SemaInit.cpp revision 1f78a50f8aee58f8e07f6307f4b8d0b1742e9a2b
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Initialization.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Sema/Designator.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/SemaInternal.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28#include <map>
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
36                          ASTContext &Context) {
37  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
38    return 0;
39
40  // See if this is a string literal or @encode.
41  Init = Init->IgnoreParens();
42
43  // Handle @encode, which is a narrow string.
44  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
45    return Init;
46
47  // Otherwise we can only handle string literals.
48  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
49  if (SL == 0) return 0;
50
51  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
52
53  switch (SL->getKind()) {
54  case StringLiteral::Ascii:
55  case StringLiteral::UTF8:
56    // char array can be initialized with a narrow string.
57    // Only allow char x[] = "foo";  not char x[] = L"foo";
58    return ElemTy->isCharType() ? Init : 0;
59  case StringLiteral::UTF16:
60    return ElemTy->isChar16Type() ? Init : 0;
61  case StringLiteral::UTF32:
62    return ElemTy->isChar32Type() ? Init : 0;
63  case StringLiteral::Wide:
64    // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
65    // correction from DR343): "An array with element type compatible with a
66    // qualified or unqualified version of wchar_t may be initialized by a wide
67    // string literal, optionally enclosed in braces."
68    if (Context.typesAreCompatible(Context.getWCharType(),
69                                   ElemTy.getUnqualifiedType()))
70      return Init;
71
72    return 0;
73  }
74
75  llvm_unreachable("missed a StringLiteral kind?");
76}
77
78static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
79  const ArrayType *arrayType = Context.getAsArrayType(declType);
80  if (!arrayType) return 0;
81
82  return IsStringInit(init, arrayType, Context);
83}
84
85static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
86                            Sema &S) {
87  // Get the length of the string as parsed.
88  uint64_t StrLength =
89    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
90
91
92  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
93    // C99 6.7.8p14. We have an array of character type with unknown size
94    // being initialized to a string literal.
95    llvm::APInt ConstVal(32, StrLength);
96    // Return a new array type (C99 6.7.8p22).
97    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
98                                           ConstVal,
99                                           ArrayType::Normal, 0);
100    Str->setType(DeclT);
101    return;
102  }
103
104  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
105
106  // We have an array of character type with known size.  However,
107  // the size may be smaller or larger than the string we are initializing.
108  // FIXME: Avoid truncation for 64-bit length strings.
109  if (S.getLangOpts().CPlusPlus) {
110    if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
111      // For Pascal strings it's OK to strip off the terminating null character,
112      // so the example below is valid:
113      //
114      // unsigned char a[2] = "\pa";
115      if (SL->isPascal())
116        StrLength--;
117    }
118
119    // [dcl.init.string]p2
120    if (StrLength > CAT->getSize().getZExtValue())
121      S.Diag(Str->getLocStart(),
122             diag::err_initializer_string_for_char_array_too_long)
123        << Str->getSourceRange();
124  } else {
125    // C99 6.7.8p14.
126    if (StrLength-1 > CAT->getSize().getZExtValue())
127      S.Diag(Str->getLocStart(),
128             diag::warn_initializer_string_for_char_array_too_long)
129        << Str->getSourceRange();
130  }
131
132  // Set the type to the actual size that we are initializing.  If we have
133  // something like:
134  //   char x[1] = "foo";
135  // then this will set the string literal's type to char[1].
136  Str->setType(DeclT);
137}
138
139//===----------------------------------------------------------------------===//
140// Semantic checking for initializer lists.
141//===----------------------------------------------------------------------===//
142
143/// @brief Semantic checking for initializer lists.
144///
145/// The InitListChecker class contains a set of routines that each
146/// handle the initialization of a certain kind of entity, e.g.,
147/// arrays, vectors, struct/union types, scalars, etc. The
148/// InitListChecker itself performs a recursive walk of the subobject
149/// structure of the type to be initialized, while stepping through
150/// the initializer list one element at a time. The IList and Index
151/// parameters to each of the Check* routines contain the active
152/// (syntactic) initializer list and the index into that initializer
153/// list that represents the current initializer. Each routine is
154/// responsible for moving that Index forward as it consumes elements.
155///
156/// Each Check* routine also has a StructuredList/StructuredIndex
157/// arguments, which contains the current "structured" (semantic)
158/// initializer list and the index into that initializer list where we
159/// are copying initializers as we map them over to the semantic
160/// list. Once we have completed our recursive walk of the subobject
161/// structure, we will have constructed a full semantic initializer
162/// list.
163///
164/// C99 designators cause changes in the initializer list traversal,
165/// because they make the initialization "jump" into a specific
166/// subobject and then continue the initialization from that
167/// point. CheckDesignatedInitializer() recursively steps into the
168/// designated subobject and manages backing out the recursion to
169/// initialize the subobjects after the one designated.
170namespace {
171class InitListChecker {
172  Sema &SemaRef;
173  bool hadError;
174  bool VerifyOnly; // no diagnostics, no structure building
175  bool AllowBraceElision;
176  llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
177  InitListExpr *FullyStructuredList;
178
179  void CheckImplicitInitList(const InitializedEntity &Entity,
180                             InitListExpr *ParentIList, QualType T,
181                             unsigned &Index, InitListExpr *StructuredList,
182                             unsigned &StructuredIndex);
183  void CheckExplicitInitList(const InitializedEntity &Entity,
184                             InitListExpr *IList, QualType &T,
185                             unsigned &Index, InitListExpr *StructuredList,
186                             unsigned &StructuredIndex,
187                             bool TopLevelObject = false);
188  void CheckListElementTypes(const InitializedEntity &Entity,
189                             InitListExpr *IList, QualType &DeclType,
190                             bool SubobjectIsDesignatorContext,
191                             unsigned &Index,
192                             InitListExpr *StructuredList,
193                             unsigned &StructuredIndex,
194                             bool TopLevelObject = false);
195  void CheckSubElementType(const InitializedEntity &Entity,
196                           InitListExpr *IList, QualType ElemType,
197                           unsigned &Index,
198                           InitListExpr *StructuredList,
199                           unsigned &StructuredIndex);
200  void CheckComplexType(const InitializedEntity &Entity,
201                        InitListExpr *IList, QualType DeclType,
202                        unsigned &Index,
203                        InitListExpr *StructuredList,
204                        unsigned &StructuredIndex);
205  void CheckScalarType(const InitializedEntity &Entity,
206                       InitListExpr *IList, QualType DeclType,
207                       unsigned &Index,
208                       InitListExpr *StructuredList,
209                       unsigned &StructuredIndex);
210  void CheckReferenceType(const InitializedEntity &Entity,
211                          InitListExpr *IList, QualType DeclType,
212                          unsigned &Index,
213                          InitListExpr *StructuredList,
214                          unsigned &StructuredIndex);
215  void CheckVectorType(const InitializedEntity &Entity,
216                       InitListExpr *IList, QualType DeclType, unsigned &Index,
217                       InitListExpr *StructuredList,
218                       unsigned &StructuredIndex);
219  void CheckStructUnionTypes(const InitializedEntity &Entity,
220                             InitListExpr *IList, QualType DeclType,
221                             RecordDecl::field_iterator Field,
222                             bool SubobjectIsDesignatorContext, unsigned &Index,
223                             InitListExpr *StructuredList,
224                             unsigned &StructuredIndex,
225                             bool TopLevelObject = false);
226  void CheckArrayType(const InitializedEntity &Entity,
227                      InitListExpr *IList, QualType &DeclType,
228                      llvm::APSInt elementIndex,
229                      bool SubobjectIsDesignatorContext, unsigned &Index,
230                      InitListExpr *StructuredList,
231                      unsigned &StructuredIndex);
232  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
233                                  InitListExpr *IList, DesignatedInitExpr *DIE,
234                                  unsigned DesigIdx,
235                                  QualType &CurrentObjectType,
236                                  RecordDecl::field_iterator *NextField,
237                                  llvm::APSInt *NextElementIndex,
238                                  unsigned &Index,
239                                  InitListExpr *StructuredList,
240                                  unsigned &StructuredIndex,
241                                  bool FinishSubobjectInit,
242                                  bool TopLevelObject);
243  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
244                                           QualType CurrentObjectType,
245                                           InitListExpr *StructuredList,
246                                           unsigned StructuredIndex,
247                                           SourceRange InitRange);
248  void UpdateStructuredListElement(InitListExpr *StructuredList,
249                                   unsigned &StructuredIndex,
250                                   Expr *expr);
251  int numArrayElements(QualType DeclType);
252  int numStructUnionElements(QualType DeclType);
253
254  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
255                               const InitializedEntity &ParentEntity,
256                               InitListExpr *ILE, bool &RequiresSecondPass);
257  void FillInValueInitializations(const InitializedEntity &Entity,
258                                  InitListExpr *ILE, bool &RequiresSecondPass);
259  bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
260                              Expr *InitExpr, FieldDecl *Field,
261                              bool TopLevelObject);
262  void CheckValueInitializable(const InitializedEntity &Entity);
263
264public:
265  InitListChecker(Sema &S, const InitializedEntity &Entity,
266                  InitListExpr *IL, QualType &T, bool VerifyOnly,
267                  bool AllowBraceElision);
268  bool HadError() { return hadError; }
269
270  // @brief Retrieves the fully-structured initializer list used for
271  // semantic analysis and code generation.
272  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
273};
274} // end anonymous namespace
275
276void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
277  assert(VerifyOnly &&
278         "CheckValueInitializable is only inteded for verification mode.");
279
280  SourceLocation Loc;
281  InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
282                                                            true);
283  InitializationSequence InitSeq(SemaRef, Entity, Kind, MultiExprArg());
284  if (InitSeq.Failed())
285    hadError = true;
286}
287
288void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
289                                        const InitializedEntity &ParentEntity,
290                                              InitListExpr *ILE,
291                                              bool &RequiresSecondPass) {
292  SourceLocation Loc = ILE->getLocStart();
293  unsigned NumInits = ILE->getNumInits();
294  InitializedEntity MemberEntity
295    = InitializedEntity::InitializeMember(Field, &ParentEntity);
296  if (Init >= NumInits || !ILE->getInit(Init)) {
297    // If there's no explicit initializer but we have a default initializer, use
298    // that. This only happens in C++1y, since classes with default
299    // initializers are not aggregates in C++11.
300    if (Field->hasInClassInitializer()) {
301      Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
302                                             ILE->getRBraceLoc(), Field);
303      if (Init < NumInits)
304        ILE->setInit(Init, DIE);
305      else {
306        ILE->updateInit(SemaRef.Context, Init, DIE);
307        RequiresSecondPass = true;
308      }
309      return;
310    }
311
312    // FIXME: We probably don't need to handle references
313    // specially here, since value-initialization of references is
314    // handled in InitializationSequence.
315    if (Field->getType()->isReferenceType()) {
316      // C++ [dcl.init.aggr]p9:
317      //   If an incomplete or empty initializer-list leaves a
318      //   member of reference type uninitialized, the program is
319      //   ill-formed.
320      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
321        << Field->getType()
322        << ILE->getSyntacticForm()->getSourceRange();
323      SemaRef.Diag(Field->getLocation(),
324                   diag::note_uninit_reference_member);
325      hadError = true;
326      return;
327    }
328
329    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
330                                                              true);
331    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, MultiExprArg());
332    if (!InitSeq) {
333      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, ArrayRef<Expr *>());
334      hadError = true;
335      return;
336    }
337
338    ExprResult MemberInit
339      = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
340    if (MemberInit.isInvalid()) {
341      hadError = true;
342      return;
343    }
344
345    if (hadError) {
346      // Do nothing
347    } else if (Init < NumInits) {
348      ILE->setInit(Init, MemberInit.takeAs<Expr>());
349    } else if (InitSeq.isConstructorInitialization()) {
350      // Value-initialization requires a constructor call, so
351      // extend the initializer list to include the constructor
352      // call and make a note that we'll need to take another pass
353      // through the initializer list.
354      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
355      RequiresSecondPass = true;
356    }
357  } else if (InitListExpr *InnerILE
358               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
359    FillInValueInitializations(MemberEntity, InnerILE,
360                               RequiresSecondPass);
361}
362
363/// Recursively replaces NULL values within the given initializer list
364/// with expressions that perform value-initialization of the
365/// appropriate type.
366void
367InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
368                                            InitListExpr *ILE,
369                                            bool &RequiresSecondPass) {
370  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
371         "Should not have void type");
372  SourceLocation Loc = ILE->getLocStart();
373  if (ILE->getSyntacticForm())
374    Loc = ILE->getSyntacticForm()->getLocStart();
375
376  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
377    const RecordDecl *RDecl = RType->getDecl();
378    if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
379      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
380                              Entity, ILE, RequiresSecondPass);
381    else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
382             cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
383      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
384                                      FieldEnd = RDecl->field_end();
385           Field != FieldEnd; ++Field) {
386        if (Field->hasInClassInitializer()) {
387          FillInValueInitForField(0, *Field, Entity, ILE, RequiresSecondPass);
388          break;
389        }
390      }
391    } else {
392      unsigned Init = 0;
393      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
394                                      FieldEnd = RDecl->field_end();
395           Field != FieldEnd; ++Field) {
396        if (Field->isUnnamedBitfield())
397          continue;
398
399        if (hadError)
400          return;
401
402        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
403        if (hadError)
404          return;
405
406        ++Init;
407
408        // Only look at the first initialization of a union.
409        if (RDecl->isUnion())
410          break;
411      }
412    }
413
414    return;
415  }
416
417  QualType ElementType;
418
419  InitializedEntity ElementEntity = Entity;
420  unsigned NumInits = ILE->getNumInits();
421  unsigned NumElements = NumInits;
422  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
423    ElementType = AType->getElementType();
424    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
425      NumElements = CAType->getSize().getZExtValue();
426    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
427                                                         0, Entity);
428  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
429    ElementType = VType->getElementType();
430    NumElements = VType->getNumElements();
431    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
432                                                         0, Entity);
433  } else
434    ElementType = ILE->getType();
435
436
437  for (unsigned Init = 0; Init != NumElements; ++Init) {
438    if (hadError)
439      return;
440
441    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
442        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
443      ElementEntity.setElementIndex(Init);
444
445    Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
446    if (!InitExpr && !ILE->hasArrayFiller()) {
447      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
448                                                                true);
449      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, MultiExprArg());
450      if (!InitSeq) {
451        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, ArrayRef<Expr *>());
452        hadError = true;
453        return;
454      }
455
456      ExprResult ElementInit
457        = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
458      if (ElementInit.isInvalid()) {
459        hadError = true;
460        return;
461      }
462
463      if (hadError) {
464        // Do nothing
465      } else if (Init < NumInits) {
466        // For arrays, just set the expression used for value-initialization
467        // of the "holes" in the array.
468        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
469          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
470        else
471          ILE->setInit(Init, ElementInit.takeAs<Expr>());
472      } else {
473        // For arrays, just set the expression used for value-initialization
474        // of the rest of elements and exit.
475        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
476          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
477          return;
478        }
479
480        if (InitSeq.isConstructorInitialization()) {
481          // Value-initialization requires a constructor call, so
482          // extend the initializer list to include the constructor
483          // call and make a note that we'll need to take another pass
484          // through the initializer list.
485          ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
486          RequiresSecondPass = true;
487        }
488      }
489    } else if (InitListExpr *InnerILE
490                 = dyn_cast_or_null<InitListExpr>(InitExpr))
491      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
492  }
493}
494
495
496InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
497                                 InitListExpr *IL, QualType &T,
498                                 bool VerifyOnly, bool AllowBraceElision)
499  : SemaRef(S), VerifyOnly(VerifyOnly), AllowBraceElision(AllowBraceElision) {
500  hadError = false;
501
502  unsigned newIndex = 0;
503  unsigned newStructuredIndex = 0;
504  FullyStructuredList
505    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
506  CheckExplicitInitList(Entity, IL, T, newIndex,
507                        FullyStructuredList, newStructuredIndex,
508                        /*TopLevelObject=*/true);
509
510  if (!hadError && !VerifyOnly) {
511    bool RequiresSecondPass = false;
512    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
513    if (RequiresSecondPass && !hadError)
514      FillInValueInitializations(Entity, FullyStructuredList,
515                                 RequiresSecondPass);
516  }
517}
518
519int InitListChecker::numArrayElements(QualType DeclType) {
520  // FIXME: use a proper constant
521  int maxElements = 0x7FFFFFFF;
522  if (const ConstantArrayType *CAT =
523        SemaRef.Context.getAsConstantArrayType(DeclType)) {
524    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
525  }
526  return maxElements;
527}
528
529int InitListChecker::numStructUnionElements(QualType DeclType) {
530  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
531  int InitializableMembers = 0;
532  for (RecordDecl::field_iterator
533         Field = structDecl->field_begin(),
534         FieldEnd = structDecl->field_end();
535       Field != FieldEnd; ++Field) {
536    if (!Field->isUnnamedBitfield())
537      ++InitializableMembers;
538  }
539  if (structDecl->isUnion())
540    return std::min(InitializableMembers, 1);
541  return InitializableMembers - structDecl->hasFlexibleArrayMember();
542}
543
544void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
545                                            InitListExpr *ParentIList,
546                                            QualType T, unsigned &Index,
547                                            InitListExpr *StructuredList,
548                                            unsigned &StructuredIndex) {
549  int maxElements = 0;
550
551  if (T->isArrayType())
552    maxElements = numArrayElements(T);
553  else if (T->isRecordType())
554    maxElements = numStructUnionElements(T);
555  else if (T->isVectorType())
556    maxElements = T->getAs<VectorType>()->getNumElements();
557  else
558    llvm_unreachable("CheckImplicitInitList(): Illegal type");
559
560  if (maxElements == 0) {
561    if (!VerifyOnly)
562      SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
563                   diag::err_implicit_empty_initializer);
564    ++Index;
565    hadError = true;
566    return;
567  }
568
569  // Build a structured initializer list corresponding to this subobject.
570  InitListExpr *StructuredSubobjectInitList
571    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
572                                 StructuredIndex,
573          SourceRange(ParentIList->getInit(Index)->getLocStart(),
574                      ParentIList->getSourceRange().getEnd()));
575  unsigned StructuredSubobjectInitIndex = 0;
576
577  // Check the element types and build the structural subobject.
578  unsigned StartIndex = Index;
579  CheckListElementTypes(Entity, ParentIList, T,
580                        /*SubobjectIsDesignatorContext=*/false, Index,
581                        StructuredSubobjectInitList,
582                        StructuredSubobjectInitIndex);
583
584  if (VerifyOnly) {
585    if (!AllowBraceElision && (T->isArrayType() || T->isRecordType()))
586      hadError = true;
587  } else {
588    StructuredSubobjectInitList->setType(T);
589
590    unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
591    // Update the structured sub-object initializer so that it's ending
592    // range corresponds with the end of the last initializer it used.
593    if (EndIndex < ParentIList->getNumInits()) {
594      SourceLocation EndLoc
595        = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
596      StructuredSubobjectInitList->setRBraceLoc(EndLoc);
597    }
598
599    // Complain about missing braces.
600    if (T->isArrayType() || T->isRecordType()) {
601      SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
602                    AllowBraceElision ? diag::warn_missing_braces :
603                                        diag::err_missing_braces)
604        << StructuredSubobjectInitList->getSourceRange()
605        << FixItHint::CreateInsertion(
606              StructuredSubobjectInitList->getLocStart(), "{")
607        << FixItHint::CreateInsertion(
608              SemaRef.PP.getLocForEndOfToken(
609                                      StructuredSubobjectInitList->getLocEnd()),
610              "}");
611      if (!AllowBraceElision)
612        hadError = true;
613    }
614  }
615}
616
617void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
618                                            InitListExpr *IList, QualType &T,
619                                            unsigned &Index,
620                                            InitListExpr *StructuredList,
621                                            unsigned &StructuredIndex,
622                                            bool TopLevelObject) {
623  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
624  if (!VerifyOnly) {
625    SyntacticToSemantic[IList] = StructuredList;
626    StructuredList->setSyntacticForm(IList);
627  }
628  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
629                        Index, StructuredList, StructuredIndex, TopLevelObject);
630  if (!VerifyOnly) {
631    QualType ExprTy = T;
632    if (!ExprTy->isArrayType())
633      ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
634    IList->setType(ExprTy);
635    StructuredList->setType(ExprTy);
636  }
637  if (hadError)
638    return;
639
640  if (Index < IList->getNumInits()) {
641    // We have leftover initializers
642    if (VerifyOnly) {
643      if (SemaRef.getLangOpts().CPlusPlus ||
644          (SemaRef.getLangOpts().OpenCL &&
645           IList->getType()->isVectorType())) {
646        hadError = true;
647      }
648      return;
649    }
650
651    if (StructuredIndex == 1 &&
652        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
653      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
654      if (SemaRef.getLangOpts().CPlusPlus) {
655        DK = diag::err_excess_initializers_in_char_array_initializer;
656        hadError = true;
657      }
658      // Special-case
659      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
660        << IList->getInit(Index)->getSourceRange();
661    } else if (!T->isIncompleteType()) {
662      // Don't complain for incomplete types, since we'll get an error
663      // elsewhere
664      QualType CurrentObjectType = StructuredList->getType();
665      int initKind =
666        CurrentObjectType->isArrayType()? 0 :
667        CurrentObjectType->isVectorType()? 1 :
668        CurrentObjectType->isScalarType()? 2 :
669        CurrentObjectType->isUnionType()? 3 :
670        4;
671
672      unsigned DK = diag::warn_excess_initializers;
673      if (SemaRef.getLangOpts().CPlusPlus) {
674        DK = diag::err_excess_initializers;
675        hadError = true;
676      }
677      if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
678        DK = diag::err_excess_initializers;
679        hadError = true;
680      }
681
682      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
683        << initKind << IList->getInit(Index)->getSourceRange();
684    }
685  }
686
687  if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
688      !TopLevelObject)
689    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
690      << IList->getSourceRange()
691      << FixItHint::CreateRemoval(IList->getLocStart())
692      << FixItHint::CreateRemoval(IList->getLocEnd());
693}
694
695void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
696                                            InitListExpr *IList,
697                                            QualType &DeclType,
698                                            bool SubobjectIsDesignatorContext,
699                                            unsigned &Index,
700                                            InitListExpr *StructuredList,
701                                            unsigned &StructuredIndex,
702                                            bool TopLevelObject) {
703  if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
704    // Explicitly braced initializer for complex type can be real+imaginary
705    // parts.
706    CheckComplexType(Entity, IList, DeclType, Index,
707                     StructuredList, StructuredIndex);
708  } else if (DeclType->isScalarType()) {
709    CheckScalarType(Entity, IList, DeclType, Index,
710                    StructuredList, StructuredIndex);
711  } else if (DeclType->isVectorType()) {
712    CheckVectorType(Entity, IList, DeclType, Index,
713                    StructuredList, StructuredIndex);
714  } else if (DeclType->isRecordType()) {
715    assert(DeclType->isAggregateType() &&
716           "non-aggregate records should be handed in CheckSubElementType");
717    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
718    CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
719                          SubobjectIsDesignatorContext, Index,
720                          StructuredList, StructuredIndex,
721                          TopLevelObject);
722  } else if (DeclType->isArrayType()) {
723    llvm::APSInt Zero(
724                    SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
725                    false);
726    CheckArrayType(Entity, IList, DeclType, Zero,
727                   SubobjectIsDesignatorContext, Index,
728                   StructuredList, StructuredIndex);
729  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
730    // This type is invalid, issue a diagnostic.
731    ++Index;
732    if (!VerifyOnly)
733      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
734        << DeclType;
735    hadError = true;
736  } else if (DeclType->isReferenceType()) {
737    CheckReferenceType(Entity, IList, DeclType, Index,
738                       StructuredList, StructuredIndex);
739  } else if (DeclType->isObjCObjectType()) {
740    if (!VerifyOnly)
741      SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
742        << DeclType;
743    hadError = true;
744  } else {
745    if (!VerifyOnly)
746      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
747        << DeclType;
748    hadError = true;
749  }
750}
751
752void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
753                                          InitListExpr *IList,
754                                          QualType ElemType,
755                                          unsigned &Index,
756                                          InitListExpr *StructuredList,
757                                          unsigned &StructuredIndex) {
758  Expr *expr = IList->getInit(Index);
759  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
760    if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
761      unsigned newIndex = 0;
762      unsigned newStructuredIndex = 0;
763      InitListExpr *newStructuredList
764        = getStructuredSubobjectInit(IList, Index, ElemType,
765                                     StructuredList, StructuredIndex,
766                                     SubInitList->getSourceRange());
767      CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
768                            newStructuredList, newStructuredIndex);
769      ++StructuredIndex;
770      ++Index;
771      return;
772    }
773    assert(SemaRef.getLangOpts().CPlusPlus &&
774           "non-aggregate records are only possible in C++");
775    // C++ initialization is handled later.
776  }
777
778  if (ElemType->isScalarType()) {
779    return CheckScalarType(Entity, IList, ElemType, Index,
780                           StructuredList, StructuredIndex);
781  } else if (ElemType->isReferenceType()) {
782    return CheckReferenceType(Entity, IList, ElemType, Index,
783                              StructuredList, StructuredIndex);
784  }
785
786  if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
787    // arrayType can be incomplete if we're initializing a flexible
788    // array member.  There's nothing we can do with the completed
789    // type here, though.
790
791    if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
792      if (!VerifyOnly) {
793        CheckStringInit(Str, ElemType, arrayType, SemaRef);
794        UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
795      }
796      ++Index;
797      return;
798    }
799
800    // Fall through for subaggregate initialization.
801
802  } else if (SemaRef.getLangOpts().CPlusPlus) {
803    // C++ [dcl.init.aggr]p12:
804    //   All implicit type conversions (clause 4) are considered when
805    //   initializing the aggregate member with an initializer from
806    //   an initializer-list. If the initializer can initialize a
807    //   member, the member is initialized. [...]
808
809    // FIXME: Better EqualLoc?
810    InitializationKind Kind =
811      InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
812    InitializationSequence Seq(SemaRef, Entity, Kind, expr);
813
814    if (Seq) {
815      if (!VerifyOnly) {
816        ExprResult Result =
817          Seq.Perform(SemaRef, Entity, Kind, expr);
818        if (Result.isInvalid())
819          hadError = true;
820
821        UpdateStructuredListElement(StructuredList, StructuredIndex,
822                                    Result.takeAs<Expr>());
823      }
824      ++Index;
825      return;
826    }
827
828    // Fall through for subaggregate initialization
829  } else {
830    // C99 6.7.8p13:
831    //
832    //   The initializer for a structure or union object that has
833    //   automatic storage duration shall be either an initializer
834    //   list as described below, or a single expression that has
835    //   compatible structure or union type. In the latter case, the
836    //   initial value of the object, including unnamed members, is
837    //   that of the expression.
838    ExprResult ExprRes = SemaRef.Owned(expr);
839    if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
840        SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
841                                                 !VerifyOnly)
842          == Sema::Compatible) {
843      if (ExprRes.isInvalid())
844        hadError = true;
845      else {
846        ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
847          if (ExprRes.isInvalid())
848            hadError = true;
849      }
850      UpdateStructuredListElement(StructuredList, StructuredIndex,
851                                  ExprRes.takeAs<Expr>());
852      ++Index;
853      return;
854    }
855    ExprRes.release();
856    // Fall through for subaggregate initialization
857  }
858
859  // C++ [dcl.init.aggr]p12:
860  //
861  //   [...] Otherwise, if the member is itself a non-empty
862  //   subaggregate, brace elision is assumed and the initializer is
863  //   considered for the initialization of the first member of
864  //   the subaggregate.
865  if (!SemaRef.getLangOpts().OpenCL &&
866      (ElemType->isAggregateType() || ElemType->isVectorType())) {
867    CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
868                          StructuredIndex);
869    ++StructuredIndex;
870  } else {
871    if (!VerifyOnly) {
872      // We cannot initialize this element, so let
873      // PerformCopyInitialization produce the appropriate diagnostic.
874      SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
875                                        SemaRef.Owned(expr),
876                                        /*TopLevelOfInitList=*/true);
877    }
878    hadError = true;
879    ++Index;
880    ++StructuredIndex;
881  }
882}
883
884void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
885                                       InitListExpr *IList, QualType DeclType,
886                                       unsigned &Index,
887                                       InitListExpr *StructuredList,
888                                       unsigned &StructuredIndex) {
889  assert(Index == 0 && "Index in explicit init list must be zero");
890
891  // As an extension, clang supports complex initializers, which initialize
892  // a complex number component-wise.  When an explicit initializer list for
893  // a complex number contains two two initializers, this extension kicks in:
894  // it exepcts the initializer list to contain two elements convertible to
895  // the element type of the complex type. The first element initializes
896  // the real part, and the second element intitializes the imaginary part.
897
898  if (IList->getNumInits() != 2)
899    return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
900                           StructuredIndex);
901
902  // This is an extension in C.  (The builtin _Complex type does not exist
903  // in the C++ standard.)
904  if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
905    SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
906      << IList->getSourceRange();
907
908  // Initialize the complex number.
909  QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
910  InitializedEntity ElementEntity =
911    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
912
913  for (unsigned i = 0; i < 2; ++i) {
914    ElementEntity.setElementIndex(Index);
915    CheckSubElementType(ElementEntity, IList, elementType, Index,
916                        StructuredList, StructuredIndex);
917  }
918}
919
920
921void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
922                                      InitListExpr *IList, QualType DeclType,
923                                      unsigned &Index,
924                                      InitListExpr *StructuredList,
925                                      unsigned &StructuredIndex) {
926  if (Index >= IList->getNumInits()) {
927    if (!VerifyOnly)
928      SemaRef.Diag(IList->getLocStart(),
929                   SemaRef.getLangOpts().CPlusPlus11 ?
930                     diag::warn_cxx98_compat_empty_scalar_initializer :
931                     diag::err_empty_scalar_initializer)
932        << IList->getSourceRange();
933    hadError = !SemaRef.getLangOpts().CPlusPlus11;
934    ++Index;
935    ++StructuredIndex;
936    return;
937  }
938
939  Expr *expr = IList->getInit(Index);
940  if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
941    if (!VerifyOnly)
942      SemaRef.Diag(SubIList->getLocStart(),
943                   diag::warn_many_braces_around_scalar_init)
944        << SubIList->getSourceRange();
945
946    CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
947                    StructuredIndex);
948    return;
949  } else if (isa<DesignatedInitExpr>(expr)) {
950    if (!VerifyOnly)
951      SemaRef.Diag(expr->getLocStart(),
952                   diag::err_designator_for_scalar_init)
953        << DeclType << expr->getSourceRange();
954    hadError = true;
955    ++Index;
956    ++StructuredIndex;
957    return;
958  }
959
960  if (VerifyOnly) {
961    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
962      hadError = true;
963    ++Index;
964    return;
965  }
966
967  ExprResult Result =
968    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
969                                      SemaRef.Owned(expr),
970                                      /*TopLevelOfInitList=*/true);
971
972  Expr *ResultExpr = 0;
973
974  if (Result.isInvalid())
975    hadError = true; // types weren't compatible.
976  else {
977    ResultExpr = Result.takeAs<Expr>();
978
979    if (ResultExpr != expr) {
980      // The type was promoted, update initializer list.
981      IList->setInit(Index, ResultExpr);
982    }
983  }
984  if (hadError)
985    ++StructuredIndex;
986  else
987    UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
988  ++Index;
989}
990
991void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
992                                         InitListExpr *IList, QualType DeclType,
993                                         unsigned &Index,
994                                         InitListExpr *StructuredList,
995                                         unsigned &StructuredIndex) {
996  if (Index >= IList->getNumInits()) {
997    // FIXME: It would be wonderful if we could point at the actual member. In
998    // general, it would be useful to pass location information down the stack,
999    // so that we know the location (or decl) of the "current object" being
1000    // initialized.
1001    if (!VerifyOnly)
1002      SemaRef.Diag(IList->getLocStart(),
1003                    diag::err_init_reference_member_uninitialized)
1004        << DeclType
1005        << IList->getSourceRange();
1006    hadError = true;
1007    ++Index;
1008    ++StructuredIndex;
1009    return;
1010  }
1011
1012  Expr *expr = IList->getInit(Index);
1013  if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1014    if (!VerifyOnly)
1015      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1016        << DeclType << IList->getSourceRange();
1017    hadError = true;
1018    ++Index;
1019    ++StructuredIndex;
1020    return;
1021  }
1022
1023  if (VerifyOnly) {
1024    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1025      hadError = true;
1026    ++Index;
1027    return;
1028  }
1029
1030  ExprResult Result =
1031    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1032                                      SemaRef.Owned(expr),
1033                                      /*TopLevelOfInitList=*/true);
1034
1035  if (Result.isInvalid())
1036    hadError = true;
1037
1038  expr = Result.takeAs<Expr>();
1039  IList->setInit(Index, expr);
1040
1041  if (hadError)
1042    ++StructuredIndex;
1043  else
1044    UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1045  ++Index;
1046}
1047
1048void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1049                                      InitListExpr *IList, QualType DeclType,
1050                                      unsigned &Index,
1051                                      InitListExpr *StructuredList,
1052                                      unsigned &StructuredIndex) {
1053  const VectorType *VT = DeclType->getAs<VectorType>();
1054  unsigned maxElements = VT->getNumElements();
1055  unsigned numEltsInit = 0;
1056  QualType elementType = VT->getElementType();
1057
1058  if (Index >= IList->getNumInits()) {
1059    // Make sure the element type can be value-initialized.
1060    if (VerifyOnly)
1061      CheckValueInitializable(
1062          InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1063    return;
1064  }
1065
1066  if (!SemaRef.getLangOpts().OpenCL) {
1067    // If the initializing element is a vector, try to copy-initialize
1068    // instead of breaking it apart (which is doomed to failure anyway).
1069    Expr *Init = IList->getInit(Index);
1070    if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1071      if (VerifyOnly) {
1072        if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1073          hadError = true;
1074        ++Index;
1075        return;
1076      }
1077
1078      ExprResult Result =
1079        SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1080                                          SemaRef.Owned(Init),
1081                                          /*TopLevelOfInitList=*/true);
1082
1083      Expr *ResultExpr = 0;
1084      if (Result.isInvalid())
1085        hadError = true; // types weren't compatible.
1086      else {
1087        ResultExpr = Result.takeAs<Expr>();
1088
1089        if (ResultExpr != Init) {
1090          // The type was promoted, update initializer list.
1091          IList->setInit(Index, ResultExpr);
1092        }
1093      }
1094      if (hadError)
1095        ++StructuredIndex;
1096      else
1097        UpdateStructuredListElement(StructuredList, StructuredIndex,
1098                                    ResultExpr);
1099      ++Index;
1100      return;
1101    }
1102
1103    InitializedEntity ElementEntity =
1104      InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1105
1106    for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1107      // Don't attempt to go past the end of the init list
1108      if (Index >= IList->getNumInits()) {
1109        if (VerifyOnly)
1110          CheckValueInitializable(ElementEntity);
1111        break;
1112      }
1113
1114      ElementEntity.setElementIndex(Index);
1115      CheckSubElementType(ElementEntity, IList, elementType, Index,
1116                          StructuredList, StructuredIndex);
1117    }
1118    return;
1119  }
1120
1121  InitializedEntity ElementEntity =
1122    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1123
1124  // OpenCL initializers allows vectors to be constructed from vectors.
1125  for (unsigned i = 0; i < maxElements; ++i) {
1126    // Don't attempt to go past the end of the init list
1127    if (Index >= IList->getNumInits())
1128      break;
1129
1130    ElementEntity.setElementIndex(Index);
1131
1132    QualType IType = IList->getInit(Index)->getType();
1133    if (!IType->isVectorType()) {
1134      CheckSubElementType(ElementEntity, IList, elementType, Index,
1135                          StructuredList, StructuredIndex);
1136      ++numEltsInit;
1137    } else {
1138      QualType VecType;
1139      const VectorType *IVT = IType->getAs<VectorType>();
1140      unsigned numIElts = IVT->getNumElements();
1141
1142      if (IType->isExtVectorType())
1143        VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1144      else
1145        VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1146                                                IVT->getVectorKind());
1147      CheckSubElementType(ElementEntity, IList, VecType, Index,
1148                          StructuredList, StructuredIndex);
1149      numEltsInit += numIElts;
1150    }
1151  }
1152
1153  // OpenCL requires all elements to be initialized.
1154  if (numEltsInit != maxElements) {
1155    if (!VerifyOnly)
1156      SemaRef.Diag(IList->getLocStart(),
1157                   diag::err_vector_incorrect_num_initializers)
1158        << (numEltsInit < maxElements) << maxElements << numEltsInit;
1159    hadError = true;
1160  }
1161}
1162
1163void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1164                                     InitListExpr *IList, QualType &DeclType,
1165                                     llvm::APSInt elementIndex,
1166                                     bool SubobjectIsDesignatorContext,
1167                                     unsigned &Index,
1168                                     InitListExpr *StructuredList,
1169                                     unsigned &StructuredIndex) {
1170  const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1171
1172  // Check for the special-case of initializing an array with a string.
1173  if (Index < IList->getNumInits()) {
1174    if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
1175                                 SemaRef.Context)) {
1176      // We place the string literal directly into the resulting
1177      // initializer list. This is the only place where the structure
1178      // of the structured initializer list doesn't match exactly,
1179      // because doing so would involve allocating one character
1180      // constant for each string.
1181      if (!VerifyOnly) {
1182        CheckStringInit(Str, DeclType, arrayType, SemaRef);
1183        UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
1184        StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1185      }
1186      ++Index;
1187      return;
1188    }
1189  }
1190  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1191    // Check for VLAs; in standard C it would be possible to check this
1192    // earlier, but I don't know where clang accepts VLAs (gcc accepts
1193    // them in all sorts of strange places).
1194    if (!VerifyOnly)
1195      SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1196                    diag::err_variable_object_no_init)
1197        << VAT->getSizeExpr()->getSourceRange();
1198    hadError = true;
1199    ++Index;
1200    ++StructuredIndex;
1201    return;
1202  }
1203
1204  // We might know the maximum number of elements in advance.
1205  llvm::APSInt maxElements(elementIndex.getBitWidth(),
1206                           elementIndex.isUnsigned());
1207  bool maxElementsKnown = false;
1208  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1209    maxElements = CAT->getSize();
1210    elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1211    elementIndex.setIsUnsigned(maxElements.isUnsigned());
1212    maxElementsKnown = true;
1213  }
1214
1215  QualType elementType = arrayType->getElementType();
1216  while (Index < IList->getNumInits()) {
1217    Expr *Init = IList->getInit(Index);
1218    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1219      // If we're not the subobject that matches up with the '{' for
1220      // the designator, we shouldn't be handling the
1221      // designator. Return immediately.
1222      if (!SubobjectIsDesignatorContext)
1223        return;
1224
1225      // Handle this designated initializer. elementIndex will be
1226      // updated to be the next array element we'll initialize.
1227      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1228                                     DeclType, 0, &elementIndex, Index,
1229                                     StructuredList, StructuredIndex, true,
1230                                     false)) {
1231        hadError = true;
1232        continue;
1233      }
1234
1235      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1236        maxElements = maxElements.extend(elementIndex.getBitWidth());
1237      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1238        elementIndex = elementIndex.extend(maxElements.getBitWidth());
1239      elementIndex.setIsUnsigned(maxElements.isUnsigned());
1240
1241      // If the array is of incomplete type, keep track of the number of
1242      // elements in the initializer.
1243      if (!maxElementsKnown && elementIndex > maxElements)
1244        maxElements = elementIndex;
1245
1246      continue;
1247    }
1248
1249    // If we know the maximum number of elements, and we've already
1250    // hit it, stop consuming elements in the initializer list.
1251    if (maxElementsKnown && elementIndex == maxElements)
1252      break;
1253
1254    InitializedEntity ElementEntity =
1255      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1256                                           Entity);
1257    // Check this element.
1258    CheckSubElementType(ElementEntity, IList, elementType, Index,
1259                        StructuredList, StructuredIndex);
1260    ++elementIndex;
1261
1262    // If the array is of incomplete type, keep track of the number of
1263    // elements in the initializer.
1264    if (!maxElementsKnown && elementIndex > maxElements)
1265      maxElements = elementIndex;
1266  }
1267  if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1268    // If this is an incomplete array type, the actual type needs to
1269    // be calculated here.
1270    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1271    if (maxElements == Zero) {
1272      // Sizing an array implicitly to zero is not allowed by ISO C,
1273      // but is supported by GNU.
1274      SemaRef.Diag(IList->getLocStart(),
1275                    diag::ext_typecheck_zero_array_size);
1276    }
1277
1278    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1279                                                     ArrayType::Normal, 0);
1280  }
1281  if (!hadError && VerifyOnly) {
1282    // Check if there are any members of the array that get value-initialized.
1283    // If so, check if doing that is possible.
1284    // FIXME: This needs to detect holes left by designated initializers too.
1285    if (maxElementsKnown && elementIndex < maxElements)
1286      CheckValueInitializable(InitializedEntity::InitializeElement(
1287                                                  SemaRef.Context, 0, Entity));
1288  }
1289}
1290
1291bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1292                                             Expr *InitExpr,
1293                                             FieldDecl *Field,
1294                                             bool TopLevelObject) {
1295  // Handle GNU flexible array initializers.
1296  unsigned FlexArrayDiag;
1297  if (isa<InitListExpr>(InitExpr) &&
1298      cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1299    // Empty flexible array init always allowed as an extension
1300    FlexArrayDiag = diag::ext_flexible_array_init;
1301  } else if (SemaRef.getLangOpts().CPlusPlus) {
1302    // Disallow flexible array init in C++; it is not required for gcc
1303    // compatibility, and it needs work to IRGen correctly in general.
1304    FlexArrayDiag = diag::err_flexible_array_init;
1305  } else if (!TopLevelObject) {
1306    // Disallow flexible array init on non-top-level object
1307    FlexArrayDiag = diag::err_flexible_array_init;
1308  } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1309    // Disallow flexible array init on anything which is not a variable.
1310    FlexArrayDiag = diag::err_flexible_array_init;
1311  } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1312    // Disallow flexible array init on local variables.
1313    FlexArrayDiag = diag::err_flexible_array_init;
1314  } else {
1315    // Allow other cases.
1316    FlexArrayDiag = diag::ext_flexible_array_init;
1317  }
1318
1319  if (!VerifyOnly) {
1320    SemaRef.Diag(InitExpr->getLocStart(),
1321                 FlexArrayDiag)
1322      << InitExpr->getLocStart();
1323    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1324      << Field;
1325  }
1326
1327  return FlexArrayDiag != diag::ext_flexible_array_init;
1328}
1329
1330void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1331                                            InitListExpr *IList,
1332                                            QualType DeclType,
1333                                            RecordDecl::field_iterator Field,
1334                                            bool SubobjectIsDesignatorContext,
1335                                            unsigned &Index,
1336                                            InitListExpr *StructuredList,
1337                                            unsigned &StructuredIndex,
1338                                            bool TopLevelObject) {
1339  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1340
1341  // If the record is invalid, some of it's members are invalid. To avoid
1342  // confusion, we forgo checking the intializer for the entire record.
1343  if (structDecl->isInvalidDecl()) {
1344    // Assume it was supposed to consume a single initializer.
1345    ++Index;
1346    hadError = true;
1347    return;
1348  }
1349
1350  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1351    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1352
1353    // If there's a default initializer, use it.
1354    if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1355      if (VerifyOnly)
1356        return;
1357      for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1358           Field != FieldEnd; ++Field) {
1359        if (Field->hasInClassInitializer()) {
1360          StructuredList->setInitializedFieldInUnion(*Field);
1361          // FIXME: Actually build a CXXDefaultInitExpr?
1362          return;
1363        }
1364      }
1365    }
1366
1367    // Value-initialize the first named member of the union.
1368    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1369         Field != FieldEnd; ++Field) {
1370      if (Field->getDeclName()) {
1371        if (VerifyOnly)
1372          CheckValueInitializable(
1373              InitializedEntity::InitializeMember(*Field, &Entity));
1374        else
1375          StructuredList->setInitializedFieldInUnion(*Field);
1376        break;
1377      }
1378    }
1379    return;
1380  }
1381
1382  // If structDecl is a forward declaration, this loop won't do
1383  // anything except look at designated initializers; That's okay,
1384  // because an error should get printed out elsewhere. It might be
1385  // worthwhile to skip over the rest of the initializer, though.
1386  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1387  RecordDecl::field_iterator FieldEnd = RD->field_end();
1388  bool InitializedSomething = false;
1389  bool CheckForMissingFields = true;
1390  while (Index < IList->getNumInits()) {
1391    Expr *Init = IList->getInit(Index);
1392
1393    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1394      // If we're not the subobject that matches up with the '{' for
1395      // the designator, we shouldn't be handling the
1396      // designator. Return immediately.
1397      if (!SubobjectIsDesignatorContext)
1398        return;
1399
1400      // Handle this designated initializer. Field will be updated to
1401      // the next field that we'll be initializing.
1402      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1403                                     DeclType, &Field, 0, Index,
1404                                     StructuredList, StructuredIndex,
1405                                     true, TopLevelObject))
1406        hadError = true;
1407
1408      InitializedSomething = true;
1409
1410      // Disable check for missing fields when designators are used.
1411      // This matches gcc behaviour.
1412      CheckForMissingFields = false;
1413      continue;
1414    }
1415
1416    if (Field == FieldEnd) {
1417      // We've run out of fields. We're done.
1418      break;
1419    }
1420
1421    // We've already initialized a member of a union. We're done.
1422    if (InitializedSomething && DeclType->isUnionType())
1423      break;
1424
1425    // If we've hit the flexible array member at the end, we're done.
1426    if (Field->getType()->isIncompleteArrayType())
1427      break;
1428
1429    if (Field->isUnnamedBitfield()) {
1430      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1431      ++Field;
1432      continue;
1433    }
1434
1435    // Make sure we can use this declaration.
1436    bool InvalidUse;
1437    if (VerifyOnly)
1438      InvalidUse = !SemaRef.CanUseDecl(*Field);
1439    else
1440      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1441                                          IList->getInit(Index)->getLocStart());
1442    if (InvalidUse) {
1443      ++Index;
1444      ++Field;
1445      hadError = true;
1446      continue;
1447    }
1448
1449    InitializedEntity MemberEntity =
1450      InitializedEntity::InitializeMember(*Field, &Entity);
1451    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1452                        StructuredList, StructuredIndex);
1453    InitializedSomething = true;
1454
1455    if (DeclType->isUnionType() && !VerifyOnly) {
1456      // Initialize the first field within the union.
1457      StructuredList->setInitializedFieldInUnion(*Field);
1458    }
1459
1460    ++Field;
1461  }
1462
1463  // Emit warnings for missing struct field initializers.
1464  if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1465      Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1466      !DeclType->isUnionType()) {
1467    // It is possible we have one or more unnamed bitfields remaining.
1468    // Find first (if any) named field and emit warning.
1469    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1470         it != end; ++it) {
1471      if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1472        SemaRef.Diag(IList->getSourceRange().getEnd(),
1473                     diag::warn_missing_field_initializers) << it->getName();
1474        break;
1475      }
1476    }
1477  }
1478
1479  // Check that any remaining fields can be value-initialized.
1480  if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1481      !Field->getType()->isIncompleteArrayType()) {
1482    // FIXME: Should check for holes left by designated initializers too.
1483    for (; Field != FieldEnd && !hadError; ++Field) {
1484      if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1485        CheckValueInitializable(
1486            InitializedEntity::InitializeMember(*Field, &Entity));
1487    }
1488  }
1489
1490  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1491      Index >= IList->getNumInits())
1492    return;
1493
1494  if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1495                             TopLevelObject)) {
1496    hadError = true;
1497    ++Index;
1498    return;
1499  }
1500
1501  InitializedEntity MemberEntity =
1502    InitializedEntity::InitializeMember(*Field, &Entity);
1503
1504  if (isa<InitListExpr>(IList->getInit(Index)))
1505    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1506                        StructuredList, StructuredIndex);
1507  else
1508    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1509                          StructuredList, StructuredIndex);
1510}
1511
1512/// \brief Expand a field designator that refers to a member of an
1513/// anonymous struct or union into a series of field designators that
1514/// refers to the field within the appropriate subobject.
1515///
1516static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1517                                           DesignatedInitExpr *DIE,
1518                                           unsigned DesigIdx,
1519                                           IndirectFieldDecl *IndirectField) {
1520  typedef DesignatedInitExpr::Designator Designator;
1521
1522  // Build the replacement designators.
1523  SmallVector<Designator, 4> Replacements;
1524  for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1525       PE = IndirectField->chain_end(); PI != PE; ++PI) {
1526    if (PI + 1 == PE)
1527      Replacements.push_back(Designator((IdentifierInfo *)0,
1528                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1529                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1530    else
1531      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1532                                        SourceLocation()));
1533    assert(isa<FieldDecl>(*PI));
1534    Replacements.back().setField(cast<FieldDecl>(*PI));
1535  }
1536
1537  // Expand the current designator into the set of replacement
1538  // designators, so we have a full subobject path down to where the
1539  // member of the anonymous struct/union is actually stored.
1540  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1541                        &Replacements[0] + Replacements.size());
1542}
1543
1544/// \brief Given an implicit anonymous field, search the IndirectField that
1545///  corresponds to FieldName.
1546static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1547                                                 IdentifierInfo *FieldName) {
1548  if (!FieldName)
1549    return 0;
1550
1551  assert(AnonField->isAnonymousStructOrUnion());
1552  Decl *NextDecl = AnonField->getNextDeclInContext();
1553  while (IndirectFieldDecl *IF =
1554          dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1555    if (FieldName == IF->getAnonField()->getIdentifier())
1556      return IF;
1557    NextDecl = NextDecl->getNextDeclInContext();
1558  }
1559  return 0;
1560}
1561
1562static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1563                                                   DesignatedInitExpr *DIE) {
1564  unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1565  SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1566  for (unsigned I = 0; I < NumIndexExprs; ++I)
1567    IndexExprs[I] = DIE->getSubExpr(I + 1);
1568  return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1569                                    DIE->size(), IndexExprs,
1570                                    DIE->getEqualOrColonLoc(),
1571                                    DIE->usesGNUSyntax(), DIE->getInit());
1572}
1573
1574namespace {
1575
1576// Callback to only accept typo corrections that are for field members of
1577// the given struct or union.
1578class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1579 public:
1580  explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1581      : Record(RD) {}
1582
1583  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1584    FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1585    return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1586  }
1587
1588 private:
1589  RecordDecl *Record;
1590};
1591
1592}
1593
1594/// @brief Check the well-formedness of a C99 designated initializer.
1595///
1596/// Determines whether the designated initializer @p DIE, which
1597/// resides at the given @p Index within the initializer list @p
1598/// IList, is well-formed for a current object of type @p DeclType
1599/// (C99 6.7.8). The actual subobject that this designator refers to
1600/// within the current subobject is returned in either
1601/// @p NextField or @p NextElementIndex (whichever is appropriate).
1602///
1603/// @param IList  The initializer list in which this designated
1604/// initializer occurs.
1605///
1606/// @param DIE The designated initializer expression.
1607///
1608/// @param DesigIdx  The index of the current designator.
1609///
1610/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1611/// into which the designation in @p DIE should refer.
1612///
1613/// @param NextField  If non-NULL and the first designator in @p DIE is
1614/// a field, this will be set to the field declaration corresponding
1615/// to the field named by the designator.
1616///
1617/// @param NextElementIndex  If non-NULL and the first designator in @p
1618/// DIE is an array designator or GNU array-range designator, this
1619/// will be set to the last index initialized by this designator.
1620///
1621/// @param Index  Index into @p IList where the designated initializer
1622/// @p DIE occurs.
1623///
1624/// @param StructuredList  The initializer list expression that
1625/// describes all of the subobject initializers in the order they'll
1626/// actually be initialized.
1627///
1628/// @returns true if there was an error, false otherwise.
1629bool
1630InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1631                                            InitListExpr *IList,
1632                                            DesignatedInitExpr *DIE,
1633                                            unsigned DesigIdx,
1634                                            QualType &CurrentObjectType,
1635                                          RecordDecl::field_iterator *NextField,
1636                                            llvm::APSInt *NextElementIndex,
1637                                            unsigned &Index,
1638                                            InitListExpr *StructuredList,
1639                                            unsigned &StructuredIndex,
1640                                            bool FinishSubobjectInit,
1641                                            bool TopLevelObject) {
1642  if (DesigIdx == DIE->size()) {
1643    // Check the actual initialization for the designated object type.
1644    bool prevHadError = hadError;
1645
1646    // Temporarily remove the designator expression from the
1647    // initializer list that the child calls see, so that we don't try
1648    // to re-process the designator.
1649    unsigned OldIndex = Index;
1650    IList->setInit(OldIndex, DIE->getInit());
1651
1652    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1653                        StructuredList, StructuredIndex);
1654
1655    // Restore the designated initializer expression in the syntactic
1656    // form of the initializer list.
1657    if (IList->getInit(OldIndex) != DIE->getInit())
1658      DIE->setInit(IList->getInit(OldIndex));
1659    IList->setInit(OldIndex, DIE);
1660
1661    return hadError && !prevHadError;
1662  }
1663
1664  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1665  bool IsFirstDesignator = (DesigIdx == 0);
1666  if (!VerifyOnly) {
1667    assert((IsFirstDesignator || StructuredList) &&
1668           "Need a non-designated initializer list to start from");
1669
1670    // Determine the structural initializer list that corresponds to the
1671    // current subobject.
1672    StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1673      : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1674                                   StructuredList, StructuredIndex,
1675                                   SourceRange(D->getLocStart(),
1676                                               DIE->getLocEnd()));
1677    assert(StructuredList && "Expected a structured initializer list");
1678  }
1679
1680  if (D->isFieldDesignator()) {
1681    // C99 6.7.8p7:
1682    //
1683    //   If a designator has the form
1684    //
1685    //      . identifier
1686    //
1687    //   then the current object (defined below) shall have
1688    //   structure or union type and the identifier shall be the
1689    //   name of a member of that type.
1690    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1691    if (!RT) {
1692      SourceLocation Loc = D->getDotLoc();
1693      if (Loc.isInvalid())
1694        Loc = D->getFieldLoc();
1695      if (!VerifyOnly)
1696        SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1697          << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1698      ++Index;
1699      return true;
1700    }
1701
1702    // Note: we perform a linear search of the fields here, despite
1703    // the fact that we have a faster lookup method, because we always
1704    // need to compute the field's index.
1705    FieldDecl *KnownField = D->getField();
1706    IdentifierInfo *FieldName = D->getFieldName();
1707    unsigned FieldIndex = 0;
1708    RecordDecl::field_iterator
1709      Field = RT->getDecl()->field_begin(),
1710      FieldEnd = RT->getDecl()->field_end();
1711    for (; Field != FieldEnd; ++Field) {
1712      if (Field->isUnnamedBitfield())
1713        continue;
1714
1715      // If we find a field representing an anonymous field, look in the
1716      // IndirectFieldDecl that follow for the designated initializer.
1717      if (!KnownField && Field->isAnonymousStructOrUnion()) {
1718        if (IndirectFieldDecl *IF =
1719            FindIndirectFieldDesignator(*Field, FieldName)) {
1720          // In verify mode, don't modify the original.
1721          if (VerifyOnly)
1722            DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1723          ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1724          D = DIE->getDesignator(DesigIdx);
1725          break;
1726        }
1727      }
1728      if (KnownField && KnownField == *Field)
1729        break;
1730      if (FieldName && FieldName == Field->getIdentifier())
1731        break;
1732
1733      ++FieldIndex;
1734    }
1735
1736    if (Field == FieldEnd) {
1737      if (VerifyOnly) {
1738        ++Index;
1739        return true; // No typo correction when just trying this out.
1740      }
1741
1742      // There was no normal field in the struct with the designated
1743      // name. Perform another lookup for this name, which may find
1744      // something that we can't designate (e.g., a member function),
1745      // may find nothing, or may find a member of an anonymous
1746      // struct/union.
1747      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1748      FieldDecl *ReplacementField = 0;
1749      if (Lookup.empty()) {
1750        // Name lookup didn't find anything. Determine whether this
1751        // was a typo for another field name.
1752        FieldInitializerValidatorCCC Validator(RT->getDecl());
1753        TypoCorrection Corrected = SemaRef.CorrectTypo(
1754            DeclarationNameInfo(FieldName, D->getFieldLoc()),
1755            Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator,
1756            RT->getDecl());
1757        if (Corrected) {
1758          std::string CorrectedStr(
1759              Corrected.getAsString(SemaRef.getLangOpts()));
1760          std::string CorrectedQuotedStr(
1761              Corrected.getQuoted(SemaRef.getLangOpts()));
1762          ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1763          SemaRef.Diag(D->getFieldLoc(),
1764                       diag::err_field_designator_unknown_suggest)
1765            << FieldName << CurrentObjectType << CorrectedQuotedStr
1766            << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1767          SemaRef.Diag(ReplacementField->getLocation(),
1768                       diag::note_previous_decl) << CorrectedQuotedStr;
1769          hadError = true;
1770        } else {
1771          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1772            << FieldName << CurrentObjectType;
1773          ++Index;
1774          return true;
1775        }
1776      }
1777
1778      if (!ReplacementField) {
1779        // Name lookup found something, but it wasn't a field.
1780        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1781          << FieldName;
1782        SemaRef.Diag(Lookup.front()->getLocation(),
1783                      diag::note_field_designator_found);
1784        ++Index;
1785        return true;
1786      }
1787
1788      if (!KnownField) {
1789        // The replacement field comes from typo correction; find it
1790        // in the list of fields.
1791        FieldIndex = 0;
1792        Field = RT->getDecl()->field_begin();
1793        for (; Field != FieldEnd; ++Field) {
1794          if (Field->isUnnamedBitfield())
1795            continue;
1796
1797          if (ReplacementField == *Field ||
1798              Field->getIdentifier() == ReplacementField->getIdentifier())
1799            break;
1800
1801          ++FieldIndex;
1802        }
1803      }
1804    }
1805
1806    // All of the fields of a union are located at the same place in
1807    // the initializer list.
1808    if (RT->getDecl()->isUnion()) {
1809      FieldIndex = 0;
1810      if (!VerifyOnly)
1811        StructuredList->setInitializedFieldInUnion(*Field);
1812    }
1813
1814    // Make sure we can use this declaration.
1815    bool InvalidUse;
1816    if (VerifyOnly)
1817      InvalidUse = !SemaRef.CanUseDecl(*Field);
1818    else
1819      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1820    if (InvalidUse) {
1821      ++Index;
1822      return true;
1823    }
1824
1825    if (!VerifyOnly) {
1826      // Update the designator with the field declaration.
1827      D->setField(*Field);
1828
1829      // Make sure that our non-designated initializer list has space
1830      // for a subobject corresponding to this field.
1831      if (FieldIndex >= StructuredList->getNumInits())
1832        StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1833    }
1834
1835    // This designator names a flexible array member.
1836    if (Field->getType()->isIncompleteArrayType()) {
1837      bool Invalid = false;
1838      if ((DesigIdx + 1) != DIE->size()) {
1839        // We can't designate an object within the flexible array
1840        // member (because GCC doesn't allow it).
1841        if (!VerifyOnly) {
1842          DesignatedInitExpr::Designator *NextD
1843            = DIE->getDesignator(DesigIdx + 1);
1844          SemaRef.Diag(NextD->getLocStart(),
1845                        diag::err_designator_into_flexible_array_member)
1846            << SourceRange(NextD->getLocStart(),
1847                           DIE->getLocEnd());
1848          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1849            << *Field;
1850        }
1851        Invalid = true;
1852      }
1853
1854      if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1855          !isa<StringLiteral>(DIE->getInit())) {
1856        // The initializer is not an initializer list.
1857        if (!VerifyOnly) {
1858          SemaRef.Diag(DIE->getInit()->getLocStart(),
1859                        diag::err_flexible_array_init_needs_braces)
1860            << DIE->getInit()->getSourceRange();
1861          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1862            << *Field;
1863        }
1864        Invalid = true;
1865      }
1866
1867      // Check GNU flexible array initializer.
1868      if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1869                                             TopLevelObject))
1870        Invalid = true;
1871
1872      if (Invalid) {
1873        ++Index;
1874        return true;
1875      }
1876
1877      // Initialize the array.
1878      bool prevHadError = hadError;
1879      unsigned newStructuredIndex = FieldIndex;
1880      unsigned OldIndex = Index;
1881      IList->setInit(Index, DIE->getInit());
1882
1883      InitializedEntity MemberEntity =
1884        InitializedEntity::InitializeMember(*Field, &Entity);
1885      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1886                          StructuredList, newStructuredIndex);
1887
1888      IList->setInit(OldIndex, DIE);
1889      if (hadError && !prevHadError) {
1890        ++Field;
1891        ++FieldIndex;
1892        if (NextField)
1893          *NextField = Field;
1894        StructuredIndex = FieldIndex;
1895        return true;
1896      }
1897    } else {
1898      // Recurse to check later designated subobjects.
1899      QualType FieldType = Field->getType();
1900      unsigned newStructuredIndex = FieldIndex;
1901
1902      InitializedEntity MemberEntity =
1903        InitializedEntity::InitializeMember(*Field, &Entity);
1904      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1905                                     FieldType, 0, 0, Index,
1906                                     StructuredList, newStructuredIndex,
1907                                     true, false))
1908        return true;
1909    }
1910
1911    // Find the position of the next field to be initialized in this
1912    // subobject.
1913    ++Field;
1914    ++FieldIndex;
1915
1916    // If this the first designator, our caller will continue checking
1917    // the rest of this struct/class/union subobject.
1918    if (IsFirstDesignator) {
1919      if (NextField)
1920        *NextField = Field;
1921      StructuredIndex = FieldIndex;
1922      return false;
1923    }
1924
1925    if (!FinishSubobjectInit)
1926      return false;
1927
1928    // We've already initialized something in the union; we're done.
1929    if (RT->getDecl()->isUnion())
1930      return hadError;
1931
1932    // Check the remaining fields within this class/struct/union subobject.
1933    bool prevHadError = hadError;
1934
1935    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1936                          StructuredList, FieldIndex);
1937    return hadError && !prevHadError;
1938  }
1939
1940  // C99 6.7.8p6:
1941  //
1942  //   If a designator has the form
1943  //
1944  //      [ constant-expression ]
1945  //
1946  //   then the current object (defined below) shall have array
1947  //   type and the expression shall be an integer constant
1948  //   expression. If the array is of unknown size, any
1949  //   nonnegative value is valid.
1950  //
1951  // Additionally, cope with the GNU extension that permits
1952  // designators of the form
1953  //
1954  //      [ constant-expression ... constant-expression ]
1955  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1956  if (!AT) {
1957    if (!VerifyOnly)
1958      SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1959        << CurrentObjectType;
1960    ++Index;
1961    return true;
1962  }
1963
1964  Expr *IndexExpr = 0;
1965  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1966  if (D->isArrayDesignator()) {
1967    IndexExpr = DIE->getArrayIndex(*D);
1968    DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
1969    DesignatedEndIndex = DesignatedStartIndex;
1970  } else {
1971    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1972
1973    DesignatedStartIndex =
1974      DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
1975    DesignatedEndIndex =
1976      DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
1977    IndexExpr = DIE->getArrayRangeEnd(*D);
1978
1979    // Codegen can't handle evaluating array range designators that have side
1980    // effects, because we replicate the AST value for each initialized element.
1981    // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
1982    // elements with something that has a side effect, so codegen can emit an
1983    // "error unsupported" error instead of miscompiling the app.
1984    if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
1985        DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
1986      FullyStructuredList->sawArrayRangeDesignator();
1987  }
1988
1989  if (isa<ConstantArrayType>(AT)) {
1990    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1991    DesignatedStartIndex
1992      = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1993    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1994    DesignatedEndIndex
1995      = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1996    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1997    if (DesignatedEndIndex >= MaxElements) {
1998      if (!VerifyOnly)
1999        SemaRef.Diag(IndexExpr->getLocStart(),
2000                      diag::err_array_designator_too_large)
2001          << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2002          << IndexExpr->getSourceRange();
2003      ++Index;
2004      return true;
2005    }
2006  } else {
2007    // Make sure the bit-widths and signedness match.
2008    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
2009      DesignatedEndIndex
2010        = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
2011    else if (DesignatedStartIndex.getBitWidth() <
2012             DesignatedEndIndex.getBitWidth())
2013      DesignatedStartIndex
2014        = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
2015    DesignatedStartIndex.setIsUnsigned(true);
2016    DesignatedEndIndex.setIsUnsigned(true);
2017  }
2018
2019  // Make sure that our non-designated initializer list has space
2020  // for a subobject corresponding to this array element.
2021  if (!VerifyOnly &&
2022      DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2023    StructuredList->resizeInits(SemaRef.Context,
2024                                DesignatedEndIndex.getZExtValue() + 1);
2025
2026  // Repeatedly perform subobject initializations in the range
2027  // [DesignatedStartIndex, DesignatedEndIndex].
2028
2029  // Move to the next designator
2030  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2031  unsigned OldIndex = Index;
2032
2033  InitializedEntity ElementEntity =
2034    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2035
2036  while (DesignatedStartIndex <= DesignatedEndIndex) {
2037    // Recurse to check later designated subobjects.
2038    QualType ElementType = AT->getElementType();
2039    Index = OldIndex;
2040
2041    ElementEntity.setElementIndex(ElementIndex);
2042    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2043                                   ElementType, 0, 0, Index,
2044                                   StructuredList, ElementIndex,
2045                                   (DesignatedStartIndex == DesignatedEndIndex),
2046                                   false))
2047      return true;
2048
2049    // Move to the next index in the array that we'll be initializing.
2050    ++DesignatedStartIndex;
2051    ElementIndex = DesignatedStartIndex.getZExtValue();
2052  }
2053
2054  // If this the first designator, our caller will continue checking
2055  // the rest of this array subobject.
2056  if (IsFirstDesignator) {
2057    if (NextElementIndex)
2058      *NextElementIndex = DesignatedStartIndex;
2059    StructuredIndex = ElementIndex;
2060    return false;
2061  }
2062
2063  if (!FinishSubobjectInit)
2064    return false;
2065
2066  // Check the remaining elements within this array subobject.
2067  bool prevHadError = hadError;
2068  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2069                 /*SubobjectIsDesignatorContext=*/false, Index,
2070                 StructuredList, ElementIndex);
2071  return hadError && !prevHadError;
2072}
2073
2074// Get the structured initializer list for a subobject of type
2075// @p CurrentObjectType.
2076InitListExpr *
2077InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2078                                            QualType CurrentObjectType,
2079                                            InitListExpr *StructuredList,
2080                                            unsigned StructuredIndex,
2081                                            SourceRange InitRange) {
2082  if (VerifyOnly)
2083    return 0; // No structured list in verification-only mode.
2084  Expr *ExistingInit = 0;
2085  if (!StructuredList)
2086    ExistingInit = SyntacticToSemantic.lookup(IList);
2087  else if (StructuredIndex < StructuredList->getNumInits())
2088    ExistingInit = StructuredList->getInit(StructuredIndex);
2089
2090  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2091    return Result;
2092
2093  if (ExistingInit) {
2094    // We are creating an initializer list that initializes the
2095    // subobjects of the current object, but there was already an
2096    // initialization that completely initialized the current
2097    // subobject, e.g., by a compound literal:
2098    //
2099    // struct X { int a, b; };
2100    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2101    //
2102    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2103    // designated initializer re-initializes the whole
2104    // subobject [0], overwriting previous initializers.
2105    SemaRef.Diag(InitRange.getBegin(),
2106                 diag::warn_subobject_initializer_overrides)
2107      << InitRange;
2108    SemaRef.Diag(ExistingInit->getLocStart(),
2109                  diag::note_previous_initializer)
2110      << /*FIXME:has side effects=*/0
2111      << ExistingInit->getSourceRange();
2112  }
2113
2114  InitListExpr *Result
2115    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2116                                         InitRange.getBegin(), MultiExprArg(),
2117                                         InitRange.getEnd());
2118
2119  QualType ResultType = CurrentObjectType;
2120  if (!ResultType->isArrayType())
2121    ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2122  Result->setType(ResultType);
2123
2124  // Pre-allocate storage for the structured initializer list.
2125  unsigned NumElements = 0;
2126  unsigned NumInits = 0;
2127  bool GotNumInits = false;
2128  if (!StructuredList) {
2129    NumInits = IList->getNumInits();
2130    GotNumInits = true;
2131  } else if (Index < IList->getNumInits()) {
2132    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2133      NumInits = SubList->getNumInits();
2134      GotNumInits = true;
2135    }
2136  }
2137
2138  if (const ArrayType *AType
2139      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2140    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2141      NumElements = CAType->getSize().getZExtValue();
2142      // Simple heuristic so that we don't allocate a very large
2143      // initializer with many empty entries at the end.
2144      if (GotNumInits && NumElements > NumInits)
2145        NumElements = 0;
2146    }
2147  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2148    NumElements = VType->getNumElements();
2149  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2150    RecordDecl *RDecl = RType->getDecl();
2151    if (RDecl->isUnion())
2152      NumElements = 1;
2153    else
2154      NumElements = std::distance(RDecl->field_begin(),
2155                                  RDecl->field_end());
2156  }
2157
2158  Result->reserveInits(SemaRef.Context, NumElements);
2159
2160  // Link this new initializer list into the structured initializer
2161  // lists.
2162  if (StructuredList)
2163    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2164  else {
2165    Result->setSyntacticForm(IList);
2166    SyntacticToSemantic[IList] = Result;
2167  }
2168
2169  return Result;
2170}
2171
2172/// Update the initializer at index @p StructuredIndex within the
2173/// structured initializer list to the value @p expr.
2174void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2175                                                  unsigned &StructuredIndex,
2176                                                  Expr *expr) {
2177  // No structured initializer list to update
2178  if (!StructuredList)
2179    return;
2180
2181  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2182                                                  StructuredIndex, expr)) {
2183    // This initializer overwrites a previous initializer. Warn.
2184    SemaRef.Diag(expr->getLocStart(),
2185                  diag::warn_initializer_overrides)
2186      << expr->getSourceRange();
2187    SemaRef.Diag(PrevInit->getLocStart(),
2188                  diag::note_previous_initializer)
2189      << /*FIXME:has side effects=*/0
2190      << PrevInit->getSourceRange();
2191  }
2192
2193  ++StructuredIndex;
2194}
2195
2196/// Check that the given Index expression is a valid array designator
2197/// value. This is essentially just a wrapper around
2198/// VerifyIntegerConstantExpression that also checks for negative values
2199/// and produces a reasonable diagnostic if there is a
2200/// failure. Returns the index expression, possibly with an implicit cast
2201/// added, on success.  If everything went okay, Value will receive the
2202/// value of the constant expression.
2203static ExprResult
2204CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2205  SourceLocation Loc = Index->getLocStart();
2206
2207  // Make sure this is an integer constant expression.
2208  ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2209  if (Result.isInvalid())
2210    return Result;
2211
2212  if (Value.isSigned() && Value.isNegative())
2213    return S.Diag(Loc, diag::err_array_designator_negative)
2214      << Value.toString(10) << Index->getSourceRange();
2215
2216  Value.setIsUnsigned(true);
2217  return Result;
2218}
2219
2220ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2221                                            SourceLocation Loc,
2222                                            bool GNUSyntax,
2223                                            ExprResult Init) {
2224  typedef DesignatedInitExpr::Designator ASTDesignator;
2225
2226  bool Invalid = false;
2227  SmallVector<ASTDesignator, 32> Designators;
2228  SmallVector<Expr *, 32> InitExpressions;
2229
2230  // Build designators and check array designator expressions.
2231  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2232    const Designator &D = Desig.getDesignator(Idx);
2233    switch (D.getKind()) {
2234    case Designator::FieldDesignator:
2235      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2236                                          D.getFieldLoc()));
2237      break;
2238
2239    case Designator::ArrayDesignator: {
2240      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2241      llvm::APSInt IndexValue;
2242      if (!Index->isTypeDependent() && !Index->isValueDependent())
2243        Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2244      if (!Index)
2245        Invalid = true;
2246      else {
2247        Designators.push_back(ASTDesignator(InitExpressions.size(),
2248                                            D.getLBracketLoc(),
2249                                            D.getRBracketLoc()));
2250        InitExpressions.push_back(Index);
2251      }
2252      break;
2253    }
2254
2255    case Designator::ArrayRangeDesignator: {
2256      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2257      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2258      llvm::APSInt StartValue;
2259      llvm::APSInt EndValue;
2260      bool StartDependent = StartIndex->isTypeDependent() ||
2261                            StartIndex->isValueDependent();
2262      bool EndDependent = EndIndex->isTypeDependent() ||
2263                          EndIndex->isValueDependent();
2264      if (!StartDependent)
2265        StartIndex =
2266            CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2267      if (!EndDependent)
2268        EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2269
2270      if (!StartIndex || !EndIndex)
2271        Invalid = true;
2272      else {
2273        // Make sure we're comparing values with the same bit width.
2274        if (StartDependent || EndDependent) {
2275          // Nothing to compute.
2276        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2277          EndValue = EndValue.extend(StartValue.getBitWidth());
2278        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2279          StartValue = StartValue.extend(EndValue.getBitWidth());
2280
2281        if (!StartDependent && !EndDependent && EndValue < StartValue) {
2282          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2283            << StartValue.toString(10) << EndValue.toString(10)
2284            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2285          Invalid = true;
2286        } else {
2287          Designators.push_back(ASTDesignator(InitExpressions.size(),
2288                                              D.getLBracketLoc(),
2289                                              D.getEllipsisLoc(),
2290                                              D.getRBracketLoc()));
2291          InitExpressions.push_back(StartIndex);
2292          InitExpressions.push_back(EndIndex);
2293        }
2294      }
2295      break;
2296    }
2297    }
2298  }
2299
2300  if (Invalid || Init.isInvalid())
2301    return ExprError();
2302
2303  // Clear out the expressions within the designation.
2304  Desig.ClearExprs(*this);
2305
2306  DesignatedInitExpr *DIE
2307    = DesignatedInitExpr::Create(Context,
2308                                 Designators.data(), Designators.size(),
2309                                 InitExpressions, Loc, GNUSyntax,
2310                                 Init.takeAs<Expr>());
2311
2312  if (!getLangOpts().C99)
2313    Diag(DIE->getLocStart(), diag::ext_designated_init)
2314      << DIE->getSourceRange();
2315
2316  return Owned(DIE);
2317}
2318
2319//===----------------------------------------------------------------------===//
2320// Initialization entity
2321//===----------------------------------------------------------------------===//
2322
2323InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2324                                     const InitializedEntity &Parent)
2325  : Parent(&Parent), Index(Index)
2326{
2327  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2328    Kind = EK_ArrayElement;
2329    Type = AT->getElementType();
2330  } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2331    Kind = EK_VectorElement;
2332    Type = VT->getElementType();
2333  } else {
2334    const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2335    assert(CT && "Unexpected type");
2336    Kind = EK_ComplexElement;
2337    Type = CT->getElementType();
2338  }
2339}
2340
2341InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2342                                                    CXXBaseSpecifier *Base,
2343                                                    bool IsInheritedVirtualBase)
2344{
2345  InitializedEntity Result;
2346  Result.Kind = EK_Base;
2347  Result.Base = reinterpret_cast<uintptr_t>(Base);
2348  if (IsInheritedVirtualBase)
2349    Result.Base |= 0x01;
2350
2351  Result.Type = Base->getType();
2352  return Result;
2353}
2354
2355DeclarationName InitializedEntity::getName() const {
2356  switch (getKind()) {
2357  case EK_Parameter: {
2358    ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2359    return (D ? D->getDeclName() : DeclarationName());
2360  }
2361
2362  case EK_Variable:
2363  case EK_Member:
2364    return VariableOrMember->getDeclName();
2365
2366  case EK_LambdaCapture:
2367    return Capture.Var->getDeclName();
2368
2369  case EK_Result:
2370  case EK_Exception:
2371  case EK_New:
2372  case EK_Temporary:
2373  case EK_Base:
2374  case EK_Delegating:
2375  case EK_ArrayElement:
2376  case EK_VectorElement:
2377  case EK_ComplexElement:
2378  case EK_BlockElement:
2379    return DeclarationName();
2380  }
2381
2382  llvm_unreachable("Invalid EntityKind!");
2383}
2384
2385DeclaratorDecl *InitializedEntity::getDecl() const {
2386  switch (getKind()) {
2387  case EK_Variable:
2388  case EK_Member:
2389    return VariableOrMember;
2390
2391  case EK_Parameter:
2392    return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2393
2394  case EK_Result:
2395  case EK_Exception:
2396  case EK_New:
2397  case EK_Temporary:
2398  case EK_Base:
2399  case EK_Delegating:
2400  case EK_ArrayElement:
2401  case EK_VectorElement:
2402  case EK_ComplexElement:
2403  case EK_BlockElement:
2404  case EK_LambdaCapture:
2405    return 0;
2406  }
2407
2408  llvm_unreachable("Invalid EntityKind!");
2409}
2410
2411bool InitializedEntity::allowsNRVO() const {
2412  switch (getKind()) {
2413  case EK_Result:
2414  case EK_Exception:
2415    return LocAndNRVO.NRVO;
2416
2417  case EK_Variable:
2418  case EK_Parameter:
2419  case EK_Member:
2420  case EK_New:
2421  case EK_Temporary:
2422  case EK_Base:
2423  case EK_Delegating:
2424  case EK_ArrayElement:
2425  case EK_VectorElement:
2426  case EK_ComplexElement:
2427  case EK_BlockElement:
2428  case EK_LambdaCapture:
2429    break;
2430  }
2431
2432  return false;
2433}
2434
2435//===----------------------------------------------------------------------===//
2436// Initialization sequence
2437//===----------------------------------------------------------------------===//
2438
2439void InitializationSequence::Step::Destroy() {
2440  switch (Kind) {
2441  case SK_ResolveAddressOfOverloadedFunction:
2442  case SK_CastDerivedToBaseRValue:
2443  case SK_CastDerivedToBaseXValue:
2444  case SK_CastDerivedToBaseLValue:
2445  case SK_BindReference:
2446  case SK_BindReferenceToTemporary:
2447  case SK_ExtraneousCopyToTemporary:
2448  case SK_UserConversion:
2449  case SK_QualificationConversionRValue:
2450  case SK_QualificationConversionXValue:
2451  case SK_QualificationConversionLValue:
2452  case SK_LValueToRValue:
2453  case SK_ListInitialization:
2454  case SK_ListConstructorCall:
2455  case SK_UnwrapInitList:
2456  case SK_RewrapInitList:
2457  case SK_ConstructorInitialization:
2458  case SK_ZeroInitialization:
2459  case SK_CAssignment:
2460  case SK_StringInit:
2461  case SK_ObjCObjectConversion:
2462  case SK_ArrayInit:
2463  case SK_ParenthesizedArrayInit:
2464  case SK_PassByIndirectCopyRestore:
2465  case SK_PassByIndirectRestore:
2466  case SK_ProduceObjCObject:
2467  case SK_StdInitializerList:
2468  case SK_OCLSamplerInit:
2469  case SK_OCLZeroEvent:
2470    break;
2471
2472  case SK_ConversionSequence:
2473    delete ICS;
2474  }
2475}
2476
2477bool InitializationSequence::isDirectReferenceBinding() const {
2478  return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2479}
2480
2481bool InitializationSequence::isAmbiguous() const {
2482  if (!Failed())
2483    return false;
2484
2485  switch (getFailureKind()) {
2486  case FK_TooManyInitsForReference:
2487  case FK_ArrayNeedsInitList:
2488  case FK_ArrayNeedsInitListOrStringLiteral:
2489  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2490  case FK_NonConstLValueReferenceBindingToTemporary:
2491  case FK_NonConstLValueReferenceBindingToUnrelated:
2492  case FK_RValueReferenceBindingToLValue:
2493  case FK_ReferenceInitDropsQualifiers:
2494  case FK_ReferenceInitFailed:
2495  case FK_ConversionFailed:
2496  case FK_ConversionFromPropertyFailed:
2497  case FK_TooManyInitsForScalar:
2498  case FK_ReferenceBindingToInitList:
2499  case FK_InitListBadDestinationType:
2500  case FK_DefaultInitOfConst:
2501  case FK_Incomplete:
2502  case FK_ArrayTypeMismatch:
2503  case FK_NonConstantArrayInit:
2504  case FK_ListInitializationFailed:
2505  case FK_VariableLengthArrayHasInitializer:
2506  case FK_PlaceholderType:
2507  case FK_InitListElementCopyFailure:
2508  case FK_ExplicitConstructor:
2509    return false;
2510
2511  case FK_ReferenceInitOverloadFailed:
2512  case FK_UserConversionOverloadFailed:
2513  case FK_ConstructorOverloadFailed:
2514  case FK_ListConstructorOverloadFailed:
2515    return FailedOverloadResult == OR_Ambiguous;
2516  }
2517
2518  llvm_unreachable("Invalid EntityKind!");
2519}
2520
2521bool InitializationSequence::isConstructorInitialization() const {
2522  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2523}
2524
2525void
2526InitializationSequence
2527::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2528                                   DeclAccessPair Found,
2529                                   bool HadMultipleCandidates) {
2530  Step S;
2531  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2532  S.Type = Function->getType();
2533  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2534  S.Function.Function = Function;
2535  S.Function.FoundDecl = Found;
2536  Steps.push_back(S);
2537}
2538
2539void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2540                                                      ExprValueKind VK) {
2541  Step S;
2542  switch (VK) {
2543  case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2544  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2545  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2546  }
2547  S.Type = BaseType;
2548  Steps.push_back(S);
2549}
2550
2551void InitializationSequence::AddReferenceBindingStep(QualType T,
2552                                                     bool BindingTemporary) {
2553  Step S;
2554  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2555  S.Type = T;
2556  Steps.push_back(S);
2557}
2558
2559void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2560  Step S;
2561  S.Kind = SK_ExtraneousCopyToTemporary;
2562  S.Type = T;
2563  Steps.push_back(S);
2564}
2565
2566void
2567InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2568                                              DeclAccessPair FoundDecl,
2569                                              QualType T,
2570                                              bool HadMultipleCandidates) {
2571  Step S;
2572  S.Kind = SK_UserConversion;
2573  S.Type = T;
2574  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2575  S.Function.Function = Function;
2576  S.Function.FoundDecl = FoundDecl;
2577  Steps.push_back(S);
2578}
2579
2580void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2581                                                            ExprValueKind VK) {
2582  Step S;
2583  S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2584  switch (VK) {
2585  case VK_RValue:
2586    S.Kind = SK_QualificationConversionRValue;
2587    break;
2588  case VK_XValue:
2589    S.Kind = SK_QualificationConversionXValue;
2590    break;
2591  case VK_LValue:
2592    S.Kind = SK_QualificationConversionLValue;
2593    break;
2594  }
2595  S.Type = Ty;
2596  Steps.push_back(S);
2597}
2598
2599void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
2600  assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
2601
2602  Step S;
2603  S.Kind = SK_LValueToRValue;
2604  S.Type = Ty;
2605  Steps.push_back(S);
2606}
2607
2608void InitializationSequence::AddConversionSequenceStep(
2609                                       const ImplicitConversionSequence &ICS,
2610                                                       QualType T) {
2611  Step S;
2612  S.Kind = SK_ConversionSequence;
2613  S.Type = T;
2614  S.ICS = new ImplicitConversionSequence(ICS);
2615  Steps.push_back(S);
2616}
2617
2618void InitializationSequence::AddListInitializationStep(QualType T) {
2619  Step S;
2620  S.Kind = SK_ListInitialization;
2621  S.Type = T;
2622  Steps.push_back(S);
2623}
2624
2625void
2626InitializationSequence
2627::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2628                                   AccessSpecifier Access,
2629                                   QualType T,
2630                                   bool HadMultipleCandidates,
2631                                   bool FromInitList, bool AsInitList) {
2632  Step S;
2633  S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2634                                       : SK_ConstructorInitialization;
2635  S.Type = T;
2636  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2637  S.Function.Function = Constructor;
2638  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2639  Steps.push_back(S);
2640}
2641
2642void InitializationSequence::AddZeroInitializationStep(QualType T) {
2643  Step S;
2644  S.Kind = SK_ZeroInitialization;
2645  S.Type = T;
2646  Steps.push_back(S);
2647}
2648
2649void InitializationSequence::AddCAssignmentStep(QualType T) {
2650  Step S;
2651  S.Kind = SK_CAssignment;
2652  S.Type = T;
2653  Steps.push_back(S);
2654}
2655
2656void InitializationSequence::AddStringInitStep(QualType T) {
2657  Step S;
2658  S.Kind = SK_StringInit;
2659  S.Type = T;
2660  Steps.push_back(S);
2661}
2662
2663void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2664  Step S;
2665  S.Kind = SK_ObjCObjectConversion;
2666  S.Type = T;
2667  Steps.push_back(S);
2668}
2669
2670void InitializationSequence::AddArrayInitStep(QualType T) {
2671  Step S;
2672  S.Kind = SK_ArrayInit;
2673  S.Type = T;
2674  Steps.push_back(S);
2675}
2676
2677void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2678  Step S;
2679  S.Kind = SK_ParenthesizedArrayInit;
2680  S.Type = T;
2681  Steps.push_back(S);
2682}
2683
2684void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2685                                                              bool shouldCopy) {
2686  Step s;
2687  s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2688                       : SK_PassByIndirectRestore);
2689  s.Type = type;
2690  Steps.push_back(s);
2691}
2692
2693void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2694  Step S;
2695  S.Kind = SK_ProduceObjCObject;
2696  S.Type = T;
2697  Steps.push_back(S);
2698}
2699
2700void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2701  Step S;
2702  S.Kind = SK_StdInitializerList;
2703  S.Type = T;
2704  Steps.push_back(S);
2705}
2706
2707void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
2708  Step S;
2709  S.Kind = SK_OCLSamplerInit;
2710  S.Type = T;
2711  Steps.push_back(S);
2712}
2713
2714void InitializationSequence::AddOCLZeroEventStep(QualType T) {
2715  Step S;
2716  S.Kind = SK_OCLZeroEvent;
2717  S.Type = T;
2718  Steps.push_back(S);
2719}
2720
2721void InitializationSequence::RewrapReferenceInitList(QualType T,
2722                                                     InitListExpr *Syntactic) {
2723  assert(Syntactic->getNumInits() == 1 &&
2724         "Can only rewrap trivial init lists.");
2725  Step S;
2726  S.Kind = SK_UnwrapInitList;
2727  S.Type = Syntactic->getInit(0)->getType();
2728  Steps.insert(Steps.begin(), S);
2729
2730  S.Kind = SK_RewrapInitList;
2731  S.Type = T;
2732  S.WrappingSyntacticList = Syntactic;
2733  Steps.push_back(S);
2734}
2735
2736void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2737                                                OverloadingResult Result) {
2738  setSequenceKind(FailedSequence);
2739  this->Failure = Failure;
2740  this->FailedOverloadResult = Result;
2741}
2742
2743//===----------------------------------------------------------------------===//
2744// Attempt initialization
2745//===----------------------------------------------------------------------===//
2746
2747static void MaybeProduceObjCObject(Sema &S,
2748                                   InitializationSequence &Sequence,
2749                                   const InitializedEntity &Entity) {
2750  if (!S.getLangOpts().ObjCAutoRefCount) return;
2751
2752  /// When initializing a parameter, produce the value if it's marked
2753  /// __attribute__((ns_consumed)).
2754  if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2755    if (!Entity.isParameterConsumed())
2756      return;
2757
2758    assert(Entity.getType()->isObjCRetainableType() &&
2759           "consuming an object of unretainable type?");
2760    Sequence.AddProduceObjCObjectStep(Entity.getType());
2761
2762  /// When initializing a return value, if the return type is a
2763  /// retainable type, then returns need to immediately retain the
2764  /// object.  If an autorelease is required, it will be done at the
2765  /// last instant.
2766  } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2767    if (!Entity.getType()->isObjCRetainableType())
2768      return;
2769
2770    Sequence.AddProduceObjCObjectStep(Entity.getType());
2771  }
2772}
2773
2774/// \brief When initializing from init list via constructor, handle
2775/// initialization of an object of type std::initializer_list<T>.
2776///
2777/// \return true if we have handled initialization of an object of type
2778/// std::initializer_list<T>, false otherwise.
2779static bool TryInitializerListConstruction(Sema &S,
2780                                           InitListExpr *List,
2781                                           QualType DestType,
2782                                           InitializationSequence &Sequence) {
2783  QualType E;
2784  if (!S.isStdInitializerList(DestType, &E))
2785    return false;
2786
2787  // Check that each individual element can be copy-constructed. But since we
2788  // have no place to store further information, we'll recalculate everything
2789  // later.
2790  InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
2791      S.Context.getConstantArrayType(E,
2792          llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2793                      List->getNumInits()),
2794          ArrayType::Normal, 0));
2795  InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
2796      0, HiddenArray);
2797  for (unsigned i = 0, n = List->getNumInits(); i < n; ++i) {
2798    Element.setElementIndex(i);
2799    if (!S.CanPerformCopyInitialization(Element, List->getInit(i))) {
2800      Sequence.SetFailed(
2801          InitializationSequence::FK_InitListElementCopyFailure);
2802      return true;
2803    }
2804  }
2805  Sequence.AddStdInitializerListConstructionStep(DestType);
2806  return true;
2807}
2808
2809static OverloadingResult
2810ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
2811                           MultiExprArg Args,
2812                           OverloadCandidateSet &CandidateSet,
2813                           ArrayRef<NamedDecl *> Ctors,
2814                           OverloadCandidateSet::iterator &Best,
2815                           bool CopyInitializing, bool AllowExplicit,
2816                           bool OnlyListConstructors, bool InitListSyntax) {
2817  CandidateSet.clear();
2818
2819  for (ArrayRef<NamedDecl *>::iterator
2820         Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) {
2821    NamedDecl *D = *Con;
2822    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2823    bool SuppressUserConversions = false;
2824
2825    // Find the constructor (which may be a template).
2826    CXXConstructorDecl *Constructor = 0;
2827    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2828    if (ConstructorTmpl)
2829      Constructor = cast<CXXConstructorDecl>(
2830                                           ConstructorTmpl->getTemplatedDecl());
2831    else {
2832      Constructor = cast<CXXConstructorDecl>(D);
2833
2834      // If we're performing copy initialization using a copy constructor, we
2835      // suppress user-defined conversions on the arguments. We do the same for
2836      // move constructors.
2837      if ((CopyInitializing || (InitListSyntax && Args.size() == 1)) &&
2838          Constructor->isCopyOrMoveConstructor())
2839        SuppressUserConversions = true;
2840    }
2841
2842    if (!Constructor->isInvalidDecl() &&
2843        (AllowExplicit || !Constructor->isExplicit()) &&
2844        (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
2845      if (ConstructorTmpl)
2846        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2847                                       /*ExplicitArgs*/ 0, Args,
2848                                       CandidateSet, SuppressUserConversions);
2849      else {
2850        // C++ [over.match.copy]p1:
2851        //   - When initializing a temporary to be bound to the first parameter
2852        //     of a constructor that takes a reference to possibly cv-qualified
2853        //     T as its first argument, called with a single argument in the
2854        //     context of direct-initialization, explicit conversion functions
2855        //     are also considered.
2856        bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
2857                                 Args.size() == 1 &&
2858                                 Constructor->isCopyOrMoveConstructor();
2859        S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
2860                               SuppressUserConversions,
2861                               /*PartialOverloading=*/false,
2862                               /*AllowExplicit=*/AllowExplicitConv);
2863      }
2864    }
2865  }
2866
2867  // Perform overload resolution and return the result.
2868  return CandidateSet.BestViableFunction(S, DeclLoc, Best);
2869}
2870
2871/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2872/// enumerates the constructors of the initialized entity and performs overload
2873/// resolution to select the best.
2874/// If InitListSyntax is true, this is list-initialization of a non-aggregate
2875/// class type.
2876static void TryConstructorInitialization(Sema &S,
2877                                         const InitializedEntity &Entity,
2878                                         const InitializationKind &Kind,
2879                                         MultiExprArg Args, QualType DestType,
2880                                         InitializationSequence &Sequence,
2881                                         bool InitListSyntax = false) {
2882  assert((!InitListSyntax || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
2883         "InitListSyntax must come with a single initializer list argument.");
2884
2885  // The type we're constructing needs to be complete.
2886  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2887    Sequence.setIncompleteTypeFailure(DestType);
2888    return;
2889  }
2890
2891  const RecordType *DestRecordType = DestType->getAs<RecordType>();
2892  assert(DestRecordType && "Constructor initialization requires record type");
2893  CXXRecordDecl *DestRecordDecl
2894    = cast<CXXRecordDecl>(DestRecordType->getDecl());
2895
2896  // Build the candidate set directly in the initialization sequence
2897  // structure, so that it will persist if we fail.
2898  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2899
2900  // Determine whether we are allowed to call explicit constructors or
2901  // explicit conversion operators.
2902  bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
2903  bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
2904
2905  //   - Otherwise, if T is a class type, constructors are considered. The
2906  //     applicable constructors are enumerated, and the best one is chosen
2907  //     through overload resolution.
2908  DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
2909  // The container holding the constructors can under certain conditions
2910  // be changed while iterating (e.g. because of deserialization).
2911  // To be safe we copy the lookup results to a new container.
2912  SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
2913
2914  OverloadingResult Result = OR_No_Viable_Function;
2915  OverloadCandidateSet::iterator Best;
2916  bool AsInitializerList = false;
2917
2918  // C++11 [over.match.list]p1:
2919  //   When objects of non-aggregate type T are list-initialized, overload
2920  //   resolution selects the constructor in two phases:
2921  //   - Initially, the candidate functions are the initializer-list
2922  //     constructors of the class T and the argument list consists of the
2923  //     initializer list as a single argument.
2924  if (InitListSyntax) {
2925    InitListExpr *ILE = cast<InitListExpr>(Args[0]);
2926    AsInitializerList = true;
2927
2928    // If the initializer list has no elements and T has a default constructor,
2929    // the first phase is omitted.
2930    if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
2931      Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
2932                                          CandidateSet, Ctors, Best,
2933                                          CopyInitialization, AllowExplicit,
2934                                          /*OnlyListConstructor=*/true,
2935                                          InitListSyntax);
2936
2937    // Time to unwrap the init list.
2938    Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
2939  }
2940
2941  // C++11 [over.match.list]p1:
2942  //   - If no viable initializer-list constructor is found, overload resolution
2943  //     is performed again, where the candidate functions are all the
2944  //     constructors of the class T and the argument list consists of the
2945  //     elements of the initializer list.
2946  if (Result == OR_No_Viable_Function) {
2947    AsInitializerList = false;
2948    Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
2949                                        CandidateSet, Ctors, Best,
2950                                        CopyInitialization, AllowExplicit,
2951                                        /*OnlyListConstructors=*/false,
2952                                        InitListSyntax);
2953  }
2954  if (Result) {
2955    Sequence.SetOverloadFailure(InitListSyntax ?
2956                      InitializationSequence::FK_ListConstructorOverloadFailed :
2957                      InitializationSequence::FK_ConstructorOverloadFailed,
2958                                Result);
2959    return;
2960  }
2961
2962  // C++11 [dcl.init]p6:
2963  //   If a program calls for the default initialization of an object
2964  //   of a const-qualified type T, T shall be a class type with a
2965  //   user-provided default constructor.
2966  if (Kind.getKind() == InitializationKind::IK_Default &&
2967      Entity.getType().isConstQualified() &&
2968      !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
2969    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2970    return;
2971  }
2972
2973  // C++11 [over.match.list]p1:
2974  //   In copy-list-initialization, if an explicit constructor is chosen, the
2975  //   initializer is ill-formed.
2976  CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
2977  if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
2978    Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
2979    return;
2980  }
2981
2982  // Add the constructor initialization step. Any cv-qualification conversion is
2983  // subsumed by the initialization.
2984  bool HadMultipleCandidates = (CandidateSet.size() > 1);
2985  Sequence.AddConstructorInitializationStep(CtorDecl,
2986                                            Best->FoundDecl.getAccess(),
2987                                            DestType, HadMultipleCandidates,
2988                                            InitListSyntax, AsInitializerList);
2989}
2990
2991static bool
2992ResolveOverloadedFunctionForReferenceBinding(Sema &S,
2993                                             Expr *Initializer,
2994                                             QualType &SourceType,
2995                                             QualType &UnqualifiedSourceType,
2996                                             QualType UnqualifiedTargetType,
2997                                             InitializationSequence &Sequence) {
2998  if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
2999        S.Context.OverloadTy) {
3000    DeclAccessPair Found;
3001    bool HadMultipleCandidates = false;
3002    if (FunctionDecl *Fn
3003        = S.ResolveAddressOfOverloadedFunction(Initializer,
3004                                               UnqualifiedTargetType,
3005                                               false, Found,
3006                                               &HadMultipleCandidates)) {
3007      Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3008                                                HadMultipleCandidates);
3009      SourceType = Fn->getType();
3010      UnqualifiedSourceType = SourceType.getUnqualifiedType();
3011    } else if (!UnqualifiedTargetType->isRecordType()) {
3012      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3013      return true;
3014    }
3015  }
3016  return false;
3017}
3018
3019static void TryReferenceInitializationCore(Sema &S,
3020                                           const InitializedEntity &Entity,
3021                                           const InitializationKind &Kind,
3022                                           Expr *Initializer,
3023                                           QualType cv1T1, QualType T1,
3024                                           Qualifiers T1Quals,
3025                                           QualType cv2T2, QualType T2,
3026                                           Qualifiers T2Quals,
3027                                           InitializationSequence &Sequence);
3028
3029static void TryValueInitialization(Sema &S,
3030                                   const InitializedEntity &Entity,
3031                                   const InitializationKind &Kind,
3032                                   InitializationSequence &Sequence,
3033                                   InitListExpr *InitList = 0);
3034
3035static void TryListInitialization(Sema &S,
3036                                  const InitializedEntity &Entity,
3037                                  const InitializationKind &Kind,
3038                                  InitListExpr *InitList,
3039                                  InitializationSequence &Sequence);
3040
3041/// \brief Attempt list initialization of a reference.
3042static void TryReferenceListInitialization(Sema &S,
3043                                           const InitializedEntity &Entity,
3044                                           const InitializationKind &Kind,
3045                                           InitListExpr *InitList,
3046                                           InitializationSequence &Sequence)
3047{
3048  // First, catch C++03 where this isn't possible.
3049  if (!S.getLangOpts().CPlusPlus11) {
3050    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3051    return;
3052  }
3053
3054  QualType DestType = Entity.getType();
3055  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3056  Qualifiers T1Quals;
3057  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3058
3059  // Reference initialization via an initializer list works thus:
3060  // If the initializer list consists of a single element that is
3061  // reference-related to the referenced type, bind directly to that element
3062  // (possibly creating temporaries).
3063  // Otherwise, initialize a temporary with the initializer list and
3064  // bind to that.
3065  if (InitList->getNumInits() == 1) {
3066    Expr *Initializer = InitList->getInit(0);
3067    QualType cv2T2 = Initializer->getType();
3068    Qualifiers T2Quals;
3069    QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3070
3071    // If this fails, creating a temporary wouldn't work either.
3072    if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3073                                                     T1, Sequence))
3074      return;
3075
3076    SourceLocation DeclLoc = Initializer->getLocStart();
3077    bool dummy1, dummy2, dummy3;
3078    Sema::ReferenceCompareResult RefRelationship
3079      = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3080                                       dummy2, dummy3);
3081    if (RefRelationship >= Sema::Ref_Related) {
3082      // Try to bind the reference here.
3083      TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3084                                     T1Quals, cv2T2, T2, T2Quals, Sequence);
3085      if (Sequence)
3086        Sequence.RewrapReferenceInitList(cv1T1, InitList);
3087      return;
3088    }
3089
3090    // Update the initializer if we've resolved an overloaded function.
3091    if (Sequence.step_begin() != Sequence.step_end())
3092      Sequence.RewrapReferenceInitList(cv1T1, InitList);
3093  }
3094
3095  // Not reference-related. Create a temporary and bind to that.
3096  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3097
3098  TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3099  if (Sequence) {
3100    if (DestType->isRValueReferenceType() ||
3101        (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3102      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3103    else
3104      Sequence.SetFailed(
3105          InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3106  }
3107}
3108
3109/// \brief Attempt list initialization (C++0x [dcl.init.list])
3110static void TryListInitialization(Sema &S,
3111                                  const InitializedEntity &Entity,
3112                                  const InitializationKind &Kind,
3113                                  InitListExpr *InitList,
3114                                  InitializationSequence &Sequence) {
3115  QualType DestType = Entity.getType();
3116
3117  // C++ doesn't allow scalar initialization with more than one argument.
3118  // But C99 complex numbers are scalars and it makes sense there.
3119  if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3120      !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3121    Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3122    return;
3123  }
3124  if (DestType->isReferenceType()) {
3125    TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3126    return;
3127  }
3128  if (DestType->isRecordType()) {
3129    if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3130      Sequence.setIncompleteTypeFailure(DestType);
3131      return;
3132    }
3133
3134    // C++11 [dcl.init.list]p3:
3135    //   - If T is an aggregate, aggregate initialization is performed.
3136    if (!DestType->isAggregateType()) {
3137      if (S.getLangOpts().CPlusPlus11) {
3138        //   - Otherwise, if the initializer list has no elements and T is a
3139        //     class type with a default constructor, the object is
3140        //     value-initialized.
3141        if (InitList->getNumInits() == 0) {
3142          CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3143          if (RD->hasDefaultConstructor()) {
3144            TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3145            return;
3146          }
3147        }
3148
3149        //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3150        //     an initializer_list object constructed [...]
3151        if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3152          return;
3153
3154        //   - Otherwise, if T is a class type, constructors are considered.
3155        Expr *InitListAsExpr = InitList;
3156        TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3157                                     Sequence, /*InitListSyntax*/true);
3158      } else
3159        Sequence.SetFailed(
3160            InitializationSequence::FK_InitListBadDestinationType);
3161      return;
3162    }
3163  }
3164
3165  InitListChecker CheckInitList(S, Entity, InitList,
3166          DestType, /*VerifyOnly=*/true,
3167          Kind.getKind() != InitializationKind::IK_DirectList ||
3168            !S.getLangOpts().CPlusPlus11);
3169  if (CheckInitList.HadError()) {
3170    Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3171    return;
3172  }
3173
3174  // Add the list initialization step with the built init list.
3175  Sequence.AddListInitializationStep(DestType);
3176}
3177
3178/// \brief Try a reference initialization that involves calling a conversion
3179/// function.
3180static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3181                                             const InitializedEntity &Entity,
3182                                             const InitializationKind &Kind,
3183                                             Expr *Initializer,
3184                                             bool AllowRValues,
3185                                             InitializationSequence &Sequence) {
3186  QualType DestType = Entity.getType();
3187  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3188  QualType T1 = cv1T1.getUnqualifiedType();
3189  QualType cv2T2 = Initializer->getType();
3190  QualType T2 = cv2T2.getUnqualifiedType();
3191
3192  bool DerivedToBase;
3193  bool ObjCConversion;
3194  bool ObjCLifetimeConversion;
3195  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3196                                         T1, T2, DerivedToBase,
3197                                         ObjCConversion,
3198                                         ObjCLifetimeConversion) &&
3199         "Must have incompatible references when binding via conversion");
3200  (void)DerivedToBase;
3201  (void)ObjCConversion;
3202  (void)ObjCLifetimeConversion;
3203
3204  // Build the candidate set directly in the initialization sequence
3205  // structure, so that it will persist if we fail.
3206  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3207  CandidateSet.clear();
3208
3209  // Determine whether we are allowed to call explicit constructors or
3210  // explicit conversion operators.
3211  bool AllowExplicit = Kind.AllowExplicit();
3212  bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
3213
3214  const RecordType *T1RecordType = 0;
3215  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3216      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3217    // The type we're converting to is a class type. Enumerate its constructors
3218    // to see if there is a suitable conversion.
3219    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3220
3221    DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl);
3222    // The container holding the constructors can under certain conditions
3223    // be changed while iterating (e.g. because of deserialization).
3224    // To be safe we copy the lookup results to a new container.
3225    SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3226    for (SmallVector<NamedDecl*, 16>::iterator
3227           CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
3228      NamedDecl *D = *CI;
3229      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3230
3231      // Find the constructor (which may be a template).
3232      CXXConstructorDecl *Constructor = 0;
3233      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3234      if (ConstructorTmpl)
3235        Constructor = cast<CXXConstructorDecl>(
3236                                         ConstructorTmpl->getTemplatedDecl());
3237      else
3238        Constructor = cast<CXXConstructorDecl>(D);
3239
3240      if (!Constructor->isInvalidDecl() &&
3241          Constructor->isConvertingConstructor(AllowExplicit)) {
3242        if (ConstructorTmpl)
3243          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3244                                         /*ExplicitArgs*/ 0,
3245                                         Initializer, CandidateSet,
3246                                         /*SuppressUserConversions=*/true);
3247        else
3248          S.AddOverloadCandidate(Constructor, FoundDecl,
3249                                 Initializer, CandidateSet,
3250                                 /*SuppressUserConversions=*/true);
3251      }
3252    }
3253  }
3254  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3255    return OR_No_Viable_Function;
3256
3257  const RecordType *T2RecordType = 0;
3258  if ((T2RecordType = T2->getAs<RecordType>()) &&
3259      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3260    // The type we're converting from is a class type, enumerate its conversion
3261    // functions.
3262    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3263
3264    std::pair<CXXRecordDecl::conversion_iterator,
3265              CXXRecordDecl::conversion_iterator>
3266      Conversions = T2RecordDecl->getVisibleConversionFunctions();
3267    for (CXXRecordDecl::conversion_iterator
3268           I = Conversions.first, E = Conversions.second; I != E; ++I) {
3269      NamedDecl *D = *I;
3270      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3271      if (isa<UsingShadowDecl>(D))
3272        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3273
3274      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3275      CXXConversionDecl *Conv;
3276      if (ConvTemplate)
3277        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3278      else
3279        Conv = cast<CXXConversionDecl>(D);
3280
3281      // If the conversion function doesn't return a reference type,
3282      // it can't be considered for this conversion unless we're allowed to
3283      // consider rvalues.
3284      // FIXME: Do we need to make sure that we only consider conversion
3285      // candidates with reference-compatible results? That might be needed to
3286      // break recursion.
3287      if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3288          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3289        if (ConvTemplate)
3290          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3291                                           ActingDC, Initializer,
3292                                           DestType, CandidateSet);
3293        else
3294          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3295                                   Initializer, DestType, CandidateSet);
3296      }
3297    }
3298  }
3299  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3300    return OR_No_Viable_Function;
3301
3302  SourceLocation DeclLoc = Initializer->getLocStart();
3303
3304  // Perform overload resolution. If it fails, return the failed result.
3305  OverloadCandidateSet::iterator Best;
3306  if (OverloadingResult Result
3307        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3308    return Result;
3309
3310  FunctionDecl *Function = Best->Function;
3311  // This is the overload that will be used for this initialization step if we
3312  // use this initialization. Mark it as referenced.
3313  Function->setReferenced();
3314
3315  // Compute the returned type of the conversion.
3316  if (isa<CXXConversionDecl>(Function))
3317    T2 = Function->getResultType();
3318  else
3319    T2 = cv1T1;
3320
3321  // Add the user-defined conversion step.
3322  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3323  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3324                                 T2.getNonLValueExprType(S.Context),
3325                                 HadMultipleCandidates);
3326
3327  // Determine whether we need to perform derived-to-base or
3328  // cv-qualification adjustments.
3329  ExprValueKind VK = VK_RValue;
3330  if (T2->isLValueReferenceType())
3331    VK = VK_LValue;
3332  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3333    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3334
3335  bool NewDerivedToBase = false;
3336  bool NewObjCConversion = false;
3337  bool NewObjCLifetimeConversion = false;
3338  Sema::ReferenceCompareResult NewRefRelationship
3339    = S.CompareReferenceRelationship(DeclLoc, T1,
3340                                     T2.getNonLValueExprType(S.Context),
3341                                     NewDerivedToBase, NewObjCConversion,
3342                                     NewObjCLifetimeConversion);
3343  if (NewRefRelationship == Sema::Ref_Incompatible) {
3344    // If the type we've converted to is not reference-related to the
3345    // type we're looking for, then there is another conversion step
3346    // we need to perform to produce a temporary of the right type
3347    // that we'll be binding to.
3348    ImplicitConversionSequence ICS;
3349    ICS.setStandard();
3350    ICS.Standard = Best->FinalConversion;
3351    T2 = ICS.Standard.getToType(2);
3352    Sequence.AddConversionSequenceStep(ICS, T2);
3353  } else if (NewDerivedToBase)
3354    Sequence.AddDerivedToBaseCastStep(
3355                                S.Context.getQualifiedType(T1,
3356                                  T2.getNonReferenceType().getQualifiers()),
3357                                      VK);
3358  else if (NewObjCConversion)
3359    Sequence.AddObjCObjectConversionStep(
3360                                S.Context.getQualifiedType(T1,
3361                                  T2.getNonReferenceType().getQualifiers()));
3362
3363  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3364    Sequence.AddQualificationConversionStep(cv1T1, VK);
3365
3366  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3367  return OR_Success;
3368}
3369
3370static void CheckCXX98CompatAccessibleCopy(Sema &S,
3371                                           const InitializedEntity &Entity,
3372                                           Expr *CurInitExpr);
3373
3374/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3375static void TryReferenceInitialization(Sema &S,
3376                                       const InitializedEntity &Entity,
3377                                       const InitializationKind &Kind,
3378                                       Expr *Initializer,
3379                                       InitializationSequence &Sequence) {
3380  QualType DestType = Entity.getType();
3381  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3382  Qualifiers T1Quals;
3383  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3384  QualType cv2T2 = Initializer->getType();
3385  Qualifiers T2Quals;
3386  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3387
3388  // If the initializer is the address of an overloaded function, try
3389  // to resolve the overloaded function. If all goes well, T2 is the
3390  // type of the resulting function.
3391  if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3392                                                   T1, Sequence))
3393    return;
3394
3395  // Delegate everything else to a subfunction.
3396  TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3397                                 T1Quals, cv2T2, T2, T2Quals, Sequence);
3398}
3399
3400/// Converts the target of reference initialization so that it has the
3401/// appropriate qualifiers and value kind.
3402///
3403/// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
3404/// \code
3405///   int x;
3406///   const int &r = x;
3407/// \endcode
3408///
3409/// In this case the reference is binding to a bitfield lvalue, which isn't
3410/// valid. Perform a load to create a lifetime-extended temporary instead.
3411/// \code
3412///   const int &r = someStruct.bitfield;
3413/// \endcode
3414static ExprValueKind
3415convertQualifiersAndValueKindIfNecessary(Sema &S,
3416                                         InitializationSequence &Sequence,
3417                                         Expr *Initializer,
3418                                         QualType cv1T1,
3419                                         Qualifiers T1Quals,
3420                                         Qualifiers T2Quals,
3421                                         bool IsLValueRef) {
3422  bool IsNonAddressableType = Initializer->getBitField() ||
3423                              Initializer->refersToVectorElement();
3424
3425  if (IsNonAddressableType) {
3426    // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
3427    // lvalue reference to a non-volatile const type, or the reference shall be
3428    // an rvalue reference.
3429    //
3430    // If not, we can't make a temporary and bind to that. Give up and allow the
3431    // error to be diagnosed later.
3432    if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
3433      assert(Initializer->isGLValue());
3434      return Initializer->getValueKind();
3435    }
3436
3437    // Force a load so we can materialize a temporary.
3438    Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
3439    return VK_RValue;
3440  }
3441
3442  if (T1Quals != T2Quals) {
3443    Sequence.AddQualificationConversionStep(cv1T1,
3444                                            Initializer->getValueKind());
3445  }
3446
3447  return Initializer->getValueKind();
3448}
3449
3450
3451/// \brief Reference initialization without resolving overloaded functions.
3452static void TryReferenceInitializationCore(Sema &S,
3453                                           const InitializedEntity &Entity,
3454                                           const InitializationKind &Kind,
3455                                           Expr *Initializer,
3456                                           QualType cv1T1, QualType T1,
3457                                           Qualifiers T1Quals,
3458                                           QualType cv2T2, QualType T2,
3459                                           Qualifiers T2Quals,
3460                                           InitializationSequence &Sequence) {
3461  QualType DestType = Entity.getType();
3462  SourceLocation DeclLoc = Initializer->getLocStart();
3463  // Compute some basic properties of the types and the initializer.
3464  bool isLValueRef = DestType->isLValueReferenceType();
3465  bool isRValueRef = !isLValueRef;
3466  bool DerivedToBase = false;
3467  bool ObjCConversion = false;
3468  bool ObjCLifetimeConversion = false;
3469  Expr::Classification InitCategory = Initializer->Classify(S.Context);
3470  Sema::ReferenceCompareResult RefRelationship
3471    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3472                                     ObjCConversion, ObjCLifetimeConversion);
3473
3474  // C++0x [dcl.init.ref]p5:
3475  //   A reference to type "cv1 T1" is initialized by an expression of type
3476  //   "cv2 T2" as follows:
3477  //
3478  //     - If the reference is an lvalue reference and the initializer
3479  //       expression
3480  // Note the analogous bullet points for rvlaue refs to functions. Because
3481  // there are no function rvalues in C++, rvalue refs to functions are treated
3482  // like lvalue refs.
3483  OverloadingResult ConvOvlResult = OR_Success;
3484  bool T1Function = T1->isFunctionType();
3485  if (isLValueRef || T1Function) {
3486    if (InitCategory.isLValue() &&
3487        (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3488         (Kind.isCStyleOrFunctionalCast() &&
3489          RefRelationship == Sema::Ref_Related))) {
3490      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3491      //     reference-compatible with "cv2 T2," or
3492      //
3493      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3494      // bit-field when we're determining whether the reference initialization
3495      // can occur. However, we do pay attention to whether it is a bit-field
3496      // to decide whether we're actually binding to a temporary created from
3497      // the bit-field.
3498      if (DerivedToBase)
3499        Sequence.AddDerivedToBaseCastStep(
3500                         S.Context.getQualifiedType(T1, T2Quals),
3501                         VK_LValue);
3502      else if (ObjCConversion)
3503        Sequence.AddObjCObjectConversionStep(
3504                                     S.Context.getQualifiedType(T1, T2Quals));
3505
3506      ExprValueKind ValueKind =
3507        convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
3508                                                 cv1T1, T1Quals, T2Quals,
3509                                                 isLValueRef);
3510      Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3511      return;
3512    }
3513
3514    //     - has a class type (i.e., T2 is a class type), where T1 is not
3515    //       reference-related to T2, and can be implicitly converted to an
3516    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3517    //       with "cv3 T3" (this conversion is selected by enumerating the
3518    //       applicable conversion functions (13.3.1.6) and choosing the best
3519    //       one through overload resolution (13.3)),
3520    // If we have an rvalue ref to function type here, the rhs must be
3521    // an rvalue.
3522    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3523        (isLValueRef || InitCategory.isRValue())) {
3524      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3525                                                       Initializer,
3526                                                   /*AllowRValues=*/isRValueRef,
3527                                                       Sequence);
3528      if (ConvOvlResult == OR_Success)
3529        return;
3530      if (ConvOvlResult != OR_No_Viable_Function) {
3531        Sequence.SetOverloadFailure(
3532                      InitializationSequence::FK_ReferenceInitOverloadFailed,
3533                                    ConvOvlResult);
3534      }
3535    }
3536  }
3537
3538  //     - Otherwise, the reference shall be an lvalue reference to a
3539  //       non-volatile const type (i.e., cv1 shall be const), or the reference
3540  //       shall be an rvalue reference.
3541  if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3542    if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3543      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3544    else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3545      Sequence.SetOverloadFailure(
3546                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3547                                  ConvOvlResult);
3548    else
3549      Sequence.SetFailed(InitCategory.isLValue()
3550        ? (RefRelationship == Sema::Ref_Related
3551             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3552             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3553        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3554
3555    return;
3556  }
3557
3558  //    - If the initializer expression
3559  //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3560  //        "cv1 T1" is reference-compatible with "cv2 T2"
3561  // Note: functions are handled below.
3562  if (!T1Function &&
3563      (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3564       (Kind.isCStyleOrFunctionalCast() &&
3565        RefRelationship == Sema::Ref_Related)) &&
3566      (InitCategory.isXValue() ||
3567       (InitCategory.isPRValue() && T2->isRecordType()) ||
3568       (InitCategory.isPRValue() && T2->isArrayType()))) {
3569    ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3570    if (InitCategory.isPRValue() && T2->isRecordType()) {
3571      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3572      // compiler the freedom to perform a copy here or bind to the
3573      // object, while C++0x requires that we bind directly to the
3574      // object. Hence, we always bind to the object without making an
3575      // extra copy. However, in C++03 requires that we check for the
3576      // presence of a suitable copy constructor:
3577      //
3578      //   The constructor that would be used to make the copy shall
3579      //   be callable whether or not the copy is actually done.
3580      if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
3581        Sequence.AddExtraneousCopyToTemporary(cv2T2);
3582      else if (S.getLangOpts().CPlusPlus11)
3583        CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3584    }
3585
3586    if (DerivedToBase)
3587      Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3588                                        ValueKind);
3589    else if (ObjCConversion)
3590      Sequence.AddObjCObjectConversionStep(
3591                                       S.Context.getQualifiedType(T1, T2Quals));
3592
3593    ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
3594                                                         Initializer, cv1T1,
3595                                                         T1Quals, T2Quals,
3596                                                         isLValueRef);
3597
3598    Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3599    return;
3600  }
3601
3602  //       - has a class type (i.e., T2 is a class type), where T1 is not
3603  //         reference-related to T2, and can be implicitly converted to an
3604  //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3605  //         where "cv1 T1" is reference-compatible with "cv3 T3",
3606  if (T2->isRecordType()) {
3607    if (RefRelationship == Sema::Ref_Incompatible) {
3608      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3609                                                       Kind, Initializer,
3610                                                       /*AllowRValues=*/true,
3611                                                       Sequence);
3612      if (ConvOvlResult)
3613        Sequence.SetOverloadFailure(
3614                      InitializationSequence::FK_ReferenceInitOverloadFailed,
3615                                    ConvOvlResult);
3616
3617      return;
3618    }
3619
3620    if ((RefRelationship == Sema::Ref_Compatible ||
3621         RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
3622        isRValueRef && InitCategory.isLValue()) {
3623      Sequence.SetFailed(
3624        InitializationSequence::FK_RValueReferenceBindingToLValue);
3625      return;
3626    }
3627
3628    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3629    return;
3630  }
3631
3632  //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3633  //        from the initializer expression using the rules for a non-reference
3634  //        copy initialization (8.5). The reference is then bound to the
3635  //        temporary. [...]
3636
3637  // Determine whether we are allowed to call explicit constructors or
3638  // explicit conversion operators.
3639  bool AllowExplicit = Kind.AllowExplicit();
3640
3641  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3642
3643  ImplicitConversionSequence ICS
3644    = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3645                              /*SuppressUserConversions*/ false,
3646                              AllowExplicit,
3647                              /*FIXME:InOverloadResolution=*/false,
3648                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3649                              /*AllowObjCWritebackConversion=*/false);
3650
3651  if (ICS.isBad()) {
3652    // FIXME: Use the conversion function set stored in ICS to turn
3653    // this into an overloading ambiguity diagnostic. However, we need
3654    // to keep that set as an OverloadCandidateSet rather than as some
3655    // other kind of set.
3656    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3657      Sequence.SetOverloadFailure(
3658                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3659                                  ConvOvlResult);
3660    else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3661      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3662    else
3663      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3664    return;
3665  } else {
3666    Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3667  }
3668
3669  //        [...] If T1 is reference-related to T2, cv1 must be the
3670  //        same cv-qualification as, or greater cv-qualification
3671  //        than, cv2; otherwise, the program is ill-formed.
3672  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3673  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3674  if (RefRelationship == Sema::Ref_Related &&
3675      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3676    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3677    return;
3678  }
3679
3680  //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3681  //   reference, the initializer expression shall not be an lvalue.
3682  if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3683      InitCategory.isLValue()) {
3684    Sequence.SetFailed(
3685                    InitializationSequence::FK_RValueReferenceBindingToLValue);
3686    return;
3687  }
3688
3689  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3690  return;
3691}
3692
3693/// \brief Attempt character array initialization from a string literal
3694/// (C++ [dcl.init.string], C99 6.7.8).
3695static void TryStringLiteralInitialization(Sema &S,
3696                                           const InitializedEntity &Entity,
3697                                           const InitializationKind &Kind,
3698                                           Expr *Initializer,
3699                                       InitializationSequence &Sequence) {
3700  Sequence.AddStringInitStep(Entity.getType());
3701}
3702
3703/// \brief Attempt value initialization (C++ [dcl.init]p7).
3704static void TryValueInitialization(Sema &S,
3705                                   const InitializedEntity &Entity,
3706                                   const InitializationKind &Kind,
3707                                   InitializationSequence &Sequence,
3708                                   InitListExpr *InitList) {
3709  assert((!InitList || InitList->getNumInits() == 0) &&
3710         "Shouldn't use value-init for non-empty init lists");
3711
3712  // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3713  //
3714  //   To value-initialize an object of type T means:
3715  QualType T = Entity.getType();
3716
3717  //     -- if T is an array type, then each element is value-initialized;
3718  T = S.Context.getBaseElementType(T);
3719
3720  if (const RecordType *RT = T->getAs<RecordType>()) {
3721    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3722      bool NeedZeroInitialization = true;
3723      if (!S.getLangOpts().CPlusPlus11) {
3724        // C++98:
3725        // -- if T is a class type (clause 9) with a user-declared constructor
3726        //    (12.1), then the default constructor for T is called (and the
3727        //    initialization is ill-formed if T has no accessible default
3728        //    constructor);
3729        if (ClassDecl->hasUserDeclaredConstructor())
3730          NeedZeroInitialization = false;
3731      } else {
3732        // C++11:
3733        // -- if T is a class type (clause 9) with either no default constructor
3734        //    (12.1 [class.ctor]) or a default constructor that is user-provided
3735        //    or deleted, then the object is default-initialized;
3736        CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3737        if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3738          NeedZeroInitialization = false;
3739      }
3740
3741      // -- if T is a (possibly cv-qualified) non-union class type without a
3742      //    user-provided or deleted default constructor, then the object is
3743      //    zero-initialized and, if T has a non-trivial default constructor,
3744      //    default-initialized;
3745      // The 'non-union' here was removed by DR1502. The 'non-trivial default
3746      // constructor' part was removed by DR1507.
3747      if (NeedZeroInitialization)
3748        Sequence.AddZeroInitializationStep(Entity.getType());
3749
3750      // C++03:
3751      // -- if T is a non-union class type without a user-declared constructor,
3752      //    then every non-static data member and base class component of T is
3753      //    value-initialized;
3754      // [...] A program that calls for [...] value-initialization of an
3755      // entity of reference type is ill-formed.
3756      //
3757      // C++11 doesn't need this handling, because value-initialization does not
3758      // occur recursively there, and the implicit default constructor is
3759      // defined as deleted in the problematic cases.
3760      if (!S.getLangOpts().CPlusPlus11 &&
3761          ClassDecl->hasUninitializedReferenceMember()) {
3762        Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
3763        return;
3764      }
3765
3766      // If this is list-value-initialization, pass the empty init list on when
3767      // building the constructor call. This affects the semantics of a few
3768      // things (such as whether an explicit default constructor can be called).
3769      Expr *InitListAsExpr = InitList;
3770      MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
3771      bool InitListSyntax = InitList;
3772
3773      return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
3774                                          InitListSyntax);
3775    }
3776  }
3777
3778  Sequence.AddZeroInitializationStep(Entity.getType());
3779}
3780
3781/// \brief Attempt default initialization (C++ [dcl.init]p6).
3782static void TryDefaultInitialization(Sema &S,
3783                                     const InitializedEntity &Entity,
3784                                     const InitializationKind &Kind,
3785                                     InitializationSequence &Sequence) {
3786  assert(Kind.getKind() == InitializationKind::IK_Default);
3787
3788  // C++ [dcl.init]p6:
3789  //   To default-initialize an object of type T means:
3790  //     - if T is an array type, each element is default-initialized;
3791  QualType DestType = S.Context.getBaseElementType(Entity.getType());
3792
3793  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3794  //       constructor for T is called (and the initialization is ill-formed if
3795  //       T has no accessible default constructor);
3796  if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
3797    TryConstructorInitialization(S, Entity, Kind, MultiExprArg(), DestType, Sequence);
3798    return;
3799  }
3800
3801  //     - otherwise, no initialization is performed.
3802
3803  //   If a program calls for the default initialization of an object of
3804  //   a const-qualified type T, T shall be a class type with a user-provided
3805  //   default constructor.
3806  if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
3807    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3808    return;
3809  }
3810
3811  // If the destination type has a lifetime property, zero-initialize it.
3812  if (DestType.getQualifiers().hasObjCLifetime()) {
3813    Sequence.AddZeroInitializationStep(Entity.getType());
3814    return;
3815  }
3816}
3817
3818/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3819/// which enumerates all conversion functions and performs overload resolution
3820/// to select the best.
3821static void TryUserDefinedConversion(Sema &S,
3822                                     const InitializedEntity &Entity,
3823                                     const InitializationKind &Kind,
3824                                     Expr *Initializer,
3825                                     InitializationSequence &Sequence) {
3826  QualType DestType = Entity.getType();
3827  assert(!DestType->isReferenceType() && "References are handled elsewhere");
3828  QualType SourceType = Initializer->getType();
3829  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3830         "Must have a class type to perform a user-defined conversion");
3831
3832  // Build the candidate set directly in the initialization sequence
3833  // structure, so that it will persist if we fail.
3834  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3835  CandidateSet.clear();
3836
3837  // Determine whether we are allowed to call explicit constructors or
3838  // explicit conversion operators.
3839  bool AllowExplicit = Kind.AllowExplicit();
3840
3841  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
3842    // The type we're converting to is a class type. Enumerate its constructors
3843    // to see if there is a suitable conversion.
3844    CXXRecordDecl *DestRecordDecl
3845      = cast<CXXRecordDecl>(DestRecordType->getDecl());
3846
3847    // Try to complete the type we're converting to.
3848    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3849      DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
3850      // The container holding the constructors can under certain conditions
3851      // be changed while iterating. To be safe we copy the lookup results
3852      // to a new container.
3853      SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
3854      for (SmallVector<NamedDecl*, 8>::iterator
3855             Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
3856           Con != ConEnd; ++Con) {
3857        NamedDecl *D = *Con;
3858        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3859
3860        // Find the constructor (which may be a template).
3861        CXXConstructorDecl *Constructor = 0;
3862        FunctionTemplateDecl *ConstructorTmpl
3863          = dyn_cast<FunctionTemplateDecl>(D);
3864        if (ConstructorTmpl)
3865          Constructor = cast<CXXConstructorDecl>(
3866                                           ConstructorTmpl->getTemplatedDecl());
3867        else
3868          Constructor = cast<CXXConstructorDecl>(D);
3869
3870        if (!Constructor->isInvalidDecl() &&
3871            Constructor->isConvertingConstructor(AllowExplicit)) {
3872          if (ConstructorTmpl)
3873            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3874                                           /*ExplicitArgs*/ 0,
3875                                           Initializer, CandidateSet,
3876                                           /*SuppressUserConversions=*/true);
3877          else
3878            S.AddOverloadCandidate(Constructor, FoundDecl,
3879                                   Initializer, CandidateSet,
3880                                   /*SuppressUserConversions=*/true);
3881        }
3882      }
3883    }
3884  }
3885
3886  SourceLocation DeclLoc = Initializer->getLocStart();
3887
3888  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3889    // The type we're converting from is a class type, enumerate its conversion
3890    // functions.
3891
3892    // We can only enumerate the conversion functions for a complete type; if
3893    // the type isn't complete, simply skip this step.
3894    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3895      CXXRecordDecl *SourceRecordDecl
3896        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3897
3898      std::pair<CXXRecordDecl::conversion_iterator,
3899                CXXRecordDecl::conversion_iterator>
3900        Conversions = SourceRecordDecl->getVisibleConversionFunctions();
3901      for (CXXRecordDecl::conversion_iterator
3902             I = Conversions.first, E = Conversions.second; I != E; ++I) {
3903        NamedDecl *D = *I;
3904        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3905        if (isa<UsingShadowDecl>(D))
3906          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3907
3908        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3909        CXXConversionDecl *Conv;
3910        if (ConvTemplate)
3911          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3912        else
3913          Conv = cast<CXXConversionDecl>(D);
3914
3915        if (AllowExplicit || !Conv->isExplicit()) {
3916          if (ConvTemplate)
3917            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3918                                             ActingDC, Initializer, DestType,
3919                                             CandidateSet);
3920          else
3921            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3922                                     Initializer, DestType, CandidateSet);
3923        }
3924      }
3925    }
3926  }
3927
3928  // Perform overload resolution. If it fails, return the failed result.
3929  OverloadCandidateSet::iterator Best;
3930  if (OverloadingResult Result
3931        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3932    Sequence.SetOverloadFailure(
3933                        InitializationSequence::FK_UserConversionOverloadFailed,
3934                                Result);
3935    return;
3936  }
3937
3938  FunctionDecl *Function = Best->Function;
3939  Function->setReferenced();
3940  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3941
3942  if (isa<CXXConstructorDecl>(Function)) {
3943    // Add the user-defined conversion step. Any cv-qualification conversion is
3944    // subsumed by the initialization. Per DR5, the created temporary is of the
3945    // cv-unqualified type of the destination.
3946    Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3947                                   DestType.getUnqualifiedType(),
3948                                   HadMultipleCandidates);
3949    return;
3950  }
3951
3952  // Add the user-defined conversion step that calls the conversion function.
3953  QualType ConvType = Function->getCallResultType();
3954  if (ConvType->getAs<RecordType>()) {
3955    // If we're converting to a class type, there may be an copy of
3956    // the resulting temporary object (possible to create an object of
3957    // a base class type). That copy is not a separate conversion, so
3958    // we just make a note of the actual destination type (possibly a
3959    // base class of the type returned by the conversion function) and
3960    // let the user-defined conversion step handle the conversion.
3961    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
3962                                   HadMultipleCandidates);
3963    return;
3964  }
3965
3966  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
3967                                 HadMultipleCandidates);
3968
3969  // If the conversion following the call to the conversion function
3970  // is interesting, add it as a separate step.
3971  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3972      Best->FinalConversion.Third) {
3973    ImplicitConversionSequence ICS;
3974    ICS.setStandard();
3975    ICS.Standard = Best->FinalConversion;
3976    Sequence.AddConversionSequenceStep(ICS, DestType);
3977  }
3978}
3979
3980/// The non-zero enum values here are indexes into diagnostic alternatives.
3981enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
3982
3983/// Determines whether this expression is an acceptable ICR source.
3984static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
3985                                         bool isAddressOf, bool &isWeakAccess) {
3986  // Skip parens.
3987  e = e->IgnoreParens();
3988
3989  // Skip address-of nodes.
3990  if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
3991    if (op->getOpcode() == UO_AddrOf)
3992      return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
3993                                isWeakAccess);
3994
3995  // Skip certain casts.
3996  } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
3997    switch (ce->getCastKind()) {
3998    case CK_Dependent:
3999    case CK_BitCast:
4000    case CK_LValueBitCast:
4001    case CK_NoOp:
4002      return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4003
4004    case CK_ArrayToPointerDecay:
4005      return IIK_nonscalar;
4006
4007    case CK_NullToPointer:
4008      return IIK_okay;
4009
4010    default:
4011      break;
4012    }
4013
4014  // If we have a declaration reference, it had better be a local variable.
4015  } else if (isa<DeclRefExpr>(e)) {
4016    // set isWeakAccess to true, to mean that there will be an implicit
4017    // load which requires a cleanup.
4018    if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4019      isWeakAccess = true;
4020
4021    if (!isAddressOf) return IIK_nonlocal;
4022
4023    VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4024    if (!var) return IIK_nonlocal;
4025
4026    return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4027
4028  // If we have a conditional operator, check both sides.
4029  } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4030    if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4031                                                isWeakAccess))
4032      return iik;
4033
4034    return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4035
4036  // These are never scalar.
4037  } else if (isa<ArraySubscriptExpr>(e)) {
4038    return IIK_nonscalar;
4039
4040  // Otherwise, it needs to be a null pointer constant.
4041  } else {
4042    return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4043            ? IIK_okay : IIK_nonlocal);
4044  }
4045
4046  return IIK_nonlocal;
4047}
4048
4049/// Check whether the given expression is a valid operand for an
4050/// indirect copy/restore.
4051static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4052  assert(src->isRValue());
4053  bool isWeakAccess = false;
4054  InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4055  // If isWeakAccess to true, there will be an implicit
4056  // load which requires a cleanup.
4057  if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4058    S.ExprNeedsCleanups = true;
4059
4060  if (iik == IIK_okay) return;
4061
4062  S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4063    << ((unsigned) iik - 1)  // shift index into diagnostic explanations
4064    << src->getSourceRange();
4065}
4066
4067/// \brief Determine whether we have compatible array types for the
4068/// purposes of GNU by-copy array initialization.
4069static bool hasCompatibleArrayTypes(ASTContext &Context,
4070                                    const ArrayType *Dest,
4071                                    const ArrayType *Source) {
4072  // If the source and destination array types are equivalent, we're
4073  // done.
4074  if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4075    return true;
4076
4077  // Make sure that the element types are the same.
4078  if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4079    return false;
4080
4081  // The only mismatch we allow is when the destination is an
4082  // incomplete array type and the source is a constant array type.
4083  return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4084}
4085
4086static bool tryObjCWritebackConversion(Sema &S,
4087                                       InitializationSequence &Sequence,
4088                                       const InitializedEntity &Entity,
4089                                       Expr *Initializer) {
4090  bool ArrayDecay = false;
4091  QualType ArgType = Initializer->getType();
4092  QualType ArgPointee;
4093  if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4094    ArrayDecay = true;
4095    ArgPointee = ArgArrayType->getElementType();
4096    ArgType = S.Context.getPointerType(ArgPointee);
4097  }
4098
4099  // Handle write-back conversion.
4100  QualType ConvertedArgType;
4101  if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4102                                   ConvertedArgType))
4103    return false;
4104
4105  // We should copy unless we're passing to an argument explicitly
4106  // marked 'out'.
4107  bool ShouldCopy = true;
4108  if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4109    ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4110
4111  // Do we need an lvalue conversion?
4112  if (ArrayDecay || Initializer->isGLValue()) {
4113    ImplicitConversionSequence ICS;
4114    ICS.setStandard();
4115    ICS.Standard.setAsIdentityConversion();
4116
4117    QualType ResultType;
4118    if (ArrayDecay) {
4119      ICS.Standard.First = ICK_Array_To_Pointer;
4120      ResultType = S.Context.getPointerType(ArgPointee);
4121    } else {
4122      ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4123      ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4124    }
4125
4126    Sequence.AddConversionSequenceStep(ICS, ResultType);
4127  }
4128
4129  Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4130  return true;
4131}
4132
4133static bool TryOCLSamplerInitialization(Sema &S,
4134                                        InitializationSequence &Sequence,
4135                                        QualType DestType,
4136                                        Expr *Initializer) {
4137  if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4138    !Initializer->isIntegerConstantExpr(S.getASTContext()))
4139    return false;
4140
4141  Sequence.AddOCLSamplerInitStep(DestType);
4142  return true;
4143}
4144
4145//
4146// OpenCL 1.2 spec, s6.12.10
4147//
4148// The event argument can also be used to associate the
4149// async_work_group_copy with a previous async copy allowing
4150// an event to be shared by multiple async copies; otherwise
4151// event should be zero.
4152//
4153static bool TryOCLZeroEventInitialization(Sema &S,
4154                                          InitializationSequence &Sequence,
4155                                          QualType DestType,
4156                                          Expr *Initializer) {
4157  if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4158      !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4159      (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4160    return false;
4161
4162  Sequence.AddOCLZeroEventStep(DestType);
4163  return true;
4164}
4165
4166InitializationSequence::InitializationSequence(Sema &S,
4167                                               const InitializedEntity &Entity,
4168                                               const InitializationKind &Kind,
4169                                               MultiExprArg Args)
4170    : FailedCandidateSet(Kind.getLocation()) {
4171  ASTContext &Context = S.Context;
4172
4173  // Eliminate non-overload placeholder types in the arguments.  We
4174  // need to do this before checking whether types are dependent
4175  // because lowering a pseudo-object expression might well give us
4176  // something of dependent type.
4177  for (unsigned I = 0, E = Args.size(); I != E; ++I)
4178    if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4179      // FIXME: should we be doing this here?
4180      ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4181      if (result.isInvalid()) {
4182        SetFailed(FK_PlaceholderType);
4183        return;
4184      }
4185      Args[I] = result.take();
4186    }
4187
4188  // C++0x [dcl.init]p16:
4189  //   The semantics of initializers are as follows. The destination type is
4190  //   the type of the object or reference being initialized and the source
4191  //   type is the type of the initializer expression. The source type is not
4192  //   defined when the initializer is a braced-init-list or when it is a
4193  //   parenthesized list of expressions.
4194  QualType DestType = Entity.getType();
4195
4196  if (DestType->isDependentType() ||
4197      Expr::hasAnyTypeDependentArguments(Args)) {
4198    SequenceKind = DependentSequence;
4199    return;
4200  }
4201
4202  // Almost everything is a normal sequence.
4203  setSequenceKind(NormalSequence);
4204
4205  QualType SourceType;
4206  Expr *Initializer = 0;
4207  if (Args.size() == 1) {
4208    Initializer = Args[0];
4209    if (!isa<InitListExpr>(Initializer))
4210      SourceType = Initializer->getType();
4211  }
4212
4213  //     - If the initializer is a (non-parenthesized) braced-init-list, the
4214  //       object is list-initialized (8.5.4).
4215  if (Kind.getKind() != InitializationKind::IK_Direct) {
4216    if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4217      TryListInitialization(S, Entity, Kind, InitList, *this);
4218      return;
4219    }
4220  }
4221
4222  //     - If the destination type is a reference type, see 8.5.3.
4223  if (DestType->isReferenceType()) {
4224    // C++0x [dcl.init.ref]p1:
4225    //   A variable declared to be a T& or T&&, that is, "reference to type T"
4226    //   (8.3.2), shall be initialized by an object, or function, of type T or
4227    //   by an object that can be converted into a T.
4228    // (Therefore, multiple arguments are not permitted.)
4229    if (Args.size() != 1)
4230      SetFailed(FK_TooManyInitsForReference);
4231    else
4232      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4233    return;
4234  }
4235
4236  //     - If the initializer is (), the object is value-initialized.
4237  if (Kind.getKind() == InitializationKind::IK_Value ||
4238      (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
4239    TryValueInitialization(S, Entity, Kind, *this);
4240    return;
4241  }
4242
4243  // Handle default initialization.
4244  if (Kind.getKind() == InitializationKind::IK_Default) {
4245    TryDefaultInitialization(S, Entity, Kind, *this);
4246    return;
4247  }
4248
4249  //     - If the destination type is an array of characters, an array of
4250  //       char16_t, an array of char32_t, or an array of wchar_t, and the
4251  //       initializer is a string literal, see 8.5.2.
4252  //     - Otherwise, if the destination type is an array, the program is
4253  //       ill-formed.
4254  if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4255    if (Initializer && isa<VariableArrayType>(DestAT)) {
4256      SetFailed(FK_VariableLengthArrayHasInitializer);
4257      return;
4258    }
4259
4260    if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
4261      TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4262      return;
4263    }
4264
4265    // Note: as an GNU C extension, we allow initialization of an
4266    // array from a compound literal that creates an array of the same
4267    // type, so long as the initializer has no side effects.
4268    if (!S.getLangOpts().CPlusPlus && Initializer &&
4269        isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4270        Initializer->getType()->isArrayType()) {
4271      const ArrayType *SourceAT
4272        = Context.getAsArrayType(Initializer->getType());
4273      if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4274        SetFailed(FK_ArrayTypeMismatch);
4275      else if (Initializer->HasSideEffects(S.Context))
4276        SetFailed(FK_NonConstantArrayInit);
4277      else {
4278        AddArrayInitStep(DestType);
4279      }
4280    }
4281    // Note: as a GNU C++ extension, we allow list-initialization of a
4282    // class member of array type from a parenthesized initializer list.
4283    else if (S.getLangOpts().CPlusPlus &&
4284             Entity.getKind() == InitializedEntity::EK_Member &&
4285             Initializer && isa<InitListExpr>(Initializer)) {
4286      TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4287                            *this);
4288      AddParenthesizedArrayInitStep(DestType);
4289    } else if (DestAT->getElementType()->isAnyCharacterType())
4290      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4291    else
4292      SetFailed(FK_ArrayNeedsInitList);
4293
4294    return;
4295  }
4296
4297  // Determine whether we should consider writeback conversions for
4298  // Objective-C ARC.
4299  bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4300    Entity.getKind() == InitializedEntity::EK_Parameter;
4301
4302  // We're at the end of the line for C: it's either a write-back conversion
4303  // or it's a C assignment. There's no need to check anything else.
4304  if (!S.getLangOpts().CPlusPlus) {
4305    // If allowed, check whether this is an Objective-C writeback conversion.
4306    if (allowObjCWritebackConversion &&
4307        tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4308      return;
4309    }
4310
4311    if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4312      return;
4313
4314    if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4315      return;
4316
4317    // Handle initialization in C
4318    AddCAssignmentStep(DestType);
4319    MaybeProduceObjCObject(S, *this, Entity);
4320    return;
4321  }
4322
4323  assert(S.getLangOpts().CPlusPlus);
4324
4325  //     - If the destination type is a (possibly cv-qualified) class type:
4326  if (DestType->isRecordType()) {
4327    //     - If the initialization is direct-initialization, or if it is
4328    //       copy-initialization where the cv-unqualified version of the
4329    //       source type is the same class as, or a derived class of, the
4330    //       class of the destination, constructors are considered. [...]
4331    if (Kind.getKind() == InitializationKind::IK_Direct ||
4332        (Kind.getKind() == InitializationKind::IK_Copy &&
4333         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4334          S.IsDerivedFrom(SourceType, DestType))))
4335      TryConstructorInitialization(S, Entity, Kind, Args,
4336                                   Entity.getType(), *this);
4337    //     - Otherwise (i.e., for the remaining copy-initialization cases),
4338    //       user-defined conversion sequences that can convert from the source
4339    //       type to the destination type or (when a conversion function is
4340    //       used) to a derived class thereof are enumerated as described in
4341    //       13.3.1.4, and the best one is chosen through overload resolution
4342    //       (13.3).
4343    else
4344      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4345    return;
4346  }
4347
4348  if (Args.size() > 1) {
4349    SetFailed(FK_TooManyInitsForScalar);
4350    return;
4351  }
4352  assert(Args.size() == 1 && "Zero-argument case handled above");
4353
4354  //    - Otherwise, if the source type is a (possibly cv-qualified) class
4355  //      type, conversion functions are considered.
4356  if (!SourceType.isNull() && SourceType->isRecordType()) {
4357    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4358    MaybeProduceObjCObject(S, *this, Entity);
4359    return;
4360  }
4361
4362  //    - Otherwise, the initial value of the object being initialized is the
4363  //      (possibly converted) value of the initializer expression. Standard
4364  //      conversions (Clause 4) will be used, if necessary, to convert the
4365  //      initializer expression to the cv-unqualified version of the
4366  //      destination type; no user-defined conversions are considered.
4367
4368  ImplicitConversionSequence ICS
4369    = S.TryImplicitConversion(Initializer, Entity.getType(),
4370                              /*SuppressUserConversions*/true,
4371                              /*AllowExplicitConversions*/ false,
4372                              /*InOverloadResolution*/ false,
4373                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4374                              allowObjCWritebackConversion);
4375
4376  if (ICS.isStandard() &&
4377      ICS.Standard.Second == ICK_Writeback_Conversion) {
4378    // Objective-C ARC writeback conversion.
4379
4380    // We should copy unless we're passing to an argument explicitly
4381    // marked 'out'.
4382    bool ShouldCopy = true;
4383    if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4384      ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4385
4386    // If there was an lvalue adjustment, add it as a separate conversion.
4387    if (ICS.Standard.First == ICK_Array_To_Pointer ||
4388        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4389      ImplicitConversionSequence LvalueICS;
4390      LvalueICS.setStandard();
4391      LvalueICS.Standard.setAsIdentityConversion();
4392      LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4393      LvalueICS.Standard.First = ICS.Standard.First;
4394      AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4395    }
4396
4397    AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4398  } else if (ICS.isBad()) {
4399    DeclAccessPair dap;
4400    if (Initializer->getType() == Context.OverloadTy &&
4401          !S.ResolveAddressOfOverloadedFunction(Initializer
4402                      , DestType, false, dap))
4403      SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4404    else
4405      SetFailed(InitializationSequence::FK_ConversionFailed);
4406  } else {
4407    AddConversionSequenceStep(ICS, Entity.getType());
4408
4409    MaybeProduceObjCObject(S, *this, Entity);
4410  }
4411}
4412
4413InitializationSequence::~InitializationSequence() {
4414  for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4415                                          StepEnd = Steps.end();
4416       Step != StepEnd; ++Step)
4417    Step->Destroy();
4418}
4419
4420//===----------------------------------------------------------------------===//
4421// Perform initialization
4422//===----------------------------------------------------------------------===//
4423static Sema::AssignmentAction
4424getAssignmentAction(const InitializedEntity &Entity) {
4425  switch(Entity.getKind()) {
4426  case InitializedEntity::EK_Variable:
4427  case InitializedEntity::EK_New:
4428  case InitializedEntity::EK_Exception:
4429  case InitializedEntity::EK_Base:
4430  case InitializedEntity::EK_Delegating:
4431    return Sema::AA_Initializing;
4432
4433  case InitializedEntity::EK_Parameter:
4434    if (Entity.getDecl() &&
4435        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4436      return Sema::AA_Sending;
4437
4438    return Sema::AA_Passing;
4439
4440  case InitializedEntity::EK_Result:
4441    return Sema::AA_Returning;
4442
4443  case InitializedEntity::EK_Temporary:
4444    // FIXME: Can we tell apart casting vs. converting?
4445    return Sema::AA_Casting;
4446
4447  case InitializedEntity::EK_Member:
4448  case InitializedEntity::EK_ArrayElement:
4449  case InitializedEntity::EK_VectorElement:
4450  case InitializedEntity::EK_ComplexElement:
4451  case InitializedEntity::EK_BlockElement:
4452  case InitializedEntity::EK_LambdaCapture:
4453    return Sema::AA_Initializing;
4454  }
4455
4456  llvm_unreachable("Invalid EntityKind!");
4457}
4458
4459/// \brief Whether we should bind a created object as a temporary when
4460/// initializing the given entity.
4461static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4462  switch (Entity.getKind()) {
4463  case InitializedEntity::EK_ArrayElement:
4464  case InitializedEntity::EK_Member:
4465  case InitializedEntity::EK_Result:
4466  case InitializedEntity::EK_New:
4467  case InitializedEntity::EK_Variable:
4468  case InitializedEntity::EK_Base:
4469  case InitializedEntity::EK_Delegating:
4470  case InitializedEntity::EK_VectorElement:
4471  case InitializedEntity::EK_ComplexElement:
4472  case InitializedEntity::EK_Exception:
4473  case InitializedEntity::EK_BlockElement:
4474  case InitializedEntity::EK_LambdaCapture:
4475    return false;
4476
4477  case InitializedEntity::EK_Parameter:
4478  case InitializedEntity::EK_Temporary:
4479    return true;
4480  }
4481
4482  llvm_unreachable("missed an InitializedEntity kind?");
4483}
4484
4485/// \brief Whether the given entity, when initialized with an object
4486/// created for that initialization, requires destruction.
4487static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4488  switch (Entity.getKind()) {
4489    case InitializedEntity::EK_Result:
4490    case InitializedEntity::EK_New:
4491    case InitializedEntity::EK_Base:
4492    case InitializedEntity::EK_Delegating:
4493    case InitializedEntity::EK_VectorElement:
4494    case InitializedEntity::EK_ComplexElement:
4495    case InitializedEntity::EK_BlockElement:
4496    case InitializedEntity::EK_LambdaCapture:
4497      return false;
4498
4499    case InitializedEntity::EK_Member:
4500    case InitializedEntity::EK_Variable:
4501    case InitializedEntity::EK_Parameter:
4502    case InitializedEntity::EK_Temporary:
4503    case InitializedEntity::EK_ArrayElement:
4504    case InitializedEntity::EK_Exception:
4505      return true;
4506  }
4507
4508  llvm_unreachable("missed an InitializedEntity kind?");
4509}
4510
4511/// \brief Look for copy and move constructors and constructor templates, for
4512/// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4513static void LookupCopyAndMoveConstructors(Sema &S,
4514                                          OverloadCandidateSet &CandidateSet,
4515                                          CXXRecordDecl *Class,
4516                                          Expr *CurInitExpr) {
4517  DeclContext::lookup_result R = S.LookupConstructors(Class);
4518  // The container holding the constructors can under certain conditions
4519  // be changed while iterating (e.g. because of deserialization).
4520  // To be safe we copy the lookup results to a new container.
4521  SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
4522  for (SmallVector<NamedDecl*, 16>::iterator
4523         CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
4524    NamedDecl *D = *CI;
4525    CXXConstructorDecl *Constructor = 0;
4526
4527    if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
4528      // Handle copy/moveconstructors, only.
4529      if (!Constructor || Constructor->isInvalidDecl() ||
4530          !Constructor->isCopyOrMoveConstructor() ||
4531          !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4532        continue;
4533
4534      DeclAccessPair FoundDecl
4535        = DeclAccessPair::make(Constructor, Constructor->getAccess());
4536      S.AddOverloadCandidate(Constructor, FoundDecl,
4537                             CurInitExpr, CandidateSet);
4538      continue;
4539    }
4540
4541    // Handle constructor templates.
4542    FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
4543    if (ConstructorTmpl->isInvalidDecl())
4544      continue;
4545
4546    Constructor = cast<CXXConstructorDecl>(
4547                                         ConstructorTmpl->getTemplatedDecl());
4548    if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4549      continue;
4550
4551    // FIXME: Do we need to limit this to copy-constructor-like
4552    // candidates?
4553    DeclAccessPair FoundDecl
4554      = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4555    S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4556                                   CurInitExpr, CandidateSet, true);
4557  }
4558}
4559
4560/// \brief Get the location at which initialization diagnostics should appear.
4561static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4562                                           Expr *Initializer) {
4563  switch (Entity.getKind()) {
4564  case InitializedEntity::EK_Result:
4565    return Entity.getReturnLoc();
4566
4567  case InitializedEntity::EK_Exception:
4568    return Entity.getThrowLoc();
4569
4570  case InitializedEntity::EK_Variable:
4571    return Entity.getDecl()->getLocation();
4572
4573  case InitializedEntity::EK_LambdaCapture:
4574    return Entity.getCaptureLoc();
4575
4576  case InitializedEntity::EK_ArrayElement:
4577  case InitializedEntity::EK_Member:
4578  case InitializedEntity::EK_Parameter:
4579  case InitializedEntity::EK_Temporary:
4580  case InitializedEntity::EK_New:
4581  case InitializedEntity::EK_Base:
4582  case InitializedEntity::EK_Delegating:
4583  case InitializedEntity::EK_VectorElement:
4584  case InitializedEntity::EK_ComplexElement:
4585  case InitializedEntity::EK_BlockElement:
4586    return Initializer->getLocStart();
4587  }
4588  llvm_unreachable("missed an InitializedEntity kind?");
4589}
4590
4591/// \brief Make a (potentially elidable) temporary copy of the object
4592/// provided by the given initializer by calling the appropriate copy
4593/// constructor.
4594///
4595/// \param S The Sema object used for type-checking.
4596///
4597/// \param T The type of the temporary object, which must either be
4598/// the type of the initializer expression or a superclass thereof.
4599///
4600/// \param Entity The entity being initialized.
4601///
4602/// \param CurInit The initializer expression.
4603///
4604/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4605/// is permitted in C++03 (but not C++0x) when binding a reference to
4606/// an rvalue.
4607///
4608/// \returns An expression that copies the initializer expression into
4609/// a temporary object, or an error expression if a copy could not be
4610/// created.
4611static ExprResult CopyObject(Sema &S,
4612                             QualType T,
4613                             const InitializedEntity &Entity,
4614                             ExprResult CurInit,
4615                             bool IsExtraneousCopy) {
4616  // Determine which class type we're copying to.
4617  Expr *CurInitExpr = (Expr *)CurInit.get();
4618  CXXRecordDecl *Class = 0;
4619  if (const RecordType *Record = T->getAs<RecordType>())
4620    Class = cast<CXXRecordDecl>(Record->getDecl());
4621  if (!Class)
4622    return CurInit;
4623
4624  // C++0x [class.copy]p32:
4625  //   When certain criteria are met, an implementation is allowed to
4626  //   omit the copy/move construction of a class object, even if the
4627  //   copy/move constructor and/or destructor for the object have
4628  //   side effects. [...]
4629  //     - when a temporary class object that has not been bound to a
4630  //       reference (12.2) would be copied/moved to a class object
4631  //       with the same cv-unqualified type, the copy/move operation
4632  //       can be omitted by constructing the temporary object
4633  //       directly into the target of the omitted copy/move
4634  //
4635  // Note that the other three bullets are handled elsewhere. Copy
4636  // elision for return statements and throw expressions are handled as part
4637  // of constructor initialization, while copy elision for exception handlers
4638  // is handled by the run-time.
4639  bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4640  SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4641
4642  // Make sure that the type we are copying is complete.
4643  if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
4644    return CurInit;
4645
4646  // Perform overload resolution using the class's copy/move constructors.
4647  // Only consider constructors and constructor templates. Per
4648  // C++0x [dcl.init]p16, second bullet to class types, this initialization
4649  // is direct-initialization.
4650  OverloadCandidateSet CandidateSet(Loc);
4651  LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4652
4653  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4654
4655  OverloadCandidateSet::iterator Best;
4656  switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4657  case OR_Success:
4658    break;
4659
4660  case OR_No_Viable_Function:
4661    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4662           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4663           : diag::err_temp_copy_no_viable)
4664      << (int)Entity.getKind() << CurInitExpr->getType()
4665      << CurInitExpr->getSourceRange();
4666    CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4667    if (!IsExtraneousCopy || S.isSFINAEContext())
4668      return ExprError();
4669    return CurInit;
4670
4671  case OR_Ambiguous:
4672    S.Diag(Loc, diag::err_temp_copy_ambiguous)
4673      << (int)Entity.getKind() << CurInitExpr->getType()
4674      << CurInitExpr->getSourceRange();
4675    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4676    return ExprError();
4677
4678  case OR_Deleted:
4679    S.Diag(Loc, diag::err_temp_copy_deleted)
4680      << (int)Entity.getKind() << CurInitExpr->getType()
4681      << CurInitExpr->getSourceRange();
4682    S.NoteDeletedFunction(Best->Function);
4683    return ExprError();
4684  }
4685
4686  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4687  SmallVector<Expr*, 8> ConstructorArgs;
4688  CurInit.release(); // Ownership transferred into MultiExprArg, below.
4689
4690  S.CheckConstructorAccess(Loc, Constructor, Entity,
4691                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
4692
4693  if (IsExtraneousCopy) {
4694    // If this is a totally extraneous copy for C++03 reference
4695    // binding purposes, just return the original initialization
4696    // expression. We don't generate an (elided) copy operation here
4697    // because doing so would require us to pass down a flag to avoid
4698    // infinite recursion, where each step adds another extraneous,
4699    // elidable copy.
4700
4701    // Instantiate the default arguments of any extra parameters in
4702    // the selected copy constructor, as if we were going to create a
4703    // proper call to the copy constructor.
4704    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4705      ParmVarDecl *Parm = Constructor->getParamDecl(I);
4706      if (S.RequireCompleteType(Loc, Parm->getType(),
4707                                diag::err_call_incomplete_argument))
4708        break;
4709
4710      // Build the default argument expression; we don't actually care
4711      // if this succeeds or not, because this routine will complain
4712      // if there was a problem.
4713      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4714    }
4715
4716    return S.Owned(CurInitExpr);
4717  }
4718
4719  // Determine the arguments required to actually perform the
4720  // constructor call (we might have derived-to-base conversions, or
4721  // the copy constructor may have default arguments).
4722  if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
4723    return ExprError();
4724
4725  // Actually perform the constructor call.
4726  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4727                                    ConstructorArgs,
4728                                    HadMultipleCandidates,
4729                                    /*ListInit*/ false,
4730                                    /*ZeroInit*/ false,
4731                                    CXXConstructExpr::CK_Complete,
4732                                    SourceRange());
4733
4734  // If we're supposed to bind temporaries, do so.
4735  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4736    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4737  return CurInit;
4738}
4739
4740/// \brief Check whether elidable copy construction for binding a reference to
4741/// a temporary would have succeeded if we were building in C++98 mode, for
4742/// -Wc++98-compat.
4743static void CheckCXX98CompatAccessibleCopy(Sema &S,
4744                                           const InitializedEntity &Entity,
4745                                           Expr *CurInitExpr) {
4746  assert(S.getLangOpts().CPlusPlus11);
4747
4748  const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4749  if (!Record)
4750    return;
4751
4752  SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4753  if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4754        == DiagnosticsEngine::Ignored)
4755    return;
4756
4757  // Find constructors which would have been considered.
4758  OverloadCandidateSet CandidateSet(Loc);
4759  LookupCopyAndMoveConstructors(
4760      S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4761
4762  // Perform overload resolution.
4763  OverloadCandidateSet::iterator Best;
4764  OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4765
4766  PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4767    << OR << (int)Entity.getKind() << CurInitExpr->getType()
4768    << CurInitExpr->getSourceRange();
4769
4770  switch (OR) {
4771  case OR_Success:
4772    S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4773                             Entity, Best->FoundDecl.getAccess(), Diag);
4774    // FIXME: Check default arguments as far as that's possible.
4775    break;
4776
4777  case OR_No_Viable_Function:
4778    S.Diag(Loc, Diag);
4779    CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4780    break;
4781
4782  case OR_Ambiguous:
4783    S.Diag(Loc, Diag);
4784    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4785    break;
4786
4787  case OR_Deleted:
4788    S.Diag(Loc, Diag);
4789    S.NoteDeletedFunction(Best->Function);
4790    break;
4791  }
4792}
4793
4794void InitializationSequence::PrintInitLocationNote(Sema &S,
4795                                              const InitializedEntity &Entity) {
4796  if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
4797    if (Entity.getDecl()->getLocation().isInvalid())
4798      return;
4799
4800    if (Entity.getDecl()->getDeclName())
4801      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
4802        << Entity.getDecl()->getDeclName();
4803    else
4804      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
4805  }
4806}
4807
4808static bool isReferenceBinding(const InitializationSequence::Step &s) {
4809  return s.Kind == InitializationSequence::SK_BindReference ||
4810         s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
4811}
4812
4813static ExprResult
4814PerformConstructorInitialization(Sema &S,
4815                                 const InitializedEntity &Entity,
4816                                 const InitializationKind &Kind,
4817                                 MultiExprArg Args,
4818                                 const InitializationSequence::Step& Step,
4819                                 bool &ConstructorInitRequiresZeroInit,
4820                                 bool IsListInitialization) {
4821  unsigned NumArgs = Args.size();
4822  CXXConstructorDecl *Constructor
4823    = cast<CXXConstructorDecl>(Step.Function.Function);
4824  bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
4825
4826  // Build a call to the selected constructor.
4827  SmallVector<Expr*, 8> ConstructorArgs;
4828  SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
4829                         ? Kind.getEqualLoc()
4830                         : Kind.getLocation();
4831
4832  if (Kind.getKind() == InitializationKind::IK_Default) {
4833    // Force even a trivial, implicit default constructor to be
4834    // semantically checked. We do this explicitly because we don't build
4835    // the definition for completely trivial constructors.
4836    assert(Constructor->getParent() && "No parent class for constructor.");
4837    if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
4838        Constructor->isTrivial() && !Constructor->isUsed(false))
4839      S.DefineImplicitDefaultConstructor(Loc, Constructor);
4840  }
4841
4842  ExprResult CurInit = S.Owned((Expr *)0);
4843
4844  // C++ [over.match.copy]p1:
4845  //   - When initializing a temporary to be bound to the first parameter
4846  //     of a constructor that takes a reference to possibly cv-qualified
4847  //     T as its first argument, called with a single argument in the
4848  //     context of direct-initialization, explicit conversion functions
4849  //     are also considered.
4850  bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
4851                           Args.size() == 1 &&
4852                           Constructor->isCopyOrMoveConstructor();
4853
4854  // Determine the arguments required to actually perform the constructor
4855  // call.
4856  if (S.CompleteConstructorCall(Constructor, Args,
4857                                Loc, ConstructorArgs,
4858                                AllowExplicitConv,
4859                                IsListInitialization))
4860    return ExprError();
4861
4862
4863  if (Entity.getKind() == InitializedEntity::EK_Temporary &&
4864      (Kind.getKind() == InitializationKind::IK_DirectList ||
4865       (NumArgs != 1 && // FIXME: Hack to work around cast weirdness
4866        (Kind.getKind() == InitializationKind::IK_Direct ||
4867         Kind.getKind() == InitializationKind::IK_Value)))) {
4868    // An explicitly-constructed temporary, e.g., X(1, 2).
4869    S.MarkFunctionReferenced(Loc, Constructor);
4870    S.DiagnoseUseOfDecl(Constructor, Loc);
4871
4872    TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4873    if (!TSInfo)
4874      TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4875    SourceRange ParenRange;
4876    if (Kind.getKind() != InitializationKind::IK_DirectList)
4877      ParenRange = Kind.getParenRange();
4878
4879    CurInit = S.Owned(
4880      new (S.Context) CXXTemporaryObjectExpr(S.Context, Constructor,
4881                                             TSInfo, ConstructorArgs,
4882                                             ParenRange, IsListInitialization,
4883                                             HadMultipleCandidates,
4884                                             ConstructorInitRequiresZeroInit));
4885  } else {
4886    CXXConstructExpr::ConstructionKind ConstructKind =
4887      CXXConstructExpr::CK_Complete;
4888
4889    if (Entity.getKind() == InitializedEntity::EK_Base) {
4890      ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4891        CXXConstructExpr::CK_VirtualBase :
4892        CXXConstructExpr::CK_NonVirtualBase;
4893    } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
4894      ConstructKind = CXXConstructExpr::CK_Delegating;
4895    }
4896
4897    // Only get the parenthesis range if it is a direct construction.
4898    SourceRange parenRange =
4899        Kind.getKind() == InitializationKind::IK_Direct ?
4900        Kind.getParenRange() : SourceRange();
4901
4902    // If the entity allows NRVO, mark the construction as elidable
4903    // unconditionally.
4904    if (Entity.allowsNRVO())
4905      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4906                                        Constructor, /*Elidable=*/true,
4907                                        ConstructorArgs,
4908                                        HadMultipleCandidates,
4909                                        IsListInitialization,
4910                                        ConstructorInitRequiresZeroInit,
4911                                        ConstructKind,
4912                                        parenRange);
4913    else
4914      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4915                                        Constructor,
4916                                        ConstructorArgs,
4917                                        HadMultipleCandidates,
4918                                        IsListInitialization,
4919                                        ConstructorInitRequiresZeroInit,
4920                                        ConstructKind,
4921                                        parenRange);
4922  }
4923  if (CurInit.isInvalid())
4924    return ExprError();
4925
4926  // Only check access if all of that succeeded.
4927  S.CheckConstructorAccess(Loc, Constructor, Entity,
4928                           Step.Function.FoundDecl.getAccess());
4929  S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc);
4930
4931  if (shouldBindAsTemporary(Entity))
4932    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4933
4934  return CurInit;
4935}
4936
4937/// Determine whether the specified InitializedEntity definitely has a lifetime
4938/// longer than the current full-expression. Conservatively returns false if
4939/// it's unclear.
4940static bool
4941InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
4942  const InitializedEntity *Top = &Entity;
4943  while (Top->getParent())
4944    Top = Top->getParent();
4945
4946  switch (Top->getKind()) {
4947  case InitializedEntity::EK_Variable:
4948  case InitializedEntity::EK_Result:
4949  case InitializedEntity::EK_Exception:
4950  case InitializedEntity::EK_Member:
4951  case InitializedEntity::EK_New:
4952  case InitializedEntity::EK_Base:
4953  case InitializedEntity::EK_Delegating:
4954    return true;
4955
4956  case InitializedEntity::EK_ArrayElement:
4957  case InitializedEntity::EK_VectorElement:
4958  case InitializedEntity::EK_BlockElement:
4959  case InitializedEntity::EK_ComplexElement:
4960    // Could not determine what the full initialization is. Assume it might not
4961    // outlive the full-expression.
4962    return false;
4963
4964  case InitializedEntity::EK_Parameter:
4965  case InitializedEntity::EK_Temporary:
4966  case InitializedEntity::EK_LambdaCapture:
4967    // The entity being initialized might not outlive the full-expression.
4968    return false;
4969  }
4970
4971  llvm_unreachable("unknown entity kind");
4972}
4973
4974ExprResult
4975InitializationSequence::Perform(Sema &S,
4976                                const InitializedEntity &Entity,
4977                                const InitializationKind &Kind,
4978                                MultiExprArg Args,
4979                                QualType *ResultType) {
4980  if (Failed()) {
4981    Diagnose(S, Entity, Kind, Args);
4982    return ExprError();
4983  }
4984
4985  if (getKind() == DependentSequence) {
4986    // If the declaration is a non-dependent, incomplete array type
4987    // that has an initializer, then its type will be completed once
4988    // the initializer is instantiated.
4989    if (ResultType && !Entity.getType()->isDependentType() &&
4990        Args.size() == 1) {
4991      QualType DeclType = Entity.getType();
4992      if (const IncompleteArrayType *ArrayT
4993                           = S.Context.getAsIncompleteArrayType(DeclType)) {
4994        // FIXME: We don't currently have the ability to accurately
4995        // compute the length of an initializer list without
4996        // performing full type-checking of the initializer list
4997        // (since we have to determine where braces are implicitly
4998        // introduced and such).  So, we fall back to making the array
4999        // type a dependently-sized array type with no specified
5000        // bound.
5001        if (isa<InitListExpr>((Expr *)Args[0])) {
5002          SourceRange Brackets;
5003
5004          // Scavange the location of the brackets from the entity, if we can.
5005          if (DeclaratorDecl *DD = Entity.getDecl()) {
5006            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
5007              TypeLoc TL = TInfo->getTypeLoc();
5008              if (IncompleteArrayTypeLoc ArrayLoc =
5009                      TL.getAs<IncompleteArrayTypeLoc>())
5010                Brackets = ArrayLoc.getBracketsRange();
5011            }
5012          }
5013
5014          *ResultType
5015            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
5016                                                   /*NumElts=*/0,
5017                                                   ArrayT->getSizeModifier(),
5018                                       ArrayT->getIndexTypeCVRQualifiers(),
5019                                                   Brackets);
5020        }
5021
5022      }
5023    }
5024    if (Kind.getKind() == InitializationKind::IK_Direct &&
5025        !Kind.isExplicitCast()) {
5026      // Rebuild the ParenListExpr.
5027      SourceRange ParenRange = Kind.getParenRange();
5028      return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
5029                                  Args);
5030    }
5031    assert(Kind.getKind() == InitializationKind::IK_Copy ||
5032           Kind.isExplicitCast() ||
5033           Kind.getKind() == InitializationKind::IK_DirectList);
5034    return ExprResult(Args[0]);
5035  }
5036
5037  // No steps means no initialization.
5038  if (Steps.empty())
5039    return S.Owned((Expr *)0);
5040
5041  if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
5042      Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
5043      Entity.getKind() != InitializedEntity::EK_Parameter) {
5044    // Produce a C++98 compatibility warning if we are initializing a reference
5045    // from an initializer list. For parameters, we produce a better warning
5046    // elsewhere.
5047    Expr *Init = Args[0];
5048    S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
5049      << Init->getSourceRange();
5050  }
5051
5052  // Diagnose cases where we initialize a pointer to an array temporary, and the
5053  // pointer obviously outlives the temporary.
5054  if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
5055      Entity.getType()->isPointerType() &&
5056      InitializedEntityOutlivesFullExpression(Entity)) {
5057    Expr *Init = Args[0];
5058    Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
5059    if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
5060      S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
5061        << Init->getSourceRange();
5062  }
5063
5064  QualType DestType = Entity.getType().getNonReferenceType();
5065  // FIXME: Ugly hack around the fact that Entity.getType() is not
5066  // the same as Entity.getDecl()->getType() in cases involving type merging,
5067  //  and we want latter when it makes sense.
5068  if (ResultType)
5069    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
5070                                     Entity.getType();
5071
5072  ExprResult CurInit = S.Owned((Expr *)0);
5073
5074  // For initialization steps that start with a single initializer,
5075  // grab the only argument out the Args and place it into the "current"
5076  // initializer.
5077  switch (Steps.front().Kind) {
5078  case SK_ResolveAddressOfOverloadedFunction:
5079  case SK_CastDerivedToBaseRValue:
5080  case SK_CastDerivedToBaseXValue:
5081  case SK_CastDerivedToBaseLValue:
5082  case SK_BindReference:
5083  case SK_BindReferenceToTemporary:
5084  case SK_ExtraneousCopyToTemporary:
5085  case SK_UserConversion:
5086  case SK_QualificationConversionLValue:
5087  case SK_QualificationConversionXValue:
5088  case SK_QualificationConversionRValue:
5089  case SK_LValueToRValue:
5090  case SK_ConversionSequence:
5091  case SK_ListInitialization:
5092  case SK_UnwrapInitList:
5093  case SK_RewrapInitList:
5094  case SK_CAssignment:
5095  case SK_StringInit:
5096  case SK_ObjCObjectConversion:
5097  case SK_ArrayInit:
5098  case SK_ParenthesizedArrayInit:
5099  case SK_PassByIndirectCopyRestore:
5100  case SK_PassByIndirectRestore:
5101  case SK_ProduceObjCObject:
5102  case SK_StdInitializerList:
5103  case SK_OCLSamplerInit:
5104  case SK_OCLZeroEvent: {
5105    assert(Args.size() == 1);
5106    CurInit = Args[0];
5107    if (!CurInit.get()) return ExprError();
5108    break;
5109  }
5110
5111  case SK_ConstructorInitialization:
5112  case SK_ListConstructorCall:
5113  case SK_ZeroInitialization:
5114    break;
5115  }
5116
5117  // Walk through the computed steps for the initialization sequence,
5118  // performing the specified conversions along the way.
5119  bool ConstructorInitRequiresZeroInit = false;
5120  for (step_iterator Step = step_begin(), StepEnd = step_end();
5121       Step != StepEnd; ++Step) {
5122    if (CurInit.isInvalid())
5123      return ExprError();
5124
5125    QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
5126
5127    switch (Step->Kind) {
5128    case SK_ResolveAddressOfOverloadedFunction:
5129      // Overload resolution determined which function invoke; update the
5130      // initializer to reflect that choice.
5131      S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
5132      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
5133      CurInit = S.FixOverloadedFunctionReference(CurInit,
5134                                                 Step->Function.FoundDecl,
5135                                                 Step->Function.Function);
5136      break;
5137
5138    case SK_CastDerivedToBaseRValue:
5139    case SK_CastDerivedToBaseXValue:
5140    case SK_CastDerivedToBaseLValue: {
5141      // We have a derived-to-base cast that produces either an rvalue or an
5142      // lvalue. Perform that cast.
5143
5144      CXXCastPath BasePath;
5145
5146      // Casts to inaccessible base classes are allowed with C-style casts.
5147      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
5148      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
5149                                         CurInit.get()->getLocStart(),
5150                                         CurInit.get()->getSourceRange(),
5151                                         &BasePath, IgnoreBaseAccess))
5152        return ExprError();
5153
5154      if (S.BasePathInvolvesVirtualBase(BasePath)) {
5155        QualType T = SourceType;
5156        if (const PointerType *Pointer = T->getAs<PointerType>())
5157          T = Pointer->getPointeeType();
5158        if (const RecordType *RecordTy = T->getAs<RecordType>())
5159          S.MarkVTableUsed(CurInit.get()->getLocStart(),
5160                           cast<CXXRecordDecl>(RecordTy->getDecl()));
5161      }
5162
5163      ExprValueKind VK =
5164          Step->Kind == SK_CastDerivedToBaseLValue ?
5165              VK_LValue :
5166              (Step->Kind == SK_CastDerivedToBaseXValue ?
5167                   VK_XValue :
5168                   VK_RValue);
5169      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5170                                                 Step->Type,
5171                                                 CK_DerivedToBase,
5172                                                 CurInit.get(),
5173                                                 &BasePath, VK));
5174      break;
5175    }
5176
5177    case SK_BindReference:
5178      if (FieldDecl *BitField = CurInit.get()->getBitField()) {
5179        // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
5180        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
5181          << Entity.getType().isVolatileQualified()
5182          << BitField->getDeclName()
5183          << CurInit.get()->getSourceRange();
5184        S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
5185        return ExprError();
5186      }
5187
5188      if (CurInit.get()->refersToVectorElement()) {
5189        // References cannot bind to vector elements.
5190        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
5191          << Entity.getType().isVolatileQualified()
5192          << CurInit.get()->getSourceRange();
5193        PrintInitLocationNote(S, Entity);
5194        return ExprError();
5195      }
5196
5197      // Reference binding does not have any corresponding ASTs.
5198
5199      // Check exception specifications
5200      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5201        return ExprError();
5202
5203      break;
5204
5205    case SK_BindReferenceToTemporary:
5206      // Make sure the "temporary" is actually an rvalue.
5207      assert(CurInit.get()->isRValue() && "not a temporary");
5208
5209      // Check exception specifications
5210      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5211        return ExprError();
5212
5213      // Materialize the temporary into memory.
5214      CurInit = new (S.Context) MaterializeTemporaryExpr(
5215                                         Entity.getType().getNonReferenceType(),
5216                                                         CurInit.get(),
5217                                     Entity.getType()->isLValueReferenceType());
5218
5219      // If we're binding to an Objective-C object that has lifetime, we
5220      // need cleanups.
5221      if (S.getLangOpts().ObjCAutoRefCount &&
5222          CurInit.get()->getType()->isObjCLifetimeType())
5223        S.ExprNeedsCleanups = true;
5224
5225      break;
5226
5227    case SK_ExtraneousCopyToTemporary:
5228      CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5229                           /*IsExtraneousCopy=*/true);
5230      break;
5231
5232    case SK_UserConversion: {
5233      // We have a user-defined conversion that invokes either a constructor
5234      // or a conversion function.
5235      CastKind CastKind;
5236      bool IsCopy = false;
5237      FunctionDecl *Fn = Step->Function.Function;
5238      DeclAccessPair FoundFn = Step->Function.FoundDecl;
5239      bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5240      bool CreatedObject = false;
5241      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5242        // Build a call to the selected constructor.
5243        SmallVector<Expr*, 8> ConstructorArgs;
5244        SourceLocation Loc = CurInit.get()->getLocStart();
5245        CurInit.release(); // Ownership transferred into MultiExprArg, below.
5246
5247        // Determine the arguments required to actually perform the constructor
5248        // call.
5249        Expr *Arg = CurInit.get();
5250        if (S.CompleteConstructorCall(Constructor,
5251                                      MultiExprArg(&Arg, 1),
5252                                      Loc, ConstructorArgs))
5253          return ExprError();
5254
5255        // Build an expression that constructs a temporary.
5256        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5257                                          ConstructorArgs,
5258                                          HadMultipleCandidates,
5259                                          /*ListInit*/ false,
5260                                          /*ZeroInit*/ false,
5261                                          CXXConstructExpr::CK_Complete,
5262                                          SourceRange());
5263        if (CurInit.isInvalid())
5264          return ExprError();
5265
5266        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5267                                 FoundFn.getAccess());
5268        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5269
5270        CastKind = CK_ConstructorConversion;
5271        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5272        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5273            S.IsDerivedFrom(SourceType, Class))
5274          IsCopy = true;
5275
5276        CreatedObject = true;
5277      } else {
5278        // Build a call to the conversion function.
5279        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5280        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5281                                    FoundFn);
5282        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5283
5284        // FIXME: Should we move this initialization into a separate
5285        // derived-to-base conversion? I believe the answer is "no", because
5286        // we don't want to turn off access control here for c-style casts.
5287        ExprResult CurInitExprRes =
5288          S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5289                                                FoundFn, Conversion);
5290        if(CurInitExprRes.isInvalid())
5291          return ExprError();
5292        CurInit = CurInitExprRes;
5293
5294        // Build the actual call to the conversion function.
5295        CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5296                                           HadMultipleCandidates);
5297        if (CurInit.isInvalid() || !CurInit.get())
5298          return ExprError();
5299
5300        CastKind = CK_UserDefinedConversion;
5301
5302        CreatedObject = Conversion->getResultType()->isRecordType();
5303      }
5304
5305      bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5306      bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5307
5308      if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5309        QualType T = CurInit.get()->getType();
5310        if (const RecordType *Record = T->getAs<RecordType>()) {
5311          CXXDestructorDecl *Destructor
5312            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5313          S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5314                                  S.PDiag(diag::err_access_dtor_temp) << T);
5315          S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5316          S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
5317        }
5318      }
5319
5320      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5321                                                 CurInit.get()->getType(),
5322                                                 CastKind, CurInit.get(), 0,
5323                                                CurInit.get()->getValueKind()));
5324      if (MaybeBindToTemp)
5325        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5326      if (RequiresCopy)
5327        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5328                             CurInit, /*IsExtraneousCopy=*/false);
5329      break;
5330    }
5331
5332    case SK_QualificationConversionLValue:
5333    case SK_QualificationConversionXValue:
5334    case SK_QualificationConversionRValue: {
5335      // Perform a qualification conversion; these can never go wrong.
5336      ExprValueKind VK =
5337          Step->Kind == SK_QualificationConversionLValue ?
5338              VK_LValue :
5339              (Step->Kind == SK_QualificationConversionXValue ?
5340                   VK_XValue :
5341                   VK_RValue);
5342      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5343      break;
5344    }
5345
5346    case SK_LValueToRValue: {
5347      assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
5348      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5349                                                 CK_LValueToRValue,
5350                                                 CurInit.take(),
5351                                                 /*BasePath=*/0,
5352                                                 VK_RValue));
5353      break;
5354    }
5355
5356    case SK_ConversionSequence: {
5357      Sema::CheckedConversionKind CCK
5358        = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5359        : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5360        : Kind.isExplicitCast()? Sema::CCK_OtherCast
5361        : Sema::CCK_ImplicitConversion;
5362      ExprResult CurInitExprRes =
5363        S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5364                                    getAssignmentAction(Entity), CCK);
5365      if (CurInitExprRes.isInvalid())
5366        return ExprError();
5367      CurInit = CurInitExprRes;
5368      break;
5369    }
5370
5371    case SK_ListInitialization: {
5372      InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5373      // Hack: We must pass *ResultType if available in order to set the type
5374      // of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5375      // But in 'const X &x = {1, 2, 3};' we're supposed to initialize a
5376      // temporary, not a reference, so we should pass Ty.
5377      // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5378      // Since this step is never used for a reference directly, we explicitly
5379      // unwrap references here and rewrap them afterwards.
5380      // We also need to create a InitializeTemporary entity for this.
5381      QualType Ty = ResultType ? ResultType->getNonReferenceType() : Step->Type;
5382      bool IsTemporary = Entity.getType()->isReferenceType();
5383      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5384      InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
5385      InitListChecker PerformInitList(S, InitEntity,
5386          InitList, Ty, /*VerifyOnly=*/false,
5387          Kind.getKind() != InitializationKind::IK_DirectList ||
5388            !S.getLangOpts().CPlusPlus11);
5389      if (PerformInitList.HadError())
5390        return ExprError();
5391
5392      if (ResultType) {
5393        if ((*ResultType)->isRValueReferenceType())
5394          Ty = S.Context.getRValueReferenceType(Ty);
5395        else if ((*ResultType)->isLValueReferenceType())
5396          Ty = S.Context.getLValueReferenceType(Ty,
5397            (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5398        *ResultType = Ty;
5399      }
5400
5401      InitListExpr *StructuredInitList =
5402          PerformInitList.getFullyStructuredList();
5403      CurInit.release();
5404      CurInit = shouldBindAsTemporary(InitEntity)
5405          ? S.MaybeBindToTemporary(StructuredInitList)
5406          : S.Owned(StructuredInitList);
5407      break;
5408    }
5409
5410    case SK_ListConstructorCall: {
5411      // When an initializer list is passed for a parameter of type "reference
5412      // to object", we don't get an EK_Temporary entity, but instead an
5413      // EK_Parameter entity with reference type.
5414      // FIXME: This is a hack. What we really should do is create a user
5415      // conversion step for this case, but this makes it considerably more
5416      // complicated. For now, this will do.
5417      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5418                                        Entity.getType().getNonReferenceType());
5419      bool UseTemporary = Entity.getType()->isReferenceType();
5420      assert(Args.size() == 1 && "expected a single argument for list init");
5421      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5422      S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
5423        << InitList->getSourceRange();
5424      MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5425      CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
5426                                                                   Entity,
5427                                                 Kind, Arg, *Step,
5428                                               ConstructorInitRequiresZeroInit,
5429                                               /*IsListInitialization*/ true);
5430      break;
5431    }
5432
5433    case SK_UnwrapInitList:
5434      CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5435      break;
5436
5437    case SK_RewrapInitList: {
5438      Expr *E = CurInit.take();
5439      InitListExpr *Syntactic = Step->WrappingSyntacticList;
5440      InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5441          Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
5442      ILE->setSyntacticForm(Syntactic);
5443      ILE->setType(E->getType());
5444      ILE->setValueKind(E->getValueKind());
5445      CurInit = S.Owned(ILE);
5446      break;
5447    }
5448
5449    case SK_ConstructorInitialization: {
5450      // When an initializer list is passed for a parameter of type "reference
5451      // to object", we don't get an EK_Temporary entity, but instead an
5452      // EK_Parameter entity with reference type.
5453      // FIXME: This is a hack. What we really should do is create a user
5454      // conversion step for this case, but this makes it considerably more
5455      // complicated. For now, this will do.
5456      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5457                                        Entity.getType().getNonReferenceType());
5458      bool UseTemporary = Entity.getType()->isReferenceType();
5459      CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
5460                                                                 : Entity,
5461                                                 Kind, Args, *Step,
5462                                               ConstructorInitRequiresZeroInit,
5463                                               /*IsListInitialization*/ false);
5464      break;
5465    }
5466
5467    case SK_ZeroInitialization: {
5468      step_iterator NextStep = Step;
5469      ++NextStep;
5470      if (NextStep != StepEnd &&
5471          (NextStep->Kind == SK_ConstructorInitialization ||
5472           NextStep->Kind == SK_ListConstructorCall)) {
5473        // The need for zero-initialization is recorded directly into
5474        // the call to the object's constructor within the next step.
5475        ConstructorInitRequiresZeroInit = true;
5476      } else if (Kind.getKind() == InitializationKind::IK_Value &&
5477                 S.getLangOpts().CPlusPlus &&
5478                 !Kind.isImplicitValueInit()) {
5479        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5480        if (!TSInfo)
5481          TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5482                                                    Kind.getRange().getBegin());
5483
5484        CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5485                              TSInfo->getType().getNonLValueExprType(S.Context),
5486                                                                 TSInfo,
5487                                                    Kind.getRange().getEnd()));
5488      } else {
5489        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5490      }
5491      break;
5492    }
5493
5494    case SK_CAssignment: {
5495      QualType SourceType = CurInit.get()->getType();
5496      ExprResult Result = CurInit;
5497      Sema::AssignConvertType ConvTy =
5498        S.CheckSingleAssignmentConstraints(Step->Type, Result);
5499      if (Result.isInvalid())
5500        return ExprError();
5501      CurInit = Result;
5502
5503      // If this is a call, allow conversion to a transparent union.
5504      ExprResult CurInitExprRes = CurInit;
5505      if (ConvTy != Sema::Compatible &&
5506          Entity.getKind() == InitializedEntity::EK_Parameter &&
5507          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
5508            == Sema::Compatible)
5509        ConvTy = Sema::Compatible;
5510      if (CurInitExprRes.isInvalid())
5511        return ExprError();
5512      CurInit = CurInitExprRes;
5513
5514      bool Complained;
5515      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
5516                                     Step->Type, SourceType,
5517                                     CurInit.get(),
5518                                     getAssignmentAction(Entity),
5519                                     &Complained)) {
5520        PrintInitLocationNote(S, Entity);
5521        return ExprError();
5522      } else if (Complained)
5523        PrintInitLocationNote(S, Entity);
5524      break;
5525    }
5526
5527    case SK_StringInit: {
5528      QualType Ty = Step->Type;
5529      CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
5530                      S.Context.getAsArrayType(Ty), S);
5531      break;
5532    }
5533
5534    case SK_ObjCObjectConversion:
5535      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5536                          CK_ObjCObjectLValueCast,
5537                          CurInit.get()->getValueKind());
5538      break;
5539
5540    case SK_ArrayInit:
5541      // Okay: we checked everything before creating this step. Note that
5542      // this is a GNU extension.
5543      S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
5544        << Step->Type << CurInit.get()->getType()
5545        << CurInit.get()->getSourceRange();
5546
5547      // If the destination type is an incomplete array type, update the
5548      // type accordingly.
5549      if (ResultType) {
5550        if (const IncompleteArrayType *IncompleteDest
5551                           = S.Context.getAsIncompleteArrayType(Step->Type)) {
5552          if (const ConstantArrayType *ConstantSource
5553                 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
5554            *ResultType = S.Context.getConstantArrayType(
5555                                             IncompleteDest->getElementType(),
5556                                             ConstantSource->getSize(),
5557                                             ArrayType::Normal, 0);
5558          }
5559        }
5560      }
5561      break;
5562
5563    case SK_ParenthesizedArrayInit:
5564      // Okay: we checked everything before creating this step. Note that
5565      // this is a GNU extension.
5566      S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
5567        << CurInit.get()->getSourceRange();
5568      break;
5569
5570    case SK_PassByIndirectCopyRestore:
5571    case SK_PassByIndirectRestore:
5572      checkIndirectCopyRestoreSource(S, CurInit.get());
5573      CurInit = S.Owned(new (S.Context)
5574                        ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
5575                                Step->Kind == SK_PassByIndirectCopyRestore));
5576      break;
5577
5578    case SK_ProduceObjCObject:
5579      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5580                                                 CK_ARCProduceObject,
5581                                                 CurInit.take(), 0, VK_RValue));
5582      break;
5583
5584    case SK_StdInitializerList: {
5585      QualType Dest = Step->Type;
5586      QualType E;
5587      bool Success = S.isStdInitializerList(Dest.getNonReferenceType(), &E);
5588      (void)Success;
5589      assert(Success && "Destination type changed?");
5590
5591      // If the element type has a destructor, check it.
5592      if (CXXRecordDecl *RD = E->getAsCXXRecordDecl()) {
5593        if (!RD->hasIrrelevantDestructor()) {
5594          if (CXXDestructorDecl *Destructor = S.LookupDestructor(RD)) {
5595            S.MarkFunctionReferenced(Kind.getLocation(), Destructor);
5596            S.CheckDestructorAccess(Kind.getLocation(), Destructor,
5597                                    S.PDiag(diag::err_access_dtor_temp) << E);
5598            S.DiagnoseUseOfDecl(Destructor, Kind.getLocation());
5599          }
5600        }
5601      }
5602
5603      InitListExpr *ILE = cast<InitListExpr>(CurInit.take());
5604      S.Diag(ILE->getExprLoc(), diag::warn_cxx98_compat_initializer_list_init)
5605        << ILE->getSourceRange();
5606      unsigned NumInits = ILE->getNumInits();
5607      SmallVector<Expr*, 16> Converted(NumInits);
5608      InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5609          S.Context.getConstantArrayType(E,
5610              llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5611                          NumInits),
5612              ArrayType::Normal, 0));
5613      InitializedEntity Element =InitializedEntity::InitializeElement(S.Context,
5614          0, HiddenArray);
5615      for (unsigned i = 0; i < NumInits; ++i) {
5616        Element.setElementIndex(i);
5617        ExprResult Init = S.Owned(ILE->getInit(i));
5618        ExprResult Res = S.PerformCopyInitialization(
5619                             Element, Init.get()->getExprLoc(), Init,
5620                             /*TopLevelOfInitList=*/ true);
5621        assert(!Res.isInvalid() && "Result changed since try phase.");
5622        Converted[i] = Res.take();
5623      }
5624      InitListExpr *Semantic = new (S.Context)
5625          InitListExpr(S.Context, ILE->getLBraceLoc(),
5626                       Converted, ILE->getRBraceLoc());
5627      Semantic->setSyntacticForm(ILE);
5628      Semantic->setType(Dest);
5629      Semantic->setInitializesStdInitializerList();
5630      CurInit = S.Owned(Semantic);
5631      break;
5632    }
5633    case SK_OCLSamplerInit: {
5634      assert(Step->Type->isSamplerT() &&
5635             "Sampler initialization on non sampler type.");
5636
5637      QualType SourceType = CurInit.get()->getType();
5638      InitializedEntity::EntityKind EntityKind = Entity.getKind();
5639
5640      if (EntityKind == InitializedEntity::EK_Parameter) {
5641        if (!SourceType->isSamplerT())
5642          S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
5643            << SourceType;
5644      } else if (EntityKind != InitializedEntity::EK_Variable) {
5645        llvm_unreachable("Invalid EntityKind!");
5646      }
5647
5648      break;
5649    }
5650    case SK_OCLZeroEvent: {
5651      assert(Step->Type->isEventT() &&
5652             "Event initialization on non event type.");
5653
5654      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5655                                    CK_ZeroToOCLEvent,
5656                                    CurInit.get()->getValueKind());
5657      break;
5658    }
5659    }
5660  }
5661
5662  // Diagnose non-fatal problems with the completed initialization.
5663  if (Entity.getKind() == InitializedEntity::EK_Member &&
5664      cast<FieldDecl>(Entity.getDecl())->isBitField())
5665    S.CheckBitFieldInitialization(Kind.getLocation(),
5666                                  cast<FieldDecl>(Entity.getDecl()),
5667                                  CurInit.get());
5668
5669  return CurInit;
5670}
5671
5672/// Somewhere within T there is an uninitialized reference subobject.
5673/// Dig it out and diagnose it.
5674static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
5675                                           QualType T) {
5676  if (T->isReferenceType()) {
5677    S.Diag(Loc, diag::err_reference_without_init)
5678      << T.getNonReferenceType();
5679    return true;
5680  }
5681
5682  CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5683  if (!RD || !RD->hasUninitializedReferenceMember())
5684    return false;
5685
5686  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5687                                     FE = RD->field_end(); FI != FE; ++FI) {
5688    if (FI->isUnnamedBitfield())
5689      continue;
5690
5691    if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
5692      S.Diag(Loc, diag::note_value_initialization_here) << RD;
5693      return true;
5694    }
5695  }
5696
5697  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5698                                          BE = RD->bases_end();
5699       BI != BE; ++BI) {
5700    if (DiagnoseUninitializedReference(S, BI->getLocStart(), BI->getType())) {
5701      S.Diag(Loc, diag::note_value_initialization_here) << RD;
5702      return true;
5703    }
5704  }
5705
5706  return false;
5707}
5708
5709
5710//===----------------------------------------------------------------------===//
5711// Diagnose initialization failures
5712//===----------------------------------------------------------------------===//
5713
5714/// Emit notes associated with an initialization that failed due to a
5715/// "simple" conversion failure.
5716static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
5717                                   Expr *op) {
5718  QualType destType = entity.getType();
5719  if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
5720      op->getType()->isObjCObjectPointerType()) {
5721
5722    // Emit a possible note about the conversion failing because the
5723    // operand is a message send with a related result type.
5724    S.EmitRelatedResultTypeNote(op);
5725
5726    // Emit a possible note about a return failing because we're
5727    // expecting a related result type.
5728    if (entity.getKind() == InitializedEntity::EK_Result)
5729      S.EmitRelatedResultTypeNoteForReturn(destType);
5730  }
5731}
5732
5733bool InitializationSequence::Diagnose(Sema &S,
5734                                      const InitializedEntity &Entity,
5735                                      const InitializationKind &Kind,
5736                                      ArrayRef<Expr *> Args) {
5737  if (!Failed())
5738    return false;
5739
5740  QualType DestType = Entity.getType();
5741  switch (Failure) {
5742  case FK_TooManyInitsForReference:
5743    // FIXME: Customize for the initialized entity?
5744    if (Args.empty()) {
5745      // Dig out the reference subobject which is uninitialized and diagnose it.
5746      // If this is value-initialization, this could be nested some way within
5747      // the target type.
5748      assert(Kind.getKind() == InitializationKind::IK_Value ||
5749             DestType->isReferenceType());
5750      bool Diagnosed =
5751        DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
5752      assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
5753      (void)Diagnosed;
5754    } else  // FIXME: diagnostic below could be better!
5755      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
5756        << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
5757    break;
5758
5759  case FK_ArrayNeedsInitList:
5760  case FK_ArrayNeedsInitListOrStringLiteral:
5761    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
5762      << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
5763    break;
5764
5765  case FK_ArrayTypeMismatch:
5766  case FK_NonConstantArrayInit:
5767    S.Diag(Kind.getLocation(),
5768           (Failure == FK_ArrayTypeMismatch
5769              ? diag::err_array_init_different_type
5770              : diag::err_array_init_non_constant_array))
5771      << DestType.getNonReferenceType()
5772      << Args[0]->getType()
5773      << Args[0]->getSourceRange();
5774    break;
5775
5776  case FK_VariableLengthArrayHasInitializer:
5777    S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
5778      << Args[0]->getSourceRange();
5779    break;
5780
5781  case FK_AddressOfOverloadFailed: {
5782    DeclAccessPair Found;
5783    S.ResolveAddressOfOverloadedFunction(Args[0],
5784                                         DestType.getNonReferenceType(),
5785                                         true,
5786                                         Found);
5787    break;
5788  }
5789
5790  case FK_ReferenceInitOverloadFailed:
5791  case FK_UserConversionOverloadFailed:
5792    switch (FailedOverloadResult) {
5793    case OR_Ambiguous:
5794      if (Failure == FK_UserConversionOverloadFailed)
5795        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
5796          << Args[0]->getType() << DestType
5797          << Args[0]->getSourceRange();
5798      else
5799        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
5800          << DestType << Args[0]->getType()
5801          << Args[0]->getSourceRange();
5802
5803      FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
5804      break;
5805
5806    case OR_No_Viable_Function:
5807      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
5808        << Args[0]->getType() << DestType.getNonReferenceType()
5809        << Args[0]->getSourceRange();
5810      FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
5811      break;
5812
5813    case OR_Deleted: {
5814      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
5815        << Args[0]->getType() << DestType.getNonReferenceType()
5816        << Args[0]->getSourceRange();
5817      OverloadCandidateSet::iterator Best;
5818      OverloadingResult Ovl
5819        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
5820                                                true);
5821      if (Ovl == OR_Deleted) {
5822        S.NoteDeletedFunction(Best->Function);
5823      } else {
5824        llvm_unreachable("Inconsistent overload resolution?");
5825      }
5826      break;
5827    }
5828
5829    case OR_Success:
5830      llvm_unreachable("Conversion did not fail!");
5831    }
5832    break;
5833
5834  case FK_NonConstLValueReferenceBindingToTemporary:
5835    if (isa<InitListExpr>(Args[0])) {
5836      S.Diag(Kind.getLocation(),
5837             diag::err_lvalue_reference_bind_to_initlist)
5838      << DestType.getNonReferenceType().isVolatileQualified()
5839      << DestType.getNonReferenceType()
5840      << Args[0]->getSourceRange();
5841      break;
5842    }
5843    // Intentional fallthrough
5844
5845  case FK_NonConstLValueReferenceBindingToUnrelated:
5846    S.Diag(Kind.getLocation(),
5847           Failure == FK_NonConstLValueReferenceBindingToTemporary
5848             ? diag::err_lvalue_reference_bind_to_temporary
5849             : diag::err_lvalue_reference_bind_to_unrelated)
5850      << DestType.getNonReferenceType().isVolatileQualified()
5851      << DestType.getNonReferenceType()
5852      << Args[0]->getType()
5853      << Args[0]->getSourceRange();
5854    break;
5855
5856  case FK_RValueReferenceBindingToLValue:
5857    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
5858      << DestType.getNonReferenceType() << Args[0]->getType()
5859      << Args[0]->getSourceRange();
5860    break;
5861
5862  case FK_ReferenceInitDropsQualifiers:
5863    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
5864      << DestType.getNonReferenceType()
5865      << Args[0]->getType()
5866      << Args[0]->getSourceRange();
5867    break;
5868
5869  case FK_ReferenceInitFailed:
5870    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
5871      << DestType.getNonReferenceType()
5872      << Args[0]->isLValue()
5873      << Args[0]->getType()
5874      << Args[0]->getSourceRange();
5875    emitBadConversionNotes(S, Entity, Args[0]);
5876    break;
5877
5878  case FK_ConversionFailed: {
5879    QualType FromType = Args[0]->getType();
5880    PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
5881      << (int)Entity.getKind()
5882      << DestType
5883      << Args[0]->isLValue()
5884      << FromType
5885      << Args[0]->getSourceRange();
5886    S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
5887    S.Diag(Kind.getLocation(), PDiag);
5888    emitBadConversionNotes(S, Entity, Args[0]);
5889    break;
5890  }
5891
5892  case FK_ConversionFromPropertyFailed:
5893    // No-op. This error has already been reported.
5894    break;
5895
5896  case FK_TooManyInitsForScalar: {
5897    SourceRange R;
5898
5899    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
5900      R = SourceRange(InitList->getInit(0)->getLocEnd(),
5901                      InitList->getLocEnd());
5902    else
5903      R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
5904
5905    R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
5906    if (Kind.isCStyleOrFunctionalCast())
5907      S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
5908        << R;
5909    else
5910      S.Diag(Kind.getLocation(), diag::err_excess_initializers)
5911        << /*scalar=*/2 << R;
5912    break;
5913  }
5914
5915  case FK_ReferenceBindingToInitList:
5916    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
5917      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
5918    break;
5919
5920  case FK_InitListBadDestinationType:
5921    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
5922      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
5923    break;
5924
5925  case FK_ListConstructorOverloadFailed:
5926  case FK_ConstructorOverloadFailed: {
5927    SourceRange ArgsRange;
5928    if (Args.size())
5929      ArgsRange = SourceRange(Args.front()->getLocStart(),
5930                              Args.back()->getLocEnd());
5931
5932    if (Failure == FK_ListConstructorOverloadFailed) {
5933      assert(Args.size() == 1 && "List construction from other than 1 argument.");
5934      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5935      Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
5936    }
5937
5938    // FIXME: Using "DestType" for the entity we're printing is probably
5939    // bad.
5940    switch (FailedOverloadResult) {
5941      case OR_Ambiguous:
5942        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
5943          << DestType << ArgsRange;
5944        FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
5945        break;
5946
5947      case OR_No_Viable_Function:
5948        if (Kind.getKind() == InitializationKind::IK_Default &&
5949            (Entity.getKind() == InitializedEntity::EK_Base ||
5950             Entity.getKind() == InitializedEntity::EK_Member) &&
5951            isa<CXXConstructorDecl>(S.CurContext)) {
5952          // This is implicit default initialization of a member or
5953          // base within a constructor. If no viable function was
5954          // found, notify the user that she needs to explicitly
5955          // initialize this base/member.
5956          CXXConstructorDecl *Constructor
5957            = cast<CXXConstructorDecl>(S.CurContext);
5958          if (Entity.getKind() == InitializedEntity::EK_Base) {
5959            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5960              << (Constructor->getInheritedConstructor() ? 2 :
5961                  Constructor->isImplicit() ? 1 : 0)
5962              << S.Context.getTypeDeclType(Constructor->getParent())
5963              << /*base=*/0
5964              << Entity.getType();
5965
5966            RecordDecl *BaseDecl
5967              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
5968                                                                  ->getDecl();
5969            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
5970              << S.Context.getTagDeclType(BaseDecl);
5971          } else {
5972            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5973              << (Constructor->getInheritedConstructor() ? 2 :
5974                  Constructor->isImplicit() ? 1 : 0)
5975              << S.Context.getTypeDeclType(Constructor->getParent())
5976              << /*member=*/1
5977              << Entity.getName();
5978            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
5979
5980            if (const RecordType *Record
5981                                 = Entity.getType()->getAs<RecordType>())
5982              S.Diag(Record->getDecl()->getLocation(),
5983                     diag::note_previous_decl)
5984                << S.Context.getTagDeclType(Record->getDecl());
5985          }
5986          break;
5987        }
5988
5989        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
5990          << DestType << ArgsRange;
5991        FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
5992        break;
5993
5994      case OR_Deleted: {
5995        OverloadCandidateSet::iterator Best;
5996        OverloadingResult Ovl
5997          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5998        if (Ovl != OR_Deleted) {
5999          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6000            << true << DestType << ArgsRange;
6001          llvm_unreachable("Inconsistent overload resolution?");
6002          break;
6003        }
6004
6005        // If this is a defaulted or implicitly-declared function, then
6006        // it was implicitly deleted. Make it clear that the deletion was
6007        // implicit.
6008        if (S.isImplicitlyDeleted(Best->Function))
6009          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
6010            << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
6011            << DestType << ArgsRange;
6012        else
6013          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6014            << true << DestType << ArgsRange;
6015
6016        S.NoteDeletedFunction(Best->Function);
6017        break;
6018      }
6019
6020      case OR_Success:
6021        llvm_unreachable("Conversion did not fail!");
6022    }
6023  }
6024  break;
6025
6026  case FK_DefaultInitOfConst:
6027    if (Entity.getKind() == InitializedEntity::EK_Member &&
6028        isa<CXXConstructorDecl>(S.CurContext)) {
6029      // This is implicit default-initialization of a const member in
6030      // a constructor. Complain that it needs to be explicitly
6031      // initialized.
6032      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
6033      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
6034        << (Constructor->getInheritedConstructor() ? 2 :
6035            Constructor->isImplicit() ? 1 : 0)
6036        << S.Context.getTypeDeclType(Constructor->getParent())
6037        << /*const=*/1
6038        << Entity.getName();
6039      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
6040        << Entity.getName();
6041    } else {
6042      S.Diag(Kind.getLocation(), diag::err_default_init_const)
6043        << DestType << (bool)DestType->getAs<RecordType>();
6044    }
6045    break;
6046
6047  case FK_Incomplete:
6048    S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
6049                          diag::err_init_incomplete_type);
6050    break;
6051
6052  case FK_ListInitializationFailed: {
6053    // Run the init list checker again to emit diagnostics.
6054    InitListExpr* InitList = cast<InitListExpr>(Args[0]);
6055    QualType DestType = Entity.getType();
6056    InitListChecker DiagnoseInitList(S, Entity, InitList,
6057            DestType, /*VerifyOnly=*/false,
6058            Kind.getKind() != InitializationKind::IK_DirectList ||
6059              !S.getLangOpts().CPlusPlus11);
6060    assert(DiagnoseInitList.HadError() &&
6061           "Inconsistent init list check result.");
6062    break;
6063  }
6064
6065  case FK_PlaceholderType: {
6066    // FIXME: Already diagnosed!
6067    break;
6068  }
6069
6070  case FK_InitListElementCopyFailure: {
6071    // Try to perform all copies again.
6072    InitListExpr* InitList = cast<InitListExpr>(Args[0]);
6073    unsigned NumInits = InitList->getNumInits();
6074    QualType DestType = Entity.getType();
6075    QualType E;
6076    bool Success = S.isStdInitializerList(DestType.getNonReferenceType(), &E);
6077    (void)Success;
6078    assert(Success && "Where did the std::initializer_list go?");
6079    InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
6080        S.Context.getConstantArrayType(E,
6081            llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
6082                        NumInits),
6083            ArrayType::Normal, 0));
6084    InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
6085        0, HiddenArray);
6086    // Show at most 3 errors. Otherwise, you'd get a lot of errors for errors
6087    // where the init list type is wrong, e.g.
6088    //   std::initializer_list<void*> list = { 1, 2, 3, 4, 5, 6, 7, 8 };
6089    // FIXME: Emit a note if we hit the limit?
6090    int ErrorCount = 0;
6091    for (unsigned i = 0; i < NumInits && ErrorCount < 3; ++i) {
6092      Element.setElementIndex(i);
6093      ExprResult Init = S.Owned(InitList->getInit(i));
6094      if (S.PerformCopyInitialization(Element, Init.get()->getExprLoc(), Init)
6095           .isInvalid())
6096        ++ErrorCount;
6097    }
6098    break;
6099  }
6100
6101  case FK_ExplicitConstructor: {
6102    S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
6103      << Args[0]->getSourceRange();
6104    OverloadCandidateSet::iterator Best;
6105    OverloadingResult Ovl
6106      = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6107    (void)Ovl;
6108    assert(Ovl == OR_Success && "Inconsistent overload resolution");
6109    CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
6110    S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
6111    break;
6112  }
6113  }
6114
6115  PrintInitLocationNote(S, Entity);
6116  return true;
6117}
6118
6119void InitializationSequence::dump(raw_ostream &OS) const {
6120  switch (SequenceKind) {
6121  case FailedSequence: {
6122    OS << "Failed sequence: ";
6123    switch (Failure) {
6124    case FK_TooManyInitsForReference:
6125      OS << "too many initializers for reference";
6126      break;
6127
6128    case FK_ArrayNeedsInitList:
6129      OS << "array requires initializer list";
6130      break;
6131
6132    case FK_ArrayNeedsInitListOrStringLiteral:
6133      OS << "array requires initializer list or string literal";
6134      break;
6135
6136    case FK_ArrayTypeMismatch:
6137      OS << "array type mismatch";
6138      break;
6139
6140    case FK_NonConstantArrayInit:
6141      OS << "non-constant array initializer";
6142      break;
6143
6144    case FK_AddressOfOverloadFailed:
6145      OS << "address of overloaded function failed";
6146      break;
6147
6148    case FK_ReferenceInitOverloadFailed:
6149      OS << "overload resolution for reference initialization failed";
6150      break;
6151
6152    case FK_NonConstLValueReferenceBindingToTemporary:
6153      OS << "non-const lvalue reference bound to temporary";
6154      break;
6155
6156    case FK_NonConstLValueReferenceBindingToUnrelated:
6157      OS << "non-const lvalue reference bound to unrelated type";
6158      break;
6159
6160    case FK_RValueReferenceBindingToLValue:
6161      OS << "rvalue reference bound to an lvalue";
6162      break;
6163
6164    case FK_ReferenceInitDropsQualifiers:
6165      OS << "reference initialization drops qualifiers";
6166      break;
6167
6168    case FK_ReferenceInitFailed:
6169      OS << "reference initialization failed";
6170      break;
6171
6172    case FK_ConversionFailed:
6173      OS << "conversion failed";
6174      break;
6175
6176    case FK_ConversionFromPropertyFailed:
6177      OS << "conversion from property failed";
6178      break;
6179
6180    case FK_TooManyInitsForScalar:
6181      OS << "too many initializers for scalar";
6182      break;
6183
6184    case FK_ReferenceBindingToInitList:
6185      OS << "referencing binding to initializer list";
6186      break;
6187
6188    case FK_InitListBadDestinationType:
6189      OS << "initializer list for non-aggregate, non-scalar type";
6190      break;
6191
6192    case FK_UserConversionOverloadFailed:
6193      OS << "overloading failed for user-defined conversion";
6194      break;
6195
6196    case FK_ConstructorOverloadFailed:
6197      OS << "constructor overloading failed";
6198      break;
6199
6200    case FK_DefaultInitOfConst:
6201      OS << "default initialization of a const variable";
6202      break;
6203
6204    case FK_Incomplete:
6205      OS << "initialization of incomplete type";
6206      break;
6207
6208    case FK_ListInitializationFailed:
6209      OS << "list initialization checker failure";
6210      break;
6211
6212    case FK_VariableLengthArrayHasInitializer:
6213      OS << "variable length array has an initializer";
6214      break;
6215
6216    case FK_PlaceholderType:
6217      OS << "initializer expression isn't contextually valid";
6218      break;
6219
6220    case FK_ListConstructorOverloadFailed:
6221      OS << "list constructor overloading failed";
6222      break;
6223
6224    case FK_InitListElementCopyFailure:
6225      OS << "copy construction of initializer list element failed";
6226      break;
6227
6228    case FK_ExplicitConstructor:
6229      OS << "list copy initialization chose explicit constructor";
6230      break;
6231    }
6232    OS << '\n';
6233    return;
6234  }
6235
6236  case DependentSequence:
6237    OS << "Dependent sequence\n";
6238    return;
6239
6240  case NormalSequence:
6241    OS << "Normal sequence: ";
6242    break;
6243  }
6244
6245  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
6246    if (S != step_begin()) {
6247      OS << " -> ";
6248    }
6249
6250    switch (S->Kind) {
6251    case SK_ResolveAddressOfOverloadedFunction:
6252      OS << "resolve address of overloaded function";
6253      break;
6254
6255    case SK_CastDerivedToBaseRValue:
6256      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
6257      break;
6258
6259    case SK_CastDerivedToBaseXValue:
6260      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
6261      break;
6262
6263    case SK_CastDerivedToBaseLValue:
6264      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
6265      break;
6266
6267    case SK_BindReference:
6268      OS << "bind reference to lvalue";
6269      break;
6270
6271    case SK_BindReferenceToTemporary:
6272      OS << "bind reference to a temporary";
6273      break;
6274
6275    case SK_ExtraneousCopyToTemporary:
6276      OS << "extraneous C++03 copy to temporary";
6277      break;
6278
6279    case SK_UserConversion:
6280      OS << "user-defined conversion via " << *S->Function.Function;
6281      break;
6282
6283    case SK_QualificationConversionRValue:
6284      OS << "qualification conversion (rvalue)";
6285      break;
6286
6287    case SK_QualificationConversionXValue:
6288      OS << "qualification conversion (xvalue)";
6289      break;
6290
6291    case SK_QualificationConversionLValue:
6292      OS << "qualification conversion (lvalue)";
6293      break;
6294
6295    case SK_LValueToRValue:
6296      OS << "load (lvalue to rvalue)";
6297      break;
6298
6299    case SK_ConversionSequence:
6300      OS << "implicit conversion sequence (";
6301      S->ICS->DebugPrint(); // FIXME: use OS
6302      OS << ")";
6303      break;
6304
6305    case SK_ListInitialization:
6306      OS << "list aggregate initialization";
6307      break;
6308
6309    case SK_ListConstructorCall:
6310      OS << "list initialization via constructor";
6311      break;
6312
6313    case SK_UnwrapInitList:
6314      OS << "unwrap reference initializer list";
6315      break;
6316
6317    case SK_RewrapInitList:
6318      OS << "rewrap reference initializer list";
6319      break;
6320
6321    case SK_ConstructorInitialization:
6322      OS << "constructor initialization";
6323      break;
6324
6325    case SK_ZeroInitialization:
6326      OS << "zero initialization";
6327      break;
6328
6329    case SK_CAssignment:
6330      OS << "C assignment";
6331      break;
6332
6333    case SK_StringInit:
6334      OS << "string initialization";
6335      break;
6336
6337    case SK_ObjCObjectConversion:
6338      OS << "Objective-C object conversion";
6339      break;
6340
6341    case SK_ArrayInit:
6342      OS << "array initialization";
6343      break;
6344
6345    case SK_ParenthesizedArrayInit:
6346      OS << "parenthesized array initialization";
6347      break;
6348
6349    case SK_PassByIndirectCopyRestore:
6350      OS << "pass by indirect copy and restore";
6351      break;
6352
6353    case SK_PassByIndirectRestore:
6354      OS << "pass by indirect restore";
6355      break;
6356
6357    case SK_ProduceObjCObject:
6358      OS << "Objective-C object retension";
6359      break;
6360
6361    case SK_StdInitializerList:
6362      OS << "std::initializer_list from initializer list";
6363      break;
6364
6365    case SK_OCLSamplerInit:
6366      OS << "OpenCL sampler_t from integer constant";
6367      break;
6368
6369    case SK_OCLZeroEvent:
6370      OS << "OpenCL event_t from zero";
6371      break;
6372    }
6373
6374    OS << " [" << S->Type.getAsString() << ']';
6375  }
6376
6377  OS << '\n';
6378}
6379
6380void InitializationSequence::dump() const {
6381  dump(llvm::errs());
6382}
6383
6384static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
6385                                        QualType EntityType,
6386                                        const Expr *PreInit,
6387                                        const Expr *PostInit) {
6388  if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
6389    return;
6390
6391  // A narrowing conversion can only appear as the final implicit conversion in
6392  // an initialization sequence.
6393  const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
6394  if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
6395    return;
6396
6397  const ImplicitConversionSequence &ICS = *LastStep.ICS;
6398  const StandardConversionSequence *SCS = 0;
6399  switch (ICS.getKind()) {
6400  case ImplicitConversionSequence::StandardConversion:
6401    SCS = &ICS.Standard;
6402    break;
6403  case ImplicitConversionSequence::UserDefinedConversion:
6404    SCS = &ICS.UserDefined.After;
6405    break;
6406  case ImplicitConversionSequence::AmbiguousConversion:
6407  case ImplicitConversionSequence::EllipsisConversion:
6408  case ImplicitConversionSequence::BadConversion:
6409    return;
6410  }
6411
6412  // Determine the type prior to the narrowing conversion. If a conversion
6413  // operator was used, this may be different from both the type of the entity
6414  // and of the pre-initialization expression.
6415  QualType PreNarrowingType = PreInit->getType();
6416  if (Seq.step_begin() + 1 != Seq.step_end())
6417    PreNarrowingType = Seq.step_end()[-2].Type;
6418
6419  // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6420  APValue ConstantValue;
6421  QualType ConstantType;
6422  switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6423                                ConstantType)) {
6424  case NK_Not_Narrowing:
6425    // No narrowing occurred.
6426    return;
6427
6428  case NK_Type_Narrowing:
6429    // This was a floating-to-integer conversion, which is always considered a
6430    // narrowing conversion even if the value is a constant and can be
6431    // represented exactly as an integer.
6432    S.Diag(PostInit->getLocStart(),
6433           S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6434             diag::warn_init_list_type_narrowing
6435           : S.isSFINAEContext()?
6436             diag::err_init_list_type_narrowing_sfinae
6437           : diag::err_init_list_type_narrowing)
6438      << PostInit->getSourceRange()
6439      << PreNarrowingType.getLocalUnqualifiedType()
6440      << EntityType.getLocalUnqualifiedType();
6441    break;
6442
6443  case NK_Constant_Narrowing:
6444    // A constant value was narrowed.
6445    S.Diag(PostInit->getLocStart(),
6446           S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6447             diag::warn_init_list_constant_narrowing
6448           : S.isSFINAEContext()?
6449             diag::err_init_list_constant_narrowing_sfinae
6450           : diag::err_init_list_constant_narrowing)
6451      << PostInit->getSourceRange()
6452      << ConstantValue.getAsString(S.getASTContext(), ConstantType)
6453      << EntityType.getLocalUnqualifiedType();
6454    break;
6455
6456  case NK_Variable_Narrowing:
6457    // A variable's value may have been narrowed.
6458    S.Diag(PostInit->getLocStart(),
6459           S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6460             diag::warn_init_list_variable_narrowing
6461           : S.isSFINAEContext()?
6462             diag::err_init_list_variable_narrowing_sfinae
6463           : diag::err_init_list_variable_narrowing)
6464      << PostInit->getSourceRange()
6465      << PreNarrowingType.getLocalUnqualifiedType()
6466      << EntityType.getLocalUnqualifiedType();
6467    break;
6468  }
6469
6470  SmallString<128> StaticCast;
6471  llvm::raw_svector_ostream OS(StaticCast);
6472  OS << "static_cast<";
6473  if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
6474    // It's important to use the typedef's name if there is one so that the
6475    // fixit doesn't break code using types like int64_t.
6476    //
6477    // FIXME: This will break if the typedef requires qualification.  But
6478    // getQualifiedNameAsString() includes non-machine-parsable components.
6479    OS << *TT->getDecl();
6480  } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
6481    OS << BT->getName(S.getLangOpts());
6482  else {
6483    // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
6484    // with a broken cast.
6485    return;
6486  }
6487  OS << ">(";
6488  S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
6489    << PostInit->getSourceRange()
6490    << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
6491    << FixItHint::CreateInsertion(
6492      S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
6493}
6494
6495//===----------------------------------------------------------------------===//
6496// Initialization helper functions
6497//===----------------------------------------------------------------------===//
6498bool
6499Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
6500                                   ExprResult Init) {
6501  if (Init.isInvalid())
6502    return false;
6503
6504  Expr *InitE = Init.get();
6505  assert(InitE && "No initialization expression");
6506
6507  InitializationKind Kind
6508    = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
6509  InitializationSequence Seq(*this, Entity, Kind, InitE);
6510  return !Seq.Failed();
6511}
6512
6513ExprResult
6514Sema::PerformCopyInitialization(const InitializedEntity &Entity,
6515                                SourceLocation EqualLoc,
6516                                ExprResult Init,
6517                                bool TopLevelOfInitList,
6518                                bool AllowExplicit) {
6519  if (Init.isInvalid())
6520    return ExprError();
6521
6522  Expr *InitE = Init.get();
6523  assert(InitE && "No initialization expression?");
6524
6525  if (EqualLoc.isInvalid())
6526    EqualLoc = InitE->getLocStart();
6527
6528  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
6529                                                           EqualLoc,
6530                                                           AllowExplicit);
6531  InitializationSequence Seq(*this, Entity, Kind, InitE);
6532  Init.release();
6533
6534  ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
6535
6536  if (!Result.isInvalid() && TopLevelOfInitList)
6537    DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
6538                                InitE, Result.get());
6539
6540  return Result;
6541}
6542