SemaInit.cpp revision 1245a54ca6e9c5b14196461dc3f84b24ea6594b1
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Initialization.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Sema/Designator.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/SemaInternal.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28#include <map>
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35/// \brief Check whether T is compatible with a wide character type (wchar_t,
36/// char16_t or char32_t).
37static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38  if (Context.typesAreCompatible(Context.getWideCharType(), T))
39    return true;
40  if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41    return Context.typesAreCompatible(Context.Char16Ty, T) ||
42           Context.typesAreCompatible(Context.Char32Ty, T);
43  }
44  return false;
45}
46
47enum StringInitFailureKind {
48  SIF_None,
49  SIF_NarrowStringIntoWideChar,
50  SIF_WideStringIntoChar,
51  SIF_IncompatWideStringIntoWideChar,
52  SIF_Other
53};
54
55/// \brief Check whether the array of type AT can be initialized by the Init
56/// expression by means of string initialization. Returns SIF_None if so,
57/// otherwise returns a StringInitFailureKind that describes why the
58/// initialization would not work.
59static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60                                          ASTContext &Context) {
61  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62    return SIF_Other;
63
64  // See if this is a string literal or @encode.
65  Init = Init->IgnoreParens();
66
67  // Handle @encode, which is a narrow string.
68  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69    return SIF_None;
70
71  // Otherwise we can only handle string literals.
72  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73  if (SL == 0)
74    return SIF_Other;
75
76  const QualType ElemTy =
77      Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78
79  switch (SL->getKind()) {
80  case StringLiteral::Ascii:
81  case StringLiteral::UTF8:
82    // char array can be initialized with a narrow string.
83    // Only allow char x[] = "foo";  not char x[] = L"foo";
84    if (ElemTy->isCharType())
85      return SIF_None;
86    if (IsWideCharCompatible(ElemTy, Context))
87      return SIF_NarrowStringIntoWideChar;
88    return SIF_Other;
89  // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90  // "An array with element type compatible with a qualified or unqualified
91  // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92  // string literal with the corresponding encoding prefix (L, u, or U,
93  // respectively), optionally enclosed in braces.
94  case StringLiteral::UTF16:
95    if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96      return SIF_None;
97    if (ElemTy->isCharType())
98      return SIF_WideStringIntoChar;
99    if (IsWideCharCompatible(ElemTy, Context))
100      return SIF_IncompatWideStringIntoWideChar;
101    return SIF_Other;
102  case StringLiteral::UTF32:
103    if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104      return SIF_None;
105    if (ElemTy->isCharType())
106      return SIF_WideStringIntoChar;
107    if (IsWideCharCompatible(ElemTy, Context))
108      return SIF_IncompatWideStringIntoWideChar;
109    return SIF_Other;
110  case StringLiteral::Wide:
111    if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112      return SIF_None;
113    if (ElemTy->isCharType())
114      return SIF_WideStringIntoChar;
115    if (IsWideCharCompatible(ElemTy, Context))
116      return SIF_IncompatWideStringIntoWideChar;
117    return SIF_Other;
118  }
119
120  llvm_unreachable("missed a StringLiteral kind?");
121}
122
123static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124                                          ASTContext &Context) {
125  const ArrayType *arrayType = Context.getAsArrayType(declType);
126  if (!arrayType)
127    return SIF_Other;
128  return IsStringInit(init, arrayType, Context);
129}
130
131/// Update the type of a string literal, including any surrounding parentheses,
132/// to match the type of the object which it is initializing.
133static void updateStringLiteralType(Expr *E, QualType Ty) {
134  while (true) {
135    E->setType(Ty);
136    if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137      break;
138    else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139      E = PE->getSubExpr();
140    else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141      E = UO->getSubExpr();
142    else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143      E = GSE->getResultExpr();
144    else
145      llvm_unreachable("unexpected expr in string literal init");
146  }
147}
148
149static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150                            Sema &S) {
151  // Get the length of the string as parsed.
152  uint64_t StrLength =
153    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
154
155
156  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157    // C99 6.7.8p14. We have an array of character type with unknown size
158    // being initialized to a string literal.
159    llvm::APInt ConstVal(32, StrLength);
160    // Return a new array type (C99 6.7.8p22).
161    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162                                           ConstVal,
163                                           ArrayType::Normal, 0);
164    updateStringLiteralType(Str, DeclT);
165    return;
166  }
167
168  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169
170  // We have an array of character type with known size.  However,
171  // the size may be smaller or larger than the string we are initializing.
172  // FIXME: Avoid truncation for 64-bit length strings.
173  if (S.getLangOpts().CPlusPlus) {
174    if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175      // For Pascal strings it's OK to strip off the terminating null character,
176      // so the example below is valid:
177      //
178      // unsigned char a[2] = "\pa";
179      if (SL->isPascal())
180        StrLength--;
181    }
182
183    // [dcl.init.string]p2
184    if (StrLength > CAT->getSize().getZExtValue())
185      S.Diag(Str->getLocStart(),
186             diag::err_initializer_string_for_char_array_too_long)
187        << Str->getSourceRange();
188  } else {
189    // C99 6.7.8p14.
190    if (StrLength-1 > CAT->getSize().getZExtValue())
191      S.Diag(Str->getLocStart(),
192             diag::warn_initializer_string_for_char_array_too_long)
193        << Str->getSourceRange();
194  }
195
196  // Set the type to the actual size that we are initializing.  If we have
197  // something like:
198  //   char x[1] = "foo";
199  // then this will set the string literal's type to char[1].
200  updateStringLiteralType(Str, DeclT);
201}
202
203//===----------------------------------------------------------------------===//
204// Semantic checking for initializer lists.
205//===----------------------------------------------------------------------===//
206
207/// @brief Semantic checking for initializer lists.
208///
209/// The InitListChecker class contains a set of routines that each
210/// handle the initialization of a certain kind of entity, e.g.,
211/// arrays, vectors, struct/union types, scalars, etc. The
212/// InitListChecker itself performs a recursive walk of the subobject
213/// structure of the type to be initialized, while stepping through
214/// the initializer list one element at a time. The IList and Index
215/// parameters to each of the Check* routines contain the active
216/// (syntactic) initializer list and the index into that initializer
217/// list that represents the current initializer. Each routine is
218/// responsible for moving that Index forward as it consumes elements.
219///
220/// Each Check* routine also has a StructuredList/StructuredIndex
221/// arguments, which contains the current "structured" (semantic)
222/// initializer list and the index into that initializer list where we
223/// are copying initializers as we map them over to the semantic
224/// list. Once we have completed our recursive walk of the subobject
225/// structure, we will have constructed a full semantic initializer
226/// list.
227///
228/// C99 designators cause changes in the initializer list traversal,
229/// because they make the initialization "jump" into a specific
230/// subobject and then continue the initialization from that
231/// point. CheckDesignatedInitializer() recursively steps into the
232/// designated subobject and manages backing out the recursion to
233/// initialize the subobjects after the one designated.
234namespace {
235class InitListChecker {
236  Sema &SemaRef;
237  bool hadError;
238  bool VerifyOnly; // no diagnostics, no structure building
239  llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
240  InitListExpr *FullyStructuredList;
241
242  void CheckImplicitInitList(const InitializedEntity &Entity,
243                             InitListExpr *ParentIList, QualType T,
244                             unsigned &Index, InitListExpr *StructuredList,
245                             unsigned &StructuredIndex);
246  void CheckExplicitInitList(const InitializedEntity &Entity,
247                             InitListExpr *IList, QualType &T,
248                             unsigned &Index, InitListExpr *StructuredList,
249                             unsigned &StructuredIndex,
250                             bool TopLevelObject = false);
251  void CheckListElementTypes(const InitializedEntity &Entity,
252                             InitListExpr *IList, QualType &DeclType,
253                             bool SubobjectIsDesignatorContext,
254                             unsigned &Index,
255                             InitListExpr *StructuredList,
256                             unsigned &StructuredIndex,
257                             bool TopLevelObject = false);
258  void CheckSubElementType(const InitializedEntity &Entity,
259                           InitListExpr *IList, QualType ElemType,
260                           unsigned &Index,
261                           InitListExpr *StructuredList,
262                           unsigned &StructuredIndex);
263  void CheckComplexType(const InitializedEntity &Entity,
264                        InitListExpr *IList, QualType DeclType,
265                        unsigned &Index,
266                        InitListExpr *StructuredList,
267                        unsigned &StructuredIndex);
268  void CheckScalarType(const InitializedEntity &Entity,
269                       InitListExpr *IList, QualType DeclType,
270                       unsigned &Index,
271                       InitListExpr *StructuredList,
272                       unsigned &StructuredIndex);
273  void CheckReferenceType(const InitializedEntity &Entity,
274                          InitListExpr *IList, QualType DeclType,
275                          unsigned &Index,
276                          InitListExpr *StructuredList,
277                          unsigned &StructuredIndex);
278  void CheckVectorType(const InitializedEntity &Entity,
279                       InitListExpr *IList, QualType DeclType, unsigned &Index,
280                       InitListExpr *StructuredList,
281                       unsigned &StructuredIndex);
282  void CheckStructUnionTypes(const InitializedEntity &Entity,
283                             InitListExpr *IList, QualType DeclType,
284                             RecordDecl::field_iterator Field,
285                             bool SubobjectIsDesignatorContext, unsigned &Index,
286                             InitListExpr *StructuredList,
287                             unsigned &StructuredIndex,
288                             bool TopLevelObject = false);
289  void CheckArrayType(const InitializedEntity &Entity,
290                      InitListExpr *IList, QualType &DeclType,
291                      llvm::APSInt elementIndex,
292                      bool SubobjectIsDesignatorContext, unsigned &Index,
293                      InitListExpr *StructuredList,
294                      unsigned &StructuredIndex);
295  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
296                                  InitListExpr *IList, DesignatedInitExpr *DIE,
297                                  unsigned DesigIdx,
298                                  QualType &CurrentObjectType,
299                                  RecordDecl::field_iterator *NextField,
300                                  llvm::APSInt *NextElementIndex,
301                                  unsigned &Index,
302                                  InitListExpr *StructuredList,
303                                  unsigned &StructuredIndex,
304                                  bool FinishSubobjectInit,
305                                  bool TopLevelObject);
306  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
307                                           QualType CurrentObjectType,
308                                           InitListExpr *StructuredList,
309                                           unsigned StructuredIndex,
310                                           SourceRange InitRange);
311  void UpdateStructuredListElement(InitListExpr *StructuredList,
312                                   unsigned &StructuredIndex,
313                                   Expr *expr);
314  int numArrayElements(QualType DeclType);
315  int numStructUnionElements(QualType DeclType);
316
317  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
318                               const InitializedEntity &ParentEntity,
319                               InitListExpr *ILE, bool &RequiresSecondPass);
320  void FillInValueInitializations(const InitializedEntity &Entity,
321                                  InitListExpr *ILE, bool &RequiresSecondPass);
322  bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
323                              Expr *InitExpr, FieldDecl *Field,
324                              bool TopLevelObject);
325  void CheckValueInitializable(const InitializedEntity &Entity);
326
327public:
328  InitListChecker(Sema &S, const InitializedEntity &Entity,
329                  InitListExpr *IL, QualType &T, bool VerifyOnly);
330  bool HadError() { return hadError; }
331
332  // @brief Retrieves the fully-structured initializer list used for
333  // semantic analysis and code generation.
334  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
335};
336} // end anonymous namespace
337
338void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
339  assert(VerifyOnly &&
340         "CheckValueInitializable is only inteded for verification mode.");
341
342  SourceLocation Loc;
343  InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
344                                                            true);
345  InitializationSequence InitSeq(SemaRef, Entity, Kind, None);
346  if (InitSeq.Failed())
347    hadError = true;
348}
349
350void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
351                                        const InitializedEntity &ParentEntity,
352                                              InitListExpr *ILE,
353                                              bool &RequiresSecondPass) {
354  SourceLocation Loc = ILE->getLocStart();
355  unsigned NumInits = ILE->getNumInits();
356  InitializedEntity MemberEntity
357    = InitializedEntity::InitializeMember(Field, &ParentEntity);
358  if (Init >= NumInits || !ILE->getInit(Init)) {
359    // If there's no explicit initializer but we have a default initializer, use
360    // that. This only happens in C++1y, since classes with default
361    // initializers are not aggregates in C++11.
362    if (Field->hasInClassInitializer()) {
363      Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
364                                             ILE->getRBraceLoc(), Field);
365      if (Init < NumInits)
366        ILE->setInit(Init, DIE);
367      else {
368        ILE->updateInit(SemaRef.Context, Init, DIE);
369        RequiresSecondPass = true;
370      }
371      return;
372    }
373
374    // FIXME: We probably don't need to handle references
375    // specially here, since value-initialization of references is
376    // handled in InitializationSequence.
377    if (Field->getType()->isReferenceType()) {
378      // C++ [dcl.init.aggr]p9:
379      //   If an incomplete or empty initializer-list leaves a
380      //   member of reference type uninitialized, the program is
381      //   ill-formed.
382      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
383        << Field->getType()
384        << ILE->getSyntacticForm()->getSourceRange();
385      SemaRef.Diag(Field->getLocation(),
386                   diag::note_uninit_reference_member);
387      hadError = true;
388      return;
389    }
390
391    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
392                                                              true);
393    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, None);
394    if (!InitSeq) {
395      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, None);
396      hadError = true;
397      return;
398    }
399
400    ExprResult MemberInit
401      = InitSeq.Perform(SemaRef, MemberEntity, Kind, None);
402    if (MemberInit.isInvalid()) {
403      hadError = true;
404      return;
405    }
406
407    if (hadError) {
408      // Do nothing
409    } else if (Init < NumInits) {
410      ILE->setInit(Init, MemberInit.takeAs<Expr>());
411    } else if (InitSeq.isConstructorInitialization()) {
412      // Value-initialization requires a constructor call, so
413      // extend the initializer list to include the constructor
414      // call and make a note that we'll need to take another pass
415      // through the initializer list.
416      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
417      RequiresSecondPass = true;
418    }
419  } else if (InitListExpr *InnerILE
420               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
421    FillInValueInitializations(MemberEntity, InnerILE,
422                               RequiresSecondPass);
423}
424
425/// Recursively replaces NULL values within the given initializer list
426/// with expressions that perform value-initialization of the
427/// appropriate type.
428void
429InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
430                                            InitListExpr *ILE,
431                                            bool &RequiresSecondPass) {
432  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
433         "Should not have void type");
434  SourceLocation Loc = ILE->getLocStart();
435  if (ILE->getSyntacticForm())
436    Loc = ILE->getSyntacticForm()->getLocStart();
437
438  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
439    const RecordDecl *RDecl = RType->getDecl();
440    if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
441      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
442                              Entity, ILE, RequiresSecondPass);
443    else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
444             cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
445      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
446                                      FieldEnd = RDecl->field_end();
447           Field != FieldEnd; ++Field) {
448        if (Field->hasInClassInitializer()) {
449          FillInValueInitForField(0, *Field, Entity, ILE, RequiresSecondPass);
450          break;
451        }
452      }
453    } else {
454      unsigned Init = 0;
455      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
456                                      FieldEnd = RDecl->field_end();
457           Field != FieldEnd; ++Field) {
458        if (Field->isUnnamedBitfield())
459          continue;
460
461        if (hadError)
462          return;
463
464        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
465        if (hadError)
466          return;
467
468        ++Init;
469
470        // Only look at the first initialization of a union.
471        if (RDecl->isUnion())
472          break;
473      }
474    }
475
476    return;
477  }
478
479  QualType ElementType;
480
481  InitializedEntity ElementEntity = Entity;
482  unsigned NumInits = ILE->getNumInits();
483  unsigned NumElements = NumInits;
484  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
485    ElementType = AType->getElementType();
486    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
487      NumElements = CAType->getSize().getZExtValue();
488    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
489                                                         0, Entity);
490  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
491    ElementType = VType->getElementType();
492    NumElements = VType->getNumElements();
493    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
494                                                         0, Entity);
495  } else
496    ElementType = ILE->getType();
497
498
499  for (unsigned Init = 0; Init != NumElements; ++Init) {
500    if (hadError)
501      return;
502
503    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
504        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
505      ElementEntity.setElementIndex(Init);
506
507    Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
508    if (!InitExpr && !ILE->hasArrayFiller()) {
509      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
510                                                                true);
511      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, None);
512      if (!InitSeq) {
513        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, None);
514        hadError = true;
515        return;
516      }
517
518      ExprResult ElementInit
519        = InitSeq.Perform(SemaRef, ElementEntity, Kind, None);
520      if (ElementInit.isInvalid()) {
521        hadError = true;
522        return;
523      }
524
525      if (hadError) {
526        // Do nothing
527      } else if (Init < NumInits) {
528        // For arrays, just set the expression used for value-initialization
529        // of the "holes" in the array.
530        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
531          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
532        else
533          ILE->setInit(Init, ElementInit.takeAs<Expr>());
534      } else {
535        // For arrays, just set the expression used for value-initialization
536        // of the rest of elements and exit.
537        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
538          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
539          return;
540        }
541
542        if (InitSeq.isConstructorInitialization()) {
543          // Value-initialization requires a constructor call, so
544          // extend the initializer list to include the constructor
545          // call and make a note that we'll need to take another pass
546          // through the initializer list.
547          ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
548          RequiresSecondPass = true;
549        }
550      }
551    } else if (InitListExpr *InnerILE
552                 = dyn_cast_or_null<InitListExpr>(InitExpr))
553      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
554  }
555}
556
557
558InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
559                                 InitListExpr *IL, QualType &T,
560                                 bool VerifyOnly)
561  : SemaRef(S), VerifyOnly(VerifyOnly) {
562  hadError = false;
563
564  unsigned newIndex = 0;
565  unsigned newStructuredIndex = 0;
566  FullyStructuredList
567    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
568  CheckExplicitInitList(Entity, IL, T, newIndex,
569                        FullyStructuredList, newStructuredIndex,
570                        /*TopLevelObject=*/true);
571
572  if (!hadError && !VerifyOnly) {
573    bool RequiresSecondPass = false;
574    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
575    if (RequiresSecondPass && !hadError)
576      FillInValueInitializations(Entity, FullyStructuredList,
577                                 RequiresSecondPass);
578  }
579}
580
581int InitListChecker::numArrayElements(QualType DeclType) {
582  // FIXME: use a proper constant
583  int maxElements = 0x7FFFFFFF;
584  if (const ConstantArrayType *CAT =
585        SemaRef.Context.getAsConstantArrayType(DeclType)) {
586    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
587  }
588  return maxElements;
589}
590
591int InitListChecker::numStructUnionElements(QualType DeclType) {
592  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
593  int InitializableMembers = 0;
594  for (RecordDecl::field_iterator
595         Field = structDecl->field_begin(),
596         FieldEnd = structDecl->field_end();
597       Field != FieldEnd; ++Field) {
598    if (!Field->isUnnamedBitfield())
599      ++InitializableMembers;
600  }
601  if (structDecl->isUnion())
602    return std::min(InitializableMembers, 1);
603  return InitializableMembers - structDecl->hasFlexibleArrayMember();
604}
605
606void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
607                                            InitListExpr *ParentIList,
608                                            QualType T, unsigned &Index,
609                                            InitListExpr *StructuredList,
610                                            unsigned &StructuredIndex) {
611  int maxElements = 0;
612
613  if (T->isArrayType())
614    maxElements = numArrayElements(T);
615  else if (T->isRecordType())
616    maxElements = numStructUnionElements(T);
617  else if (T->isVectorType())
618    maxElements = T->getAs<VectorType>()->getNumElements();
619  else
620    llvm_unreachable("CheckImplicitInitList(): Illegal type");
621
622  if (maxElements == 0) {
623    if (!VerifyOnly)
624      SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
625                   diag::err_implicit_empty_initializer);
626    ++Index;
627    hadError = true;
628    return;
629  }
630
631  // Build a structured initializer list corresponding to this subobject.
632  InitListExpr *StructuredSubobjectInitList
633    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
634                                 StructuredIndex,
635          SourceRange(ParentIList->getInit(Index)->getLocStart(),
636                      ParentIList->getSourceRange().getEnd()));
637  unsigned StructuredSubobjectInitIndex = 0;
638
639  // Check the element types and build the structural subobject.
640  unsigned StartIndex = Index;
641  CheckListElementTypes(Entity, ParentIList, T,
642                        /*SubobjectIsDesignatorContext=*/false, Index,
643                        StructuredSubobjectInitList,
644                        StructuredSubobjectInitIndex);
645
646  if (!VerifyOnly) {
647    StructuredSubobjectInitList->setType(T);
648
649    unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
650    // Update the structured sub-object initializer so that it's ending
651    // range corresponds with the end of the last initializer it used.
652    if (EndIndex < ParentIList->getNumInits()) {
653      SourceLocation EndLoc
654        = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
655      StructuredSubobjectInitList->setRBraceLoc(EndLoc);
656    }
657
658    // Complain about missing braces.
659    if (T->isArrayType() || T->isRecordType()) {
660      SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
661                   diag::warn_missing_braces)
662        << StructuredSubobjectInitList->getSourceRange()
663        << FixItHint::CreateInsertion(
664              StructuredSubobjectInitList->getLocStart(), "{")
665        << FixItHint::CreateInsertion(
666              SemaRef.PP.getLocForEndOfToken(
667                                      StructuredSubobjectInitList->getLocEnd()),
668              "}");
669    }
670  }
671}
672
673void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
674                                            InitListExpr *IList, QualType &T,
675                                            unsigned &Index,
676                                            InitListExpr *StructuredList,
677                                            unsigned &StructuredIndex,
678                                            bool TopLevelObject) {
679  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
680  if (!VerifyOnly) {
681    SyntacticToSemantic[IList] = StructuredList;
682    StructuredList->setSyntacticForm(IList);
683  }
684  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
685                        Index, StructuredList, StructuredIndex, TopLevelObject);
686  if (!VerifyOnly) {
687    QualType ExprTy = T;
688    if (!ExprTy->isArrayType())
689      ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
690    IList->setType(ExprTy);
691    StructuredList->setType(ExprTy);
692  }
693  if (hadError)
694    return;
695
696  if (Index < IList->getNumInits()) {
697    // We have leftover initializers
698    if (VerifyOnly) {
699      if (SemaRef.getLangOpts().CPlusPlus ||
700          (SemaRef.getLangOpts().OpenCL &&
701           IList->getType()->isVectorType())) {
702        hadError = true;
703      }
704      return;
705    }
706
707    if (StructuredIndex == 1 &&
708        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
709            SIF_None) {
710      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
711      if (SemaRef.getLangOpts().CPlusPlus) {
712        DK = diag::err_excess_initializers_in_char_array_initializer;
713        hadError = true;
714      }
715      // Special-case
716      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
717        << IList->getInit(Index)->getSourceRange();
718    } else if (!T->isIncompleteType()) {
719      // Don't complain for incomplete types, since we'll get an error
720      // elsewhere
721      QualType CurrentObjectType = StructuredList->getType();
722      int initKind =
723        CurrentObjectType->isArrayType()? 0 :
724        CurrentObjectType->isVectorType()? 1 :
725        CurrentObjectType->isScalarType()? 2 :
726        CurrentObjectType->isUnionType()? 3 :
727        4;
728
729      unsigned DK = diag::warn_excess_initializers;
730      if (SemaRef.getLangOpts().CPlusPlus) {
731        DK = diag::err_excess_initializers;
732        hadError = true;
733      }
734      if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
735        DK = diag::err_excess_initializers;
736        hadError = true;
737      }
738
739      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
740        << initKind << IList->getInit(Index)->getSourceRange();
741    }
742  }
743
744  if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
745      !TopLevelObject)
746    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
747      << IList->getSourceRange()
748      << FixItHint::CreateRemoval(IList->getLocStart())
749      << FixItHint::CreateRemoval(IList->getLocEnd());
750}
751
752void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
753                                            InitListExpr *IList,
754                                            QualType &DeclType,
755                                            bool SubobjectIsDesignatorContext,
756                                            unsigned &Index,
757                                            InitListExpr *StructuredList,
758                                            unsigned &StructuredIndex,
759                                            bool TopLevelObject) {
760  if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
761    // Explicitly braced initializer for complex type can be real+imaginary
762    // parts.
763    CheckComplexType(Entity, IList, DeclType, Index,
764                     StructuredList, StructuredIndex);
765  } else if (DeclType->isScalarType()) {
766    CheckScalarType(Entity, IList, DeclType, Index,
767                    StructuredList, StructuredIndex);
768  } else if (DeclType->isVectorType()) {
769    CheckVectorType(Entity, IList, DeclType, Index,
770                    StructuredList, StructuredIndex);
771  } else if (DeclType->isRecordType()) {
772    assert(DeclType->isAggregateType() &&
773           "non-aggregate records should be handed in CheckSubElementType");
774    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
775    CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
776                          SubobjectIsDesignatorContext, Index,
777                          StructuredList, StructuredIndex,
778                          TopLevelObject);
779  } else if (DeclType->isArrayType()) {
780    llvm::APSInt Zero(
781                    SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
782                    false);
783    CheckArrayType(Entity, IList, DeclType, Zero,
784                   SubobjectIsDesignatorContext, Index,
785                   StructuredList, StructuredIndex);
786  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
787    // This type is invalid, issue a diagnostic.
788    ++Index;
789    if (!VerifyOnly)
790      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
791        << DeclType;
792    hadError = true;
793  } else if (DeclType->isReferenceType()) {
794    CheckReferenceType(Entity, IList, DeclType, Index,
795                       StructuredList, StructuredIndex);
796  } else if (DeclType->isObjCObjectType()) {
797    if (!VerifyOnly)
798      SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
799        << DeclType;
800    hadError = true;
801  } else {
802    if (!VerifyOnly)
803      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
804        << DeclType;
805    hadError = true;
806  }
807}
808
809void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
810                                          InitListExpr *IList,
811                                          QualType ElemType,
812                                          unsigned &Index,
813                                          InitListExpr *StructuredList,
814                                          unsigned &StructuredIndex) {
815  Expr *expr = IList->getInit(Index);
816
817  if (ElemType->isReferenceType())
818    return CheckReferenceType(Entity, IList, ElemType, Index,
819                              StructuredList, StructuredIndex);
820
821  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
822    if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
823      unsigned newIndex = 0;
824      unsigned newStructuredIndex = 0;
825      InitListExpr *newStructuredList
826        = getStructuredSubobjectInit(IList, Index, ElemType,
827                                     StructuredList, StructuredIndex,
828                                     SubInitList->getSourceRange());
829      CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
830                            newStructuredList, newStructuredIndex);
831      ++StructuredIndex;
832      ++Index;
833      return;
834    }
835    assert(SemaRef.getLangOpts().CPlusPlus &&
836           "non-aggregate records are only possible in C++");
837    // C++ initialization is handled later.
838  }
839
840  // FIXME: Need to handle atomic aggregate types with implicit init lists.
841  if (ElemType->isScalarType() || ElemType->isAtomicType())
842    return CheckScalarType(Entity, IList, ElemType, Index,
843                           StructuredList, StructuredIndex);
844
845  assert((ElemType->isRecordType() || ElemType->isVectorType() ||
846          ElemType->isArrayType()) && "Unexpected type");
847
848  if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
849    // arrayType can be incomplete if we're initializing a flexible
850    // array member.  There's nothing we can do with the completed
851    // type here, though.
852
853    if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
854      if (!VerifyOnly) {
855        CheckStringInit(expr, ElemType, arrayType, SemaRef);
856        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
857      }
858      ++Index;
859      return;
860    }
861
862    // Fall through for subaggregate initialization.
863
864  } else if (SemaRef.getLangOpts().CPlusPlus) {
865    // C++ [dcl.init.aggr]p12:
866    //   All implicit type conversions (clause 4) are considered when
867    //   initializing the aggregate member with an initializer from
868    //   an initializer-list. If the initializer can initialize a
869    //   member, the member is initialized. [...]
870
871    // FIXME: Better EqualLoc?
872    InitializationKind Kind =
873      InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
874    InitializationSequence Seq(SemaRef, Entity, Kind, expr);
875
876    if (Seq) {
877      if (!VerifyOnly) {
878        ExprResult Result =
879          Seq.Perform(SemaRef, Entity, Kind, expr);
880        if (Result.isInvalid())
881          hadError = true;
882
883        UpdateStructuredListElement(StructuredList, StructuredIndex,
884                                    Result.takeAs<Expr>());
885      }
886      ++Index;
887      return;
888    }
889
890    // Fall through for subaggregate initialization
891  } else {
892    // C99 6.7.8p13:
893    //
894    //   The initializer for a structure or union object that has
895    //   automatic storage duration shall be either an initializer
896    //   list as described below, or a single expression that has
897    //   compatible structure or union type. In the latter case, the
898    //   initial value of the object, including unnamed members, is
899    //   that of the expression.
900    ExprResult ExprRes = SemaRef.Owned(expr);
901    if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
902        SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
903                                                 !VerifyOnly)
904          == Sema::Compatible) {
905      if (ExprRes.isInvalid())
906        hadError = true;
907      else {
908        ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
909          if (ExprRes.isInvalid())
910            hadError = true;
911      }
912      UpdateStructuredListElement(StructuredList, StructuredIndex,
913                                  ExprRes.takeAs<Expr>());
914      ++Index;
915      return;
916    }
917    ExprRes.release();
918    // Fall through for subaggregate initialization
919  }
920
921  // C++ [dcl.init.aggr]p12:
922  //
923  //   [...] Otherwise, if the member is itself a non-empty
924  //   subaggregate, brace elision is assumed and the initializer is
925  //   considered for the initialization of the first member of
926  //   the subaggregate.
927  if (!SemaRef.getLangOpts().OpenCL &&
928      (ElemType->isAggregateType() || ElemType->isVectorType())) {
929    CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
930                          StructuredIndex);
931    ++StructuredIndex;
932  } else {
933    if (!VerifyOnly) {
934      // We cannot initialize this element, so let
935      // PerformCopyInitialization produce the appropriate diagnostic.
936      SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
937                                        SemaRef.Owned(expr),
938                                        /*TopLevelOfInitList=*/true);
939    }
940    hadError = true;
941    ++Index;
942    ++StructuredIndex;
943  }
944}
945
946void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
947                                       InitListExpr *IList, QualType DeclType,
948                                       unsigned &Index,
949                                       InitListExpr *StructuredList,
950                                       unsigned &StructuredIndex) {
951  assert(Index == 0 && "Index in explicit init list must be zero");
952
953  // As an extension, clang supports complex initializers, which initialize
954  // a complex number component-wise.  When an explicit initializer list for
955  // a complex number contains two two initializers, this extension kicks in:
956  // it exepcts the initializer list to contain two elements convertible to
957  // the element type of the complex type. The first element initializes
958  // the real part, and the second element intitializes the imaginary part.
959
960  if (IList->getNumInits() != 2)
961    return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
962                           StructuredIndex);
963
964  // This is an extension in C.  (The builtin _Complex type does not exist
965  // in the C++ standard.)
966  if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
967    SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
968      << IList->getSourceRange();
969
970  // Initialize the complex number.
971  QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
972  InitializedEntity ElementEntity =
973    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
974
975  for (unsigned i = 0; i < 2; ++i) {
976    ElementEntity.setElementIndex(Index);
977    CheckSubElementType(ElementEntity, IList, elementType, Index,
978                        StructuredList, StructuredIndex);
979  }
980}
981
982
983void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
984                                      InitListExpr *IList, QualType DeclType,
985                                      unsigned &Index,
986                                      InitListExpr *StructuredList,
987                                      unsigned &StructuredIndex) {
988  if (Index >= IList->getNumInits()) {
989    if (!VerifyOnly)
990      SemaRef.Diag(IList->getLocStart(),
991                   SemaRef.getLangOpts().CPlusPlus11 ?
992                     diag::warn_cxx98_compat_empty_scalar_initializer :
993                     diag::err_empty_scalar_initializer)
994        << IList->getSourceRange();
995    hadError = !SemaRef.getLangOpts().CPlusPlus11;
996    ++Index;
997    ++StructuredIndex;
998    return;
999  }
1000
1001  Expr *expr = IList->getInit(Index);
1002  if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1003    if (!VerifyOnly)
1004      SemaRef.Diag(SubIList->getLocStart(),
1005                   diag::warn_many_braces_around_scalar_init)
1006        << SubIList->getSourceRange();
1007
1008    CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1009                    StructuredIndex);
1010    return;
1011  } else if (isa<DesignatedInitExpr>(expr)) {
1012    if (!VerifyOnly)
1013      SemaRef.Diag(expr->getLocStart(),
1014                   diag::err_designator_for_scalar_init)
1015        << DeclType << expr->getSourceRange();
1016    hadError = true;
1017    ++Index;
1018    ++StructuredIndex;
1019    return;
1020  }
1021
1022  if (VerifyOnly) {
1023    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1024      hadError = true;
1025    ++Index;
1026    return;
1027  }
1028
1029  ExprResult Result =
1030    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1031                                      SemaRef.Owned(expr),
1032                                      /*TopLevelOfInitList=*/true);
1033
1034  Expr *ResultExpr = 0;
1035
1036  if (Result.isInvalid())
1037    hadError = true; // types weren't compatible.
1038  else {
1039    ResultExpr = Result.takeAs<Expr>();
1040
1041    if (ResultExpr != expr) {
1042      // The type was promoted, update initializer list.
1043      IList->setInit(Index, ResultExpr);
1044    }
1045  }
1046  if (hadError)
1047    ++StructuredIndex;
1048  else
1049    UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1050  ++Index;
1051}
1052
1053void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1054                                         InitListExpr *IList, QualType DeclType,
1055                                         unsigned &Index,
1056                                         InitListExpr *StructuredList,
1057                                         unsigned &StructuredIndex) {
1058  if (Index >= IList->getNumInits()) {
1059    // FIXME: It would be wonderful if we could point at the actual member. In
1060    // general, it would be useful to pass location information down the stack,
1061    // so that we know the location (or decl) of the "current object" being
1062    // initialized.
1063    if (!VerifyOnly)
1064      SemaRef.Diag(IList->getLocStart(),
1065                    diag::err_init_reference_member_uninitialized)
1066        << DeclType
1067        << IList->getSourceRange();
1068    hadError = true;
1069    ++Index;
1070    ++StructuredIndex;
1071    return;
1072  }
1073
1074  Expr *expr = IList->getInit(Index);
1075  if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1076    if (!VerifyOnly)
1077      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1078        << DeclType << IList->getSourceRange();
1079    hadError = true;
1080    ++Index;
1081    ++StructuredIndex;
1082    return;
1083  }
1084
1085  if (VerifyOnly) {
1086    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1087      hadError = true;
1088    ++Index;
1089    return;
1090  }
1091
1092  ExprResult Result =
1093    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1094                                      SemaRef.Owned(expr),
1095                                      /*TopLevelOfInitList=*/true);
1096
1097  if (Result.isInvalid())
1098    hadError = true;
1099
1100  expr = Result.takeAs<Expr>();
1101  IList->setInit(Index, expr);
1102
1103  if (hadError)
1104    ++StructuredIndex;
1105  else
1106    UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1107  ++Index;
1108}
1109
1110void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1111                                      InitListExpr *IList, QualType DeclType,
1112                                      unsigned &Index,
1113                                      InitListExpr *StructuredList,
1114                                      unsigned &StructuredIndex) {
1115  const VectorType *VT = DeclType->getAs<VectorType>();
1116  unsigned maxElements = VT->getNumElements();
1117  unsigned numEltsInit = 0;
1118  QualType elementType = VT->getElementType();
1119
1120  if (Index >= IList->getNumInits()) {
1121    // Make sure the element type can be value-initialized.
1122    if (VerifyOnly)
1123      CheckValueInitializable(
1124          InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1125    return;
1126  }
1127
1128  if (!SemaRef.getLangOpts().OpenCL) {
1129    // If the initializing element is a vector, try to copy-initialize
1130    // instead of breaking it apart (which is doomed to failure anyway).
1131    Expr *Init = IList->getInit(Index);
1132    if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1133      if (VerifyOnly) {
1134        if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1135          hadError = true;
1136        ++Index;
1137        return;
1138      }
1139
1140      ExprResult Result =
1141        SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1142                                          SemaRef.Owned(Init),
1143                                          /*TopLevelOfInitList=*/true);
1144
1145      Expr *ResultExpr = 0;
1146      if (Result.isInvalid())
1147        hadError = true; // types weren't compatible.
1148      else {
1149        ResultExpr = Result.takeAs<Expr>();
1150
1151        if (ResultExpr != Init) {
1152          // The type was promoted, update initializer list.
1153          IList->setInit(Index, ResultExpr);
1154        }
1155      }
1156      if (hadError)
1157        ++StructuredIndex;
1158      else
1159        UpdateStructuredListElement(StructuredList, StructuredIndex,
1160                                    ResultExpr);
1161      ++Index;
1162      return;
1163    }
1164
1165    InitializedEntity ElementEntity =
1166      InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1167
1168    for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1169      // Don't attempt to go past the end of the init list
1170      if (Index >= IList->getNumInits()) {
1171        if (VerifyOnly)
1172          CheckValueInitializable(ElementEntity);
1173        break;
1174      }
1175
1176      ElementEntity.setElementIndex(Index);
1177      CheckSubElementType(ElementEntity, IList, elementType, Index,
1178                          StructuredList, StructuredIndex);
1179    }
1180    return;
1181  }
1182
1183  InitializedEntity ElementEntity =
1184    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1185
1186  // OpenCL initializers allows vectors to be constructed from vectors.
1187  for (unsigned i = 0; i < maxElements; ++i) {
1188    // Don't attempt to go past the end of the init list
1189    if (Index >= IList->getNumInits())
1190      break;
1191
1192    ElementEntity.setElementIndex(Index);
1193
1194    QualType IType = IList->getInit(Index)->getType();
1195    if (!IType->isVectorType()) {
1196      CheckSubElementType(ElementEntity, IList, elementType, Index,
1197                          StructuredList, StructuredIndex);
1198      ++numEltsInit;
1199    } else {
1200      QualType VecType;
1201      const VectorType *IVT = IType->getAs<VectorType>();
1202      unsigned numIElts = IVT->getNumElements();
1203
1204      if (IType->isExtVectorType())
1205        VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1206      else
1207        VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1208                                                IVT->getVectorKind());
1209      CheckSubElementType(ElementEntity, IList, VecType, Index,
1210                          StructuredList, StructuredIndex);
1211      numEltsInit += numIElts;
1212    }
1213  }
1214
1215  // OpenCL requires all elements to be initialized.
1216  if (numEltsInit != maxElements) {
1217    if (!VerifyOnly)
1218      SemaRef.Diag(IList->getLocStart(),
1219                   diag::err_vector_incorrect_num_initializers)
1220        << (numEltsInit < maxElements) << maxElements << numEltsInit;
1221    hadError = true;
1222  }
1223}
1224
1225void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1226                                     InitListExpr *IList, QualType &DeclType,
1227                                     llvm::APSInt elementIndex,
1228                                     bool SubobjectIsDesignatorContext,
1229                                     unsigned &Index,
1230                                     InitListExpr *StructuredList,
1231                                     unsigned &StructuredIndex) {
1232  const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1233
1234  // Check for the special-case of initializing an array with a string.
1235  if (Index < IList->getNumInits()) {
1236    if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1237        SIF_None) {
1238      // We place the string literal directly into the resulting
1239      // initializer list. This is the only place where the structure
1240      // of the structured initializer list doesn't match exactly,
1241      // because doing so would involve allocating one character
1242      // constant for each string.
1243      if (!VerifyOnly) {
1244        CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1245        UpdateStructuredListElement(StructuredList, StructuredIndex,
1246                                    IList->getInit(Index));
1247        StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1248      }
1249      ++Index;
1250      return;
1251    }
1252  }
1253  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1254    // Check for VLAs; in standard C it would be possible to check this
1255    // earlier, but I don't know where clang accepts VLAs (gcc accepts
1256    // them in all sorts of strange places).
1257    if (!VerifyOnly)
1258      SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1259                    diag::err_variable_object_no_init)
1260        << VAT->getSizeExpr()->getSourceRange();
1261    hadError = true;
1262    ++Index;
1263    ++StructuredIndex;
1264    return;
1265  }
1266
1267  // We might know the maximum number of elements in advance.
1268  llvm::APSInt maxElements(elementIndex.getBitWidth(),
1269                           elementIndex.isUnsigned());
1270  bool maxElementsKnown = false;
1271  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1272    maxElements = CAT->getSize();
1273    elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1274    elementIndex.setIsUnsigned(maxElements.isUnsigned());
1275    maxElementsKnown = true;
1276  }
1277
1278  QualType elementType = arrayType->getElementType();
1279  while (Index < IList->getNumInits()) {
1280    Expr *Init = IList->getInit(Index);
1281    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1282      // If we're not the subobject that matches up with the '{' for
1283      // the designator, we shouldn't be handling the
1284      // designator. Return immediately.
1285      if (!SubobjectIsDesignatorContext)
1286        return;
1287
1288      // Handle this designated initializer. elementIndex will be
1289      // updated to be the next array element we'll initialize.
1290      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1291                                     DeclType, 0, &elementIndex, Index,
1292                                     StructuredList, StructuredIndex, true,
1293                                     false)) {
1294        hadError = true;
1295        continue;
1296      }
1297
1298      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1299        maxElements = maxElements.extend(elementIndex.getBitWidth());
1300      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1301        elementIndex = elementIndex.extend(maxElements.getBitWidth());
1302      elementIndex.setIsUnsigned(maxElements.isUnsigned());
1303
1304      // If the array is of incomplete type, keep track of the number of
1305      // elements in the initializer.
1306      if (!maxElementsKnown && elementIndex > maxElements)
1307        maxElements = elementIndex;
1308
1309      continue;
1310    }
1311
1312    // If we know the maximum number of elements, and we've already
1313    // hit it, stop consuming elements in the initializer list.
1314    if (maxElementsKnown && elementIndex == maxElements)
1315      break;
1316
1317    InitializedEntity ElementEntity =
1318      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1319                                           Entity);
1320    // Check this element.
1321    CheckSubElementType(ElementEntity, IList, elementType, Index,
1322                        StructuredList, StructuredIndex);
1323    ++elementIndex;
1324
1325    // If the array is of incomplete type, keep track of the number of
1326    // elements in the initializer.
1327    if (!maxElementsKnown && elementIndex > maxElements)
1328      maxElements = elementIndex;
1329  }
1330  if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1331    // If this is an incomplete array type, the actual type needs to
1332    // be calculated here.
1333    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1334    if (maxElements == Zero) {
1335      // Sizing an array implicitly to zero is not allowed by ISO C,
1336      // but is supported by GNU.
1337      SemaRef.Diag(IList->getLocStart(),
1338                    diag::ext_typecheck_zero_array_size);
1339    }
1340
1341    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1342                                                     ArrayType::Normal, 0);
1343  }
1344  if (!hadError && VerifyOnly) {
1345    // Check if there are any members of the array that get value-initialized.
1346    // If so, check if doing that is possible.
1347    // FIXME: This needs to detect holes left by designated initializers too.
1348    if (maxElementsKnown && elementIndex < maxElements)
1349      CheckValueInitializable(InitializedEntity::InitializeElement(
1350                                                  SemaRef.Context, 0, Entity));
1351  }
1352}
1353
1354bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1355                                             Expr *InitExpr,
1356                                             FieldDecl *Field,
1357                                             bool TopLevelObject) {
1358  // Handle GNU flexible array initializers.
1359  unsigned FlexArrayDiag;
1360  if (isa<InitListExpr>(InitExpr) &&
1361      cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1362    // Empty flexible array init always allowed as an extension
1363    FlexArrayDiag = diag::ext_flexible_array_init;
1364  } else if (SemaRef.getLangOpts().CPlusPlus) {
1365    // Disallow flexible array init in C++; it is not required for gcc
1366    // compatibility, and it needs work to IRGen correctly in general.
1367    FlexArrayDiag = diag::err_flexible_array_init;
1368  } else if (!TopLevelObject) {
1369    // Disallow flexible array init on non-top-level object
1370    FlexArrayDiag = diag::err_flexible_array_init;
1371  } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1372    // Disallow flexible array init on anything which is not a variable.
1373    FlexArrayDiag = diag::err_flexible_array_init;
1374  } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1375    // Disallow flexible array init on local variables.
1376    FlexArrayDiag = diag::err_flexible_array_init;
1377  } else {
1378    // Allow other cases.
1379    FlexArrayDiag = diag::ext_flexible_array_init;
1380  }
1381
1382  if (!VerifyOnly) {
1383    SemaRef.Diag(InitExpr->getLocStart(),
1384                 FlexArrayDiag)
1385      << InitExpr->getLocStart();
1386    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1387      << Field;
1388  }
1389
1390  return FlexArrayDiag != diag::ext_flexible_array_init;
1391}
1392
1393void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1394                                            InitListExpr *IList,
1395                                            QualType DeclType,
1396                                            RecordDecl::field_iterator Field,
1397                                            bool SubobjectIsDesignatorContext,
1398                                            unsigned &Index,
1399                                            InitListExpr *StructuredList,
1400                                            unsigned &StructuredIndex,
1401                                            bool TopLevelObject) {
1402  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1403
1404  // If the record is invalid, some of it's members are invalid. To avoid
1405  // confusion, we forgo checking the intializer for the entire record.
1406  if (structDecl->isInvalidDecl()) {
1407    // Assume it was supposed to consume a single initializer.
1408    ++Index;
1409    hadError = true;
1410    return;
1411  }
1412
1413  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1414    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1415
1416    // If there's a default initializer, use it.
1417    if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1418      if (VerifyOnly)
1419        return;
1420      for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1421           Field != FieldEnd; ++Field) {
1422        if (Field->hasInClassInitializer()) {
1423          StructuredList->setInitializedFieldInUnion(*Field);
1424          // FIXME: Actually build a CXXDefaultInitExpr?
1425          return;
1426        }
1427      }
1428    }
1429
1430    // Value-initialize the first named member of the union.
1431    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1432         Field != FieldEnd; ++Field) {
1433      if (Field->getDeclName()) {
1434        if (VerifyOnly)
1435          CheckValueInitializable(
1436              InitializedEntity::InitializeMember(*Field, &Entity));
1437        else
1438          StructuredList->setInitializedFieldInUnion(*Field);
1439        break;
1440      }
1441    }
1442    return;
1443  }
1444
1445  // If structDecl is a forward declaration, this loop won't do
1446  // anything except look at designated initializers; That's okay,
1447  // because an error should get printed out elsewhere. It might be
1448  // worthwhile to skip over the rest of the initializer, though.
1449  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1450  RecordDecl::field_iterator FieldEnd = RD->field_end();
1451  bool InitializedSomething = false;
1452  bool CheckForMissingFields = true;
1453  while (Index < IList->getNumInits()) {
1454    Expr *Init = IList->getInit(Index);
1455
1456    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1457      // If we're not the subobject that matches up with the '{' for
1458      // the designator, we shouldn't be handling the
1459      // designator. Return immediately.
1460      if (!SubobjectIsDesignatorContext)
1461        return;
1462
1463      // Handle this designated initializer. Field will be updated to
1464      // the next field that we'll be initializing.
1465      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1466                                     DeclType, &Field, 0, Index,
1467                                     StructuredList, StructuredIndex,
1468                                     true, TopLevelObject))
1469        hadError = true;
1470
1471      InitializedSomething = true;
1472
1473      // Disable check for missing fields when designators are used.
1474      // This matches gcc behaviour.
1475      CheckForMissingFields = false;
1476      continue;
1477    }
1478
1479    if (Field == FieldEnd) {
1480      // We've run out of fields. We're done.
1481      break;
1482    }
1483
1484    // We've already initialized a member of a union. We're done.
1485    if (InitializedSomething && DeclType->isUnionType())
1486      break;
1487
1488    // If we've hit the flexible array member at the end, we're done.
1489    if (Field->getType()->isIncompleteArrayType())
1490      break;
1491
1492    if (Field->isUnnamedBitfield()) {
1493      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1494      ++Field;
1495      continue;
1496    }
1497
1498    // Make sure we can use this declaration.
1499    bool InvalidUse;
1500    if (VerifyOnly)
1501      InvalidUse = !SemaRef.CanUseDecl(*Field);
1502    else
1503      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1504                                          IList->getInit(Index)->getLocStart());
1505    if (InvalidUse) {
1506      ++Index;
1507      ++Field;
1508      hadError = true;
1509      continue;
1510    }
1511
1512    InitializedEntity MemberEntity =
1513      InitializedEntity::InitializeMember(*Field, &Entity);
1514    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1515                        StructuredList, StructuredIndex);
1516    InitializedSomething = true;
1517
1518    if (DeclType->isUnionType() && !VerifyOnly) {
1519      // Initialize the first field within the union.
1520      StructuredList->setInitializedFieldInUnion(*Field);
1521    }
1522
1523    ++Field;
1524  }
1525
1526  // Emit warnings for missing struct field initializers.
1527  if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1528      Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1529      !DeclType->isUnionType()) {
1530    // It is possible we have one or more unnamed bitfields remaining.
1531    // Find first (if any) named field and emit warning.
1532    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1533         it != end; ++it) {
1534      if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1535        SemaRef.Diag(IList->getSourceRange().getEnd(),
1536                     diag::warn_missing_field_initializers) << it->getName();
1537        break;
1538      }
1539    }
1540  }
1541
1542  // Check that any remaining fields can be value-initialized.
1543  if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1544      !Field->getType()->isIncompleteArrayType()) {
1545    // FIXME: Should check for holes left by designated initializers too.
1546    for (; Field != FieldEnd && !hadError; ++Field) {
1547      if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1548        CheckValueInitializable(
1549            InitializedEntity::InitializeMember(*Field, &Entity));
1550    }
1551  }
1552
1553  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1554      Index >= IList->getNumInits())
1555    return;
1556
1557  if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1558                             TopLevelObject)) {
1559    hadError = true;
1560    ++Index;
1561    return;
1562  }
1563
1564  InitializedEntity MemberEntity =
1565    InitializedEntity::InitializeMember(*Field, &Entity);
1566
1567  if (isa<InitListExpr>(IList->getInit(Index)))
1568    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1569                        StructuredList, StructuredIndex);
1570  else
1571    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1572                          StructuredList, StructuredIndex);
1573}
1574
1575/// \brief Expand a field designator that refers to a member of an
1576/// anonymous struct or union into a series of field designators that
1577/// refers to the field within the appropriate subobject.
1578///
1579static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1580                                           DesignatedInitExpr *DIE,
1581                                           unsigned DesigIdx,
1582                                           IndirectFieldDecl *IndirectField) {
1583  typedef DesignatedInitExpr::Designator Designator;
1584
1585  // Build the replacement designators.
1586  SmallVector<Designator, 4> Replacements;
1587  for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1588       PE = IndirectField->chain_end(); PI != PE; ++PI) {
1589    if (PI + 1 == PE)
1590      Replacements.push_back(Designator((IdentifierInfo *)0,
1591                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1592                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1593    else
1594      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1595                                        SourceLocation()));
1596    assert(isa<FieldDecl>(*PI));
1597    Replacements.back().setField(cast<FieldDecl>(*PI));
1598  }
1599
1600  // Expand the current designator into the set of replacement
1601  // designators, so we have a full subobject path down to where the
1602  // member of the anonymous struct/union is actually stored.
1603  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1604                        &Replacements[0] + Replacements.size());
1605}
1606
1607/// \brief Given an implicit anonymous field, search the IndirectField that
1608///  corresponds to FieldName.
1609static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1610                                                 IdentifierInfo *FieldName) {
1611  if (!FieldName)
1612    return 0;
1613
1614  assert(AnonField->isAnonymousStructOrUnion());
1615  Decl *NextDecl = AnonField->getNextDeclInContext();
1616  while (IndirectFieldDecl *IF =
1617          dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1618    if (FieldName == IF->getAnonField()->getIdentifier())
1619      return IF;
1620    NextDecl = NextDecl->getNextDeclInContext();
1621  }
1622  return 0;
1623}
1624
1625static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1626                                                   DesignatedInitExpr *DIE) {
1627  unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1628  SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1629  for (unsigned I = 0; I < NumIndexExprs; ++I)
1630    IndexExprs[I] = DIE->getSubExpr(I + 1);
1631  return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1632                                    DIE->size(), IndexExprs,
1633                                    DIE->getEqualOrColonLoc(),
1634                                    DIE->usesGNUSyntax(), DIE->getInit());
1635}
1636
1637namespace {
1638
1639// Callback to only accept typo corrections that are for field members of
1640// the given struct or union.
1641class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1642 public:
1643  explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1644      : Record(RD) {}
1645
1646  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1647    FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1648    return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1649  }
1650
1651 private:
1652  RecordDecl *Record;
1653};
1654
1655}
1656
1657/// @brief Check the well-formedness of a C99 designated initializer.
1658///
1659/// Determines whether the designated initializer @p DIE, which
1660/// resides at the given @p Index within the initializer list @p
1661/// IList, is well-formed for a current object of type @p DeclType
1662/// (C99 6.7.8). The actual subobject that this designator refers to
1663/// within the current subobject is returned in either
1664/// @p NextField or @p NextElementIndex (whichever is appropriate).
1665///
1666/// @param IList  The initializer list in which this designated
1667/// initializer occurs.
1668///
1669/// @param DIE The designated initializer expression.
1670///
1671/// @param DesigIdx  The index of the current designator.
1672///
1673/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1674/// into which the designation in @p DIE should refer.
1675///
1676/// @param NextField  If non-NULL and the first designator in @p DIE is
1677/// a field, this will be set to the field declaration corresponding
1678/// to the field named by the designator.
1679///
1680/// @param NextElementIndex  If non-NULL and the first designator in @p
1681/// DIE is an array designator or GNU array-range designator, this
1682/// will be set to the last index initialized by this designator.
1683///
1684/// @param Index  Index into @p IList where the designated initializer
1685/// @p DIE occurs.
1686///
1687/// @param StructuredList  The initializer list expression that
1688/// describes all of the subobject initializers in the order they'll
1689/// actually be initialized.
1690///
1691/// @returns true if there was an error, false otherwise.
1692bool
1693InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1694                                            InitListExpr *IList,
1695                                            DesignatedInitExpr *DIE,
1696                                            unsigned DesigIdx,
1697                                            QualType &CurrentObjectType,
1698                                          RecordDecl::field_iterator *NextField,
1699                                            llvm::APSInt *NextElementIndex,
1700                                            unsigned &Index,
1701                                            InitListExpr *StructuredList,
1702                                            unsigned &StructuredIndex,
1703                                            bool FinishSubobjectInit,
1704                                            bool TopLevelObject) {
1705  if (DesigIdx == DIE->size()) {
1706    // Check the actual initialization for the designated object type.
1707    bool prevHadError = hadError;
1708
1709    // Temporarily remove the designator expression from the
1710    // initializer list that the child calls see, so that we don't try
1711    // to re-process the designator.
1712    unsigned OldIndex = Index;
1713    IList->setInit(OldIndex, DIE->getInit());
1714
1715    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1716                        StructuredList, StructuredIndex);
1717
1718    // Restore the designated initializer expression in the syntactic
1719    // form of the initializer list.
1720    if (IList->getInit(OldIndex) != DIE->getInit())
1721      DIE->setInit(IList->getInit(OldIndex));
1722    IList->setInit(OldIndex, DIE);
1723
1724    return hadError && !prevHadError;
1725  }
1726
1727  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1728  bool IsFirstDesignator = (DesigIdx == 0);
1729  if (!VerifyOnly) {
1730    assert((IsFirstDesignator || StructuredList) &&
1731           "Need a non-designated initializer list to start from");
1732
1733    // Determine the structural initializer list that corresponds to the
1734    // current subobject.
1735    StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1736      : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1737                                   StructuredList, StructuredIndex,
1738                                   SourceRange(D->getLocStart(),
1739                                               DIE->getLocEnd()));
1740    assert(StructuredList && "Expected a structured initializer list");
1741  }
1742
1743  if (D->isFieldDesignator()) {
1744    // C99 6.7.8p7:
1745    //
1746    //   If a designator has the form
1747    //
1748    //      . identifier
1749    //
1750    //   then the current object (defined below) shall have
1751    //   structure or union type and the identifier shall be the
1752    //   name of a member of that type.
1753    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1754    if (!RT) {
1755      SourceLocation Loc = D->getDotLoc();
1756      if (Loc.isInvalid())
1757        Loc = D->getFieldLoc();
1758      if (!VerifyOnly)
1759        SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1760          << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1761      ++Index;
1762      return true;
1763    }
1764
1765    // Note: we perform a linear search of the fields here, despite
1766    // the fact that we have a faster lookup method, because we always
1767    // need to compute the field's index.
1768    FieldDecl *KnownField = D->getField();
1769    IdentifierInfo *FieldName = D->getFieldName();
1770    unsigned FieldIndex = 0;
1771    RecordDecl::field_iterator
1772      Field = RT->getDecl()->field_begin(),
1773      FieldEnd = RT->getDecl()->field_end();
1774    for (; Field != FieldEnd; ++Field) {
1775      if (Field->isUnnamedBitfield())
1776        continue;
1777
1778      // If we find a field representing an anonymous field, look in the
1779      // IndirectFieldDecl that follow for the designated initializer.
1780      if (!KnownField && Field->isAnonymousStructOrUnion()) {
1781        if (IndirectFieldDecl *IF =
1782            FindIndirectFieldDesignator(*Field, FieldName)) {
1783          // In verify mode, don't modify the original.
1784          if (VerifyOnly)
1785            DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1786          ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1787          D = DIE->getDesignator(DesigIdx);
1788          break;
1789        }
1790      }
1791      if (KnownField && KnownField == *Field)
1792        break;
1793      if (FieldName && FieldName == Field->getIdentifier())
1794        break;
1795
1796      ++FieldIndex;
1797    }
1798
1799    if (Field == FieldEnd) {
1800      if (VerifyOnly) {
1801        ++Index;
1802        return true; // No typo correction when just trying this out.
1803      }
1804
1805      // There was no normal field in the struct with the designated
1806      // name. Perform another lookup for this name, which may find
1807      // something that we can't designate (e.g., a member function),
1808      // may find nothing, or may find a member of an anonymous
1809      // struct/union.
1810      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1811      FieldDecl *ReplacementField = 0;
1812      if (Lookup.empty()) {
1813        // Name lookup didn't find anything. Determine whether this
1814        // was a typo for another field name.
1815        FieldInitializerValidatorCCC Validator(RT->getDecl());
1816        if (TypoCorrection Corrected = SemaRef.CorrectTypo(
1817                DeclarationNameInfo(FieldName, D->getFieldLoc()),
1818                Sema::LookupMemberName, /*Scope=*/ 0, /*SS=*/ 0, Validator,
1819                RT->getDecl())) {
1820          SemaRef.diagnoseTypo(
1821              Corrected,
1822              SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
1823                  << FieldName << CurrentObjectType);
1824          ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1825          hadError = true;
1826        } else {
1827          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1828            << FieldName << CurrentObjectType;
1829          ++Index;
1830          return true;
1831        }
1832      }
1833
1834      if (!ReplacementField) {
1835        // Name lookup found something, but it wasn't a field.
1836        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1837          << FieldName;
1838        SemaRef.Diag(Lookup.front()->getLocation(),
1839                      diag::note_field_designator_found);
1840        ++Index;
1841        return true;
1842      }
1843
1844      if (!KnownField) {
1845        // The replacement field comes from typo correction; find it
1846        // in the list of fields.
1847        FieldIndex = 0;
1848        Field = RT->getDecl()->field_begin();
1849        for (; Field != FieldEnd; ++Field) {
1850          if (Field->isUnnamedBitfield())
1851            continue;
1852
1853          if (ReplacementField == *Field ||
1854              Field->getIdentifier() == ReplacementField->getIdentifier())
1855            break;
1856
1857          ++FieldIndex;
1858        }
1859      }
1860    }
1861
1862    // All of the fields of a union are located at the same place in
1863    // the initializer list.
1864    if (RT->getDecl()->isUnion()) {
1865      FieldIndex = 0;
1866      if (!VerifyOnly)
1867        StructuredList->setInitializedFieldInUnion(*Field);
1868    }
1869
1870    // Make sure we can use this declaration.
1871    bool InvalidUse;
1872    if (VerifyOnly)
1873      InvalidUse = !SemaRef.CanUseDecl(*Field);
1874    else
1875      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1876    if (InvalidUse) {
1877      ++Index;
1878      return true;
1879    }
1880
1881    if (!VerifyOnly) {
1882      // Update the designator with the field declaration.
1883      D->setField(*Field);
1884
1885      // Make sure that our non-designated initializer list has space
1886      // for a subobject corresponding to this field.
1887      if (FieldIndex >= StructuredList->getNumInits())
1888        StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1889    }
1890
1891    // This designator names a flexible array member.
1892    if (Field->getType()->isIncompleteArrayType()) {
1893      bool Invalid = false;
1894      if ((DesigIdx + 1) != DIE->size()) {
1895        // We can't designate an object within the flexible array
1896        // member (because GCC doesn't allow it).
1897        if (!VerifyOnly) {
1898          DesignatedInitExpr::Designator *NextD
1899            = DIE->getDesignator(DesigIdx + 1);
1900          SemaRef.Diag(NextD->getLocStart(),
1901                        diag::err_designator_into_flexible_array_member)
1902            << SourceRange(NextD->getLocStart(),
1903                           DIE->getLocEnd());
1904          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1905            << *Field;
1906        }
1907        Invalid = true;
1908      }
1909
1910      if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1911          !isa<StringLiteral>(DIE->getInit())) {
1912        // The initializer is not an initializer list.
1913        if (!VerifyOnly) {
1914          SemaRef.Diag(DIE->getInit()->getLocStart(),
1915                        diag::err_flexible_array_init_needs_braces)
1916            << DIE->getInit()->getSourceRange();
1917          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1918            << *Field;
1919        }
1920        Invalid = true;
1921      }
1922
1923      // Check GNU flexible array initializer.
1924      if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1925                                             TopLevelObject))
1926        Invalid = true;
1927
1928      if (Invalid) {
1929        ++Index;
1930        return true;
1931      }
1932
1933      // Initialize the array.
1934      bool prevHadError = hadError;
1935      unsigned newStructuredIndex = FieldIndex;
1936      unsigned OldIndex = Index;
1937      IList->setInit(Index, DIE->getInit());
1938
1939      InitializedEntity MemberEntity =
1940        InitializedEntity::InitializeMember(*Field, &Entity);
1941      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1942                          StructuredList, newStructuredIndex);
1943
1944      IList->setInit(OldIndex, DIE);
1945      if (hadError && !prevHadError) {
1946        ++Field;
1947        ++FieldIndex;
1948        if (NextField)
1949          *NextField = Field;
1950        StructuredIndex = FieldIndex;
1951        return true;
1952      }
1953    } else {
1954      // Recurse to check later designated subobjects.
1955      QualType FieldType = Field->getType();
1956      unsigned newStructuredIndex = FieldIndex;
1957
1958      InitializedEntity MemberEntity =
1959        InitializedEntity::InitializeMember(*Field, &Entity);
1960      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1961                                     FieldType, 0, 0, Index,
1962                                     StructuredList, newStructuredIndex,
1963                                     true, false))
1964        return true;
1965    }
1966
1967    // Find the position of the next field to be initialized in this
1968    // subobject.
1969    ++Field;
1970    ++FieldIndex;
1971
1972    // If this the first designator, our caller will continue checking
1973    // the rest of this struct/class/union subobject.
1974    if (IsFirstDesignator) {
1975      if (NextField)
1976        *NextField = Field;
1977      StructuredIndex = FieldIndex;
1978      return false;
1979    }
1980
1981    if (!FinishSubobjectInit)
1982      return false;
1983
1984    // We've already initialized something in the union; we're done.
1985    if (RT->getDecl()->isUnion())
1986      return hadError;
1987
1988    // Check the remaining fields within this class/struct/union subobject.
1989    bool prevHadError = hadError;
1990
1991    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1992                          StructuredList, FieldIndex);
1993    return hadError && !prevHadError;
1994  }
1995
1996  // C99 6.7.8p6:
1997  //
1998  //   If a designator has the form
1999  //
2000  //      [ constant-expression ]
2001  //
2002  //   then the current object (defined below) shall have array
2003  //   type and the expression shall be an integer constant
2004  //   expression. If the array is of unknown size, any
2005  //   nonnegative value is valid.
2006  //
2007  // Additionally, cope with the GNU extension that permits
2008  // designators of the form
2009  //
2010  //      [ constant-expression ... constant-expression ]
2011  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2012  if (!AT) {
2013    if (!VerifyOnly)
2014      SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2015        << CurrentObjectType;
2016    ++Index;
2017    return true;
2018  }
2019
2020  Expr *IndexExpr = 0;
2021  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2022  if (D->isArrayDesignator()) {
2023    IndexExpr = DIE->getArrayIndex(*D);
2024    DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2025    DesignatedEndIndex = DesignatedStartIndex;
2026  } else {
2027    assert(D->isArrayRangeDesignator() && "Need array-range designator");
2028
2029    DesignatedStartIndex =
2030      DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2031    DesignatedEndIndex =
2032      DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2033    IndexExpr = DIE->getArrayRangeEnd(*D);
2034
2035    // Codegen can't handle evaluating array range designators that have side
2036    // effects, because we replicate the AST value for each initialized element.
2037    // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2038    // elements with something that has a side effect, so codegen can emit an
2039    // "error unsupported" error instead of miscompiling the app.
2040    if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2041        DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2042      FullyStructuredList->sawArrayRangeDesignator();
2043  }
2044
2045  if (isa<ConstantArrayType>(AT)) {
2046    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2047    DesignatedStartIndex
2048      = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2049    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2050    DesignatedEndIndex
2051      = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2052    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2053    if (DesignatedEndIndex >= MaxElements) {
2054      if (!VerifyOnly)
2055        SemaRef.Diag(IndexExpr->getLocStart(),
2056                      diag::err_array_designator_too_large)
2057          << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2058          << IndexExpr->getSourceRange();
2059      ++Index;
2060      return true;
2061    }
2062  } else {
2063    // Make sure the bit-widths and signedness match.
2064    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
2065      DesignatedEndIndex
2066        = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
2067    else if (DesignatedStartIndex.getBitWidth() <
2068             DesignatedEndIndex.getBitWidth())
2069      DesignatedStartIndex
2070        = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
2071    DesignatedStartIndex.setIsUnsigned(true);
2072    DesignatedEndIndex.setIsUnsigned(true);
2073  }
2074
2075  if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2076    // We're modifying a string literal init; we have to decompose the string
2077    // so we can modify the individual characters.
2078    ASTContext &Context = SemaRef.Context;
2079    Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2080
2081    // Compute the character type
2082    QualType CharTy = AT->getElementType();
2083
2084    // Compute the type of the integer literals.
2085    QualType PromotedCharTy = CharTy;
2086    if (CharTy->isPromotableIntegerType())
2087      PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2088    unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2089
2090    if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2091      // Get the length of the string.
2092      uint64_t StrLen = SL->getLength();
2093      if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2094        StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2095      StructuredList->resizeInits(Context, StrLen);
2096
2097      // Build a literal for each character in the string, and put them into
2098      // the init list.
2099      for (unsigned i = 0, e = StrLen; i != e; ++i) {
2100        llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2101        Expr *Init = new (Context) IntegerLiteral(
2102            Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2103        if (CharTy != PromotedCharTy)
2104          Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2105                                          Init, 0, VK_RValue);
2106        StructuredList->updateInit(Context, i, Init);
2107      }
2108    } else {
2109      ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2110      std::string Str;
2111      Context.getObjCEncodingForType(E->getEncodedType(), Str);
2112
2113      // Get the length of the string.
2114      uint64_t StrLen = Str.size();
2115      if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2116        StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2117      StructuredList->resizeInits(Context, StrLen);
2118
2119      // Build a literal for each character in the string, and put them into
2120      // the init list.
2121      for (unsigned i = 0, e = StrLen; i != e; ++i) {
2122        llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2123        Expr *Init = new (Context) IntegerLiteral(
2124            Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2125        if (CharTy != PromotedCharTy)
2126          Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2127                                          Init, 0, VK_RValue);
2128        StructuredList->updateInit(Context, i, Init);
2129      }
2130    }
2131  }
2132
2133  // Make sure that our non-designated initializer list has space
2134  // for a subobject corresponding to this array element.
2135  if (!VerifyOnly &&
2136      DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2137    StructuredList->resizeInits(SemaRef.Context,
2138                                DesignatedEndIndex.getZExtValue() + 1);
2139
2140  // Repeatedly perform subobject initializations in the range
2141  // [DesignatedStartIndex, DesignatedEndIndex].
2142
2143  // Move to the next designator
2144  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2145  unsigned OldIndex = Index;
2146
2147  InitializedEntity ElementEntity =
2148    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2149
2150  while (DesignatedStartIndex <= DesignatedEndIndex) {
2151    // Recurse to check later designated subobjects.
2152    QualType ElementType = AT->getElementType();
2153    Index = OldIndex;
2154
2155    ElementEntity.setElementIndex(ElementIndex);
2156    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2157                                   ElementType, 0, 0, Index,
2158                                   StructuredList, ElementIndex,
2159                                   (DesignatedStartIndex == DesignatedEndIndex),
2160                                   false))
2161      return true;
2162
2163    // Move to the next index in the array that we'll be initializing.
2164    ++DesignatedStartIndex;
2165    ElementIndex = DesignatedStartIndex.getZExtValue();
2166  }
2167
2168  // If this the first designator, our caller will continue checking
2169  // the rest of this array subobject.
2170  if (IsFirstDesignator) {
2171    if (NextElementIndex)
2172      *NextElementIndex = DesignatedStartIndex;
2173    StructuredIndex = ElementIndex;
2174    return false;
2175  }
2176
2177  if (!FinishSubobjectInit)
2178    return false;
2179
2180  // Check the remaining elements within this array subobject.
2181  bool prevHadError = hadError;
2182  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2183                 /*SubobjectIsDesignatorContext=*/false, Index,
2184                 StructuredList, ElementIndex);
2185  return hadError && !prevHadError;
2186}
2187
2188// Get the structured initializer list for a subobject of type
2189// @p CurrentObjectType.
2190InitListExpr *
2191InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2192                                            QualType CurrentObjectType,
2193                                            InitListExpr *StructuredList,
2194                                            unsigned StructuredIndex,
2195                                            SourceRange InitRange) {
2196  if (VerifyOnly)
2197    return 0; // No structured list in verification-only mode.
2198  Expr *ExistingInit = 0;
2199  if (!StructuredList)
2200    ExistingInit = SyntacticToSemantic.lookup(IList);
2201  else if (StructuredIndex < StructuredList->getNumInits())
2202    ExistingInit = StructuredList->getInit(StructuredIndex);
2203
2204  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2205    return Result;
2206
2207  if (ExistingInit) {
2208    // We are creating an initializer list that initializes the
2209    // subobjects of the current object, but there was already an
2210    // initialization that completely initialized the current
2211    // subobject, e.g., by a compound literal:
2212    //
2213    // struct X { int a, b; };
2214    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2215    //
2216    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2217    // designated initializer re-initializes the whole
2218    // subobject [0], overwriting previous initializers.
2219    SemaRef.Diag(InitRange.getBegin(),
2220                 diag::warn_subobject_initializer_overrides)
2221      << InitRange;
2222    SemaRef.Diag(ExistingInit->getLocStart(),
2223                  diag::note_previous_initializer)
2224      << /*FIXME:has side effects=*/0
2225      << ExistingInit->getSourceRange();
2226  }
2227
2228  InitListExpr *Result
2229    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2230                                         InitRange.getBegin(), None,
2231                                         InitRange.getEnd());
2232
2233  QualType ResultType = CurrentObjectType;
2234  if (!ResultType->isArrayType())
2235    ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2236  Result->setType(ResultType);
2237
2238  // Pre-allocate storage for the structured initializer list.
2239  unsigned NumElements = 0;
2240  unsigned NumInits = 0;
2241  bool GotNumInits = false;
2242  if (!StructuredList) {
2243    NumInits = IList->getNumInits();
2244    GotNumInits = true;
2245  } else if (Index < IList->getNumInits()) {
2246    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2247      NumInits = SubList->getNumInits();
2248      GotNumInits = true;
2249    }
2250  }
2251
2252  if (const ArrayType *AType
2253      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2254    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2255      NumElements = CAType->getSize().getZExtValue();
2256      // Simple heuristic so that we don't allocate a very large
2257      // initializer with many empty entries at the end.
2258      if (GotNumInits && NumElements > NumInits)
2259        NumElements = 0;
2260    }
2261  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2262    NumElements = VType->getNumElements();
2263  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2264    RecordDecl *RDecl = RType->getDecl();
2265    if (RDecl->isUnion())
2266      NumElements = 1;
2267    else
2268      NumElements = std::distance(RDecl->field_begin(),
2269                                  RDecl->field_end());
2270  }
2271
2272  Result->reserveInits(SemaRef.Context, NumElements);
2273
2274  // Link this new initializer list into the structured initializer
2275  // lists.
2276  if (StructuredList)
2277    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2278  else {
2279    Result->setSyntacticForm(IList);
2280    SyntacticToSemantic[IList] = Result;
2281  }
2282
2283  return Result;
2284}
2285
2286/// Update the initializer at index @p StructuredIndex within the
2287/// structured initializer list to the value @p expr.
2288void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2289                                                  unsigned &StructuredIndex,
2290                                                  Expr *expr) {
2291  // No structured initializer list to update
2292  if (!StructuredList)
2293    return;
2294
2295  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2296                                                  StructuredIndex, expr)) {
2297    // This initializer overwrites a previous initializer. Warn.
2298    SemaRef.Diag(expr->getLocStart(),
2299                  diag::warn_initializer_overrides)
2300      << expr->getSourceRange();
2301    SemaRef.Diag(PrevInit->getLocStart(),
2302                  diag::note_previous_initializer)
2303      << /*FIXME:has side effects=*/0
2304      << PrevInit->getSourceRange();
2305  }
2306
2307  ++StructuredIndex;
2308}
2309
2310/// Check that the given Index expression is a valid array designator
2311/// value. This is essentially just a wrapper around
2312/// VerifyIntegerConstantExpression that also checks for negative values
2313/// and produces a reasonable diagnostic if there is a
2314/// failure. Returns the index expression, possibly with an implicit cast
2315/// added, on success.  If everything went okay, Value will receive the
2316/// value of the constant expression.
2317static ExprResult
2318CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2319  SourceLocation Loc = Index->getLocStart();
2320
2321  // Make sure this is an integer constant expression.
2322  ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2323  if (Result.isInvalid())
2324    return Result;
2325
2326  if (Value.isSigned() && Value.isNegative())
2327    return S.Diag(Loc, diag::err_array_designator_negative)
2328      << Value.toString(10) << Index->getSourceRange();
2329
2330  Value.setIsUnsigned(true);
2331  return Result;
2332}
2333
2334ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2335                                            SourceLocation Loc,
2336                                            bool GNUSyntax,
2337                                            ExprResult Init) {
2338  typedef DesignatedInitExpr::Designator ASTDesignator;
2339
2340  bool Invalid = false;
2341  SmallVector<ASTDesignator, 32> Designators;
2342  SmallVector<Expr *, 32> InitExpressions;
2343
2344  // Build designators and check array designator expressions.
2345  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2346    const Designator &D = Desig.getDesignator(Idx);
2347    switch (D.getKind()) {
2348    case Designator::FieldDesignator:
2349      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2350                                          D.getFieldLoc()));
2351      break;
2352
2353    case Designator::ArrayDesignator: {
2354      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2355      llvm::APSInt IndexValue;
2356      if (!Index->isTypeDependent() && !Index->isValueDependent())
2357        Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2358      if (!Index)
2359        Invalid = true;
2360      else {
2361        Designators.push_back(ASTDesignator(InitExpressions.size(),
2362                                            D.getLBracketLoc(),
2363                                            D.getRBracketLoc()));
2364        InitExpressions.push_back(Index);
2365      }
2366      break;
2367    }
2368
2369    case Designator::ArrayRangeDesignator: {
2370      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2371      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2372      llvm::APSInt StartValue;
2373      llvm::APSInt EndValue;
2374      bool StartDependent = StartIndex->isTypeDependent() ||
2375                            StartIndex->isValueDependent();
2376      bool EndDependent = EndIndex->isTypeDependent() ||
2377                          EndIndex->isValueDependent();
2378      if (!StartDependent)
2379        StartIndex =
2380            CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2381      if (!EndDependent)
2382        EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2383
2384      if (!StartIndex || !EndIndex)
2385        Invalid = true;
2386      else {
2387        // Make sure we're comparing values with the same bit width.
2388        if (StartDependent || EndDependent) {
2389          // Nothing to compute.
2390        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2391          EndValue = EndValue.extend(StartValue.getBitWidth());
2392        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2393          StartValue = StartValue.extend(EndValue.getBitWidth());
2394
2395        if (!StartDependent && !EndDependent && EndValue < StartValue) {
2396          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2397            << StartValue.toString(10) << EndValue.toString(10)
2398            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2399          Invalid = true;
2400        } else {
2401          Designators.push_back(ASTDesignator(InitExpressions.size(),
2402                                              D.getLBracketLoc(),
2403                                              D.getEllipsisLoc(),
2404                                              D.getRBracketLoc()));
2405          InitExpressions.push_back(StartIndex);
2406          InitExpressions.push_back(EndIndex);
2407        }
2408      }
2409      break;
2410    }
2411    }
2412  }
2413
2414  if (Invalid || Init.isInvalid())
2415    return ExprError();
2416
2417  // Clear out the expressions within the designation.
2418  Desig.ClearExprs(*this);
2419
2420  DesignatedInitExpr *DIE
2421    = DesignatedInitExpr::Create(Context,
2422                                 Designators.data(), Designators.size(),
2423                                 InitExpressions, Loc, GNUSyntax,
2424                                 Init.takeAs<Expr>());
2425
2426  if (!getLangOpts().C99)
2427    Diag(DIE->getLocStart(), diag::ext_designated_init)
2428      << DIE->getSourceRange();
2429
2430  return Owned(DIE);
2431}
2432
2433//===----------------------------------------------------------------------===//
2434// Initialization entity
2435//===----------------------------------------------------------------------===//
2436
2437InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2438                                     const InitializedEntity &Parent)
2439  : Parent(&Parent), Index(Index)
2440{
2441  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2442    Kind = EK_ArrayElement;
2443    Type = AT->getElementType();
2444  } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2445    Kind = EK_VectorElement;
2446    Type = VT->getElementType();
2447  } else {
2448    const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2449    assert(CT && "Unexpected type");
2450    Kind = EK_ComplexElement;
2451    Type = CT->getElementType();
2452  }
2453}
2454
2455InitializedEntity
2456InitializedEntity::InitializeBase(ASTContext &Context,
2457                                  const CXXBaseSpecifier *Base,
2458                                  bool IsInheritedVirtualBase) {
2459  InitializedEntity Result;
2460  Result.Kind = EK_Base;
2461  Result.Parent = 0;
2462  Result.Base = reinterpret_cast<uintptr_t>(Base);
2463  if (IsInheritedVirtualBase)
2464    Result.Base |= 0x01;
2465
2466  Result.Type = Base->getType();
2467  return Result;
2468}
2469
2470DeclarationName InitializedEntity::getName() const {
2471  switch (getKind()) {
2472  case EK_Parameter:
2473  case EK_Parameter_CF_Audited: {
2474    ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2475    return (D ? D->getDeclName() : DeclarationName());
2476  }
2477
2478  case EK_Variable:
2479  case EK_Member:
2480    return VariableOrMember->getDeclName();
2481
2482  case EK_LambdaCapture:
2483    return Capture.Var->getDeclName();
2484
2485  case EK_Result:
2486  case EK_Exception:
2487  case EK_New:
2488  case EK_Temporary:
2489  case EK_Base:
2490  case EK_Delegating:
2491  case EK_ArrayElement:
2492  case EK_VectorElement:
2493  case EK_ComplexElement:
2494  case EK_BlockElement:
2495  case EK_CompoundLiteralInit:
2496  case EK_RelatedResult:
2497    return DeclarationName();
2498  }
2499
2500  llvm_unreachable("Invalid EntityKind!");
2501}
2502
2503DeclaratorDecl *InitializedEntity::getDecl() const {
2504  switch (getKind()) {
2505  case EK_Variable:
2506  case EK_Member:
2507    return VariableOrMember;
2508
2509  case EK_Parameter:
2510  case EK_Parameter_CF_Audited:
2511    return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2512
2513  case EK_Result:
2514  case EK_Exception:
2515  case EK_New:
2516  case EK_Temporary:
2517  case EK_Base:
2518  case EK_Delegating:
2519  case EK_ArrayElement:
2520  case EK_VectorElement:
2521  case EK_ComplexElement:
2522  case EK_BlockElement:
2523  case EK_LambdaCapture:
2524  case EK_CompoundLiteralInit:
2525  case EK_RelatedResult:
2526    return 0;
2527  }
2528
2529  llvm_unreachable("Invalid EntityKind!");
2530}
2531
2532bool InitializedEntity::allowsNRVO() const {
2533  switch (getKind()) {
2534  case EK_Result:
2535  case EK_Exception:
2536    return LocAndNRVO.NRVO;
2537
2538  case EK_Variable:
2539  case EK_Parameter:
2540  case EK_Parameter_CF_Audited:
2541  case EK_Member:
2542  case EK_New:
2543  case EK_Temporary:
2544  case EK_CompoundLiteralInit:
2545  case EK_Base:
2546  case EK_Delegating:
2547  case EK_ArrayElement:
2548  case EK_VectorElement:
2549  case EK_ComplexElement:
2550  case EK_BlockElement:
2551  case EK_LambdaCapture:
2552  case EK_RelatedResult:
2553    break;
2554  }
2555
2556  return false;
2557}
2558
2559unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
2560  assert(getParent() != this);
2561  unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
2562  for (unsigned I = 0; I != Depth; ++I)
2563    OS << "`-";
2564
2565  switch (getKind()) {
2566  case EK_Variable: OS << "Variable"; break;
2567  case EK_Parameter: OS << "Parameter"; break;
2568  case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
2569    break;
2570  case EK_Result: OS << "Result"; break;
2571  case EK_Exception: OS << "Exception"; break;
2572  case EK_Member: OS << "Member"; break;
2573  case EK_New: OS << "New"; break;
2574  case EK_Temporary: OS << "Temporary"; break;
2575  case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
2576  case EK_RelatedResult: OS << "RelatedResult"; break;
2577  case EK_Base: OS << "Base"; break;
2578  case EK_Delegating: OS << "Delegating"; break;
2579  case EK_ArrayElement: OS << "ArrayElement " << Index; break;
2580  case EK_VectorElement: OS << "VectorElement " << Index; break;
2581  case EK_ComplexElement: OS << "ComplexElement " << Index; break;
2582  case EK_BlockElement: OS << "Block"; break;
2583  case EK_LambdaCapture:
2584    OS << "LambdaCapture ";
2585    getCapturedVar()->printName(OS);
2586    break;
2587  }
2588
2589  if (Decl *D = getDecl()) {
2590    OS << " ";
2591    cast<NamedDecl>(D)->printQualifiedName(OS);
2592  }
2593
2594  OS << " '" << getType().getAsString() << "'\n";
2595
2596  return Depth + 1;
2597}
2598
2599void InitializedEntity::dump() const {
2600  dumpImpl(llvm::errs());
2601}
2602
2603//===----------------------------------------------------------------------===//
2604// Initialization sequence
2605//===----------------------------------------------------------------------===//
2606
2607void InitializationSequence::Step::Destroy() {
2608  switch (Kind) {
2609  case SK_ResolveAddressOfOverloadedFunction:
2610  case SK_CastDerivedToBaseRValue:
2611  case SK_CastDerivedToBaseXValue:
2612  case SK_CastDerivedToBaseLValue:
2613  case SK_BindReference:
2614  case SK_BindReferenceToTemporary:
2615  case SK_ExtraneousCopyToTemporary:
2616  case SK_UserConversion:
2617  case SK_QualificationConversionRValue:
2618  case SK_QualificationConversionXValue:
2619  case SK_QualificationConversionLValue:
2620  case SK_LValueToRValue:
2621  case SK_ListInitialization:
2622  case SK_ListConstructorCall:
2623  case SK_UnwrapInitList:
2624  case SK_RewrapInitList:
2625  case SK_ConstructorInitialization:
2626  case SK_ZeroInitialization:
2627  case SK_CAssignment:
2628  case SK_StringInit:
2629  case SK_ObjCObjectConversion:
2630  case SK_ArrayInit:
2631  case SK_ParenthesizedArrayInit:
2632  case SK_PassByIndirectCopyRestore:
2633  case SK_PassByIndirectRestore:
2634  case SK_ProduceObjCObject:
2635  case SK_StdInitializerList:
2636  case SK_OCLSamplerInit:
2637  case SK_OCLZeroEvent:
2638    break;
2639
2640  case SK_ConversionSequence:
2641    delete ICS;
2642  }
2643}
2644
2645bool InitializationSequence::isDirectReferenceBinding() const {
2646  return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2647}
2648
2649bool InitializationSequence::isAmbiguous() const {
2650  if (!Failed())
2651    return false;
2652
2653  switch (getFailureKind()) {
2654  case FK_TooManyInitsForReference:
2655  case FK_ArrayNeedsInitList:
2656  case FK_ArrayNeedsInitListOrStringLiteral:
2657  case FK_ArrayNeedsInitListOrWideStringLiteral:
2658  case FK_NarrowStringIntoWideCharArray:
2659  case FK_WideStringIntoCharArray:
2660  case FK_IncompatWideStringIntoWideChar:
2661  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2662  case FK_NonConstLValueReferenceBindingToTemporary:
2663  case FK_NonConstLValueReferenceBindingToUnrelated:
2664  case FK_RValueReferenceBindingToLValue:
2665  case FK_ReferenceInitDropsQualifiers:
2666  case FK_ReferenceInitFailed:
2667  case FK_ConversionFailed:
2668  case FK_ConversionFromPropertyFailed:
2669  case FK_TooManyInitsForScalar:
2670  case FK_ReferenceBindingToInitList:
2671  case FK_InitListBadDestinationType:
2672  case FK_DefaultInitOfConst:
2673  case FK_Incomplete:
2674  case FK_ArrayTypeMismatch:
2675  case FK_NonConstantArrayInit:
2676  case FK_ListInitializationFailed:
2677  case FK_VariableLengthArrayHasInitializer:
2678  case FK_PlaceholderType:
2679  case FK_ExplicitConstructor:
2680    return false;
2681
2682  case FK_ReferenceInitOverloadFailed:
2683  case FK_UserConversionOverloadFailed:
2684  case FK_ConstructorOverloadFailed:
2685  case FK_ListConstructorOverloadFailed:
2686    return FailedOverloadResult == OR_Ambiguous;
2687  }
2688
2689  llvm_unreachable("Invalid EntityKind!");
2690}
2691
2692bool InitializationSequence::isConstructorInitialization() const {
2693  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2694}
2695
2696void
2697InitializationSequence
2698::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2699                                   DeclAccessPair Found,
2700                                   bool HadMultipleCandidates) {
2701  Step S;
2702  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2703  S.Type = Function->getType();
2704  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2705  S.Function.Function = Function;
2706  S.Function.FoundDecl = Found;
2707  Steps.push_back(S);
2708}
2709
2710void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2711                                                      ExprValueKind VK) {
2712  Step S;
2713  switch (VK) {
2714  case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2715  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2716  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2717  }
2718  S.Type = BaseType;
2719  Steps.push_back(S);
2720}
2721
2722void InitializationSequence::AddReferenceBindingStep(QualType T,
2723                                                     bool BindingTemporary) {
2724  Step S;
2725  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2726  S.Type = T;
2727  Steps.push_back(S);
2728}
2729
2730void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2731  Step S;
2732  S.Kind = SK_ExtraneousCopyToTemporary;
2733  S.Type = T;
2734  Steps.push_back(S);
2735}
2736
2737void
2738InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2739                                              DeclAccessPair FoundDecl,
2740                                              QualType T,
2741                                              bool HadMultipleCandidates) {
2742  Step S;
2743  S.Kind = SK_UserConversion;
2744  S.Type = T;
2745  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2746  S.Function.Function = Function;
2747  S.Function.FoundDecl = FoundDecl;
2748  Steps.push_back(S);
2749}
2750
2751void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2752                                                            ExprValueKind VK) {
2753  Step S;
2754  S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2755  switch (VK) {
2756  case VK_RValue:
2757    S.Kind = SK_QualificationConversionRValue;
2758    break;
2759  case VK_XValue:
2760    S.Kind = SK_QualificationConversionXValue;
2761    break;
2762  case VK_LValue:
2763    S.Kind = SK_QualificationConversionLValue;
2764    break;
2765  }
2766  S.Type = Ty;
2767  Steps.push_back(S);
2768}
2769
2770void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
2771  assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
2772
2773  Step S;
2774  S.Kind = SK_LValueToRValue;
2775  S.Type = Ty;
2776  Steps.push_back(S);
2777}
2778
2779void InitializationSequence::AddConversionSequenceStep(
2780                                       const ImplicitConversionSequence &ICS,
2781                                                       QualType T) {
2782  Step S;
2783  S.Kind = SK_ConversionSequence;
2784  S.Type = T;
2785  S.ICS = new ImplicitConversionSequence(ICS);
2786  Steps.push_back(S);
2787}
2788
2789void InitializationSequence::AddListInitializationStep(QualType T) {
2790  Step S;
2791  S.Kind = SK_ListInitialization;
2792  S.Type = T;
2793  Steps.push_back(S);
2794}
2795
2796void
2797InitializationSequence
2798::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2799                                   AccessSpecifier Access,
2800                                   QualType T,
2801                                   bool HadMultipleCandidates,
2802                                   bool FromInitList, bool AsInitList) {
2803  Step S;
2804  S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2805                                       : SK_ConstructorInitialization;
2806  S.Type = T;
2807  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2808  S.Function.Function = Constructor;
2809  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2810  Steps.push_back(S);
2811}
2812
2813void InitializationSequence::AddZeroInitializationStep(QualType T) {
2814  Step S;
2815  S.Kind = SK_ZeroInitialization;
2816  S.Type = T;
2817  Steps.push_back(S);
2818}
2819
2820void InitializationSequence::AddCAssignmentStep(QualType T) {
2821  Step S;
2822  S.Kind = SK_CAssignment;
2823  S.Type = T;
2824  Steps.push_back(S);
2825}
2826
2827void InitializationSequence::AddStringInitStep(QualType T) {
2828  Step S;
2829  S.Kind = SK_StringInit;
2830  S.Type = T;
2831  Steps.push_back(S);
2832}
2833
2834void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2835  Step S;
2836  S.Kind = SK_ObjCObjectConversion;
2837  S.Type = T;
2838  Steps.push_back(S);
2839}
2840
2841void InitializationSequence::AddArrayInitStep(QualType T) {
2842  Step S;
2843  S.Kind = SK_ArrayInit;
2844  S.Type = T;
2845  Steps.push_back(S);
2846}
2847
2848void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2849  Step S;
2850  S.Kind = SK_ParenthesizedArrayInit;
2851  S.Type = T;
2852  Steps.push_back(S);
2853}
2854
2855void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2856                                                              bool shouldCopy) {
2857  Step s;
2858  s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2859                       : SK_PassByIndirectRestore);
2860  s.Type = type;
2861  Steps.push_back(s);
2862}
2863
2864void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2865  Step S;
2866  S.Kind = SK_ProduceObjCObject;
2867  S.Type = T;
2868  Steps.push_back(S);
2869}
2870
2871void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2872  Step S;
2873  S.Kind = SK_StdInitializerList;
2874  S.Type = T;
2875  Steps.push_back(S);
2876}
2877
2878void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
2879  Step S;
2880  S.Kind = SK_OCLSamplerInit;
2881  S.Type = T;
2882  Steps.push_back(S);
2883}
2884
2885void InitializationSequence::AddOCLZeroEventStep(QualType T) {
2886  Step S;
2887  S.Kind = SK_OCLZeroEvent;
2888  S.Type = T;
2889  Steps.push_back(S);
2890}
2891
2892void InitializationSequence::RewrapReferenceInitList(QualType T,
2893                                                     InitListExpr *Syntactic) {
2894  assert(Syntactic->getNumInits() == 1 &&
2895         "Can only rewrap trivial init lists.");
2896  Step S;
2897  S.Kind = SK_UnwrapInitList;
2898  S.Type = Syntactic->getInit(0)->getType();
2899  Steps.insert(Steps.begin(), S);
2900
2901  S.Kind = SK_RewrapInitList;
2902  S.Type = T;
2903  S.WrappingSyntacticList = Syntactic;
2904  Steps.push_back(S);
2905}
2906
2907void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2908                                                OverloadingResult Result) {
2909  setSequenceKind(FailedSequence);
2910  this->Failure = Failure;
2911  this->FailedOverloadResult = Result;
2912}
2913
2914//===----------------------------------------------------------------------===//
2915// Attempt initialization
2916//===----------------------------------------------------------------------===//
2917
2918static void MaybeProduceObjCObject(Sema &S,
2919                                   InitializationSequence &Sequence,
2920                                   const InitializedEntity &Entity) {
2921  if (!S.getLangOpts().ObjCAutoRefCount) return;
2922
2923  /// When initializing a parameter, produce the value if it's marked
2924  /// __attribute__((ns_consumed)).
2925  if (Entity.isParameterKind()) {
2926    if (!Entity.isParameterConsumed())
2927      return;
2928
2929    assert(Entity.getType()->isObjCRetainableType() &&
2930           "consuming an object of unretainable type?");
2931    Sequence.AddProduceObjCObjectStep(Entity.getType());
2932
2933  /// When initializing a return value, if the return type is a
2934  /// retainable type, then returns need to immediately retain the
2935  /// object.  If an autorelease is required, it will be done at the
2936  /// last instant.
2937  } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2938    if (!Entity.getType()->isObjCRetainableType())
2939      return;
2940
2941    Sequence.AddProduceObjCObjectStep(Entity.getType());
2942  }
2943}
2944
2945static void TryListInitialization(Sema &S,
2946                                  const InitializedEntity &Entity,
2947                                  const InitializationKind &Kind,
2948                                  InitListExpr *InitList,
2949                                  InitializationSequence &Sequence);
2950
2951/// \brief When initializing from init list via constructor, handle
2952/// initialization of an object of type std::initializer_list<T>.
2953///
2954/// \return true if we have handled initialization of an object of type
2955/// std::initializer_list<T>, false otherwise.
2956static bool TryInitializerListConstruction(Sema &S,
2957                                           InitListExpr *List,
2958                                           QualType DestType,
2959                                           InitializationSequence &Sequence) {
2960  QualType E;
2961  if (!S.isStdInitializerList(DestType, &E))
2962    return false;
2963
2964  if (S.RequireCompleteType(List->getExprLoc(), E, 0)) {
2965    Sequence.setIncompleteTypeFailure(E);
2966    return true;
2967  }
2968
2969  // Try initializing a temporary array from the init list.
2970  QualType ArrayType = S.Context.getConstantArrayType(
2971      E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2972                                 List->getNumInits()),
2973      clang::ArrayType::Normal, 0);
2974  InitializedEntity HiddenArray =
2975      InitializedEntity::InitializeTemporary(ArrayType);
2976  InitializationKind Kind =
2977      InitializationKind::CreateDirectList(List->getExprLoc());
2978  TryListInitialization(S, HiddenArray, Kind, List, Sequence);
2979  if (Sequence)
2980    Sequence.AddStdInitializerListConstructionStep(DestType);
2981  return true;
2982}
2983
2984static OverloadingResult
2985ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
2986                           MultiExprArg Args,
2987                           OverloadCandidateSet &CandidateSet,
2988                           ArrayRef<NamedDecl *> Ctors,
2989                           OverloadCandidateSet::iterator &Best,
2990                           bool CopyInitializing, bool AllowExplicit,
2991                           bool OnlyListConstructors, bool InitListSyntax) {
2992  CandidateSet.clear();
2993
2994  for (ArrayRef<NamedDecl *>::iterator
2995         Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) {
2996    NamedDecl *D = *Con;
2997    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2998    bool SuppressUserConversions = false;
2999
3000    // Find the constructor (which may be a template).
3001    CXXConstructorDecl *Constructor = 0;
3002    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3003    if (ConstructorTmpl)
3004      Constructor = cast<CXXConstructorDecl>(
3005                                           ConstructorTmpl->getTemplatedDecl());
3006    else {
3007      Constructor = cast<CXXConstructorDecl>(D);
3008
3009      // If we're performing copy initialization using a copy constructor, we
3010      // suppress user-defined conversions on the arguments. We do the same for
3011      // move constructors.
3012      if ((CopyInitializing || (InitListSyntax && Args.size() == 1)) &&
3013          Constructor->isCopyOrMoveConstructor())
3014        SuppressUserConversions = true;
3015    }
3016
3017    if (!Constructor->isInvalidDecl() &&
3018        (AllowExplicit || !Constructor->isExplicit()) &&
3019        (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
3020      if (ConstructorTmpl)
3021        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3022                                       /*ExplicitArgs*/ 0, Args,
3023                                       CandidateSet, SuppressUserConversions);
3024      else {
3025        // C++ [over.match.copy]p1:
3026        //   - When initializing a temporary to be bound to the first parameter
3027        //     of a constructor that takes a reference to possibly cv-qualified
3028        //     T as its first argument, called with a single argument in the
3029        //     context of direct-initialization, explicit conversion functions
3030        //     are also considered.
3031        bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3032                                 Args.size() == 1 &&
3033                                 Constructor->isCopyOrMoveConstructor();
3034        S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
3035                               SuppressUserConversions,
3036                               /*PartialOverloading=*/false,
3037                               /*AllowExplicit=*/AllowExplicitConv);
3038      }
3039    }
3040  }
3041
3042  // Perform overload resolution and return the result.
3043  return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3044}
3045
3046/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3047/// enumerates the constructors of the initialized entity and performs overload
3048/// resolution to select the best.
3049/// If InitListSyntax is true, this is list-initialization of a non-aggregate
3050/// class type.
3051static void TryConstructorInitialization(Sema &S,
3052                                         const InitializedEntity &Entity,
3053                                         const InitializationKind &Kind,
3054                                         MultiExprArg Args, QualType DestType,
3055                                         InitializationSequence &Sequence,
3056                                         bool InitListSyntax = false) {
3057  assert((!InitListSyntax || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3058         "InitListSyntax must come with a single initializer list argument.");
3059
3060  // The type we're constructing needs to be complete.
3061  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3062    Sequence.setIncompleteTypeFailure(DestType);
3063    return;
3064  }
3065
3066  const RecordType *DestRecordType = DestType->getAs<RecordType>();
3067  assert(DestRecordType && "Constructor initialization requires record type");
3068  CXXRecordDecl *DestRecordDecl
3069    = cast<CXXRecordDecl>(DestRecordType->getDecl());
3070
3071  // Build the candidate set directly in the initialization sequence
3072  // structure, so that it will persist if we fail.
3073  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3074
3075  // Determine whether we are allowed to call explicit constructors or
3076  // explicit conversion operators.
3077  bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
3078  bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3079
3080  //   - Otherwise, if T is a class type, constructors are considered. The
3081  //     applicable constructors are enumerated, and the best one is chosen
3082  //     through overload resolution.
3083  DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
3084  // The container holding the constructors can under certain conditions
3085  // be changed while iterating (e.g. because of deserialization).
3086  // To be safe we copy the lookup results to a new container.
3087  SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3088
3089  OverloadingResult Result = OR_No_Viable_Function;
3090  OverloadCandidateSet::iterator Best;
3091  bool AsInitializerList = false;
3092
3093  // C++11 [over.match.list]p1:
3094  //   When objects of non-aggregate type T are list-initialized, overload
3095  //   resolution selects the constructor in two phases:
3096  //   - Initially, the candidate functions are the initializer-list
3097  //     constructors of the class T and the argument list consists of the
3098  //     initializer list as a single argument.
3099  if (InitListSyntax) {
3100    InitListExpr *ILE = cast<InitListExpr>(Args[0]);
3101    AsInitializerList = true;
3102
3103    // If the initializer list has no elements and T has a default constructor,
3104    // the first phase is omitted.
3105    if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
3106      Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3107                                          CandidateSet, Ctors, Best,
3108                                          CopyInitialization, AllowExplicit,
3109                                          /*OnlyListConstructor=*/true,
3110                                          InitListSyntax);
3111
3112    // Time to unwrap the init list.
3113    Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
3114  }
3115
3116  // C++11 [over.match.list]p1:
3117  //   - If no viable initializer-list constructor is found, overload resolution
3118  //     is performed again, where the candidate functions are all the
3119  //     constructors of the class T and the argument list consists of the
3120  //     elements of the initializer list.
3121  if (Result == OR_No_Viable_Function) {
3122    AsInitializerList = false;
3123    Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3124                                        CandidateSet, Ctors, Best,
3125                                        CopyInitialization, AllowExplicit,
3126                                        /*OnlyListConstructors=*/false,
3127                                        InitListSyntax);
3128  }
3129  if (Result) {
3130    Sequence.SetOverloadFailure(InitListSyntax ?
3131                      InitializationSequence::FK_ListConstructorOverloadFailed :
3132                      InitializationSequence::FK_ConstructorOverloadFailed,
3133                                Result);
3134    return;
3135  }
3136
3137  // C++11 [dcl.init]p6:
3138  //   If a program calls for the default initialization of an object
3139  //   of a const-qualified type T, T shall be a class type with a
3140  //   user-provided default constructor.
3141  if (Kind.getKind() == InitializationKind::IK_Default &&
3142      Entity.getType().isConstQualified() &&
3143      !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
3144    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3145    return;
3146  }
3147
3148  // C++11 [over.match.list]p1:
3149  //   In copy-list-initialization, if an explicit constructor is chosen, the
3150  //   initializer is ill-formed.
3151  CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3152  if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3153    Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3154    return;
3155  }
3156
3157  // Add the constructor initialization step. Any cv-qualification conversion is
3158  // subsumed by the initialization.
3159  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3160  Sequence.AddConstructorInitializationStep(CtorDecl,
3161                                            Best->FoundDecl.getAccess(),
3162                                            DestType, HadMultipleCandidates,
3163                                            InitListSyntax, AsInitializerList);
3164}
3165
3166static bool
3167ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3168                                             Expr *Initializer,
3169                                             QualType &SourceType,
3170                                             QualType &UnqualifiedSourceType,
3171                                             QualType UnqualifiedTargetType,
3172                                             InitializationSequence &Sequence) {
3173  if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3174        S.Context.OverloadTy) {
3175    DeclAccessPair Found;
3176    bool HadMultipleCandidates = false;
3177    if (FunctionDecl *Fn
3178        = S.ResolveAddressOfOverloadedFunction(Initializer,
3179                                               UnqualifiedTargetType,
3180                                               false, Found,
3181                                               &HadMultipleCandidates)) {
3182      Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3183                                                HadMultipleCandidates);
3184      SourceType = Fn->getType();
3185      UnqualifiedSourceType = SourceType.getUnqualifiedType();
3186    } else if (!UnqualifiedTargetType->isRecordType()) {
3187      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3188      return true;
3189    }
3190  }
3191  return false;
3192}
3193
3194static void TryReferenceInitializationCore(Sema &S,
3195                                           const InitializedEntity &Entity,
3196                                           const InitializationKind &Kind,
3197                                           Expr *Initializer,
3198                                           QualType cv1T1, QualType T1,
3199                                           Qualifiers T1Quals,
3200                                           QualType cv2T2, QualType T2,
3201                                           Qualifiers T2Quals,
3202                                           InitializationSequence &Sequence);
3203
3204static void TryValueInitialization(Sema &S,
3205                                   const InitializedEntity &Entity,
3206                                   const InitializationKind &Kind,
3207                                   InitializationSequence &Sequence,
3208                                   InitListExpr *InitList = 0);
3209
3210/// \brief Attempt list initialization of a reference.
3211static void TryReferenceListInitialization(Sema &S,
3212                                           const InitializedEntity &Entity,
3213                                           const InitializationKind &Kind,
3214                                           InitListExpr *InitList,
3215                                           InitializationSequence &Sequence) {
3216  // First, catch C++03 where this isn't possible.
3217  if (!S.getLangOpts().CPlusPlus11) {
3218    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3219    return;
3220  }
3221
3222  QualType DestType = Entity.getType();
3223  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3224  Qualifiers T1Quals;
3225  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3226
3227  // Reference initialization via an initializer list works thus:
3228  // If the initializer list consists of a single element that is
3229  // reference-related to the referenced type, bind directly to that element
3230  // (possibly creating temporaries).
3231  // Otherwise, initialize a temporary with the initializer list and
3232  // bind to that.
3233  if (InitList->getNumInits() == 1) {
3234    Expr *Initializer = InitList->getInit(0);
3235    QualType cv2T2 = Initializer->getType();
3236    Qualifiers T2Quals;
3237    QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3238
3239    // If this fails, creating a temporary wouldn't work either.
3240    if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3241                                                     T1, Sequence))
3242      return;
3243
3244    SourceLocation DeclLoc = Initializer->getLocStart();
3245    bool dummy1, dummy2, dummy3;
3246    Sema::ReferenceCompareResult RefRelationship
3247      = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3248                                       dummy2, dummy3);
3249    if (RefRelationship >= Sema::Ref_Related) {
3250      // Try to bind the reference here.
3251      TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3252                                     T1Quals, cv2T2, T2, T2Quals, Sequence);
3253      if (Sequence)
3254        Sequence.RewrapReferenceInitList(cv1T1, InitList);
3255      return;
3256    }
3257
3258    // Update the initializer if we've resolved an overloaded function.
3259    if (Sequence.step_begin() != Sequence.step_end())
3260      Sequence.RewrapReferenceInitList(cv1T1, InitList);
3261  }
3262
3263  // Not reference-related. Create a temporary and bind to that.
3264  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3265
3266  TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3267  if (Sequence) {
3268    if (DestType->isRValueReferenceType() ||
3269        (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3270      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3271    else
3272      Sequence.SetFailed(
3273          InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3274  }
3275}
3276
3277/// \brief Attempt list initialization (C++0x [dcl.init.list])
3278static void TryListInitialization(Sema &S,
3279                                  const InitializedEntity &Entity,
3280                                  const InitializationKind &Kind,
3281                                  InitListExpr *InitList,
3282                                  InitializationSequence &Sequence) {
3283  QualType DestType = Entity.getType();
3284
3285  // C++ doesn't allow scalar initialization with more than one argument.
3286  // But C99 complex numbers are scalars and it makes sense there.
3287  if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3288      !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3289    Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3290    return;
3291  }
3292  if (DestType->isReferenceType()) {
3293    TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3294    return;
3295  }
3296  if (DestType->isRecordType()) {
3297    if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3298      Sequence.setIncompleteTypeFailure(DestType);
3299      return;
3300    }
3301
3302    // C++11 [dcl.init.list]p3:
3303    //   - If T is an aggregate, aggregate initialization is performed.
3304    if (!DestType->isAggregateType()) {
3305      if (S.getLangOpts().CPlusPlus11) {
3306        //   - Otherwise, if the initializer list has no elements and T is a
3307        //     class type with a default constructor, the object is
3308        //     value-initialized.
3309        if (InitList->getNumInits() == 0) {
3310          CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3311          if (RD->hasDefaultConstructor()) {
3312            TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3313            return;
3314          }
3315        }
3316
3317        //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3318        //     an initializer_list object constructed [...]
3319        if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3320          return;
3321
3322        //   - Otherwise, if T is a class type, constructors are considered.
3323        Expr *InitListAsExpr = InitList;
3324        TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3325                                     Sequence, /*InitListSyntax*/true);
3326      } else
3327        Sequence.SetFailed(
3328            InitializationSequence::FK_InitListBadDestinationType);
3329      return;
3330    }
3331  }
3332
3333  InitListChecker CheckInitList(S, Entity, InitList,
3334          DestType, /*VerifyOnly=*/true);
3335  if (CheckInitList.HadError()) {
3336    Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3337    return;
3338  }
3339
3340  // Add the list initialization step with the built init list.
3341  Sequence.AddListInitializationStep(DestType);
3342}
3343
3344/// \brief Try a reference initialization that involves calling a conversion
3345/// function.
3346static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3347                                             const InitializedEntity &Entity,
3348                                             const InitializationKind &Kind,
3349                                             Expr *Initializer,
3350                                             bool AllowRValues,
3351                                             InitializationSequence &Sequence) {
3352  QualType DestType = Entity.getType();
3353  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3354  QualType T1 = cv1T1.getUnqualifiedType();
3355  QualType cv2T2 = Initializer->getType();
3356  QualType T2 = cv2T2.getUnqualifiedType();
3357
3358  bool DerivedToBase;
3359  bool ObjCConversion;
3360  bool ObjCLifetimeConversion;
3361  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3362                                         T1, T2, DerivedToBase,
3363                                         ObjCConversion,
3364                                         ObjCLifetimeConversion) &&
3365         "Must have incompatible references when binding via conversion");
3366  (void)DerivedToBase;
3367  (void)ObjCConversion;
3368  (void)ObjCLifetimeConversion;
3369
3370  // Build the candidate set directly in the initialization sequence
3371  // structure, so that it will persist if we fail.
3372  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3373  CandidateSet.clear();
3374
3375  // Determine whether we are allowed to call explicit constructors or
3376  // explicit conversion operators.
3377  bool AllowExplicit = Kind.AllowExplicit();
3378  bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
3379
3380  const RecordType *T1RecordType = 0;
3381  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3382      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3383    // The type we're converting to is a class type. Enumerate its constructors
3384    // to see if there is a suitable conversion.
3385    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3386
3387    DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl);
3388    // The container holding the constructors can under certain conditions
3389    // be changed while iterating (e.g. because of deserialization).
3390    // To be safe we copy the lookup results to a new container.
3391    SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3392    for (SmallVectorImpl<NamedDecl *>::iterator
3393           CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
3394      NamedDecl *D = *CI;
3395      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3396
3397      // Find the constructor (which may be a template).
3398      CXXConstructorDecl *Constructor = 0;
3399      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3400      if (ConstructorTmpl)
3401        Constructor = cast<CXXConstructorDecl>(
3402                                         ConstructorTmpl->getTemplatedDecl());
3403      else
3404        Constructor = cast<CXXConstructorDecl>(D);
3405
3406      if (!Constructor->isInvalidDecl() &&
3407          Constructor->isConvertingConstructor(AllowExplicit)) {
3408        if (ConstructorTmpl)
3409          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3410                                         /*ExplicitArgs*/ 0,
3411                                         Initializer, CandidateSet,
3412                                         /*SuppressUserConversions=*/true);
3413        else
3414          S.AddOverloadCandidate(Constructor, FoundDecl,
3415                                 Initializer, CandidateSet,
3416                                 /*SuppressUserConversions=*/true);
3417      }
3418    }
3419  }
3420  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3421    return OR_No_Viable_Function;
3422
3423  const RecordType *T2RecordType = 0;
3424  if ((T2RecordType = T2->getAs<RecordType>()) &&
3425      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3426    // The type we're converting from is a class type, enumerate its conversion
3427    // functions.
3428    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3429
3430    std::pair<CXXRecordDecl::conversion_iterator,
3431              CXXRecordDecl::conversion_iterator>
3432      Conversions = T2RecordDecl->getVisibleConversionFunctions();
3433    for (CXXRecordDecl::conversion_iterator
3434           I = Conversions.first, E = Conversions.second; I != E; ++I) {
3435      NamedDecl *D = *I;
3436      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3437      if (isa<UsingShadowDecl>(D))
3438        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3439
3440      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3441      CXXConversionDecl *Conv;
3442      if (ConvTemplate)
3443        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3444      else
3445        Conv = cast<CXXConversionDecl>(D);
3446
3447      // If the conversion function doesn't return a reference type,
3448      // it can't be considered for this conversion unless we're allowed to
3449      // consider rvalues.
3450      // FIXME: Do we need to make sure that we only consider conversion
3451      // candidates with reference-compatible results? That might be needed to
3452      // break recursion.
3453      if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3454          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3455        if (ConvTemplate)
3456          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3457                                           ActingDC, Initializer,
3458                                           DestType, CandidateSet);
3459        else
3460          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3461                                   Initializer, DestType, CandidateSet);
3462      }
3463    }
3464  }
3465  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3466    return OR_No_Viable_Function;
3467
3468  SourceLocation DeclLoc = Initializer->getLocStart();
3469
3470  // Perform overload resolution. If it fails, return the failed result.
3471  OverloadCandidateSet::iterator Best;
3472  if (OverloadingResult Result
3473        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3474    return Result;
3475
3476  FunctionDecl *Function = Best->Function;
3477  // This is the overload that will be used for this initialization step if we
3478  // use this initialization. Mark it as referenced.
3479  Function->setReferenced();
3480
3481  // Compute the returned type of the conversion.
3482  if (isa<CXXConversionDecl>(Function))
3483    T2 = Function->getResultType();
3484  else
3485    T2 = cv1T1;
3486
3487  // Add the user-defined conversion step.
3488  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3489  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3490                                 T2.getNonLValueExprType(S.Context),
3491                                 HadMultipleCandidates);
3492
3493  // Determine whether we need to perform derived-to-base or
3494  // cv-qualification adjustments.
3495  ExprValueKind VK = VK_RValue;
3496  if (T2->isLValueReferenceType())
3497    VK = VK_LValue;
3498  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3499    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3500
3501  bool NewDerivedToBase = false;
3502  bool NewObjCConversion = false;
3503  bool NewObjCLifetimeConversion = false;
3504  Sema::ReferenceCompareResult NewRefRelationship
3505    = S.CompareReferenceRelationship(DeclLoc, T1,
3506                                     T2.getNonLValueExprType(S.Context),
3507                                     NewDerivedToBase, NewObjCConversion,
3508                                     NewObjCLifetimeConversion);
3509  if (NewRefRelationship == Sema::Ref_Incompatible) {
3510    // If the type we've converted to is not reference-related to the
3511    // type we're looking for, then there is another conversion step
3512    // we need to perform to produce a temporary of the right type
3513    // that we'll be binding to.
3514    ImplicitConversionSequence ICS;
3515    ICS.setStandard();
3516    ICS.Standard = Best->FinalConversion;
3517    T2 = ICS.Standard.getToType(2);
3518    Sequence.AddConversionSequenceStep(ICS, T2);
3519  } else if (NewDerivedToBase)
3520    Sequence.AddDerivedToBaseCastStep(
3521                                S.Context.getQualifiedType(T1,
3522                                  T2.getNonReferenceType().getQualifiers()),
3523                                      VK);
3524  else if (NewObjCConversion)
3525    Sequence.AddObjCObjectConversionStep(
3526                                S.Context.getQualifiedType(T1,
3527                                  T2.getNonReferenceType().getQualifiers()));
3528
3529  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3530    Sequence.AddQualificationConversionStep(cv1T1, VK);
3531
3532  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3533  return OR_Success;
3534}
3535
3536static void CheckCXX98CompatAccessibleCopy(Sema &S,
3537                                           const InitializedEntity &Entity,
3538                                           Expr *CurInitExpr);
3539
3540/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3541static void TryReferenceInitialization(Sema &S,
3542                                       const InitializedEntity &Entity,
3543                                       const InitializationKind &Kind,
3544                                       Expr *Initializer,
3545                                       InitializationSequence &Sequence) {
3546  QualType DestType = Entity.getType();
3547  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3548  Qualifiers T1Quals;
3549  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3550  QualType cv2T2 = Initializer->getType();
3551  Qualifiers T2Quals;
3552  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3553
3554  // If the initializer is the address of an overloaded function, try
3555  // to resolve the overloaded function. If all goes well, T2 is the
3556  // type of the resulting function.
3557  if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3558                                                   T1, Sequence))
3559    return;
3560
3561  // Delegate everything else to a subfunction.
3562  TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3563                                 T1Quals, cv2T2, T2, T2Quals, Sequence);
3564}
3565
3566/// Converts the target of reference initialization so that it has the
3567/// appropriate qualifiers and value kind.
3568///
3569/// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
3570/// \code
3571///   int x;
3572///   const int &r = x;
3573/// \endcode
3574///
3575/// In this case the reference is binding to a bitfield lvalue, which isn't
3576/// valid. Perform a load to create a lifetime-extended temporary instead.
3577/// \code
3578///   const int &r = someStruct.bitfield;
3579/// \endcode
3580static ExprValueKind
3581convertQualifiersAndValueKindIfNecessary(Sema &S,
3582                                         InitializationSequence &Sequence,
3583                                         Expr *Initializer,
3584                                         QualType cv1T1,
3585                                         Qualifiers T1Quals,
3586                                         Qualifiers T2Quals,
3587                                         bool IsLValueRef) {
3588  bool IsNonAddressableType = Initializer->refersToBitField() ||
3589                              Initializer->refersToVectorElement();
3590
3591  if (IsNonAddressableType) {
3592    // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
3593    // lvalue reference to a non-volatile const type, or the reference shall be
3594    // an rvalue reference.
3595    //
3596    // If not, we can't make a temporary and bind to that. Give up and allow the
3597    // error to be diagnosed later.
3598    if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
3599      assert(Initializer->isGLValue());
3600      return Initializer->getValueKind();
3601    }
3602
3603    // Force a load so we can materialize a temporary.
3604    Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
3605    return VK_RValue;
3606  }
3607
3608  if (T1Quals != T2Quals) {
3609    Sequence.AddQualificationConversionStep(cv1T1,
3610                                            Initializer->getValueKind());
3611  }
3612
3613  return Initializer->getValueKind();
3614}
3615
3616
3617/// \brief Reference initialization without resolving overloaded functions.
3618static void TryReferenceInitializationCore(Sema &S,
3619                                           const InitializedEntity &Entity,
3620                                           const InitializationKind &Kind,
3621                                           Expr *Initializer,
3622                                           QualType cv1T1, QualType T1,
3623                                           Qualifiers T1Quals,
3624                                           QualType cv2T2, QualType T2,
3625                                           Qualifiers T2Quals,
3626                                           InitializationSequence &Sequence) {
3627  QualType DestType = Entity.getType();
3628  SourceLocation DeclLoc = Initializer->getLocStart();
3629  // Compute some basic properties of the types and the initializer.
3630  bool isLValueRef = DestType->isLValueReferenceType();
3631  bool isRValueRef = !isLValueRef;
3632  bool DerivedToBase = false;
3633  bool ObjCConversion = false;
3634  bool ObjCLifetimeConversion = false;
3635  Expr::Classification InitCategory = Initializer->Classify(S.Context);
3636  Sema::ReferenceCompareResult RefRelationship
3637    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3638                                     ObjCConversion, ObjCLifetimeConversion);
3639
3640  // C++0x [dcl.init.ref]p5:
3641  //   A reference to type "cv1 T1" is initialized by an expression of type
3642  //   "cv2 T2" as follows:
3643  //
3644  //     - If the reference is an lvalue reference and the initializer
3645  //       expression
3646  // Note the analogous bullet points for rvlaue refs to functions. Because
3647  // there are no function rvalues in C++, rvalue refs to functions are treated
3648  // like lvalue refs.
3649  OverloadingResult ConvOvlResult = OR_Success;
3650  bool T1Function = T1->isFunctionType();
3651  if (isLValueRef || T1Function) {
3652    if (InitCategory.isLValue() &&
3653        (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3654         (Kind.isCStyleOrFunctionalCast() &&
3655          RefRelationship == Sema::Ref_Related))) {
3656      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3657      //     reference-compatible with "cv2 T2," or
3658      //
3659      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3660      // bit-field when we're determining whether the reference initialization
3661      // can occur. However, we do pay attention to whether it is a bit-field
3662      // to decide whether we're actually binding to a temporary created from
3663      // the bit-field.
3664      if (DerivedToBase)
3665        Sequence.AddDerivedToBaseCastStep(
3666                         S.Context.getQualifiedType(T1, T2Quals),
3667                         VK_LValue);
3668      else if (ObjCConversion)
3669        Sequence.AddObjCObjectConversionStep(
3670                                     S.Context.getQualifiedType(T1, T2Quals));
3671
3672      ExprValueKind ValueKind =
3673        convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
3674                                                 cv1T1, T1Quals, T2Quals,
3675                                                 isLValueRef);
3676      Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3677      return;
3678    }
3679
3680    //     - has a class type (i.e., T2 is a class type), where T1 is not
3681    //       reference-related to T2, and can be implicitly converted to an
3682    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3683    //       with "cv3 T3" (this conversion is selected by enumerating the
3684    //       applicable conversion functions (13.3.1.6) and choosing the best
3685    //       one through overload resolution (13.3)),
3686    // If we have an rvalue ref to function type here, the rhs must be
3687    // an rvalue.
3688    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3689        (isLValueRef || InitCategory.isRValue())) {
3690      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3691                                                       Initializer,
3692                                                   /*AllowRValues=*/isRValueRef,
3693                                                       Sequence);
3694      if (ConvOvlResult == OR_Success)
3695        return;
3696      if (ConvOvlResult != OR_No_Viable_Function) {
3697        Sequence.SetOverloadFailure(
3698                      InitializationSequence::FK_ReferenceInitOverloadFailed,
3699                                    ConvOvlResult);
3700      }
3701    }
3702  }
3703
3704  //     - Otherwise, the reference shall be an lvalue reference to a
3705  //       non-volatile const type (i.e., cv1 shall be const), or the reference
3706  //       shall be an rvalue reference.
3707  if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3708    if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3709      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3710    else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3711      Sequence.SetOverloadFailure(
3712                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3713                                  ConvOvlResult);
3714    else
3715      Sequence.SetFailed(InitCategory.isLValue()
3716        ? (RefRelationship == Sema::Ref_Related
3717             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3718             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3719        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3720
3721    return;
3722  }
3723
3724  //    - If the initializer expression
3725  //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3726  //        "cv1 T1" is reference-compatible with "cv2 T2"
3727  // Note: functions are handled below.
3728  if (!T1Function &&
3729      (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3730       (Kind.isCStyleOrFunctionalCast() &&
3731        RefRelationship == Sema::Ref_Related)) &&
3732      (InitCategory.isXValue() ||
3733       (InitCategory.isPRValue() && T2->isRecordType()) ||
3734       (InitCategory.isPRValue() && T2->isArrayType()))) {
3735    ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3736    if (InitCategory.isPRValue() && T2->isRecordType()) {
3737      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3738      // compiler the freedom to perform a copy here or bind to the
3739      // object, while C++0x requires that we bind directly to the
3740      // object. Hence, we always bind to the object without making an
3741      // extra copy. However, in C++03 requires that we check for the
3742      // presence of a suitable copy constructor:
3743      //
3744      //   The constructor that would be used to make the copy shall
3745      //   be callable whether or not the copy is actually done.
3746      if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
3747        Sequence.AddExtraneousCopyToTemporary(cv2T2);
3748      else if (S.getLangOpts().CPlusPlus11)
3749        CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3750    }
3751
3752    if (DerivedToBase)
3753      Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3754                                        ValueKind);
3755    else if (ObjCConversion)
3756      Sequence.AddObjCObjectConversionStep(
3757                                       S.Context.getQualifiedType(T1, T2Quals));
3758
3759    ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
3760                                                         Initializer, cv1T1,
3761                                                         T1Quals, T2Quals,
3762                                                         isLValueRef);
3763
3764    Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3765    return;
3766  }
3767
3768  //       - has a class type (i.e., T2 is a class type), where T1 is not
3769  //         reference-related to T2, and can be implicitly converted to an
3770  //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3771  //         where "cv1 T1" is reference-compatible with "cv3 T3",
3772  if (T2->isRecordType()) {
3773    if (RefRelationship == Sema::Ref_Incompatible) {
3774      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3775                                                       Kind, Initializer,
3776                                                       /*AllowRValues=*/true,
3777                                                       Sequence);
3778      if (ConvOvlResult)
3779        Sequence.SetOverloadFailure(
3780                      InitializationSequence::FK_ReferenceInitOverloadFailed,
3781                                    ConvOvlResult);
3782
3783      return;
3784    }
3785
3786    if ((RefRelationship == Sema::Ref_Compatible ||
3787         RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
3788        isRValueRef && InitCategory.isLValue()) {
3789      Sequence.SetFailed(
3790        InitializationSequence::FK_RValueReferenceBindingToLValue);
3791      return;
3792    }
3793
3794    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3795    return;
3796  }
3797
3798  //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3799  //        from the initializer expression using the rules for a non-reference
3800  //        copy-initialization (8.5). The reference is then bound to the
3801  //        temporary. [...]
3802
3803  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3804
3805  // FIXME: Why do we use an implicit conversion here rather than trying
3806  // copy-initialization?
3807  ImplicitConversionSequence ICS
3808    = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3809                              /*SuppressUserConversions=*/false,
3810                              /*AllowExplicit=*/false,
3811                              /*FIXME:InOverloadResolution=*/false,
3812                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3813                              /*AllowObjCWritebackConversion=*/false);
3814
3815  if (ICS.isBad()) {
3816    // FIXME: Use the conversion function set stored in ICS to turn
3817    // this into an overloading ambiguity diagnostic. However, we need
3818    // to keep that set as an OverloadCandidateSet rather than as some
3819    // other kind of set.
3820    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3821      Sequence.SetOverloadFailure(
3822                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3823                                  ConvOvlResult);
3824    else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3825      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3826    else
3827      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3828    return;
3829  } else {
3830    Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3831  }
3832
3833  //        [...] If T1 is reference-related to T2, cv1 must be the
3834  //        same cv-qualification as, or greater cv-qualification
3835  //        than, cv2; otherwise, the program is ill-formed.
3836  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3837  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3838  if (RefRelationship == Sema::Ref_Related &&
3839      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3840    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3841    return;
3842  }
3843
3844  //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3845  //   reference, the initializer expression shall not be an lvalue.
3846  if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3847      InitCategory.isLValue()) {
3848    Sequence.SetFailed(
3849                    InitializationSequence::FK_RValueReferenceBindingToLValue);
3850    return;
3851  }
3852
3853  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3854  return;
3855}
3856
3857/// \brief Attempt character array initialization from a string literal
3858/// (C++ [dcl.init.string], C99 6.7.8).
3859static void TryStringLiteralInitialization(Sema &S,
3860                                           const InitializedEntity &Entity,
3861                                           const InitializationKind &Kind,
3862                                           Expr *Initializer,
3863                                       InitializationSequence &Sequence) {
3864  Sequence.AddStringInitStep(Entity.getType());
3865}
3866
3867/// \brief Attempt value initialization (C++ [dcl.init]p7).
3868static void TryValueInitialization(Sema &S,
3869                                   const InitializedEntity &Entity,
3870                                   const InitializationKind &Kind,
3871                                   InitializationSequence &Sequence,
3872                                   InitListExpr *InitList) {
3873  assert((!InitList || InitList->getNumInits() == 0) &&
3874         "Shouldn't use value-init for non-empty init lists");
3875
3876  // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3877  //
3878  //   To value-initialize an object of type T means:
3879  QualType T = Entity.getType();
3880
3881  //     -- if T is an array type, then each element is value-initialized;
3882  T = S.Context.getBaseElementType(T);
3883
3884  if (const RecordType *RT = T->getAs<RecordType>()) {
3885    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3886      bool NeedZeroInitialization = true;
3887      if (!S.getLangOpts().CPlusPlus11) {
3888        // C++98:
3889        // -- if T is a class type (clause 9) with a user-declared constructor
3890        //    (12.1), then the default constructor for T is called (and the
3891        //    initialization is ill-formed if T has no accessible default
3892        //    constructor);
3893        if (ClassDecl->hasUserDeclaredConstructor())
3894          NeedZeroInitialization = false;
3895      } else {
3896        // C++11:
3897        // -- if T is a class type (clause 9) with either no default constructor
3898        //    (12.1 [class.ctor]) or a default constructor that is user-provided
3899        //    or deleted, then the object is default-initialized;
3900        CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3901        if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3902          NeedZeroInitialization = false;
3903      }
3904
3905      // -- if T is a (possibly cv-qualified) non-union class type without a
3906      //    user-provided or deleted default constructor, then the object is
3907      //    zero-initialized and, if T has a non-trivial default constructor,
3908      //    default-initialized;
3909      // The 'non-union' here was removed by DR1502. The 'non-trivial default
3910      // constructor' part was removed by DR1507.
3911      if (NeedZeroInitialization)
3912        Sequence.AddZeroInitializationStep(Entity.getType());
3913
3914      // C++03:
3915      // -- if T is a non-union class type without a user-declared constructor,
3916      //    then every non-static data member and base class component of T is
3917      //    value-initialized;
3918      // [...] A program that calls for [...] value-initialization of an
3919      // entity of reference type is ill-formed.
3920      //
3921      // C++11 doesn't need this handling, because value-initialization does not
3922      // occur recursively there, and the implicit default constructor is
3923      // defined as deleted in the problematic cases.
3924      if (!S.getLangOpts().CPlusPlus11 &&
3925          ClassDecl->hasUninitializedReferenceMember()) {
3926        Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
3927        return;
3928      }
3929
3930      // If this is list-value-initialization, pass the empty init list on when
3931      // building the constructor call. This affects the semantics of a few
3932      // things (such as whether an explicit default constructor can be called).
3933      Expr *InitListAsExpr = InitList;
3934      MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
3935      bool InitListSyntax = InitList;
3936
3937      return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
3938                                          InitListSyntax);
3939    }
3940  }
3941
3942  Sequence.AddZeroInitializationStep(Entity.getType());
3943}
3944
3945/// \brief Attempt default initialization (C++ [dcl.init]p6).
3946static void TryDefaultInitialization(Sema &S,
3947                                     const InitializedEntity &Entity,
3948                                     const InitializationKind &Kind,
3949                                     InitializationSequence &Sequence) {
3950  assert(Kind.getKind() == InitializationKind::IK_Default);
3951
3952  // C++ [dcl.init]p6:
3953  //   To default-initialize an object of type T means:
3954  //     - if T is an array type, each element is default-initialized;
3955  QualType DestType = S.Context.getBaseElementType(Entity.getType());
3956
3957  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3958  //       constructor for T is called (and the initialization is ill-formed if
3959  //       T has no accessible default constructor);
3960  if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
3961    TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
3962    return;
3963  }
3964
3965  //     - otherwise, no initialization is performed.
3966
3967  //   If a program calls for the default initialization of an object of
3968  //   a const-qualified type T, T shall be a class type with a user-provided
3969  //   default constructor.
3970  if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
3971    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3972    return;
3973  }
3974
3975  // If the destination type has a lifetime property, zero-initialize it.
3976  if (DestType.getQualifiers().hasObjCLifetime()) {
3977    Sequence.AddZeroInitializationStep(Entity.getType());
3978    return;
3979  }
3980}
3981
3982/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3983/// which enumerates all conversion functions and performs overload resolution
3984/// to select the best.
3985static void TryUserDefinedConversion(Sema &S,
3986                                     const InitializedEntity &Entity,
3987                                     const InitializationKind &Kind,
3988                                     Expr *Initializer,
3989                                     InitializationSequence &Sequence) {
3990  QualType DestType = Entity.getType();
3991  assert(!DestType->isReferenceType() && "References are handled elsewhere");
3992  QualType SourceType = Initializer->getType();
3993  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3994         "Must have a class type to perform a user-defined conversion");
3995
3996  // Build the candidate set directly in the initialization sequence
3997  // structure, so that it will persist if we fail.
3998  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3999  CandidateSet.clear();
4000
4001  // Determine whether we are allowed to call explicit constructors or
4002  // explicit conversion operators.
4003  bool AllowExplicit = Kind.AllowExplicit();
4004
4005  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4006    // The type we're converting to is a class type. Enumerate its constructors
4007    // to see if there is a suitable conversion.
4008    CXXRecordDecl *DestRecordDecl
4009      = cast<CXXRecordDecl>(DestRecordType->getDecl());
4010
4011    // Try to complete the type we're converting to.
4012    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
4013      DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
4014      // The container holding the constructors can under certain conditions
4015      // be changed while iterating. To be safe we copy the lookup results
4016      // to a new container.
4017      SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
4018      for (SmallVectorImpl<NamedDecl *>::iterator
4019             Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
4020           Con != ConEnd; ++Con) {
4021        NamedDecl *D = *Con;
4022        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
4023
4024        // Find the constructor (which may be a template).
4025        CXXConstructorDecl *Constructor = 0;
4026        FunctionTemplateDecl *ConstructorTmpl
4027          = dyn_cast<FunctionTemplateDecl>(D);
4028        if (ConstructorTmpl)
4029          Constructor = cast<CXXConstructorDecl>(
4030                                           ConstructorTmpl->getTemplatedDecl());
4031        else
4032          Constructor = cast<CXXConstructorDecl>(D);
4033
4034        if (!Constructor->isInvalidDecl() &&
4035            Constructor->isConvertingConstructor(AllowExplicit)) {
4036          if (ConstructorTmpl)
4037            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4038                                           /*ExplicitArgs*/ 0,
4039                                           Initializer, CandidateSet,
4040                                           /*SuppressUserConversions=*/true);
4041          else
4042            S.AddOverloadCandidate(Constructor, FoundDecl,
4043                                   Initializer, CandidateSet,
4044                                   /*SuppressUserConversions=*/true);
4045        }
4046      }
4047    }
4048  }
4049
4050  SourceLocation DeclLoc = Initializer->getLocStart();
4051
4052  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4053    // The type we're converting from is a class type, enumerate its conversion
4054    // functions.
4055
4056    // We can only enumerate the conversion functions for a complete type; if
4057    // the type isn't complete, simply skip this step.
4058    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
4059      CXXRecordDecl *SourceRecordDecl
4060        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4061
4062      std::pair<CXXRecordDecl::conversion_iterator,
4063                CXXRecordDecl::conversion_iterator>
4064        Conversions = SourceRecordDecl->getVisibleConversionFunctions();
4065      for (CXXRecordDecl::conversion_iterator
4066             I = Conversions.first, E = Conversions.second; I != E; ++I) {
4067        NamedDecl *D = *I;
4068        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4069        if (isa<UsingShadowDecl>(D))
4070          D = cast<UsingShadowDecl>(D)->getTargetDecl();
4071
4072        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4073        CXXConversionDecl *Conv;
4074        if (ConvTemplate)
4075          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4076        else
4077          Conv = cast<CXXConversionDecl>(D);
4078
4079        if (AllowExplicit || !Conv->isExplicit()) {
4080          if (ConvTemplate)
4081            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4082                                             ActingDC, Initializer, DestType,
4083                                             CandidateSet);
4084          else
4085            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4086                                     Initializer, DestType, CandidateSet);
4087        }
4088      }
4089    }
4090  }
4091
4092  // Perform overload resolution. If it fails, return the failed result.
4093  OverloadCandidateSet::iterator Best;
4094  if (OverloadingResult Result
4095        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4096    Sequence.SetOverloadFailure(
4097                        InitializationSequence::FK_UserConversionOverloadFailed,
4098                                Result);
4099    return;
4100  }
4101
4102  FunctionDecl *Function = Best->Function;
4103  Function->setReferenced();
4104  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4105
4106  if (isa<CXXConstructorDecl>(Function)) {
4107    // Add the user-defined conversion step. Any cv-qualification conversion is
4108    // subsumed by the initialization. Per DR5, the created temporary is of the
4109    // cv-unqualified type of the destination.
4110    Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4111                                   DestType.getUnqualifiedType(),
4112                                   HadMultipleCandidates);
4113    return;
4114  }
4115
4116  // Add the user-defined conversion step that calls the conversion function.
4117  QualType ConvType = Function->getCallResultType();
4118  if (ConvType->getAs<RecordType>()) {
4119    // If we're converting to a class type, there may be an copy of
4120    // the resulting temporary object (possible to create an object of
4121    // a base class type). That copy is not a separate conversion, so
4122    // we just make a note of the actual destination type (possibly a
4123    // base class of the type returned by the conversion function) and
4124    // let the user-defined conversion step handle the conversion.
4125    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
4126                                   HadMultipleCandidates);
4127    return;
4128  }
4129
4130  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4131                                 HadMultipleCandidates);
4132
4133  // If the conversion following the call to the conversion function
4134  // is interesting, add it as a separate step.
4135  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4136      Best->FinalConversion.Third) {
4137    ImplicitConversionSequence ICS;
4138    ICS.setStandard();
4139    ICS.Standard = Best->FinalConversion;
4140    Sequence.AddConversionSequenceStep(ICS, DestType);
4141  }
4142}
4143
4144/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4145/// a function with a pointer return type contains a 'return false;' statement.
4146/// In C++11, 'false' is not a null pointer, so this breaks the build of any
4147/// code using that header.
4148///
4149/// Work around this by treating 'return false;' as zero-initializing the result
4150/// if it's used in a pointer-returning function in a system header.
4151static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4152                                              const InitializedEntity &Entity,
4153                                              const Expr *Init) {
4154  return S.getLangOpts().CPlusPlus11 &&
4155         Entity.getKind() == InitializedEntity::EK_Result &&
4156         Entity.getType()->isPointerType() &&
4157         isa<CXXBoolLiteralExpr>(Init) &&
4158         !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4159         S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4160}
4161
4162/// The non-zero enum values here are indexes into diagnostic alternatives.
4163enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4164
4165/// Determines whether this expression is an acceptable ICR source.
4166static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4167                                         bool isAddressOf, bool &isWeakAccess) {
4168  // Skip parens.
4169  e = e->IgnoreParens();
4170
4171  // Skip address-of nodes.
4172  if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4173    if (op->getOpcode() == UO_AddrOf)
4174      return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4175                                isWeakAccess);
4176
4177  // Skip certain casts.
4178  } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4179    switch (ce->getCastKind()) {
4180    case CK_Dependent:
4181    case CK_BitCast:
4182    case CK_LValueBitCast:
4183    case CK_NoOp:
4184      return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4185
4186    case CK_ArrayToPointerDecay:
4187      return IIK_nonscalar;
4188
4189    case CK_NullToPointer:
4190      return IIK_okay;
4191
4192    default:
4193      break;
4194    }
4195
4196  // If we have a declaration reference, it had better be a local variable.
4197  } else if (isa<DeclRefExpr>(e)) {
4198    // set isWeakAccess to true, to mean that there will be an implicit
4199    // load which requires a cleanup.
4200    if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4201      isWeakAccess = true;
4202
4203    if (!isAddressOf) return IIK_nonlocal;
4204
4205    VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4206    if (!var) return IIK_nonlocal;
4207
4208    return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4209
4210  // If we have a conditional operator, check both sides.
4211  } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4212    if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4213                                                isWeakAccess))
4214      return iik;
4215
4216    return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4217
4218  // These are never scalar.
4219  } else if (isa<ArraySubscriptExpr>(e)) {
4220    return IIK_nonscalar;
4221
4222  // Otherwise, it needs to be a null pointer constant.
4223  } else {
4224    return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4225            ? IIK_okay : IIK_nonlocal);
4226  }
4227
4228  return IIK_nonlocal;
4229}
4230
4231/// Check whether the given expression is a valid operand for an
4232/// indirect copy/restore.
4233static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4234  assert(src->isRValue());
4235  bool isWeakAccess = false;
4236  InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4237  // If isWeakAccess to true, there will be an implicit
4238  // load which requires a cleanup.
4239  if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4240    S.ExprNeedsCleanups = true;
4241
4242  if (iik == IIK_okay) return;
4243
4244  S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4245    << ((unsigned) iik - 1)  // shift index into diagnostic explanations
4246    << src->getSourceRange();
4247}
4248
4249/// \brief Determine whether we have compatible array types for the
4250/// purposes of GNU by-copy array initialization.
4251static bool hasCompatibleArrayTypes(ASTContext &Context,
4252                                    const ArrayType *Dest,
4253                                    const ArrayType *Source) {
4254  // If the source and destination array types are equivalent, we're
4255  // done.
4256  if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4257    return true;
4258
4259  // Make sure that the element types are the same.
4260  if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4261    return false;
4262
4263  // The only mismatch we allow is when the destination is an
4264  // incomplete array type and the source is a constant array type.
4265  return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4266}
4267
4268static bool tryObjCWritebackConversion(Sema &S,
4269                                       InitializationSequence &Sequence,
4270                                       const InitializedEntity &Entity,
4271                                       Expr *Initializer) {
4272  bool ArrayDecay = false;
4273  QualType ArgType = Initializer->getType();
4274  QualType ArgPointee;
4275  if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4276    ArrayDecay = true;
4277    ArgPointee = ArgArrayType->getElementType();
4278    ArgType = S.Context.getPointerType(ArgPointee);
4279  }
4280
4281  // Handle write-back conversion.
4282  QualType ConvertedArgType;
4283  if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4284                                   ConvertedArgType))
4285    return false;
4286
4287  // We should copy unless we're passing to an argument explicitly
4288  // marked 'out'.
4289  bool ShouldCopy = true;
4290  if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4291    ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4292
4293  // Do we need an lvalue conversion?
4294  if (ArrayDecay || Initializer->isGLValue()) {
4295    ImplicitConversionSequence ICS;
4296    ICS.setStandard();
4297    ICS.Standard.setAsIdentityConversion();
4298
4299    QualType ResultType;
4300    if (ArrayDecay) {
4301      ICS.Standard.First = ICK_Array_To_Pointer;
4302      ResultType = S.Context.getPointerType(ArgPointee);
4303    } else {
4304      ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4305      ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4306    }
4307
4308    Sequence.AddConversionSequenceStep(ICS, ResultType);
4309  }
4310
4311  Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4312  return true;
4313}
4314
4315static bool TryOCLSamplerInitialization(Sema &S,
4316                                        InitializationSequence &Sequence,
4317                                        QualType DestType,
4318                                        Expr *Initializer) {
4319  if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4320    !Initializer->isIntegerConstantExpr(S.getASTContext()))
4321    return false;
4322
4323  Sequence.AddOCLSamplerInitStep(DestType);
4324  return true;
4325}
4326
4327//
4328// OpenCL 1.2 spec, s6.12.10
4329//
4330// The event argument can also be used to associate the
4331// async_work_group_copy with a previous async copy allowing
4332// an event to be shared by multiple async copies; otherwise
4333// event should be zero.
4334//
4335static bool TryOCLZeroEventInitialization(Sema &S,
4336                                          InitializationSequence &Sequence,
4337                                          QualType DestType,
4338                                          Expr *Initializer) {
4339  if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4340      !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4341      (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4342    return false;
4343
4344  Sequence.AddOCLZeroEventStep(DestType);
4345  return true;
4346}
4347
4348InitializationSequence::InitializationSequence(Sema &S,
4349                                               const InitializedEntity &Entity,
4350                                               const InitializationKind &Kind,
4351                                               MultiExprArg Args)
4352    : FailedCandidateSet(Kind.getLocation()) {
4353  ASTContext &Context = S.Context;
4354
4355  // Eliminate non-overload placeholder types in the arguments.  We
4356  // need to do this before checking whether types are dependent
4357  // because lowering a pseudo-object expression might well give us
4358  // something of dependent type.
4359  for (unsigned I = 0, E = Args.size(); I != E; ++I)
4360    if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4361      // FIXME: should we be doing this here?
4362      ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4363      if (result.isInvalid()) {
4364        SetFailed(FK_PlaceholderType);
4365        return;
4366      }
4367      Args[I] = result.take();
4368    }
4369
4370  // C++0x [dcl.init]p16:
4371  //   The semantics of initializers are as follows. The destination type is
4372  //   the type of the object or reference being initialized and the source
4373  //   type is the type of the initializer expression. The source type is not
4374  //   defined when the initializer is a braced-init-list or when it is a
4375  //   parenthesized list of expressions.
4376  QualType DestType = Entity.getType();
4377
4378  if (DestType->isDependentType() ||
4379      Expr::hasAnyTypeDependentArguments(Args)) {
4380    SequenceKind = DependentSequence;
4381    return;
4382  }
4383
4384  // Almost everything is a normal sequence.
4385  setSequenceKind(NormalSequence);
4386
4387  QualType SourceType;
4388  Expr *Initializer = 0;
4389  if (Args.size() == 1) {
4390    Initializer = Args[0];
4391    if (!isa<InitListExpr>(Initializer))
4392      SourceType = Initializer->getType();
4393  }
4394
4395  //     - If the initializer is a (non-parenthesized) braced-init-list, the
4396  //       object is list-initialized (8.5.4).
4397  if (Kind.getKind() != InitializationKind::IK_Direct) {
4398    if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4399      TryListInitialization(S, Entity, Kind, InitList, *this);
4400      return;
4401    }
4402  }
4403
4404  //     - If the destination type is a reference type, see 8.5.3.
4405  if (DestType->isReferenceType()) {
4406    // C++0x [dcl.init.ref]p1:
4407    //   A variable declared to be a T& or T&&, that is, "reference to type T"
4408    //   (8.3.2), shall be initialized by an object, or function, of type T or
4409    //   by an object that can be converted into a T.
4410    // (Therefore, multiple arguments are not permitted.)
4411    if (Args.size() != 1)
4412      SetFailed(FK_TooManyInitsForReference);
4413    else
4414      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4415    return;
4416  }
4417
4418  //     - If the initializer is (), the object is value-initialized.
4419  if (Kind.getKind() == InitializationKind::IK_Value ||
4420      (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
4421    TryValueInitialization(S, Entity, Kind, *this);
4422    return;
4423  }
4424
4425  // Handle default initialization.
4426  if (Kind.getKind() == InitializationKind::IK_Default) {
4427    TryDefaultInitialization(S, Entity, Kind, *this);
4428    return;
4429  }
4430
4431  //     - If the destination type is an array of characters, an array of
4432  //       char16_t, an array of char32_t, or an array of wchar_t, and the
4433  //       initializer is a string literal, see 8.5.2.
4434  //     - Otherwise, if the destination type is an array, the program is
4435  //       ill-formed.
4436  if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4437    if (Initializer && isa<VariableArrayType>(DestAT)) {
4438      SetFailed(FK_VariableLengthArrayHasInitializer);
4439      return;
4440    }
4441
4442    if (Initializer) {
4443      switch (IsStringInit(Initializer, DestAT, Context)) {
4444      case SIF_None:
4445        TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4446        return;
4447      case SIF_NarrowStringIntoWideChar:
4448        SetFailed(FK_NarrowStringIntoWideCharArray);
4449        return;
4450      case SIF_WideStringIntoChar:
4451        SetFailed(FK_WideStringIntoCharArray);
4452        return;
4453      case SIF_IncompatWideStringIntoWideChar:
4454        SetFailed(FK_IncompatWideStringIntoWideChar);
4455        return;
4456      case SIF_Other:
4457        break;
4458      }
4459    }
4460
4461    // Note: as an GNU C extension, we allow initialization of an
4462    // array from a compound literal that creates an array of the same
4463    // type, so long as the initializer has no side effects.
4464    if (!S.getLangOpts().CPlusPlus && Initializer &&
4465        isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4466        Initializer->getType()->isArrayType()) {
4467      const ArrayType *SourceAT
4468        = Context.getAsArrayType(Initializer->getType());
4469      if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4470        SetFailed(FK_ArrayTypeMismatch);
4471      else if (Initializer->HasSideEffects(S.Context))
4472        SetFailed(FK_NonConstantArrayInit);
4473      else {
4474        AddArrayInitStep(DestType);
4475      }
4476    }
4477    // Note: as a GNU C++ extension, we allow list-initialization of a
4478    // class member of array type from a parenthesized initializer list.
4479    else if (S.getLangOpts().CPlusPlus &&
4480             Entity.getKind() == InitializedEntity::EK_Member &&
4481             Initializer && isa<InitListExpr>(Initializer)) {
4482      TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4483                            *this);
4484      AddParenthesizedArrayInitStep(DestType);
4485    } else if (DestAT->getElementType()->isCharType())
4486      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4487    else if (IsWideCharCompatible(DestAT->getElementType(), Context))
4488      SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
4489    else
4490      SetFailed(FK_ArrayNeedsInitList);
4491
4492    return;
4493  }
4494
4495  // Determine whether we should consider writeback conversions for
4496  // Objective-C ARC.
4497  bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4498         Entity.isParameterKind();
4499
4500  // We're at the end of the line for C: it's either a write-back conversion
4501  // or it's a C assignment. There's no need to check anything else.
4502  if (!S.getLangOpts().CPlusPlus) {
4503    // If allowed, check whether this is an Objective-C writeback conversion.
4504    if (allowObjCWritebackConversion &&
4505        tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4506      return;
4507    }
4508
4509    if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4510      return;
4511
4512    if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4513      return;
4514
4515    // Handle initialization in C
4516    AddCAssignmentStep(DestType);
4517    MaybeProduceObjCObject(S, *this, Entity);
4518    return;
4519  }
4520
4521  assert(S.getLangOpts().CPlusPlus);
4522
4523  //     - If the destination type is a (possibly cv-qualified) class type:
4524  if (DestType->isRecordType()) {
4525    //     - If the initialization is direct-initialization, or if it is
4526    //       copy-initialization where the cv-unqualified version of the
4527    //       source type is the same class as, or a derived class of, the
4528    //       class of the destination, constructors are considered. [...]
4529    if (Kind.getKind() == InitializationKind::IK_Direct ||
4530        (Kind.getKind() == InitializationKind::IK_Copy &&
4531         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4532          S.IsDerivedFrom(SourceType, DestType))))
4533      TryConstructorInitialization(S, Entity, Kind, Args,
4534                                   Entity.getType(), *this);
4535    //     - Otherwise (i.e., for the remaining copy-initialization cases),
4536    //       user-defined conversion sequences that can convert from the source
4537    //       type to the destination type or (when a conversion function is
4538    //       used) to a derived class thereof are enumerated as described in
4539    //       13.3.1.4, and the best one is chosen through overload resolution
4540    //       (13.3).
4541    else
4542      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4543    return;
4544  }
4545
4546  if (Args.size() > 1) {
4547    SetFailed(FK_TooManyInitsForScalar);
4548    return;
4549  }
4550  assert(Args.size() == 1 && "Zero-argument case handled above");
4551
4552  //    - Otherwise, if the source type is a (possibly cv-qualified) class
4553  //      type, conversion functions are considered.
4554  if (!SourceType.isNull() && SourceType->isRecordType()) {
4555    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4556    MaybeProduceObjCObject(S, *this, Entity);
4557    return;
4558  }
4559
4560  //    - Otherwise, the initial value of the object being initialized is the
4561  //      (possibly converted) value of the initializer expression. Standard
4562  //      conversions (Clause 4) will be used, if necessary, to convert the
4563  //      initializer expression to the cv-unqualified version of the
4564  //      destination type; no user-defined conversions are considered.
4565
4566  ImplicitConversionSequence ICS
4567    = S.TryImplicitConversion(Initializer, Entity.getType(),
4568                              /*SuppressUserConversions*/true,
4569                              /*AllowExplicitConversions*/ false,
4570                              /*InOverloadResolution*/ false,
4571                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4572                              allowObjCWritebackConversion);
4573
4574  if (ICS.isStandard() &&
4575      ICS.Standard.Second == ICK_Writeback_Conversion) {
4576    // Objective-C ARC writeback conversion.
4577
4578    // We should copy unless we're passing to an argument explicitly
4579    // marked 'out'.
4580    bool ShouldCopy = true;
4581    if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4582      ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4583
4584    // If there was an lvalue adjustment, add it as a separate conversion.
4585    if (ICS.Standard.First == ICK_Array_To_Pointer ||
4586        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4587      ImplicitConversionSequence LvalueICS;
4588      LvalueICS.setStandard();
4589      LvalueICS.Standard.setAsIdentityConversion();
4590      LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4591      LvalueICS.Standard.First = ICS.Standard.First;
4592      AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4593    }
4594
4595    AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4596  } else if (ICS.isBad()) {
4597    DeclAccessPair dap;
4598    if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
4599      AddZeroInitializationStep(Entity.getType());
4600    } else if (Initializer->getType() == Context.OverloadTy &&
4601               !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
4602                                                     false, dap))
4603      SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4604    else
4605      SetFailed(InitializationSequence::FK_ConversionFailed);
4606  } else {
4607    AddConversionSequenceStep(ICS, Entity.getType());
4608
4609    MaybeProduceObjCObject(S, *this, Entity);
4610  }
4611}
4612
4613InitializationSequence::~InitializationSequence() {
4614  for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4615                                          StepEnd = Steps.end();
4616       Step != StepEnd; ++Step)
4617    Step->Destroy();
4618}
4619
4620//===----------------------------------------------------------------------===//
4621// Perform initialization
4622//===----------------------------------------------------------------------===//
4623static Sema::AssignmentAction
4624getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
4625  switch(Entity.getKind()) {
4626  case InitializedEntity::EK_Variable:
4627  case InitializedEntity::EK_New:
4628  case InitializedEntity::EK_Exception:
4629  case InitializedEntity::EK_Base:
4630  case InitializedEntity::EK_Delegating:
4631    return Sema::AA_Initializing;
4632
4633  case InitializedEntity::EK_Parameter:
4634    if (Entity.getDecl() &&
4635        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4636      return Sema::AA_Sending;
4637
4638    return Sema::AA_Passing;
4639
4640  case InitializedEntity::EK_Parameter_CF_Audited:
4641    if (Entity.getDecl() &&
4642      isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4643      return Sema::AA_Sending;
4644
4645    return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
4646
4647  case InitializedEntity::EK_Result:
4648    return Sema::AA_Returning;
4649
4650  case InitializedEntity::EK_Temporary:
4651  case InitializedEntity::EK_RelatedResult:
4652    // FIXME: Can we tell apart casting vs. converting?
4653    return Sema::AA_Casting;
4654
4655  case InitializedEntity::EK_Member:
4656  case InitializedEntity::EK_ArrayElement:
4657  case InitializedEntity::EK_VectorElement:
4658  case InitializedEntity::EK_ComplexElement:
4659  case InitializedEntity::EK_BlockElement:
4660  case InitializedEntity::EK_LambdaCapture:
4661  case InitializedEntity::EK_CompoundLiteralInit:
4662    return Sema::AA_Initializing;
4663  }
4664
4665  llvm_unreachable("Invalid EntityKind!");
4666}
4667
4668/// \brief Whether we should bind a created object as a temporary when
4669/// initializing the given entity.
4670static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4671  switch (Entity.getKind()) {
4672  case InitializedEntity::EK_ArrayElement:
4673  case InitializedEntity::EK_Member:
4674  case InitializedEntity::EK_Result:
4675  case InitializedEntity::EK_New:
4676  case InitializedEntity::EK_Variable:
4677  case InitializedEntity::EK_Base:
4678  case InitializedEntity::EK_Delegating:
4679  case InitializedEntity::EK_VectorElement:
4680  case InitializedEntity::EK_ComplexElement:
4681  case InitializedEntity::EK_Exception:
4682  case InitializedEntity::EK_BlockElement:
4683  case InitializedEntity::EK_LambdaCapture:
4684  case InitializedEntity::EK_CompoundLiteralInit:
4685    return false;
4686
4687  case InitializedEntity::EK_Parameter:
4688  case InitializedEntity::EK_Parameter_CF_Audited:
4689  case InitializedEntity::EK_Temporary:
4690  case InitializedEntity::EK_RelatedResult:
4691    return true;
4692  }
4693
4694  llvm_unreachable("missed an InitializedEntity kind?");
4695}
4696
4697/// \brief Whether the given entity, when initialized with an object
4698/// created for that initialization, requires destruction.
4699static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4700  switch (Entity.getKind()) {
4701    case InitializedEntity::EK_Result:
4702    case InitializedEntity::EK_New:
4703    case InitializedEntity::EK_Base:
4704    case InitializedEntity::EK_Delegating:
4705    case InitializedEntity::EK_VectorElement:
4706    case InitializedEntity::EK_ComplexElement:
4707    case InitializedEntity::EK_BlockElement:
4708    case InitializedEntity::EK_LambdaCapture:
4709      return false;
4710
4711    case InitializedEntity::EK_Member:
4712    case InitializedEntity::EK_Variable:
4713    case InitializedEntity::EK_Parameter:
4714    case InitializedEntity::EK_Parameter_CF_Audited:
4715    case InitializedEntity::EK_Temporary:
4716    case InitializedEntity::EK_ArrayElement:
4717    case InitializedEntity::EK_Exception:
4718    case InitializedEntity::EK_CompoundLiteralInit:
4719    case InitializedEntity::EK_RelatedResult:
4720      return true;
4721  }
4722
4723  llvm_unreachable("missed an InitializedEntity kind?");
4724}
4725
4726/// \brief Look for copy and move constructors and constructor templates, for
4727/// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4728static void LookupCopyAndMoveConstructors(Sema &S,
4729                                          OverloadCandidateSet &CandidateSet,
4730                                          CXXRecordDecl *Class,
4731                                          Expr *CurInitExpr) {
4732  DeclContext::lookup_result R = S.LookupConstructors(Class);
4733  // The container holding the constructors can under certain conditions
4734  // be changed while iterating (e.g. because of deserialization).
4735  // To be safe we copy the lookup results to a new container.
4736  SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
4737  for (SmallVectorImpl<NamedDecl *>::iterator
4738         CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
4739    NamedDecl *D = *CI;
4740    CXXConstructorDecl *Constructor = 0;
4741
4742    if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
4743      // Handle copy/moveconstructors, only.
4744      if (!Constructor || Constructor->isInvalidDecl() ||
4745          !Constructor->isCopyOrMoveConstructor() ||
4746          !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4747        continue;
4748
4749      DeclAccessPair FoundDecl
4750        = DeclAccessPair::make(Constructor, Constructor->getAccess());
4751      S.AddOverloadCandidate(Constructor, FoundDecl,
4752                             CurInitExpr, CandidateSet);
4753      continue;
4754    }
4755
4756    // Handle constructor templates.
4757    FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
4758    if (ConstructorTmpl->isInvalidDecl())
4759      continue;
4760
4761    Constructor = cast<CXXConstructorDecl>(
4762                                         ConstructorTmpl->getTemplatedDecl());
4763    if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4764      continue;
4765
4766    // FIXME: Do we need to limit this to copy-constructor-like
4767    // candidates?
4768    DeclAccessPair FoundDecl
4769      = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4770    S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4771                                   CurInitExpr, CandidateSet, true);
4772  }
4773}
4774
4775/// \brief Get the location at which initialization diagnostics should appear.
4776static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4777                                           Expr *Initializer) {
4778  switch (Entity.getKind()) {
4779  case InitializedEntity::EK_Result:
4780    return Entity.getReturnLoc();
4781
4782  case InitializedEntity::EK_Exception:
4783    return Entity.getThrowLoc();
4784
4785  case InitializedEntity::EK_Variable:
4786    return Entity.getDecl()->getLocation();
4787
4788  case InitializedEntity::EK_LambdaCapture:
4789    return Entity.getCaptureLoc();
4790
4791  case InitializedEntity::EK_ArrayElement:
4792  case InitializedEntity::EK_Member:
4793  case InitializedEntity::EK_Parameter:
4794  case InitializedEntity::EK_Parameter_CF_Audited:
4795  case InitializedEntity::EK_Temporary:
4796  case InitializedEntity::EK_New:
4797  case InitializedEntity::EK_Base:
4798  case InitializedEntity::EK_Delegating:
4799  case InitializedEntity::EK_VectorElement:
4800  case InitializedEntity::EK_ComplexElement:
4801  case InitializedEntity::EK_BlockElement:
4802  case InitializedEntity::EK_CompoundLiteralInit:
4803  case InitializedEntity::EK_RelatedResult:
4804    return Initializer->getLocStart();
4805  }
4806  llvm_unreachable("missed an InitializedEntity kind?");
4807}
4808
4809/// \brief Make a (potentially elidable) temporary copy of the object
4810/// provided by the given initializer by calling the appropriate copy
4811/// constructor.
4812///
4813/// \param S The Sema object used for type-checking.
4814///
4815/// \param T The type of the temporary object, which must either be
4816/// the type of the initializer expression or a superclass thereof.
4817///
4818/// \param Entity The entity being initialized.
4819///
4820/// \param CurInit The initializer expression.
4821///
4822/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4823/// is permitted in C++03 (but not C++0x) when binding a reference to
4824/// an rvalue.
4825///
4826/// \returns An expression that copies the initializer expression into
4827/// a temporary object, or an error expression if a copy could not be
4828/// created.
4829static ExprResult CopyObject(Sema &S,
4830                             QualType T,
4831                             const InitializedEntity &Entity,
4832                             ExprResult CurInit,
4833                             bool IsExtraneousCopy) {
4834  // Determine which class type we're copying to.
4835  Expr *CurInitExpr = (Expr *)CurInit.get();
4836  CXXRecordDecl *Class = 0;
4837  if (const RecordType *Record = T->getAs<RecordType>())
4838    Class = cast<CXXRecordDecl>(Record->getDecl());
4839  if (!Class)
4840    return CurInit;
4841
4842  // C++0x [class.copy]p32:
4843  //   When certain criteria are met, an implementation is allowed to
4844  //   omit the copy/move construction of a class object, even if the
4845  //   copy/move constructor and/or destructor for the object have
4846  //   side effects. [...]
4847  //     - when a temporary class object that has not been bound to a
4848  //       reference (12.2) would be copied/moved to a class object
4849  //       with the same cv-unqualified type, the copy/move operation
4850  //       can be omitted by constructing the temporary object
4851  //       directly into the target of the omitted copy/move
4852  //
4853  // Note that the other three bullets are handled elsewhere. Copy
4854  // elision for return statements and throw expressions are handled as part
4855  // of constructor initialization, while copy elision for exception handlers
4856  // is handled by the run-time.
4857  bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4858  SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4859
4860  // Make sure that the type we are copying is complete.
4861  if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
4862    return CurInit;
4863
4864  // Perform overload resolution using the class's copy/move constructors.
4865  // Only consider constructors and constructor templates. Per
4866  // C++0x [dcl.init]p16, second bullet to class types, this initialization
4867  // is direct-initialization.
4868  OverloadCandidateSet CandidateSet(Loc);
4869  LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4870
4871  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4872
4873  OverloadCandidateSet::iterator Best;
4874  switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4875  case OR_Success:
4876    break;
4877
4878  case OR_No_Viable_Function:
4879    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4880           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4881           : diag::err_temp_copy_no_viable)
4882      << (int)Entity.getKind() << CurInitExpr->getType()
4883      << CurInitExpr->getSourceRange();
4884    CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4885    if (!IsExtraneousCopy || S.isSFINAEContext())
4886      return ExprError();
4887    return CurInit;
4888
4889  case OR_Ambiguous:
4890    S.Diag(Loc, diag::err_temp_copy_ambiguous)
4891      << (int)Entity.getKind() << CurInitExpr->getType()
4892      << CurInitExpr->getSourceRange();
4893    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4894    return ExprError();
4895
4896  case OR_Deleted:
4897    S.Diag(Loc, diag::err_temp_copy_deleted)
4898      << (int)Entity.getKind() << CurInitExpr->getType()
4899      << CurInitExpr->getSourceRange();
4900    S.NoteDeletedFunction(Best->Function);
4901    return ExprError();
4902  }
4903
4904  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4905  SmallVector<Expr*, 8> ConstructorArgs;
4906  CurInit.release(); // Ownership transferred into MultiExprArg, below.
4907
4908  S.CheckConstructorAccess(Loc, Constructor, Entity,
4909                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
4910
4911  if (IsExtraneousCopy) {
4912    // If this is a totally extraneous copy for C++03 reference
4913    // binding purposes, just return the original initialization
4914    // expression. We don't generate an (elided) copy operation here
4915    // because doing so would require us to pass down a flag to avoid
4916    // infinite recursion, where each step adds another extraneous,
4917    // elidable copy.
4918
4919    // Instantiate the default arguments of any extra parameters in
4920    // the selected copy constructor, as if we were going to create a
4921    // proper call to the copy constructor.
4922    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4923      ParmVarDecl *Parm = Constructor->getParamDecl(I);
4924      if (S.RequireCompleteType(Loc, Parm->getType(),
4925                                diag::err_call_incomplete_argument))
4926        break;
4927
4928      // Build the default argument expression; we don't actually care
4929      // if this succeeds or not, because this routine will complain
4930      // if there was a problem.
4931      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4932    }
4933
4934    return S.Owned(CurInitExpr);
4935  }
4936
4937  // Determine the arguments required to actually perform the
4938  // constructor call (we might have derived-to-base conversions, or
4939  // the copy constructor may have default arguments).
4940  if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
4941    return ExprError();
4942
4943  // Actually perform the constructor call.
4944  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4945                                    ConstructorArgs,
4946                                    HadMultipleCandidates,
4947                                    /*ListInit*/ false,
4948                                    /*ZeroInit*/ false,
4949                                    CXXConstructExpr::CK_Complete,
4950                                    SourceRange());
4951
4952  // If we're supposed to bind temporaries, do so.
4953  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4954    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4955  return CurInit;
4956}
4957
4958/// \brief Check whether elidable copy construction for binding a reference to
4959/// a temporary would have succeeded if we were building in C++98 mode, for
4960/// -Wc++98-compat.
4961static void CheckCXX98CompatAccessibleCopy(Sema &S,
4962                                           const InitializedEntity &Entity,
4963                                           Expr *CurInitExpr) {
4964  assert(S.getLangOpts().CPlusPlus11);
4965
4966  const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4967  if (!Record)
4968    return;
4969
4970  SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4971  if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4972        == DiagnosticsEngine::Ignored)
4973    return;
4974
4975  // Find constructors which would have been considered.
4976  OverloadCandidateSet CandidateSet(Loc);
4977  LookupCopyAndMoveConstructors(
4978      S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4979
4980  // Perform overload resolution.
4981  OverloadCandidateSet::iterator Best;
4982  OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4983
4984  PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4985    << OR << (int)Entity.getKind() << CurInitExpr->getType()
4986    << CurInitExpr->getSourceRange();
4987
4988  switch (OR) {
4989  case OR_Success:
4990    S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4991                             Entity, Best->FoundDecl.getAccess(), Diag);
4992    // FIXME: Check default arguments as far as that's possible.
4993    break;
4994
4995  case OR_No_Viable_Function:
4996    S.Diag(Loc, Diag);
4997    CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4998    break;
4999
5000  case OR_Ambiguous:
5001    S.Diag(Loc, Diag);
5002    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5003    break;
5004
5005  case OR_Deleted:
5006    S.Diag(Loc, Diag);
5007    S.NoteDeletedFunction(Best->Function);
5008    break;
5009  }
5010}
5011
5012void InitializationSequence::PrintInitLocationNote(Sema &S,
5013                                              const InitializedEntity &Entity) {
5014  if (Entity.isParameterKind() && Entity.getDecl()) {
5015    if (Entity.getDecl()->getLocation().isInvalid())
5016      return;
5017
5018    if (Entity.getDecl()->getDeclName())
5019      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5020        << Entity.getDecl()->getDeclName();
5021    else
5022      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5023  }
5024  else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5025           Entity.getMethodDecl())
5026    S.Diag(Entity.getMethodDecl()->getLocation(),
5027           diag::note_method_return_type_change)
5028      << Entity.getMethodDecl()->getDeclName();
5029}
5030
5031static bool isReferenceBinding(const InitializationSequence::Step &s) {
5032  return s.Kind == InitializationSequence::SK_BindReference ||
5033         s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
5034}
5035
5036/// Returns true if the parameters describe a constructor initialization of
5037/// an explicit temporary object, e.g. "Point(x, y)".
5038static bool isExplicitTemporary(const InitializedEntity &Entity,
5039                                const InitializationKind &Kind,
5040                                unsigned NumArgs) {
5041  switch (Entity.getKind()) {
5042  case InitializedEntity::EK_Temporary:
5043  case InitializedEntity::EK_CompoundLiteralInit:
5044  case InitializedEntity::EK_RelatedResult:
5045    break;
5046  default:
5047    return false;
5048  }
5049
5050  switch (Kind.getKind()) {
5051  case InitializationKind::IK_DirectList:
5052    return true;
5053  // FIXME: Hack to work around cast weirdness.
5054  case InitializationKind::IK_Direct:
5055  case InitializationKind::IK_Value:
5056    return NumArgs != 1;
5057  default:
5058    return false;
5059  }
5060}
5061
5062static ExprResult
5063PerformConstructorInitialization(Sema &S,
5064                                 const InitializedEntity &Entity,
5065                                 const InitializationKind &Kind,
5066                                 MultiExprArg Args,
5067                                 const InitializationSequence::Step& Step,
5068                                 bool &ConstructorInitRequiresZeroInit,
5069                                 bool IsListInitialization,
5070                                 SourceLocation LBraceLoc,
5071                                 SourceLocation RBraceLoc) {
5072  unsigned NumArgs = Args.size();
5073  CXXConstructorDecl *Constructor
5074    = cast<CXXConstructorDecl>(Step.Function.Function);
5075  bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5076
5077  // Build a call to the selected constructor.
5078  SmallVector<Expr*, 8> ConstructorArgs;
5079  SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5080                         ? Kind.getEqualLoc()
5081                         : Kind.getLocation();
5082
5083  if (Kind.getKind() == InitializationKind::IK_Default) {
5084    // Force even a trivial, implicit default constructor to be
5085    // semantically checked. We do this explicitly because we don't build
5086    // the definition for completely trivial constructors.
5087    assert(Constructor->getParent() && "No parent class for constructor.");
5088    if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5089        Constructor->isTrivial() && !Constructor->isUsed(false))
5090      S.DefineImplicitDefaultConstructor(Loc, Constructor);
5091  }
5092
5093  ExprResult CurInit = S.Owned((Expr *)0);
5094
5095  // C++ [over.match.copy]p1:
5096  //   - When initializing a temporary to be bound to the first parameter
5097  //     of a constructor that takes a reference to possibly cv-qualified
5098  //     T as its first argument, called with a single argument in the
5099  //     context of direct-initialization, explicit conversion functions
5100  //     are also considered.
5101  bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
5102                           Args.size() == 1 &&
5103                           Constructor->isCopyOrMoveConstructor();
5104
5105  // Determine the arguments required to actually perform the constructor
5106  // call.
5107  if (S.CompleteConstructorCall(Constructor, Args,
5108                                Loc, ConstructorArgs,
5109                                AllowExplicitConv,
5110                                IsListInitialization))
5111    return ExprError();
5112
5113
5114  if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5115    // An explicitly-constructed temporary, e.g., X(1, 2).
5116    S.MarkFunctionReferenced(Loc, Constructor);
5117    if (S.DiagnoseUseOfDecl(Constructor, Loc))
5118      return ExprError();
5119
5120    TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5121    if (!TSInfo)
5122      TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5123    SourceRange ParenOrBraceRange =
5124      (Kind.getKind() == InitializationKind::IK_DirectList)
5125      ? SourceRange(LBraceLoc, RBraceLoc)
5126      : Kind.getParenRange();
5127
5128    CurInit = S.Owned(
5129      new (S.Context) CXXTemporaryObjectExpr(S.Context, Constructor,
5130                                             TSInfo, ConstructorArgs,
5131                                             ParenOrBraceRange,
5132                                             IsListInitialization,
5133                                             HadMultipleCandidates,
5134                                             ConstructorInitRequiresZeroInit));
5135  } else {
5136    CXXConstructExpr::ConstructionKind ConstructKind =
5137      CXXConstructExpr::CK_Complete;
5138
5139    if (Entity.getKind() == InitializedEntity::EK_Base) {
5140      ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5141        CXXConstructExpr::CK_VirtualBase :
5142        CXXConstructExpr::CK_NonVirtualBase;
5143    } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5144      ConstructKind = CXXConstructExpr::CK_Delegating;
5145    }
5146
5147    // Only get the parenthesis range if it is a direct construction.
5148    SourceRange parenRange =
5149        Kind.getKind() == InitializationKind::IK_Direct ?
5150        Kind.getParenRange() : SourceRange();
5151
5152    // If the entity allows NRVO, mark the construction as elidable
5153    // unconditionally.
5154    if (Entity.allowsNRVO())
5155      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5156                                        Constructor, /*Elidable=*/true,
5157                                        ConstructorArgs,
5158                                        HadMultipleCandidates,
5159                                        IsListInitialization,
5160                                        ConstructorInitRequiresZeroInit,
5161                                        ConstructKind,
5162                                        parenRange);
5163    else
5164      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5165                                        Constructor,
5166                                        ConstructorArgs,
5167                                        HadMultipleCandidates,
5168                                        IsListInitialization,
5169                                        ConstructorInitRequiresZeroInit,
5170                                        ConstructKind,
5171                                        parenRange);
5172  }
5173  if (CurInit.isInvalid())
5174    return ExprError();
5175
5176  // Only check access if all of that succeeded.
5177  S.CheckConstructorAccess(Loc, Constructor, Entity,
5178                           Step.Function.FoundDecl.getAccess());
5179  if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5180    return ExprError();
5181
5182  if (shouldBindAsTemporary(Entity))
5183    CurInit = S.MaybeBindToTemporary(CurInit.take());
5184
5185  return CurInit;
5186}
5187
5188/// Determine whether the specified InitializedEntity definitely has a lifetime
5189/// longer than the current full-expression. Conservatively returns false if
5190/// it's unclear.
5191static bool
5192InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5193  const InitializedEntity *Top = &Entity;
5194  while (Top->getParent())
5195    Top = Top->getParent();
5196
5197  switch (Top->getKind()) {
5198  case InitializedEntity::EK_Variable:
5199  case InitializedEntity::EK_Result:
5200  case InitializedEntity::EK_Exception:
5201  case InitializedEntity::EK_Member:
5202  case InitializedEntity::EK_New:
5203  case InitializedEntity::EK_Base:
5204  case InitializedEntity::EK_Delegating:
5205    return true;
5206
5207  case InitializedEntity::EK_ArrayElement:
5208  case InitializedEntity::EK_VectorElement:
5209  case InitializedEntity::EK_BlockElement:
5210  case InitializedEntity::EK_ComplexElement:
5211    // Could not determine what the full initialization is. Assume it might not
5212    // outlive the full-expression.
5213    return false;
5214
5215  case InitializedEntity::EK_Parameter:
5216  case InitializedEntity::EK_Parameter_CF_Audited:
5217  case InitializedEntity::EK_Temporary:
5218  case InitializedEntity::EK_LambdaCapture:
5219  case InitializedEntity::EK_CompoundLiteralInit:
5220  case InitializedEntity::EK_RelatedResult:
5221    // The entity being initialized might not outlive the full-expression.
5222    return false;
5223  }
5224
5225  llvm_unreachable("unknown entity kind");
5226}
5227
5228/// Determine the declaration which an initialized entity ultimately refers to,
5229/// for the purpose of lifetime-extending a temporary bound to a reference in
5230/// the initialization of \p Entity.
5231static const ValueDecl *
5232getDeclForTemporaryLifetimeExtension(const InitializedEntity &Entity,
5233                                     const ValueDecl *FallbackDecl = 0) {
5234  // C++11 [class.temporary]p5:
5235  switch (Entity.getKind()) {
5236  case InitializedEntity::EK_Variable:
5237    //   The temporary [...] persists for the lifetime of the reference
5238    return Entity.getDecl();
5239
5240  case InitializedEntity::EK_Member:
5241    // For subobjects, we look at the complete object.
5242    if (Entity.getParent())
5243      return getDeclForTemporaryLifetimeExtension(*Entity.getParent(),
5244                                                  Entity.getDecl());
5245
5246    //   except:
5247    //   -- A temporary bound to a reference member in a constructor's
5248    //      ctor-initializer persists until the constructor exits.
5249    return Entity.getDecl();
5250
5251  case InitializedEntity::EK_Parameter:
5252  case InitializedEntity::EK_Parameter_CF_Audited:
5253    //   -- A temporary bound to a reference parameter in a function call
5254    //      persists until the completion of the full-expression containing
5255    //      the call.
5256  case InitializedEntity::EK_Result:
5257    //   -- The lifetime of a temporary bound to the returned value in a
5258    //      function return statement is not extended; the temporary is
5259    //      destroyed at the end of the full-expression in the return statement.
5260  case InitializedEntity::EK_New:
5261    //   -- A temporary bound to a reference in a new-initializer persists
5262    //      until the completion of the full-expression containing the
5263    //      new-initializer.
5264    return 0;
5265
5266  case InitializedEntity::EK_Temporary:
5267  case InitializedEntity::EK_CompoundLiteralInit:
5268  case InitializedEntity::EK_RelatedResult:
5269    // We don't yet know the storage duration of the surrounding temporary.
5270    // Assume it's got full-expression duration for now, it will patch up our
5271    // storage duration if that's not correct.
5272    return 0;
5273
5274  case InitializedEntity::EK_ArrayElement:
5275    // For subobjects, we look at the complete object.
5276    return getDeclForTemporaryLifetimeExtension(*Entity.getParent(),
5277                                                FallbackDecl);
5278
5279  case InitializedEntity::EK_Base:
5280  case InitializedEntity::EK_Delegating:
5281    // We can reach this case for aggregate initialization in a constructor:
5282    //   struct A { int &&r; };
5283    //   struct B : A { B() : A{0} {} };
5284    // In this case, use the innermost field decl as the context.
5285    return FallbackDecl;
5286
5287  case InitializedEntity::EK_BlockElement:
5288  case InitializedEntity::EK_LambdaCapture:
5289  case InitializedEntity::EK_Exception:
5290  case InitializedEntity::EK_VectorElement:
5291  case InitializedEntity::EK_ComplexElement:
5292    return 0;
5293  }
5294  llvm_unreachable("unknown entity kind");
5295}
5296
5297static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD);
5298
5299/// Update a glvalue expression that is used as the initializer of a reference
5300/// to note that its lifetime is extended.
5301/// \return \c true if any temporary had its lifetime extended.
5302static bool performReferenceExtension(Expr *Init, const ValueDecl *ExtendingD) {
5303  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5304    if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
5305      // This is just redundant braces around an initializer. Step over it.
5306      Init = ILE->getInit(0);
5307    }
5308  }
5309
5310  // Walk past any constructs which we can lifetime-extend across.
5311  Expr *Old;
5312  do {
5313    Old = Init;
5314
5315    // Step over any subobject adjustments; we may have a materialized
5316    // temporary inside them.
5317    SmallVector<const Expr *, 2> CommaLHSs;
5318    SmallVector<SubobjectAdjustment, 2> Adjustments;
5319    Init = const_cast<Expr *>(
5320        Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5321
5322    // Per current approach for DR1376, look through casts to reference type
5323    // when performing lifetime extension.
5324    if (CastExpr *CE = dyn_cast<CastExpr>(Init))
5325      if (CE->getSubExpr()->isGLValue())
5326        Init = CE->getSubExpr();
5327
5328    // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue.
5329    // It's unclear if binding a reference to that xvalue extends the array
5330    // temporary.
5331  } while (Init != Old);
5332
5333  if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
5334    // Update the storage duration of the materialized temporary.
5335    // FIXME: Rebuild the expression instead of mutating it.
5336    ME->setExtendingDecl(ExtendingD);
5337    performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingD);
5338    return true;
5339  }
5340
5341  return false;
5342}
5343
5344/// Update a prvalue expression that is going to be materialized as a
5345/// lifetime-extended temporary.
5346static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD) {
5347  // Dig out the expression which constructs the extended temporary.
5348  SmallVector<const Expr *, 2> CommaLHSs;
5349  SmallVector<SubobjectAdjustment, 2> Adjustments;
5350  Init = const_cast<Expr *>(
5351      Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5352
5353  if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
5354    Init = BTE->getSubExpr();
5355
5356  if (CXXStdInitializerListExpr *ILE =
5357          dyn_cast<CXXStdInitializerListExpr>(Init)) {
5358    performReferenceExtension(ILE->getSubExpr(), ExtendingD);
5359    return;
5360  }
5361
5362  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5363    if (ILE->getType()->isArrayType()) {
5364      for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
5365        performLifetimeExtension(ILE->getInit(I), ExtendingD);
5366      return;
5367    }
5368
5369    if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
5370      assert(RD->isAggregate() && "aggregate init on non-aggregate");
5371
5372      // If we lifetime-extend a braced initializer which is initializing an
5373      // aggregate, and that aggregate contains reference members which are
5374      // bound to temporaries, those temporaries are also lifetime-extended.
5375      if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
5376          ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
5377        performReferenceExtension(ILE->getInit(0), ExtendingD);
5378      else {
5379        unsigned Index = 0;
5380        for (RecordDecl::field_iterator I = RD->field_begin(),
5381                                        E = RD->field_end();
5382             I != E; ++I) {
5383          if (Index >= ILE->getNumInits())
5384            break;
5385          if (I->isUnnamedBitfield())
5386            continue;
5387          Expr *SubInit = ILE->getInit(Index);
5388          if (I->getType()->isReferenceType())
5389            performReferenceExtension(SubInit, ExtendingD);
5390          else if (isa<InitListExpr>(SubInit) ||
5391                   isa<CXXStdInitializerListExpr>(SubInit))
5392            // This may be either aggregate-initialization of a member or
5393            // initialization of a std::initializer_list object. Either way,
5394            // we should recursively lifetime-extend that initializer.
5395            performLifetimeExtension(SubInit, ExtendingD);
5396          ++Index;
5397        }
5398      }
5399    }
5400  }
5401}
5402
5403static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
5404                                    const Expr *Init, bool IsInitializerList,
5405                                    const ValueDecl *ExtendingDecl) {
5406  // Warn if a field lifetime-extends a temporary.
5407  if (isa<FieldDecl>(ExtendingDecl)) {
5408    if (IsInitializerList) {
5409      S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
5410        << /*at end of constructor*/true;
5411      return;
5412    }
5413
5414    bool IsSubobjectMember = false;
5415    for (const InitializedEntity *Ent = Entity.getParent(); Ent;
5416         Ent = Ent->getParent()) {
5417      if (Ent->getKind() != InitializedEntity::EK_Base) {
5418        IsSubobjectMember = true;
5419        break;
5420      }
5421    }
5422    S.Diag(Init->getExprLoc(),
5423           diag::warn_bind_ref_member_to_temporary)
5424      << ExtendingDecl << Init->getSourceRange()
5425      << IsSubobjectMember << IsInitializerList;
5426    if (IsSubobjectMember)
5427      S.Diag(ExtendingDecl->getLocation(),
5428             diag::note_ref_subobject_of_member_declared_here);
5429    else
5430      S.Diag(ExtendingDecl->getLocation(),
5431             diag::note_ref_or_ptr_member_declared_here)
5432        << /*is pointer*/false;
5433  }
5434}
5435
5436ExprResult
5437InitializationSequence::Perform(Sema &S,
5438                                const InitializedEntity &Entity,
5439                                const InitializationKind &Kind,
5440                                MultiExprArg Args,
5441                                QualType *ResultType) {
5442  if (Failed()) {
5443    Diagnose(S, Entity, Kind, Args);
5444    return ExprError();
5445  }
5446
5447  if (getKind() == DependentSequence) {
5448    // If the declaration is a non-dependent, incomplete array type
5449    // that has an initializer, then its type will be completed once
5450    // the initializer is instantiated.
5451    if (ResultType && !Entity.getType()->isDependentType() &&
5452        Args.size() == 1) {
5453      QualType DeclType = Entity.getType();
5454      if (const IncompleteArrayType *ArrayT
5455                           = S.Context.getAsIncompleteArrayType(DeclType)) {
5456        // FIXME: We don't currently have the ability to accurately
5457        // compute the length of an initializer list without
5458        // performing full type-checking of the initializer list
5459        // (since we have to determine where braces are implicitly
5460        // introduced and such).  So, we fall back to making the array
5461        // type a dependently-sized array type with no specified
5462        // bound.
5463        if (isa<InitListExpr>((Expr *)Args[0])) {
5464          SourceRange Brackets;
5465
5466          // Scavange the location of the brackets from the entity, if we can.
5467          if (DeclaratorDecl *DD = Entity.getDecl()) {
5468            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
5469              TypeLoc TL = TInfo->getTypeLoc();
5470              if (IncompleteArrayTypeLoc ArrayLoc =
5471                      TL.getAs<IncompleteArrayTypeLoc>())
5472                Brackets = ArrayLoc.getBracketsRange();
5473            }
5474          }
5475
5476          *ResultType
5477            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
5478                                                   /*NumElts=*/0,
5479                                                   ArrayT->getSizeModifier(),
5480                                       ArrayT->getIndexTypeCVRQualifiers(),
5481                                                   Brackets);
5482        }
5483
5484      }
5485    }
5486    if (Kind.getKind() == InitializationKind::IK_Direct &&
5487        !Kind.isExplicitCast()) {
5488      // Rebuild the ParenListExpr.
5489      SourceRange ParenRange = Kind.getParenRange();
5490      return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
5491                                  Args);
5492    }
5493    assert(Kind.getKind() == InitializationKind::IK_Copy ||
5494           Kind.isExplicitCast() ||
5495           Kind.getKind() == InitializationKind::IK_DirectList);
5496    return ExprResult(Args[0]);
5497  }
5498
5499  // No steps means no initialization.
5500  if (Steps.empty())
5501    return S.Owned((Expr *)0);
5502
5503  if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
5504      Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
5505      !Entity.isParameterKind()) {
5506    // Produce a C++98 compatibility warning if we are initializing a reference
5507    // from an initializer list. For parameters, we produce a better warning
5508    // elsewhere.
5509    Expr *Init = Args[0];
5510    S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
5511      << Init->getSourceRange();
5512  }
5513
5514  // Diagnose cases where we initialize a pointer to an array temporary, and the
5515  // pointer obviously outlives the temporary.
5516  if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
5517      Entity.getType()->isPointerType() &&
5518      InitializedEntityOutlivesFullExpression(Entity)) {
5519    Expr *Init = Args[0];
5520    Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
5521    if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
5522      S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
5523        << Init->getSourceRange();
5524  }
5525
5526  QualType DestType = Entity.getType().getNonReferenceType();
5527  // FIXME: Ugly hack around the fact that Entity.getType() is not
5528  // the same as Entity.getDecl()->getType() in cases involving type merging,
5529  //  and we want latter when it makes sense.
5530  if (ResultType)
5531    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
5532                                     Entity.getType();
5533
5534  ExprResult CurInit = S.Owned((Expr *)0);
5535
5536  // For initialization steps that start with a single initializer,
5537  // grab the only argument out the Args and place it into the "current"
5538  // initializer.
5539  switch (Steps.front().Kind) {
5540  case SK_ResolveAddressOfOverloadedFunction:
5541  case SK_CastDerivedToBaseRValue:
5542  case SK_CastDerivedToBaseXValue:
5543  case SK_CastDerivedToBaseLValue:
5544  case SK_BindReference:
5545  case SK_BindReferenceToTemporary:
5546  case SK_ExtraneousCopyToTemporary:
5547  case SK_UserConversion:
5548  case SK_QualificationConversionLValue:
5549  case SK_QualificationConversionXValue:
5550  case SK_QualificationConversionRValue:
5551  case SK_LValueToRValue:
5552  case SK_ConversionSequence:
5553  case SK_ListInitialization:
5554  case SK_UnwrapInitList:
5555  case SK_RewrapInitList:
5556  case SK_CAssignment:
5557  case SK_StringInit:
5558  case SK_ObjCObjectConversion:
5559  case SK_ArrayInit:
5560  case SK_ParenthesizedArrayInit:
5561  case SK_PassByIndirectCopyRestore:
5562  case SK_PassByIndirectRestore:
5563  case SK_ProduceObjCObject:
5564  case SK_StdInitializerList:
5565  case SK_OCLSamplerInit:
5566  case SK_OCLZeroEvent: {
5567    assert(Args.size() == 1);
5568    CurInit = Args[0];
5569    if (!CurInit.get()) return ExprError();
5570    break;
5571  }
5572
5573  case SK_ConstructorInitialization:
5574  case SK_ListConstructorCall:
5575  case SK_ZeroInitialization:
5576    break;
5577  }
5578
5579  // Walk through the computed steps for the initialization sequence,
5580  // performing the specified conversions along the way.
5581  bool ConstructorInitRequiresZeroInit = false;
5582  for (step_iterator Step = step_begin(), StepEnd = step_end();
5583       Step != StepEnd; ++Step) {
5584    if (CurInit.isInvalid())
5585      return ExprError();
5586
5587    QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
5588
5589    switch (Step->Kind) {
5590    case SK_ResolveAddressOfOverloadedFunction:
5591      // Overload resolution determined which function invoke; update the
5592      // initializer to reflect that choice.
5593      S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
5594      if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
5595        return ExprError();
5596      CurInit = S.FixOverloadedFunctionReference(CurInit,
5597                                                 Step->Function.FoundDecl,
5598                                                 Step->Function.Function);
5599      break;
5600
5601    case SK_CastDerivedToBaseRValue:
5602    case SK_CastDerivedToBaseXValue:
5603    case SK_CastDerivedToBaseLValue: {
5604      // We have a derived-to-base cast that produces either an rvalue or an
5605      // lvalue. Perform that cast.
5606
5607      CXXCastPath BasePath;
5608
5609      // Casts to inaccessible base classes are allowed with C-style casts.
5610      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
5611      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
5612                                         CurInit.get()->getLocStart(),
5613                                         CurInit.get()->getSourceRange(),
5614                                         &BasePath, IgnoreBaseAccess))
5615        return ExprError();
5616
5617      if (S.BasePathInvolvesVirtualBase(BasePath)) {
5618        QualType T = SourceType;
5619        if (const PointerType *Pointer = T->getAs<PointerType>())
5620          T = Pointer->getPointeeType();
5621        if (const RecordType *RecordTy = T->getAs<RecordType>())
5622          S.MarkVTableUsed(CurInit.get()->getLocStart(),
5623                           cast<CXXRecordDecl>(RecordTy->getDecl()));
5624      }
5625
5626      ExprValueKind VK =
5627          Step->Kind == SK_CastDerivedToBaseLValue ?
5628              VK_LValue :
5629              (Step->Kind == SK_CastDerivedToBaseXValue ?
5630                   VK_XValue :
5631                   VK_RValue);
5632      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5633                                                 Step->Type,
5634                                                 CK_DerivedToBase,
5635                                                 CurInit.get(),
5636                                                 &BasePath, VK));
5637      break;
5638    }
5639
5640    case SK_BindReference:
5641      // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
5642      if (CurInit.get()->refersToBitField()) {
5643        // We don't necessarily have an unambiguous source bit-field.
5644        FieldDecl *BitField = CurInit.get()->getSourceBitField();
5645        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
5646          << Entity.getType().isVolatileQualified()
5647          << (BitField ? BitField->getDeclName() : DeclarationName())
5648          << (BitField != NULL)
5649          << CurInit.get()->getSourceRange();
5650        if (BitField)
5651          S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
5652
5653        return ExprError();
5654      }
5655
5656      if (CurInit.get()->refersToVectorElement()) {
5657        // References cannot bind to vector elements.
5658        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
5659          << Entity.getType().isVolatileQualified()
5660          << CurInit.get()->getSourceRange();
5661        PrintInitLocationNote(S, Entity);
5662        return ExprError();
5663      }
5664
5665      // Reference binding does not have any corresponding ASTs.
5666
5667      // Check exception specifications
5668      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5669        return ExprError();
5670
5671      // Even though we didn't materialize a temporary, the binding may still
5672      // extend the lifetime of a temporary. This happens if we bind a reference
5673      // to the result of a cast to reference type.
5674      if (const ValueDecl *ExtendingDecl =
5675              getDeclForTemporaryLifetimeExtension(Entity)) {
5676        if (performReferenceExtension(CurInit.get(), ExtendingDecl))
5677          warnOnLifetimeExtension(S, Entity, CurInit.get(), false,
5678                                  ExtendingDecl);
5679      }
5680
5681      break;
5682
5683    case SK_BindReferenceToTemporary: {
5684      // Make sure the "temporary" is actually an rvalue.
5685      assert(CurInit.get()->isRValue() && "not a temporary");
5686
5687      // Check exception specifications
5688      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5689        return ExprError();
5690
5691      // Maybe lifetime-extend the temporary's subobjects to match the
5692      // entity's lifetime.
5693      const ValueDecl *ExtendingDecl =
5694          getDeclForTemporaryLifetimeExtension(Entity);
5695      if (ExtendingDecl) {
5696        performLifetimeExtension(CurInit.get(), ExtendingDecl);
5697        warnOnLifetimeExtension(S, Entity, CurInit.get(), false, ExtendingDecl);
5698      }
5699
5700      // Materialize the temporary into memory.
5701      MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr(
5702          Entity.getType().getNonReferenceType(), CurInit.get(),
5703          Entity.getType()->isLValueReferenceType(), ExtendingDecl);
5704
5705      // If we're binding to an Objective-C object that has lifetime, we
5706      // need cleanups. Likewise if we're extending this temporary to automatic
5707      // storage duration -- we need to register its cleanup during the
5708      // full-expression's cleanups.
5709      if ((S.getLangOpts().ObjCAutoRefCount &&
5710           MTE->getType()->isObjCLifetimeType()) ||
5711          (MTE->getStorageDuration() == SD_Automatic &&
5712           MTE->getType().isDestructedType()))
5713        S.ExprNeedsCleanups = true;
5714
5715      CurInit = S.Owned(MTE);
5716      break;
5717    }
5718
5719    case SK_ExtraneousCopyToTemporary:
5720      CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5721                           /*IsExtraneousCopy=*/true);
5722      break;
5723
5724    case SK_UserConversion: {
5725      // We have a user-defined conversion that invokes either a constructor
5726      // or a conversion function.
5727      CastKind CastKind;
5728      bool IsCopy = false;
5729      FunctionDecl *Fn = Step->Function.Function;
5730      DeclAccessPair FoundFn = Step->Function.FoundDecl;
5731      bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5732      bool CreatedObject = false;
5733      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5734        // Build a call to the selected constructor.
5735        SmallVector<Expr*, 8> ConstructorArgs;
5736        SourceLocation Loc = CurInit.get()->getLocStart();
5737        CurInit.release(); // Ownership transferred into MultiExprArg, below.
5738
5739        // Determine the arguments required to actually perform the constructor
5740        // call.
5741        Expr *Arg = CurInit.get();
5742        if (S.CompleteConstructorCall(Constructor,
5743                                      MultiExprArg(&Arg, 1),
5744                                      Loc, ConstructorArgs))
5745          return ExprError();
5746
5747        // Build an expression that constructs a temporary.
5748        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5749                                          ConstructorArgs,
5750                                          HadMultipleCandidates,
5751                                          /*ListInit*/ false,
5752                                          /*ZeroInit*/ false,
5753                                          CXXConstructExpr::CK_Complete,
5754                                          SourceRange());
5755        if (CurInit.isInvalid())
5756          return ExprError();
5757
5758        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5759                                 FoundFn.getAccess());
5760        if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5761          return ExprError();
5762
5763        CastKind = CK_ConstructorConversion;
5764        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5765        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5766            S.IsDerivedFrom(SourceType, Class))
5767          IsCopy = true;
5768
5769        CreatedObject = true;
5770      } else {
5771        // Build a call to the conversion function.
5772        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5773        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5774                                    FoundFn);
5775        if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5776          return ExprError();
5777
5778        // FIXME: Should we move this initialization into a separate
5779        // derived-to-base conversion? I believe the answer is "no", because
5780        // we don't want to turn off access control here for c-style casts.
5781        ExprResult CurInitExprRes =
5782          S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5783                                                FoundFn, Conversion);
5784        if(CurInitExprRes.isInvalid())
5785          return ExprError();
5786        CurInit = CurInitExprRes;
5787
5788        // Build the actual call to the conversion function.
5789        CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5790                                           HadMultipleCandidates);
5791        if (CurInit.isInvalid() || !CurInit.get())
5792          return ExprError();
5793
5794        CastKind = CK_UserDefinedConversion;
5795
5796        CreatedObject = Conversion->getResultType()->isRecordType();
5797      }
5798
5799      bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5800      bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5801
5802      if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5803        QualType T = CurInit.get()->getType();
5804        if (const RecordType *Record = T->getAs<RecordType>()) {
5805          CXXDestructorDecl *Destructor
5806            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5807          S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5808                                  S.PDiag(diag::err_access_dtor_temp) << T);
5809          S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5810          if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
5811            return ExprError();
5812        }
5813      }
5814
5815      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5816                                                 CurInit.get()->getType(),
5817                                                 CastKind, CurInit.get(), 0,
5818                                                CurInit.get()->getValueKind()));
5819      if (MaybeBindToTemp)
5820        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5821      if (RequiresCopy)
5822        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5823                             CurInit, /*IsExtraneousCopy=*/false);
5824      break;
5825    }
5826
5827    case SK_QualificationConversionLValue:
5828    case SK_QualificationConversionXValue:
5829    case SK_QualificationConversionRValue: {
5830      // Perform a qualification conversion; these can never go wrong.
5831      ExprValueKind VK =
5832          Step->Kind == SK_QualificationConversionLValue ?
5833              VK_LValue :
5834              (Step->Kind == SK_QualificationConversionXValue ?
5835                   VK_XValue :
5836                   VK_RValue);
5837      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5838      break;
5839    }
5840
5841    case SK_LValueToRValue: {
5842      assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
5843      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5844                                                 CK_LValueToRValue,
5845                                                 CurInit.take(),
5846                                                 /*BasePath=*/0,
5847                                                 VK_RValue));
5848      break;
5849    }
5850
5851    case SK_ConversionSequence: {
5852      Sema::CheckedConversionKind CCK
5853        = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5854        : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5855        : Kind.isExplicitCast()? Sema::CCK_OtherCast
5856        : Sema::CCK_ImplicitConversion;
5857      ExprResult CurInitExprRes =
5858        S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5859                                    getAssignmentAction(Entity), CCK);
5860      if (CurInitExprRes.isInvalid())
5861        return ExprError();
5862      CurInit = CurInitExprRes;
5863      break;
5864    }
5865
5866    case SK_ListInitialization: {
5867      InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5868      // If we're not initializing the top-level entity, we need to create an
5869      // InitializeTemporary entity for our target type.
5870      QualType Ty = Step->Type;
5871      bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
5872      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5873      InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
5874      InitListChecker PerformInitList(S, InitEntity,
5875          InitList, Ty, /*VerifyOnly=*/false);
5876      if (PerformInitList.HadError())
5877        return ExprError();
5878
5879      // Hack: We must update *ResultType if available in order to set the
5880      // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5881      // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5882      if (ResultType &&
5883          ResultType->getNonReferenceType()->isIncompleteArrayType()) {
5884        if ((*ResultType)->isRValueReferenceType())
5885          Ty = S.Context.getRValueReferenceType(Ty);
5886        else if ((*ResultType)->isLValueReferenceType())
5887          Ty = S.Context.getLValueReferenceType(Ty,
5888            (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5889        *ResultType = Ty;
5890      }
5891
5892      InitListExpr *StructuredInitList =
5893          PerformInitList.getFullyStructuredList();
5894      CurInit.release();
5895      CurInit = shouldBindAsTemporary(InitEntity)
5896          ? S.MaybeBindToTemporary(StructuredInitList)
5897          : S.Owned(StructuredInitList);
5898      break;
5899    }
5900
5901    case SK_ListConstructorCall: {
5902      // When an initializer list is passed for a parameter of type "reference
5903      // to object", we don't get an EK_Temporary entity, but instead an
5904      // EK_Parameter entity with reference type.
5905      // FIXME: This is a hack. What we really should do is create a user
5906      // conversion step for this case, but this makes it considerably more
5907      // complicated. For now, this will do.
5908      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5909                                        Entity.getType().getNonReferenceType());
5910      bool UseTemporary = Entity.getType()->isReferenceType();
5911      assert(Args.size() == 1 && "expected a single argument for list init");
5912      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5913      S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
5914        << InitList->getSourceRange();
5915      MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5916      CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
5917                                                                   Entity,
5918                                                 Kind, Arg, *Step,
5919                                               ConstructorInitRequiresZeroInit,
5920                                               /*IsListInitialization*/ true,
5921                                               InitList->getLBraceLoc(),
5922                                               InitList->getRBraceLoc());
5923      break;
5924    }
5925
5926    case SK_UnwrapInitList:
5927      CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5928      break;
5929
5930    case SK_RewrapInitList: {
5931      Expr *E = CurInit.take();
5932      InitListExpr *Syntactic = Step->WrappingSyntacticList;
5933      InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5934          Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
5935      ILE->setSyntacticForm(Syntactic);
5936      ILE->setType(E->getType());
5937      ILE->setValueKind(E->getValueKind());
5938      CurInit = S.Owned(ILE);
5939      break;
5940    }
5941
5942    case SK_ConstructorInitialization: {
5943      // When an initializer list is passed for a parameter of type "reference
5944      // to object", we don't get an EK_Temporary entity, but instead an
5945      // EK_Parameter entity with reference type.
5946      // FIXME: This is a hack. What we really should do is create a user
5947      // conversion step for this case, but this makes it considerably more
5948      // complicated. For now, this will do.
5949      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5950                                        Entity.getType().getNonReferenceType());
5951      bool UseTemporary = Entity.getType()->isReferenceType();
5952      CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
5953                                                                 : Entity,
5954                                                 Kind, Args, *Step,
5955                                               ConstructorInitRequiresZeroInit,
5956                                               /*IsListInitialization*/ false,
5957                                               /*LBraceLoc*/ SourceLocation(),
5958                                               /*RBraceLoc*/ SourceLocation());
5959      break;
5960    }
5961
5962    case SK_ZeroInitialization: {
5963      step_iterator NextStep = Step;
5964      ++NextStep;
5965      if (NextStep != StepEnd &&
5966          (NextStep->Kind == SK_ConstructorInitialization ||
5967           NextStep->Kind == SK_ListConstructorCall)) {
5968        // The need for zero-initialization is recorded directly into
5969        // the call to the object's constructor within the next step.
5970        ConstructorInitRequiresZeroInit = true;
5971      } else if (Kind.getKind() == InitializationKind::IK_Value &&
5972                 S.getLangOpts().CPlusPlus &&
5973                 !Kind.isImplicitValueInit()) {
5974        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5975        if (!TSInfo)
5976          TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5977                                                    Kind.getRange().getBegin());
5978
5979        CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5980                              TSInfo->getType().getNonLValueExprType(S.Context),
5981                                                                 TSInfo,
5982                                                    Kind.getRange().getEnd()));
5983      } else {
5984        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5985      }
5986      break;
5987    }
5988
5989    case SK_CAssignment: {
5990      QualType SourceType = CurInit.get()->getType();
5991      ExprResult Result = CurInit;
5992      Sema::AssignConvertType ConvTy =
5993        S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
5994            Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
5995      if (Result.isInvalid())
5996        return ExprError();
5997      CurInit = Result;
5998
5999      // If this is a call, allow conversion to a transparent union.
6000      ExprResult CurInitExprRes = CurInit;
6001      if (ConvTy != Sema::Compatible &&
6002          Entity.isParameterKind() &&
6003          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
6004            == Sema::Compatible)
6005        ConvTy = Sema::Compatible;
6006      if (CurInitExprRes.isInvalid())
6007        return ExprError();
6008      CurInit = CurInitExprRes;
6009
6010      bool Complained;
6011      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
6012                                     Step->Type, SourceType,
6013                                     CurInit.get(),
6014                                     getAssignmentAction(Entity, true),
6015                                     &Complained)) {
6016        PrintInitLocationNote(S, Entity);
6017        return ExprError();
6018      } else if (Complained)
6019        PrintInitLocationNote(S, Entity);
6020      break;
6021    }
6022
6023    case SK_StringInit: {
6024      QualType Ty = Step->Type;
6025      CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
6026                      S.Context.getAsArrayType(Ty), S);
6027      break;
6028    }
6029
6030    case SK_ObjCObjectConversion:
6031      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
6032                          CK_ObjCObjectLValueCast,
6033                          CurInit.get()->getValueKind());
6034      break;
6035
6036    case SK_ArrayInit:
6037      // Okay: we checked everything before creating this step. Note that
6038      // this is a GNU extension.
6039      S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
6040        << Step->Type << CurInit.get()->getType()
6041        << CurInit.get()->getSourceRange();
6042
6043      // If the destination type is an incomplete array type, update the
6044      // type accordingly.
6045      if (ResultType) {
6046        if (const IncompleteArrayType *IncompleteDest
6047                           = S.Context.getAsIncompleteArrayType(Step->Type)) {
6048          if (const ConstantArrayType *ConstantSource
6049                 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
6050            *ResultType = S.Context.getConstantArrayType(
6051                                             IncompleteDest->getElementType(),
6052                                             ConstantSource->getSize(),
6053                                             ArrayType::Normal, 0);
6054          }
6055        }
6056      }
6057      break;
6058
6059    case SK_ParenthesizedArrayInit:
6060      // Okay: we checked everything before creating this step. Note that
6061      // this is a GNU extension.
6062      S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
6063        << CurInit.get()->getSourceRange();
6064      break;
6065
6066    case SK_PassByIndirectCopyRestore:
6067    case SK_PassByIndirectRestore:
6068      checkIndirectCopyRestoreSource(S, CurInit.get());
6069      CurInit = S.Owned(new (S.Context)
6070                        ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
6071                                Step->Kind == SK_PassByIndirectCopyRestore));
6072      break;
6073
6074    case SK_ProduceObjCObject:
6075      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
6076                                                 CK_ARCProduceObject,
6077                                                 CurInit.take(), 0, VK_RValue));
6078      break;
6079
6080    case SK_StdInitializerList: {
6081      S.Diag(CurInit.get()->getExprLoc(),
6082             diag::warn_cxx98_compat_initializer_list_init)
6083        << CurInit.get()->getSourceRange();
6084
6085      // Maybe lifetime-extend the array temporary's subobjects to match the
6086      // entity's lifetime.
6087      const ValueDecl *ExtendingDecl =
6088          getDeclForTemporaryLifetimeExtension(Entity);
6089      if (ExtendingDecl) {
6090        performLifetimeExtension(CurInit.get(), ExtendingDecl);
6091        warnOnLifetimeExtension(S, Entity, CurInit.get(), true, ExtendingDecl);
6092      }
6093
6094      // Materialize the temporary into memory.
6095      MaterializeTemporaryExpr *MTE = new (S.Context)
6096          MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(),
6097                                   /*lvalue reference*/ false, ExtendingDecl);
6098
6099      // Wrap it in a construction of a std::initializer_list<T>.
6100      CurInit = S.Owned(
6101          new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE));
6102
6103      // Bind the result, in case the library has given initializer_list a
6104      // non-trivial destructor.
6105      if (shouldBindAsTemporary(Entity))
6106        CurInit = S.MaybeBindToTemporary(CurInit.take());
6107      break;
6108    }
6109
6110    case SK_OCLSamplerInit: {
6111      assert(Step->Type->isSamplerT() &&
6112             "Sampler initialization on non sampler type.");
6113
6114      QualType SourceType = CurInit.get()->getType();
6115
6116      if (Entity.isParameterKind()) {
6117        if (!SourceType->isSamplerT())
6118          S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
6119            << SourceType;
6120      } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
6121        llvm_unreachable("Invalid EntityKind!");
6122      }
6123
6124      break;
6125    }
6126    case SK_OCLZeroEvent: {
6127      assert(Step->Type->isEventT() &&
6128             "Event initialization on non event type.");
6129
6130      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
6131                                    CK_ZeroToOCLEvent,
6132                                    CurInit.get()->getValueKind());
6133      break;
6134    }
6135    }
6136  }
6137
6138  // Diagnose non-fatal problems with the completed initialization.
6139  if (Entity.getKind() == InitializedEntity::EK_Member &&
6140      cast<FieldDecl>(Entity.getDecl())->isBitField())
6141    S.CheckBitFieldInitialization(Kind.getLocation(),
6142                                  cast<FieldDecl>(Entity.getDecl()),
6143                                  CurInit.get());
6144
6145  return CurInit;
6146}
6147
6148/// Somewhere within T there is an uninitialized reference subobject.
6149/// Dig it out and diagnose it.
6150static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
6151                                           QualType T) {
6152  if (T->isReferenceType()) {
6153    S.Diag(Loc, diag::err_reference_without_init)
6154      << T.getNonReferenceType();
6155    return true;
6156  }
6157
6158  CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6159  if (!RD || !RD->hasUninitializedReferenceMember())
6160    return false;
6161
6162  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
6163                                     FE = RD->field_end(); FI != FE; ++FI) {
6164    if (FI->isUnnamedBitfield())
6165      continue;
6166
6167    if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
6168      S.Diag(Loc, diag::note_value_initialization_here) << RD;
6169      return true;
6170    }
6171  }
6172
6173  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
6174                                          BE = RD->bases_end();
6175       BI != BE; ++BI) {
6176    if (DiagnoseUninitializedReference(S, BI->getLocStart(), BI->getType())) {
6177      S.Diag(Loc, diag::note_value_initialization_here) << RD;
6178      return true;
6179    }
6180  }
6181
6182  return false;
6183}
6184
6185
6186//===----------------------------------------------------------------------===//
6187// Diagnose initialization failures
6188//===----------------------------------------------------------------------===//
6189
6190/// Emit notes associated with an initialization that failed due to a
6191/// "simple" conversion failure.
6192static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
6193                                   Expr *op) {
6194  QualType destType = entity.getType();
6195  if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
6196      op->getType()->isObjCObjectPointerType()) {
6197
6198    // Emit a possible note about the conversion failing because the
6199    // operand is a message send with a related result type.
6200    S.EmitRelatedResultTypeNote(op);
6201
6202    // Emit a possible note about a return failing because we're
6203    // expecting a related result type.
6204    if (entity.getKind() == InitializedEntity::EK_Result)
6205      S.EmitRelatedResultTypeNoteForReturn(destType);
6206  }
6207}
6208
6209bool InitializationSequence::Diagnose(Sema &S,
6210                                      const InitializedEntity &Entity,
6211                                      const InitializationKind &Kind,
6212                                      ArrayRef<Expr *> Args) {
6213  if (!Failed())
6214    return false;
6215
6216  QualType DestType = Entity.getType();
6217  switch (Failure) {
6218  case FK_TooManyInitsForReference:
6219    // FIXME: Customize for the initialized entity?
6220    if (Args.empty()) {
6221      // Dig out the reference subobject which is uninitialized and diagnose it.
6222      // If this is value-initialization, this could be nested some way within
6223      // the target type.
6224      assert(Kind.getKind() == InitializationKind::IK_Value ||
6225             DestType->isReferenceType());
6226      bool Diagnosed =
6227        DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
6228      assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
6229      (void)Diagnosed;
6230    } else  // FIXME: diagnostic below could be better!
6231      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
6232        << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
6233    break;
6234
6235  case FK_ArrayNeedsInitList:
6236    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
6237    break;
6238  case FK_ArrayNeedsInitListOrStringLiteral:
6239    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
6240    break;
6241  case FK_ArrayNeedsInitListOrWideStringLiteral:
6242    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
6243    break;
6244  case FK_NarrowStringIntoWideCharArray:
6245    S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
6246    break;
6247  case FK_WideStringIntoCharArray:
6248    S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
6249    break;
6250  case FK_IncompatWideStringIntoWideChar:
6251    S.Diag(Kind.getLocation(),
6252           diag::err_array_init_incompat_wide_string_into_wchar);
6253    break;
6254  case FK_ArrayTypeMismatch:
6255  case FK_NonConstantArrayInit:
6256    S.Diag(Kind.getLocation(),
6257           (Failure == FK_ArrayTypeMismatch
6258              ? diag::err_array_init_different_type
6259              : diag::err_array_init_non_constant_array))
6260      << DestType.getNonReferenceType()
6261      << Args[0]->getType()
6262      << Args[0]->getSourceRange();
6263    break;
6264
6265  case FK_VariableLengthArrayHasInitializer:
6266    S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
6267      << Args[0]->getSourceRange();
6268    break;
6269
6270  case FK_AddressOfOverloadFailed: {
6271    DeclAccessPair Found;
6272    S.ResolveAddressOfOverloadedFunction(Args[0],
6273                                         DestType.getNonReferenceType(),
6274                                         true,
6275                                         Found);
6276    break;
6277  }
6278
6279  case FK_ReferenceInitOverloadFailed:
6280  case FK_UserConversionOverloadFailed:
6281    switch (FailedOverloadResult) {
6282    case OR_Ambiguous:
6283      if (Failure == FK_UserConversionOverloadFailed)
6284        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
6285          << Args[0]->getType() << DestType
6286          << Args[0]->getSourceRange();
6287      else
6288        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
6289          << DestType << Args[0]->getType()
6290          << Args[0]->getSourceRange();
6291
6292      FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6293      break;
6294
6295    case OR_No_Viable_Function:
6296      if (!S.RequireCompleteType(Kind.getLocation(),
6297                                 DestType.getNonReferenceType(),
6298                          diag::err_typecheck_nonviable_condition_incomplete,
6299                               Args[0]->getType(), Args[0]->getSourceRange()))
6300        S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
6301          << Args[0]->getType() << Args[0]->getSourceRange()
6302          << DestType.getNonReferenceType();
6303
6304      FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6305      break;
6306
6307    case OR_Deleted: {
6308      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
6309        << Args[0]->getType() << DestType.getNonReferenceType()
6310        << Args[0]->getSourceRange();
6311      OverloadCandidateSet::iterator Best;
6312      OverloadingResult Ovl
6313        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
6314                                                true);
6315      if (Ovl == OR_Deleted) {
6316        S.NoteDeletedFunction(Best->Function);
6317      } else {
6318        llvm_unreachable("Inconsistent overload resolution?");
6319      }
6320      break;
6321    }
6322
6323    case OR_Success:
6324      llvm_unreachable("Conversion did not fail!");
6325    }
6326    break;
6327
6328  case FK_NonConstLValueReferenceBindingToTemporary:
6329    if (isa<InitListExpr>(Args[0])) {
6330      S.Diag(Kind.getLocation(),
6331             diag::err_lvalue_reference_bind_to_initlist)
6332      << DestType.getNonReferenceType().isVolatileQualified()
6333      << DestType.getNonReferenceType()
6334      << Args[0]->getSourceRange();
6335      break;
6336    }
6337    // Intentional fallthrough
6338
6339  case FK_NonConstLValueReferenceBindingToUnrelated:
6340    S.Diag(Kind.getLocation(),
6341           Failure == FK_NonConstLValueReferenceBindingToTemporary
6342             ? diag::err_lvalue_reference_bind_to_temporary
6343             : diag::err_lvalue_reference_bind_to_unrelated)
6344      << DestType.getNonReferenceType().isVolatileQualified()
6345      << DestType.getNonReferenceType()
6346      << Args[0]->getType()
6347      << Args[0]->getSourceRange();
6348    break;
6349
6350  case FK_RValueReferenceBindingToLValue:
6351    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
6352      << DestType.getNonReferenceType() << Args[0]->getType()
6353      << Args[0]->getSourceRange();
6354    break;
6355
6356  case FK_ReferenceInitDropsQualifiers:
6357    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
6358      << DestType.getNonReferenceType()
6359      << Args[0]->getType()
6360      << Args[0]->getSourceRange();
6361    break;
6362
6363  case FK_ReferenceInitFailed:
6364    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
6365      << DestType.getNonReferenceType()
6366      << Args[0]->isLValue()
6367      << Args[0]->getType()
6368      << Args[0]->getSourceRange();
6369    emitBadConversionNotes(S, Entity, Args[0]);
6370    break;
6371
6372  case FK_ConversionFailed: {
6373    QualType FromType = Args[0]->getType();
6374    PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
6375      << (int)Entity.getKind()
6376      << DestType
6377      << Args[0]->isLValue()
6378      << FromType
6379      << Args[0]->getSourceRange();
6380    S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
6381    S.Diag(Kind.getLocation(), PDiag);
6382    emitBadConversionNotes(S, Entity, Args[0]);
6383    break;
6384  }
6385
6386  case FK_ConversionFromPropertyFailed:
6387    // No-op. This error has already been reported.
6388    break;
6389
6390  case FK_TooManyInitsForScalar: {
6391    SourceRange R;
6392
6393    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
6394      R = SourceRange(InitList->getInit(0)->getLocEnd(),
6395                      InitList->getLocEnd());
6396    else
6397      R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
6398
6399    R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
6400    if (Kind.isCStyleOrFunctionalCast())
6401      S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
6402        << R;
6403    else
6404      S.Diag(Kind.getLocation(), diag::err_excess_initializers)
6405        << /*scalar=*/2 << R;
6406    break;
6407  }
6408
6409  case FK_ReferenceBindingToInitList:
6410    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
6411      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
6412    break;
6413
6414  case FK_InitListBadDestinationType:
6415    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
6416      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
6417    break;
6418
6419  case FK_ListConstructorOverloadFailed:
6420  case FK_ConstructorOverloadFailed: {
6421    SourceRange ArgsRange;
6422    if (Args.size())
6423      ArgsRange = SourceRange(Args.front()->getLocStart(),
6424                              Args.back()->getLocEnd());
6425
6426    if (Failure == FK_ListConstructorOverloadFailed) {
6427      assert(Args.size() == 1 && "List construction from other than 1 argument.");
6428      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6429      Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
6430    }
6431
6432    // FIXME: Using "DestType" for the entity we're printing is probably
6433    // bad.
6434    switch (FailedOverloadResult) {
6435      case OR_Ambiguous:
6436        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
6437          << DestType << ArgsRange;
6438        FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6439        break;
6440
6441      case OR_No_Viable_Function:
6442        if (Kind.getKind() == InitializationKind::IK_Default &&
6443            (Entity.getKind() == InitializedEntity::EK_Base ||
6444             Entity.getKind() == InitializedEntity::EK_Member) &&
6445            isa<CXXConstructorDecl>(S.CurContext)) {
6446          // This is implicit default initialization of a member or
6447          // base within a constructor. If no viable function was
6448          // found, notify the user that she needs to explicitly
6449          // initialize this base/member.
6450          CXXConstructorDecl *Constructor
6451            = cast<CXXConstructorDecl>(S.CurContext);
6452          if (Entity.getKind() == InitializedEntity::EK_Base) {
6453            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6454              << (Constructor->getInheritedConstructor() ? 2 :
6455                  Constructor->isImplicit() ? 1 : 0)
6456              << S.Context.getTypeDeclType(Constructor->getParent())
6457              << /*base=*/0
6458              << Entity.getType();
6459
6460            RecordDecl *BaseDecl
6461              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
6462                                                                  ->getDecl();
6463            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
6464              << S.Context.getTagDeclType(BaseDecl);
6465          } else {
6466            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6467              << (Constructor->getInheritedConstructor() ? 2 :
6468                  Constructor->isImplicit() ? 1 : 0)
6469              << S.Context.getTypeDeclType(Constructor->getParent())
6470              << /*member=*/1
6471              << Entity.getName();
6472            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
6473
6474            if (const RecordType *Record
6475                                 = Entity.getType()->getAs<RecordType>())
6476              S.Diag(Record->getDecl()->getLocation(),
6477                     diag::note_previous_decl)
6478                << S.Context.getTagDeclType(Record->getDecl());
6479          }
6480          break;
6481        }
6482
6483        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
6484          << DestType << ArgsRange;
6485        FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6486        break;
6487
6488      case OR_Deleted: {
6489        OverloadCandidateSet::iterator Best;
6490        OverloadingResult Ovl
6491          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6492        if (Ovl != OR_Deleted) {
6493          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6494            << true << DestType << ArgsRange;
6495          llvm_unreachable("Inconsistent overload resolution?");
6496          break;
6497        }
6498
6499        // If this is a defaulted or implicitly-declared function, then
6500        // it was implicitly deleted. Make it clear that the deletion was
6501        // implicit.
6502        if (S.isImplicitlyDeleted(Best->Function))
6503          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
6504            << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
6505            << DestType << ArgsRange;
6506        else
6507          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6508            << true << DestType << ArgsRange;
6509
6510        S.NoteDeletedFunction(Best->Function);
6511        break;
6512      }
6513
6514      case OR_Success:
6515        llvm_unreachable("Conversion did not fail!");
6516    }
6517  }
6518  break;
6519
6520  case FK_DefaultInitOfConst:
6521    if (Entity.getKind() == InitializedEntity::EK_Member &&
6522        isa<CXXConstructorDecl>(S.CurContext)) {
6523      // This is implicit default-initialization of a const member in
6524      // a constructor. Complain that it needs to be explicitly
6525      // initialized.
6526      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
6527      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
6528        << (Constructor->getInheritedConstructor() ? 2 :
6529            Constructor->isImplicit() ? 1 : 0)
6530        << S.Context.getTypeDeclType(Constructor->getParent())
6531        << /*const=*/1
6532        << Entity.getName();
6533      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
6534        << Entity.getName();
6535    } else {
6536      S.Diag(Kind.getLocation(), diag::err_default_init_const)
6537        << DestType << (bool)DestType->getAs<RecordType>();
6538    }
6539    break;
6540
6541  case FK_Incomplete:
6542    S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
6543                          diag::err_init_incomplete_type);
6544    break;
6545
6546  case FK_ListInitializationFailed: {
6547    // Run the init list checker again to emit diagnostics.
6548    InitListExpr* InitList = cast<InitListExpr>(Args[0]);
6549    QualType DestType = Entity.getType();
6550    InitListChecker DiagnoseInitList(S, Entity, InitList,
6551            DestType, /*VerifyOnly=*/false);
6552    assert(DiagnoseInitList.HadError() &&
6553           "Inconsistent init list check result.");
6554    break;
6555  }
6556
6557  case FK_PlaceholderType: {
6558    // FIXME: Already diagnosed!
6559    break;
6560  }
6561
6562  case FK_ExplicitConstructor: {
6563    S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
6564      << Args[0]->getSourceRange();
6565    OverloadCandidateSet::iterator Best;
6566    OverloadingResult Ovl
6567      = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6568    (void)Ovl;
6569    assert(Ovl == OR_Success && "Inconsistent overload resolution");
6570    CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
6571    S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
6572    break;
6573  }
6574  }
6575
6576  PrintInitLocationNote(S, Entity);
6577  return true;
6578}
6579
6580void InitializationSequence::dump(raw_ostream &OS) const {
6581  switch (SequenceKind) {
6582  case FailedSequence: {
6583    OS << "Failed sequence: ";
6584    switch (Failure) {
6585    case FK_TooManyInitsForReference:
6586      OS << "too many initializers for reference";
6587      break;
6588
6589    case FK_ArrayNeedsInitList:
6590      OS << "array requires initializer list";
6591      break;
6592
6593    case FK_ArrayNeedsInitListOrStringLiteral:
6594      OS << "array requires initializer list or string literal";
6595      break;
6596
6597    case FK_ArrayNeedsInitListOrWideStringLiteral:
6598      OS << "array requires initializer list or wide string literal";
6599      break;
6600
6601    case FK_NarrowStringIntoWideCharArray:
6602      OS << "narrow string into wide char array";
6603      break;
6604
6605    case FK_WideStringIntoCharArray:
6606      OS << "wide string into char array";
6607      break;
6608
6609    case FK_IncompatWideStringIntoWideChar:
6610      OS << "incompatible wide string into wide char array";
6611      break;
6612
6613    case FK_ArrayTypeMismatch:
6614      OS << "array type mismatch";
6615      break;
6616
6617    case FK_NonConstantArrayInit:
6618      OS << "non-constant array initializer";
6619      break;
6620
6621    case FK_AddressOfOverloadFailed:
6622      OS << "address of overloaded function failed";
6623      break;
6624
6625    case FK_ReferenceInitOverloadFailed:
6626      OS << "overload resolution for reference initialization failed";
6627      break;
6628
6629    case FK_NonConstLValueReferenceBindingToTemporary:
6630      OS << "non-const lvalue reference bound to temporary";
6631      break;
6632
6633    case FK_NonConstLValueReferenceBindingToUnrelated:
6634      OS << "non-const lvalue reference bound to unrelated type";
6635      break;
6636
6637    case FK_RValueReferenceBindingToLValue:
6638      OS << "rvalue reference bound to an lvalue";
6639      break;
6640
6641    case FK_ReferenceInitDropsQualifiers:
6642      OS << "reference initialization drops qualifiers";
6643      break;
6644
6645    case FK_ReferenceInitFailed:
6646      OS << "reference initialization failed";
6647      break;
6648
6649    case FK_ConversionFailed:
6650      OS << "conversion failed";
6651      break;
6652
6653    case FK_ConversionFromPropertyFailed:
6654      OS << "conversion from property failed";
6655      break;
6656
6657    case FK_TooManyInitsForScalar:
6658      OS << "too many initializers for scalar";
6659      break;
6660
6661    case FK_ReferenceBindingToInitList:
6662      OS << "referencing binding to initializer list";
6663      break;
6664
6665    case FK_InitListBadDestinationType:
6666      OS << "initializer list for non-aggregate, non-scalar type";
6667      break;
6668
6669    case FK_UserConversionOverloadFailed:
6670      OS << "overloading failed for user-defined conversion";
6671      break;
6672
6673    case FK_ConstructorOverloadFailed:
6674      OS << "constructor overloading failed";
6675      break;
6676
6677    case FK_DefaultInitOfConst:
6678      OS << "default initialization of a const variable";
6679      break;
6680
6681    case FK_Incomplete:
6682      OS << "initialization of incomplete type";
6683      break;
6684
6685    case FK_ListInitializationFailed:
6686      OS << "list initialization checker failure";
6687      break;
6688
6689    case FK_VariableLengthArrayHasInitializer:
6690      OS << "variable length array has an initializer";
6691      break;
6692
6693    case FK_PlaceholderType:
6694      OS << "initializer expression isn't contextually valid";
6695      break;
6696
6697    case FK_ListConstructorOverloadFailed:
6698      OS << "list constructor overloading failed";
6699      break;
6700
6701    case FK_ExplicitConstructor:
6702      OS << "list copy initialization chose explicit constructor";
6703      break;
6704    }
6705    OS << '\n';
6706    return;
6707  }
6708
6709  case DependentSequence:
6710    OS << "Dependent sequence\n";
6711    return;
6712
6713  case NormalSequence:
6714    OS << "Normal sequence: ";
6715    break;
6716  }
6717
6718  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
6719    if (S != step_begin()) {
6720      OS << " -> ";
6721    }
6722
6723    switch (S->Kind) {
6724    case SK_ResolveAddressOfOverloadedFunction:
6725      OS << "resolve address of overloaded function";
6726      break;
6727
6728    case SK_CastDerivedToBaseRValue:
6729      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
6730      break;
6731
6732    case SK_CastDerivedToBaseXValue:
6733      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
6734      break;
6735
6736    case SK_CastDerivedToBaseLValue:
6737      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
6738      break;
6739
6740    case SK_BindReference:
6741      OS << "bind reference to lvalue";
6742      break;
6743
6744    case SK_BindReferenceToTemporary:
6745      OS << "bind reference to a temporary";
6746      break;
6747
6748    case SK_ExtraneousCopyToTemporary:
6749      OS << "extraneous C++03 copy to temporary";
6750      break;
6751
6752    case SK_UserConversion:
6753      OS << "user-defined conversion via " << *S->Function.Function;
6754      break;
6755
6756    case SK_QualificationConversionRValue:
6757      OS << "qualification conversion (rvalue)";
6758      break;
6759
6760    case SK_QualificationConversionXValue:
6761      OS << "qualification conversion (xvalue)";
6762      break;
6763
6764    case SK_QualificationConversionLValue:
6765      OS << "qualification conversion (lvalue)";
6766      break;
6767
6768    case SK_LValueToRValue:
6769      OS << "load (lvalue to rvalue)";
6770      break;
6771
6772    case SK_ConversionSequence:
6773      OS << "implicit conversion sequence (";
6774      S->ICS->DebugPrint(); // FIXME: use OS
6775      OS << ")";
6776      break;
6777
6778    case SK_ListInitialization:
6779      OS << "list aggregate initialization";
6780      break;
6781
6782    case SK_ListConstructorCall:
6783      OS << "list initialization via constructor";
6784      break;
6785
6786    case SK_UnwrapInitList:
6787      OS << "unwrap reference initializer list";
6788      break;
6789
6790    case SK_RewrapInitList:
6791      OS << "rewrap reference initializer list";
6792      break;
6793
6794    case SK_ConstructorInitialization:
6795      OS << "constructor initialization";
6796      break;
6797
6798    case SK_ZeroInitialization:
6799      OS << "zero initialization";
6800      break;
6801
6802    case SK_CAssignment:
6803      OS << "C assignment";
6804      break;
6805
6806    case SK_StringInit:
6807      OS << "string initialization";
6808      break;
6809
6810    case SK_ObjCObjectConversion:
6811      OS << "Objective-C object conversion";
6812      break;
6813
6814    case SK_ArrayInit:
6815      OS << "array initialization";
6816      break;
6817
6818    case SK_ParenthesizedArrayInit:
6819      OS << "parenthesized array initialization";
6820      break;
6821
6822    case SK_PassByIndirectCopyRestore:
6823      OS << "pass by indirect copy and restore";
6824      break;
6825
6826    case SK_PassByIndirectRestore:
6827      OS << "pass by indirect restore";
6828      break;
6829
6830    case SK_ProduceObjCObject:
6831      OS << "Objective-C object retension";
6832      break;
6833
6834    case SK_StdInitializerList:
6835      OS << "std::initializer_list from initializer list";
6836      break;
6837
6838    case SK_OCLSamplerInit:
6839      OS << "OpenCL sampler_t from integer constant";
6840      break;
6841
6842    case SK_OCLZeroEvent:
6843      OS << "OpenCL event_t from zero";
6844      break;
6845    }
6846
6847    OS << " [" << S->Type.getAsString() << ']';
6848  }
6849
6850  OS << '\n';
6851}
6852
6853void InitializationSequence::dump() const {
6854  dump(llvm::errs());
6855}
6856
6857static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
6858                                        QualType EntityType,
6859                                        const Expr *PreInit,
6860                                        const Expr *PostInit) {
6861  if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
6862    return;
6863
6864  // A narrowing conversion can only appear as the final implicit conversion in
6865  // an initialization sequence.
6866  const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
6867  if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
6868    return;
6869
6870  const ImplicitConversionSequence &ICS = *LastStep.ICS;
6871  const StandardConversionSequence *SCS = 0;
6872  switch (ICS.getKind()) {
6873  case ImplicitConversionSequence::StandardConversion:
6874    SCS = &ICS.Standard;
6875    break;
6876  case ImplicitConversionSequence::UserDefinedConversion:
6877    SCS = &ICS.UserDefined.After;
6878    break;
6879  case ImplicitConversionSequence::AmbiguousConversion:
6880  case ImplicitConversionSequence::EllipsisConversion:
6881  case ImplicitConversionSequence::BadConversion:
6882    return;
6883  }
6884
6885  // Determine the type prior to the narrowing conversion. If a conversion
6886  // operator was used, this may be different from both the type of the entity
6887  // and of the pre-initialization expression.
6888  QualType PreNarrowingType = PreInit->getType();
6889  if (Seq.step_begin() + 1 != Seq.step_end())
6890    PreNarrowingType = Seq.step_end()[-2].Type;
6891
6892  // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6893  APValue ConstantValue;
6894  QualType ConstantType;
6895  switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6896                                ConstantType)) {
6897  case NK_Not_Narrowing:
6898    // No narrowing occurred.
6899    return;
6900
6901  case NK_Type_Narrowing:
6902    // This was a floating-to-integer conversion, which is always considered a
6903    // narrowing conversion even if the value is a constant and can be
6904    // represented exactly as an integer.
6905    S.Diag(PostInit->getLocStart(),
6906           S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6907             diag::warn_init_list_type_narrowing
6908           : S.isSFINAEContext()?
6909             diag::err_init_list_type_narrowing_sfinae
6910           : diag::err_init_list_type_narrowing)
6911      << PostInit->getSourceRange()
6912      << PreNarrowingType.getLocalUnqualifiedType()
6913      << EntityType.getLocalUnqualifiedType();
6914    break;
6915
6916  case NK_Constant_Narrowing:
6917    // A constant value was narrowed.
6918    S.Diag(PostInit->getLocStart(),
6919           S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6920             diag::warn_init_list_constant_narrowing
6921           : S.isSFINAEContext()?
6922             diag::err_init_list_constant_narrowing_sfinae
6923           : diag::err_init_list_constant_narrowing)
6924      << PostInit->getSourceRange()
6925      << ConstantValue.getAsString(S.getASTContext(), ConstantType)
6926      << EntityType.getLocalUnqualifiedType();
6927    break;
6928
6929  case NK_Variable_Narrowing:
6930    // A variable's value may have been narrowed.
6931    S.Diag(PostInit->getLocStart(),
6932           S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6933             diag::warn_init_list_variable_narrowing
6934           : S.isSFINAEContext()?
6935             diag::err_init_list_variable_narrowing_sfinae
6936           : diag::err_init_list_variable_narrowing)
6937      << PostInit->getSourceRange()
6938      << PreNarrowingType.getLocalUnqualifiedType()
6939      << EntityType.getLocalUnqualifiedType();
6940    break;
6941  }
6942
6943  SmallString<128> StaticCast;
6944  llvm::raw_svector_ostream OS(StaticCast);
6945  OS << "static_cast<";
6946  if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
6947    // It's important to use the typedef's name if there is one so that the
6948    // fixit doesn't break code using types like int64_t.
6949    //
6950    // FIXME: This will break if the typedef requires qualification.  But
6951    // getQualifiedNameAsString() includes non-machine-parsable components.
6952    OS << *TT->getDecl();
6953  } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
6954    OS << BT->getName(S.getLangOpts());
6955  else {
6956    // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
6957    // with a broken cast.
6958    return;
6959  }
6960  OS << ">(";
6961  S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
6962    << PostInit->getSourceRange()
6963    << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
6964    << FixItHint::CreateInsertion(
6965      S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
6966}
6967
6968//===----------------------------------------------------------------------===//
6969// Initialization helper functions
6970//===----------------------------------------------------------------------===//
6971bool
6972Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
6973                                   ExprResult Init) {
6974  if (Init.isInvalid())
6975    return false;
6976
6977  Expr *InitE = Init.get();
6978  assert(InitE && "No initialization expression");
6979
6980  InitializationKind Kind
6981    = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
6982  InitializationSequence Seq(*this, Entity, Kind, InitE);
6983  return !Seq.Failed();
6984}
6985
6986ExprResult
6987Sema::PerformCopyInitialization(const InitializedEntity &Entity,
6988                                SourceLocation EqualLoc,
6989                                ExprResult Init,
6990                                bool TopLevelOfInitList,
6991                                bool AllowExplicit) {
6992  if (Init.isInvalid())
6993    return ExprError();
6994
6995  Expr *InitE = Init.get();
6996  assert(InitE && "No initialization expression?");
6997
6998  if (EqualLoc.isInvalid())
6999    EqualLoc = InitE->getLocStart();
7000
7001  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
7002                                                           EqualLoc,
7003                                                           AllowExplicit);
7004  InitializationSequence Seq(*this, Entity, Kind, InitE);
7005  Init.release();
7006
7007  ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
7008
7009  if (!Result.isInvalid() && TopLevelOfInitList)
7010    DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
7011                                InitE, Result.get());
7012
7013  return Result;
7014}
7015