;
1403        Field = RT->getDecl()->field_begin();
1404        for (; Field != FieldEnd; ++Field) {
1405          if (Field->isUnnamedBitfield())
1406            continue;
1407
1408          if (ReplacementField == *Field ||
1409              Field->getIdentifier() == ReplacementField->getIdentifier())
1410            break;
1411
1412          ++FieldIndex;
1413        }
1414      }
1415    } else if (!KnownField &&
1416               cast<RecordDecl>((*Field)->getDeclContext())
1417                 ->isAnonymousStructOrUnion()) {
1418      ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, *Field,
1419                                     Field, FieldIndex);
1420      D = DIE->getDesignator(DesigIdx);
1421    }
1422
1423    // All of the fields of a union are located at the same place in
1424    // the initializer list.
1425    if (RT->getDecl()->isUnion()) {
1426      FieldIndex = 0;
1427      StructuredList->setInitializedFieldInUnion(*Field);
1428    }
1429
1430    // Update the designator with the field declaration.
1431    D->setField(*Field);
1432
1433    // Make sure that our non-designated initializer list has space
1434    // for a subobject corresponding to this field.
1435    if (FieldIndex >= StructuredList->getNumInits())
1436      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1437
1438    // This designator names a flexible array member.
1439    if (Field->getType()->isIncompleteArrayType()) {
1440      bool Invalid = false;
1441      if ((DesigIdx + 1) != DIE->size()) {
1442        // We can't designate an object within the flexible array
1443        // member (because GCC doesn't allow it).
1444        DesignatedInitExpr::Designator *NextD
1445          = DIE->getDesignator(DesigIdx + 1);
1446        SemaRef.Diag(NextD->getStartLocation(),
1447                      diag::err_designator_into_flexible_array_member)
1448          << SourceRange(NextD->getStartLocation(),
1449                         DIE->getSourceRange().getEnd());
1450        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1451          << *Field;
1452        Invalid = true;
1453      }
1454
1455      if (!hadError && !isa<InitListExpr>(DIE->getInit())) {
1456        // The initializer is not an initializer list.
1457        SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1458                      diag::err_flexible_array_init_needs_braces)
1459          << DIE->getInit()->getSourceRange();
1460        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1461          << *Field;
1462        Invalid = true;
1463      }
1464
1465      // Handle GNU flexible array initializers.
1466      if (!Invalid && !TopLevelObject &&
1467          cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1468        SemaRef.Diag(DIE->getSourceRange().getBegin(),
1469                      diag::err_flexible_array_init_nonempty)
1470          << DIE->getSourceRange().getBegin();
1471        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1472          << *Field;
1473        Invalid = true;
1474      }
1475
1476      if (Invalid) {
1477        ++Index;
1478        return true;
1479      }
1480
1481      // Initialize the array.
1482      bool prevHadError = hadError;
1483      unsigned newStructuredIndex = FieldIndex;
1484      unsigned OldIndex = Index;
1485      IList->setInit(Index, DIE->getInit());
1486
1487      InitializedEntity MemberEntity =
1488        InitializedEntity::InitializeMember(*Field, &Entity);
1489      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1490                          StructuredList, newStructuredIndex);
1491
1492      IList->setInit(OldIndex, DIE);
1493      if (hadError && !prevHadError) {
1494        ++Field;
1495        ++FieldIndex;
1496        if (NextField)
1497          *NextField = Field;
1498        StructuredIndex = FieldIndex;
1499        return true;
1500      }
1501    } else {
1502      // Recurse to check later designated subobjects.
1503      QualType FieldType = (*Field)->getType();
1504      unsigned newStructuredIndex = FieldIndex;
1505
1506      InitializedEntity MemberEntity =
1507        InitializedEntity::InitializeMember(*Field, &Entity);
1508      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1509                                     FieldType, 0, 0, Index,
1510                                     StructuredList, newStructuredIndex,
1511                                     true, false))
1512        return true;
1513    }
1514
1515    // Find the position of the next field to be initialized in this
1516    // subobject.
1517    ++Field;
1518    ++FieldIndex;
1519
1520    // If this the first designator, our caller will continue checking
1521    // the rest of this struct/class/union subobject.
1522    if (IsFirstDesignator) {
1523      if (NextField)
1524        *NextField = Field;
1525      StructuredIndex = FieldIndex;
1526      return false;
1527    }
1528
1529    if (!FinishSubobjectInit)
1530      return false;
1531
1532    // We've already initialized something in the union; we're done.
1533    if (RT->getDecl()->isUnion())
1534      return hadError;
1535
1536    // Check the remaining fields within this class/struct/union subobject.
1537    bool prevHadError = hadError;
1538
1539    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1540                          StructuredList, FieldIndex);
1541    return hadError && !prevHadError;
1542  }
1543
1544  // C99 6.7.8p6:
1545  //
1546  //   If a designator has the form
1547  //
1548  //      [ constant-expression ]
1549  //
1550  //   then the current object (defined below) shall have array
1551  //   type and the expression shall be an integer constant
1552  //   expression. If the array is of unknown size, any
1553  //   nonnegative value is valid.
1554  //
1555  // Additionally, cope with the GNU extension that permits
1556  // designators of the form
1557  //
1558  //      [ constant-expression ... constant-expression ]
1559  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1560  if (!AT) {
1561    SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1562      << CurrentObjectType;
1563    ++Index;
1564    return true;
1565  }
1566
1567  Expr *IndexExpr = 0;
1568  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1569  if (D->isArrayDesignator()) {
1570    IndexExpr = DIE->getArrayIndex(*D);
1571    DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1572    DesignatedEndIndex = DesignatedStartIndex;
1573  } else {
1574    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1575
1576
1577    DesignatedStartIndex =
1578      DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1579    DesignatedEndIndex =
1580      DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1581    IndexExpr = DIE->getArrayRangeEnd(*D);
1582
1583    if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
1584      FullyStructuredList->sawArrayRangeDesignator();
1585  }
1586
1587  if (isa<ConstantArrayType>(AT)) {
1588    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1589    DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1590    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1591    DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1592    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1593    if (DesignatedEndIndex >= MaxElements) {
1594      SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1595                    diag::err_array_designator_too_large)
1596        << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1597        << IndexExpr->getSourceRange();
1598      ++Index;
1599      return true;
1600    }
1601  } else {
1602    // Make sure the bit-widths and signedness match.
1603    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1604      DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1605    else if (DesignatedStartIndex.getBitWidth() <
1606             DesignatedEndIndex.getBitWidth())
1607      DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1608    DesignatedStartIndex.setIsUnsigned(true);
1609    DesignatedEndIndex.setIsUnsigned(true);
1610  }
1611
1612  // Make sure that our non-designated initializer list has space
1613  // for a subobject corresponding to this array element.
1614  if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1615    StructuredList->resizeInits(SemaRef.Context,
1616                                DesignatedEndIndex.getZExtValue() + 1);
1617
1618  // Repeatedly perform subobject initializations in the range
1619  // [DesignatedStartIndex, DesignatedEndIndex].
1620
1621  // Move to the next designator
1622  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1623  unsigned OldIndex = Index;
1624
1625  InitializedEntity ElementEntity =
1626    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1627
1628  while (DesignatedStartIndex <= DesignatedEndIndex) {
1629    // Recurse to check later designated subobjects.
1630    QualType ElementType = AT->getElementType();
1631    Index = OldIndex;
1632
1633    ElementEntity.setElementIndex(ElementIndex);
1634    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
1635                                   ElementType, 0, 0, Index,
1636                                   StructuredList, ElementIndex,
1637                                   (DesignatedStartIndex == DesignatedEndIndex),
1638                                   false))
1639      return true;
1640
1641    // Move to the next index in the array that we'll be initializing.
1642    ++DesignatedStartIndex;
1643    ElementIndex = DesignatedStartIndex.getZExtValue();
1644  }
1645
1646  // If this the first designator, our caller will continue checking
1647  // the rest of this array subobject.
1648  if (IsFirstDesignator) {
1649    if (NextElementIndex)
1650      *NextElementIndex = DesignatedStartIndex;
1651    StructuredIndex = ElementIndex;
1652    return false;
1653  }
1654
1655  if (!FinishSubobjectInit)
1656    return false;
1657
1658  // Check the remaining elements within this array subobject.
1659  bool prevHadError = hadError;
1660  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
1661                 /*SubobjectIsDesignatorContext=*/false, Index,
1662                 StructuredList, ElementIndex);
1663  return hadError && !prevHadError;
1664}
1665
1666// Get the structured initializer list for a subobject of type
1667// @p CurrentObjectType.
1668InitListExpr *
1669InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1670                                            QualType CurrentObjectType,
1671                                            InitListExpr *StructuredList,
1672                                            unsigned StructuredIndex,
1673                                            SourceRange InitRange) {
1674  Expr *ExistingInit = 0;
1675  if (!StructuredList)
1676    ExistingInit = SyntacticToSemantic[IList];
1677  else if (StructuredIndex < StructuredList->getNumInits())
1678    ExistingInit = StructuredList->getInit(StructuredIndex);
1679
1680  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1681    return Result;
1682
1683  if (ExistingInit) {
1684    // We are creating an initializer list that initializes the
1685    // subobjects of the current object, but there was already an
1686    // initialization that completely initialized the current
1687    // subobject, e.g., by a compound literal:
1688    //
1689    // struct X { int a, b; };
1690    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1691    //
1692    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1693    // designated initializer re-initializes the whole
1694    // subobject [0], overwriting previous initializers.
1695    SemaRef.Diag(InitRange.getBegin(),
1696                 diag::warn_subobject_initializer_overrides)
1697      << InitRange;
1698    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1699                  diag::note_previous_initializer)
1700      << /*FIXME:has side effects=*/0
1701      << ExistingInit->getSourceRange();
1702  }
1703
1704  InitListExpr *Result
1705    = new (SemaRef.Context) InitListExpr(InitRange.getBegin(), 0, 0,
1706                                         InitRange.getEnd());
1707
1708  Result->setType(CurrentObjectType.getNonReferenceType());
1709
1710  // Pre-allocate storage for the structured initializer list.
1711  unsigned NumElements = 0;
1712  unsigned NumInits = 0;
1713  if (!StructuredList)
1714    NumInits = IList->getNumInits();
1715  else if (Index < IList->getNumInits()) {
1716    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1717      NumInits = SubList->getNumInits();
1718  }
1719
1720  if (const ArrayType *AType
1721      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1722    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1723      NumElements = CAType->getSize().getZExtValue();
1724      // Simple heuristic so that we don't allocate a very large
1725      // initializer with many empty entries at the end.
1726      if (NumInits && NumElements > NumInits)
1727        NumElements = 0;
1728    }
1729  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
1730    NumElements = VType->getNumElements();
1731  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
1732    RecordDecl *RDecl = RType->getDecl();
1733    if (RDecl->isUnion())
1734      NumElements = 1;
1735    else
1736      NumElements = std::distance(RDecl->field_begin(),
1737                                  RDecl->field_end());
1738  }
1739
1740  if (NumElements < NumInits)
1741    NumElements = IList->getNumInits();
1742
1743  Result->reserveInits(NumElements);
1744
1745  // Link this new initializer list into the structured initializer
1746  // lists.
1747  if (StructuredList)
1748    StructuredList->updateInit(StructuredIndex, Result);
1749  else {
1750    Result->setSyntacticForm(IList);
1751    SyntacticToSemantic[IList] = Result;
1752  }
1753
1754  return Result;
1755}
1756
1757/// Update the initializer at index @p StructuredIndex within the
1758/// structured initializer list to the value @p expr.
1759void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1760                                                  unsigned &StructuredIndex,
1761                                                  Expr *expr) {
1762  // No structured initializer list to update
1763  if (!StructuredList)
1764    return;
1765
1766  if (Expr *PrevInit = StructuredList->updateInit(StructuredIndex, expr)) {
1767    // This initializer overwrites a previous initializer. Warn.
1768    SemaRef.Diag(expr->getSourceRange().getBegin(),
1769                  diag::warn_initializer_overrides)
1770      << expr->getSourceRange();
1771    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1772                  diag::note_previous_initializer)
1773      << /*FIXME:has side effects=*/0
1774      << PrevInit->getSourceRange();
1775  }
1776
1777  ++StructuredIndex;
1778}
1779
1780/// Check that the given Index expression is a valid array designator
1781/// value. This is essentailly just a wrapper around
1782/// VerifyIntegerConstantExpression that also checks for negative values
1783/// and produces a reasonable diagnostic if there is a
1784/// failure. Returns true if there was an error, false otherwise.  If
1785/// everything went okay, Value will receive the value of the constant
1786/// expression.
1787static bool
1788CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1789  SourceLocation Loc = Index->getSourceRange().getBegin();
1790
1791  // Make sure this is an integer constant expression.
1792  if (S.VerifyIntegerConstantExpression(Index, &Value))
1793    return true;
1794
1795  if (Value.isSigned() && Value.isNegative())
1796    return S.Diag(Loc, diag::err_array_designator_negative)
1797      << Value.toString(10) << Index->getSourceRange();
1798
1799  Value.setIsUnsigned(true);
1800  return false;
1801}
1802
1803Sema::OwningExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1804                                                        SourceLocation Loc,
1805                                                        bool GNUSyntax,
1806                                                        OwningExprResult Init) {
1807  typedef DesignatedInitExpr::Designator ASTDesignator;
1808
1809  bool Invalid = false;
1810  llvm::SmallVector<ASTDesignator, 32> Designators;
1811  llvm::SmallVector<Expr *, 32> InitExpressions;
1812
1813  // Build designators and check array designator expressions.
1814  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1815    const Designator &D = Desig.getDesignator(Idx);
1816    switch (D.getKind()) {
1817    case Designator::FieldDesignator:
1818      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1819                                          D.getFieldLoc()));
1820      break;
1821
1822    case Designator::ArrayDesignator: {
1823      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1824      llvm::APSInt IndexValue;
1825      if (!Index->isTypeDependent() &&
1826          !Index->isValueDependent() &&
1827          CheckArrayDesignatorExpr(*this, Index, IndexValue))
1828        Invalid = true;
1829      else {
1830        Designators.push_back(ASTDesignator(InitExpressions.size(),
1831                                            D.getLBracketLoc(),
1832                                            D.getRBracketLoc()));
1833        InitExpressions.push_back(Index);
1834      }
1835      break;
1836    }
1837
1838    case Designator::ArrayRangeDesignator: {
1839      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1840      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1841      llvm::APSInt StartValue;
1842      llvm::APSInt EndValue;
1843      bool StartDependent = StartIndex->isTypeDependent() ||
1844                            StartIndex->isValueDependent();
1845      bool EndDependent = EndIndex->isTypeDependent() ||
1846                          EndIndex->isValueDependent();
1847      if ((!StartDependent &&
1848           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1849          (!EndDependent &&
1850           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1851        Invalid = true;
1852      else {
1853        // Make sure we're comparing values with the same bit width.
1854        if (StartDependent || EndDependent) {
1855          // Nothing to compute.
1856        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1857          EndValue.extend(StartValue.getBitWidth());
1858        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1859          StartValue.extend(EndValue.getBitWidth());
1860
1861        if (!StartDependent && !EndDependent && EndValue < StartValue) {
1862          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1863            << StartValue.toString(10) << EndValue.toString(10)
1864            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1865          Invalid = true;
1866        } else {
1867          Designators.push_back(ASTDesignator(InitExpressions.size(),
1868                                              D.getLBracketLoc(),
1869                                              D.getEllipsisLoc(),
1870                                              D.getRBracketLoc()));
1871          InitExpressions.push_back(StartIndex);
1872          InitExpressions.push_back(EndIndex);
1873        }
1874      }
1875      break;
1876    }
1877    }
1878  }
1879
1880  if (Invalid || Init.isInvalid())
1881    return ExprError();
1882
1883  // Clear out the expressions within the designation.
1884  Desig.ClearExprs(*this);
1885
1886  DesignatedInitExpr *DIE
1887    = DesignatedInitExpr::Create(Context,
1888                                 Designators.data(), Designators.size(),
1889                                 InitExpressions.data(), InitExpressions.size(),
1890                                 Loc, GNUSyntax, Init.takeAs<Expr>());
1891  return Owned(DIE);
1892}
1893
1894bool Sema::CheckInitList(const InitializedEntity &Entity,
1895                         InitListExpr *&InitList, QualType &DeclType) {
1896  InitListChecker CheckInitList(*this, Entity, InitList, DeclType);
1897  if (!CheckInitList.HadError())
1898    InitList = CheckInitList.getFullyStructuredList();
1899
1900  return CheckInitList.HadError();
1901}
1902
1903//===----------------------------------------------------------------------===//
1904// Initialization entity
1905//===----------------------------------------------------------------------===//
1906
1907InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
1908                                     const InitializedEntity &Parent)
1909  : Parent(&Parent), Index(Index)
1910{
1911  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
1912    Kind = EK_ArrayElement;
1913    Type = AT->getElementType();
1914  } else {
1915    Kind = EK_VectorElement;
1916    Type = Parent.getType()->getAs<VectorType>()->getElementType();
1917  }
1918}
1919
1920InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
1921                                                    CXXBaseSpecifier *Base)
1922{
1923  InitializedEntity Result;
1924  Result.Kind = EK_Base;
1925  Result.Base = Base;
1926  Result.Type = Base->getType();
1927  return Result;
1928}
1929
1930DeclarationName InitializedEntity::getName() const {
1931  switch (getKind()) {
1932  case EK_Parameter:
1933    if (!VariableOrMember)
1934      return DeclarationName();
1935    // Fall through
1936
1937  case EK_Variable:
1938  case EK_Member:
1939    return VariableOrMember->getDeclName();
1940
1941  case EK_Result:
1942  case EK_Exception:
1943  case EK_New:
1944  case EK_Temporary:
1945  case EK_Base:
1946  case EK_ArrayElement:
1947  case EK_VectorElement:
1948    return DeclarationName();
1949  }
1950
1951  // Silence GCC warning
1952  return DeclarationName();
1953}
1954
1955DeclaratorDecl *InitializedEntity::getDecl() const {
1956  switch (getKind()) {
1957  case EK_Variable:
1958  case EK_Parameter:
1959  case EK_Member:
1960    return VariableOrMember;
1961
1962  case EK_Result:
1963  case EK_Exception:
1964  case EK_New:
1965  case EK_Temporary:
1966  case EK_Base:
1967  case EK_ArrayElement:
1968  case EK_VectorElement:
1969    return 0;
1970  }
1971
1972  // Silence GCC warning
1973  return 0;
1974}
1975
1976//===----------------------------------------------------------------------===//
1977// Initialization sequence
1978//===----------------------------------------------------------------------===//
1979
1980void InitializationSequence::Step::Destroy() {
1981  switch (Kind) {
1982  case SK_ResolveAddressOfOverloadedFunction:
1983  case SK_CastDerivedToBaseRValue:
1984  case SK_CastDerivedToBaseLValue:
1985  case SK_BindReference:
1986  case SK_BindReferenceToTemporary:
1987  case SK_UserConversion:
1988  case SK_QualificationConversionRValue:
1989  case SK_QualificationConversionLValue:
1990  case SK_ListInitialization:
1991  case SK_ConstructorInitialization:
1992  case SK_ZeroInitialization:
1993  case SK_CAssignment:
1994  case SK_StringInit:
1995    break;
1996
1997  case SK_ConversionSequence:
1998    delete ICS;
1999  }
2000}
2001
2002bool InitializationSequence::isDirectReferenceBinding() const {
2003  return getKind() == ReferenceBinding && Steps.back().Kind == SK_BindReference;
2004}
2005
2006bool InitializationSequence::isAmbiguous() const {
2007  if (getKind() != FailedSequence)
2008    return false;
2009
2010  switch (getFailureKind()) {
2011  case FK_TooManyInitsForReference:
2012  case FK_ArrayNeedsInitList:
2013  case FK_ArrayNeedsInitListOrStringLiteral:
2014  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2015  case FK_NonConstLValueReferenceBindingToTemporary:
2016  case FK_NonConstLValueReferenceBindingToUnrelated:
2017  case FK_RValueReferenceBindingToLValue:
2018  case FK_ReferenceInitDropsQualifiers:
2019  case FK_ReferenceInitFailed:
2020  case FK_ConversionFailed:
2021  case FK_TooManyInitsForScalar:
2022  case FK_ReferenceBindingToInitList:
2023  case FK_InitListBadDestinationType:
2024  case FK_DefaultInitOfConst:
2025    return false;
2026
2027  case FK_ReferenceInitOverloadFailed:
2028  case FK_UserConversionOverloadFailed:
2029  case FK_ConstructorOverloadFailed:
2030    return FailedOverloadResult == OR_Ambiguous;
2031  }
2032
2033  return false;
2034}
2035
2036void InitializationSequence::AddAddressOverloadResolutionStep(
2037                                                      FunctionDecl *Function,
2038                                                      DeclAccessPair Found) {
2039  Step S;
2040  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2041  S.Type = Function->getType();
2042  S.Function.Function = Function;
2043  S.Function.FoundDecl = Found;
2044  Steps.push_back(S);
2045}
2046
2047void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2048                                                      bool IsLValue) {
2049  Step S;
2050  S.Kind = IsLValue? SK_CastDerivedToBaseLValue : SK_CastDerivedToBaseRValue;
2051  S.Type = BaseType;
2052  Steps.push_back(S);
2053}
2054
2055void InitializationSequence::AddReferenceBindingStep(QualType T,
2056                                                     bool BindingTemporary) {
2057  Step S;
2058  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2059  S.Type = T;
2060  Steps.push_back(S);
2061}
2062
2063void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2064                                                   DeclAccessPair FoundDecl,
2065                                                   QualType T) {
2066  Step S;
2067  S.Kind = SK_UserConversion;
2068  S.Type = T;
2069  S.Function.Function = Function;
2070  S.Function.FoundDecl = FoundDecl;
2071  Steps.push_back(S);
2072}
2073
2074void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2075                                                            bool IsLValue) {
2076  Step S;
2077  S.Kind = IsLValue? SK_QualificationConversionLValue
2078                   : SK_QualificationConversionRValue;
2079  S.Type = Ty;
2080  Steps.push_back(S);
2081}
2082
2083void InitializationSequence::AddConversionSequenceStep(
2084                                       const ImplicitConversionSequence &ICS,
2085                                                       QualType T) {
2086  Step S;
2087  S.Kind = SK_ConversionSequence;
2088  S.Type = T;
2089  S.ICS = new ImplicitConversionSequence(ICS);
2090  Steps.push_back(S);
2091}
2092
2093void InitializationSequence::AddListInitializationStep(QualType T) {
2094  Step S;
2095  S.Kind = SK_ListInitialization;
2096  S.Type = T;
2097  Steps.push_back(S);
2098}
2099
2100void
2101InitializationSequence::AddConstructorInitializationStep(
2102                                              CXXConstructorDecl *Constructor,
2103                                                       AccessSpecifier Access,
2104                                                         QualType T) {
2105  Step S;
2106  S.Kind = SK_ConstructorInitialization;
2107  S.Type = T;
2108  S.Function.Function = Constructor;
2109  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2110  Steps.push_back(S);
2111}
2112
2113void InitializationSequence::AddZeroInitializationStep(QualType T) {
2114  Step S;
2115  S.Kind = SK_ZeroInitialization;
2116  S.Type = T;
2117  Steps.push_back(S);
2118}
2119
2120void InitializationSequence::AddCAssignmentStep(QualType T) {
2121  Step S;
2122  S.Kind = SK_CAssignment;
2123  S.Type = T;
2124  Steps.push_back(S);
2125}
2126
2127void InitializationSequence::AddStringInitStep(QualType T) {
2128  Step S;
2129  S.Kind = SK_StringInit;
2130  S.Type = T;
2131  Steps.push_back(S);
2132}
2133
2134void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2135                                                OverloadingResult Result) {
2136  SequenceKind = FailedSequence;
2137  this->Failure = Failure;
2138  this->FailedOverloadResult = Result;
2139}
2140
2141//===----------------------------------------------------------------------===//
2142// Attempt initialization
2143//===----------------------------------------------------------------------===//
2144
2145/// \brief Attempt list initialization (C++0x [dcl.init.list])
2146static void TryListInitialization(Sema &S,
2147                                  const InitializedEntity &Entity,
2148                                  const InitializationKind &Kind,
2149                                  InitListExpr *InitList,
2150                                  InitializationSequence &Sequence) {
2151  // FIXME: We only perform rudimentary checking of list
2152  // initializations at this point, then assume that any list
2153  // initialization of an array, aggregate, or scalar will be
2154  // well-formed. We we actually "perform" list initialization, we'll
2155  // do all of the necessary checking.  C++0x initializer lists will
2156  // force us to perform more checking here.
2157  Sequence.setSequenceKind(InitializationSequence::ListInitialization);
2158
2159  QualType DestType = Entity.getType();
2160
2161  // C++ [dcl.init]p13:
2162  //   If T is a scalar type, then a declaration of the form
2163  //
2164  //     T x = { a };
2165  //
2166  //   is equivalent to
2167  //
2168  //     T x = a;
2169  if (DestType->isScalarType()) {
2170    if (InitList->getNumInits() > 1 && S.getLangOptions().CPlusPlus) {
2171      Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
2172      return;
2173    }
2174
2175    // Assume scalar initialization from a single value works.
2176  } else if (DestType->isAggregateType()) {
2177    // Assume aggregate initialization works.
2178  } else if (DestType->isVectorType()) {
2179    // Assume vector initialization works.
2180  } else if (DestType->isReferenceType()) {
2181    // FIXME: C++0x defines behavior for this.
2182    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2183    return;
2184  } else if (DestType->isRecordType()) {
2185    // FIXME: C++0x defines behavior for this
2186    Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
2187  }
2188
2189  // Add a general "list initialization" step.
2190  Sequence.AddListInitializationStep(DestType);
2191}
2192
2193/// \brief Try a reference initialization that involves calling a conversion
2194/// function.
2195///
2196/// FIXME: look intos DRs 656, 896
2197static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
2198                                             const InitializedEntity &Entity,
2199                                             const InitializationKind &Kind,
2200                                                          Expr *Initializer,
2201                                                          bool AllowRValues,
2202                                             InitializationSequence &Sequence) {
2203  QualType DestType = Entity.getType();
2204  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2205  QualType T1 = cv1T1.getUnqualifiedType();
2206  QualType cv2T2 = Initializer->getType();
2207  QualType T2 = cv2T2.getUnqualifiedType();
2208
2209  bool DerivedToBase;
2210  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
2211                                         T1, T2, DerivedToBase) &&
2212         "Must have incompatible references when binding via conversion");
2213  (void)DerivedToBase;
2214
2215  // Build the candidate set directly in the initialization sequence
2216  // structure, so that it will persist if we fail.
2217  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2218  CandidateSet.clear();
2219
2220  // Determine whether we are allowed to call explicit constructors or
2221  // explicit conversion operators.
2222  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2223
2224  const RecordType *T1RecordType = 0;
2225  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>())) {
2226    // The type we're converting to is a class type. Enumerate its constructors
2227    // to see if there is a suitable conversion.
2228    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
2229
2230    DeclarationName ConstructorName
2231      = S.Context.DeclarationNames.getCXXConstructorName(
2232                           S.Context.getCanonicalType(T1).getUnqualifiedType());
2233    DeclContext::lookup_iterator Con, ConEnd;
2234    for (llvm::tie(Con, ConEnd) = T1RecordDecl->lookup(ConstructorName);
2235         Con != ConEnd; ++Con) {
2236      NamedDecl *D = *Con;
2237      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2238
2239      // Find the constructor (which may be a template).
2240      CXXConstructorDecl *Constructor = 0;
2241      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2242      if (ConstructorTmpl)
2243        Constructor = cast<CXXConstructorDecl>(
2244                                         ConstructorTmpl->getTemplatedDecl());
2245      else
2246        Constructor = cast<CXXConstructorDecl>(D);
2247
2248      if (!Constructor->isInvalidDecl() &&
2249          Constructor->isConvertingConstructor(AllowExplicit)) {
2250        if (ConstructorTmpl)
2251          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2252                                         /*ExplicitArgs*/ 0,
2253                                         &Initializer, 1, CandidateSet);
2254        else
2255          S.AddOverloadCandidate(Constructor, FoundDecl,
2256                                 &Initializer, 1, CandidateSet);
2257      }
2258    }
2259  }
2260
2261  if (const RecordType *T2RecordType = T2->getAs<RecordType>()) {
2262    // The type we're converting from is a class type, enumerate its conversion
2263    // functions.
2264    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
2265
2266    // Determine the type we are converting to. If we are allowed to
2267    // convert to an rvalue, take the type that the destination type
2268    // refers to.
2269    QualType ToType = AllowRValues? cv1T1 : DestType;
2270
2271    const UnresolvedSetImpl *Conversions
2272      = T2RecordDecl->getVisibleConversionFunctions();
2273    for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2274           E = Conversions->end(); I != E; ++I) {
2275      NamedDecl *D = *I;
2276      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2277      if (isa<UsingShadowDecl>(D))
2278        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2279
2280      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2281      CXXConversionDecl *Conv;
2282      if (ConvTemplate)
2283        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2284      else
2285        Conv = cast<CXXConversionDecl>(*I);
2286
2287      // If the conversion function doesn't return a reference type,
2288      // it can't be considered for this conversion unless we're allowed to
2289      // consider rvalues.
2290      // FIXME: Do we need to make sure that we only consider conversion
2291      // candidates with reference-compatible results? That might be needed to
2292      // break recursion.
2293      if ((AllowExplicit || !Conv->isExplicit()) &&
2294          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
2295        if (ConvTemplate)
2296          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2297                                           ActingDC, Initializer,
2298                                           ToType, CandidateSet);
2299        else
2300          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2301                                   Initializer, ToType, CandidateSet);
2302      }
2303    }
2304  }
2305
2306  SourceLocation DeclLoc = Initializer->getLocStart();
2307
2308  // Perform overload resolution. If it fails, return the failed result.
2309  OverloadCandidateSet::iterator Best;
2310  if (OverloadingResult Result
2311        = S.BestViableFunction(CandidateSet, DeclLoc, Best))
2312    return Result;
2313
2314  FunctionDecl *Function = Best->Function;
2315
2316  // Compute the returned type of the conversion.
2317  if (isa<CXXConversionDecl>(Function))
2318    T2 = Function->getResultType();
2319  else
2320    T2 = cv1T1;
2321
2322  // Add the user-defined conversion step.
2323  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
2324                                 T2.getNonReferenceType());
2325
2326  // Determine whether we need to perform derived-to-base or
2327  // cv-qualification adjustments.
2328  bool NewDerivedToBase = false;
2329  Sema::ReferenceCompareResult NewRefRelationship
2330    = S.CompareReferenceRelationship(DeclLoc, T1, T2.getNonReferenceType(),
2331                                     NewDerivedToBase);
2332  if (NewRefRelationship == Sema::Ref_Incompatible) {
2333    // If the type we've converted to is not reference-related to the
2334    // type we're looking for, then there is another conversion step
2335    // we need to perform to produce a temporary of the right type
2336    // that we'll be binding to.
2337    ImplicitConversionSequence ICS;
2338    ICS.setStandard();
2339    ICS.Standard = Best->FinalConversion;
2340    T2 = ICS.Standard.getToType(2);
2341    Sequence.AddConversionSequenceStep(ICS, T2);
2342  } else if (NewDerivedToBase)
2343    Sequence.AddDerivedToBaseCastStep(
2344                                S.Context.getQualifiedType(T1,
2345                                  T2.getNonReferenceType().getQualifiers()),
2346                                  /*isLValue=*/true);
2347
2348  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
2349    Sequence.AddQualificationConversionStep(cv1T1, T2->isReferenceType());
2350
2351  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
2352  return OR_Success;
2353}
2354
2355/// \brief Attempt reference initialization (C++0x [dcl.init.list])
2356static void TryReferenceInitialization(Sema &S,
2357                                       const InitializedEntity &Entity,
2358                                       const InitializationKind &Kind,
2359                                       Expr *Initializer,
2360                                       InitializationSequence &Sequence) {
2361  Sequence.setSequenceKind(InitializationSequence::ReferenceBinding);
2362
2363  QualType DestType = Entity.getType();
2364  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2365  Qualifiers T1Quals;
2366  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2367  QualType cv2T2 = Initializer->getType();
2368  Qualifiers T2Quals;
2369  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
2370  SourceLocation DeclLoc = Initializer->getLocStart();
2371
2372  // If the initializer is the address of an overloaded function, try
2373  // to resolve the overloaded function. If all goes well, T2 is the
2374  // type of the resulting function.
2375  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2376    DeclAccessPair Found;
2377    FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
2378                                                            T1,
2379                                                            false,
2380                                                            Found);
2381    if (!Fn) {
2382      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2383      return;
2384    }
2385
2386    Sequence.AddAddressOverloadResolutionStep(Fn, Found);
2387    cv2T2 = Fn->getType();
2388    T2 = cv2T2.getUnqualifiedType();
2389  }
2390
2391  // FIXME: Rvalue references
2392  bool ForceRValue = false;
2393
2394  // Compute some basic properties of the types and the initializer.
2395  bool isLValueRef = DestType->isLValueReferenceType();
2396  bool isRValueRef = !isLValueRef;
2397  bool DerivedToBase = false;
2398  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2399                                    Initializer->isLvalue(S.Context);
2400  Sema::ReferenceCompareResult RefRelationship
2401    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase);
2402
2403  // C++0x [dcl.init.ref]p5:
2404  //   A reference to type "cv1 T1" is initialized by an expression of type
2405  //   "cv2 T2" as follows:
2406  //
2407  //     - If the reference is an lvalue reference and the initializer
2408  //       expression
2409  OverloadingResult ConvOvlResult = OR_Success;
2410  if (isLValueRef) {
2411    if (InitLvalue == Expr::LV_Valid &&
2412        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2413      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
2414      //     reference-compatible with "cv2 T2," or
2415      //
2416      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
2417      // bit-field when we're determining whether the reference initialization
2418      // can occur. However, we do pay attention to whether it is a bit-field
2419      // to decide whether we're actually binding to a temporary created from
2420      // the bit-field.
2421      if (DerivedToBase)
2422        Sequence.AddDerivedToBaseCastStep(
2423                         S.Context.getQualifiedType(T1, T2Quals),
2424                         /*isLValue=*/true);
2425      if (T1Quals != T2Quals)
2426        Sequence.AddQualificationConversionStep(cv1T1, /*IsLValue=*/true);
2427      bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
2428        (Initializer->getBitField() || Initializer->refersToVectorElement());
2429      Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
2430      return;
2431    }
2432
2433    //     - has a class type (i.e., T2 is a class type), where T1 is not
2434    //       reference-related to T2, and can be implicitly converted to an
2435    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
2436    //       with "cv3 T3" (this conversion is selected by enumerating the
2437    //       applicable conversion functions (13.3.1.6) and choosing the best
2438    //       one through overload resolution (13.3)),
2439    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType()) {
2440      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
2441                                                       Initializer,
2442                                                       /*AllowRValues=*/false,
2443                                                       Sequence);
2444      if (ConvOvlResult == OR_Success)
2445        return;
2446      if (ConvOvlResult != OR_No_Viable_Function) {
2447        Sequence.SetOverloadFailure(
2448                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2449                                    ConvOvlResult);
2450      }
2451    }
2452  }
2453
2454  //     - Otherwise, the reference shall be an lvalue reference to a
2455  //       non-volatile const type (i.e., cv1 shall be const), or the reference
2456  //       shall be an rvalue reference and the initializer expression shall
2457  //       be an rvalue.
2458  if (!((isLValueRef && T1Quals.hasConst() && !T1Quals.hasVolatile()) ||
2459        (isRValueRef && InitLvalue != Expr::LV_Valid))) {
2460    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2461      Sequence.SetOverloadFailure(
2462                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2463                                  ConvOvlResult);
2464    else if (isLValueRef)
2465      Sequence.SetFailed(InitLvalue == Expr::LV_Valid
2466        ? (RefRelationship == Sema::Ref_Related
2467             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
2468             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
2469        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
2470    else
2471      Sequence.SetFailed(
2472                    InitializationSequence::FK_RValueReferenceBindingToLValue);
2473
2474    return;
2475  }
2476
2477  //       - If T1 and T2 are class types and
2478  if (T1->isRecordType() && T2->isRecordType()) {
2479    //       - the initializer expression is an rvalue and "cv1 T1" is
2480    //         reference-compatible with "cv2 T2", or
2481    if (InitLvalue != Expr::LV_Valid &&
2482        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2483      if (DerivedToBase)
2484        Sequence.AddDerivedToBaseCastStep(
2485                         S.Context.getQualifiedType(T1, T2Quals),
2486                         /*isLValue=*/false);
2487      if (T1Quals != T2Quals)
2488        Sequence.AddQualificationConversionStep(cv1T1, /*IsLValue=*/false);
2489      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2490      return;
2491    }
2492
2493    //       - T1 is not reference-related to T2 and the initializer expression
2494    //         can be implicitly converted to an rvalue of type "cv3 T3" (this
2495    //         conversion is selected by enumerating the applicable conversion
2496    //         functions (13.3.1.6) and choosing the best one through overload
2497    //         resolution (13.3)),
2498    if (RefRelationship == Sema::Ref_Incompatible) {
2499      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
2500                                                       Kind, Initializer,
2501                                                       /*AllowRValues=*/true,
2502                                                       Sequence);
2503      if (ConvOvlResult)
2504        Sequence.SetOverloadFailure(
2505                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2506                                    ConvOvlResult);
2507
2508      return;
2509    }
2510
2511    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2512    return;
2513  }
2514
2515  //      - If the initializer expression is an rvalue, with T2 an array type,
2516  //        and "cv1 T1" is reference-compatible with "cv2 T2," the reference
2517  //        is bound to the object represented by the rvalue (see 3.10).
2518  // FIXME: How can an array type be reference-compatible with anything?
2519  // Don't we mean the element types of T1 and T2?
2520
2521  //      - Otherwise, a temporary of type “cv1 T1” is created and initialized
2522  //        from the initializer expression using the rules for a non-reference
2523  //        copy initialization (8.5). The reference is then bound to the
2524  //        temporary. [...]
2525  // Determine whether we are allowed to call explicit constructors or
2526  // explicit conversion operators.
2527  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
2528  ImplicitConversionSequence ICS
2529    = S.TryImplicitConversion(Initializer, cv1T1,
2530                              /*SuppressUserConversions=*/false, AllowExplicit,
2531                              /*ForceRValue=*/false,
2532                              /*FIXME:InOverloadResolution=*/false,
2533                              /*UserCast=*/Kind.isExplicitCast());
2534
2535  if (ICS.isBad()) {
2536    // FIXME: Use the conversion function set stored in ICS to turn
2537    // this into an overloading ambiguity diagnostic. However, we need
2538    // to keep that set as an OverloadCandidateSet rather than as some
2539    // other kind of set.
2540    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2541      Sequence.SetOverloadFailure(
2542                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2543                                  ConvOvlResult);
2544    else
2545      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
2546    return;
2547  }
2548
2549  //        [...] If T1 is reference-related to T2, cv1 must be the
2550  //        same cv-qualification as, or greater cv-qualification
2551  //        than, cv2; otherwise, the program is ill-formed.
2552  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
2553  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
2554  if (RefRelationship == Sema::Ref_Related &&
2555      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
2556    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2557    return;
2558  }
2559
2560  // Perform the actual conversion.
2561  Sequence.AddConversionSequenceStep(ICS, cv1T1);
2562  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2563  return;
2564}
2565
2566/// \brief Attempt character array initialization from a string literal
2567/// (C++ [dcl.init.string], C99 6.7.8).
2568static void TryStringLiteralInitialization(Sema &S,
2569                                           const InitializedEntity &Entity,
2570                                           const InitializationKind &Kind,
2571                                           Expr *Initializer,
2572                                       InitializationSequence &Sequence) {
2573  Sequence.setSequenceKind(InitializationSequence::StringInit);
2574  Sequence.AddStringInitStep(Entity.getType());
2575}
2576
2577/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2578/// enumerates the constructors of the initialized entity and performs overload
2579/// resolution to select the best.
2580static void TryConstructorInitialization(Sema &S,
2581                                         const InitializedEntity &Entity,
2582                                         const InitializationKind &Kind,
2583                                         Expr **Args, unsigned NumArgs,
2584                                         QualType DestType,
2585                                         InitializationSequence &Sequence) {
2586  Sequence.setSequenceKind(InitializationSequence::ConstructorInitialization);
2587
2588  // Build the candidate set directly in the initialization sequence
2589  // structure, so that it will persist if we fail.
2590  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2591  CandidateSet.clear();
2592
2593  // Determine whether we are allowed to call explicit constructors or
2594  // explicit conversion operators.
2595  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
2596                        Kind.getKind() == InitializationKind::IK_Value ||
2597                        Kind.getKind() == InitializationKind::IK_Default);
2598
2599  // The type we're converting to is a class type. Enumerate its constructors
2600  // to see if one is suitable.
2601  const RecordType *DestRecordType = DestType->getAs<RecordType>();
2602  assert(DestRecordType && "Constructor initialization requires record type");
2603  CXXRecordDecl *DestRecordDecl
2604    = cast<CXXRecordDecl>(DestRecordType->getDecl());
2605
2606  DeclarationName ConstructorName
2607    = S.Context.DeclarationNames.getCXXConstructorName(
2608                     S.Context.getCanonicalType(DestType).getUnqualifiedType());
2609  DeclContext::lookup_iterator Con, ConEnd;
2610  for (llvm::tie(Con, ConEnd) = DestRecordDecl->lookup(ConstructorName);
2611       Con != ConEnd; ++Con) {
2612    NamedDecl *D = *Con;
2613    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2614
2615    // Find the constructor (which may be a template).
2616    CXXConstructorDecl *Constructor = 0;
2617    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2618    if (ConstructorTmpl)
2619      Constructor = cast<CXXConstructorDecl>(
2620                                           ConstructorTmpl->getTemplatedDecl());
2621    else
2622      Constructor = cast<CXXConstructorDecl>(D);
2623
2624    if (!Constructor->isInvalidDecl() &&
2625        (AllowExplicit || !Constructor->isExplicit())) {
2626      if (ConstructorTmpl)
2627        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2628                                       /*ExplicitArgs*/ 0,
2629                                       Args, NumArgs, CandidateSet);
2630      else
2631        S.AddOverloadCandidate(Constructor, FoundDecl,
2632                               Args, NumArgs, CandidateSet);
2633    }
2634  }
2635
2636  SourceLocation DeclLoc = Kind.getLocation();
2637
2638  // Perform overload resolution. If it fails, return the failed result.
2639  OverloadCandidateSet::iterator Best;
2640  if (OverloadingResult Result
2641        = S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2642    Sequence.SetOverloadFailure(
2643                          InitializationSequence::FK_ConstructorOverloadFailed,
2644                                Result);
2645    return;
2646  }
2647
2648  // C++0x [dcl.init]p6:
2649  //   If a program calls for the default initialization of an object
2650  //   of a const-qualified type T, T shall be a class type with a
2651  //   user-provided default constructor.
2652  if (Kind.getKind() == InitializationKind::IK_Default &&
2653      Entity.getType().isConstQualified() &&
2654      cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
2655    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2656    return;
2657  }
2658
2659  // Add the constructor initialization step. Any cv-qualification conversion is
2660  // subsumed by the initialization.
2661  Sequence.AddConstructorInitializationStep(
2662                                      cast<CXXConstructorDecl>(Best->Function),
2663                                      Best->FoundDecl.getAccess(),
2664                                      DestType);
2665}
2666
2667/// \brief Attempt value initialization (C++ [dcl.init]p7).
2668static void TryValueInitialization(Sema &S,
2669                                   const InitializedEntity &Entity,
2670                                   const InitializationKind &Kind,
2671                                   InitializationSequence &Sequence) {
2672  // C++ [dcl.init]p5:
2673  //
2674  //   To value-initialize an object of type T means:
2675  QualType T = Entity.getType();
2676
2677  //     -- if T is an array type, then each element is value-initialized;
2678  while (const ArrayType *AT = S.Context.getAsArrayType(T))
2679    T = AT->getElementType();
2680
2681  if (const RecordType *RT = T->getAs<RecordType>()) {
2682    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2683      // -- if T is a class type (clause 9) with a user-declared
2684      //    constructor (12.1), then the default constructor for T is
2685      //    called (and the initialization is ill-formed if T has no
2686      //    accessible default constructor);
2687      //
2688      // FIXME: we really want to refer to a single subobject of the array,
2689      // but Entity doesn't have a way to capture that (yet).
2690      if (ClassDecl->hasUserDeclaredConstructor())
2691        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2692
2693      // -- if T is a (possibly cv-qualified) non-union class type
2694      //    without a user-provided constructor, then the object is
2695      //    zero-initialized and, if T’s implicitly-declared default
2696      //    constructor is non-trivial, that constructor is called.
2697      if ((ClassDecl->getTagKind() == TagDecl::TK_class ||
2698           ClassDecl->getTagKind() == TagDecl::TK_struct) &&
2699          !ClassDecl->hasTrivialConstructor()) {
2700        Sequence.AddZeroInitializationStep(Entity.getType());
2701        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2702      }
2703    }
2704  }
2705
2706  Sequence.AddZeroInitializationStep(Entity.getType());
2707  Sequence.setSequenceKind(InitializationSequence::ZeroInitialization);
2708}
2709
2710/// \brief Attempt default initialization (C++ [dcl.init]p6).
2711static void TryDefaultInitialization(Sema &S,
2712                                     const InitializedEntity &Entity,
2713                                     const InitializationKind &Kind,
2714                                     InitializationSequence &Sequence) {
2715  assert(Kind.getKind() == InitializationKind::IK_Default);
2716
2717  // C++ [dcl.init]p6:
2718  //   To default-initialize an object of type T means:
2719  //     - if T is an array type, each element is default-initialized;
2720  QualType DestType = Entity.getType();
2721  while (const ArrayType *Array = S.Context.getAsArrayType(DestType))
2722    DestType = Array->getElementType();
2723
2724  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
2725  //       constructor for T is called (and the initialization is ill-formed if
2726  //       T has no accessible default constructor);
2727  if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
2728    return TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType,
2729                                        Sequence);
2730  }
2731
2732  //     - otherwise, no initialization is performed.
2733  Sequence.setSequenceKind(InitializationSequence::NoInitialization);
2734
2735  //   If a program calls for the default initialization of an object of
2736  //   a const-qualified type T, T shall be a class type with a user-provided
2737  //   default constructor.
2738  if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus)
2739    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2740}
2741
2742/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
2743/// which enumerates all conversion functions and performs overload resolution
2744/// to select the best.
2745static void TryUserDefinedConversion(Sema &S,
2746                                     const InitializedEntity &Entity,
2747                                     const InitializationKind &Kind,
2748                                     Expr *Initializer,
2749                                     InitializationSequence &Sequence) {
2750  Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
2751
2752  QualType DestType = Entity.getType();
2753  assert(!DestType->isReferenceType() && "References are handled elsewhere");
2754  QualType SourceType = Initializer->getType();
2755  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
2756         "Must have a class type to perform a user-defined conversion");
2757
2758  // Build the candidate set directly in the initialization sequence
2759  // structure, so that it will persist if we fail.
2760  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2761  CandidateSet.clear();
2762
2763  // Determine whether we are allowed to call explicit constructors or
2764  // explicit conversion operators.
2765  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2766
2767  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
2768    // The type we're converting to is a class type. Enumerate its constructors
2769    // to see if there is a suitable conversion.
2770    CXXRecordDecl *DestRecordDecl
2771      = cast<CXXRecordDecl>(DestRecordType->getDecl());
2772
2773    DeclarationName ConstructorName
2774      = S.Context.DeclarationNames.getCXXConstructorName(
2775                     S.Context.getCanonicalType(DestType).getUnqualifiedType());
2776    DeclContext::lookup_iterator Con, ConEnd;
2777    for (llvm::tie(Con, ConEnd) = DestRecordDecl->lookup(ConstructorName);
2778         Con != ConEnd; ++Con) {
2779      NamedDecl *D = *Con;
2780      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2781
2782      // Find the constructor (which may be a template).
2783      CXXConstructorDecl *Constructor = 0;
2784      FunctionTemplateDecl *ConstructorTmpl
2785        = dyn_cast<FunctionTemplateDecl>(D);
2786      if (ConstructorTmpl)
2787        Constructor = cast<CXXConstructorDecl>(
2788                                           ConstructorTmpl->getTemplatedDecl());
2789      else
2790        Constructor = cast<CXXConstructorDecl>(D);
2791
2792      if (!Constructor->isInvalidDecl() &&
2793          Constructor->isConvertingConstructor(AllowExplicit)) {
2794        if (ConstructorTmpl)
2795          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2796                                         /*ExplicitArgs*/ 0,
2797                                         &Initializer, 1, CandidateSet);
2798        else
2799          S.AddOverloadCandidate(Constructor, FoundDecl,
2800                                 &Initializer, 1, CandidateSet);
2801      }
2802    }
2803  }
2804
2805  SourceLocation DeclLoc = Initializer->getLocStart();
2806
2807  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
2808    // The type we're converting from is a class type, enumerate its conversion
2809    // functions.
2810
2811    // We can only enumerate the conversion functions for a complete type; if
2812    // the type isn't complete, simply skip this step.
2813    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
2814      CXXRecordDecl *SourceRecordDecl
2815        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
2816
2817      const UnresolvedSetImpl *Conversions
2818        = SourceRecordDecl->getVisibleConversionFunctions();
2819      for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2820           E = Conversions->end();
2821           I != E; ++I) {
2822        NamedDecl *D = *I;
2823        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2824        if (isa<UsingShadowDecl>(D))
2825          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2826
2827        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2828        CXXConversionDecl *Conv;
2829        if (ConvTemplate)
2830          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2831        else
2832          Conv = cast<CXXConversionDecl>(D);
2833
2834        if (AllowExplicit || !Conv->isExplicit()) {
2835          if (ConvTemplate)
2836            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2837                                             ActingDC, Initializer, DestType,
2838                                             CandidateSet);
2839          else
2840            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2841                                     Initializer, DestType, CandidateSet);
2842        }
2843      }
2844    }
2845  }
2846
2847  // Perform overload resolution. If it fails, return the failed result.
2848  OverloadCandidateSet::iterator Best;
2849  if (OverloadingResult Result
2850        = S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2851    Sequence.SetOverloadFailure(
2852                        InitializationSequence::FK_UserConversionOverloadFailed,
2853                                Result);
2854    return;
2855  }
2856
2857  FunctionDecl *Function = Best->Function;
2858
2859  if (isa<CXXConstructorDecl>(Function)) {
2860    // Add the user-defined conversion step. Any cv-qualification conversion is
2861    // subsumed by the initialization.
2862    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
2863    return;
2864  }
2865
2866  // Add the user-defined conversion step that calls the conversion function.
2867  QualType ConvType = Function->getResultType().getNonReferenceType();
2868  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType);
2869
2870  // If the conversion following the call to the conversion function is
2871  // interesting, add it as a separate step.
2872  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
2873      Best->FinalConversion.Third) {
2874    ImplicitConversionSequence ICS;
2875    ICS.setStandard();
2876    ICS.Standard = Best->FinalConversion;
2877    Sequence.AddConversionSequenceStep(ICS, DestType);
2878  }
2879}
2880
2881/// \brief Attempt an implicit conversion (C++ [conv]) converting from one
2882/// non-class type to another.
2883static void TryImplicitConversion(Sema &S,
2884                                  const InitializedEntity &Entity,
2885                                  const InitializationKind &Kind,
2886                                  Expr *Initializer,
2887                                  InitializationSequence &Sequence) {
2888  ImplicitConversionSequence ICS
2889    = S.TryImplicitConversion(Initializer, Entity.getType(),
2890                              /*SuppressUserConversions=*/true,
2891                              /*AllowExplicit=*/false,
2892                              /*ForceRValue=*/false,
2893                              /*FIXME:InOverloadResolution=*/false,
2894                              /*UserCast=*/Kind.isExplicitCast());
2895
2896  if (ICS.isBad()) {
2897    Sequence.SetFailed(InitializationSequence::FK_ConversionFailed);
2898    return;
2899  }
2900
2901  Sequence.AddConversionSequenceStep(ICS, Entity.getType());
2902}
2903
2904InitializationSequence::InitializationSequence(Sema &S,
2905                                               const InitializedEntity &Entity,
2906                                               const InitializationKind &Kind,
2907                                               Expr **Args,
2908                                               unsigned NumArgs)
2909    : FailedCandidateSet(Kind.getLocation()) {
2910  ASTContext &Context = S.Context;
2911
2912  // C++0x [dcl.init]p16:
2913  //   The semantics of initializers are as follows. The destination type is
2914  //   the type of the object or reference being initialized and the source
2915  //   type is the type of the initializer expression. The source type is not
2916  //   defined when the initializer is a braced-init-list or when it is a
2917  //   parenthesized list of expressions.
2918  QualType DestType = Entity.getType();
2919
2920  if (DestType->isDependentType() ||
2921      Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
2922    SequenceKind = DependentSequence;
2923    return;
2924  }
2925
2926  QualType SourceType;
2927  Expr *Initializer = 0;
2928  if (NumArgs == 1) {
2929    Initializer = Args[0];
2930    if (!isa<InitListExpr>(Initializer))
2931      SourceType = Initializer->getType();
2932  }
2933
2934  //     - If the initializer is a braced-init-list, the object is
2935  //       list-initialized (8.5.4).
2936  if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
2937    TryListInitialization(S, Entity, Kind, InitList, *this);
2938    return;
2939  }
2940
2941  //     - If the destination type is a reference type, see 8.5.3.
2942  if (DestType->isReferenceType()) {
2943    // C++0x [dcl.init.ref]p1:
2944    //   A variable declared to be a T& or T&&, that is, "reference to type T"
2945    //   (8.3.2), shall be initialized by an object, or function, of type T or
2946    //   by an object that can be converted into a T.
2947    // (Therefore, multiple arguments are not permitted.)
2948    if (NumArgs != 1)
2949      SetFailed(FK_TooManyInitsForReference);
2950    else
2951      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
2952    return;
2953  }
2954
2955  //     - If the destination type is an array of characters, an array of
2956  //       char16_t, an array of char32_t, or an array of wchar_t, and the
2957  //       initializer is a string literal, see 8.5.2.
2958  if (Initializer && IsStringInit(Initializer, DestType, Context)) {
2959    TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
2960    return;
2961  }
2962
2963  //     - If the initializer is (), the object is value-initialized.
2964  if (Kind.getKind() == InitializationKind::IK_Value ||
2965      (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
2966    TryValueInitialization(S, Entity, Kind, *this);
2967    return;
2968  }
2969
2970  // Handle default initialization.
2971  if (Kind.getKind() == InitializationKind::IK_Default){
2972    TryDefaultInitialization(S, Entity, Kind, *this);
2973    return;
2974  }
2975
2976  //     - Otherwise, if the destination type is an array, the program is
2977  //       ill-formed.
2978  if (const ArrayType *AT = Context.getAsArrayType(DestType)) {
2979    if (AT->getElementType()->isAnyCharacterType())
2980      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
2981    else
2982      SetFailed(FK_ArrayNeedsInitList);
2983
2984    return;
2985  }
2986
2987  // Handle initialization in C
2988  if (!S.getLangOptions().CPlusPlus) {
2989    setSequenceKind(CAssignment);
2990    AddCAssignmentStep(DestType);
2991    return;
2992  }
2993
2994  //     - If the destination type is a (possibly cv-qualified) class type:
2995  if (DestType->isRecordType()) {
2996    //     - If the initialization is direct-initialization, or if it is
2997    //       copy-initialization where the cv-unqualified version of the
2998    //       source type is the same class as, or a derived class of, the
2999    //       class of the destination, constructors are considered. [...]
3000    if (Kind.getKind() == InitializationKind::IK_Direct ||
3001        (Kind.getKind() == InitializationKind::IK_Copy &&
3002         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
3003          S.IsDerivedFrom(SourceType, DestType))))
3004      TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
3005                                   Entity.getType(), *this);
3006    //     - Otherwise (i.e., for the remaining copy-initialization cases),
3007    //       user-defined conversion sequences that can convert from the source
3008    //       type to the destination type or (when a conversion function is
3009    //       used) to a derived class thereof are enumerated as described in
3010    //       13.3.1.4, and the best one is chosen through overload resolution
3011    //       (13.3).
3012    else
3013      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3014    return;
3015  }
3016
3017  if (NumArgs > 1) {
3018    SetFailed(FK_TooManyInitsForScalar);
3019    return;
3020  }
3021  assert(NumArgs == 1 && "Zero-argument case handled above");
3022
3023  //    - Otherwise, if the source type is a (possibly cv-qualified) class
3024  //      type, conversion functions are considered.
3025  if (!SourceType.isNull() && SourceType->isRecordType()) {
3026    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3027    return;
3028  }
3029
3030  //    - Otherwise, the initial value of the object being initialized is the
3031  //      (possibly converted) value of the initializer expression. Standard
3032  //      conversions (Clause 4) will be used, if necessary, to convert the
3033  //      initializer expression to the cv-unqualified version of the
3034  //      destination type; no user-defined conversions are considered.
3035  setSequenceKind(StandardConversion);
3036  TryImplicitConversion(S, Entity, Kind, Initializer, *this);
3037}
3038
3039InitializationSequence::~InitializationSequence() {
3040  for (llvm::SmallVectorImpl<Step>::iterator Step = Steps.begin(),
3041                                          StepEnd = Steps.end();
3042       Step != StepEnd; ++Step)
3043    Step->Destroy();
3044}
3045
3046//===----------------------------------------------------------------------===//
3047// Perform initialization
3048//===----------------------------------------------------------------------===//
3049static Sema::AssignmentAction
3050getAssignmentAction(const InitializedEntity &Entity) {
3051  switch(Entity.getKind()) {
3052  case InitializedEntity::EK_Variable:
3053  case InitializedEntity::EK_New:
3054    return Sema::AA_Initializing;
3055
3056  case InitializedEntity::EK_Parameter:
3057    // FIXME: Can we tell when we're sending vs. passing?
3058    return Sema::AA_Passing;
3059
3060  case InitializedEntity::EK_Result:
3061    return Sema::AA_Returning;
3062
3063  case InitializedEntity::EK_Exception:
3064  case InitializedEntity::EK_Base:
3065    llvm_unreachable("No assignment action for C++-specific initialization");
3066    break;
3067
3068  case InitializedEntity::EK_Temporary:
3069    // FIXME: Can we tell apart casting vs. converting?
3070    return Sema::AA_Casting;
3071
3072  case InitializedEntity::EK_Member:
3073  case InitializedEntity::EK_ArrayElement:
3074  case InitializedEntity::EK_VectorElement:
3075    return Sema::AA_Initializing;
3076  }
3077
3078  return Sema::AA_Converting;
3079}
3080
3081static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
3082  switch (Entity.getKind()) {
3083  case InitializedEntity::EK_ArrayElement:
3084  case InitializedEntity::EK_Member:
3085  case InitializedEntity::EK_Result:
3086  case InitializedEntity::EK_New:
3087  case InitializedEntity::EK_Variable:
3088  case InitializedEntity::EK_Base:
3089  case InitializedEntity::EK_VectorElement:
3090  case InitializedEntity::EK_Exception:
3091    return false;
3092
3093  case InitializedEntity::EK_Parameter:
3094  case InitializedEntity::EK_Temporary:
3095    return true;
3096  }
3097
3098  llvm_unreachable("missed an InitializedEntity kind?");
3099}
3100
3101static Sema::OwningExprResult CopyObject(Sema &S,
3102                                         const InitializedEntity &Entity,
3103                                         const InitializationKind &Kind,
3104                                         Sema::OwningExprResult CurInit) {
3105  // Determine which class type we're copying.
3106  Expr *CurInitExpr = (Expr *)CurInit.get();
3107  CXXRecordDecl *Class = 0;
3108  if (const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>())
3109    Class = cast<CXXRecordDecl>(Record->getDecl());
3110  if (!Class)
3111    return move(CurInit);
3112
3113  // C++0x [class.copy]p34:
3114  //   When certain criteria are met, an implementation is allowed to
3115  //   omit the copy/move construction of a class object, even if the
3116  //   copy/move constructor and/or destructor for the object have
3117  //   side effects. [...]
3118  //     - when a temporary class object that has not been bound to a
3119  //       reference (12.2) would be copied/moved to a class object
3120  //       with the same cv-unqualified type, the copy/move operation
3121  //       can be omitted by constructing the temporary object
3122  //       directly into the target of the omitted copy/move
3123  //
3124  // Note that the other three bullets are handled elsewhere. Copy
3125  // elision for return statements and throw expressions are (FIXME:
3126  // not yet) handled as part of constructor initialization, while
3127  // copy elision for exception handlers is handled by the run-time.
3128  bool Elidable = CurInitExpr->isTemporaryObject() &&
3129    S.Context.hasSameUnqualifiedType(Entity.getType(), CurInitExpr->getType());
3130  SourceLocation Loc;
3131  switch (Entity.getKind()) {
3132  case InitializedEntity::EK_Result:
3133    Loc = Entity.getReturnLoc();
3134    break;
3135
3136  case InitializedEntity::EK_Exception:
3137    Loc = Entity.getThrowLoc();
3138    break;
3139
3140  case InitializedEntity::EK_Variable:
3141    Loc = Entity.getDecl()->getLocation();
3142    break;
3143
3144  case InitializedEntity::EK_ArrayElement:
3145  case InitializedEntity::EK_Member:
3146  case InitializedEntity::EK_Parameter:
3147  case InitializedEntity::EK_Temporary:
3148  case InitializedEntity::EK_New:
3149  case InitializedEntity::EK_Base:
3150  case InitializedEntity::EK_VectorElement:
3151    Loc = CurInitExpr->getLocStart();
3152    break;
3153  }
3154
3155  // Perform overload resolution using the class's copy constructors.
3156  DeclarationName ConstructorName
3157    = S.Context.DeclarationNames.getCXXConstructorName(
3158                  S.Context.getCanonicalType(S.Context.getTypeDeclType(Class)));
3159  DeclContext::lookup_iterator Con, ConEnd;
3160  OverloadCandidateSet CandidateSet(Loc);
3161  for (llvm::tie(Con, ConEnd) = Class->lookup(ConstructorName);
3162       Con != ConEnd; ++Con) {
3163    // Only consider copy constructors.
3164    CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(*Con);
3165    if (!Constructor || Constructor->isInvalidDecl() ||
3166        !Constructor->isCopyConstructor())
3167      continue;
3168
3169    DeclAccessPair FoundDecl
3170      = DeclAccessPair::make(Constructor, Constructor->getAccess());
3171    S.AddOverloadCandidate(Constructor, FoundDecl,
3172                           &CurInitExpr, 1, CandidateSet);
3173  }
3174
3175  OverloadCandidateSet::iterator Best;
3176  switch (S.BestViableFunction(CandidateSet, Loc, Best)) {
3177  case OR_Success:
3178    break;
3179
3180  case OR_No_Viable_Function:
3181    S.Diag(Loc, diag::err_temp_copy_no_viable)
3182      << (int)Entity.getKind() << CurInitExpr->getType()
3183      << CurInitExpr->getSourceRange();
3184    S.PrintOverloadCandidates(CandidateSet, Sema::OCD_AllCandidates,
3185                              &CurInitExpr, 1);
3186    return S.ExprError();
3187
3188  case OR_Ambiguous:
3189    S.Diag(Loc, diag::err_temp_copy_ambiguous)
3190      << (int)Entity.getKind() << CurInitExpr->getType()
3191      << CurInitExpr->getSourceRange();
3192    S.PrintOverloadCandidates(CandidateSet, Sema::OCD_ViableCandidates,
3193                              &CurInitExpr, 1);
3194    return S.ExprError();
3195
3196  case OR_Deleted:
3197    S.Diag(Loc, diag::err_temp_copy_deleted)
3198      << (int)Entity.getKind() << CurInitExpr->getType()
3199      << CurInitExpr->getSourceRange();
3200    S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3201      << Best->Function->isDeleted();
3202    return S.ExprError();
3203  }
3204
3205  S.CheckConstructorAccess(Loc,
3206                           cast<CXXConstructorDecl>(Best->Function),
3207                           Best->FoundDecl.getAccess());
3208
3209  CurInit.release();
3210  return S.BuildCXXConstructExpr(Loc, Entity.getType().getNonReferenceType(),
3211                                 cast<CXXConstructorDecl>(Best->Function),
3212                                 Elidable,
3213                                 Sema::MultiExprArg(S,
3214                                                    (void**)&CurInitExpr, 1));
3215}
3216
3217Action::OwningExprResult
3218InitializationSequence::Perform(Sema &S,
3219                                const InitializedEntity &Entity,
3220                                const InitializationKind &Kind,
3221                                Action::MultiExprArg Args,
3222                                QualType *ResultType) {
3223  if (SequenceKind == FailedSequence) {
3224    unsigned NumArgs = Args.size();
3225    Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
3226    return S.ExprError();
3227  }
3228
3229  if (SequenceKind == DependentSequence) {
3230    // If the declaration is a non-dependent, incomplete array type
3231    // that has an initializer, then its type will be completed once
3232    // the initializer is instantiated.
3233    if (ResultType && !Entity.getType()->isDependentType() &&
3234        Args.size() == 1) {
3235      QualType DeclType = Entity.getType();
3236      if (const IncompleteArrayType *ArrayT
3237                           = S.Context.getAsIncompleteArrayType(DeclType)) {
3238        // FIXME: We don't currently have the ability to accurately
3239        // compute the length of an initializer list without
3240        // performing full type-checking of the initializer list
3241        // (since we have to determine where braces are implicitly
3242        // introduced and such).  So, we fall back to making the array
3243        // type a dependently-sized array type with no specified
3244        // bound.
3245        if (isa<InitListExpr>((Expr *)Args.get()[0])) {
3246          SourceRange Brackets;
3247
3248          // Scavange the location of the brackets from the entity, if we can.
3249          if (DeclaratorDecl *DD = Entity.getDecl()) {
3250            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
3251              TypeLoc TL = TInfo->getTypeLoc();
3252              if (IncompleteArrayTypeLoc *ArrayLoc
3253                                      = dyn_cast<IncompleteArrayTypeLoc>(&TL))
3254              Brackets = ArrayLoc->getBracketsRange();
3255            }
3256          }
3257
3258          *ResultType
3259            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
3260                                                   /*NumElts=*/0,
3261                                                   ArrayT->getSizeModifier(),
3262                                       ArrayT->getIndexTypeCVRQualifiers(),
3263                                                   Brackets);
3264        }
3265
3266      }
3267    }
3268
3269    if (Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast())
3270      return Sema::OwningExprResult(S, Args.release()[0]);
3271
3272    if (Args.size() == 0)
3273      return S.Owned((Expr *)0);
3274
3275    unsigned NumArgs = Args.size();
3276    return S.Owned(new (S.Context) ParenListExpr(S.Context,
3277                                                 SourceLocation(),
3278                                                 (Expr **)Args.release(),
3279                                                 NumArgs,
3280                                                 SourceLocation()));
3281  }
3282
3283  if (SequenceKind == NoInitialization)
3284    return S.Owned((Expr *)0);
3285
3286  QualType DestType = Entity.getType().getNonReferenceType();
3287  // FIXME: Ugly hack around the fact that Entity.getType() is not
3288  // the same as Entity.getDecl()->getType() in cases involving type merging,
3289  //  and we want latter when it makes sense.
3290  if (ResultType)
3291    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
3292                                     Entity.getType();
3293
3294  Sema::OwningExprResult CurInit = S.Owned((Expr *)0);
3295
3296  assert(!Steps.empty() && "Cannot have an empty initialization sequence");
3297
3298  // For initialization steps that start with a single initializer,
3299  // grab the only argument out the Args and place it into the "current"
3300  // initializer.
3301  switch (Steps.front().Kind) {
3302  case SK_ResolveAddressOfOverloadedFunction:
3303  case SK_CastDerivedToBaseRValue:
3304  case SK_CastDerivedToBaseLValue:
3305  case SK_BindReference:
3306  case SK_BindReferenceToTemporary:
3307  case SK_UserConversion:
3308  case SK_QualificationConversionLValue:
3309  case SK_QualificationConversionRValue:
3310  case SK_ConversionSequence:
3311  case SK_ListInitialization:
3312  case SK_CAssignment:
3313  case SK_StringInit:
3314    assert(Args.size() == 1);
3315    CurInit = Sema::OwningExprResult(S, ((Expr **)(Args.get()))[0]->Retain());
3316    if (CurInit.isInvalid())
3317      return S.ExprError();
3318    break;
3319
3320  case SK_ConstructorInitialization:
3321  case SK_ZeroInitialization:
3322    break;
3323  }
3324
3325  // Walk through the computed steps for the initialization sequence,
3326  // performing the specified conversions along the way.
3327  bool ConstructorInitRequiresZeroInit = false;
3328  for (step_iterator Step = step_begin(), StepEnd = step_end();
3329       Step != StepEnd; ++Step) {
3330    if (CurInit.isInvalid())
3331      return S.ExprError();
3332
3333    Expr *CurInitExpr = (Expr *)CurInit.get();
3334    QualType SourceType = CurInitExpr? CurInitExpr->getType() : QualType();
3335
3336    switch (Step->Kind) {
3337    case SK_ResolveAddressOfOverloadedFunction:
3338      // Overload resolution determined which function invoke; update the
3339      // initializer to reflect that choice.
3340      S.CheckAddressOfMemberAccess(CurInitExpr, Step->Function.FoundDecl);
3341      CurInit = S.FixOverloadedFunctionReference(move(CurInit),
3342                                                 Step->Function.FoundDecl,
3343                                                 Step->Function.Function);
3344      break;
3345
3346    case SK_CastDerivedToBaseRValue:
3347    case SK_CastDerivedToBaseLValue: {
3348      // We have a derived-to-base cast that produces either an rvalue or an
3349      // lvalue. Perform that cast.
3350
3351      // Casts to inaccessible base classes are allowed with C-style casts.
3352      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3353      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
3354                                         CurInitExpr->getLocStart(),
3355                                         CurInitExpr->getSourceRange(),
3356                                         IgnoreBaseAccess))
3357        return S.ExprError();
3358
3359      CurInit = S.Owned(new (S.Context) ImplicitCastExpr(Step->Type,
3360                                                    CastExpr::CK_DerivedToBase,
3361                                                      (Expr*)CurInit.release(),
3362                                     Step->Kind == SK_CastDerivedToBaseLValue));
3363      break;
3364    }
3365
3366    case SK_BindReference:
3367      if (FieldDecl *BitField = CurInitExpr->getBitField()) {
3368        // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
3369        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
3370          << Entity.getType().isVolatileQualified()
3371          << BitField->getDeclName()
3372          << CurInitExpr->getSourceRange();
3373        S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
3374        return S.ExprError();
3375      }
3376
3377      if (CurInitExpr->refersToVectorElement()) {
3378        // References cannot bind to vector elements.
3379        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
3380          << Entity.getType().isVolatileQualified()
3381          << CurInitExpr->getSourceRange();
3382        return S.ExprError();
3383      }
3384
3385      // Reference binding does not have any corresponding ASTs.
3386
3387      // Check exception specifications
3388      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3389        return S.ExprError();
3390
3391      break;
3392
3393    case SK_BindReferenceToTemporary:
3394      // Reference binding does not have any corresponding ASTs.
3395
3396      // Check exception specifications
3397      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3398        return S.ExprError();
3399
3400      break;
3401
3402    case SK_UserConversion: {
3403      // We have a user-defined conversion that invokes either a constructor
3404      // or a conversion function.
3405      CastExpr::CastKind CastKind = CastExpr::CK_Unknown;
3406      bool IsCopy = false;
3407      FunctionDecl *Fn = Step->Function.Function;
3408      DeclAccessPair FoundFn = Step->Function.FoundDecl;
3409      bool IsLvalue = false;
3410      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
3411        // Build a call to the selected constructor.
3412        ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3413        SourceLocation Loc = CurInitExpr->getLocStart();
3414        CurInit.release(); // Ownership transferred into MultiExprArg, below.
3415
3416        // Determine the arguments required to actually perform the constructor
3417        // call.
3418        if (S.CompleteConstructorCall(Constructor,
3419                                      Sema::MultiExprArg(S,
3420                                                         (void **)&CurInitExpr,
3421                                                         1),
3422                                      Loc, ConstructorArgs))
3423          return S.ExprError();
3424
3425        // Build the an expression that constructs a temporary.
3426        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
3427                                          move_arg(ConstructorArgs));
3428        if (CurInit.isInvalid())
3429          return S.ExprError();
3430
3431        S.CheckConstructorAccess(Kind.getLocation(), Constructor,
3432                                 FoundFn.getAccess());
3433
3434        CastKind = CastExpr::CK_ConstructorConversion;
3435        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
3436        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
3437            S.IsDerivedFrom(SourceType, Class))
3438          IsCopy = true;
3439      } else {
3440        // Build a call to the conversion function.
3441        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
3442        IsLvalue = Conversion->getResultType()->isLValueReferenceType();
3443        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInitExpr, 0,
3444                                    FoundFn);
3445
3446        // FIXME: Should we move this initialization into a separate
3447        // derived-to-base conversion? I believe the answer is "no", because
3448        // we don't want to turn off access control here for c-style casts.
3449        if (S.PerformObjectArgumentInitialization(CurInitExpr, /*Qualifier=*/0,
3450                                                  FoundFn, Conversion))
3451          return S.ExprError();
3452
3453        // Do a little dance to make sure that CurInit has the proper
3454        // pointer.
3455        CurInit.release();
3456
3457        // Build the actual call to the conversion function.
3458        CurInit = S.Owned(S.BuildCXXMemberCallExpr(CurInitExpr, FoundFn,
3459                                                   Conversion));
3460        if (CurInit.isInvalid() || !CurInit.get())
3461          return S.ExprError();
3462
3463        CastKind = CastExpr::CK_UserDefinedConversion;
3464      }
3465
3466      bool RequiresCopy = !IsCopy &&
3467        getKind() != InitializationSequence::ReferenceBinding;
3468      if (RequiresCopy || shouldBindAsTemporary(Entity))
3469        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3470
3471      CurInitExpr = CurInit.takeAs<Expr>();
3472      CurInit = S.Owned(new (S.Context) ImplicitCastExpr(CurInitExpr->getType(),
3473                                                         CastKind,
3474                                                         CurInitExpr,
3475                                                         IsLvalue));
3476
3477      if (RequiresCopy)
3478        CurInit = CopyObject(S, Entity, Kind, move(CurInit));
3479      break;
3480    }
3481
3482    case SK_QualificationConversionLValue:
3483    case SK_QualificationConversionRValue:
3484      // Perform a qualification conversion; these can never go wrong.
3485      S.ImpCastExprToType(CurInitExpr, Step->Type,
3486                          CastExpr::CK_NoOp,
3487                          Step->Kind == SK_QualificationConversionLValue);
3488      CurInit.release();
3489      CurInit = S.Owned(CurInitExpr);
3490      break;
3491
3492    case SK_ConversionSequence:
3493        if (S.PerformImplicitConversion(CurInitExpr, Step->Type, Sema::AA_Converting,
3494                                      false, false, *Step->ICS))
3495        return S.ExprError();
3496
3497      CurInit.release();
3498      CurInit = S.Owned(CurInitExpr);
3499      break;
3500
3501    case SK_ListInitialization: {
3502      InitListExpr *InitList = cast<InitListExpr>(CurInitExpr);
3503      QualType Ty = Step->Type;
3504      if (S.CheckInitList(Entity, InitList, ResultType? *ResultType : Ty))
3505        return S.ExprError();
3506
3507      CurInit.release();
3508      CurInit = S.Owned(InitList);
3509      break;
3510    }
3511
3512    case SK_ConstructorInitialization: {
3513      CXXConstructorDecl *Constructor
3514        = cast<CXXConstructorDecl>(Step->Function.Function);
3515
3516      // Build a call to the selected constructor.
3517      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3518      SourceLocation Loc = Kind.getLocation();
3519
3520      // Determine the arguments required to actually perform the constructor
3521      // call.
3522      if (S.CompleteConstructorCall(Constructor, move(Args),
3523                                    Loc, ConstructorArgs))
3524        return S.ExprError();
3525
3526      // Build the an expression that constructs a temporary.
3527      if (Entity.getKind() == InitializedEntity::EK_Temporary &&
3528          (Kind.getKind() == InitializationKind::IK_Direct ||
3529           Kind.getKind() == InitializationKind::IK_Value)) {
3530        // An explicitly-constructed temporary, e.g., X(1, 2).
3531        unsigned NumExprs = ConstructorArgs.size();
3532        Expr **Exprs = (Expr **)ConstructorArgs.take();
3533        S.MarkDeclarationReferenced(Kind.getLocation(), Constructor);
3534        CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
3535                                                                 Constructor,
3536                                                              Entity.getType(),
3537                                                            Kind.getLocation(),
3538                                                                 Exprs,
3539                                                                 NumExprs,
3540                                                Kind.getParenRange().getEnd()));
3541      } else
3542        CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3543                                          Constructor,
3544                                          move_arg(ConstructorArgs),
3545                                          ConstructorInitRequiresZeroInit,
3546                               Entity.getKind() == InitializedEntity::EK_Base);
3547      if (CurInit.isInvalid())
3548        return S.ExprError();
3549
3550      // Only check access if all of that succeeded.
3551      S.CheckConstructorAccess(Loc, Constructor,
3552                               Step->Function.FoundDecl.getAccess());
3553
3554      if (shouldBindAsTemporary(Entity))
3555        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3556
3557      break;
3558    }
3559
3560    case SK_ZeroInitialization: {
3561      step_iterator NextStep = Step;
3562      ++NextStep;
3563      if (NextStep != StepEnd &&
3564          NextStep->Kind == SK_ConstructorInitialization) {
3565        // The need for zero-initialization is recorded directly into
3566        // the call to the object's constructor within the next step.
3567        ConstructorInitRequiresZeroInit = true;
3568      } else if (Kind.getKind() == InitializationKind::IK_Value &&
3569                 S.getLangOptions().CPlusPlus &&
3570                 !Kind.isImplicitValueInit()) {
3571        CurInit = S.Owned(new (S.Context) CXXZeroInitValueExpr(Step->Type,
3572                                                   Kind.getRange().getBegin(),
3573                                                    Kind.getRange().getEnd()));
3574      } else {
3575        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
3576      }
3577      break;
3578    }
3579
3580    case SK_CAssignment: {
3581      QualType SourceType = CurInitExpr->getType();
3582      Sema::AssignConvertType ConvTy =
3583        S.CheckSingleAssignmentConstraints(Step->Type, CurInitExpr);
3584
3585      // If this is a call, allow conversion to a transparent union.
3586      if (ConvTy != Sema::Compatible &&
3587          Entity.getKind() == InitializedEntity::EK_Parameter &&
3588          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExpr)
3589            == Sema::Compatible)
3590        ConvTy = Sema::Compatible;
3591
3592      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
3593                                     Step->Type, SourceType,
3594                                     CurInitExpr, getAssignmentAction(Entity)))
3595        return S.ExprError();
3596
3597      CurInit.release();
3598      CurInit = S.Owned(CurInitExpr);
3599      break;
3600    }
3601
3602    case SK_StringInit: {
3603      QualType Ty = Step->Type;
3604      CheckStringInit(CurInitExpr, ResultType ? *ResultType : Ty, S);
3605      break;
3606    }
3607    }
3608  }
3609
3610  return move(CurInit);
3611}
3612
3613//===----------------------------------------------------------------------===//
3614// Diagnose initialization failures
3615//===----------------------------------------------------------------------===//
3616bool InitializationSequence::Diagnose(Sema &S,
3617                                      const InitializedEntity &Entity,
3618                                      const InitializationKind &Kind,
3619                                      Expr **Args, unsigned NumArgs) {
3620  if (SequenceKind != FailedSequence)
3621    return false;
3622
3623  QualType DestType = Entity.getType();
3624  switch (Failure) {
3625  case FK_TooManyInitsForReference:
3626    // FIXME: Customize for the initialized entity?
3627    if (NumArgs == 0)
3628      S.Diag(Kind.getLocation(), diag::err_reference_without_init)
3629        << DestType.getNonReferenceType();
3630    else  // FIXME: diagnostic below could be better!
3631      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
3632        << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
3633    break;
3634
3635  case FK_ArrayNeedsInitList:
3636  case FK_ArrayNeedsInitListOrStringLiteral:
3637    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
3638      << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
3639    break;
3640
3641  case FK_AddressOfOverloadFailed: {
3642    DeclAccessPair Found;
3643    S.ResolveAddressOfOverloadedFunction(Args[0],
3644                                         DestType.getNonReferenceType(),
3645                                         true,
3646                                         Found);
3647    break;
3648  }
3649
3650  case FK_ReferenceInitOverloadFailed:
3651  case FK_UserConversionOverloadFailed:
3652    switch (FailedOverloadResult) {
3653    case OR_Ambiguous:
3654      if (Failure == FK_UserConversionOverloadFailed)
3655        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
3656          << Args[0]->getType() << DestType
3657          << Args[0]->getSourceRange();
3658      else
3659        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
3660          << DestType << Args[0]->getType()
3661          << Args[0]->getSourceRange();
3662
3663      S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_ViableCandidates,
3664                                Args, NumArgs);
3665      break;
3666
3667    case OR_No_Viable_Function:
3668      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
3669        << Args[0]->getType() << DestType.getNonReferenceType()
3670        << Args[0]->getSourceRange();
3671      S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_AllCandidates,
3672                                Args, NumArgs);
3673      break;
3674
3675    case OR_Deleted: {
3676      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
3677        << Args[0]->getType() << DestType.getNonReferenceType()
3678        << Args[0]->getSourceRange();
3679      OverloadCandidateSet::iterator Best;
3680      OverloadingResult Ovl = S.BestViableFunction(FailedCandidateSet,
3681                                                   Kind.getLocation(),
3682                                                   Best);
3683      if (Ovl == OR_Deleted) {
3684        S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3685          << Best->Function->isDeleted();
3686      } else {
3687        llvm_unreachable("Inconsistent overload resolution?");
3688      }
3689      break;
3690    }
3691
3692    case OR_Success:
3693      llvm_unreachable("Conversion did not fail!");
3694      break;
3695    }
3696    break;
3697
3698  case FK_NonConstLValueReferenceBindingToTemporary:
3699  case FK_NonConstLValueReferenceBindingToUnrelated:
3700    S.Diag(Kind.getLocation(),
3701           Failure == FK_NonConstLValueReferenceBindingToTemporary
3702             ? diag::err_lvalue_reference_bind_to_temporary
3703             : diag::err_lvalue_reference_bind_to_unrelated)
3704      << DestType.getNonReferenceType().isVolatileQualified()
3705      << DestType.getNonReferenceType()
3706      << Args[0]->getType()
3707      << Args[0]->getSourceRange();
3708    break;
3709
3710  case FK_RValueReferenceBindingToLValue:
3711    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
3712      << Args[0]->getSourceRange();
3713    break;
3714
3715  case FK_ReferenceInitDropsQualifiers:
3716    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
3717      << DestType.getNonReferenceType()
3718      << Args[0]->getType()
3719      << Args[0]->getSourceRange();
3720    break;
3721
3722  case FK_ReferenceInitFailed:
3723    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
3724      << DestType.getNonReferenceType()
3725      << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
3726      << Args[0]->getType()
3727      << Args[0]->getSourceRange();
3728    break;
3729
3730  case FK_ConversionFailed:
3731    S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
3732      << (int)Entity.getKind()
3733      << DestType
3734      << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
3735      << Args[0]->getType()
3736      << Args[0]->getSourceRange();
3737    break;
3738
3739  case FK_TooManyInitsForScalar: {
3740    SourceRange R;
3741
3742    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
3743      R = SourceRange(InitList->getInit(1)->getLocStart(),
3744                      InitList->getLocEnd());
3745    else
3746      R = SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
3747
3748    S.Diag(Kind.getLocation(), diag::err_excess_initializers)
3749      << /*scalar=*/2 << R;
3750    break;
3751  }
3752
3753  case FK_ReferenceBindingToInitList:
3754    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
3755      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
3756    break;
3757
3758  case FK_InitListBadDestinationType:
3759    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
3760      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
3761    break;
3762
3763  case FK_ConstructorOverloadFailed: {
3764    SourceRange ArgsRange;
3765    if (NumArgs)
3766      ArgsRange = SourceRange(Args[0]->getLocStart(),
3767                              Args[NumArgs - 1]->getLocEnd());
3768
3769    // FIXME: Using "DestType" for the entity we're printing is probably
3770    // bad.
3771    switch (FailedOverloadResult) {
3772      case OR_Ambiguous:
3773        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
3774          << DestType << ArgsRange;
3775        S.PrintOverloadCandidates(FailedCandidateSet,
3776                                  Sema::OCD_ViableCandidates, Args, NumArgs);
3777        break;
3778
3779      case OR_No_Viable_Function:
3780        if (Kind.getKind() == InitializationKind::IK_Default &&
3781            (Entity.getKind() == InitializedEntity::EK_Base ||
3782             Entity.getKind() == InitializedEntity::EK_Member) &&
3783            isa<CXXConstructorDecl>(S.CurContext)) {
3784          // This is implicit default initialization of a member or
3785          // base within a constructor. If no viable function was
3786          // found, notify the user that she needs to explicitly
3787          // initialize this base/member.
3788          CXXConstructorDecl *Constructor
3789            = cast<CXXConstructorDecl>(S.CurContext);
3790          if (Entity.getKind() == InitializedEntity::EK_Base) {
3791            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
3792              << Constructor->isImplicit()
3793              << S.Context.getTypeDeclType(Constructor->getParent())
3794              << /*base=*/0
3795              << Entity.getType();
3796
3797            RecordDecl *BaseDecl
3798              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
3799                                                                  ->getDecl();
3800            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
3801              << S.Context.getTagDeclType(BaseDecl);
3802          } else {
3803            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
3804              << Constructor->isImplicit()
3805              << S.Context.getTypeDeclType(Constructor->getParent())
3806              << /*member=*/1
3807              << Entity.getName();
3808            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
3809
3810            if (const RecordType *Record
3811                                 = Entity.getType()->getAs<RecordType>())
3812              S.Diag(Record->getDecl()->getLocation(),
3813                     diag::note_previous_decl)
3814                << S.Context.getTagDeclType(Record->getDecl());
3815          }
3816          break;
3817        }
3818
3819        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
3820          << DestType << ArgsRange;
3821        S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_AllCandidates,
3822                                  Args, NumArgs);
3823        break;
3824
3825      case OR_Deleted: {
3826        S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
3827          << true << DestType << ArgsRange;
3828        OverloadCandidateSet::iterator Best;
3829        OverloadingResult Ovl = S.BestViableFunction(FailedCandidateSet,
3830                                                     Kind.getLocation(),
3831                                                     Best);
3832        if (Ovl == OR_Deleted) {
3833          S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3834            << Best->Function->isDeleted();
3835        } else {
3836          llvm_unreachable("Inconsistent overload resolution?");
3837        }
3838        break;
3839      }
3840
3841      case OR_Success:
3842        llvm_unreachable("Conversion did not fail!");
3843        break;
3844    }
3845    break;
3846  }
3847
3848  case FK_DefaultInitOfConst:
3849    if (Entity.getKind() == InitializedEntity::EK_Member &&
3850        isa<CXXConstructorDecl>(S.CurContext)) {
3851      // This is implicit default-initialization of a const member in
3852      // a constructor. Complain that it needs to be explicitly
3853      // initialized.
3854      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
3855      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
3856        << Constructor->isImplicit()
3857        << S.Context.getTypeDeclType(Constructor->getParent())
3858        << /*const=*/1
3859        << Entity.getName();
3860      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
3861        << Entity.getName();
3862    } else {
3863      S.Diag(Kind.getLocation(), diag::err_default_init_const)
3864        << DestType << (bool)DestType->getAs<RecordType>();
3865    }
3866    break;
3867  }
3868
3869  return true;
3870}
3871
3872void InitializationSequence::dump(llvm::raw_ostream &OS) const {
3873  switch (SequenceKind) {
3874  case FailedSequence: {
3875    OS << "Failed sequence: ";
3876    switch (Failure) {
3877    case FK_TooManyInitsForReference:
3878      OS << "too many initializers for reference";
3879      break;
3880
3881    case FK_ArrayNeedsInitList:
3882      OS << "array requires initializer list";
3883      break;
3884
3885    case FK_ArrayNeedsInitListOrStringLiteral:
3886      OS << "array requires initializer list or string literal";
3887      break;
3888
3889    case FK_AddressOfOverloadFailed:
3890      OS << "address of overloaded function failed";
3891      break;
3892
3893    case FK_ReferenceInitOverloadFailed:
3894      OS << "overload resolution for reference initialization failed";
3895      break;
3896
3897    case FK_NonConstLValueReferenceBindingToTemporary:
3898      OS << "non-const lvalue reference bound to temporary";
3899      break;
3900
3901    case FK_NonConstLValueReferenceBindingToUnrelated:
3902      OS << "non-const lvalue reference bound to unrelated type";
3903      break;
3904
3905    case FK_RValueReferenceBindingToLValue:
3906      OS << "rvalue reference bound to an lvalue";
3907      break;
3908
3909    case FK_ReferenceInitDropsQualifiers:
3910      OS << "reference initialization drops qualifiers";
3911      break;
3912
3913    case FK_ReferenceInitFailed:
3914      OS << "reference initialization failed";
3915      break;
3916
3917    case FK_ConversionFailed:
3918      OS << "conversion failed";
3919      break;
3920
3921    case FK_TooManyInitsForScalar:
3922      OS << "too many initializers for scalar";
3923      break;
3924
3925    case FK_ReferenceBindingToInitList:
3926      OS << "referencing binding to initializer list";
3927      break;
3928
3929    case FK_InitListBadDestinationType:
3930      OS << "initializer list for non-aggregate, non-scalar type";
3931      break;
3932
3933    case FK_UserConversionOverloadFailed:
3934      OS << "overloading failed for user-defined conversion";
3935      break;
3936
3937    case FK_ConstructorOverloadFailed:
3938      OS << "constructor overloading failed";
3939      break;
3940
3941    case FK_DefaultInitOfConst:
3942      OS << "default initialization of a const variable";
3943      break;
3944    }
3945    OS << '\n';
3946    return;
3947  }
3948
3949  case DependentSequence:
3950    OS << "Dependent sequence: ";
3951    return;
3952
3953  case UserDefinedConversion:
3954    OS << "User-defined conversion sequence: ";
3955    break;
3956
3957  case ConstructorInitialization:
3958    OS << "Constructor initialization sequence: ";
3959    break;
3960
3961  case ReferenceBinding:
3962    OS << "Reference binding: ";
3963    break;
3964
3965  case ListInitialization:
3966    OS << "List initialization: ";
3967    break;
3968
3969  case ZeroInitialization:
3970    OS << "Zero initialization\n";
3971    return;
3972
3973  case NoInitialization:
3974    OS << "No initialization\n";
3975    return;
3976
3977  case StandardConversion:
3978    OS << "Standard conversion: ";
3979    break;
3980
3981  case CAssignment:
3982    OS << "C assignment: ";
3983    break;
3984
3985  case StringInit:
3986    OS << "String initialization: ";
3987    break;
3988  }
3989
3990  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
3991    if (S != step_begin()) {
3992      OS << " -> ";
3993    }
3994
3995    switch (S->Kind) {
3996    case SK_ResolveAddressOfOverloadedFunction:
3997      OS << "resolve address of overloaded function";
3998      break;
3999
4000    case SK_CastDerivedToBaseRValue:
4001      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
4002      break;
4003
4004    case SK_CastDerivedToBaseLValue:
4005      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
4006      break;
4007
4008    case SK_BindReference:
4009      OS << "bind reference to lvalue";
4010      break;
4011
4012    case SK_BindReferenceToTemporary:
4013      OS << "bind reference to a temporary";
4014      break;
4015
4016    case SK_UserConversion:
4017      OS << "user-defined conversion via "
4018         << S->Function.Function->getNameAsString();
4019      break;
4020
4021    case SK_QualificationConversionRValue:
4022      OS << "qualification conversion (rvalue)";
4023
4024    case SK_QualificationConversionLValue:
4025      OS << "qualification conversion (lvalue)";
4026      break;
4027
4028    case SK_ConversionSequence:
4029      OS << "implicit conversion sequence (";
4030      S->ICS->DebugPrint(); // FIXME: use OS
4031      OS << ")";
4032      break;
4033
4034    case SK_ListInitialization:
4035      OS << "list initialization";
4036      break;
4037
4038    case SK_ConstructorInitialization:
4039      OS << "constructor initialization";
4040      break;
4041
4042    case SK_ZeroInitialization:
4043      OS << "zero initialization";
4044      break;
4045
4046    case SK_CAssignment:
4047      OS << "C assignment";
4048      break;
4049
4050    case SK_StringInit:
4051      OS << "string initialization";
4052      break;
4053    }
4054  }
4055}
4056
4057void InitializationSequence::dump() const {
4058  dump(llvm::errs());
4059}
4060
4061//===----------------------------------------------------------------------===//
4062// Initialization helper functions
4063//===----------------------------------------------------------------------===//
4064Sema::OwningExprResult
4065Sema::PerformCopyInitialization(const InitializedEntity &Entity,
4066                                SourceLocation EqualLoc,
4067                                OwningExprResult Init) {
4068  if (Init.isInvalid())
4069    return ExprError();
4070
4071  Expr *InitE = (Expr *)Init.get();
4072  assert(InitE && "No initialization expression?");
4073
4074  if (EqualLoc.isInvalid())
4075    EqualLoc = InitE->getLocStart();
4076
4077  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
4078                                                           EqualLoc);
4079  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
4080  Init.release();
4081  return Seq.Perform(*this, Entity, Kind,
4082                     MultiExprArg(*this, (void**)&InitE, 1));
4083}
4084