SemaInit.cpp revision 2651b7a44d1db7c2a9fe70689e0708394c343a7e
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Initialization.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Sema/Designator.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/SemaInternal.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28#include <map>
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35/// \brief Check whether T is compatible with a wide character type (wchar_t,
36/// char16_t or char32_t).
37static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38  if (Context.typesAreCompatible(Context.getWideCharType(), T))
39    return true;
40  if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41    return Context.typesAreCompatible(Context.Char16Ty, T) ||
42           Context.typesAreCompatible(Context.Char32Ty, T);
43  }
44  return false;
45}
46
47enum StringInitFailureKind {
48  SIF_None,
49  SIF_NarrowStringIntoWideChar,
50  SIF_WideStringIntoChar,
51  SIF_IncompatWideStringIntoWideChar,
52  SIF_Other
53};
54
55/// \brief Check whether the array of type AT can be initialized by the Init
56/// expression by means of string initialization. Returns SIF_None if so,
57/// otherwise returns a StringInitFailureKind that describes why the
58/// initialization would not work.
59static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60                                          ASTContext &Context) {
61  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62    return SIF_Other;
63
64  // See if this is a string literal or @encode.
65  Init = Init->IgnoreParens();
66
67  // Handle @encode, which is a narrow string.
68  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69    return SIF_None;
70
71  // Otherwise we can only handle string literals.
72  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73  if (SL == 0)
74    return SIF_Other;
75
76  const QualType ElemTy =
77      Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78
79  switch (SL->getKind()) {
80  case StringLiteral::Ascii:
81  case StringLiteral::UTF8:
82    // char array can be initialized with a narrow string.
83    // Only allow char x[] = "foo";  not char x[] = L"foo";
84    if (ElemTy->isCharType())
85      return SIF_None;
86    if (IsWideCharCompatible(ElemTy, Context))
87      return SIF_NarrowStringIntoWideChar;
88    return SIF_Other;
89  // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90  // "An array with element type compatible with a qualified or unqualified
91  // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92  // string literal with the corresponding encoding prefix (L, u, or U,
93  // respectively), optionally enclosed in braces.
94  case StringLiteral::UTF16:
95    if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96      return SIF_None;
97    if (ElemTy->isCharType())
98      return SIF_WideStringIntoChar;
99    if (IsWideCharCompatible(ElemTy, Context))
100      return SIF_IncompatWideStringIntoWideChar;
101    return SIF_Other;
102  case StringLiteral::UTF32:
103    if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104      return SIF_None;
105    if (ElemTy->isCharType())
106      return SIF_WideStringIntoChar;
107    if (IsWideCharCompatible(ElemTy, Context))
108      return SIF_IncompatWideStringIntoWideChar;
109    return SIF_Other;
110  case StringLiteral::Wide:
111    if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112      return SIF_None;
113    if (ElemTy->isCharType())
114      return SIF_WideStringIntoChar;
115    if (IsWideCharCompatible(ElemTy, Context))
116      return SIF_IncompatWideStringIntoWideChar;
117    return SIF_Other;
118  }
119
120  llvm_unreachable("missed a StringLiteral kind?");
121}
122
123static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124                                          ASTContext &Context) {
125  const ArrayType *arrayType = Context.getAsArrayType(declType);
126  if (!arrayType)
127    return SIF_Other;
128  return IsStringInit(init, arrayType, Context);
129}
130
131/// Update the type of a string literal, including any surrounding parentheses,
132/// to match the type of the object which it is initializing.
133static void updateStringLiteralType(Expr *E, QualType Ty) {
134  while (true) {
135    E->setType(Ty);
136    if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137      break;
138    else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139      E = PE->getSubExpr();
140    else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141      E = UO->getSubExpr();
142    else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143      E = GSE->getResultExpr();
144    else
145      llvm_unreachable("unexpected expr in string literal init");
146  }
147}
148
149static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150                            Sema &S) {
151  // Get the length of the string as parsed.
152  uint64_t StrLength =
153    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
154
155
156  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157    // C99 6.7.8p14. We have an array of character type with unknown size
158    // being initialized to a string literal.
159    llvm::APInt ConstVal(32, StrLength);
160    // Return a new array type (C99 6.7.8p22).
161    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162                                           ConstVal,
163                                           ArrayType::Normal, 0);
164    updateStringLiteralType(Str, DeclT);
165    return;
166  }
167
168  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169
170  // We have an array of character type with known size.  However,
171  // the size may be smaller or larger than the string we are initializing.
172  // FIXME: Avoid truncation for 64-bit length strings.
173  if (S.getLangOpts().CPlusPlus) {
174    if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175      // For Pascal strings it's OK to strip off the terminating null character,
176      // so the example below is valid:
177      //
178      // unsigned char a[2] = "\pa";
179      if (SL->isPascal())
180        StrLength--;
181    }
182
183    // [dcl.init.string]p2
184    if (StrLength > CAT->getSize().getZExtValue())
185      S.Diag(Str->getLocStart(),
186             diag::err_initializer_string_for_char_array_too_long)
187        << Str->getSourceRange();
188  } else {
189    // C99 6.7.8p14.
190    if (StrLength-1 > CAT->getSize().getZExtValue())
191      S.Diag(Str->getLocStart(),
192             diag::warn_initializer_string_for_char_array_too_long)
193        << Str->getSourceRange();
194  }
195
196  // Set the type to the actual size that we are initializing.  If we have
197  // something like:
198  //   char x[1] = "foo";
199  // then this will set the string literal's type to char[1].
200  updateStringLiteralType(Str, DeclT);
201}
202
203//===----------------------------------------------------------------------===//
204// Semantic checking for initializer lists.
205//===----------------------------------------------------------------------===//
206
207/// @brief Semantic checking for initializer lists.
208///
209/// The InitListChecker class contains a set of routines that each
210/// handle the initialization of a certain kind of entity, e.g.,
211/// arrays, vectors, struct/union types, scalars, etc. The
212/// InitListChecker itself performs a recursive walk of the subobject
213/// structure of the type to be initialized, while stepping through
214/// the initializer list one element at a time. The IList and Index
215/// parameters to each of the Check* routines contain the active
216/// (syntactic) initializer list and the index into that initializer
217/// list that represents the current initializer. Each routine is
218/// responsible for moving that Index forward as it consumes elements.
219///
220/// Each Check* routine also has a StructuredList/StructuredIndex
221/// arguments, which contains the current "structured" (semantic)
222/// initializer list and the index into that initializer list where we
223/// are copying initializers as we map them over to the semantic
224/// list. Once we have completed our recursive walk of the subobject
225/// structure, we will have constructed a full semantic initializer
226/// list.
227///
228/// C99 designators cause changes in the initializer list traversal,
229/// because they make the initialization "jump" into a specific
230/// subobject and then continue the initialization from that
231/// point. CheckDesignatedInitializer() recursively steps into the
232/// designated subobject and manages backing out the recursion to
233/// initialize the subobjects after the one designated.
234namespace {
235class InitListChecker {
236  Sema &SemaRef;
237  bool hadError;
238  bool VerifyOnly; // no diagnostics, no structure building
239  llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
240  InitListExpr *FullyStructuredList;
241
242  void CheckImplicitInitList(const InitializedEntity &Entity,
243                             InitListExpr *ParentIList, QualType T,
244                             unsigned &Index, InitListExpr *StructuredList,
245                             unsigned &StructuredIndex);
246  void CheckExplicitInitList(const InitializedEntity &Entity,
247                             InitListExpr *IList, QualType &T,
248                             unsigned &Index, InitListExpr *StructuredList,
249                             unsigned &StructuredIndex,
250                             bool TopLevelObject = false);
251  void CheckListElementTypes(const InitializedEntity &Entity,
252                             InitListExpr *IList, QualType &DeclType,
253                             bool SubobjectIsDesignatorContext,
254                             unsigned &Index,
255                             InitListExpr *StructuredList,
256                             unsigned &StructuredIndex,
257                             bool TopLevelObject = false);
258  void CheckSubElementType(const InitializedEntity &Entity,
259                           InitListExpr *IList, QualType ElemType,
260                           unsigned &Index,
261                           InitListExpr *StructuredList,
262                           unsigned &StructuredIndex);
263  void CheckComplexType(const InitializedEntity &Entity,
264                        InitListExpr *IList, QualType DeclType,
265                        unsigned &Index,
266                        InitListExpr *StructuredList,
267                        unsigned &StructuredIndex);
268  void CheckScalarType(const InitializedEntity &Entity,
269                       InitListExpr *IList, QualType DeclType,
270                       unsigned &Index,
271                       InitListExpr *StructuredList,
272                       unsigned &StructuredIndex);
273  void CheckReferenceType(const InitializedEntity &Entity,
274                          InitListExpr *IList, QualType DeclType,
275                          unsigned &Index,
276                          InitListExpr *StructuredList,
277                          unsigned &StructuredIndex);
278  void CheckVectorType(const InitializedEntity &Entity,
279                       InitListExpr *IList, QualType DeclType, unsigned &Index,
280                       InitListExpr *StructuredList,
281                       unsigned &StructuredIndex);
282  void CheckStructUnionTypes(const InitializedEntity &Entity,
283                             InitListExpr *IList, QualType DeclType,
284                             RecordDecl::field_iterator Field,
285                             bool SubobjectIsDesignatorContext, unsigned &Index,
286                             InitListExpr *StructuredList,
287                             unsigned &StructuredIndex,
288                             bool TopLevelObject = false);
289  void CheckArrayType(const InitializedEntity &Entity,
290                      InitListExpr *IList, QualType &DeclType,
291                      llvm::APSInt elementIndex,
292                      bool SubobjectIsDesignatorContext, unsigned &Index,
293                      InitListExpr *StructuredList,
294                      unsigned &StructuredIndex);
295  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
296                                  InitListExpr *IList, DesignatedInitExpr *DIE,
297                                  unsigned DesigIdx,
298                                  QualType &CurrentObjectType,
299                                  RecordDecl::field_iterator *NextField,
300                                  llvm::APSInt *NextElementIndex,
301                                  unsigned &Index,
302                                  InitListExpr *StructuredList,
303                                  unsigned &StructuredIndex,
304                                  bool FinishSubobjectInit,
305                                  bool TopLevelObject);
306  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
307                                           QualType CurrentObjectType,
308                                           InitListExpr *StructuredList,
309                                           unsigned StructuredIndex,
310                                           SourceRange InitRange);
311  void UpdateStructuredListElement(InitListExpr *StructuredList,
312                                   unsigned &StructuredIndex,
313                                   Expr *expr);
314  int numArrayElements(QualType DeclType);
315  int numStructUnionElements(QualType DeclType);
316
317  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
318                               const InitializedEntity &ParentEntity,
319                               InitListExpr *ILE, bool &RequiresSecondPass);
320  void FillInValueInitializations(const InitializedEntity &Entity,
321                                  InitListExpr *ILE, bool &RequiresSecondPass);
322  bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
323                              Expr *InitExpr, FieldDecl *Field,
324                              bool TopLevelObject);
325  void CheckValueInitializable(const InitializedEntity &Entity);
326
327public:
328  InitListChecker(Sema &S, const InitializedEntity &Entity,
329                  InitListExpr *IL, QualType &T, bool VerifyOnly);
330  bool HadError() { return hadError; }
331
332  // @brief Retrieves the fully-structured initializer list used for
333  // semantic analysis and code generation.
334  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
335};
336} // end anonymous namespace
337
338void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
339  assert(VerifyOnly &&
340         "CheckValueInitializable is only inteded for verification mode.");
341
342  SourceLocation Loc;
343  InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
344                                                            true);
345  InitializationSequence InitSeq(SemaRef, Entity, Kind, None);
346  if (InitSeq.Failed())
347    hadError = true;
348}
349
350void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
351                                        const InitializedEntity &ParentEntity,
352                                              InitListExpr *ILE,
353                                              bool &RequiresSecondPass) {
354  SourceLocation Loc = ILE->getLocStart();
355  unsigned NumInits = ILE->getNumInits();
356  InitializedEntity MemberEntity
357    = InitializedEntity::InitializeMember(Field, &ParentEntity);
358  if (Init >= NumInits || !ILE->getInit(Init)) {
359    // If there's no explicit initializer but we have a default initializer, use
360    // that. This only happens in C++1y, since classes with default
361    // initializers are not aggregates in C++11.
362    if (Field->hasInClassInitializer()) {
363      Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
364                                             ILE->getRBraceLoc(), Field);
365      if (Init < NumInits)
366        ILE->setInit(Init, DIE);
367      else {
368        ILE->updateInit(SemaRef.Context, Init, DIE);
369        RequiresSecondPass = true;
370      }
371      return;
372    }
373
374    // FIXME: We probably don't need to handle references
375    // specially here, since value-initialization of references is
376    // handled in InitializationSequence.
377    if (Field->getType()->isReferenceType()) {
378      // C++ [dcl.init.aggr]p9:
379      //   If an incomplete or empty initializer-list leaves a
380      //   member of reference type uninitialized, the program is
381      //   ill-formed.
382      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
383        << Field->getType()
384        << ILE->getSyntacticForm()->getSourceRange();
385      SemaRef.Diag(Field->getLocation(),
386                   diag::note_uninit_reference_member);
387      hadError = true;
388      return;
389    }
390
391    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
392                                                              true);
393    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, None);
394    if (!InitSeq) {
395      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, None);
396      hadError = true;
397      return;
398    }
399
400    ExprResult MemberInit
401      = InitSeq.Perform(SemaRef, MemberEntity, Kind, None);
402    if (MemberInit.isInvalid()) {
403      hadError = true;
404      return;
405    }
406
407    if (hadError) {
408      // Do nothing
409    } else if (Init < NumInits) {
410      ILE->setInit(Init, MemberInit.takeAs<Expr>());
411    } else if (InitSeq.isConstructorInitialization()) {
412      // Value-initialization requires a constructor call, so
413      // extend the initializer list to include the constructor
414      // call and make a note that we'll need to take another pass
415      // through the initializer list.
416      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
417      RequiresSecondPass = true;
418    }
419  } else if (InitListExpr *InnerILE
420               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
421    FillInValueInitializations(MemberEntity, InnerILE,
422                               RequiresSecondPass);
423}
424
425/// Recursively replaces NULL values within the given initializer list
426/// with expressions that perform value-initialization of the
427/// appropriate type.
428void
429InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
430                                            InitListExpr *ILE,
431                                            bool &RequiresSecondPass) {
432  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
433         "Should not have void type");
434  SourceLocation Loc = ILE->getLocStart();
435  if (ILE->getSyntacticForm())
436    Loc = ILE->getSyntacticForm()->getLocStart();
437
438  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
439    const RecordDecl *RDecl = RType->getDecl();
440    if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
441      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
442                              Entity, ILE, RequiresSecondPass);
443    else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
444             cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
445      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
446                                      FieldEnd = RDecl->field_end();
447           Field != FieldEnd; ++Field) {
448        if (Field->hasInClassInitializer()) {
449          FillInValueInitForField(0, *Field, Entity, ILE, RequiresSecondPass);
450          break;
451        }
452      }
453    } else {
454      unsigned Init = 0;
455      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
456                                      FieldEnd = RDecl->field_end();
457           Field != FieldEnd; ++Field) {
458        if (Field->isUnnamedBitfield())
459          continue;
460
461        if (hadError)
462          return;
463
464        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
465        if (hadError)
466          return;
467
468        ++Init;
469
470        // Only look at the first initialization of a union.
471        if (RDecl->isUnion())
472          break;
473      }
474    }
475
476    return;
477  }
478
479  QualType ElementType;
480
481  InitializedEntity ElementEntity = Entity;
482  unsigned NumInits = ILE->getNumInits();
483  unsigned NumElements = NumInits;
484  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
485    ElementType = AType->getElementType();
486    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
487      NumElements = CAType->getSize().getZExtValue();
488    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
489                                                         0, Entity);
490  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
491    ElementType = VType->getElementType();
492    NumElements = VType->getNumElements();
493    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
494                                                         0, Entity);
495  } else
496    ElementType = ILE->getType();
497
498
499  for (unsigned Init = 0; Init != NumElements; ++Init) {
500    if (hadError)
501      return;
502
503    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
504        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
505      ElementEntity.setElementIndex(Init);
506
507    Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
508    if (!InitExpr && !ILE->hasArrayFiller()) {
509      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
510                                                                true);
511      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, None);
512      if (!InitSeq) {
513        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, None);
514        hadError = true;
515        return;
516      }
517
518      ExprResult ElementInit
519        = InitSeq.Perform(SemaRef, ElementEntity, Kind, None);
520      if (ElementInit.isInvalid()) {
521        hadError = true;
522        return;
523      }
524
525      if (hadError) {
526        // Do nothing
527      } else if (Init < NumInits) {
528        // For arrays, just set the expression used for value-initialization
529        // of the "holes" in the array.
530        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
531          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
532        else
533          ILE->setInit(Init, ElementInit.takeAs<Expr>());
534      } else {
535        // For arrays, just set the expression used for value-initialization
536        // of the rest of elements and exit.
537        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
538          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
539          return;
540        }
541
542        if (InitSeq.isConstructorInitialization()) {
543          // Value-initialization requires a constructor call, so
544          // extend the initializer list to include the constructor
545          // call and make a note that we'll need to take another pass
546          // through the initializer list.
547          ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
548          RequiresSecondPass = true;
549        }
550      }
551    } else if (InitListExpr *InnerILE
552                 = dyn_cast_or_null<InitListExpr>(InitExpr))
553      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
554  }
555}
556
557
558InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
559                                 InitListExpr *IL, QualType &T,
560                                 bool VerifyOnly)
561  : SemaRef(S), VerifyOnly(VerifyOnly) {
562  hadError = false;
563
564  unsigned newIndex = 0;
565  unsigned newStructuredIndex = 0;
566  FullyStructuredList
567    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
568  CheckExplicitInitList(Entity, IL, T, newIndex,
569                        FullyStructuredList, newStructuredIndex,
570                        /*TopLevelObject=*/true);
571
572  if (!hadError && !VerifyOnly) {
573    bool RequiresSecondPass = false;
574    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
575    if (RequiresSecondPass && !hadError)
576      FillInValueInitializations(Entity, FullyStructuredList,
577                                 RequiresSecondPass);
578  }
579}
580
581int InitListChecker::numArrayElements(QualType DeclType) {
582  // FIXME: use a proper constant
583  int maxElements = 0x7FFFFFFF;
584  if (const ConstantArrayType *CAT =
585        SemaRef.Context.getAsConstantArrayType(DeclType)) {
586    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
587  }
588  return maxElements;
589}
590
591int InitListChecker::numStructUnionElements(QualType DeclType) {
592  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
593  int InitializableMembers = 0;
594  for (RecordDecl::field_iterator
595         Field = structDecl->field_begin(),
596         FieldEnd = structDecl->field_end();
597       Field != FieldEnd; ++Field) {
598    if (!Field->isUnnamedBitfield())
599      ++InitializableMembers;
600  }
601  if (structDecl->isUnion())
602    return std::min(InitializableMembers, 1);
603  return InitializableMembers - structDecl->hasFlexibleArrayMember();
604}
605
606void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
607                                            InitListExpr *ParentIList,
608                                            QualType T, unsigned &Index,
609                                            InitListExpr *StructuredList,
610                                            unsigned &StructuredIndex) {
611  int maxElements = 0;
612
613  if (T->isArrayType())
614    maxElements = numArrayElements(T);
615  else if (T->isRecordType())
616    maxElements = numStructUnionElements(T);
617  else if (T->isVectorType())
618    maxElements = T->getAs<VectorType>()->getNumElements();
619  else
620    llvm_unreachable("CheckImplicitInitList(): Illegal type");
621
622  if (maxElements == 0) {
623    if (!VerifyOnly)
624      SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
625                   diag::err_implicit_empty_initializer);
626    ++Index;
627    hadError = true;
628    return;
629  }
630
631  // Build a structured initializer list corresponding to this subobject.
632  InitListExpr *StructuredSubobjectInitList
633    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
634                                 StructuredIndex,
635          SourceRange(ParentIList->getInit(Index)->getLocStart(),
636                      ParentIList->getSourceRange().getEnd()));
637  unsigned StructuredSubobjectInitIndex = 0;
638
639  // Check the element types and build the structural subobject.
640  unsigned StartIndex = Index;
641  CheckListElementTypes(Entity, ParentIList, T,
642                        /*SubobjectIsDesignatorContext=*/false, Index,
643                        StructuredSubobjectInitList,
644                        StructuredSubobjectInitIndex);
645
646  if (!VerifyOnly) {
647    StructuredSubobjectInitList->setType(T);
648
649    unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
650    // Update the structured sub-object initializer so that it's ending
651    // range corresponds with the end of the last initializer it used.
652    if (EndIndex < ParentIList->getNumInits()) {
653      SourceLocation EndLoc
654        = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
655      StructuredSubobjectInitList->setRBraceLoc(EndLoc);
656    }
657
658    // Complain about missing braces.
659    if (T->isArrayType() || T->isRecordType()) {
660      SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
661                   diag::warn_missing_braces)
662        << StructuredSubobjectInitList->getSourceRange()
663        << FixItHint::CreateInsertion(
664              StructuredSubobjectInitList->getLocStart(), "{")
665        << FixItHint::CreateInsertion(
666              SemaRef.PP.getLocForEndOfToken(
667                                      StructuredSubobjectInitList->getLocEnd()),
668              "}");
669    }
670  }
671}
672
673void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
674                                            InitListExpr *IList, QualType &T,
675                                            unsigned &Index,
676                                            InitListExpr *StructuredList,
677                                            unsigned &StructuredIndex,
678                                            bool TopLevelObject) {
679  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
680  if (!VerifyOnly) {
681    SyntacticToSemantic[IList] = StructuredList;
682    StructuredList->setSyntacticForm(IList);
683  }
684  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
685                        Index, StructuredList, StructuredIndex, TopLevelObject);
686  if (!VerifyOnly) {
687    QualType ExprTy = T;
688    if (!ExprTy->isArrayType())
689      ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
690    IList->setType(ExprTy);
691    StructuredList->setType(ExprTy);
692  }
693  if (hadError)
694    return;
695
696  if (Index < IList->getNumInits()) {
697    // We have leftover initializers
698    if (VerifyOnly) {
699      if (SemaRef.getLangOpts().CPlusPlus ||
700          (SemaRef.getLangOpts().OpenCL &&
701           IList->getType()->isVectorType())) {
702        hadError = true;
703      }
704      return;
705    }
706
707    if (StructuredIndex == 1 &&
708        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
709            SIF_None) {
710      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
711      if (SemaRef.getLangOpts().CPlusPlus) {
712        DK = diag::err_excess_initializers_in_char_array_initializer;
713        hadError = true;
714      }
715      // Special-case
716      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
717        << IList->getInit(Index)->getSourceRange();
718    } else if (!T->isIncompleteType()) {
719      // Don't complain for incomplete types, since we'll get an error
720      // elsewhere
721      QualType CurrentObjectType = StructuredList->getType();
722      int initKind =
723        CurrentObjectType->isArrayType()? 0 :
724        CurrentObjectType->isVectorType()? 1 :
725        CurrentObjectType->isScalarType()? 2 :
726        CurrentObjectType->isUnionType()? 3 :
727        4;
728
729      unsigned DK = diag::warn_excess_initializers;
730      if (SemaRef.getLangOpts().CPlusPlus) {
731        DK = diag::err_excess_initializers;
732        hadError = true;
733      }
734      if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
735        DK = diag::err_excess_initializers;
736        hadError = true;
737      }
738
739      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
740        << initKind << IList->getInit(Index)->getSourceRange();
741    }
742  }
743
744  if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
745      !TopLevelObject)
746    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
747      << IList->getSourceRange()
748      << FixItHint::CreateRemoval(IList->getLocStart())
749      << FixItHint::CreateRemoval(IList->getLocEnd());
750}
751
752void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
753                                            InitListExpr *IList,
754                                            QualType &DeclType,
755                                            bool SubobjectIsDesignatorContext,
756                                            unsigned &Index,
757                                            InitListExpr *StructuredList,
758                                            unsigned &StructuredIndex,
759                                            bool TopLevelObject) {
760  if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
761    // Explicitly braced initializer for complex type can be real+imaginary
762    // parts.
763    CheckComplexType(Entity, IList, DeclType, Index,
764                     StructuredList, StructuredIndex);
765  } else if (DeclType->isScalarType()) {
766    CheckScalarType(Entity, IList, DeclType, Index,
767                    StructuredList, StructuredIndex);
768  } else if (DeclType->isVectorType()) {
769    CheckVectorType(Entity, IList, DeclType, Index,
770                    StructuredList, StructuredIndex);
771  } else if (DeclType->isRecordType()) {
772    assert(DeclType->isAggregateType() &&
773           "non-aggregate records should be handed in CheckSubElementType");
774    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
775    CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
776                          SubobjectIsDesignatorContext, Index,
777                          StructuredList, StructuredIndex,
778                          TopLevelObject);
779  } else if (DeclType->isArrayType()) {
780    llvm::APSInt Zero(
781                    SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
782                    false);
783    CheckArrayType(Entity, IList, DeclType, Zero,
784                   SubobjectIsDesignatorContext, Index,
785                   StructuredList, StructuredIndex);
786  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
787    // This type is invalid, issue a diagnostic.
788    ++Index;
789    if (!VerifyOnly)
790      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
791        << DeclType;
792    hadError = true;
793  } else if (DeclType->isReferenceType()) {
794    CheckReferenceType(Entity, IList, DeclType, Index,
795                       StructuredList, StructuredIndex);
796  } else if (DeclType->isObjCObjectType()) {
797    if (!VerifyOnly)
798      SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
799        << DeclType;
800    hadError = true;
801  } else {
802    if (!VerifyOnly)
803      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
804        << DeclType;
805    hadError = true;
806  }
807}
808
809void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
810                                          InitListExpr *IList,
811                                          QualType ElemType,
812                                          unsigned &Index,
813                                          InitListExpr *StructuredList,
814                                          unsigned &StructuredIndex) {
815  Expr *expr = IList->getInit(Index);
816
817  if (ElemType->isReferenceType())
818    return CheckReferenceType(Entity, IList, ElemType, Index,
819                              StructuredList, StructuredIndex);
820
821  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
822    if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
823      unsigned newIndex = 0;
824      unsigned newStructuredIndex = 0;
825      InitListExpr *newStructuredList
826        = getStructuredSubobjectInit(IList, Index, ElemType,
827                                     StructuredList, StructuredIndex,
828                                     SubInitList->getSourceRange());
829      CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
830                            newStructuredList, newStructuredIndex);
831      ++StructuredIndex;
832      ++Index;
833      return;
834    }
835    assert(SemaRef.getLangOpts().CPlusPlus &&
836           "non-aggregate records are only possible in C++");
837    // C++ initialization is handled later.
838  }
839
840  if (ElemType->isScalarType())
841    return CheckScalarType(Entity, IList, ElemType, Index,
842                           StructuredList, StructuredIndex);
843
844  if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
845    // arrayType can be incomplete if we're initializing a flexible
846    // array member.  There's nothing we can do with the completed
847    // type here, though.
848
849    if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
850      if (!VerifyOnly) {
851        CheckStringInit(expr, ElemType, arrayType, SemaRef);
852        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
853      }
854      ++Index;
855      return;
856    }
857
858    // Fall through for subaggregate initialization.
859
860  } else if (SemaRef.getLangOpts().CPlusPlus) {
861    // C++ [dcl.init.aggr]p12:
862    //   All implicit type conversions (clause 4) are considered when
863    //   initializing the aggregate member with an initializer from
864    //   an initializer-list. If the initializer can initialize a
865    //   member, the member is initialized. [...]
866
867    // FIXME: Better EqualLoc?
868    InitializationKind Kind =
869      InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
870    InitializationSequence Seq(SemaRef, Entity, Kind, expr);
871
872    if (Seq) {
873      if (!VerifyOnly) {
874        ExprResult Result =
875          Seq.Perform(SemaRef, Entity, Kind, expr);
876        if (Result.isInvalid())
877          hadError = true;
878
879        UpdateStructuredListElement(StructuredList, StructuredIndex,
880                                    Result.takeAs<Expr>());
881      }
882      ++Index;
883      return;
884    }
885
886    // Fall through for subaggregate initialization
887  } else {
888    // C99 6.7.8p13:
889    //
890    //   The initializer for a structure or union object that has
891    //   automatic storage duration shall be either an initializer
892    //   list as described below, or a single expression that has
893    //   compatible structure or union type. In the latter case, the
894    //   initial value of the object, including unnamed members, is
895    //   that of the expression.
896    ExprResult ExprRes = SemaRef.Owned(expr);
897    if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
898        SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
899                                                 !VerifyOnly)
900          == Sema::Compatible) {
901      if (ExprRes.isInvalid())
902        hadError = true;
903      else {
904        ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
905          if (ExprRes.isInvalid())
906            hadError = true;
907      }
908      UpdateStructuredListElement(StructuredList, StructuredIndex,
909                                  ExprRes.takeAs<Expr>());
910      ++Index;
911      return;
912    }
913    ExprRes.release();
914    // Fall through for subaggregate initialization
915  }
916
917  // C++ [dcl.init.aggr]p12:
918  //
919  //   [...] Otherwise, if the member is itself a non-empty
920  //   subaggregate, brace elision is assumed and the initializer is
921  //   considered for the initialization of the first member of
922  //   the subaggregate.
923  if (!SemaRef.getLangOpts().OpenCL &&
924      (ElemType->isAggregateType() || ElemType->isVectorType())) {
925    CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
926                          StructuredIndex);
927    ++StructuredIndex;
928  } else {
929    if (!VerifyOnly) {
930      // We cannot initialize this element, so let
931      // PerformCopyInitialization produce the appropriate diagnostic.
932      SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
933                                        SemaRef.Owned(expr),
934                                        /*TopLevelOfInitList=*/true);
935    }
936    hadError = true;
937    ++Index;
938    ++StructuredIndex;
939  }
940}
941
942void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
943                                       InitListExpr *IList, QualType DeclType,
944                                       unsigned &Index,
945                                       InitListExpr *StructuredList,
946                                       unsigned &StructuredIndex) {
947  assert(Index == 0 && "Index in explicit init list must be zero");
948
949  // As an extension, clang supports complex initializers, which initialize
950  // a complex number component-wise.  When an explicit initializer list for
951  // a complex number contains two two initializers, this extension kicks in:
952  // it exepcts the initializer list to contain two elements convertible to
953  // the element type of the complex type. The first element initializes
954  // the real part, and the second element intitializes the imaginary part.
955
956  if (IList->getNumInits() != 2)
957    return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
958                           StructuredIndex);
959
960  // This is an extension in C.  (The builtin _Complex type does not exist
961  // in the C++ standard.)
962  if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
963    SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
964      << IList->getSourceRange();
965
966  // Initialize the complex number.
967  QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
968  InitializedEntity ElementEntity =
969    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
970
971  for (unsigned i = 0; i < 2; ++i) {
972    ElementEntity.setElementIndex(Index);
973    CheckSubElementType(ElementEntity, IList, elementType, Index,
974                        StructuredList, StructuredIndex);
975  }
976}
977
978
979void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
980                                      InitListExpr *IList, QualType DeclType,
981                                      unsigned &Index,
982                                      InitListExpr *StructuredList,
983                                      unsigned &StructuredIndex) {
984  if (Index >= IList->getNumInits()) {
985    if (!VerifyOnly)
986      SemaRef.Diag(IList->getLocStart(),
987                   SemaRef.getLangOpts().CPlusPlus11 ?
988                     diag::warn_cxx98_compat_empty_scalar_initializer :
989                     diag::err_empty_scalar_initializer)
990        << IList->getSourceRange();
991    hadError = !SemaRef.getLangOpts().CPlusPlus11;
992    ++Index;
993    ++StructuredIndex;
994    return;
995  }
996
997  Expr *expr = IList->getInit(Index);
998  if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
999    if (!VerifyOnly)
1000      SemaRef.Diag(SubIList->getLocStart(),
1001                   diag::warn_many_braces_around_scalar_init)
1002        << SubIList->getSourceRange();
1003
1004    CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1005                    StructuredIndex);
1006    return;
1007  } else if (isa<DesignatedInitExpr>(expr)) {
1008    if (!VerifyOnly)
1009      SemaRef.Diag(expr->getLocStart(),
1010                   diag::err_designator_for_scalar_init)
1011        << DeclType << expr->getSourceRange();
1012    hadError = true;
1013    ++Index;
1014    ++StructuredIndex;
1015    return;
1016  }
1017
1018  if (VerifyOnly) {
1019    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1020      hadError = true;
1021    ++Index;
1022    return;
1023  }
1024
1025  ExprResult Result =
1026    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1027                                      SemaRef.Owned(expr),
1028                                      /*TopLevelOfInitList=*/true);
1029
1030  Expr *ResultExpr = 0;
1031
1032  if (Result.isInvalid())
1033    hadError = true; // types weren't compatible.
1034  else {
1035    ResultExpr = Result.takeAs<Expr>();
1036
1037    if (ResultExpr != expr) {
1038      // The type was promoted, update initializer list.
1039      IList->setInit(Index, ResultExpr);
1040    }
1041  }
1042  if (hadError)
1043    ++StructuredIndex;
1044  else
1045    UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1046  ++Index;
1047}
1048
1049void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1050                                         InitListExpr *IList, QualType DeclType,
1051                                         unsigned &Index,
1052                                         InitListExpr *StructuredList,
1053                                         unsigned &StructuredIndex) {
1054  if (Index >= IList->getNumInits()) {
1055    // FIXME: It would be wonderful if we could point at the actual member. In
1056    // general, it would be useful to pass location information down the stack,
1057    // so that we know the location (or decl) of the "current object" being
1058    // initialized.
1059    if (!VerifyOnly)
1060      SemaRef.Diag(IList->getLocStart(),
1061                    diag::err_init_reference_member_uninitialized)
1062        << DeclType
1063        << IList->getSourceRange();
1064    hadError = true;
1065    ++Index;
1066    ++StructuredIndex;
1067    return;
1068  }
1069
1070  Expr *expr = IList->getInit(Index);
1071  if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1072    if (!VerifyOnly)
1073      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1074        << DeclType << IList->getSourceRange();
1075    hadError = true;
1076    ++Index;
1077    ++StructuredIndex;
1078    return;
1079  }
1080
1081  if (VerifyOnly) {
1082    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1083      hadError = true;
1084    ++Index;
1085    return;
1086  }
1087
1088  ExprResult Result =
1089    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1090                                      SemaRef.Owned(expr),
1091                                      /*TopLevelOfInitList=*/true);
1092
1093  if (Result.isInvalid())
1094    hadError = true;
1095
1096  expr = Result.takeAs<Expr>();
1097  IList->setInit(Index, expr);
1098
1099  if (hadError)
1100    ++StructuredIndex;
1101  else
1102    UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1103  ++Index;
1104}
1105
1106void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1107                                      InitListExpr *IList, QualType DeclType,
1108                                      unsigned &Index,
1109                                      InitListExpr *StructuredList,
1110                                      unsigned &StructuredIndex) {
1111  const VectorType *VT = DeclType->getAs<VectorType>();
1112  unsigned maxElements = VT->getNumElements();
1113  unsigned numEltsInit = 0;
1114  QualType elementType = VT->getElementType();
1115
1116  if (Index >= IList->getNumInits()) {
1117    // Make sure the element type can be value-initialized.
1118    if (VerifyOnly)
1119      CheckValueInitializable(
1120          InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1121    return;
1122  }
1123
1124  if (!SemaRef.getLangOpts().OpenCL) {
1125    // If the initializing element is a vector, try to copy-initialize
1126    // instead of breaking it apart (which is doomed to failure anyway).
1127    Expr *Init = IList->getInit(Index);
1128    if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1129      if (VerifyOnly) {
1130        if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1131          hadError = true;
1132        ++Index;
1133        return;
1134      }
1135
1136      ExprResult Result =
1137        SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1138                                          SemaRef.Owned(Init),
1139                                          /*TopLevelOfInitList=*/true);
1140
1141      Expr *ResultExpr = 0;
1142      if (Result.isInvalid())
1143        hadError = true; // types weren't compatible.
1144      else {
1145        ResultExpr = Result.takeAs<Expr>();
1146
1147        if (ResultExpr != Init) {
1148          // The type was promoted, update initializer list.
1149          IList->setInit(Index, ResultExpr);
1150        }
1151      }
1152      if (hadError)
1153        ++StructuredIndex;
1154      else
1155        UpdateStructuredListElement(StructuredList, StructuredIndex,
1156                                    ResultExpr);
1157      ++Index;
1158      return;
1159    }
1160
1161    InitializedEntity ElementEntity =
1162      InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1163
1164    for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1165      // Don't attempt to go past the end of the init list
1166      if (Index >= IList->getNumInits()) {
1167        if (VerifyOnly)
1168          CheckValueInitializable(ElementEntity);
1169        break;
1170      }
1171
1172      ElementEntity.setElementIndex(Index);
1173      CheckSubElementType(ElementEntity, IList, elementType, Index,
1174                          StructuredList, StructuredIndex);
1175    }
1176    return;
1177  }
1178
1179  InitializedEntity ElementEntity =
1180    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1181
1182  // OpenCL initializers allows vectors to be constructed from vectors.
1183  for (unsigned i = 0; i < maxElements; ++i) {
1184    // Don't attempt to go past the end of the init list
1185    if (Index >= IList->getNumInits())
1186      break;
1187
1188    ElementEntity.setElementIndex(Index);
1189
1190    QualType IType = IList->getInit(Index)->getType();
1191    if (!IType->isVectorType()) {
1192      CheckSubElementType(ElementEntity, IList, elementType, Index,
1193                          StructuredList, StructuredIndex);
1194      ++numEltsInit;
1195    } else {
1196      QualType VecType;
1197      const VectorType *IVT = IType->getAs<VectorType>();
1198      unsigned numIElts = IVT->getNumElements();
1199
1200      if (IType->isExtVectorType())
1201        VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1202      else
1203        VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1204                                                IVT->getVectorKind());
1205      CheckSubElementType(ElementEntity, IList, VecType, Index,
1206                          StructuredList, StructuredIndex);
1207      numEltsInit += numIElts;
1208    }
1209  }
1210
1211  // OpenCL requires all elements to be initialized.
1212  if (numEltsInit != maxElements) {
1213    if (!VerifyOnly)
1214      SemaRef.Diag(IList->getLocStart(),
1215                   diag::err_vector_incorrect_num_initializers)
1216        << (numEltsInit < maxElements) << maxElements << numEltsInit;
1217    hadError = true;
1218  }
1219}
1220
1221void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1222                                     InitListExpr *IList, QualType &DeclType,
1223                                     llvm::APSInt elementIndex,
1224                                     bool SubobjectIsDesignatorContext,
1225                                     unsigned &Index,
1226                                     InitListExpr *StructuredList,
1227                                     unsigned &StructuredIndex) {
1228  const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1229
1230  // Check for the special-case of initializing an array with a string.
1231  if (Index < IList->getNumInits()) {
1232    if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1233        SIF_None) {
1234      // We place the string literal directly into the resulting
1235      // initializer list. This is the only place where the structure
1236      // of the structured initializer list doesn't match exactly,
1237      // because doing so would involve allocating one character
1238      // constant for each string.
1239      if (!VerifyOnly) {
1240        CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1241        UpdateStructuredListElement(StructuredList, StructuredIndex,
1242                                    IList->getInit(Index));
1243        StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1244      }
1245      ++Index;
1246      return;
1247    }
1248  }
1249  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1250    // Check for VLAs; in standard C it would be possible to check this
1251    // earlier, but I don't know where clang accepts VLAs (gcc accepts
1252    // them in all sorts of strange places).
1253    if (!VerifyOnly)
1254      SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1255                    diag::err_variable_object_no_init)
1256        << VAT->getSizeExpr()->getSourceRange();
1257    hadError = true;
1258    ++Index;
1259    ++StructuredIndex;
1260    return;
1261  }
1262
1263  // We might know the maximum number of elements in advance.
1264  llvm::APSInt maxElements(elementIndex.getBitWidth(),
1265                           elementIndex.isUnsigned());
1266  bool maxElementsKnown = false;
1267  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1268    maxElements = CAT->getSize();
1269    elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1270    elementIndex.setIsUnsigned(maxElements.isUnsigned());
1271    maxElementsKnown = true;
1272  }
1273
1274  QualType elementType = arrayType->getElementType();
1275  while (Index < IList->getNumInits()) {
1276    Expr *Init = IList->getInit(Index);
1277    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1278      // If we're not the subobject that matches up with the '{' for
1279      // the designator, we shouldn't be handling the
1280      // designator. Return immediately.
1281      if (!SubobjectIsDesignatorContext)
1282        return;
1283
1284      // Handle this designated initializer. elementIndex will be
1285      // updated to be the next array element we'll initialize.
1286      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1287                                     DeclType, 0, &elementIndex, Index,
1288                                     StructuredList, StructuredIndex, true,
1289                                     false)) {
1290        hadError = true;
1291        continue;
1292      }
1293
1294      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1295        maxElements = maxElements.extend(elementIndex.getBitWidth());
1296      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1297        elementIndex = elementIndex.extend(maxElements.getBitWidth());
1298      elementIndex.setIsUnsigned(maxElements.isUnsigned());
1299
1300      // If the array is of incomplete type, keep track of the number of
1301      // elements in the initializer.
1302      if (!maxElementsKnown && elementIndex > maxElements)
1303        maxElements = elementIndex;
1304
1305      continue;
1306    }
1307
1308    // If we know the maximum number of elements, and we've already
1309    // hit it, stop consuming elements in the initializer list.
1310    if (maxElementsKnown && elementIndex == maxElements)
1311      break;
1312
1313    InitializedEntity ElementEntity =
1314      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1315                                           Entity);
1316    // Check this element.
1317    CheckSubElementType(ElementEntity, IList, elementType, Index,
1318                        StructuredList, StructuredIndex);
1319    ++elementIndex;
1320
1321    // If the array is of incomplete type, keep track of the number of
1322    // elements in the initializer.
1323    if (!maxElementsKnown && elementIndex > maxElements)
1324      maxElements = elementIndex;
1325  }
1326  if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1327    // If this is an incomplete array type, the actual type needs to
1328    // be calculated here.
1329    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1330    if (maxElements == Zero) {
1331      // Sizing an array implicitly to zero is not allowed by ISO C,
1332      // but is supported by GNU.
1333      SemaRef.Diag(IList->getLocStart(),
1334                    diag::ext_typecheck_zero_array_size);
1335    }
1336
1337    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1338                                                     ArrayType::Normal, 0);
1339  }
1340  if (!hadError && VerifyOnly) {
1341    // Check if there are any members of the array that get value-initialized.
1342    // If so, check if doing that is possible.
1343    // FIXME: This needs to detect holes left by designated initializers too.
1344    if (maxElementsKnown && elementIndex < maxElements)
1345      CheckValueInitializable(InitializedEntity::InitializeElement(
1346                                                  SemaRef.Context, 0, Entity));
1347  }
1348}
1349
1350bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1351                                             Expr *InitExpr,
1352                                             FieldDecl *Field,
1353                                             bool TopLevelObject) {
1354  // Handle GNU flexible array initializers.
1355  unsigned FlexArrayDiag;
1356  if (isa<InitListExpr>(InitExpr) &&
1357      cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1358    // Empty flexible array init always allowed as an extension
1359    FlexArrayDiag = diag::ext_flexible_array_init;
1360  } else if (SemaRef.getLangOpts().CPlusPlus) {
1361    // Disallow flexible array init in C++; it is not required for gcc
1362    // compatibility, and it needs work to IRGen correctly in general.
1363    FlexArrayDiag = diag::err_flexible_array_init;
1364  } else if (!TopLevelObject) {
1365    // Disallow flexible array init on non-top-level object
1366    FlexArrayDiag = diag::err_flexible_array_init;
1367  } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1368    // Disallow flexible array init on anything which is not a variable.
1369    FlexArrayDiag = diag::err_flexible_array_init;
1370  } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1371    // Disallow flexible array init on local variables.
1372    FlexArrayDiag = diag::err_flexible_array_init;
1373  } else {
1374    // Allow other cases.
1375    FlexArrayDiag = diag::ext_flexible_array_init;
1376  }
1377
1378  if (!VerifyOnly) {
1379    SemaRef.Diag(InitExpr->getLocStart(),
1380                 FlexArrayDiag)
1381      << InitExpr->getLocStart();
1382    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1383      << Field;
1384  }
1385
1386  return FlexArrayDiag != diag::ext_flexible_array_init;
1387}
1388
1389void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1390                                            InitListExpr *IList,
1391                                            QualType DeclType,
1392                                            RecordDecl::field_iterator Field,
1393                                            bool SubobjectIsDesignatorContext,
1394                                            unsigned &Index,
1395                                            InitListExpr *StructuredList,
1396                                            unsigned &StructuredIndex,
1397                                            bool TopLevelObject) {
1398  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1399
1400  // If the record is invalid, some of it's members are invalid. To avoid
1401  // confusion, we forgo checking the intializer for the entire record.
1402  if (structDecl->isInvalidDecl()) {
1403    // Assume it was supposed to consume a single initializer.
1404    ++Index;
1405    hadError = true;
1406    return;
1407  }
1408
1409  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1410    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1411
1412    // If there's a default initializer, use it.
1413    if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1414      if (VerifyOnly)
1415        return;
1416      for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1417           Field != FieldEnd; ++Field) {
1418        if (Field->hasInClassInitializer()) {
1419          StructuredList->setInitializedFieldInUnion(*Field);
1420          // FIXME: Actually build a CXXDefaultInitExpr?
1421          return;
1422        }
1423      }
1424    }
1425
1426    // Value-initialize the first named member of the union.
1427    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1428         Field != FieldEnd; ++Field) {
1429      if (Field->getDeclName()) {
1430        if (VerifyOnly)
1431          CheckValueInitializable(
1432              InitializedEntity::InitializeMember(*Field, &Entity));
1433        else
1434          StructuredList->setInitializedFieldInUnion(*Field);
1435        break;
1436      }
1437    }
1438    return;
1439  }
1440
1441  // If structDecl is a forward declaration, this loop won't do
1442  // anything except look at designated initializers; That's okay,
1443  // because an error should get printed out elsewhere. It might be
1444  // worthwhile to skip over the rest of the initializer, though.
1445  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1446  RecordDecl::field_iterator FieldEnd = RD->field_end();
1447  bool InitializedSomething = false;
1448  bool CheckForMissingFields = true;
1449  while (Index < IList->getNumInits()) {
1450    Expr *Init = IList->getInit(Index);
1451
1452    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1453      // If we're not the subobject that matches up with the '{' for
1454      // the designator, we shouldn't be handling the
1455      // designator. Return immediately.
1456      if (!SubobjectIsDesignatorContext)
1457        return;
1458
1459      // Handle this designated initializer. Field will be updated to
1460      // the next field that we'll be initializing.
1461      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1462                                     DeclType, &Field, 0, Index,
1463                                     StructuredList, StructuredIndex,
1464                                     true, TopLevelObject))
1465        hadError = true;
1466
1467      InitializedSomething = true;
1468
1469      // Disable check for missing fields when designators are used.
1470      // This matches gcc behaviour.
1471      CheckForMissingFields = false;
1472      continue;
1473    }
1474
1475    if (Field == FieldEnd) {
1476      // We've run out of fields. We're done.
1477      break;
1478    }
1479
1480    // We've already initialized a member of a union. We're done.
1481    if (InitializedSomething && DeclType->isUnionType())
1482      break;
1483
1484    // If we've hit the flexible array member at the end, we're done.
1485    if (Field->getType()->isIncompleteArrayType())
1486      break;
1487
1488    if (Field->isUnnamedBitfield()) {
1489      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1490      ++Field;
1491      continue;
1492    }
1493
1494    // Make sure we can use this declaration.
1495    bool InvalidUse;
1496    if (VerifyOnly)
1497      InvalidUse = !SemaRef.CanUseDecl(*Field);
1498    else
1499      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1500                                          IList->getInit(Index)->getLocStart());
1501    if (InvalidUse) {
1502      ++Index;
1503      ++Field;
1504      hadError = true;
1505      continue;
1506    }
1507
1508    InitializedEntity MemberEntity =
1509      InitializedEntity::InitializeMember(*Field, &Entity);
1510    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1511                        StructuredList, StructuredIndex);
1512    InitializedSomething = true;
1513
1514    if (DeclType->isUnionType() && !VerifyOnly) {
1515      // Initialize the first field within the union.
1516      StructuredList->setInitializedFieldInUnion(*Field);
1517    }
1518
1519    ++Field;
1520  }
1521
1522  // Emit warnings for missing struct field initializers.
1523  if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1524      Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1525      !DeclType->isUnionType()) {
1526    // It is possible we have one or more unnamed bitfields remaining.
1527    // Find first (if any) named field and emit warning.
1528    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1529         it != end; ++it) {
1530      if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1531        SemaRef.Diag(IList->getSourceRange().getEnd(),
1532                     diag::warn_missing_field_initializers) << it->getName();
1533        break;
1534      }
1535    }
1536  }
1537
1538  // Check that any remaining fields can be value-initialized.
1539  if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1540      !Field->getType()->isIncompleteArrayType()) {
1541    // FIXME: Should check for holes left by designated initializers too.
1542    for (; Field != FieldEnd && !hadError; ++Field) {
1543      if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1544        CheckValueInitializable(
1545            InitializedEntity::InitializeMember(*Field, &Entity));
1546    }
1547  }
1548
1549  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1550      Index >= IList->getNumInits())
1551    return;
1552
1553  if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1554                             TopLevelObject)) {
1555    hadError = true;
1556    ++Index;
1557    return;
1558  }
1559
1560  InitializedEntity MemberEntity =
1561    InitializedEntity::InitializeMember(*Field, &Entity);
1562
1563  if (isa<InitListExpr>(IList->getInit(Index)))
1564    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1565                        StructuredList, StructuredIndex);
1566  else
1567    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1568                          StructuredList, StructuredIndex);
1569}
1570
1571/// \brief Expand a field designator that refers to a member of an
1572/// anonymous struct or union into a series of field designators that
1573/// refers to the field within the appropriate subobject.
1574///
1575static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1576                                           DesignatedInitExpr *DIE,
1577                                           unsigned DesigIdx,
1578                                           IndirectFieldDecl *IndirectField) {
1579  typedef DesignatedInitExpr::Designator Designator;
1580
1581  // Build the replacement designators.
1582  SmallVector<Designator, 4> Replacements;
1583  for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1584       PE = IndirectField->chain_end(); PI != PE; ++PI) {
1585    if (PI + 1 == PE)
1586      Replacements.push_back(Designator((IdentifierInfo *)0,
1587                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1588                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1589    else
1590      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1591                                        SourceLocation()));
1592    assert(isa<FieldDecl>(*PI));
1593    Replacements.back().setField(cast<FieldDecl>(*PI));
1594  }
1595
1596  // Expand the current designator into the set of replacement
1597  // designators, so we have a full subobject path down to where the
1598  // member of the anonymous struct/union is actually stored.
1599  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1600                        &Replacements[0] + Replacements.size());
1601}
1602
1603/// \brief Given an implicit anonymous field, search the IndirectField that
1604///  corresponds to FieldName.
1605static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1606                                                 IdentifierInfo *FieldName) {
1607  if (!FieldName)
1608    return 0;
1609
1610  assert(AnonField->isAnonymousStructOrUnion());
1611  Decl *NextDecl = AnonField->getNextDeclInContext();
1612  while (IndirectFieldDecl *IF =
1613          dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1614    if (FieldName == IF->getAnonField()->getIdentifier())
1615      return IF;
1616    NextDecl = NextDecl->getNextDeclInContext();
1617  }
1618  return 0;
1619}
1620
1621static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1622                                                   DesignatedInitExpr *DIE) {
1623  unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1624  SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1625  for (unsigned I = 0; I < NumIndexExprs; ++I)
1626    IndexExprs[I] = DIE->getSubExpr(I + 1);
1627  return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1628                                    DIE->size(), IndexExprs,
1629                                    DIE->getEqualOrColonLoc(),
1630                                    DIE->usesGNUSyntax(), DIE->getInit());
1631}
1632
1633namespace {
1634
1635// Callback to only accept typo corrections that are for field members of
1636// the given struct or union.
1637class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1638 public:
1639  explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1640      : Record(RD) {}
1641
1642  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1643    FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1644    return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1645  }
1646
1647 private:
1648  RecordDecl *Record;
1649};
1650
1651}
1652
1653/// @brief Check the well-formedness of a C99 designated initializer.
1654///
1655/// Determines whether the designated initializer @p DIE, which
1656/// resides at the given @p Index within the initializer list @p
1657/// IList, is well-formed for a current object of type @p DeclType
1658/// (C99 6.7.8). The actual subobject that this designator refers to
1659/// within the current subobject is returned in either
1660/// @p NextField or @p NextElementIndex (whichever is appropriate).
1661///
1662/// @param IList  The initializer list in which this designated
1663/// initializer occurs.
1664///
1665/// @param DIE The designated initializer expression.
1666///
1667/// @param DesigIdx  The index of the current designator.
1668///
1669/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1670/// into which the designation in @p DIE should refer.
1671///
1672/// @param NextField  If non-NULL and the first designator in @p DIE is
1673/// a field, this will be set to the field declaration corresponding
1674/// to the field named by the designator.
1675///
1676/// @param NextElementIndex  If non-NULL and the first designator in @p
1677/// DIE is an array designator or GNU array-range designator, this
1678/// will be set to the last index initialized by this designator.
1679///
1680/// @param Index  Index into @p IList where the designated initializer
1681/// @p DIE occurs.
1682///
1683/// @param StructuredList  The initializer list expression that
1684/// describes all of the subobject initializers in the order they'll
1685/// actually be initialized.
1686///
1687/// @returns true if there was an error, false otherwise.
1688bool
1689InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1690                                            InitListExpr *IList,
1691                                            DesignatedInitExpr *DIE,
1692                                            unsigned DesigIdx,
1693                                            QualType &CurrentObjectType,
1694                                          RecordDecl::field_iterator *NextField,
1695                                            llvm::APSInt *NextElementIndex,
1696                                            unsigned &Index,
1697                                            InitListExpr *StructuredList,
1698                                            unsigned &StructuredIndex,
1699                                            bool FinishSubobjectInit,
1700                                            bool TopLevelObject) {
1701  if (DesigIdx == DIE->size()) {
1702    // Check the actual initialization for the designated object type.
1703    bool prevHadError = hadError;
1704
1705    // Temporarily remove the designator expression from the
1706    // initializer list that the child calls see, so that we don't try
1707    // to re-process the designator.
1708    unsigned OldIndex = Index;
1709    IList->setInit(OldIndex, DIE->getInit());
1710
1711    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1712                        StructuredList, StructuredIndex);
1713
1714    // Restore the designated initializer expression in the syntactic
1715    // form of the initializer list.
1716    if (IList->getInit(OldIndex) != DIE->getInit())
1717      DIE->setInit(IList->getInit(OldIndex));
1718    IList->setInit(OldIndex, DIE);
1719
1720    return hadError && !prevHadError;
1721  }
1722
1723  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1724  bool IsFirstDesignator = (DesigIdx == 0);
1725  if (!VerifyOnly) {
1726    assert((IsFirstDesignator || StructuredList) &&
1727           "Need a non-designated initializer list to start from");
1728
1729    // Determine the structural initializer list that corresponds to the
1730    // current subobject.
1731    StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1732      : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1733                                   StructuredList, StructuredIndex,
1734                                   SourceRange(D->getLocStart(),
1735                                               DIE->getLocEnd()));
1736    assert(StructuredList && "Expected a structured initializer list");
1737  }
1738
1739  if (D->isFieldDesignator()) {
1740    // C99 6.7.8p7:
1741    //
1742    //   If a designator has the form
1743    //
1744    //      . identifier
1745    //
1746    //   then the current object (defined below) shall have
1747    //   structure or union type and the identifier shall be the
1748    //   name of a member of that type.
1749    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1750    if (!RT) {
1751      SourceLocation Loc = D->getDotLoc();
1752      if (Loc.isInvalid())
1753        Loc = D->getFieldLoc();
1754      if (!VerifyOnly)
1755        SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1756          << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1757      ++Index;
1758      return true;
1759    }
1760
1761    // Note: we perform a linear search of the fields here, despite
1762    // the fact that we have a faster lookup method, because we always
1763    // need to compute the field's index.
1764    FieldDecl *KnownField = D->getField();
1765    IdentifierInfo *FieldName = D->getFieldName();
1766    unsigned FieldIndex = 0;
1767    RecordDecl::field_iterator
1768      Field = RT->getDecl()->field_begin(),
1769      FieldEnd = RT->getDecl()->field_end();
1770    for (; Field != FieldEnd; ++Field) {
1771      if (Field->isUnnamedBitfield())
1772        continue;
1773
1774      // If we find a field representing an anonymous field, look in the
1775      // IndirectFieldDecl that follow for the designated initializer.
1776      if (!KnownField && Field->isAnonymousStructOrUnion()) {
1777        if (IndirectFieldDecl *IF =
1778            FindIndirectFieldDesignator(*Field, FieldName)) {
1779          // In verify mode, don't modify the original.
1780          if (VerifyOnly)
1781            DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1782          ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1783          D = DIE->getDesignator(DesigIdx);
1784          break;
1785        }
1786      }
1787      if (KnownField && KnownField == *Field)
1788        break;
1789      if (FieldName && FieldName == Field->getIdentifier())
1790        break;
1791
1792      ++FieldIndex;
1793    }
1794
1795    if (Field == FieldEnd) {
1796      if (VerifyOnly) {
1797        ++Index;
1798        return true; // No typo correction when just trying this out.
1799      }
1800
1801      // There was no normal field in the struct with the designated
1802      // name. Perform another lookup for this name, which may find
1803      // something that we can't designate (e.g., a member function),
1804      // may find nothing, or may find a member of an anonymous
1805      // struct/union.
1806      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1807      FieldDecl *ReplacementField = 0;
1808      if (Lookup.empty()) {
1809        // Name lookup didn't find anything. Determine whether this
1810        // was a typo for another field name.
1811        FieldInitializerValidatorCCC Validator(RT->getDecl());
1812        TypoCorrection Corrected = SemaRef.CorrectTypo(
1813            DeclarationNameInfo(FieldName, D->getFieldLoc()),
1814            Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator,
1815            RT->getDecl());
1816        if (Corrected) {
1817          std::string CorrectedStr(
1818              Corrected.getAsString(SemaRef.getLangOpts()));
1819          std::string CorrectedQuotedStr(
1820              Corrected.getQuoted(SemaRef.getLangOpts()));
1821          ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1822          SemaRef.Diag(D->getFieldLoc(),
1823                       diag::err_field_designator_unknown_suggest)
1824            << FieldName << CurrentObjectType << CorrectedQuotedStr
1825            << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1826          SemaRef.Diag(ReplacementField->getLocation(),
1827                       diag::note_previous_decl) << CorrectedQuotedStr;
1828          hadError = true;
1829        } else {
1830          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1831            << FieldName << CurrentObjectType;
1832          ++Index;
1833          return true;
1834        }
1835      }
1836
1837      if (!ReplacementField) {
1838        // Name lookup found something, but it wasn't a field.
1839        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1840          << FieldName;
1841        SemaRef.Diag(Lookup.front()->getLocation(),
1842                      diag::note_field_designator_found);
1843        ++Index;
1844        return true;
1845      }
1846
1847      if (!KnownField) {
1848        // The replacement field comes from typo correction; find it
1849        // in the list of fields.
1850        FieldIndex = 0;
1851        Field = RT->getDecl()->field_begin();
1852        for (; Field != FieldEnd; ++Field) {
1853          if (Field->isUnnamedBitfield())
1854            continue;
1855
1856          if (ReplacementField == *Field ||
1857              Field->getIdentifier() == ReplacementField->getIdentifier())
1858            break;
1859
1860          ++FieldIndex;
1861        }
1862      }
1863    }
1864
1865    // All of the fields of a union are located at the same place in
1866    // the initializer list.
1867    if (RT->getDecl()->isUnion()) {
1868      FieldIndex = 0;
1869      if (!VerifyOnly)
1870        StructuredList->setInitializedFieldInUnion(*Field);
1871    }
1872
1873    // Make sure we can use this declaration.
1874    bool InvalidUse;
1875    if (VerifyOnly)
1876      InvalidUse = !SemaRef.CanUseDecl(*Field);
1877    else
1878      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1879    if (InvalidUse) {
1880      ++Index;
1881      return true;
1882    }
1883
1884    if (!VerifyOnly) {
1885      // Update the designator with the field declaration.
1886      D->setField(*Field);
1887
1888      // Make sure that our non-designated initializer list has space
1889      // for a subobject corresponding to this field.
1890      if (FieldIndex >= StructuredList->getNumInits())
1891        StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1892    }
1893
1894    // This designator names a flexible array member.
1895    if (Field->getType()->isIncompleteArrayType()) {
1896      bool Invalid = false;
1897      if ((DesigIdx + 1) != DIE->size()) {
1898        // We can't designate an object within the flexible array
1899        // member (because GCC doesn't allow it).
1900        if (!VerifyOnly) {
1901          DesignatedInitExpr::Designator *NextD
1902            = DIE->getDesignator(DesigIdx + 1);
1903          SemaRef.Diag(NextD->getLocStart(),
1904                        diag::err_designator_into_flexible_array_member)
1905            << SourceRange(NextD->getLocStart(),
1906                           DIE->getLocEnd());
1907          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1908            << *Field;
1909        }
1910        Invalid = true;
1911      }
1912
1913      if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1914          !isa<StringLiteral>(DIE->getInit())) {
1915        // The initializer is not an initializer list.
1916        if (!VerifyOnly) {
1917          SemaRef.Diag(DIE->getInit()->getLocStart(),
1918                        diag::err_flexible_array_init_needs_braces)
1919            << DIE->getInit()->getSourceRange();
1920          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1921            << *Field;
1922        }
1923        Invalid = true;
1924      }
1925
1926      // Check GNU flexible array initializer.
1927      if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1928                                             TopLevelObject))
1929        Invalid = true;
1930
1931      if (Invalid) {
1932        ++Index;
1933        return true;
1934      }
1935
1936      // Initialize the array.
1937      bool prevHadError = hadError;
1938      unsigned newStructuredIndex = FieldIndex;
1939      unsigned OldIndex = Index;
1940      IList->setInit(Index, DIE->getInit());
1941
1942      InitializedEntity MemberEntity =
1943        InitializedEntity::InitializeMember(*Field, &Entity);
1944      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1945                          StructuredList, newStructuredIndex);
1946
1947      IList->setInit(OldIndex, DIE);
1948      if (hadError && !prevHadError) {
1949        ++Field;
1950        ++FieldIndex;
1951        if (NextField)
1952          *NextField = Field;
1953        StructuredIndex = FieldIndex;
1954        return true;
1955      }
1956    } else {
1957      // Recurse to check later designated subobjects.
1958      QualType FieldType = Field->getType();
1959      unsigned newStructuredIndex = FieldIndex;
1960
1961      InitializedEntity MemberEntity =
1962        InitializedEntity::InitializeMember(*Field, &Entity);
1963      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1964                                     FieldType, 0, 0, Index,
1965                                     StructuredList, newStructuredIndex,
1966                                     true, false))
1967        return true;
1968    }
1969
1970    // Find the position of the next field to be initialized in this
1971    // subobject.
1972    ++Field;
1973    ++FieldIndex;
1974
1975    // If this the first designator, our caller will continue checking
1976    // the rest of this struct/class/union subobject.
1977    if (IsFirstDesignator) {
1978      if (NextField)
1979        *NextField = Field;
1980      StructuredIndex = FieldIndex;
1981      return false;
1982    }
1983
1984    if (!FinishSubobjectInit)
1985      return false;
1986
1987    // We've already initialized something in the union; we're done.
1988    if (RT->getDecl()->isUnion())
1989      return hadError;
1990
1991    // Check the remaining fields within this class/struct/union subobject.
1992    bool prevHadError = hadError;
1993
1994    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1995                          StructuredList, FieldIndex);
1996    return hadError && !prevHadError;
1997  }
1998
1999  // C99 6.7.8p6:
2000  //
2001  //   If a designator has the form
2002  //
2003  //      [ constant-expression ]
2004  //
2005  //   then the current object (defined below) shall have array
2006  //   type and the expression shall be an integer constant
2007  //   expression. If the array is of unknown size, any
2008  //   nonnegative value is valid.
2009  //
2010  // Additionally, cope with the GNU extension that permits
2011  // designators of the form
2012  //
2013  //      [ constant-expression ... constant-expression ]
2014  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2015  if (!AT) {
2016    if (!VerifyOnly)
2017      SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2018        << CurrentObjectType;
2019    ++Index;
2020    return true;
2021  }
2022
2023  Expr *IndexExpr = 0;
2024  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2025  if (D->isArrayDesignator()) {
2026    IndexExpr = DIE->getArrayIndex(*D);
2027    DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2028    DesignatedEndIndex = DesignatedStartIndex;
2029  } else {
2030    assert(D->isArrayRangeDesignator() && "Need array-range designator");
2031
2032    DesignatedStartIndex =
2033      DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2034    DesignatedEndIndex =
2035      DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2036    IndexExpr = DIE->getArrayRangeEnd(*D);
2037
2038    // Codegen can't handle evaluating array range designators that have side
2039    // effects, because we replicate the AST value for each initialized element.
2040    // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2041    // elements with something that has a side effect, so codegen can emit an
2042    // "error unsupported" error instead of miscompiling the app.
2043    if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2044        DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2045      FullyStructuredList->sawArrayRangeDesignator();
2046  }
2047
2048  if (isa<ConstantArrayType>(AT)) {
2049    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2050    DesignatedStartIndex
2051      = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2052    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2053    DesignatedEndIndex
2054      = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2055    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2056    if (DesignatedEndIndex >= MaxElements) {
2057      if (!VerifyOnly)
2058        SemaRef.Diag(IndexExpr->getLocStart(),
2059                      diag::err_array_designator_too_large)
2060          << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2061          << IndexExpr->getSourceRange();
2062      ++Index;
2063      return true;
2064    }
2065  } else {
2066    // Make sure the bit-widths and signedness match.
2067    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
2068      DesignatedEndIndex
2069        = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
2070    else if (DesignatedStartIndex.getBitWidth() <
2071             DesignatedEndIndex.getBitWidth())
2072      DesignatedStartIndex
2073        = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
2074    DesignatedStartIndex.setIsUnsigned(true);
2075    DesignatedEndIndex.setIsUnsigned(true);
2076  }
2077
2078  if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2079    // We're modifying a string literal init; we have to decompose the string
2080    // so we can modify the individual characters.
2081    ASTContext &Context = SemaRef.Context;
2082    Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2083
2084    // Compute the character type
2085    QualType CharTy = AT->getElementType();
2086
2087    // Compute the type of the integer literals.
2088    QualType PromotedCharTy = CharTy;
2089    if (CharTy->isPromotableIntegerType())
2090      PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2091    unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2092
2093    if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2094      // Get the length of the string.
2095      uint64_t StrLen = SL->getLength();
2096      if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2097        StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2098      StructuredList->resizeInits(Context, StrLen);
2099
2100      // Build a literal for each character in the string, and put them into
2101      // the init list.
2102      for (unsigned i = 0, e = StrLen; i != e; ++i) {
2103        llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2104        Expr *Init = new (Context) IntegerLiteral(
2105            Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2106        if (CharTy != PromotedCharTy)
2107          Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2108                                          Init, 0, VK_RValue);
2109        StructuredList->updateInit(Context, i, Init);
2110      }
2111    } else {
2112      ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2113      std::string Str;
2114      Context.getObjCEncodingForType(E->getEncodedType(), Str);
2115
2116      // Get the length of the string.
2117      uint64_t StrLen = Str.size();
2118      if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2119        StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2120      StructuredList->resizeInits(Context, StrLen);
2121
2122      // Build a literal for each character in the string, and put them into
2123      // the init list.
2124      for (unsigned i = 0, e = StrLen; i != e; ++i) {
2125        llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2126        Expr *Init = new (Context) IntegerLiteral(
2127            Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2128        if (CharTy != PromotedCharTy)
2129          Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2130                                          Init, 0, VK_RValue);
2131        StructuredList->updateInit(Context, i, Init);
2132      }
2133    }
2134  }
2135
2136  // Make sure that our non-designated initializer list has space
2137  // for a subobject corresponding to this array element.
2138  if (!VerifyOnly &&
2139      DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2140    StructuredList->resizeInits(SemaRef.Context,
2141                                DesignatedEndIndex.getZExtValue() + 1);
2142
2143  // Repeatedly perform subobject initializations in the range
2144  // [DesignatedStartIndex, DesignatedEndIndex].
2145
2146  // Move to the next designator
2147  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2148  unsigned OldIndex = Index;
2149
2150  InitializedEntity ElementEntity =
2151    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2152
2153  while (DesignatedStartIndex <= DesignatedEndIndex) {
2154    // Recurse to check later designated subobjects.
2155    QualType ElementType = AT->getElementType();
2156    Index = OldIndex;
2157
2158    ElementEntity.setElementIndex(ElementIndex);
2159    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2160                                   ElementType, 0, 0, Index,
2161                                   StructuredList, ElementIndex,
2162                                   (DesignatedStartIndex == DesignatedEndIndex),
2163                                   false))
2164      return true;
2165
2166    // Move to the next index in the array that we'll be initializing.
2167    ++DesignatedStartIndex;
2168    ElementIndex = DesignatedStartIndex.getZExtValue();
2169  }
2170
2171  // If this the first designator, our caller will continue checking
2172  // the rest of this array subobject.
2173  if (IsFirstDesignator) {
2174    if (NextElementIndex)
2175      *NextElementIndex = DesignatedStartIndex;
2176    StructuredIndex = ElementIndex;
2177    return false;
2178  }
2179
2180  if (!FinishSubobjectInit)
2181    return false;
2182
2183  // Check the remaining elements within this array subobject.
2184  bool prevHadError = hadError;
2185  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2186                 /*SubobjectIsDesignatorContext=*/false, Index,
2187                 StructuredList, ElementIndex);
2188  return hadError && !prevHadError;
2189}
2190
2191// Get the structured initializer list for a subobject of type
2192// @p CurrentObjectType.
2193InitListExpr *
2194InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2195                                            QualType CurrentObjectType,
2196                                            InitListExpr *StructuredList,
2197                                            unsigned StructuredIndex,
2198                                            SourceRange InitRange) {
2199  if (VerifyOnly)
2200    return 0; // No structured list in verification-only mode.
2201  Expr *ExistingInit = 0;
2202  if (!StructuredList)
2203    ExistingInit = SyntacticToSemantic.lookup(IList);
2204  else if (StructuredIndex < StructuredList->getNumInits())
2205    ExistingInit = StructuredList->getInit(StructuredIndex);
2206
2207  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2208    return Result;
2209
2210  if (ExistingInit) {
2211    // We are creating an initializer list that initializes the
2212    // subobjects of the current object, but there was already an
2213    // initialization that completely initialized the current
2214    // subobject, e.g., by a compound literal:
2215    //
2216    // struct X { int a, b; };
2217    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2218    //
2219    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2220    // designated initializer re-initializes the whole
2221    // subobject [0], overwriting previous initializers.
2222    SemaRef.Diag(InitRange.getBegin(),
2223                 diag::warn_subobject_initializer_overrides)
2224      << InitRange;
2225    SemaRef.Diag(ExistingInit->getLocStart(),
2226                  diag::note_previous_initializer)
2227      << /*FIXME:has side effects=*/0
2228      << ExistingInit->getSourceRange();
2229  }
2230
2231  InitListExpr *Result
2232    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2233                                         InitRange.getBegin(), None,
2234                                         InitRange.getEnd());
2235
2236  QualType ResultType = CurrentObjectType;
2237  if (!ResultType->isArrayType())
2238    ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2239  Result->setType(ResultType);
2240
2241  // Pre-allocate storage for the structured initializer list.
2242  unsigned NumElements = 0;
2243  unsigned NumInits = 0;
2244  bool GotNumInits = false;
2245  if (!StructuredList) {
2246    NumInits = IList->getNumInits();
2247    GotNumInits = true;
2248  } else if (Index < IList->getNumInits()) {
2249    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2250      NumInits = SubList->getNumInits();
2251      GotNumInits = true;
2252    }
2253  }
2254
2255  if (const ArrayType *AType
2256      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2257    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2258      NumElements = CAType->getSize().getZExtValue();
2259      // Simple heuristic so that we don't allocate a very large
2260      // initializer with many empty entries at the end.
2261      if (GotNumInits && NumElements > NumInits)
2262        NumElements = 0;
2263    }
2264  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2265    NumElements = VType->getNumElements();
2266  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2267    RecordDecl *RDecl = RType->getDecl();
2268    if (RDecl->isUnion())
2269      NumElements = 1;
2270    else
2271      NumElements = std::distance(RDecl->field_begin(),
2272                                  RDecl->field_end());
2273  }
2274
2275  Result->reserveInits(SemaRef.Context, NumElements);
2276
2277  // Link this new initializer list into the structured initializer
2278  // lists.
2279  if (StructuredList)
2280    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2281  else {
2282    Result->setSyntacticForm(IList);
2283    SyntacticToSemantic[IList] = Result;
2284  }
2285
2286  return Result;
2287}
2288
2289/// Update the initializer at index @p StructuredIndex within the
2290/// structured initializer list to the value @p expr.
2291void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2292                                                  unsigned &StructuredIndex,
2293                                                  Expr *expr) {
2294  // No structured initializer list to update
2295  if (!StructuredList)
2296    return;
2297
2298  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2299                                                  StructuredIndex, expr)) {
2300    // This initializer overwrites a previous initializer. Warn.
2301    SemaRef.Diag(expr->getLocStart(),
2302                  diag::warn_initializer_overrides)
2303      << expr->getSourceRange();
2304    SemaRef.Diag(PrevInit->getLocStart(),
2305                  diag::note_previous_initializer)
2306      << /*FIXME:has side effects=*/0
2307      << PrevInit->getSourceRange();
2308  }
2309
2310  ++StructuredIndex;
2311}
2312
2313/// Check that the given Index expression is a valid array designator
2314/// value. This is essentially just a wrapper around
2315/// VerifyIntegerConstantExpression that also checks for negative values
2316/// and produces a reasonable diagnostic if there is a
2317/// failure. Returns the index expression, possibly with an implicit cast
2318/// added, on success.  If everything went okay, Value will receive the
2319/// value of the constant expression.
2320static ExprResult
2321CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2322  SourceLocation Loc = Index->getLocStart();
2323
2324  // Make sure this is an integer constant expression.
2325  ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2326  if (Result.isInvalid())
2327    return Result;
2328
2329  if (Value.isSigned() && Value.isNegative())
2330    return S.Diag(Loc, diag::err_array_designator_negative)
2331      << Value.toString(10) << Index->getSourceRange();
2332
2333  Value.setIsUnsigned(true);
2334  return Result;
2335}
2336
2337ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2338                                            SourceLocation Loc,
2339                                            bool GNUSyntax,
2340                                            ExprResult Init) {
2341  typedef DesignatedInitExpr::Designator ASTDesignator;
2342
2343  bool Invalid = false;
2344  SmallVector<ASTDesignator, 32> Designators;
2345  SmallVector<Expr *, 32> InitExpressions;
2346
2347  // Build designators and check array designator expressions.
2348  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2349    const Designator &D = Desig.getDesignator(Idx);
2350    switch (D.getKind()) {
2351    case Designator::FieldDesignator:
2352      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2353                                          D.getFieldLoc()));
2354      break;
2355
2356    case Designator::ArrayDesignator: {
2357      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2358      llvm::APSInt IndexValue;
2359      if (!Index->isTypeDependent() && !Index->isValueDependent())
2360        Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2361      if (!Index)
2362        Invalid = true;
2363      else {
2364        Designators.push_back(ASTDesignator(InitExpressions.size(),
2365                                            D.getLBracketLoc(),
2366                                            D.getRBracketLoc()));
2367        InitExpressions.push_back(Index);
2368      }
2369      break;
2370    }
2371
2372    case Designator::ArrayRangeDesignator: {
2373      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2374      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2375      llvm::APSInt StartValue;
2376      llvm::APSInt EndValue;
2377      bool StartDependent = StartIndex->isTypeDependent() ||
2378                            StartIndex->isValueDependent();
2379      bool EndDependent = EndIndex->isTypeDependent() ||
2380                          EndIndex->isValueDependent();
2381      if (!StartDependent)
2382        StartIndex =
2383            CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2384      if (!EndDependent)
2385        EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2386
2387      if (!StartIndex || !EndIndex)
2388        Invalid = true;
2389      else {
2390        // Make sure we're comparing values with the same bit width.
2391        if (StartDependent || EndDependent) {
2392          // Nothing to compute.
2393        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2394          EndValue = EndValue.extend(StartValue.getBitWidth());
2395        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2396          StartValue = StartValue.extend(EndValue.getBitWidth());
2397
2398        if (!StartDependent && !EndDependent && EndValue < StartValue) {
2399          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2400            << StartValue.toString(10) << EndValue.toString(10)
2401            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2402          Invalid = true;
2403        } else {
2404          Designators.push_back(ASTDesignator(InitExpressions.size(),
2405                                              D.getLBracketLoc(),
2406                                              D.getEllipsisLoc(),
2407                                              D.getRBracketLoc()));
2408          InitExpressions.push_back(StartIndex);
2409          InitExpressions.push_back(EndIndex);
2410        }
2411      }
2412      break;
2413    }
2414    }
2415  }
2416
2417  if (Invalid || Init.isInvalid())
2418    return ExprError();
2419
2420  // Clear out the expressions within the designation.
2421  Desig.ClearExprs(*this);
2422
2423  DesignatedInitExpr *DIE
2424    = DesignatedInitExpr::Create(Context,
2425                                 Designators.data(), Designators.size(),
2426                                 InitExpressions, Loc, GNUSyntax,
2427                                 Init.takeAs<Expr>());
2428
2429  if (!getLangOpts().C99)
2430    Diag(DIE->getLocStart(), diag::ext_designated_init)
2431      << DIE->getSourceRange();
2432
2433  return Owned(DIE);
2434}
2435
2436//===----------------------------------------------------------------------===//
2437// Initialization entity
2438//===----------------------------------------------------------------------===//
2439
2440InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2441                                     const InitializedEntity &Parent)
2442  : Parent(&Parent), Index(Index)
2443{
2444  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2445    Kind = EK_ArrayElement;
2446    Type = AT->getElementType();
2447  } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2448    Kind = EK_VectorElement;
2449    Type = VT->getElementType();
2450  } else {
2451    const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2452    assert(CT && "Unexpected type");
2453    Kind = EK_ComplexElement;
2454    Type = CT->getElementType();
2455  }
2456}
2457
2458InitializedEntity
2459InitializedEntity::InitializeBase(ASTContext &Context,
2460                                  const CXXBaseSpecifier *Base,
2461                                  bool IsInheritedVirtualBase) {
2462  InitializedEntity Result;
2463  Result.Kind = EK_Base;
2464  Result.Parent = 0;
2465  Result.Base = reinterpret_cast<uintptr_t>(Base);
2466  if (IsInheritedVirtualBase)
2467    Result.Base |= 0x01;
2468
2469  Result.Type = Base->getType();
2470  return Result;
2471}
2472
2473DeclarationName InitializedEntity::getName() const {
2474  switch (getKind()) {
2475  case EK_Parameter:
2476  case EK_Parameter_CF_Audited: {
2477    ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2478    return (D ? D->getDeclName() : DeclarationName());
2479  }
2480
2481  case EK_Variable:
2482  case EK_Member:
2483    return VariableOrMember->getDeclName();
2484
2485  case EK_LambdaCapture:
2486    return Capture.Var->getDeclName();
2487
2488  case EK_Result:
2489  case EK_Exception:
2490  case EK_New:
2491  case EK_Temporary:
2492  case EK_Base:
2493  case EK_Delegating:
2494  case EK_ArrayElement:
2495  case EK_VectorElement:
2496  case EK_ComplexElement:
2497  case EK_BlockElement:
2498  case EK_CompoundLiteralInit:
2499  case EK_RelatedResult:
2500    return DeclarationName();
2501  }
2502
2503  llvm_unreachable("Invalid EntityKind!");
2504}
2505
2506DeclaratorDecl *InitializedEntity::getDecl() const {
2507  switch (getKind()) {
2508  case EK_Variable:
2509  case EK_Member:
2510    return VariableOrMember;
2511
2512  case EK_Parameter:
2513  case EK_Parameter_CF_Audited:
2514    return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2515
2516  case EK_Result:
2517  case EK_Exception:
2518  case EK_New:
2519  case EK_Temporary:
2520  case EK_Base:
2521  case EK_Delegating:
2522  case EK_ArrayElement:
2523  case EK_VectorElement:
2524  case EK_ComplexElement:
2525  case EK_BlockElement:
2526  case EK_LambdaCapture:
2527  case EK_CompoundLiteralInit:
2528  case EK_RelatedResult:
2529    return 0;
2530  }
2531
2532  llvm_unreachable("Invalid EntityKind!");
2533}
2534
2535bool InitializedEntity::allowsNRVO() const {
2536  switch (getKind()) {
2537  case EK_Result:
2538  case EK_Exception:
2539    return LocAndNRVO.NRVO;
2540
2541  case EK_Variable:
2542  case EK_Parameter:
2543  case EK_Parameter_CF_Audited:
2544  case EK_Member:
2545  case EK_New:
2546  case EK_Temporary:
2547  case EK_CompoundLiteralInit:
2548  case EK_Base:
2549  case EK_Delegating:
2550  case EK_ArrayElement:
2551  case EK_VectorElement:
2552  case EK_ComplexElement:
2553  case EK_BlockElement:
2554  case EK_LambdaCapture:
2555  case EK_RelatedResult:
2556    break;
2557  }
2558
2559  return false;
2560}
2561
2562unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
2563  assert(getParent() != this);
2564  unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
2565  for (unsigned I = 0; I != Depth; ++I)
2566    OS << "`-";
2567
2568  switch (getKind()) {
2569  case EK_Variable: OS << "Variable"; break;
2570  case EK_Parameter: OS << "Parameter"; break;
2571  case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
2572    break;
2573  case EK_Result: OS << "Result"; break;
2574  case EK_Exception: OS << "Exception"; break;
2575  case EK_Member: OS << "Member"; break;
2576  case EK_New: OS << "New"; break;
2577  case EK_Temporary: OS << "Temporary"; break;
2578  case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
2579  case EK_RelatedResult: OS << "RelatedResult"; break;
2580  case EK_Base: OS << "Base"; break;
2581  case EK_Delegating: OS << "Delegating"; break;
2582  case EK_ArrayElement: OS << "ArrayElement " << Index; break;
2583  case EK_VectorElement: OS << "VectorElement " << Index; break;
2584  case EK_ComplexElement: OS << "ComplexElement " << Index; break;
2585  case EK_BlockElement: OS << "Block"; break;
2586  case EK_LambdaCapture:
2587    OS << "LambdaCapture ";
2588    getCapturedVar()->printName(OS);
2589    break;
2590  }
2591
2592  if (Decl *D = getDecl()) {
2593    OS << " ";
2594    cast<NamedDecl>(D)->printQualifiedName(OS);
2595  }
2596
2597  OS << " '" << getType().getAsString() << "'\n";
2598
2599  return Depth + 1;
2600}
2601
2602void InitializedEntity::dump() const {
2603  dumpImpl(llvm::errs());
2604}
2605
2606//===----------------------------------------------------------------------===//
2607// Initialization sequence
2608//===----------------------------------------------------------------------===//
2609
2610void InitializationSequence::Step::Destroy() {
2611  switch (Kind) {
2612  case SK_ResolveAddressOfOverloadedFunction:
2613  case SK_CastDerivedToBaseRValue:
2614  case SK_CastDerivedToBaseXValue:
2615  case SK_CastDerivedToBaseLValue:
2616  case SK_BindReference:
2617  case SK_BindReferenceToTemporary:
2618  case SK_ExtraneousCopyToTemporary:
2619  case SK_UserConversion:
2620  case SK_QualificationConversionRValue:
2621  case SK_QualificationConversionXValue:
2622  case SK_QualificationConversionLValue:
2623  case SK_LValueToRValue:
2624  case SK_ListInitialization:
2625  case SK_ListConstructorCall:
2626  case SK_UnwrapInitList:
2627  case SK_RewrapInitList:
2628  case SK_ConstructorInitialization:
2629  case SK_ZeroInitialization:
2630  case SK_CAssignment:
2631  case SK_StringInit:
2632  case SK_ObjCObjectConversion:
2633  case SK_ArrayInit:
2634  case SK_ParenthesizedArrayInit:
2635  case SK_PassByIndirectCopyRestore:
2636  case SK_PassByIndirectRestore:
2637  case SK_ProduceObjCObject:
2638  case SK_StdInitializerList:
2639  case SK_OCLSamplerInit:
2640  case SK_OCLZeroEvent:
2641    break;
2642
2643  case SK_ConversionSequence:
2644    delete ICS;
2645  }
2646}
2647
2648bool InitializationSequence::isDirectReferenceBinding() const {
2649  return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2650}
2651
2652bool InitializationSequence::isAmbiguous() const {
2653  if (!Failed())
2654    return false;
2655
2656  switch (getFailureKind()) {
2657  case FK_TooManyInitsForReference:
2658  case FK_ArrayNeedsInitList:
2659  case FK_ArrayNeedsInitListOrStringLiteral:
2660  case FK_ArrayNeedsInitListOrWideStringLiteral:
2661  case FK_NarrowStringIntoWideCharArray:
2662  case FK_WideStringIntoCharArray:
2663  case FK_IncompatWideStringIntoWideChar:
2664  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2665  case FK_NonConstLValueReferenceBindingToTemporary:
2666  case FK_NonConstLValueReferenceBindingToUnrelated:
2667  case FK_RValueReferenceBindingToLValue:
2668  case FK_ReferenceInitDropsQualifiers:
2669  case FK_ReferenceInitFailed:
2670  case FK_ConversionFailed:
2671  case FK_ConversionFromPropertyFailed:
2672  case FK_TooManyInitsForScalar:
2673  case FK_ReferenceBindingToInitList:
2674  case FK_InitListBadDestinationType:
2675  case FK_DefaultInitOfConst:
2676  case FK_Incomplete:
2677  case FK_ArrayTypeMismatch:
2678  case FK_NonConstantArrayInit:
2679  case FK_ListInitializationFailed:
2680  case FK_VariableLengthArrayHasInitializer:
2681  case FK_PlaceholderType:
2682  case FK_ExplicitConstructor:
2683    return false;
2684
2685  case FK_ReferenceInitOverloadFailed:
2686  case FK_UserConversionOverloadFailed:
2687  case FK_ConstructorOverloadFailed:
2688  case FK_ListConstructorOverloadFailed:
2689    return FailedOverloadResult == OR_Ambiguous;
2690  }
2691
2692  llvm_unreachable("Invalid EntityKind!");
2693}
2694
2695bool InitializationSequence::isConstructorInitialization() const {
2696  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2697}
2698
2699void
2700InitializationSequence
2701::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2702                                   DeclAccessPair Found,
2703                                   bool HadMultipleCandidates) {
2704  Step S;
2705  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2706  S.Type = Function->getType();
2707  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2708  S.Function.Function = Function;
2709  S.Function.FoundDecl = Found;
2710  Steps.push_back(S);
2711}
2712
2713void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2714                                                      ExprValueKind VK) {
2715  Step S;
2716  switch (VK) {
2717  case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2718  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2719  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2720  }
2721  S.Type = BaseType;
2722  Steps.push_back(S);
2723}
2724
2725void InitializationSequence::AddReferenceBindingStep(QualType T,
2726                                                     bool BindingTemporary) {
2727  Step S;
2728  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2729  S.Type = T;
2730  Steps.push_back(S);
2731}
2732
2733void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2734  Step S;
2735  S.Kind = SK_ExtraneousCopyToTemporary;
2736  S.Type = T;
2737  Steps.push_back(S);
2738}
2739
2740void
2741InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2742                                              DeclAccessPair FoundDecl,
2743                                              QualType T,
2744                                              bool HadMultipleCandidates) {
2745  Step S;
2746  S.Kind = SK_UserConversion;
2747  S.Type = T;
2748  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2749  S.Function.Function = Function;
2750  S.Function.FoundDecl = FoundDecl;
2751  Steps.push_back(S);
2752}
2753
2754void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2755                                                            ExprValueKind VK) {
2756  Step S;
2757  S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2758  switch (VK) {
2759  case VK_RValue:
2760    S.Kind = SK_QualificationConversionRValue;
2761    break;
2762  case VK_XValue:
2763    S.Kind = SK_QualificationConversionXValue;
2764    break;
2765  case VK_LValue:
2766    S.Kind = SK_QualificationConversionLValue;
2767    break;
2768  }
2769  S.Type = Ty;
2770  Steps.push_back(S);
2771}
2772
2773void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
2774  assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
2775
2776  Step S;
2777  S.Kind = SK_LValueToRValue;
2778  S.Type = Ty;
2779  Steps.push_back(S);
2780}
2781
2782void InitializationSequence::AddConversionSequenceStep(
2783                                       const ImplicitConversionSequence &ICS,
2784                                                       QualType T) {
2785  Step S;
2786  S.Kind = SK_ConversionSequence;
2787  S.Type = T;
2788  S.ICS = new ImplicitConversionSequence(ICS);
2789  Steps.push_back(S);
2790}
2791
2792void InitializationSequence::AddListInitializationStep(QualType T) {
2793  Step S;
2794  S.Kind = SK_ListInitialization;
2795  S.Type = T;
2796  Steps.push_back(S);
2797}
2798
2799void
2800InitializationSequence
2801::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2802                                   AccessSpecifier Access,
2803                                   QualType T,
2804                                   bool HadMultipleCandidates,
2805                                   bool FromInitList, bool AsInitList) {
2806  Step S;
2807  S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2808                                       : SK_ConstructorInitialization;
2809  S.Type = T;
2810  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2811  S.Function.Function = Constructor;
2812  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2813  Steps.push_back(S);
2814}
2815
2816void InitializationSequence::AddZeroInitializationStep(QualType T) {
2817  Step S;
2818  S.Kind = SK_ZeroInitialization;
2819  S.Type = T;
2820  Steps.push_back(S);
2821}
2822
2823void InitializationSequence::AddCAssignmentStep(QualType T) {
2824  Step S;
2825  S.Kind = SK_CAssignment;
2826  S.Type = T;
2827  Steps.push_back(S);
2828}
2829
2830void InitializationSequence::AddStringInitStep(QualType T) {
2831  Step S;
2832  S.Kind = SK_StringInit;
2833  S.Type = T;
2834  Steps.push_back(S);
2835}
2836
2837void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2838  Step S;
2839  S.Kind = SK_ObjCObjectConversion;
2840  S.Type = T;
2841  Steps.push_back(S);
2842}
2843
2844void InitializationSequence::AddArrayInitStep(QualType T) {
2845  Step S;
2846  S.Kind = SK_ArrayInit;
2847  S.Type = T;
2848  Steps.push_back(S);
2849}
2850
2851void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2852  Step S;
2853  S.Kind = SK_ParenthesizedArrayInit;
2854  S.Type = T;
2855  Steps.push_back(S);
2856}
2857
2858void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2859                                                              bool shouldCopy) {
2860  Step s;
2861  s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2862                       : SK_PassByIndirectRestore);
2863  s.Type = type;
2864  Steps.push_back(s);
2865}
2866
2867void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2868  Step S;
2869  S.Kind = SK_ProduceObjCObject;
2870  S.Type = T;
2871  Steps.push_back(S);
2872}
2873
2874void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2875  Step S;
2876  S.Kind = SK_StdInitializerList;
2877  S.Type = T;
2878  Steps.push_back(S);
2879}
2880
2881void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
2882  Step S;
2883  S.Kind = SK_OCLSamplerInit;
2884  S.Type = T;
2885  Steps.push_back(S);
2886}
2887
2888void InitializationSequence::AddOCLZeroEventStep(QualType T) {
2889  Step S;
2890  S.Kind = SK_OCLZeroEvent;
2891  S.Type = T;
2892  Steps.push_back(S);
2893}
2894
2895void InitializationSequence::RewrapReferenceInitList(QualType T,
2896                                                     InitListExpr *Syntactic) {
2897  assert(Syntactic->getNumInits() == 1 &&
2898         "Can only rewrap trivial init lists.");
2899  Step S;
2900  S.Kind = SK_UnwrapInitList;
2901  S.Type = Syntactic->getInit(0)->getType();
2902  Steps.insert(Steps.begin(), S);
2903
2904  S.Kind = SK_RewrapInitList;
2905  S.Type = T;
2906  S.WrappingSyntacticList = Syntactic;
2907  Steps.push_back(S);
2908}
2909
2910void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2911                                                OverloadingResult Result) {
2912  setSequenceKind(FailedSequence);
2913  this->Failure = Failure;
2914  this->FailedOverloadResult = Result;
2915}
2916
2917//===----------------------------------------------------------------------===//
2918// Attempt initialization
2919//===----------------------------------------------------------------------===//
2920
2921static void MaybeProduceObjCObject(Sema &S,
2922                                   InitializationSequence &Sequence,
2923                                   const InitializedEntity &Entity) {
2924  if (!S.getLangOpts().ObjCAutoRefCount) return;
2925
2926  /// When initializing a parameter, produce the value if it's marked
2927  /// __attribute__((ns_consumed)).
2928  if (Entity.isParameterKind()) {
2929    if (!Entity.isParameterConsumed())
2930      return;
2931
2932    assert(Entity.getType()->isObjCRetainableType() &&
2933           "consuming an object of unretainable type?");
2934    Sequence.AddProduceObjCObjectStep(Entity.getType());
2935
2936  /// When initializing a return value, if the return type is a
2937  /// retainable type, then returns need to immediately retain the
2938  /// object.  If an autorelease is required, it will be done at the
2939  /// last instant.
2940  } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2941    if (!Entity.getType()->isObjCRetainableType())
2942      return;
2943
2944    Sequence.AddProduceObjCObjectStep(Entity.getType());
2945  }
2946}
2947
2948static void TryListInitialization(Sema &S,
2949                                  const InitializedEntity &Entity,
2950                                  const InitializationKind &Kind,
2951                                  InitListExpr *InitList,
2952                                  InitializationSequence &Sequence);
2953
2954/// \brief When initializing from init list via constructor, handle
2955/// initialization of an object of type std::initializer_list<T>.
2956///
2957/// \return true if we have handled initialization of an object of type
2958/// std::initializer_list<T>, false otherwise.
2959static bool TryInitializerListConstruction(Sema &S,
2960                                           InitListExpr *List,
2961                                           QualType DestType,
2962                                           InitializationSequence &Sequence) {
2963  QualType E;
2964  if (!S.isStdInitializerList(DestType, &E))
2965    return false;
2966
2967  if (S.RequireCompleteType(List->getExprLoc(), E, 0)) {
2968    Sequence.setIncompleteTypeFailure(E);
2969    return true;
2970  }
2971
2972  // Try initializing a temporary array from the init list.
2973  QualType ArrayType = S.Context.getConstantArrayType(
2974      E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2975                                 List->getNumInits()),
2976      clang::ArrayType::Normal, 0);
2977  InitializedEntity HiddenArray =
2978      InitializedEntity::InitializeTemporary(ArrayType);
2979  InitializationKind Kind =
2980      InitializationKind::CreateDirectList(List->getExprLoc());
2981  TryListInitialization(S, HiddenArray, Kind, List, Sequence);
2982  if (Sequence)
2983    Sequence.AddStdInitializerListConstructionStep(DestType);
2984  return true;
2985}
2986
2987static OverloadingResult
2988ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
2989                           MultiExprArg Args,
2990                           OverloadCandidateSet &CandidateSet,
2991                           ArrayRef<NamedDecl *> Ctors,
2992                           OverloadCandidateSet::iterator &Best,
2993                           bool CopyInitializing, bool AllowExplicit,
2994                           bool OnlyListConstructors, bool InitListSyntax) {
2995  CandidateSet.clear();
2996
2997  for (ArrayRef<NamedDecl *>::iterator
2998         Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) {
2999    NamedDecl *D = *Con;
3000    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3001    bool SuppressUserConversions = false;
3002
3003    // Find the constructor (which may be a template).
3004    CXXConstructorDecl *Constructor = 0;
3005    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3006    if (ConstructorTmpl)
3007      Constructor = cast<CXXConstructorDecl>(
3008                                           ConstructorTmpl->getTemplatedDecl());
3009    else {
3010      Constructor = cast<CXXConstructorDecl>(D);
3011
3012      // If we're performing copy initialization using a copy constructor, we
3013      // suppress user-defined conversions on the arguments. We do the same for
3014      // move constructors.
3015      if ((CopyInitializing || (InitListSyntax && Args.size() == 1)) &&
3016          Constructor->isCopyOrMoveConstructor())
3017        SuppressUserConversions = true;
3018    }
3019
3020    if (!Constructor->isInvalidDecl() &&
3021        (AllowExplicit || !Constructor->isExplicit()) &&
3022        (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
3023      if (ConstructorTmpl)
3024        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3025                                       /*ExplicitArgs*/ 0, Args,
3026                                       CandidateSet, SuppressUserConversions);
3027      else {
3028        // C++ [over.match.copy]p1:
3029        //   - When initializing a temporary to be bound to the first parameter
3030        //     of a constructor that takes a reference to possibly cv-qualified
3031        //     T as its first argument, called with a single argument in the
3032        //     context of direct-initialization, explicit conversion functions
3033        //     are also considered.
3034        bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3035                                 Args.size() == 1 &&
3036                                 Constructor->isCopyOrMoveConstructor();
3037        S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
3038                               SuppressUserConversions,
3039                               /*PartialOverloading=*/false,
3040                               /*AllowExplicit=*/AllowExplicitConv);
3041      }
3042    }
3043  }
3044
3045  // Perform overload resolution and return the result.
3046  return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3047}
3048
3049/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3050/// enumerates the constructors of the initialized entity and performs overload
3051/// resolution to select the best.
3052/// If InitListSyntax is true, this is list-initialization of a non-aggregate
3053/// class type.
3054static void TryConstructorInitialization(Sema &S,
3055                                         const InitializedEntity &Entity,
3056                                         const InitializationKind &Kind,
3057                                         MultiExprArg Args, QualType DestType,
3058                                         InitializationSequence &Sequence,
3059                                         bool InitListSyntax = false) {
3060  assert((!InitListSyntax || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3061         "InitListSyntax must come with a single initializer list argument.");
3062
3063  // The type we're constructing needs to be complete.
3064  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3065    Sequence.setIncompleteTypeFailure(DestType);
3066    return;
3067  }
3068
3069  const RecordType *DestRecordType = DestType->getAs<RecordType>();
3070  assert(DestRecordType && "Constructor initialization requires record type");
3071  CXXRecordDecl *DestRecordDecl
3072    = cast<CXXRecordDecl>(DestRecordType->getDecl());
3073
3074  // Build the candidate set directly in the initialization sequence
3075  // structure, so that it will persist if we fail.
3076  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3077
3078  // Determine whether we are allowed to call explicit constructors or
3079  // explicit conversion operators.
3080  bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
3081  bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3082
3083  //   - Otherwise, if T is a class type, constructors are considered. The
3084  //     applicable constructors are enumerated, and the best one is chosen
3085  //     through overload resolution.
3086  DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
3087  // The container holding the constructors can under certain conditions
3088  // be changed while iterating (e.g. because of deserialization).
3089  // To be safe we copy the lookup results to a new container.
3090  SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3091
3092  OverloadingResult Result = OR_No_Viable_Function;
3093  OverloadCandidateSet::iterator Best;
3094  bool AsInitializerList = false;
3095
3096  // C++11 [over.match.list]p1:
3097  //   When objects of non-aggregate type T are list-initialized, overload
3098  //   resolution selects the constructor in two phases:
3099  //   - Initially, the candidate functions are the initializer-list
3100  //     constructors of the class T and the argument list consists of the
3101  //     initializer list as a single argument.
3102  if (InitListSyntax) {
3103    InitListExpr *ILE = cast<InitListExpr>(Args[0]);
3104    AsInitializerList = true;
3105
3106    // If the initializer list has no elements and T has a default constructor,
3107    // the first phase is omitted.
3108    if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
3109      Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3110                                          CandidateSet, Ctors, Best,
3111                                          CopyInitialization, AllowExplicit,
3112                                          /*OnlyListConstructor=*/true,
3113                                          InitListSyntax);
3114
3115    // Time to unwrap the init list.
3116    Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
3117  }
3118
3119  // C++11 [over.match.list]p1:
3120  //   - If no viable initializer-list constructor is found, overload resolution
3121  //     is performed again, where the candidate functions are all the
3122  //     constructors of the class T and the argument list consists of the
3123  //     elements of the initializer list.
3124  if (Result == OR_No_Viable_Function) {
3125    AsInitializerList = false;
3126    Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3127                                        CandidateSet, Ctors, Best,
3128                                        CopyInitialization, AllowExplicit,
3129                                        /*OnlyListConstructors=*/false,
3130                                        InitListSyntax);
3131  }
3132  if (Result) {
3133    Sequence.SetOverloadFailure(InitListSyntax ?
3134                      InitializationSequence::FK_ListConstructorOverloadFailed :
3135                      InitializationSequence::FK_ConstructorOverloadFailed,
3136                                Result);
3137    return;
3138  }
3139
3140  // C++11 [dcl.init]p6:
3141  //   If a program calls for the default initialization of an object
3142  //   of a const-qualified type T, T shall be a class type with a
3143  //   user-provided default constructor.
3144  if (Kind.getKind() == InitializationKind::IK_Default &&
3145      Entity.getType().isConstQualified() &&
3146      !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
3147    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3148    return;
3149  }
3150
3151  // C++11 [over.match.list]p1:
3152  //   In copy-list-initialization, if an explicit constructor is chosen, the
3153  //   initializer is ill-formed.
3154  CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3155  if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3156    Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3157    return;
3158  }
3159
3160  // Add the constructor initialization step. Any cv-qualification conversion is
3161  // subsumed by the initialization.
3162  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3163  Sequence.AddConstructorInitializationStep(CtorDecl,
3164                                            Best->FoundDecl.getAccess(),
3165                                            DestType, HadMultipleCandidates,
3166                                            InitListSyntax, AsInitializerList);
3167}
3168
3169static bool
3170ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3171                                             Expr *Initializer,
3172                                             QualType &SourceType,
3173                                             QualType &UnqualifiedSourceType,
3174                                             QualType UnqualifiedTargetType,
3175                                             InitializationSequence &Sequence) {
3176  if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3177        S.Context.OverloadTy) {
3178    DeclAccessPair Found;
3179    bool HadMultipleCandidates = false;
3180    if (FunctionDecl *Fn
3181        = S.ResolveAddressOfOverloadedFunction(Initializer,
3182                                               UnqualifiedTargetType,
3183                                               false, Found,
3184                                               &HadMultipleCandidates)) {
3185      Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3186                                                HadMultipleCandidates);
3187      SourceType = Fn->getType();
3188      UnqualifiedSourceType = SourceType.getUnqualifiedType();
3189    } else if (!UnqualifiedTargetType->isRecordType()) {
3190      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3191      return true;
3192    }
3193  }
3194  return false;
3195}
3196
3197static void TryReferenceInitializationCore(Sema &S,
3198                                           const InitializedEntity &Entity,
3199                                           const InitializationKind &Kind,
3200                                           Expr *Initializer,
3201                                           QualType cv1T1, QualType T1,
3202                                           Qualifiers T1Quals,
3203                                           QualType cv2T2, QualType T2,
3204                                           Qualifiers T2Quals,
3205                                           InitializationSequence &Sequence);
3206
3207static void TryValueInitialization(Sema &S,
3208                                   const InitializedEntity &Entity,
3209                                   const InitializationKind &Kind,
3210                                   InitializationSequence &Sequence,
3211                                   InitListExpr *InitList = 0);
3212
3213/// \brief Attempt list initialization of a reference.
3214static void TryReferenceListInitialization(Sema &S,
3215                                           const InitializedEntity &Entity,
3216                                           const InitializationKind &Kind,
3217                                           InitListExpr *InitList,
3218                                           InitializationSequence &Sequence) {
3219  // First, catch C++03 where this isn't possible.
3220  if (!S.getLangOpts().CPlusPlus11) {
3221    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3222    return;
3223  }
3224
3225  QualType DestType = Entity.getType();
3226  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3227  Qualifiers T1Quals;
3228  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3229
3230  // Reference initialization via an initializer list works thus:
3231  // If the initializer list consists of a single element that is
3232  // reference-related to the referenced type, bind directly to that element
3233  // (possibly creating temporaries).
3234  // Otherwise, initialize a temporary with the initializer list and
3235  // bind to that.
3236  if (InitList->getNumInits() == 1) {
3237    Expr *Initializer = InitList->getInit(0);
3238    QualType cv2T2 = Initializer->getType();
3239    Qualifiers T2Quals;
3240    QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3241
3242    // If this fails, creating a temporary wouldn't work either.
3243    if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3244                                                     T1, Sequence))
3245      return;
3246
3247    SourceLocation DeclLoc = Initializer->getLocStart();
3248    bool dummy1, dummy2, dummy3;
3249    Sema::ReferenceCompareResult RefRelationship
3250      = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3251                                       dummy2, dummy3);
3252    if (RefRelationship >= Sema::Ref_Related) {
3253      // Try to bind the reference here.
3254      TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3255                                     T1Quals, cv2T2, T2, T2Quals, Sequence);
3256      if (Sequence)
3257        Sequence.RewrapReferenceInitList(cv1T1, InitList);
3258      return;
3259    }
3260
3261    // Update the initializer if we've resolved an overloaded function.
3262    if (Sequence.step_begin() != Sequence.step_end())
3263      Sequence.RewrapReferenceInitList(cv1T1, InitList);
3264  }
3265
3266  // Not reference-related. Create a temporary and bind to that.
3267  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3268
3269  TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3270  if (Sequence) {
3271    if (DestType->isRValueReferenceType() ||
3272        (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3273      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3274    else
3275      Sequence.SetFailed(
3276          InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3277  }
3278}
3279
3280/// \brief Attempt list initialization (C++0x [dcl.init.list])
3281static void TryListInitialization(Sema &S,
3282                                  const InitializedEntity &Entity,
3283                                  const InitializationKind &Kind,
3284                                  InitListExpr *InitList,
3285                                  InitializationSequence &Sequence) {
3286  QualType DestType = Entity.getType();
3287
3288  // C++ doesn't allow scalar initialization with more than one argument.
3289  // But C99 complex numbers are scalars and it makes sense there.
3290  if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3291      !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3292    Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3293    return;
3294  }
3295  if (DestType->isReferenceType()) {
3296    TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3297    return;
3298  }
3299  if (DestType->isRecordType()) {
3300    if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3301      Sequence.setIncompleteTypeFailure(DestType);
3302      return;
3303    }
3304
3305    // C++11 [dcl.init.list]p3:
3306    //   - If T is an aggregate, aggregate initialization is performed.
3307    if (!DestType->isAggregateType()) {
3308      if (S.getLangOpts().CPlusPlus11) {
3309        //   - Otherwise, if the initializer list has no elements and T is a
3310        //     class type with a default constructor, the object is
3311        //     value-initialized.
3312        if (InitList->getNumInits() == 0) {
3313          CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3314          if (RD->hasDefaultConstructor()) {
3315            TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3316            return;
3317          }
3318        }
3319
3320        //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3321        //     an initializer_list object constructed [...]
3322        if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3323          return;
3324
3325        //   - Otherwise, if T is a class type, constructors are considered.
3326        Expr *InitListAsExpr = InitList;
3327        TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3328                                     Sequence, /*InitListSyntax*/true);
3329      } else
3330        Sequence.SetFailed(
3331            InitializationSequence::FK_InitListBadDestinationType);
3332      return;
3333    }
3334  }
3335
3336  InitListChecker CheckInitList(S, Entity, InitList,
3337          DestType, /*VerifyOnly=*/true);
3338  if (CheckInitList.HadError()) {
3339    Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3340    return;
3341  }
3342
3343  // Add the list initialization step with the built init list.
3344  Sequence.AddListInitializationStep(DestType);
3345}
3346
3347/// \brief Try a reference initialization that involves calling a conversion
3348/// function.
3349static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3350                                             const InitializedEntity &Entity,
3351                                             const InitializationKind &Kind,
3352                                             Expr *Initializer,
3353                                             bool AllowRValues,
3354                                             InitializationSequence &Sequence) {
3355  QualType DestType = Entity.getType();
3356  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3357  QualType T1 = cv1T1.getUnqualifiedType();
3358  QualType cv2T2 = Initializer->getType();
3359  QualType T2 = cv2T2.getUnqualifiedType();
3360
3361  bool DerivedToBase;
3362  bool ObjCConversion;
3363  bool ObjCLifetimeConversion;
3364  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3365                                         T1, T2, DerivedToBase,
3366                                         ObjCConversion,
3367                                         ObjCLifetimeConversion) &&
3368         "Must have incompatible references when binding via conversion");
3369  (void)DerivedToBase;
3370  (void)ObjCConversion;
3371  (void)ObjCLifetimeConversion;
3372
3373  // Build the candidate set directly in the initialization sequence
3374  // structure, so that it will persist if we fail.
3375  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3376  CandidateSet.clear();
3377
3378  // Determine whether we are allowed to call explicit constructors or
3379  // explicit conversion operators.
3380  bool AllowExplicit = Kind.AllowExplicit();
3381  bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
3382
3383  const RecordType *T1RecordType = 0;
3384  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3385      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3386    // The type we're converting to is a class type. Enumerate its constructors
3387    // to see if there is a suitable conversion.
3388    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3389
3390    DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl);
3391    // The container holding the constructors can under certain conditions
3392    // be changed while iterating (e.g. because of deserialization).
3393    // To be safe we copy the lookup results to a new container.
3394    SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3395    for (SmallVectorImpl<NamedDecl *>::iterator
3396           CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
3397      NamedDecl *D = *CI;
3398      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3399
3400      // Find the constructor (which may be a template).
3401      CXXConstructorDecl *Constructor = 0;
3402      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3403      if (ConstructorTmpl)
3404        Constructor = cast<CXXConstructorDecl>(
3405                                         ConstructorTmpl->getTemplatedDecl());
3406      else
3407        Constructor = cast<CXXConstructorDecl>(D);
3408
3409      if (!Constructor->isInvalidDecl() &&
3410          Constructor->isConvertingConstructor(AllowExplicit)) {
3411        if (ConstructorTmpl)
3412          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3413                                         /*ExplicitArgs*/ 0,
3414                                         Initializer, CandidateSet,
3415                                         /*SuppressUserConversions=*/true);
3416        else
3417          S.AddOverloadCandidate(Constructor, FoundDecl,
3418                                 Initializer, CandidateSet,
3419                                 /*SuppressUserConversions=*/true);
3420      }
3421    }
3422  }
3423  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3424    return OR_No_Viable_Function;
3425
3426  const RecordType *T2RecordType = 0;
3427  if ((T2RecordType = T2->getAs<RecordType>()) &&
3428      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3429    // The type we're converting from is a class type, enumerate its conversion
3430    // functions.
3431    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3432
3433    std::pair<CXXRecordDecl::conversion_iterator,
3434              CXXRecordDecl::conversion_iterator>
3435      Conversions = T2RecordDecl->getVisibleConversionFunctions();
3436    for (CXXRecordDecl::conversion_iterator
3437           I = Conversions.first, E = Conversions.second; I != E; ++I) {
3438      NamedDecl *D = *I;
3439      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3440      if (isa<UsingShadowDecl>(D))
3441        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3442
3443      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3444      CXXConversionDecl *Conv;
3445      if (ConvTemplate)
3446        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3447      else
3448        Conv = cast<CXXConversionDecl>(D);
3449
3450      // If the conversion function doesn't return a reference type,
3451      // it can't be considered for this conversion unless we're allowed to
3452      // consider rvalues.
3453      // FIXME: Do we need to make sure that we only consider conversion
3454      // candidates with reference-compatible results? That might be needed to
3455      // break recursion.
3456      if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3457          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3458        if (ConvTemplate)
3459          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3460                                           ActingDC, Initializer,
3461                                           DestType, CandidateSet);
3462        else
3463          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3464                                   Initializer, DestType, CandidateSet);
3465      }
3466    }
3467  }
3468  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3469    return OR_No_Viable_Function;
3470
3471  SourceLocation DeclLoc = Initializer->getLocStart();
3472
3473  // Perform overload resolution. If it fails, return the failed result.
3474  OverloadCandidateSet::iterator Best;
3475  if (OverloadingResult Result
3476        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3477    return Result;
3478
3479  FunctionDecl *Function = Best->Function;
3480  // This is the overload that will be used for this initialization step if we
3481  // use this initialization. Mark it as referenced.
3482  Function->setReferenced();
3483
3484  // Compute the returned type of the conversion.
3485  if (isa<CXXConversionDecl>(Function))
3486    T2 = Function->getResultType();
3487  else
3488    T2 = cv1T1;
3489
3490  // Add the user-defined conversion step.
3491  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3492  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3493                                 T2.getNonLValueExprType(S.Context),
3494                                 HadMultipleCandidates);
3495
3496  // Determine whether we need to perform derived-to-base or
3497  // cv-qualification adjustments.
3498  ExprValueKind VK = VK_RValue;
3499  if (T2->isLValueReferenceType())
3500    VK = VK_LValue;
3501  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3502    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3503
3504  bool NewDerivedToBase = false;
3505  bool NewObjCConversion = false;
3506  bool NewObjCLifetimeConversion = false;
3507  Sema::ReferenceCompareResult NewRefRelationship
3508    = S.CompareReferenceRelationship(DeclLoc, T1,
3509                                     T2.getNonLValueExprType(S.Context),
3510                                     NewDerivedToBase, NewObjCConversion,
3511                                     NewObjCLifetimeConversion);
3512  if (NewRefRelationship == Sema::Ref_Incompatible) {
3513    // If the type we've converted to is not reference-related to the
3514    // type we're looking for, then there is another conversion step
3515    // we need to perform to produce a temporary of the right type
3516    // that we'll be binding to.
3517    ImplicitConversionSequence ICS;
3518    ICS.setStandard();
3519    ICS.Standard = Best->FinalConversion;
3520    T2 = ICS.Standard.getToType(2);
3521    Sequence.AddConversionSequenceStep(ICS, T2);
3522  } else if (NewDerivedToBase)
3523    Sequence.AddDerivedToBaseCastStep(
3524                                S.Context.getQualifiedType(T1,
3525                                  T2.getNonReferenceType().getQualifiers()),
3526                                      VK);
3527  else if (NewObjCConversion)
3528    Sequence.AddObjCObjectConversionStep(
3529                                S.Context.getQualifiedType(T1,
3530                                  T2.getNonReferenceType().getQualifiers()));
3531
3532  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3533    Sequence.AddQualificationConversionStep(cv1T1, VK);
3534
3535  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3536  return OR_Success;
3537}
3538
3539static void CheckCXX98CompatAccessibleCopy(Sema &S,
3540                                           const InitializedEntity &Entity,
3541                                           Expr *CurInitExpr);
3542
3543/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3544static void TryReferenceInitialization(Sema &S,
3545                                       const InitializedEntity &Entity,
3546                                       const InitializationKind &Kind,
3547                                       Expr *Initializer,
3548                                       InitializationSequence &Sequence) {
3549  QualType DestType = Entity.getType();
3550  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3551  Qualifiers T1Quals;
3552  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3553  QualType cv2T2 = Initializer->getType();
3554  Qualifiers T2Quals;
3555  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3556
3557  // If the initializer is the address of an overloaded function, try
3558  // to resolve the overloaded function. If all goes well, T2 is the
3559  // type of the resulting function.
3560  if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3561                                                   T1, Sequence))
3562    return;
3563
3564  // Delegate everything else to a subfunction.
3565  TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3566                                 T1Quals, cv2T2, T2, T2Quals, Sequence);
3567}
3568
3569/// Converts the target of reference initialization so that it has the
3570/// appropriate qualifiers and value kind.
3571///
3572/// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
3573/// \code
3574///   int x;
3575///   const int &r = x;
3576/// \endcode
3577///
3578/// In this case the reference is binding to a bitfield lvalue, which isn't
3579/// valid. Perform a load to create a lifetime-extended temporary instead.
3580/// \code
3581///   const int &r = someStruct.bitfield;
3582/// \endcode
3583static ExprValueKind
3584convertQualifiersAndValueKindIfNecessary(Sema &S,
3585                                         InitializationSequence &Sequence,
3586                                         Expr *Initializer,
3587                                         QualType cv1T1,
3588                                         Qualifiers T1Quals,
3589                                         Qualifiers T2Quals,
3590                                         bool IsLValueRef) {
3591  bool IsNonAddressableType = Initializer->refersToBitField() ||
3592                              Initializer->refersToVectorElement();
3593
3594  if (IsNonAddressableType) {
3595    // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
3596    // lvalue reference to a non-volatile const type, or the reference shall be
3597    // an rvalue reference.
3598    //
3599    // If not, we can't make a temporary and bind to that. Give up and allow the
3600    // error to be diagnosed later.
3601    if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
3602      assert(Initializer->isGLValue());
3603      return Initializer->getValueKind();
3604    }
3605
3606    // Force a load so we can materialize a temporary.
3607    Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
3608    return VK_RValue;
3609  }
3610
3611  if (T1Quals != T2Quals) {
3612    Sequence.AddQualificationConversionStep(cv1T1,
3613                                            Initializer->getValueKind());
3614  }
3615
3616  return Initializer->getValueKind();
3617}
3618
3619
3620/// \brief Reference initialization without resolving overloaded functions.
3621static void TryReferenceInitializationCore(Sema &S,
3622                                           const InitializedEntity &Entity,
3623                                           const InitializationKind &Kind,
3624                                           Expr *Initializer,
3625                                           QualType cv1T1, QualType T1,
3626                                           Qualifiers T1Quals,
3627                                           QualType cv2T2, QualType T2,
3628                                           Qualifiers T2Quals,
3629                                           InitializationSequence &Sequence) {
3630  QualType DestType = Entity.getType();
3631  SourceLocation DeclLoc = Initializer->getLocStart();
3632  // Compute some basic properties of the types and the initializer.
3633  bool isLValueRef = DestType->isLValueReferenceType();
3634  bool isRValueRef = !isLValueRef;
3635  bool DerivedToBase = false;
3636  bool ObjCConversion = false;
3637  bool ObjCLifetimeConversion = false;
3638  Expr::Classification InitCategory = Initializer->Classify(S.Context);
3639  Sema::ReferenceCompareResult RefRelationship
3640    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3641                                     ObjCConversion, ObjCLifetimeConversion);
3642
3643  // C++0x [dcl.init.ref]p5:
3644  //   A reference to type "cv1 T1" is initialized by an expression of type
3645  //   "cv2 T2" as follows:
3646  //
3647  //     - If the reference is an lvalue reference and the initializer
3648  //       expression
3649  // Note the analogous bullet points for rvlaue refs to functions. Because
3650  // there are no function rvalues in C++, rvalue refs to functions are treated
3651  // like lvalue refs.
3652  OverloadingResult ConvOvlResult = OR_Success;
3653  bool T1Function = T1->isFunctionType();
3654  if (isLValueRef || T1Function) {
3655    if (InitCategory.isLValue() &&
3656        (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3657         (Kind.isCStyleOrFunctionalCast() &&
3658          RefRelationship == Sema::Ref_Related))) {
3659      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3660      //     reference-compatible with "cv2 T2," or
3661      //
3662      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3663      // bit-field when we're determining whether the reference initialization
3664      // can occur. However, we do pay attention to whether it is a bit-field
3665      // to decide whether we're actually binding to a temporary created from
3666      // the bit-field.
3667      if (DerivedToBase)
3668        Sequence.AddDerivedToBaseCastStep(
3669                         S.Context.getQualifiedType(T1, T2Quals),
3670                         VK_LValue);
3671      else if (ObjCConversion)
3672        Sequence.AddObjCObjectConversionStep(
3673                                     S.Context.getQualifiedType(T1, T2Quals));
3674
3675      ExprValueKind ValueKind =
3676        convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
3677                                                 cv1T1, T1Quals, T2Quals,
3678                                                 isLValueRef);
3679      Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3680      return;
3681    }
3682
3683    //     - has a class type (i.e., T2 is a class type), where T1 is not
3684    //       reference-related to T2, and can be implicitly converted to an
3685    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3686    //       with "cv3 T3" (this conversion is selected by enumerating the
3687    //       applicable conversion functions (13.3.1.6) and choosing the best
3688    //       one through overload resolution (13.3)),
3689    // If we have an rvalue ref to function type here, the rhs must be
3690    // an rvalue.
3691    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3692        (isLValueRef || InitCategory.isRValue())) {
3693      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3694                                                       Initializer,
3695                                                   /*AllowRValues=*/isRValueRef,
3696                                                       Sequence);
3697      if (ConvOvlResult == OR_Success)
3698        return;
3699      if (ConvOvlResult != OR_No_Viable_Function) {
3700        Sequence.SetOverloadFailure(
3701                      InitializationSequence::FK_ReferenceInitOverloadFailed,
3702                                    ConvOvlResult);
3703      }
3704    }
3705  }
3706
3707  //     - Otherwise, the reference shall be an lvalue reference to a
3708  //       non-volatile const type (i.e., cv1 shall be const), or the reference
3709  //       shall be an rvalue reference.
3710  if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3711    if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3712      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3713    else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3714      Sequence.SetOverloadFailure(
3715                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3716                                  ConvOvlResult);
3717    else
3718      Sequence.SetFailed(InitCategory.isLValue()
3719        ? (RefRelationship == Sema::Ref_Related
3720             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3721             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3722        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3723
3724    return;
3725  }
3726
3727  //    - If the initializer expression
3728  //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3729  //        "cv1 T1" is reference-compatible with "cv2 T2"
3730  // Note: functions are handled below.
3731  if (!T1Function &&
3732      (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3733       (Kind.isCStyleOrFunctionalCast() &&
3734        RefRelationship == Sema::Ref_Related)) &&
3735      (InitCategory.isXValue() ||
3736       (InitCategory.isPRValue() && T2->isRecordType()) ||
3737       (InitCategory.isPRValue() && T2->isArrayType()))) {
3738    ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3739    if (InitCategory.isPRValue() && T2->isRecordType()) {
3740      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3741      // compiler the freedom to perform a copy here or bind to the
3742      // object, while C++0x requires that we bind directly to the
3743      // object. Hence, we always bind to the object without making an
3744      // extra copy. However, in C++03 requires that we check for the
3745      // presence of a suitable copy constructor:
3746      //
3747      //   The constructor that would be used to make the copy shall
3748      //   be callable whether or not the copy is actually done.
3749      if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
3750        Sequence.AddExtraneousCopyToTemporary(cv2T2);
3751      else if (S.getLangOpts().CPlusPlus11)
3752        CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3753    }
3754
3755    if (DerivedToBase)
3756      Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3757                                        ValueKind);
3758    else if (ObjCConversion)
3759      Sequence.AddObjCObjectConversionStep(
3760                                       S.Context.getQualifiedType(T1, T2Quals));
3761
3762    ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
3763                                                         Initializer, cv1T1,
3764                                                         T1Quals, T2Quals,
3765                                                         isLValueRef);
3766
3767    Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3768    return;
3769  }
3770
3771  //       - has a class type (i.e., T2 is a class type), where T1 is not
3772  //         reference-related to T2, and can be implicitly converted to an
3773  //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3774  //         where "cv1 T1" is reference-compatible with "cv3 T3",
3775  if (T2->isRecordType()) {
3776    if (RefRelationship == Sema::Ref_Incompatible) {
3777      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3778                                                       Kind, Initializer,
3779                                                       /*AllowRValues=*/true,
3780                                                       Sequence);
3781      if (ConvOvlResult)
3782        Sequence.SetOverloadFailure(
3783                      InitializationSequence::FK_ReferenceInitOverloadFailed,
3784                                    ConvOvlResult);
3785
3786      return;
3787    }
3788
3789    if ((RefRelationship == Sema::Ref_Compatible ||
3790         RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
3791        isRValueRef && InitCategory.isLValue()) {
3792      Sequence.SetFailed(
3793        InitializationSequence::FK_RValueReferenceBindingToLValue);
3794      return;
3795    }
3796
3797    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3798    return;
3799  }
3800
3801  //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3802  //        from the initializer expression using the rules for a non-reference
3803  //        copy-initialization (8.5). The reference is then bound to the
3804  //        temporary. [...]
3805
3806  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3807
3808  // FIXME: Why do we use an implicit conversion here rather than trying
3809  // copy-initialization?
3810  ImplicitConversionSequence ICS
3811    = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3812                              /*SuppressUserConversions=*/false,
3813                              /*AllowExplicit=*/false,
3814                              /*FIXME:InOverloadResolution=*/false,
3815                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3816                              /*AllowObjCWritebackConversion=*/false);
3817
3818  if (ICS.isBad()) {
3819    // FIXME: Use the conversion function set stored in ICS to turn
3820    // this into an overloading ambiguity diagnostic. However, we need
3821    // to keep that set as an OverloadCandidateSet rather than as some
3822    // other kind of set.
3823    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3824      Sequence.SetOverloadFailure(
3825                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3826                                  ConvOvlResult);
3827    else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3828      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3829    else
3830      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3831    return;
3832  } else {
3833    Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3834  }
3835
3836  //        [...] If T1 is reference-related to T2, cv1 must be the
3837  //        same cv-qualification as, or greater cv-qualification
3838  //        than, cv2; otherwise, the program is ill-formed.
3839  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3840  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3841  if (RefRelationship == Sema::Ref_Related &&
3842      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3843    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3844    return;
3845  }
3846
3847  //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3848  //   reference, the initializer expression shall not be an lvalue.
3849  if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3850      InitCategory.isLValue()) {
3851    Sequence.SetFailed(
3852                    InitializationSequence::FK_RValueReferenceBindingToLValue);
3853    return;
3854  }
3855
3856  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3857  return;
3858}
3859
3860/// \brief Attempt character array initialization from a string literal
3861/// (C++ [dcl.init.string], C99 6.7.8).
3862static void TryStringLiteralInitialization(Sema &S,
3863                                           const InitializedEntity &Entity,
3864                                           const InitializationKind &Kind,
3865                                           Expr *Initializer,
3866                                       InitializationSequence &Sequence) {
3867  Sequence.AddStringInitStep(Entity.getType());
3868}
3869
3870/// \brief Attempt value initialization (C++ [dcl.init]p7).
3871static void TryValueInitialization(Sema &S,
3872                                   const InitializedEntity &Entity,
3873                                   const InitializationKind &Kind,
3874                                   InitializationSequence &Sequence,
3875                                   InitListExpr *InitList) {
3876  assert((!InitList || InitList->getNumInits() == 0) &&
3877         "Shouldn't use value-init for non-empty init lists");
3878
3879  // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3880  //
3881  //   To value-initialize an object of type T means:
3882  QualType T = Entity.getType();
3883
3884  //     -- if T is an array type, then each element is value-initialized;
3885  T = S.Context.getBaseElementType(T);
3886
3887  if (const RecordType *RT = T->getAs<RecordType>()) {
3888    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3889      bool NeedZeroInitialization = true;
3890      if (!S.getLangOpts().CPlusPlus11) {
3891        // C++98:
3892        // -- if T is a class type (clause 9) with a user-declared constructor
3893        //    (12.1), then the default constructor for T is called (and the
3894        //    initialization is ill-formed if T has no accessible default
3895        //    constructor);
3896        if (ClassDecl->hasUserDeclaredConstructor())
3897          NeedZeroInitialization = false;
3898      } else {
3899        // C++11:
3900        // -- if T is a class type (clause 9) with either no default constructor
3901        //    (12.1 [class.ctor]) or a default constructor that is user-provided
3902        //    or deleted, then the object is default-initialized;
3903        CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3904        if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3905          NeedZeroInitialization = false;
3906      }
3907
3908      // -- if T is a (possibly cv-qualified) non-union class type without a
3909      //    user-provided or deleted default constructor, then the object is
3910      //    zero-initialized and, if T has a non-trivial default constructor,
3911      //    default-initialized;
3912      // The 'non-union' here was removed by DR1502. The 'non-trivial default
3913      // constructor' part was removed by DR1507.
3914      if (NeedZeroInitialization)
3915        Sequence.AddZeroInitializationStep(Entity.getType());
3916
3917      // C++03:
3918      // -- if T is a non-union class type without a user-declared constructor,
3919      //    then every non-static data member and base class component of T is
3920      //    value-initialized;
3921      // [...] A program that calls for [...] value-initialization of an
3922      // entity of reference type is ill-formed.
3923      //
3924      // C++11 doesn't need this handling, because value-initialization does not
3925      // occur recursively there, and the implicit default constructor is
3926      // defined as deleted in the problematic cases.
3927      if (!S.getLangOpts().CPlusPlus11 &&
3928          ClassDecl->hasUninitializedReferenceMember()) {
3929        Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
3930        return;
3931      }
3932
3933      // If this is list-value-initialization, pass the empty init list on when
3934      // building the constructor call. This affects the semantics of a few
3935      // things (such as whether an explicit default constructor can be called).
3936      Expr *InitListAsExpr = InitList;
3937      MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
3938      bool InitListSyntax = InitList;
3939
3940      return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
3941                                          InitListSyntax);
3942    }
3943  }
3944
3945  Sequence.AddZeroInitializationStep(Entity.getType());
3946}
3947
3948/// \brief Attempt default initialization (C++ [dcl.init]p6).
3949static void TryDefaultInitialization(Sema &S,
3950                                     const InitializedEntity &Entity,
3951                                     const InitializationKind &Kind,
3952                                     InitializationSequence &Sequence) {
3953  assert(Kind.getKind() == InitializationKind::IK_Default);
3954
3955  // C++ [dcl.init]p6:
3956  //   To default-initialize an object of type T means:
3957  //     - if T is an array type, each element is default-initialized;
3958  QualType DestType = S.Context.getBaseElementType(Entity.getType());
3959
3960  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3961  //       constructor for T is called (and the initialization is ill-formed if
3962  //       T has no accessible default constructor);
3963  if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
3964    TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
3965    return;
3966  }
3967
3968  //     - otherwise, no initialization is performed.
3969
3970  //   If a program calls for the default initialization of an object of
3971  //   a const-qualified type T, T shall be a class type with a user-provided
3972  //   default constructor.
3973  if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
3974    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3975    return;
3976  }
3977
3978  // If the destination type has a lifetime property, zero-initialize it.
3979  if (DestType.getQualifiers().hasObjCLifetime()) {
3980    Sequence.AddZeroInitializationStep(Entity.getType());
3981    return;
3982  }
3983}
3984
3985/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3986/// which enumerates all conversion functions and performs overload resolution
3987/// to select the best.
3988static void TryUserDefinedConversion(Sema &S,
3989                                     const InitializedEntity &Entity,
3990                                     const InitializationKind &Kind,
3991                                     Expr *Initializer,
3992                                     InitializationSequence &Sequence) {
3993  QualType DestType = Entity.getType();
3994  assert(!DestType->isReferenceType() && "References are handled elsewhere");
3995  QualType SourceType = Initializer->getType();
3996  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3997         "Must have a class type to perform a user-defined conversion");
3998
3999  // Build the candidate set directly in the initialization sequence
4000  // structure, so that it will persist if we fail.
4001  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4002  CandidateSet.clear();
4003
4004  // Determine whether we are allowed to call explicit constructors or
4005  // explicit conversion operators.
4006  bool AllowExplicit = Kind.AllowExplicit();
4007
4008  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4009    // The type we're converting to is a class type. Enumerate its constructors
4010    // to see if there is a suitable conversion.
4011    CXXRecordDecl *DestRecordDecl
4012      = cast<CXXRecordDecl>(DestRecordType->getDecl());
4013
4014    // Try to complete the type we're converting to.
4015    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
4016      DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
4017      // The container holding the constructors can under certain conditions
4018      // be changed while iterating. To be safe we copy the lookup results
4019      // to a new container.
4020      SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
4021      for (SmallVectorImpl<NamedDecl *>::iterator
4022             Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
4023           Con != ConEnd; ++Con) {
4024        NamedDecl *D = *Con;
4025        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
4026
4027        // Find the constructor (which may be a template).
4028        CXXConstructorDecl *Constructor = 0;
4029        FunctionTemplateDecl *ConstructorTmpl
4030          = dyn_cast<FunctionTemplateDecl>(D);
4031        if (ConstructorTmpl)
4032          Constructor = cast<CXXConstructorDecl>(
4033                                           ConstructorTmpl->getTemplatedDecl());
4034        else
4035          Constructor = cast<CXXConstructorDecl>(D);
4036
4037        if (!Constructor->isInvalidDecl() &&
4038            Constructor->isConvertingConstructor(AllowExplicit)) {
4039          if (ConstructorTmpl)
4040            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4041                                           /*ExplicitArgs*/ 0,
4042                                           Initializer, CandidateSet,
4043                                           /*SuppressUserConversions=*/true);
4044          else
4045            S.AddOverloadCandidate(Constructor, FoundDecl,
4046                                   Initializer, CandidateSet,
4047                                   /*SuppressUserConversions=*/true);
4048        }
4049      }
4050    }
4051  }
4052
4053  SourceLocation DeclLoc = Initializer->getLocStart();
4054
4055  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4056    // The type we're converting from is a class type, enumerate its conversion
4057    // functions.
4058
4059    // We can only enumerate the conversion functions for a complete type; if
4060    // the type isn't complete, simply skip this step.
4061    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
4062      CXXRecordDecl *SourceRecordDecl
4063        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4064
4065      std::pair<CXXRecordDecl::conversion_iterator,
4066                CXXRecordDecl::conversion_iterator>
4067        Conversions = SourceRecordDecl->getVisibleConversionFunctions();
4068      for (CXXRecordDecl::conversion_iterator
4069             I = Conversions.first, E = Conversions.second; I != E; ++I) {
4070        NamedDecl *D = *I;
4071        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4072        if (isa<UsingShadowDecl>(D))
4073          D = cast<UsingShadowDecl>(D)->getTargetDecl();
4074
4075        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4076        CXXConversionDecl *Conv;
4077        if (ConvTemplate)
4078          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4079        else
4080          Conv = cast<CXXConversionDecl>(D);
4081
4082        if (AllowExplicit || !Conv->isExplicit()) {
4083          if (ConvTemplate)
4084            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4085                                             ActingDC, Initializer, DestType,
4086                                             CandidateSet);
4087          else
4088            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4089                                     Initializer, DestType, CandidateSet);
4090        }
4091      }
4092    }
4093  }
4094
4095  // Perform overload resolution. If it fails, return the failed result.
4096  OverloadCandidateSet::iterator Best;
4097  if (OverloadingResult Result
4098        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4099    Sequence.SetOverloadFailure(
4100                        InitializationSequence::FK_UserConversionOverloadFailed,
4101                                Result);
4102    return;
4103  }
4104
4105  FunctionDecl *Function = Best->Function;
4106  Function->setReferenced();
4107  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4108
4109  if (isa<CXXConstructorDecl>(Function)) {
4110    // Add the user-defined conversion step. Any cv-qualification conversion is
4111    // subsumed by the initialization. Per DR5, the created temporary is of the
4112    // cv-unqualified type of the destination.
4113    Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4114                                   DestType.getUnqualifiedType(),
4115                                   HadMultipleCandidates);
4116    return;
4117  }
4118
4119  // Add the user-defined conversion step that calls the conversion function.
4120  QualType ConvType = Function->getCallResultType();
4121  if (ConvType->getAs<RecordType>()) {
4122    // If we're converting to a class type, there may be an copy of
4123    // the resulting temporary object (possible to create an object of
4124    // a base class type). That copy is not a separate conversion, so
4125    // we just make a note of the actual destination type (possibly a
4126    // base class of the type returned by the conversion function) and
4127    // let the user-defined conversion step handle the conversion.
4128    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
4129                                   HadMultipleCandidates);
4130    return;
4131  }
4132
4133  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4134                                 HadMultipleCandidates);
4135
4136  // If the conversion following the call to the conversion function
4137  // is interesting, add it as a separate step.
4138  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4139      Best->FinalConversion.Third) {
4140    ImplicitConversionSequence ICS;
4141    ICS.setStandard();
4142    ICS.Standard = Best->FinalConversion;
4143    Sequence.AddConversionSequenceStep(ICS, DestType);
4144  }
4145}
4146
4147/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4148/// a function with a pointer return type contains a 'return false;' statement.
4149/// In C++11, 'false' is not a null pointer, so this breaks the build of any
4150/// code using that header.
4151///
4152/// Work around this by treating 'return false;' as zero-initializing the result
4153/// if it's used in a pointer-returning function in a system header.
4154static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4155                                              const InitializedEntity &Entity,
4156                                              const Expr *Init) {
4157  return S.getLangOpts().CPlusPlus11 &&
4158         Entity.getKind() == InitializedEntity::EK_Result &&
4159         Entity.getType()->isPointerType() &&
4160         isa<CXXBoolLiteralExpr>(Init) &&
4161         !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4162         S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4163}
4164
4165/// The non-zero enum values here are indexes into diagnostic alternatives.
4166enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4167
4168/// Determines whether this expression is an acceptable ICR source.
4169static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4170                                         bool isAddressOf, bool &isWeakAccess) {
4171  // Skip parens.
4172  e = e->IgnoreParens();
4173
4174  // Skip address-of nodes.
4175  if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4176    if (op->getOpcode() == UO_AddrOf)
4177      return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4178                                isWeakAccess);
4179
4180  // Skip certain casts.
4181  } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4182    switch (ce->getCastKind()) {
4183    case CK_Dependent:
4184    case CK_BitCast:
4185    case CK_LValueBitCast:
4186    case CK_NoOp:
4187      return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4188
4189    case CK_ArrayToPointerDecay:
4190      return IIK_nonscalar;
4191
4192    case CK_NullToPointer:
4193      return IIK_okay;
4194
4195    default:
4196      break;
4197    }
4198
4199  // If we have a declaration reference, it had better be a local variable.
4200  } else if (isa<DeclRefExpr>(e)) {
4201    // set isWeakAccess to true, to mean that there will be an implicit
4202    // load which requires a cleanup.
4203    if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4204      isWeakAccess = true;
4205
4206    if (!isAddressOf) return IIK_nonlocal;
4207
4208    VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4209    if (!var) return IIK_nonlocal;
4210
4211    return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4212
4213  // If we have a conditional operator, check both sides.
4214  } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4215    if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4216                                                isWeakAccess))
4217      return iik;
4218
4219    return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4220
4221  // These are never scalar.
4222  } else if (isa<ArraySubscriptExpr>(e)) {
4223    return IIK_nonscalar;
4224
4225  // Otherwise, it needs to be a null pointer constant.
4226  } else {
4227    return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4228            ? IIK_okay : IIK_nonlocal);
4229  }
4230
4231  return IIK_nonlocal;
4232}
4233
4234/// Check whether the given expression is a valid operand for an
4235/// indirect copy/restore.
4236static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4237  assert(src->isRValue());
4238  bool isWeakAccess = false;
4239  InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4240  // If isWeakAccess to true, there will be an implicit
4241  // load which requires a cleanup.
4242  if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4243    S.ExprNeedsCleanups = true;
4244
4245  if (iik == IIK_okay) return;
4246
4247  S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4248    << ((unsigned) iik - 1)  // shift index into diagnostic explanations
4249    << src->getSourceRange();
4250}
4251
4252/// \brief Determine whether we have compatible array types for the
4253/// purposes of GNU by-copy array initialization.
4254static bool hasCompatibleArrayTypes(ASTContext &Context,
4255                                    const ArrayType *Dest,
4256                                    const ArrayType *Source) {
4257  // If the source and destination array types are equivalent, we're
4258  // done.
4259  if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4260    return true;
4261
4262  // Make sure that the element types are the same.
4263  if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4264    return false;
4265
4266  // The only mismatch we allow is when the destination is an
4267  // incomplete array type and the source is a constant array type.
4268  return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4269}
4270
4271static bool tryObjCWritebackConversion(Sema &S,
4272                                       InitializationSequence &Sequence,
4273                                       const InitializedEntity &Entity,
4274                                       Expr *Initializer) {
4275  bool ArrayDecay = false;
4276  QualType ArgType = Initializer->getType();
4277  QualType ArgPointee;
4278  if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4279    ArrayDecay = true;
4280    ArgPointee = ArgArrayType->getElementType();
4281    ArgType = S.Context.getPointerType(ArgPointee);
4282  }
4283
4284  // Handle write-back conversion.
4285  QualType ConvertedArgType;
4286  if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4287                                   ConvertedArgType))
4288    return false;
4289
4290  // We should copy unless we're passing to an argument explicitly
4291  // marked 'out'.
4292  bool ShouldCopy = true;
4293  if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4294    ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4295
4296  // Do we need an lvalue conversion?
4297  if (ArrayDecay || Initializer->isGLValue()) {
4298    ImplicitConversionSequence ICS;
4299    ICS.setStandard();
4300    ICS.Standard.setAsIdentityConversion();
4301
4302    QualType ResultType;
4303    if (ArrayDecay) {
4304      ICS.Standard.First = ICK_Array_To_Pointer;
4305      ResultType = S.Context.getPointerType(ArgPointee);
4306    } else {
4307      ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4308      ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4309    }
4310
4311    Sequence.AddConversionSequenceStep(ICS, ResultType);
4312  }
4313
4314  Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4315  return true;
4316}
4317
4318static bool TryOCLSamplerInitialization(Sema &S,
4319                                        InitializationSequence &Sequence,
4320                                        QualType DestType,
4321                                        Expr *Initializer) {
4322  if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4323    !Initializer->isIntegerConstantExpr(S.getASTContext()))
4324    return false;
4325
4326  Sequence.AddOCLSamplerInitStep(DestType);
4327  return true;
4328}
4329
4330//
4331// OpenCL 1.2 spec, s6.12.10
4332//
4333// The event argument can also be used to associate the
4334// async_work_group_copy with a previous async copy allowing
4335// an event to be shared by multiple async copies; otherwise
4336// event should be zero.
4337//
4338static bool TryOCLZeroEventInitialization(Sema &S,
4339                                          InitializationSequence &Sequence,
4340                                          QualType DestType,
4341                                          Expr *Initializer) {
4342  if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4343      !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4344      (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4345    return false;
4346
4347  Sequence.AddOCLZeroEventStep(DestType);
4348  return true;
4349}
4350
4351InitializationSequence::InitializationSequence(Sema &S,
4352                                               const InitializedEntity &Entity,
4353                                               const InitializationKind &Kind,
4354                                               MultiExprArg Args)
4355    : FailedCandidateSet(Kind.getLocation()) {
4356  ASTContext &Context = S.Context;
4357
4358  // Eliminate non-overload placeholder types in the arguments.  We
4359  // need to do this before checking whether types are dependent
4360  // because lowering a pseudo-object expression might well give us
4361  // something of dependent type.
4362  for (unsigned I = 0, E = Args.size(); I != E; ++I)
4363    if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4364      // FIXME: should we be doing this here?
4365      ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4366      if (result.isInvalid()) {
4367        SetFailed(FK_PlaceholderType);
4368        return;
4369      }
4370      Args[I] = result.take();
4371    }
4372
4373  // C++0x [dcl.init]p16:
4374  //   The semantics of initializers are as follows. The destination type is
4375  //   the type of the object or reference being initialized and the source
4376  //   type is the type of the initializer expression. The source type is not
4377  //   defined when the initializer is a braced-init-list or when it is a
4378  //   parenthesized list of expressions.
4379  QualType DestType = Entity.getType();
4380
4381  if (DestType->isDependentType() ||
4382      Expr::hasAnyTypeDependentArguments(Args)) {
4383    SequenceKind = DependentSequence;
4384    return;
4385  }
4386
4387  // Almost everything is a normal sequence.
4388  setSequenceKind(NormalSequence);
4389
4390  QualType SourceType;
4391  Expr *Initializer = 0;
4392  if (Args.size() == 1) {
4393    Initializer = Args[0];
4394    if (!isa<InitListExpr>(Initializer))
4395      SourceType = Initializer->getType();
4396  }
4397
4398  //     - If the initializer is a (non-parenthesized) braced-init-list, the
4399  //       object is list-initialized (8.5.4).
4400  if (Kind.getKind() != InitializationKind::IK_Direct) {
4401    if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4402      TryListInitialization(S, Entity, Kind, InitList, *this);
4403      return;
4404    }
4405  }
4406
4407  //     - If the destination type is a reference type, see 8.5.3.
4408  if (DestType->isReferenceType()) {
4409    // C++0x [dcl.init.ref]p1:
4410    //   A variable declared to be a T& or T&&, that is, "reference to type T"
4411    //   (8.3.2), shall be initialized by an object, or function, of type T or
4412    //   by an object that can be converted into a T.
4413    // (Therefore, multiple arguments are not permitted.)
4414    if (Args.size() != 1)
4415      SetFailed(FK_TooManyInitsForReference);
4416    else
4417      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4418    return;
4419  }
4420
4421  //     - If the initializer is (), the object is value-initialized.
4422  if (Kind.getKind() == InitializationKind::IK_Value ||
4423      (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
4424    TryValueInitialization(S, Entity, Kind, *this);
4425    return;
4426  }
4427
4428  // Handle default initialization.
4429  if (Kind.getKind() == InitializationKind::IK_Default) {
4430    TryDefaultInitialization(S, Entity, Kind, *this);
4431    return;
4432  }
4433
4434  //     - If the destination type is an array of characters, an array of
4435  //       char16_t, an array of char32_t, or an array of wchar_t, and the
4436  //       initializer is a string literal, see 8.5.2.
4437  //     - Otherwise, if the destination type is an array, the program is
4438  //       ill-formed.
4439  if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4440    if (Initializer && isa<VariableArrayType>(DestAT)) {
4441      SetFailed(FK_VariableLengthArrayHasInitializer);
4442      return;
4443    }
4444
4445    if (Initializer) {
4446      switch (IsStringInit(Initializer, DestAT, Context)) {
4447      case SIF_None:
4448        TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4449        return;
4450      case SIF_NarrowStringIntoWideChar:
4451        SetFailed(FK_NarrowStringIntoWideCharArray);
4452        return;
4453      case SIF_WideStringIntoChar:
4454        SetFailed(FK_WideStringIntoCharArray);
4455        return;
4456      case SIF_IncompatWideStringIntoWideChar:
4457        SetFailed(FK_IncompatWideStringIntoWideChar);
4458        return;
4459      case SIF_Other:
4460        break;
4461      }
4462    }
4463
4464    // Note: as an GNU C extension, we allow initialization of an
4465    // array from a compound literal that creates an array of the same
4466    // type, so long as the initializer has no side effects.
4467    if (!S.getLangOpts().CPlusPlus && Initializer &&
4468        isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4469        Initializer->getType()->isArrayType()) {
4470      const ArrayType *SourceAT
4471        = Context.getAsArrayType(Initializer->getType());
4472      if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4473        SetFailed(FK_ArrayTypeMismatch);
4474      else if (Initializer->HasSideEffects(S.Context))
4475        SetFailed(FK_NonConstantArrayInit);
4476      else {
4477        AddArrayInitStep(DestType);
4478      }
4479    }
4480    // Note: as a GNU C++ extension, we allow list-initialization of a
4481    // class member of array type from a parenthesized initializer list.
4482    else if (S.getLangOpts().CPlusPlus &&
4483             Entity.getKind() == InitializedEntity::EK_Member &&
4484             Initializer && isa<InitListExpr>(Initializer)) {
4485      TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4486                            *this);
4487      AddParenthesizedArrayInitStep(DestType);
4488    } else if (DestAT->getElementType()->isCharType())
4489      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4490    else if (IsWideCharCompatible(DestAT->getElementType(), Context))
4491      SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
4492    else
4493      SetFailed(FK_ArrayNeedsInitList);
4494
4495    return;
4496  }
4497
4498  // Determine whether we should consider writeback conversions for
4499  // Objective-C ARC.
4500  bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4501         Entity.isParameterKind();
4502
4503  // We're at the end of the line for C: it's either a write-back conversion
4504  // or it's a C assignment. There's no need to check anything else.
4505  if (!S.getLangOpts().CPlusPlus) {
4506    // If allowed, check whether this is an Objective-C writeback conversion.
4507    if (allowObjCWritebackConversion &&
4508        tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4509      return;
4510    }
4511
4512    if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4513      return;
4514
4515    if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4516      return;
4517
4518    // Handle initialization in C
4519    AddCAssignmentStep(DestType);
4520    MaybeProduceObjCObject(S, *this, Entity);
4521    return;
4522  }
4523
4524  assert(S.getLangOpts().CPlusPlus);
4525
4526  //     - If the destination type is a (possibly cv-qualified) class type:
4527  if (DestType->isRecordType()) {
4528    //     - If the initialization is direct-initialization, or if it is
4529    //       copy-initialization where the cv-unqualified version of the
4530    //       source type is the same class as, or a derived class of, the
4531    //       class of the destination, constructors are considered. [...]
4532    if (Kind.getKind() == InitializationKind::IK_Direct ||
4533        (Kind.getKind() == InitializationKind::IK_Copy &&
4534         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4535          S.IsDerivedFrom(SourceType, DestType))))
4536      TryConstructorInitialization(S, Entity, Kind, Args,
4537                                   Entity.getType(), *this);
4538    //     - Otherwise (i.e., for the remaining copy-initialization cases),
4539    //       user-defined conversion sequences that can convert from the source
4540    //       type to the destination type or (when a conversion function is
4541    //       used) to a derived class thereof are enumerated as described in
4542    //       13.3.1.4, and the best one is chosen through overload resolution
4543    //       (13.3).
4544    else
4545      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4546    return;
4547  }
4548
4549  if (Args.size() > 1) {
4550    SetFailed(FK_TooManyInitsForScalar);
4551    return;
4552  }
4553  assert(Args.size() == 1 && "Zero-argument case handled above");
4554
4555  //    - Otherwise, if the source type is a (possibly cv-qualified) class
4556  //      type, conversion functions are considered.
4557  if (!SourceType.isNull() && SourceType->isRecordType()) {
4558    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4559    MaybeProduceObjCObject(S, *this, Entity);
4560    return;
4561  }
4562
4563  //    - Otherwise, the initial value of the object being initialized is the
4564  //      (possibly converted) value of the initializer expression. Standard
4565  //      conversions (Clause 4) will be used, if necessary, to convert the
4566  //      initializer expression to the cv-unqualified version of the
4567  //      destination type; no user-defined conversions are considered.
4568
4569  ImplicitConversionSequence ICS
4570    = S.TryImplicitConversion(Initializer, Entity.getType(),
4571                              /*SuppressUserConversions*/true,
4572                              /*AllowExplicitConversions*/ false,
4573                              /*InOverloadResolution*/ false,
4574                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4575                              allowObjCWritebackConversion);
4576
4577  if (ICS.isStandard() &&
4578      ICS.Standard.Second == ICK_Writeback_Conversion) {
4579    // Objective-C ARC writeback conversion.
4580
4581    // We should copy unless we're passing to an argument explicitly
4582    // marked 'out'.
4583    bool ShouldCopy = true;
4584    if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4585      ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4586
4587    // If there was an lvalue adjustment, add it as a separate conversion.
4588    if (ICS.Standard.First == ICK_Array_To_Pointer ||
4589        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4590      ImplicitConversionSequence LvalueICS;
4591      LvalueICS.setStandard();
4592      LvalueICS.Standard.setAsIdentityConversion();
4593      LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4594      LvalueICS.Standard.First = ICS.Standard.First;
4595      AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4596    }
4597
4598    AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4599  } else if (ICS.isBad()) {
4600    DeclAccessPair dap;
4601    if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
4602      AddZeroInitializationStep(Entity.getType());
4603    } else if (Initializer->getType() == Context.OverloadTy &&
4604               !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
4605                                                     false, dap))
4606      SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4607    else
4608      SetFailed(InitializationSequence::FK_ConversionFailed);
4609  } else {
4610    AddConversionSequenceStep(ICS, Entity.getType());
4611
4612    MaybeProduceObjCObject(S, *this, Entity);
4613  }
4614}
4615
4616InitializationSequence::~InitializationSequence() {
4617  for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4618                                          StepEnd = Steps.end();
4619       Step != StepEnd; ++Step)
4620    Step->Destroy();
4621}
4622
4623//===----------------------------------------------------------------------===//
4624// Perform initialization
4625//===----------------------------------------------------------------------===//
4626static Sema::AssignmentAction
4627getAssignmentAction(const InitializedEntity &Entity) {
4628  switch(Entity.getKind()) {
4629  case InitializedEntity::EK_Variable:
4630  case InitializedEntity::EK_New:
4631  case InitializedEntity::EK_Exception:
4632  case InitializedEntity::EK_Base:
4633  case InitializedEntity::EK_Delegating:
4634    return Sema::AA_Initializing;
4635
4636  case InitializedEntity::EK_Parameter:
4637  case InitializedEntity::EK_Parameter_CF_Audited:
4638    if (Entity.getDecl() &&
4639        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4640      return Sema::AA_Sending;
4641
4642    return Sema::AA_Passing;
4643
4644  case InitializedEntity::EK_Result:
4645    return Sema::AA_Returning;
4646
4647  case InitializedEntity::EK_Temporary:
4648  case InitializedEntity::EK_RelatedResult:
4649    // FIXME: Can we tell apart casting vs. converting?
4650    return Sema::AA_Casting;
4651
4652  case InitializedEntity::EK_Member:
4653  case InitializedEntity::EK_ArrayElement:
4654  case InitializedEntity::EK_VectorElement:
4655  case InitializedEntity::EK_ComplexElement:
4656  case InitializedEntity::EK_BlockElement:
4657  case InitializedEntity::EK_LambdaCapture:
4658  case InitializedEntity::EK_CompoundLiteralInit:
4659    return Sema::AA_Initializing;
4660  }
4661
4662  llvm_unreachable("Invalid EntityKind!");
4663}
4664
4665/// \brief Whether we should bind a created object as a temporary when
4666/// initializing the given entity.
4667static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4668  switch (Entity.getKind()) {
4669  case InitializedEntity::EK_ArrayElement:
4670  case InitializedEntity::EK_Member:
4671  case InitializedEntity::EK_Result:
4672  case InitializedEntity::EK_New:
4673  case InitializedEntity::EK_Variable:
4674  case InitializedEntity::EK_Base:
4675  case InitializedEntity::EK_Delegating:
4676  case InitializedEntity::EK_VectorElement:
4677  case InitializedEntity::EK_ComplexElement:
4678  case InitializedEntity::EK_Exception:
4679  case InitializedEntity::EK_BlockElement:
4680  case InitializedEntity::EK_LambdaCapture:
4681  case InitializedEntity::EK_CompoundLiteralInit:
4682    return false;
4683
4684  case InitializedEntity::EK_Parameter:
4685  case InitializedEntity::EK_Parameter_CF_Audited:
4686  case InitializedEntity::EK_Temporary:
4687  case InitializedEntity::EK_RelatedResult:
4688    return true;
4689  }
4690
4691  llvm_unreachable("missed an InitializedEntity kind?");
4692}
4693
4694/// \brief Whether the given entity, when initialized with an object
4695/// created for that initialization, requires destruction.
4696static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4697  switch (Entity.getKind()) {
4698    case InitializedEntity::EK_Result:
4699    case InitializedEntity::EK_New:
4700    case InitializedEntity::EK_Base:
4701    case InitializedEntity::EK_Delegating:
4702    case InitializedEntity::EK_VectorElement:
4703    case InitializedEntity::EK_ComplexElement:
4704    case InitializedEntity::EK_BlockElement:
4705    case InitializedEntity::EK_LambdaCapture:
4706      return false;
4707
4708    case InitializedEntity::EK_Member:
4709    case InitializedEntity::EK_Variable:
4710    case InitializedEntity::EK_Parameter:
4711    case InitializedEntity::EK_Parameter_CF_Audited:
4712    case InitializedEntity::EK_Temporary:
4713    case InitializedEntity::EK_ArrayElement:
4714    case InitializedEntity::EK_Exception:
4715    case InitializedEntity::EK_CompoundLiteralInit:
4716    case InitializedEntity::EK_RelatedResult:
4717      return true;
4718  }
4719
4720  llvm_unreachable("missed an InitializedEntity kind?");
4721}
4722
4723/// \brief Look for copy and move constructors and constructor templates, for
4724/// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4725static void LookupCopyAndMoveConstructors(Sema &S,
4726                                          OverloadCandidateSet &CandidateSet,
4727                                          CXXRecordDecl *Class,
4728                                          Expr *CurInitExpr) {
4729  DeclContext::lookup_result R = S.LookupConstructors(Class);
4730  // The container holding the constructors can under certain conditions
4731  // be changed while iterating (e.g. because of deserialization).
4732  // To be safe we copy the lookup results to a new container.
4733  SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
4734  for (SmallVectorImpl<NamedDecl *>::iterator
4735         CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
4736    NamedDecl *D = *CI;
4737    CXXConstructorDecl *Constructor = 0;
4738
4739    if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
4740      // Handle copy/moveconstructors, only.
4741      if (!Constructor || Constructor->isInvalidDecl() ||
4742          !Constructor->isCopyOrMoveConstructor() ||
4743          !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4744        continue;
4745
4746      DeclAccessPair FoundDecl
4747        = DeclAccessPair::make(Constructor, Constructor->getAccess());
4748      S.AddOverloadCandidate(Constructor, FoundDecl,
4749                             CurInitExpr, CandidateSet);
4750      continue;
4751    }
4752
4753    // Handle constructor templates.
4754    FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
4755    if (ConstructorTmpl->isInvalidDecl())
4756      continue;
4757
4758    Constructor = cast<CXXConstructorDecl>(
4759                                         ConstructorTmpl->getTemplatedDecl());
4760    if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4761      continue;
4762
4763    // FIXME: Do we need to limit this to copy-constructor-like
4764    // candidates?
4765    DeclAccessPair FoundDecl
4766      = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4767    S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4768                                   CurInitExpr, CandidateSet, true);
4769  }
4770}
4771
4772/// \brief Get the location at which initialization diagnostics should appear.
4773static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4774                                           Expr *Initializer) {
4775  switch (Entity.getKind()) {
4776  case InitializedEntity::EK_Result:
4777    return Entity.getReturnLoc();
4778
4779  case InitializedEntity::EK_Exception:
4780    return Entity.getThrowLoc();
4781
4782  case InitializedEntity::EK_Variable:
4783    return Entity.getDecl()->getLocation();
4784
4785  case InitializedEntity::EK_LambdaCapture:
4786    return Entity.getCaptureLoc();
4787
4788  case InitializedEntity::EK_ArrayElement:
4789  case InitializedEntity::EK_Member:
4790  case InitializedEntity::EK_Parameter:
4791  case InitializedEntity::EK_Parameter_CF_Audited:
4792  case InitializedEntity::EK_Temporary:
4793  case InitializedEntity::EK_New:
4794  case InitializedEntity::EK_Base:
4795  case InitializedEntity::EK_Delegating:
4796  case InitializedEntity::EK_VectorElement:
4797  case InitializedEntity::EK_ComplexElement:
4798  case InitializedEntity::EK_BlockElement:
4799  case InitializedEntity::EK_CompoundLiteralInit:
4800  case InitializedEntity::EK_RelatedResult:
4801    return Initializer->getLocStart();
4802  }
4803  llvm_unreachable("missed an InitializedEntity kind?");
4804}
4805
4806/// \brief Make a (potentially elidable) temporary copy of the object
4807/// provided by the given initializer by calling the appropriate copy
4808/// constructor.
4809///
4810/// \param S The Sema object used for type-checking.
4811///
4812/// \param T The type of the temporary object, which must either be
4813/// the type of the initializer expression or a superclass thereof.
4814///
4815/// \param Entity The entity being initialized.
4816///
4817/// \param CurInit The initializer expression.
4818///
4819/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4820/// is permitted in C++03 (but not C++0x) when binding a reference to
4821/// an rvalue.
4822///
4823/// \returns An expression that copies the initializer expression into
4824/// a temporary object, or an error expression if a copy could not be
4825/// created.
4826static ExprResult CopyObject(Sema &S,
4827                             QualType T,
4828                             const InitializedEntity &Entity,
4829                             ExprResult CurInit,
4830                             bool IsExtraneousCopy) {
4831  // Determine which class type we're copying to.
4832  Expr *CurInitExpr = (Expr *)CurInit.get();
4833  CXXRecordDecl *Class = 0;
4834  if (const RecordType *Record = T->getAs<RecordType>())
4835    Class = cast<CXXRecordDecl>(Record->getDecl());
4836  if (!Class)
4837    return CurInit;
4838
4839  // C++0x [class.copy]p32:
4840  //   When certain criteria are met, an implementation is allowed to
4841  //   omit the copy/move construction of a class object, even if the
4842  //   copy/move constructor and/or destructor for the object have
4843  //   side effects. [...]
4844  //     - when a temporary class object that has not been bound to a
4845  //       reference (12.2) would be copied/moved to a class object
4846  //       with the same cv-unqualified type, the copy/move operation
4847  //       can be omitted by constructing the temporary object
4848  //       directly into the target of the omitted copy/move
4849  //
4850  // Note that the other three bullets are handled elsewhere. Copy
4851  // elision for return statements and throw expressions are handled as part
4852  // of constructor initialization, while copy elision for exception handlers
4853  // is handled by the run-time.
4854  bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4855  SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4856
4857  // Make sure that the type we are copying is complete.
4858  if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
4859    return CurInit;
4860
4861  // Perform overload resolution using the class's copy/move constructors.
4862  // Only consider constructors and constructor templates. Per
4863  // C++0x [dcl.init]p16, second bullet to class types, this initialization
4864  // is direct-initialization.
4865  OverloadCandidateSet CandidateSet(Loc);
4866  LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4867
4868  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4869
4870  OverloadCandidateSet::iterator Best;
4871  switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4872  case OR_Success:
4873    break;
4874
4875  case OR_No_Viable_Function:
4876    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4877           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4878           : diag::err_temp_copy_no_viable)
4879      << (int)Entity.getKind() << CurInitExpr->getType()
4880      << CurInitExpr->getSourceRange();
4881    CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4882    if (!IsExtraneousCopy || S.isSFINAEContext())
4883      return ExprError();
4884    return CurInit;
4885
4886  case OR_Ambiguous:
4887    S.Diag(Loc, diag::err_temp_copy_ambiguous)
4888      << (int)Entity.getKind() << CurInitExpr->getType()
4889      << CurInitExpr->getSourceRange();
4890    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4891    return ExprError();
4892
4893  case OR_Deleted:
4894    S.Diag(Loc, diag::err_temp_copy_deleted)
4895      << (int)Entity.getKind() << CurInitExpr->getType()
4896      << CurInitExpr->getSourceRange();
4897    S.NoteDeletedFunction(Best->Function);
4898    return ExprError();
4899  }
4900
4901  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4902  SmallVector<Expr*, 8> ConstructorArgs;
4903  CurInit.release(); // Ownership transferred into MultiExprArg, below.
4904
4905  S.CheckConstructorAccess(Loc, Constructor, Entity,
4906                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
4907
4908  if (IsExtraneousCopy) {
4909    // If this is a totally extraneous copy for C++03 reference
4910    // binding purposes, just return the original initialization
4911    // expression. We don't generate an (elided) copy operation here
4912    // because doing so would require us to pass down a flag to avoid
4913    // infinite recursion, where each step adds another extraneous,
4914    // elidable copy.
4915
4916    // Instantiate the default arguments of any extra parameters in
4917    // the selected copy constructor, as if we were going to create a
4918    // proper call to the copy constructor.
4919    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4920      ParmVarDecl *Parm = Constructor->getParamDecl(I);
4921      if (S.RequireCompleteType(Loc, Parm->getType(),
4922                                diag::err_call_incomplete_argument))
4923        break;
4924
4925      // Build the default argument expression; we don't actually care
4926      // if this succeeds or not, because this routine will complain
4927      // if there was a problem.
4928      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4929    }
4930
4931    return S.Owned(CurInitExpr);
4932  }
4933
4934  // Determine the arguments required to actually perform the
4935  // constructor call (we might have derived-to-base conversions, or
4936  // the copy constructor may have default arguments).
4937  if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
4938    return ExprError();
4939
4940  // Actually perform the constructor call.
4941  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4942                                    ConstructorArgs,
4943                                    HadMultipleCandidates,
4944                                    /*ListInit*/ false,
4945                                    /*ZeroInit*/ false,
4946                                    CXXConstructExpr::CK_Complete,
4947                                    SourceRange());
4948
4949  // If we're supposed to bind temporaries, do so.
4950  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4951    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4952  return CurInit;
4953}
4954
4955/// \brief Check whether elidable copy construction for binding a reference to
4956/// a temporary would have succeeded if we were building in C++98 mode, for
4957/// -Wc++98-compat.
4958static void CheckCXX98CompatAccessibleCopy(Sema &S,
4959                                           const InitializedEntity &Entity,
4960                                           Expr *CurInitExpr) {
4961  assert(S.getLangOpts().CPlusPlus11);
4962
4963  const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4964  if (!Record)
4965    return;
4966
4967  SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4968  if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4969        == DiagnosticsEngine::Ignored)
4970    return;
4971
4972  // Find constructors which would have been considered.
4973  OverloadCandidateSet CandidateSet(Loc);
4974  LookupCopyAndMoveConstructors(
4975      S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4976
4977  // Perform overload resolution.
4978  OverloadCandidateSet::iterator Best;
4979  OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4980
4981  PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4982    << OR << (int)Entity.getKind() << CurInitExpr->getType()
4983    << CurInitExpr->getSourceRange();
4984
4985  switch (OR) {
4986  case OR_Success:
4987    S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4988                             Entity, Best->FoundDecl.getAccess(), Diag);
4989    // FIXME: Check default arguments as far as that's possible.
4990    break;
4991
4992  case OR_No_Viable_Function:
4993    S.Diag(Loc, Diag);
4994    CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4995    break;
4996
4997  case OR_Ambiguous:
4998    S.Diag(Loc, Diag);
4999    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5000    break;
5001
5002  case OR_Deleted:
5003    S.Diag(Loc, Diag);
5004    S.NoteDeletedFunction(Best->Function);
5005    break;
5006  }
5007}
5008
5009void InitializationSequence::PrintInitLocationNote(Sema &S,
5010                                              const InitializedEntity &Entity) {
5011  if (Entity.isParameterKind() && Entity.getDecl()) {
5012    if (Entity.getDecl()->getLocation().isInvalid())
5013      return;
5014
5015    if (Entity.getDecl()->getDeclName())
5016      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5017        << Entity.getDecl()->getDeclName();
5018    else
5019      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5020  }
5021  else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5022           Entity.getMethodDecl())
5023    S.Diag(Entity.getMethodDecl()->getLocation(),
5024           diag::note_method_return_type_change)
5025      << Entity.getMethodDecl()->getDeclName();
5026}
5027
5028static bool isReferenceBinding(const InitializationSequence::Step &s) {
5029  return s.Kind == InitializationSequence::SK_BindReference ||
5030         s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
5031}
5032
5033/// Returns true if the parameters describe a constructor initialization of
5034/// an explicit temporary object, e.g. "Point(x, y)".
5035static bool isExplicitTemporary(const InitializedEntity &Entity,
5036                                const InitializationKind &Kind,
5037                                unsigned NumArgs) {
5038  switch (Entity.getKind()) {
5039  case InitializedEntity::EK_Temporary:
5040  case InitializedEntity::EK_CompoundLiteralInit:
5041  case InitializedEntity::EK_RelatedResult:
5042    break;
5043  default:
5044    return false;
5045  }
5046
5047  switch (Kind.getKind()) {
5048  case InitializationKind::IK_DirectList:
5049    return true;
5050  // FIXME: Hack to work around cast weirdness.
5051  case InitializationKind::IK_Direct:
5052  case InitializationKind::IK_Value:
5053    return NumArgs != 1;
5054  default:
5055    return false;
5056  }
5057}
5058
5059static ExprResult
5060PerformConstructorInitialization(Sema &S,
5061                                 const InitializedEntity &Entity,
5062                                 const InitializationKind &Kind,
5063                                 MultiExprArg Args,
5064                                 const InitializationSequence::Step& Step,
5065                                 bool &ConstructorInitRequiresZeroInit,
5066                                 bool IsListInitialization) {
5067  unsigned NumArgs = Args.size();
5068  CXXConstructorDecl *Constructor
5069    = cast<CXXConstructorDecl>(Step.Function.Function);
5070  bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5071
5072  // Build a call to the selected constructor.
5073  SmallVector<Expr*, 8> ConstructorArgs;
5074  SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5075                         ? Kind.getEqualLoc()
5076                         : Kind.getLocation();
5077
5078  if (Kind.getKind() == InitializationKind::IK_Default) {
5079    // Force even a trivial, implicit default constructor to be
5080    // semantically checked. We do this explicitly because we don't build
5081    // the definition for completely trivial constructors.
5082    assert(Constructor->getParent() && "No parent class for constructor.");
5083    if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5084        Constructor->isTrivial() && !Constructor->isUsed(false))
5085      S.DefineImplicitDefaultConstructor(Loc, Constructor);
5086  }
5087
5088  ExprResult CurInit = S.Owned((Expr *)0);
5089
5090  // C++ [over.match.copy]p1:
5091  //   - When initializing a temporary to be bound to the first parameter
5092  //     of a constructor that takes a reference to possibly cv-qualified
5093  //     T as its first argument, called with a single argument in the
5094  //     context of direct-initialization, explicit conversion functions
5095  //     are also considered.
5096  bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
5097                           Args.size() == 1 &&
5098                           Constructor->isCopyOrMoveConstructor();
5099
5100  // Determine the arguments required to actually perform the constructor
5101  // call.
5102  if (S.CompleteConstructorCall(Constructor, Args,
5103                                Loc, ConstructorArgs,
5104                                AllowExplicitConv,
5105                                IsListInitialization))
5106    return ExprError();
5107
5108
5109  if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5110    // An explicitly-constructed temporary, e.g., X(1, 2).
5111    S.MarkFunctionReferenced(Loc, Constructor);
5112    if (S.DiagnoseUseOfDecl(Constructor, Loc))
5113      return ExprError();
5114
5115    TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5116    if (!TSInfo)
5117      TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5118    SourceRange ParenRange;
5119    if (Kind.getKind() != InitializationKind::IK_DirectList)
5120      ParenRange = Kind.getParenRange();
5121
5122    CurInit = S.Owned(
5123      new (S.Context) CXXTemporaryObjectExpr(S.Context, Constructor,
5124                                             TSInfo, ConstructorArgs,
5125                                             ParenRange, IsListInitialization,
5126                                             HadMultipleCandidates,
5127                                             ConstructorInitRequiresZeroInit));
5128  } else {
5129    CXXConstructExpr::ConstructionKind ConstructKind =
5130      CXXConstructExpr::CK_Complete;
5131
5132    if (Entity.getKind() == InitializedEntity::EK_Base) {
5133      ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5134        CXXConstructExpr::CK_VirtualBase :
5135        CXXConstructExpr::CK_NonVirtualBase;
5136    } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5137      ConstructKind = CXXConstructExpr::CK_Delegating;
5138    }
5139
5140    // Only get the parenthesis range if it is a direct construction.
5141    SourceRange parenRange =
5142        Kind.getKind() == InitializationKind::IK_Direct ?
5143        Kind.getParenRange() : SourceRange();
5144
5145    // If the entity allows NRVO, mark the construction as elidable
5146    // unconditionally.
5147    if (Entity.allowsNRVO())
5148      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5149                                        Constructor, /*Elidable=*/true,
5150                                        ConstructorArgs,
5151                                        HadMultipleCandidates,
5152                                        IsListInitialization,
5153                                        ConstructorInitRequiresZeroInit,
5154                                        ConstructKind,
5155                                        parenRange);
5156    else
5157      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5158                                        Constructor,
5159                                        ConstructorArgs,
5160                                        HadMultipleCandidates,
5161                                        IsListInitialization,
5162                                        ConstructorInitRequiresZeroInit,
5163                                        ConstructKind,
5164                                        parenRange);
5165  }
5166  if (CurInit.isInvalid())
5167    return ExprError();
5168
5169  // Only check access if all of that succeeded.
5170  S.CheckConstructorAccess(Loc, Constructor, Entity,
5171                           Step.Function.FoundDecl.getAccess());
5172  if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5173    return ExprError();
5174
5175  if (shouldBindAsTemporary(Entity))
5176    CurInit = S.MaybeBindToTemporary(CurInit.take());
5177
5178  return CurInit;
5179}
5180
5181/// Determine whether the specified InitializedEntity definitely has a lifetime
5182/// longer than the current full-expression. Conservatively returns false if
5183/// it's unclear.
5184static bool
5185InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5186  const InitializedEntity *Top = &Entity;
5187  while (Top->getParent())
5188    Top = Top->getParent();
5189
5190  switch (Top->getKind()) {
5191  case InitializedEntity::EK_Variable:
5192  case InitializedEntity::EK_Result:
5193  case InitializedEntity::EK_Exception:
5194  case InitializedEntity::EK_Member:
5195  case InitializedEntity::EK_New:
5196  case InitializedEntity::EK_Base:
5197  case InitializedEntity::EK_Delegating:
5198    return true;
5199
5200  case InitializedEntity::EK_ArrayElement:
5201  case InitializedEntity::EK_VectorElement:
5202  case InitializedEntity::EK_BlockElement:
5203  case InitializedEntity::EK_ComplexElement:
5204    // Could not determine what the full initialization is. Assume it might not
5205    // outlive the full-expression.
5206    return false;
5207
5208  case InitializedEntity::EK_Parameter:
5209  case InitializedEntity::EK_Parameter_CF_Audited:
5210  case InitializedEntity::EK_Temporary:
5211  case InitializedEntity::EK_LambdaCapture:
5212  case InitializedEntity::EK_CompoundLiteralInit:
5213  case InitializedEntity::EK_RelatedResult:
5214    // The entity being initialized might not outlive the full-expression.
5215    return false;
5216  }
5217
5218  llvm_unreachable("unknown entity kind");
5219}
5220
5221/// Determine the declaration which an initialized entity ultimately refers to,
5222/// for the purpose of lifetime-extending a temporary bound to a reference in
5223/// the initialization of \p Entity.
5224static const ValueDecl *
5225getDeclForTemporaryLifetimeExtension(const InitializedEntity &Entity,
5226                                     const ValueDecl *FallbackDecl = 0) {
5227  // C++11 [class.temporary]p5:
5228  switch (Entity.getKind()) {
5229  case InitializedEntity::EK_Variable:
5230    //   The temporary [...] persists for the lifetime of the reference
5231    return Entity.getDecl();
5232
5233  case InitializedEntity::EK_Member:
5234    // For subobjects, we look at the complete object.
5235    if (Entity.getParent())
5236      return getDeclForTemporaryLifetimeExtension(*Entity.getParent(),
5237                                                  Entity.getDecl());
5238
5239    //   except:
5240    //   -- A temporary bound to a reference member in a constructor's
5241    //      ctor-initializer persists until the constructor exits.
5242    return Entity.getDecl();
5243
5244  case InitializedEntity::EK_Parameter:
5245  case InitializedEntity::EK_Parameter_CF_Audited:
5246    //   -- A temporary bound to a reference parameter in a function call
5247    //      persists until the completion of the full-expression containing
5248    //      the call.
5249  case InitializedEntity::EK_Result:
5250    //   -- The lifetime of a temporary bound to the returned value in a
5251    //      function return statement is not extended; the temporary is
5252    //      destroyed at the end of the full-expression in the return statement.
5253  case InitializedEntity::EK_New:
5254    //   -- A temporary bound to a reference in a new-initializer persists
5255    //      until the completion of the full-expression containing the
5256    //      new-initializer.
5257    return 0;
5258
5259  case InitializedEntity::EK_Temporary:
5260  case InitializedEntity::EK_CompoundLiteralInit:
5261  case InitializedEntity::EK_RelatedResult:
5262    // We don't yet know the storage duration of the surrounding temporary.
5263    // Assume it's got full-expression duration for now, it will patch up our
5264    // storage duration if that's not correct.
5265    return 0;
5266
5267  case InitializedEntity::EK_ArrayElement:
5268    // For subobjects, we look at the complete object.
5269    return getDeclForTemporaryLifetimeExtension(*Entity.getParent(),
5270                                                FallbackDecl);
5271
5272  case InitializedEntity::EK_Base:
5273  case InitializedEntity::EK_Delegating:
5274    // We can reach this case for aggregate initialization in a constructor:
5275    //   struct A { int &&r; };
5276    //   struct B : A { B() : A{0} {} };
5277    // In this case, use the innermost field decl as the context.
5278    return FallbackDecl;
5279
5280  case InitializedEntity::EK_BlockElement:
5281  case InitializedEntity::EK_LambdaCapture:
5282  case InitializedEntity::EK_Exception:
5283  case InitializedEntity::EK_VectorElement:
5284  case InitializedEntity::EK_ComplexElement:
5285    return 0;
5286  }
5287  llvm_unreachable("unknown entity kind");
5288}
5289
5290static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD);
5291
5292/// Update a glvalue expression that is used as the initializer of a reference
5293/// to note that its lifetime is extended.
5294/// \return \c true if any temporary had its lifetime extended.
5295static bool performReferenceExtension(Expr *Init, const ValueDecl *ExtendingD) {
5296  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5297    if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
5298      // This is just redundant braces around an initializer. Step over it.
5299      Init = ILE->getInit(0);
5300    }
5301  }
5302
5303  // Walk past any constructs which we can lifetime-extend across.
5304  Expr *Old;
5305  do {
5306    Old = Init;
5307
5308    // Step over any subobject adjustments; we may have a materialized
5309    // temporary inside them.
5310    SmallVector<const Expr *, 2> CommaLHSs;
5311    SmallVector<SubobjectAdjustment, 2> Adjustments;
5312    Init = const_cast<Expr *>(
5313        Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5314
5315    // Per current approach for DR1376, look through casts to reference type
5316    // when performing lifetime extension.
5317    if (CastExpr *CE = dyn_cast<CastExpr>(Init))
5318      if (CE->getSubExpr()->isGLValue())
5319        Init = CE->getSubExpr();
5320
5321    // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue.
5322    // It's unclear if binding a reference to that xvalue extends the array
5323    // temporary.
5324  } while (Init != Old);
5325
5326  if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
5327    // Update the storage duration of the materialized temporary.
5328    // FIXME: Rebuild the expression instead of mutating it.
5329    ME->setExtendingDecl(ExtendingD);
5330    performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingD);
5331    return true;
5332  }
5333
5334  return false;
5335}
5336
5337/// Update a prvalue expression that is going to be materialized as a
5338/// lifetime-extended temporary.
5339static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD) {
5340  // Dig out the expression which constructs the extended temporary.
5341  SmallVector<const Expr *, 2> CommaLHSs;
5342  SmallVector<SubobjectAdjustment, 2> Adjustments;
5343  Init = const_cast<Expr *>(
5344      Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5345
5346  if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
5347    Init = BTE->getSubExpr();
5348
5349  if (CXXStdInitializerListExpr *ILE =
5350          dyn_cast<CXXStdInitializerListExpr>(Init)) {
5351    performReferenceExtension(ILE->getSubExpr(), ExtendingD);
5352    return;
5353  }
5354
5355  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5356    if (ILE->getType()->isArrayType()) {
5357      for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
5358        performLifetimeExtension(ILE->getInit(I), ExtendingD);
5359      return;
5360    }
5361
5362    if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
5363      assert(RD->isAggregate() && "aggregate init on non-aggregate");
5364
5365      // If we lifetime-extend a braced initializer which is initializing an
5366      // aggregate, and that aggregate contains reference members which are
5367      // bound to temporaries, those temporaries are also lifetime-extended.
5368      if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
5369          ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
5370        performReferenceExtension(ILE->getInit(0), ExtendingD);
5371      else {
5372        unsigned Index = 0;
5373        for (RecordDecl::field_iterator I = RD->field_begin(),
5374                                        E = RD->field_end();
5375             I != E; ++I) {
5376          if (Index >= ILE->getNumInits())
5377            break;
5378          if (I->isUnnamedBitfield())
5379            continue;
5380          Expr *SubInit = ILE->getInit(Index);
5381          if (I->getType()->isReferenceType())
5382            performReferenceExtension(SubInit, ExtendingD);
5383          else if (isa<InitListExpr>(SubInit) ||
5384                   isa<CXXStdInitializerListExpr>(SubInit))
5385            // This may be either aggregate-initialization of a member or
5386            // initialization of a std::initializer_list object. Either way,
5387            // we should recursively lifetime-extend that initializer.
5388            performLifetimeExtension(SubInit, ExtendingD);
5389          ++Index;
5390        }
5391      }
5392    }
5393  }
5394}
5395
5396static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
5397                                    const Expr *Init, bool IsInitializerList,
5398                                    const ValueDecl *ExtendingDecl) {
5399  // Warn if a field lifetime-extends a temporary.
5400  if (isa<FieldDecl>(ExtendingDecl)) {
5401    if (IsInitializerList) {
5402      S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
5403        << /*at end of constructor*/true;
5404      return;
5405    }
5406
5407    bool IsSubobjectMember = false;
5408    for (const InitializedEntity *Ent = Entity.getParent(); Ent;
5409         Ent = Ent->getParent()) {
5410      if (Ent->getKind() != InitializedEntity::EK_Base) {
5411        IsSubobjectMember = true;
5412        break;
5413      }
5414    }
5415    S.Diag(Init->getExprLoc(),
5416           diag::warn_bind_ref_member_to_temporary)
5417      << ExtendingDecl << Init->getSourceRange()
5418      << IsSubobjectMember << IsInitializerList;
5419    if (IsSubobjectMember)
5420      S.Diag(ExtendingDecl->getLocation(),
5421             diag::note_ref_subobject_of_member_declared_here);
5422    else
5423      S.Diag(ExtendingDecl->getLocation(),
5424             diag::note_ref_or_ptr_member_declared_here)
5425        << /*is pointer*/false;
5426  }
5427}
5428
5429ExprResult
5430InitializationSequence::Perform(Sema &S,
5431                                const InitializedEntity &Entity,
5432                                const InitializationKind &Kind,
5433                                MultiExprArg Args,
5434                                QualType *ResultType) {
5435  if (Failed()) {
5436    Diagnose(S, Entity, Kind, Args);
5437    return ExprError();
5438  }
5439
5440  if (getKind() == DependentSequence) {
5441    // If the declaration is a non-dependent, incomplete array type
5442    // that has an initializer, then its type will be completed once
5443    // the initializer is instantiated.
5444    if (ResultType && !Entity.getType()->isDependentType() &&
5445        Args.size() == 1) {
5446      QualType DeclType = Entity.getType();
5447      if (const IncompleteArrayType *ArrayT
5448                           = S.Context.getAsIncompleteArrayType(DeclType)) {
5449        // FIXME: We don't currently have the ability to accurately
5450        // compute the length of an initializer list without
5451        // performing full type-checking of the initializer list
5452        // (since we have to determine where braces are implicitly
5453        // introduced and such).  So, we fall back to making the array
5454        // type a dependently-sized array type with no specified
5455        // bound.
5456        if (isa<InitListExpr>((Expr *)Args[0])) {
5457          SourceRange Brackets;
5458
5459          // Scavange the location of the brackets from the entity, if we can.
5460          if (DeclaratorDecl *DD = Entity.getDecl()) {
5461            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
5462              TypeLoc TL = TInfo->getTypeLoc();
5463              if (IncompleteArrayTypeLoc ArrayLoc =
5464                      TL.getAs<IncompleteArrayTypeLoc>())
5465                Brackets = ArrayLoc.getBracketsRange();
5466            }
5467          }
5468
5469          *ResultType
5470            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
5471                                                   /*NumElts=*/0,
5472                                                   ArrayT->getSizeModifier(),
5473                                       ArrayT->getIndexTypeCVRQualifiers(),
5474                                                   Brackets);
5475        }
5476
5477      }
5478    }
5479    if (Kind.getKind() == InitializationKind::IK_Direct &&
5480        !Kind.isExplicitCast()) {
5481      // Rebuild the ParenListExpr.
5482      SourceRange ParenRange = Kind.getParenRange();
5483      return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
5484                                  Args);
5485    }
5486    assert(Kind.getKind() == InitializationKind::IK_Copy ||
5487           Kind.isExplicitCast() ||
5488           Kind.getKind() == InitializationKind::IK_DirectList);
5489    return ExprResult(Args[0]);
5490  }
5491
5492  // No steps means no initialization.
5493  if (Steps.empty())
5494    return S.Owned((Expr *)0);
5495
5496  if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
5497      Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
5498      !Entity.isParameterKind()) {
5499    // Produce a C++98 compatibility warning if we are initializing a reference
5500    // from an initializer list. For parameters, we produce a better warning
5501    // elsewhere.
5502    Expr *Init = Args[0];
5503    S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
5504      << Init->getSourceRange();
5505  }
5506
5507  // Diagnose cases where we initialize a pointer to an array temporary, and the
5508  // pointer obviously outlives the temporary.
5509  if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
5510      Entity.getType()->isPointerType() &&
5511      InitializedEntityOutlivesFullExpression(Entity)) {
5512    Expr *Init = Args[0];
5513    Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
5514    if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
5515      S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
5516        << Init->getSourceRange();
5517  }
5518
5519  QualType DestType = Entity.getType().getNonReferenceType();
5520  // FIXME: Ugly hack around the fact that Entity.getType() is not
5521  // the same as Entity.getDecl()->getType() in cases involving type merging,
5522  //  and we want latter when it makes sense.
5523  if (ResultType)
5524    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
5525                                     Entity.getType();
5526
5527  ExprResult CurInit = S.Owned((Expr *)0);
5528
5529  // For initialization steps that start with a single initializer,
5530  // grab the only argument out the Args and place it into the "current"
5531  // initializer.
5532  switch (Steps.front().Kind) {
5533  case SK_ResolveAddressOfOverloadedFunction:
5534  case SK_CastDerivedToBaseRValue:
5535  case SK_CastDerivedToBaseXValue:
5536  case SK_CastDerivedToBaseLValue:
5537  case SK_BindReference:
5538  case SK_BindReferenceToTemporary:
5539  case SK_ExtraneousCopyToTemporary:
5540  case SK_UserConversion:
5541  case SK_QualificationConversionLValue:
5542  case SK_QualificationConversionXValue:
5543  case SK_QualificationConversionRValue:
5544  case SK_LValueToRValue:
5545  case SK_ConversionSequence:
5546  case SK_ListInitialization:
5547  case SK_UnwrapInitList:
5548  case SK_RewrapInitList:
5549  case SK_CAssignment:
5550  case SK_StringInit:
5551  case SK_ObjCObjectConversion:
5552  case SK_ArrayInit:
5553  case SK_ParenthesizedArrayInit:
5554  case SK_PassByIndirectCopyRestore:
5555  case SK_PassByIndirectRestore:
5556  case SK_ProduceObjCObject:
5557  case SK_StdInitializerList:
5558  case SK_OCLSamplerInit:
5559  case SK_OCLZeroEvent: {
5560    assert(Args.size() == 1);
5561    CurInit = Args[0];
5562    if (!CurInit.get()) return ExprError();
5563    break;
5564  }
5565
5566  case SK_ConstructorInitialization:
5567  case SK_ListConstructorCall:
5568  case SK_ZeroInitialization:
5569    break;
5570  }
5571
5572  // Walk through the computed steps for the initialization sequence,
5573  // performing the specified conversions along the way.
5574  bool ConstructorInitRequiresZeroInit = false;
5575  for (step_iterator Step = step_begin(), StepEnd = step_end();
5576       Step != StepEnd; ++Step) {
5577    if (CurInit.isInvalid())
5578      return ExprError();
5579
5580    QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
5581
5582    switch (Step->Kind) {
5583    case SK_ResolveAddressOfOverloadedFunction:
5584      // Overload resolution determined which function invoke; update the
5585      // initializer to reflect that choice.
5586      S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
5587      if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
5588        return ExprError();
5589      CurInit = S.FixOverloadedFunctionReference(CurInit,
5590                                                 Step->Function.FoundDecl,
5591                                                 Step->Function.Function);
5592      break;
5593
5594    case SK_CastDerivedToBaseRValue:
5595    case SK_CastDerivedToBaseXValue:
5596    case SK_CastDerivedToBaseLValue: {
5597      // We have a derived-to-base cast that produces either an rvalue or an
5598      // lvalue. Perform that cast.
5599
5600      CXXCastPath BasePath;
5601
5602      // Casts to inaccessible base classes are allowed with C-style casts.
5603      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
5604      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
5605                                         CurInit.get()->getLocStart(),
5606                                         CurInit.get()->getSourceRange(),
5607                                         &BasePath, IgnoreBaseAccess))
5608        return ExprError();
5609
5610      if (S.BasePathInvolvesVirtualBase(BasePath)) {
5611        QualType T = SourceType;
5612        if (const PointerType *Pointer = T->getAs<PointerType>())
5613          T = Pointer->getPointeeType();
5614        if (const RecordType *RecordTy = T->getAs<RecordType>())
5615          S.MarkVTableUsed(CurInit.get()->getLocStart(),
5616                           cast<CXXRecordDecl>(RecordTy->getDecl()));
5617      }
5618
5619      ExprValueKind VK =
5620          Step->Kind == SK_CastDerivedToBaseLValue ?
5621              VK_LValue :
5622              (Step->Kind == SK_CastDerivedToBaseXValue ?
5623                   VK_XValue :
5624                   VK_RValue);
5625      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5626                                                 Step->Type,
5627                                                 CK_DerivedToBase,
5628                                                 CurInit.get(),
5629                                                 &BasePath, VK));
5630      break;
5631    }
5632
5633    case SK_BindReference:
5634      // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
5635      if (CurInit.get()->refersToBitField()) {
5636        // We don't necessarily have an unambiguous source bit-field.
5637        FieldDecl *BitField = CurInit.get()->getSourceBitField();
5638        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
5639          << Entity.getType().isVolatileQualified()
5640          << (BitField ? BitField->getDeclName() : DeclarationName())
5641          << (BitField != NULL)
5642          << CurInit.get()->getSourceRange();
5643        if (BitField)
5644          S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
5645
5646        return ExprError();
5647      }
5648
5649      if (CurInit.get()->refersToVectorElement()) {
5650        // References cannot bind to vector elements.
5651        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
5652          << Entity.getType().isVolatileQualified()
5653          << CurInit.get()->getSourceRange();
5654        PrintInitLocationNote(S, Entity);
5655        return ExprError();
5656      }
5657
5658      // Reference binding does not have any corresponding ASTs.
5659
5660      // Check exception specifications
5661      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5662        return ExprError();
5663
5664      // Even though we didn't materialize a temporary, the binding may still
5665      // extend the lifetime of a temporary. This happens if we bind a reference
5666      // to the result of a cast to reference type.
5667      if (const ValueDecl *ExtendingDecl =
5668              getDeclForTemporaryLifetimeExtension(Entity)) {
5669        if (performReferenceExtension(CurInit.get(), ExtendingDecl))
5670          warnOnLifetimeExtension(S, Entity, CurInit.get(), false,
5671                                  ExtendingDecl);
5672      }
5673
5674      break;
5675
5676    case SK_BindReferenceToTemporary: {
5677      // Make sure the "temporary" is actually an rvalue.
5678      assert(CurInit.get()->isRValue() && "not a temporary");
5679
5680      // Check exception specifications
5681      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5682        return ExprError();
5683
5684      // Maybe lifetime-extend the temporary's subobjects to match the
5685      // entity's lifetime.
5686      const ValueDecl *ExtendingDecl =
5687          getDeclForTemporaryLifetimeExtension(Entity);
5688      if (ExtendingDecl) {
5689        performLifetimeExtension(CurInit.get(), ExtendingDecl);
5690        warnOnLifetimeExtension(S, Entity, CurInit.get(), false, ExtendingDecl);
5691      }
5692
5693      // Materialize the temporary into memory.
5694      MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr(
5695          Entity.getType().getNonReferenceType(), CurInit.get(),
5696          Entity.getType()->isLValueReferenceType(), ExtendingDecl);
5697
5698      // If we're binding to an Objective-C object that has lifetime, we
5699      // need cleanups. Likewise if we're extending this temporary to automatic
5700      // storage duration -- we need to register its cleanup during the
5701      // full-expression's cleanups.
5702      if ((S.getLangOpts().ObjCAutoRefCount &&
5703           MTE->getType()->isObjCLifetimeType()) ||
5704          (MTE->getStorageDuration() == SD_Automatic &&
5705           MTE->getType().isDestructedType()))
5706        S.ExprNeedsCleanups = true;
5707
5708      CurInit = S.Owned(MTE);
5709      break;
5710    }
5711
5712    case SK_ExtraneousCopyToTemporary:
5713      CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5714                           /*IsExtraneousCopy=*/true);
5715      break;
5716
5717    case SK_UserConversion: {
5718      // We have a user-defined conversion that invokes either a constructor
5719      // or a conversion function.
5720      CastKind CastKind;
5721      bool IsCopy = false;
5722      FunctionDecl *Fn = Step->Function.Function;
5723      DeclAccessPair FoundFn = Step->Function.FoundDecl;
5724      bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5725      bool CreatedObject = false;
5726      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5727        // Build a call to the selected constructor.
5728        SmallVector<Expr*, 8> ConstructorArgs;
5729        SourceLocation Loc = CurInit.get()->getLocStart();
5730        CurInit.release(); // Ownership transferred into MultiExprArg, below.
5731
5732        // Determine the arguments required to actually perform the constructor
5733        // call.
5734        Expr *Arg = CurInit.get();
5735        if (S.CompleteConstructorCall(Constructor,
5736                                      MultiExprArg(&Arg, 1),
5737                                      Loc, ConstructorArgs))
5738          return ExprError();
5739
5740        // Build an expression that constructs a temporary.
5741        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5742                                          ConstructorArgs,
5743                                          HadMultipleCandidates,
5744                                          /*ListInit*/ false,
5745                                          /*ZeroInit*/ false,
5746                                          CXXConstructExpr::CK_Complete,
5747                                          SourceRange());
5748        if (CurInit.isInvalid())
5749          return ExprError();
5750
5751        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5752                                 FoundFn.getAccess());
5753        if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5754          return ExprError();
5755
5756        CastKind = CK_ConstructorConversion;
5757        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5758        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5759            S.IsDerivedFrom(SourceType, Class))
5760          IsCopy = true;
5761
5762        CreatedObject = true;
5763      } else {
5764        // Build a call to the conversion function.
5765        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5766        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5767                                    FoundFn);
5768        if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5769          return ExprError();
5770
5771        // FIXME: Should we move this initialization into a separate
5772        // derived-to-base conversion? I believe the answer is "no", because
5773        // we don't want to turn off access control here for c-style casts.
5774        ExprResult CurInitExprRes =
5775          S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5776                                                FoundFn, Conversion);
5777        if(CurInitExprRes.isInvalid())
5778          return ExprError();
5779        CurInit = CurInitExprRes;
5780
5781        // Build the actual call to the conversion function.
5782        CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5783                                           HadMultipleCandidates);
5784        if (CurInit.isInvalid() || !CurInit.get())
5785          return ExprError();
5786
5787        CastKind = CK_UserDefinedConversion;
5788
5789        CreatedObject = Conversion->getResultType()->isRecordType();
5790      }
5791
5792      bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5793      bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5794
5795      if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5796        QualType T = CurInit.get()->getType();
5797        if (const RecordType *Record = T->getAs<RecordType>()) {
5798          CXXDestructorDecl *Destructor
5799            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5800          S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5801                                  S.PDiag(diag::err_access_dtor_temp) << T);
5802          S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5803          if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
5804            return ExprError();
5805        }
5806      }
5807
5808      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5809                                                 CurInit.get()->getType(),
5810                                                 CastKind, CurInit.get(), 0,
5811                                                CurInit.get()->getValueKind()));
5812      if (MaybeBindToTemp)
5813        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5814      if (RequiresCopy)
5815        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5816                             CurInit, /*IsExtraneousCopy=*/false);
5817      break;
5818    }
5819
5820    case SK_QualificationConversionLValue:
5821    case SK_QualificationConversionXValue:
5822    case SK_QualificationConversionRValue: {
5823      // Perform a qualification conversion; these can never go wrong.
5824      ExprValueKind VK =
5825          Step->Kind == SK_QualificationConversionLValue ?
5826              VK_LValue :
5827              (Step->Kind == SK_QualificationConversionXValue ?
5828                   VK_XValue :
5829                   VK_RValue);
5830      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5831      break;
5832    }
5833
5834    case SK_LValueToRValue: {
5835      assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
5836      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5837                                                 CK_LValueToRValue,
5838                                                 CurInit.take(),
5839                                                 /*BasePath=*/0,
5840                                                 VK_RValue));
5841      break;
5842    }
5843
5844    case SK_ConversionSequence: {
5845      Sema::CheckedConversionKind CCK
5846        = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5847        : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5848        : Kind.isExplicitCast()? Sema::CCK_OtherCast
5849        : Sema::CCK_ImplicitConversion;
5850      ExprResult CurInitExprRes =
5851        S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5852                                    getAssignmentAction(Entity), CCK);
5853      if (CurInitExprRes.isInvalid())
5854        return ExprError();
5855      CurInit = CurInitExprRes;
5856      break;
5857    }
5858
5859    case SK_ListInitialization: {
5860      InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5861      // If we're not initializing the top-level entity, we need to create an
5862      // InitializeTemporary entity for our target type.
5863      QualType Ty = Step->Type;
5864      bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
5865      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5866      InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
5867      InitListChecker PerformInitList(S, InitEntity,
5868          InitList, Ty, /*VerifyOnly=*/false);
5869      if (PerformInitList.HadError())
5870        return ExprError();
5871
5872      // Hack: We must update *ResultType if available in order to set the
5873      // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5874      // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5875      if (ResultType &&
5876          ResultType->getNonReferenceType()->isIncompleteArrayType()) {
5877        if ((*ResultType)->isRValueReferenceType())
5878          Ty = S.Context.getRValueReferenceType(Ty);
5879        else if ((*ResultType)->isLValueReferenceType())
5880          Ty = S.Context.getLValueReferenceType(Ty,
5881            (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5882        *ResultType = Ty;
5883      }
5884
5885      InitListExpr *StructuredInitList =
5886          PerformInitList.getFullyStructuredList();
5887      CurInit.release();
5888      CurInit = shouldBindAsTemporary(InitEntity)
5889          ? S.MaybeBindToTemporary(StructuredInitList)
5890          : S.Owned(StructuredInitList);
5891      break;
5892    }
5893
5894    case SK_ListConstructorCall: {
5895      // When an initializer list is passed for a parameter of type "reference
5896      // to object", we don't get an EK_Temporary entity, but instead an
5897      // EK_Parameter entity with reference type.
5898      // FIXME: This is a hack. What we really should do is create a user
5899      // conversion step for this case, but this makes it considerably more
5900      // complicated. For now, this will do.
5901      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5902                                        Entity.getType().getNonReferenceType());
5903      bool UseTemporary = Entity.getType()->isReferenceType();
5904      assert(Args.size() == 1 && "expected a single argument for list init");
5905      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5906      S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
5907        << InitList->getSourceRange();
5908      MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5909      CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
5910                                                                   Entity,
5911                                                 Kind, Arg, *Step,
5912                                               ConstructorInitRequiresZeroInit,
5913                                               /*IsListInitialization*/ true);
5914      break;
5915    }
5916
5917    case SK_UnwrapInitList:
5918      CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5919      break;
5920
5921    case SK_RewrapInitList: {
5922      Expr *E = CurInit.take();
5923      InitListExpr *Syntactic = Step->WrappingSyntacticList;
5924      InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5925          Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
5926      ILE->setSyntacticForm(Syntactic);
5927      ILE->setType(E->getType());
5928      ILE->setValueKind(E->getValueKind());
5929      CurInit = S.Owned(ILE);
5930      break;
5931    }
5932
5933    case SK_ConstructorInitialization: {
5934      // When an initializer list is passed for a parameter of type "reference
5935      // to object", we don't get an EK_Temporary entity, but instead an
5936      // EK_Parameter entity with reference type.
5937      // FIXME: This is a hack. What we really should do is create a user
5938      // conversion step for this case, but this makes it considerably more
5939      // complicated. For now, this will do.
5940      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5941                                        Entity.getType().getNonReferenceType());
5942      bool UseTemporary = Entity.getType()->isReferenceType();
5943      CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
5944                                                                 : Entity,
5945                                                 Kind, Args, *Step,
5946                                               ConstructorInitRequiresZeroInit,
5947                                               /*IsListInitialization*/ false);
5948      break;
5949    }
5950
5951    case SK_ZeroInitialization: {
5952      step_iterator NextStep = Step;
5953      ++NextStep;
5954      if (NextStep != StepEnd &&
5955          (NextStep->Kind == SK_ConstructorInitialization ||
5956           NextStep->Kind == SK_ListConstructorCall)) {
5957        // The need for zero-initialization is recorded directly into
5958        // the call to the object's constructor within the next step.
5959        ConstructorInitRequiresZeroInit = true;
5960      } else if (Kind.getKind() == InitializationKind::IK_Value &&
5961                 S.getLangOpts().CPlusPlus &&
5962                 !Kind.isImplicitValueInit()) {
5963        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5964        if (!TSInfo)
5965          TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5966                                                    Kind.getRange().getBegin());
5967
5968        CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5969                              TSInfo->getType().getNonLValueExprType(S.Context),
5970                                                                 TSInfo,
5971                                                    Kind.getRange().getEnd()));
5972      } else {
5973        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5974      }
5975      break;
5976    }
5977
5978    case SK_CAssignment: {
5979      QualType SourceType = CurInit.get()->getType();
5980      ExprResult Result = CurInit;
5981      Sema::AssignConvertType ConvTy =
5982        S.CheckSingleAssignmentConstraints(Step->Type, Result);
5983      if (Result.isInvalid())
5984        return ExprError();
5985      CurInit = Result;
5986
5987      // If this is a call, allow conversion to a transparent union.
5988      ExprResult CurInitExprRes = CurInit;
5989      if (ConvTy != Sema::Compatible &&
5990          Entity.isParameterKind() &&
5991          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
5992            == Sema::Compatible)
5993        ConvTy = Sema::Compatible;
5994      if (CurInitExprRes.isInvalid())
5995        return ExprError();
5996      CurInit = CurInitExprRes;
5997
5998      bool Complained;
5999      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
6000                                     Step->Type, SourceType,
6001                                     CurInit.get(),
6002                                     getAssignmentAction(Entity),
6003                                     &Complained)) {
6004        PrintInitLocationNote(S, Entity);
6005        return ExprError();
6006      } else if (Complained)
6007        PrintInitLocationNote(S, Entity);
6008      break;
6009    }
6010
6011    case SK_StringInit: {
6012      QualType Ty = Step->Type;
6013      CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
6014                      S.Context.getAsArrayType(Ty), S);
6015      break;
6016    }
6017
6018    case SK_ObjCObjectConversion:
6019      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
6020                          CK_ObjCObjectLValueCast,
6021                          CurInit.get()->getValueKind());
6022      break;
6023
6024    case SK_ArrayInit:
6025      // Okay: we checked everything before creating this step. Note that
6026      // this is a GNU extension.
6027      S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
6028        << Step->Type << CurInit.get()->getType()
6029        << CurInit.get()->getSourceRange();
6030
6031      // If the destination type is an incomplete array type, update the
6032      // type accordingly.
6033      if (ResultType) {
6034        if (const IncompleteArrayType *IncompleteDest
6035                           = S.Context.getAsIncompleteArrayType(Step->Type)) {
6036          if (const ConstantArrayType *ConstantSource
6037                 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
6038            *ResultType = S.Context.getConstantArrayType(
6039                                             IncompleteDest->getElementType(),
6040                                             ConstantSource->getSize(),
6041                                             ArrayType::Normal, 0);
6042          }
6043        }
6044      }
6045      break;
6046
6047    case SK_ParenthesizedArrayInit:
6048      // Okay: we checked everything before creating this step. Note that
6049      // this is a GNU extension.
6050      S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
6051        << CurInit.get()->getSourceRange();
6052      break;
6053
6054    case SK_PassByIndirectCopyRestore:
6055    case SK_PassByIndirectRestore:
6056      checkIndirectCopyRestoreSource(S, CurInit.get());
6057      CurInit = S.Owned(new (S.Context)
6058                        ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
6059                                Step->Kind == SK_PassByIndirectCopyRestore));
6060      break;
6061
6062    case SK_ProduceObjCObject:
6063      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
6064                                                 CK_ARCProduceObject,
6065                                                 CurInit.take(), 0, VK_RValue));
6066      break;
6067
6068    case SK_StdInitializerList: {
6069      S.Diag(CurInit.get()->getExprLoc(),
6070             diag::warn_cxx98_compat_initializer_list_init)
6071        << CurInit.get()->getSourceRange();
6072
6073      // Maybe lifetime-extend the array temporary's subobjects to match the
6074      // entity's lifetime.
6075      const ValueDecl *ExtendingDecl =
6076          getDeclForTemporaryLifetimeExtension(Entity);
6077      if (ExtendingDecl) {
6078        performLifetimeExtension(CurInit.get(), ExtendingDecl);
6079        warnOnLifetimeExtension(S, Entity, CurInit.get(), true, ExtendingDecl);
6080      }
6081
6082      // Materialize the temporary into memory.
6083      MaterializeTemporaryExpr *MTE = new (S.Context)
6084          MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(),
6085                                   /*lvalue reference*/ false, ExtendingDecl);
6086
6087      // Wrap it in a construction of a std::initializer_list<T>.
6088      CurInit = S.Owned(
6089          new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE));
6090
6091      // Bind the result, in case the library has given initializer_list a
6092      // non-trivial destructor.
6093      if (shouldBindAsTemporary(Entity))
6094        CurInit = S.MaybeBindToTemporary(CurInit.take());
6095      break;
6096    }
6097
6098    case SK_OCLSamplerInit: {
6099      assert(Step->Type->isSamplerT() &&
6100             "Sampler initialization on non sampler type.");
6101
6102      QualType SourceType = CurInit.get()->getType();
6103
6104      if (Entity.isParameterKind()) {
6105        if (!SourceType->isSamplerT())
6106          S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
6107            << SourceType;
6108      } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
6109        llvm_unreachable("Invalid EntityKind!");
6110      }
6111
6112      break;
6113    }
6114    case SK_OCLZeroEvent: {
6115      assert(Step->Type->isEventT() &&
6116             "Event initialization on non event type.");
6117
6118      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
6119                                    CK_ZeroToOCLEvent,
6120                                    CurInit.get()->getValueKind());
6121      break;
6122    }
6123    }
6124  }
6125
6126  // Diagnose non-fatal problems with the completed initialization.
6127  if (Entity.getKind() == InitializedEntity::EK_Member &&
6128      cast<FieldDecl>(Entity.getDecl())->isBitField())
6129    S.CheckBitFieldInitialization(Kind.getLocation(),
6130                                  cast<FieldDecl>(Entity.getDecl()),
6131                                  CurInit.get());
6132
6133  return CurInit;
6134}
6135
6136/// Somewhere within T there is an uninitialized reference subobject.
6137/// Dig it out and diagnose it.
6138static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
6139                                           QualType T) {
6140  if (T->isReferenceType()) {
6141    S.Diag(Loc, diag::err_reference_without_init)
6142      << T.getNonReferenceType();
6143    return true;
6144  }
6145
6146  CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6147  if (!RD || !RD->hasUninitializedReferenceMember())
6148    return false;
6149
6150  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
6151                                     FE = RD->field_end(); FI != FE; ++FI) {
6152    if (FI->isUnnamedBitfield())
6153      continue;
6154
6155    if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
6156      S.Diag(Loc, diag::note_value_initialization_here) << RD;
6157      return true;
6158    }
6159  }
6160
6161  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
6162                                          BE = RD->bases_end();
6163       BI != BE; ++BI) {
6164    if (DiagnoseUninitializedReference(S, BI->getLocStart(), BI->getType())) {
6165      S.Diag(Loc, diag::note_value_initialization_here) << RD;
6166      return true;
6167    }
6168  }
6169
6170  return false;
6171}
6172
6173
6174//===----------------------------------------------------------------------===//
6175// Diagnose initialization failures
6176//===----------------------------------------------------------------------===//
6177
6178/// Emit notes associated with an initialization that failed due to a
6179/// "simple" conversion failure.
6180static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
6181                                   Expr *op) {
6182  QualType destType = entity.getType();
6183  if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
6184      op->getType()->isObjCObjectPointerType()) {
6185
6186    // Emit a possible note about the conversion failing because the
6187    // operand is a message send with a related result type.
6188    S.EmitRelatedResultTypeNote(op);
6189
6190    // Emit a possible note about a return failing because we're
6191    // expecting a related result type.
6192    if (entity.getKind() == InitializedEntity::EK_Result)
6193      S.EmitRelatedResultTypeNoteForReturn(destType);
6194  }
6195}
6196
6197bool InitializationSequence::Diagnose(Sema &S,
6198                                      const InitializedEntity &Entity,
6199                                      const InitializationKind &Kind,
6200                                      ArrayRef<Expr *> Args) {
6201  if (!Failed())
6202    return false;
6203
6204  QualType DestType = Entity.getType();
6205  switch (Failure) {
6206  case FK_TooManyInitsForReference:
6207    // FIXME: Customize for the initialized entity?
6208    if (Args.empty()) {
6209      // Dig out the reference subobject which is uninitialized and diagnose it.
6210      // If this is value-initialization, this could be nested some way within
6211      // the target type.
6212      assert(Kind.getKind() == InitializationKind::IK_Value ||
6213             DestType->isReferenceType());
6214      bool Diagnosed =
6215        DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
6216      assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
6217      (void)Diagnosed;
6218    } else  // FIXME: diagnostic below could be better!
6219      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
6220        << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
6221    break;
6222
6223  case FK_ArrayNeedsInitList:
6224    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
6225    break;
6226  case FK_ArrayNeedsInitListOrStringLiteral:
6227    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
6228    break;
6229  case FK_ArrayNeedsInitListOrWideStringLiteral:
6230    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
6231    break;
6232  case FK_NarrowStringIntoWideCharArray:
6233    S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
6234    break;
6235  case FK_WideStringIntoCharArray:
6236    S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
6237    break;
6238  case FK_IncompatWideStringIntoWideChar:
6239    S.Diag(Kind.getLocation(),
6240           diag::err_array_init_incompat_wide_string_into_wchar);
6241    break;
6242  case FK_ArrayTypeMismatch:
6243  case FK_NonConstantArrayInit:
6244    S.Diag(Kind.getLocation(),
6245           (Failure == FK_ArrayTypeMismatch
6246              ? diag::err_array_init_different_type
6247              : diag::err_array_init_non_constant_array))
6248      << DestType.getNonReferenceType()
6249      << Args[0]->getType()
6250      << Args[0]->getSourceRange();
6251    break;
6252
6253  case FK_VariableLengthArrayHasInitializer:
6254    S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
6255      << Args[0]->getSourceRange();
6256    break;
6257
6258  case FK_AddressOfOverloadFailed: {
6259    DeclAccessPair Found;
6260    S.ResolveAddressOfOverloadedFunction(Args[0],
6261                                         DestType.getNonReferenceType(),
6262                                         true,
6263                                         Found);
6264    break;
6265  }
6266
6267  case FK_ReferenceInitOverloadFailed:
6268  case FK_UserConversionOverloadFailed:
6269    switch (FailedOverloadResult) {
6270    case OR_Ambiguous:
6271      if (Failure == FK_UserConversionOverloadFailed)
6272        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
6273          << Args[0]->getType() << DestType
6274          << Args[0]->getSourceRange();
6275      else
6276        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
6277          << DestType << Args[0]->getType()
6278          << Args[0]->getSourceRange();
6279
6280      FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6281      break;
6282
6283    case OR_No_Viable_Function:
6284      if (!S.RequireCompleteType(Kind.getLocation(),
6285                                 DestType.getNonReferenceType(),
6286                          diag::err_typecheck_nonviable_condition_incomplete,
6287                               Args[0]->getType(), Args[0]->getSourceRange()))
6288        S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
6289          << Args[0]->getType() << Args[0]->getSourceRange()
6290          << DestType.getNonReferenceType();
6291
6292      FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6293      break;
6294
6295    case OR_Deleted: {
6296      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
6297        << Args[0]->getType() << DestType.getNonReferenceType()
6298        << Args[0]->getSourceRange();
6299      OverloadCandidateSet::iterator Best;
6300      OverloadingResult Ovl
6301        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
6302                                                true);
6303      if (Ovl == OR_Deleted) {
6304        S.NoteDeletedFunction(Best->Function);
6305      } else {
6306        llvm_unreachable("Inconsistent overload resolution?");
6307      }
6308      break;
6309    }
6310
6311    case OR_Success:
6312      llvm_unreachable("Conversion did not fail!");
6313    }
6314    break;
6315
6316  case FK_NonConstLValueReferenceBindingToTemporary:
6317    if (isa<InitListExpr>(Args[0])) {
6318      S.Diag(Kind.getLocation(),
6319             diag::err_lvalue_reference_bind_to_initlist)
6320      << DestType.getNonReferenceType().isVolatileQualified()
6321      << DestType.getNonReferenceType()
6322      << Args[0]->getSourceRange();
6323      break;
6324    }
6325    // Intentional fallthrough
6326
6327  case FK_NonConstLValueReferenceBindingToUnrelated:
6328    S.Diag(Kind.getLocation(),
6329           Failure == FK_NonConstLValueReferenceBindingToTemporary
6330             ? diag::err_lvalue_reference_bind_to_temporary
6331             : diag::err_lvalue_reference_bind_to_unrelated)
6332      << DestType.getNonReferenceType().isVolatileQualified()
6333      << DestType.getNonReferenceType()
6334      << Args[0]->getType()
6335      << Args[0]->getSourceRange();
6336    break;
6337
6338  case FK_RValueReferenceBindingToLValue:
6339    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
6340      << DestType.getNonReferenceType() << Args[0]->getType()
6341      << Args[0]->getSourceRange();
6342    break;
6343
6344  case FK_ReferenceInitDropsQualifiers:
6345    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
6346      << DestType.getNonReferenceType()
6347      << Args[0]->getType()
6348      << Args[0]->getSourceRange();
6349    break;
6350
6351  case FK_ReferenceInitFailed:
6352    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
6353      << DestType.getNonReferenceType()
6354      << Args[0]->isLValue()
6355      << Args[0]->getType()
6356      << Args[0]->getSourceRange();
6357    emitBadConversionNotes(S, Entity, Args[0]);
6358    break;
6359
6360  case FK_ConversionFailed: {
6361    QualType FromType = Args[0]->getType();
6362    PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
6363      << (int)Entity.getKind()
6364      << DestType
6365      << Args[0]->isLValue()
6366      << FromType
6367      << Args[0]->getSourceRange();
6368    S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
6369    S.Diag(Kind.getLocation(), PDiag);
6370    emitBadConversionNotes(S, Entity, Args[0]);
6371    break;
6372  }
6373
6374  case FK_ConversionFromPropertyFailed:
6375    // No-op. This error has already been reported.
6376    break;
6377
6378  case FK_TooManyInitsForScalar: {
6379    SourceRange R;
6380
6381    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
6382      R = SourceRange(InitList->getInit(0)->getLocEnd(),
6383                      InitList->getLocEnd());
6384    else
6385      R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
6386
6387    R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
6388    if (Kind.isCStyleOrFunctionalCast())
6389      S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
6390        << R;
6391    else
6392      S.Diag(Kind.getLocation(), diag::err_excess_initializers)
6393        << /*scalar=*/2 << R;
6394    break;
6395  }
6396
6397  case FK_ReferenceBindingToInitList:
6398    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
6399      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
6400    break;
6401
6402  case FK_InitListBadDestinationType:
6403    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
6404      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
6405    break;
6406
6407  case FK_ListConstructorOverloadFailed:
6408  case FK_ConstructorOverloadFailed: {
6409    SourceRange ArgsRange;
6410    if (Args.size())
6411      ArgsRange = SourceRange(Args.front()->getLocStart(),
6412                              Args.back()->getLocEnd());
6413
6414    if (Failure == FK_ListConstructorOverloadFailed) {
6415      assert(Args.size() == 1 && "List construction from other than 1 argument.");
6416      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6417      Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
6418    }
6419
6420    // FIXME: Using "DestType" for the entity we're printing is probably
6421    // bad.
6422    switch (FailedOverloadResult) {
6423      case OR_Ambiguous:
6424        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
6425          << DestType << ArgsRange;
6426        FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6427        break;
6428
6429      case OR_No_Viable_Function:
6430        if (Kind.getKind() == InitializationKind::IK_Default &&
6431            (Entity.getKind() == InitializedEntity::EK_Base ||
6432             Entity.getKind() == InitializedEntity::EK_Member) &&
6433            isa<CXXConstructorDecl>(S.CurContext)) {
6434          // This is implicit default initialization of a member or
6435          // base within a constructor. If no viable function was
6436          // found, notify the user that she needs to explicitly
6437          // initialize this base/member.
6438          CXXConstructorDecl *Constructor
6439            = cast<CXXConstructorDecl>(S.CurContext);
6440          if (Entity.getKind() == InitializedEntity::EK_Base) {
6441            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6442              << (Constructor->getInheritedConstructor() ? 2 :
6443                  Constructor->isImplicit() ? 1 : 0)
6444              << S.Context.getTypeDeclType(Constructor->getParent())
6445              << /*base=*/0
6446              << Entity.getType();
6447
6448            RecordDecl *BaseDecl
6449              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
6450                                                                  ->getDecl();
6451            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
6452              << S.Context.getTagDeclType(BaseDecl);
6453          } else {
6454            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6455              << (Constructor->getInheritedConstructor() ? 2 :
6456                  Constructor->isImplicit() ? 1 : 0)
6457              << S.Context.getTypeDeclType(Constructor->getParent())
6458              << /*member=*/1
6459              << Entity.getName();
6460            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
6461
6462            if (const RecordType *Record
6463                                 = Entity.getType()->getAs<RecordType>())
6464              S.Diag(Record->getDecl()->getLocation(),
6465                     diag::note_previous_decl)
6466                << S.Context.getTagDeclType(Record->getDecl());
6467          }
6468          break;
6469        }
6470
6471        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
6472          << DestType << ArgsRange;
6473        FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6474        break;
6475
6476      case OR_Deleted: {
6477        OverloadCandidateSet::iterator Best;
6478        OverloadingResult Ovl
6479          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6480        if (Ovl != OR_Deleted) {
6481          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6482            << true << DestType << ArgsRange;
6483          llvm_unreachable("Inconsistent overload resolution?");
6484          break;
6485        }
6486
6487        // If this is a defaulted or implicitly-declared function, then
6488        // it was implicitly deleted. Make it clear that the deletion was
6489        // implicit.
6490        if (S.isImplicitlyDeleted(Best->Function))
6491          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
6492            << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
6493            << DestType << ArgsRange;
6494        else
6495          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6496            << true << DestType << ArgsRange;
6497
6498        S.NoteDeletedFunction(Best->Function);
6499        break;
6500      }
6501
6502      case OR_Success:
6503        llvm_unreachable("Conversion did not fail!");
6504    }
6505  }
6506  break;
6507
6508  case FK_DefaultInitOfConst:
6509    if (Entity.getKind() == InitializedEntity::EK_Member &&
6510        isa<CXXConstructorDecl>(S.CurContext)) {
6511      // This is implicit default-initialization of a const member in
6512      // a constructor. Complain that it needs to be explicitly
6513      // initialized.
6514      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
6515      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
6516        << (Constructor->getInheritedConstructor() ? 2 :
6517            Constructor->isImplicit() ? 1 : 0)
6518        << S.Context.getTypeDeclType(Constructor->getParent())
6519        << /*const=*/1
6520        << Entity.getName();
6521      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
6522        << Entity.getName();
6523    } else {
6524      S.Diag(Kind.getLocation(), diag::err_default_init_const)
6525        << DestType << (bool)DestType->getAs<RecordType>();
6526    }
6527    break;
6528
6529  case FK_Incomplete:
6530    S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
6531                          diag::err_init_incomplete_type);
6532    break;
6533
6534  case FK_ListInitializationFailed: {
6535    // Run the init list checker again to emit diagnostics.
6536    InitListExpr* InitList = cast<InitListExpr>(Args[0]);
6537    QualType DestType = Entity.getType();
6538    InitListChecker DiagnoseInitList(S, Entity, InitList,
6539            DestType, /*VerifyOnly=*/false);
6540    assert(DiagnoseInitList.HadError() &&
6541           "Inconsistent init list check result.");
6542    break;
6543  }
6544
6545  case FK_PlaceholderType: {
6546    // FIXME: Already diagnosed!
6547    break;
6548  }
6549
6550  case FK_ExplicitConstructor: {
6551    S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
6552      << Args[0]->getSourceRange();
6553    OverloadCandidateSet::iterator Best;
6554    OverloadingResult Ovl
6555      = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6556    (void)Ovl;
6557    assert(Ovl == OR_Success && "Inconsistent overload resolution");
6558    CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
6559    S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
6560    break;
6561  }
6562  }
6563
6564  PrintInitLocationNote(S, Entity);
6565  return true;
6566}
6567
6568void InitializationSequence::dump(raw_ostream &OS) const {
6569  switch (SequenceKind) {
6570  case FailedSequence: {
6571    OS << "Failed sequence: ";
6572    switch (Failure) {
6573    case FK_TooManyInitsForReference:
6574      OS << "too many initializers for reference";
6575      break;
6576
6577    case FK_ArrayNeedsInitList:
6578      OS << "array requires initializer list";
6579      break;
6580
6581    case FK_ArrayNeedsInitListOrStringLiteral:
6582      OS << "array requires initializer list or string literal";
6583      break;
6584
6585    case FK_ArrayNeedsInitListOrWideStringLiteral:
6586      OS << "array requires initializer list or wide string literal";
6587      break;
6588
6589    case FK_NarrowStringIntoWideCharArray:
6590      OS << "narrow string into wide char array";
6591      break;
6592
6593    case FK_WideStringIntoCharArray:
6594      OS << "wide string into char array";
6595      break;
6596
6597    case FK_IncompatWideStringIntoWideChar:
6598      OS << "incompatible wide string into wide char array";
6599      break;
6600
6601    case FK_ArrayTypeMismatch:
6602      OS << "array type mismatch";
6603      break;
6604
6605    case FK_NonConstantArrayInit:
6606      OS << "non-constant array initializer";
6607      break;
6608
6609    case FK_AddressOfOverloadFailed:
6610      OS << "address of overloaded function failed";
6611      break;
6612
6613    case FK_ReferenceInitOverloadFailed:
6614      OS << "overload resolution for reference initialization failed";
6615      break;
6616
6617    case FK_NonConstLValueReferenceBindingToTemporary:
6618      OS << "non-const lvalue reference bound to temporary";
6619      break;
6620
6621    case FK_NonConstLValueReferenceBindingToUnrelated:
6622      OS << "non-const lvalue reference bound to unrelated type";
6623      break;
6624
6625    case FK_RValueReferenceBindingToLValue:
6626      OS << "rvalue reference bound to an lvalue";
6627      break;
6628
6629    case FK_ReferenceInitDropsQualifiers:
6630      OS << "reference initialization drops qualifiers";
6631      break;
6632
6633    case FK_ReferenceInitFailed:
6634      OS << "reference initialization failed";
6635      break;
6636
6637    case FK_ConversionFailed:
6638      OS << "conversion failed";
6639      break;
6640
6641    case FK_ConversionFromPropertyFailed:
6642      OS << "conversion from property failed";
6643      break;
6644
6645    case FK_TooManyInitsForScalar:
6646      OS << "too many initializers for scalar";
6647      break;
6648
6649    case FK_ReferenceBindingToInitList:
6650      OS << "referencing binding to initializer list";
6651      break;
6652
6653    case FK_InitListBadDestinationType:
6654      OS << "initializer list for non-aggregate, non-scalar type";
6655      break;
6656
6657    case FK_UserConversionOverloadFailed:
6658      OS << "overloading failed for user-defined conversion";
6659      break;
6660
6661    case FK_ConstructorOverloadFailed:
6662      OS << "constructor overloading failed";
6663      break;
6664
6665    case FK_DefaultInitOfConst:
6666      OS << "default initialization of a const variable";
6667      break;
6668
6669    case FK_Incomplete:
6670      OS << "initialization of incomplete type";
6671      break;
6672
6673    case FK_ListInitializationFailed:
6674      OS << "list initialization checker failure";
6675      break;
6676
6677    case FK_VariableLengthArrayHasInitializer:
6678      OS << "variable length array has an initializer";
6679      break;
6680
6681    case FK_PlaceholderType:
6682      OS << "initializer expression isn't contextually valid";
6683      break;
6684
6685    case FK_ListConstructorOverloadFailed:
6686      OS << "list constructor overloading failed";
6687      break;
6688
6689    case FK_ExplicitConstructor:
6690      OS << "list copy initialization chose explicit constructor";
6691      break;
6692    }
6693    OS << '\n';
6694    return;
6695  }
6696
6697  case DependentSequence:
6698    OS << "Dependent sequence\n";
6699    return;
6700
6701  case NormalSequence:
6702    OS << "Normal sequence: ";
6703    break;
6704  }
6705
6706  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
6707    if (S != step_begin()) {
6708      OS << " -> ";
6709    }
6710
6711    switch (S->Kind) {
6712    case SK_ResolveAddressOfOverloadedFunction:
6713      OS << "resolve address of overloaded function";
6714      break;
6715
6716    case SK_CastDerivedToBaseRValue:
6717      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
6718      break;
6719
6720    case SK_CastDerivedToBaseXValue:
6721      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
6722      break;
6723
6724    case SK_CastDerivedToBaseLValue:
6725      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
6726      break;
6727
6728    case SK_BindReference:
6729      OS << "bind reference to lvalue";
6730      break;
6731
6732    case SK_BindReferenceToTemporary:
6733      OS << "bind reference to a temporary";
6734      break;
6735
6736    case SK_ExtraneousCopyToTemporary:
6737      OS << "extraneous C++03 copy to temporary";
6738      break;
6739
6740    case SK_UserConversion:
6741      OS << "user-defined conversion via " << *S->Function.Function;
6742      break;
6743
6744    case SK_QualificationConversionRValue:
6745      OS << "qualification conversion (rvalue)";
6746      break;
6747
6748    case SK_QualificationConversionXValue:
6749      OS << "qualification conversion (xvalue)";
6750      break;
6751
6752    case SK_QualificationConversionLValue:
6753      OS << "qualification conversion (lvalue)";
6754      break;
6755
6756    case SK_LValueToRValue:
6757      OS << "load (lvalue to rvalue)";
6758      break;
6759
6760    case SK_ConversionSequence:
6761      OS << "implicit conversion sequence (";
6762      S->ICS->DebugPrint(); // FIXME: use OS
6763      OS << ")";
6764      break;
6765
6766    case SK_ListInitialization:
6767      OS << "list aggregate initialization";
6768      break;
6769
6770    case SK_ListConstructorCall:
6771      OS << "list initialization via constructor";
6772      break;
6773
6774    case SK_UnwrapInitList:
6775      OS << "unwrap reference initializer list";
6776      break;
6777
6778    case SK_RewrapInitList:
6779      OS << "rewrap reference initializer list";
6780      break;
6781
6782    case SK_ConstructorInitialization:
6783      OS << "constructor initialization";
6784      break;
6785
6786    case SK_ZeroInitialization:
6787      OS << "zero initialization";
6788      break;
6789
6790    case SK_CAssignment:
6791      OS << "C assignment";
6792      break;
6793
6794    case SK_StringInit:
6795      OS << "string initialization";
6796      break;
6797
6798    case SK_ObjCObjectConversion:
6799      OS << "Objective-C object conversion";
6800      break;
6801
6802    case SK_ArrayInit:
6803      OS << "array initialization";
6804      break;
6805
6806    case SK_ParenthesizedArrayInit:
6807      OS << "parenthesized array initialization";
6808      break;
6809
6810    case SK_PassByIndirectCopyRestore:
6811      OS << "pass by indirect copy and restore";
6812      break;
6813
6814    case SK_PassByIndirectRestore:
6815      OS << "pass by indirect restore";
6816      break;
6817
6818    case SK_ProduceObjCObject:
6819      OS << "Objective-C object retension";
6820      break;
6821
6822    case SK_StdInitializerList:
6823      OS << "std::initializer_list from initializer list";
6824      break;
6825
6826    case SK_OCLSamplerInit:
6827      OS << "OpenCL sampler_t from integer constant";
6828      break;
6829
6830    case SK_OCLZeroEvent:
6831      OS << "OpenCL event_t from zero";
6832      break;
6833    }
6834
6835    OS << " [" << S->Type.getAsString() << ']';
6836  }
6837
6838  OS << '\n';
6839}
6840
6841void InitializationSequence::dump() const {
6842  dump(llvm::errs());
6843}
6844
6845static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
6846                                        QualType EntityType,
6847                                        const Expr *PreInit,
6848                                        const Expr *PostInit) {
6849  if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
6850    return;
6851
6852  // A narrowing conversion can only appear as the final implicit conversion in
6853  // an initialization sequence.
6854  const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
6855  if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
6856    return;
6857
6858  const ImplicitConversionSequence &ICS = *LastStep.ICS;
6859  const StandardConversionSequence *SCS = 0;
6860  switch (ICS.getKind()) {
6861  case ImplicitConversionSequence::StandardConversion:
6862    SCS = &ICS.Standard;
6863    break;
6864  case ImplicitConversionSequence::UserDefinedConversion:
6865    SCS = &ICS.UserDefined.After;
6866    break;
6867  case ImplicitConversionSequence::AmbiguousConversion:
6868  case ImplicitConversionSequence::EllipsisConversion:
6869  case ImplicitConversionSequence::BadConversion:
6870    return;
6871  }
6872
6873  // Determine the type prior to the narrowing conversion. If a conversion
6874  // operator was used, this may be different from both the type of the entity
6875  // and of the pre-initialization expression.
6876  QualType PreNarrowingType = PreInit->getType();
6877  if (Seq.step_begin() + 1 != Seq.step_end())
6878    PreNarrowingType = Seq.step_end()[-2].Type;
6879
6880  // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6881  APValue ConstantValue;
6882  QualType ConstantType;
6883  switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6884                                ConstantType)) {
6885  case NK_Not_Narrowing:
6886    // No narrowing occurred.
6887    return;
6888
6889  case NK_Type_Narrowing:
6890    // This was a floating-to-integer conversion, which is always considered a
6891    // narrowing conversion even if the value is a constant and can be
6892    // represented exactly as an integer.
6893    S.Diag(PostInit->getLocStart(),
6894           S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6895             diag::warn_init_list_type_narrowing
6896           : S.isSFINAEContext()?
6897             diag::err_init_list_type_narrowing_sfinae
6898           : diag::err_init_list_type_narrowing)
6899      << PostInit->getSourceRange()
6900      << PreNarrowingType.getLocalUnqualifiedType()
6901      << EntityType.getLocalUnqualifiedType();
6902    break;
6903
6904  case NK_Constant_Narrowing:
6905    // A constant value was narrowed.
6906    S.Diag(PostInit->getLocStart(),
6907           S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6908             diag::warn_init_list_constant_narrowing
6909           : S.isSFINAEContext()?
6910             diag::err_init_list_constant_narrowing_sfinae
6911           : diag::err_init_list_constant_narrowing)
6912      << PostInit->getSourceRange()
6913      << ConstantValue.getAsString(S.getASTContext(), ConstantType)
6914      << EntityType.getLocalUnqualifiedType();
6915    break;
6916
6917  case NK_Variable_Narrowing:
6918    // A variable's value may have been narrowed.
6919    S.Diag(PostInit->getLocStart(),
6920           S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6921             diag::warn_init_list_variable_narrowing
6922           : S.isSFINAEContext()?
6923             diag::err_init_list_variable_narrowing_sfinae
6924           : diag::err_init_list_variable_narrowing)
6925      << PostInit->getSourceRange()
6926      << PreNarrowingType.getLocalUnqualifiedType()
6927      << EntityType.getLocalUnqualifiedType();
6928    break;
6929  }
6930
6931  SmallString<128> StaticCast;
6932  llvm::raw_svector_ostream OS(StaticCast);
6933  OS << "static_cast<";
6934  if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
6935    // It's important to use the typedef's name if there is one so that the
6936    // fixit doesn't break code using types like int64_t.
6937    //
6938    // FIXME: This will break if the typedef requires qualification.  But
6939    // getQualifiedNameAsString() includes non-machine-parsable components.
6940    OS << *TT->getDecl();
6941  } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
6942    OS << BT->getName(S.getLangOpts());
6943  else {
6944    // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
6945    // with a broken cast.
6946    return;
6947  }
6948  OS << ">(";
6949  S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
6950    << PostInit->getSourceRange()
6951    << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
6952    << FixItHint::CreateInsertion(
6953      S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
6954}
6955
6956//===----------------------------------------------------------------------===//
6957// Initialization helper functions
6958//===----------------------------------------------------------------------===//
6959bool
6960Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
6961                                   ExprResult Init) {
6962  if (Init.isInvalid())
6963    return false;
6964
6965  Expr *InitE = Init.get();
6966  assert(InitE && "No initialization expression");
6967
6968  InitializationKind Kind
6969    = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
6970  InitializationSequence Seq(*this, Entity, Kind, InitE);
6971  return !Seq.Failed();
6972}
6973
6974ExprResult
6975Sema::PerformCopyInitialization(const InitializedEntity &Entity,
6976                                SourceLocation EqualLoc,
6977                                ExprResult Init,
6978                                bool TopLevelOfInitList,
6979                                bool AllowExplicit) {
6980  if (Init.isInvalid())
6981    return ExprError();
6982
6983  Expr *InitE = Init.get();
6984  assert(InitE && "No initialization expression?");
6985
6986  if (EqualLoc.isInvalid())
6987    EqualLoc = InitE->getLocStart();
6988
6989  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
6990                                                           EqualLoc,
6991                                                           AllowExplicit);
6992  InitializationSequence Seq(*this, Entity, Kind, InitE);
6993  Init.release();
6994
6995  ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
6996
6997  if (!Result.isInvalid() && TopLevelOfInitList)
6998    DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
6999                                InitE, Result.get());
7000
7001  return Result;
7002}
7003