SemaInit.cpp revision 2a5538120391a2eb9e3b18a8e2468cf97a1e363e
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14// This file also implements Sema::CheckInitializerTypes.
15//
16//===----------------------------------------------------------------------===//
17
18#include "Sema.h"
19#include "clang/Parse/Designator.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include <map>
24using namespace clang;
25
26//===----------------------------------------------------------------------===//
27// Sema Initialization Checking
28//===----------------------------------------------------------------------===//
29
30static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
31  const ArrayType *AT = Context.getAsArrayType(DeclType);
32  if (!AT) return 0;
33
34  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
35    return 0;
36
37  // See if this is a string literal or @encode.
38  Init = Init->IgnoreParens();
39
40  // Handle @encode, which is a narrow string.
41  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
42    return Init;
43
44  // Otherwise we can only handle string literals.
45  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
46  if (SL == 0) return 0;
47
48  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
49  // char array can be initialized with a narrow string.
50  // Only allow char x[] = "foo";  not char x[] = L"foo";
51  if (!SL->isWide())
52    return ElemTy->isCharType() ? Init : 0;
53
54  // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
55  // correction from DR343): "An array with element type compatible with a
56  // qualified or unqualified version of wchar_t may be initialized by a wide
57  // string literal, optionally enclosed in braces."
58  if (Context.typesAreCompatible(Context.getWCharType(),
59                                 ElemTy.getUnqualifiedType()))
60    return Init;
61
62  return 0;
63}
64
65static bool CheckSingleInitializer(Expr *&Init, QualType DeclType,
66                                   bool DirectInit, Sema &S) {
67  // Get the type before calling CheckSingleAssignmentConstraints(), since
68  // it can promote the expression.
69  QualType InitType = Init->getType();
70
71  if (S.getLangOptions().CPlusPlus) {
72    // FIXME: I dislike this error message. A lot.
73    if (S.PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
74      return S.Diag(Init->getSourceRange().getBegin(),
75                    diag::err_typecheck_convert_incompatible)
76        << DeclType << Init->getType() << "initializing"
77        << Init->getSourceRange();
78    return false;
79  }
80
81  Sema::AssignConvertType ConvTy =
82    S.CheckSingleAssignmentConstraints(DeclType, Init);
83  return S.DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
84                                  InitType, Init, "initializing");
85}
86
87static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
88  // Get the length of the string as parsed.
89  uint64_t StrLength =
90    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
91
92
93  const ArrayType *AT = S.Context.getAsArrayType(DeclT);
94  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
95    // C99 6.7.8p14. We have an array of character type with unknown size
96    // being initialized to a string literal.
97    llvm::APSInt ConstVal(32);
98    ConstVal = StrLength;
99    // Return a new array type (C99 6.7.8p22).
100    DeclT = S.Context.getConstantArrayType(IAT->getElementType(), ConstVal,
101                                           ArrayType::Normal, 0);
102    return;
103  }
104
105  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
106
107  // C99 6.7.8p14. We have an array of character type with known size.  However,
108  // the size may be smaller or larger than the string we are initializing.
109  // FIXME: Avoid truncation for 64-bit length strings.
110  if (StrLength-1 > CAT->getSize().getZExtValue())
111    S.Diag(Str->getSourceRange().getBegin(),
112           diag::warn_initializer_string_for_char_array_too_long)
113      << Str->getSourceRange();
114
115  // Set the type to the actual size that we are initializing.  If we have
116  // something like:
117  //   char x[1] = "foo";
118  // then this will set the string literal's type to char[1].
119  Str->setType(DeclT);
120}
121
122bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
123                                 SourceLocation InitLoc,
124                                 DeclarationName InitEntity, bool DirectInit) {
125  if (DeclType->isDependentType() ||
126      Init->isTypeDependent() || Init->isValueDependent())
127    return false;
128
129  // C++ [dcl.init.ref]p1:
130  //   A variable declared to be a T& or T&&, that is "reference to type T"
131  //   (8.3.2), shall be initialized by an object, or function, of
132  //   type T or by an object that can be converted into a T.
133  if (DeclType->isReferenceType())
134    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
135
136  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
137  // of unknown size ("[]") or an object type that is not a variable array type.
138  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
139    return Diag(InitLoc,  diag::err_variable_object_no_init)
140    << VAT->getSizeExpr()->getSourceRange();
141
142  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
143  if (!InitList) {
144    // FIXME: Handle wide strings
145    if (Expr *Str = IsStringInit(Init, DeclType, Context)) {
146      CheckStringInit(Str, DeclType, *this);
147      return false;
148    }
149
150    // C++ [dcl.init]p14:
151    //   -- If the destination type is a (possibly cv-qualified) class
152    //      type:
153    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
154      QualType DeclTypeC = Context.getCanonicalType(DeclType);
155      QualType InitTypeC = Context.getCanonicalType(Init->getType());
156
157      //   -- If the initialization is direct-initialization, or if it is
158      //      copy-initialization where the cv-unqualified version of the
159      //      source type is the same class as, or a derived class of, the
160      //      class of the destination, constructors are considered.
161      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
162          IsDerivedFrom(InitTypeC, DeclTypeC)) {
163        const CXXRecordDecl *RD =
164          cast<CXXRecordDecl>(DeclType->getAsRecordType()->getDecl());
165
166        // No need to make a CXXConstructExpr if both the ctor and dtor are
167        // trivial.
168        if (RD->hasTrivialConstructor() && RD->hasTrivialDestructor())
169          return false;
170
171        CXXConstructorDecl *Constructor
172        = PerformInitializationByConstructor(DeclType, &Init, 1,
173                                             InitLoc, Init->getSourceRange(),
174                                             InitEntity,
175                                             DirectInit? IK_Direct : IK_Copy);
176        if (!Constructor)
177          return true;
178
179        Init = CXXConstructExpr::Create(Context, DeclType, Constructor, false,
180                                        &Init, 1);
181        return false;
182      }
183
184      //   -- Otherwise (i.e., for the remaining copy-initialization
185      //      cases), user-defined conversion sequences that can
186      //      convert from the source type to the destination type or
187      //      (when a conversion function is used) to a derived class
188      //      thereof are enumerated as described in 13.3.1.4, and the
189      //      best one is chosen through overload resolution
190      //      (13.3). If the conversion cannot be done or is
191      //      ambiguous, the initialization is ill-formed. The
192      //      function selected is called with the initializer
193      //      expression as its argument; if the function is a
194      //      constructor, the call initializes a temporary of the
195      //      destination type.
196      // FIXME: We're pretending to do copy elision here; return to this when we
197      // have ASTs for such things.
198      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
199        return false;
200
201      if (InitEntity)
202        return Diag(InitLoc, diag::err_cannot_initialize_decl)
203        << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
204        << Init->getType() << Init->getSourceRange();
205      else
206        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
207        << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
208        << Init->getType() << Init->getSourceRange();
209    }
210
211    // C99 6.7.8p16.
212    if (DeclType->isArrayType())
213      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
214      << Init->getSourceRange();
215
216    return CheckSingleInitializer(Init, DeclType, DirectInit, *this);
217  }
218
219  bool hadError = CheckInitList(InitList, DeclType);
220  Init = InitList;
221  return hadError;
222}
223
224//===----------------------------------------------------------------------===//
225// Semantic checking for initializer lists.
226//===----------------------------------------------------------------------===//
227
228/// @brief Semantic checking for initializer lists.
229///
230/// The InitListChecker class contains a set of routines that each
231/// handle the initialization of a certain kind of entity, e.g.,
232/// arrays, vectors, struct/union types, scalars, etc. The
233/// InitListChecker itself performs a recursive walk of the subobject
234/// structure of the type to be initialized, while stepping through
235/// the initializer list one element at a time. The IList and Index
236/// parameters to each of the Check* routines contain the active
237/// (syntactic) initializer list and the index into that initializer
238/// list that represents the current initializer. Each routine is
239/// responsible for moving that Index forward as it consumes elements.
240///
241/// Each Check* routine also has a StructuredList/StructuredIndex
242/// arguments, which contains the current the "structured" (semantic)
243/// initializer list and the index into that initializer list where we
244/// are copying initializers as we map them over to the semantic
245/// list. Once we have completed our recursive walk of the subobject
246/// structure, we will have constructed a full semantic initializer
247/// list.
248///
249/// C99 designators cause changes in the initializer list traversal,
250/// because they make the initialization "jump" into a specific
251/// subobject and then continue the initialization from that
252/// point. CheckDesignatedInitializer() recursively steps into the
253/// designated subobject and manages backing out the recursion to
254/// initialize the subobjects after the one designated.
255namespace {
256class InitListChecker {
257  Sema &SemaRef;
258  bool hadError;
259  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
260  InitListExpr *FullyStructuredList;
261
262  void CheckImplicitInitList(InitListExpr *ParentIList, QualType T,
263                             unsigned &Index, InitListExpr *StructuredList,
264                             unsigned &StructuredIndex,
265                             bool TopLevelObject = false);
266  void CheckExplicitInitList(InitListExpr *IList, QualType &T,
267                             unsigned &Index, InitListExpr *StructuredList,
268                             unsigned &StructuredIndex,
269                             bool TopLevelObject = false);
270  void CheckListElementTypes(InitListExpr *IList, QualType &DeclType,
271                             bool SubobjectIsDesignatorContext,
272                             unsigned &Index,
273                             InitListExpr *StructuredList,
274                             unsigned &StructuredIndex,
275                             bool TopLevelObject = false);
276  void CheckSubElementType(InitListExpr *IList, QualType ElemType,
277                           unsigned &Index,
278                           InitListExpr *StructuredList,
279                           unsigned &StructuredIndex);
280  void CheckScalarType(InitListExpr *IList, QualType DeclType,
281                       unsigned &Index,
282                       InitListExpr *StructuredList,
283                       unsigned &StructuredIndex);
284  void CheckReferenceType(InitListExpr *IList, QualType DeclType,
285                          unsigned &Index,
286                          InitListExpr *StructuredList,
287                          unsigned &StructuredIndex);
288  void CheckVectorType(InitListExpr *IList, QualType DeclType, unsigned &Index,
289                       InitListExpr *StructuredList,
290                       unsigned &StructuredIndex);
291  void CheckStructUnionTypes(InitListExpr *IList, QualType DeclType,
292                             RecordDecl::field_iterator Field,
293                             bool SubobjectIsDesignatorContext, unsigned &Index,
294                             InitListExpr *StructuredList,
295                             unsigned &StructuredIndex,
296                             bool TopLevelObject = false);
297  void CheckArrayType(InitListExpr *IList, QualType &DeclType,
298                      llvm::APSInt elementIndex,
299                      bool SubobjectIsDesignatorContext, unsigned &Index,
300                      InitListExpr *StructuredList,
301                      unsigned &StructuredIndex);
302  bool CheckDesignatedInitializer(InitListExpr *IList, DesignatedInitExpr *DIE,
303                                  unsigned DesigIdx,
304                                  QualType &CurrentObjectType,
305                                  RecordDecl::field_iterator *NextField,
306                                  llvm::APSInt *NextElementIndex,
307                                  unsigned &Index,
308                                  InitListExpr *StructuredList,
309                                  unsigned &StructuredIndex,
310                                  bool FinishSubobjectInit,
311                                  bool TopLevelObject);
312  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
313                                           QualType CurrentObjectType,
314                                           InitListExpr *StructuredList,
315                                           unsigned StructuredIndex,
316                                           SourceRange InitRange);
317  void UpdateStructuredListElement(InitListExpr *StructuredList,
318                                   unsigned &StructuredIndex,
319                                   Expr *expr);
320  int numArrayElements(QualType DeclType);
321  int numStructUnionElements(QualType DeclType);
322
323  void FillInValueInitializations(InitListExpr *ILE);
324public:
325  InitListChecker(Sema &S, InitListExpr *IL, QualType &T);
326  bool HadError() { return hadError; }
327
328  // @brief Retrieves the fully-structured initializer list used for
329  // semantic analysis and code generation.
330  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
331};
332} // end anonymous namespace
333
334/// Recursively replaces NULL values within the given initializer list
335/// with expressions that perform value-initialization of the
336/// appropriate type.
337void InitListChecker::FillInValueInitializations(InitListExpr *ILE) {
338  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
339         "Should not have void type");
340  SourceLocation Loc = ILE->getSourceRange().getBegin();
341  if (ILE->getSyntacticForm())
342    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
343
344  if (const RecordType *RType = ILE->getType()->getAsRecordType()) {
345    unsigned Init = 0, NumInits = ILE->getNumInits();
346    for (RecordDecl::field_iterator
347           Field = RType->getDecl()->field_begin(SemaRef.Context),
348           FieldEnd = RType->getDecl()->field_end(SemaRef.Context);
349         Field != FieldEnd; ++Field) {
350      if (Field->isUnnamedBitfield())
351        continue;
352
353      if (Init >= NumInits || !ILE->getInit(Init)) {
354        if (Field->getType()->isReferenceType()) {
355          // C++ [dcl.init.aggr]p9:
356          //   If an incomplete or empty initializer-list leaves a
357          //   member of reference type uninitialized, the program is
358          //   ill-formed.
359          SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
360            << Field->getType()
361            << ILE->getSyntacticForm()->getSourceRange();
362          SemaRef.Diag(Field->getLocation(),
363                        diag::note_uninit_reference_member);
364          hadError = true;
365          return;
366        } else if (SemaRef.CheckValueInitialization(Field->getType(), Loc)) {
367          hadError = true;
368          return;
369        }
370
371        // FIXME: If value-initialization involves calling a constructor, should
372        // we make that call explicit in the representation (even when it means
373        // extending the initializer list)?
374        if (Init < NumInits && !hadError)
375          ILE->setInit(Init,
376              new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()));
377      } else if (InitListExpr *InnerILE
378                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
379        FillInValueInitializations(InnerILE);
380      ++Init;
381
382      // Only look at the first initialization of a union.
383      if (RType->getDecl()->isUnion())
384        break;
385    }
386
387    return;
388  }
389
390  QualType ElementType;
391
392  unsigned NumInits = ILE->getNumInits();
393  unsigned NumElements = NumInits;
394  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
395    ElementType = AType->getElementType();
396    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
397      NumElements = CAType->getSize().getZExtValue();
398  } else if (const VectorType *VType = ILE->getType()->getAsVectorType()) {
399    ElementType = VType->getElementType();
400    NumElements = VType->getNumElements();
401  } else
402    ElementType = ILE->getType();
403
404  for (unsigned Init = 0; Init != NumElements; ++Init) {
405    if (Init >= NumInits || !ILE->getInit(Init)) {
406      if (SemaRef.CheckValueInitialization(ElementType, Loc)) {
407        hadError = true;
408        return;
409      }
410
411      // FIXME: If value-initialization involves calling a constructor, should
412      // we make that call explicit in the representation (even when it means
413      // extending the initializer list)?
414      if (Init < NumInits && !hadError)
415        ILE->setInit(Init,
416                     new (SemaRef.Context) ImplicitValueInitExpr(ElementType));
417    }
418    else if (InitListExpr *InnerILE =dyn_cast<InitListExpr>(ILE->getInit(Init)))
419      FillInValueInitializations(InnerILE);
420  }
421}
422
423
424InitListChecker::InitListChecker(Sema &S, InitListExpr *IL, QualType &T)
425  : SemaRef(S) {
426  hadError = false;
427
428  unsigned newIndex = 0;
429  unsigned newStructuredIndex = 0;
430  FullyStructuredList
431    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
432  CheckExplicitInitList(IL, T, newIndex, FullyStructuredList, newStructuredIndex,
433                        /*TopLevelObject=*/true);
434
435  if (!hadError)
436    FillInValueInitializations(FullyStructuredList);
437}
438
439int InitListChecker::numArrayElements(QualType DeclType) {
440  // FIXME: use a proper constant
441  int maxElements = 0x7FFFFFFF;
442  if (const ConstantArrayType *CAT =
443        SemaRef.Context.getAsConstantArrayType(DeclType)) {
444    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
445  }
446  return maxElements;
447}
448
449int InitListChecker::numStructUnionElements(QualType DeclType) {
450  RecordDecl *structDecl = DeclType->getAsRecordType()->getDecl();
451  int InitializableMembers = 0;
452  for (RecordDecl::field_iterator
453         Field = structDecl->field_begin(SemaRef.Context),
454         FieldEnd = structDecl->field_end(SemaRef.Context);
455       Field != FieldEnd; ++Field) {
456    if ((*Field)->getIdentifier() || !(*Field)->isBitField())
457      ++InitializableMembers;
458  }
459  if (structDecl->isUnion())
460    return std::min(InitializableMembers, 1);
461  return InitializableMembers - structDecl->hasFlexibleArrayMember();
462}
463
464void InitListChecker::CheckImplicitInitList(InitListExpr *ParentIList,
465                                            QualType T, unsigned &Index,
466                                            InitListExpr *StructuredList,
467                                            unsigned &StructuredIndex,
468                                            bool TopLevelObject) {
469  int maxElements = 0;
470
471  if (T->isArrayType())
472    maxElements = numArrayElements(T);
473  else if (T->isStructureType() || T->isUnionType())
474    maxElements = numStructUnionElements(T);
475  else if (T->isVectorType())
476    maxElements = T->getAsVectorType()->getNumElements();
477  else
478    assert(0 && "CheckImplicitInitList(): Illegal type");
479
480  if (maxElements == 0) {
481    SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
482                  diag::err_implicit_empty_initializer);
483    ++Index;
484    hadError = true;
485    return;
486  }
487
488  // Build a structured initializer list corresponding to this subobject.
489  InitListExpr *StructuredSubobjectInitList
490    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
491                                 StructuredIndex,
492          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
493                      ParentIList->getSourceRange().getEnd()));
494  unsigned StructuredSubobjectInitIndex = 0;
495
496  // Check the element types and build the structural subobject.
497  unsigned StartIndex = Index;
498  CheckListElementTypes(ParentIList, T, false, Index,
499                        StructuredSubobjectInitList,
500                        StructuredSubobjectInitIndex,
501                        TopLevelObject);
502  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
503  StructuredSubobjectInitList->setType(T);
504
505  // Update the structured sub-object initializer so that it's ending
506  // range corresponds with the end of the last initializer it used.
507  if (EndIndex < ParentIList->getNumInits()) {
508    SourceLocation EndLoc
509      = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
510    StructuredSubobjectInitList->setRBraceLoc(EndLoc);
511  }
512}
513
514void InitListChecker::CheckExplicitInitList(InitListExpr *IList, QualType &T,
515                                            unsigned &Index,
516                                            InitListExpr *StructuredList,
517                                            unsigned &StructuredIndex,
518                                            bool TopLevelObject) {
519  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
520  SyntacticToSemantic[IList] = StructuredList;
521  StructuredList->setSyntacticForm(IList);
522  CheckListElementTypes(IList, T, true, Index, StructuredList,
523                        StructuredIndex, TopLevelObject);
524  IList->setType(T);
525  StructuredList->setType(T);
526  if (hadError)
527    return;
528
529  if (Index < IList->getNumInits()) {
530    // We have leftover initializers
531    if (StructuredIndex == 1 &&
532        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
533      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
534      if (SemaRef.getLangOptions().CPlusPlus) {
535        DK = diag::err_excess_initializers_in_char_array_initializer;
536        hadError = true;
537      }
538      // Special-case
539      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
540        << IList->getInit(Index)->getSourceRange();
541    } else if (!T->isIncompleteType()) {
542      // Don't complain for incomplete types, since we'll get an error
543      // elsewhere
544      QualType CurrentObjectType = StructuredList->getType();
545      int initKind =
546        CurrentObjectType->isArrayType()? 0 :
547        CurrentObjectType->isVectorType()? 1 :
548        CurrentObjectType->isScalarType()? 2 :
549        CurrentObjectType->isUnionType()? 3 :
550        4;
551
552      unsigned DK = diag::warn_excess_initializers;
553      if (SemaRef.getLangOptions().CPlusPlus) {
554        DK = diag::err_excess_initializers;
555        hadError = true;
556      }
557
558      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
559        << initKind << IList->getInit(Index)->getSourceRange();
560    }
561  }
562
563  if (T->isScalarType() && !TopLevelObject)
564    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
565      << IList->getSourceRange()
566      << CodeModificationHint::CreateRemoval(SourceRange(IList->getLocStart()))
567      << CodeModificationHint::CreateRemoval(SourceRange(IList->getLocEnd()));
568}
569
570void InitListChecker::CheckListElementTypes(InitListExpr *IList,
571                                            QualType &DeclType,
572                                            bool SubobjectIsDesignatorContext,
573                                            unsigned &Index,
574                                            InitListExpr *StructuredList,
575                                            unsigned &StructuredIndex,
576                                            bool TopLevelObject) {
577  if (DeclType->isScalarType()) {
578    CheckScalarType(IList, DeclType, Index, StructuredList, StructuredIndex);
579  } else if (DeclType->isVectorType()) {
580    CheckVectorType(IList, DeclType, Index, StructuredList, StructuredIndex);
581  } else if (DeclType->isAggregateType()) {
582    if (DeclType->isRecordType()) {
583      RecordDecl *RD = DeclType->getAsRecordType()->getDecl();
584      CheckStructUnionTypes(IList, DeclType, RD->field_begin(SemaRef.Context),
585                            SubobjectIsDesignatorContext, Index,
586                            StructuredList, StructuredIndex,
587                            TopLevelObject);
588    } else if (DeclType->isArrayType()) {
589      llvm::APSInt Zero(
590                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
591                      false);
592      CheckArrayType(IList, DeclType, Zero, SubobjectIsDesignatorContext, Index,
593                     StructuredList, StructuredIndex);
594    }
595    else
596      assert(0 && "Aggregate that isn't a structure or array?!");
597  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
598    // This type is invalid, issue a diagnostic.
599    ++Index;
600    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
601      << DeclType;
602    hadError = true;
603  } else if (DeclType->isRecordType()) {
604    // C++ [dcl.init]p14:
605    //   [...] If the class is an aggregate (8.5.1), and the initializer
606    //   is a brace-enclosed list, see 8.5.1.
607    //
608    // Note: 8.5.1 is handled below; here, we diagnose the case where
609    // we have an initializer list and a destination type that is not
610    // an aggregate.
611    // FIXME: In C++0x, this is yet another form of initialization.
612    SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
613      << DeclType << IList->getSourceRange();
614    hadError = true;
615  } else if (DeclType->isReferenceType()) {
616    CheckReferenceType(IList, DeclType, Index, StructuredList, StructuredIndex);
617  } else {
618    // In C, all types are either scalars or aggregates, but
619    // additional handling is needed here for C++ (and possibly others?).
620    assert(0 && "Unsupported initializer type");
621  }
622}
623
624void InitListChecker::CheckSubElementType(InitListExpr *IList,
625                                          QualType ElemType,
626                                          unsigned &Index,
627                                          InitListExpr *StructuredList,
628                                          unsigned &StructuredIndex) {
629  Expr *expr = IList->getInit(Index);
630  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
631    unsigned newIndex = 0;
632    unsigned newStructuredIndex = 0;
633    InitListExpr *newStructuredList
634      = getStructuredSubobjectInit(IList, Index, ElemType,
635                                   StructuredList, StructuredIndex,
636                                   SubInitList->getSourceRange());
637    CheckExplicitInitList(SubInitList, ElemType, newIndex,
638                          newStructuredList, newStructuredIndex);
639    ++StructuredIndex;
640    ++Index;
641  } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
642    CheckStringInit(Str, ElemType, SemaRef);
643    UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
644    ++Index;
645  } else if (ElemType->isScalarType()) {
646    CheckScalarType(IList, ElemType, Index, StructuredList, StructuredIndex);
647  } else if (ElemType->isReferenceType()) {
648    CheckReferenceType(IList, ElemType, Index, StructuredList, StructuredIndex);
649  } else {
650    if (SemaRef.getLangOptions().CPlusPlus) {
651      // C++ [dcl.init.aggr]p12:
652      //   All implicit type conversions (clause 4) are considered when
653      //   initializing the aggregate member with an ini- tializer from
654      //   an initializer-list. If the initializer can initialize a
655      //   member, the member is initialized. [...]
656      ImplicitConversionSequence ICS
657        = SemaRef.TryCopyInitialization(expr, ElemType);
658      if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion) {
659        if (SemaRef.PerformImplicitConversion(expr, ElemType, ICS,
660                                               "initializing"))
661          hadError = true;
662        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
663        ++Index;
664        return;
665      }
666
667      // Fall through for subaggregate initialization
668    } else {
669      // C99 6.7.8p13:
670      //
671      //   The initializer for a structure or union object that has
672      //   automatic storage duration shall be either an initializer
673      //   list as described below, or a single expression that has
674      //   compatible structure or union type. In the latter case, the
675      //   initial value of the object, including unnamed members, is
676      //   that of the expression.
677      if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
678          SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) {
679        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
680        ++Index;
681        return;
682      }
683
684      // Fall through for subaggregate initialization
685    }
686
687    // C++ [dcl.init.aggr]p12:
688    //
689    //   [...] Otherwise, if the member is itself a non-empty
690    //   subaggregate, brace elision is assumed and the initializer is
691    //   considered for the initialization of the first member of
692    //   the subaggregate.
693    if (ElemType->isAggregateType() || ElemType->isVectorType()) {
694      CheckImplicitInitList(IList, ElemType, Index, StructuredList,
695                            StructuredIndex);
696      ++StructuredIndex;
697    } else {
698      // We cannot initialize this element, so let
699      // PerformCopyInitialization produce the appropriate diagnostic.
700      SemaRef.PerformCopyInitialization(expr, ElemType, "initializing");
701      hadError = true;
702      ++Index;
703      ++StructuredIndex;
704    }
705  }
706}
707
708void InitListChecker::CheckScalarType(InitListExpr *IList, QualType DeclType,
709                                      unsigned &Index,
710                                      InitListExpr *StructuredList,
711                                      unsigned &StructuredIndex) {
712  if (Index < IList->getNumInits()) {
713    Expr *expr = IList->getInit(Index);
714    if (isa<InitListExpr>(expr)) {
715      SemaRef.Diag(IList->getLocStart(),
716                    diag::err_many_braces_around_scalar_init)
717        << IList->getSourceRange();
718      hadError = true;
719      ++Index;
720      ++StructuredIndex;
721      return;
722    } else if (isa<DesignatedInitExpr>(expr)) {
723      SemaRef.Diag(expr->getSourceRange().getBegin(),
724                    diag::err_designator_for_scalar_init)
725        << DeclType << expr->getSourceRange();
726      hadError = true;
727      ++Index;
728      ++StructuredIndex;
729      return;
730    }
731
732    Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
733    if (CheckSingleInitializer(expr, DeclType, false, SemaRef))
734      hadError = true; // types weren't compatible.
735    else if (savExpr != expr) {
736      // The type was promoted, update initializer list.
737      IList->setInit(Index, expr);
738    }
739    if (hadError)
740      ++StructuredIndex;
741    else
742      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
743    ++Index;
744  } else {
745    SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
746      << IList->getSourceRange();
747    hadError = true;
748    ++Index;
749    ++StructuredIndex;
750    return;
751  }
752}
753
754void InitListChecker::CheckReferenceType(InitListExpr *IList, QualType DeclType,
755                                         unsigned &Index,
756                                         InitListExpr *StructuredList,
757                                         unsigned &StructuredIndex) {
758  if (Index < IList->getNumInits()) {
759    Expr *expr = IList->getInit(Index);
760    if (isa<InitListExpr>(expr)) {
761      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
762        << DeclType << IList->getSourceRange();
763      hadError = true;
764      ++Index;
765      ++StructuredIndex;
766      return;
767    }
768
769    Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
770    if (SemaRef.CheckReferenceInit(expr, DeclType))
771      hadError = true;
772    else if (savExpr != expr) {
773      // The type was promoted, update initializer list.
774      IList->setInit(Index, expr);
775    }
776    if (hadError)
777      ++StructuredIndex;
778    else
779      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
780    ++Index;
781  } else {
782    // FIXME: It would be wonderful if we could point at the actual member. In
783    // general, it would be useful to pass location information down the stack,
784    // so that we know the location (or decl) of the "current object" being
785    // initialized.
786    SemaRef.Diag(IList->getLocStart(),
787                  diag::err_init_reference_member_uninitialized)
788      << DeclType
789      << IList->getSourceRange();
790    hadError = true;
791    ++Index;
792    ++StructuredIndex;
793    return;
794  }
795}
796
797void InitListChecker::CheckVectorType(InitListExpr *IList, QualType DeclType,
798                                      unsigned &Index,
799                                      InitListExpr *StructuredList,
800                                      unsigned &StructuredIndex) {
801  if (Index < IList->getNumInits()) {
802    const VectorType *VT = DeclType->getAsVectorType();
803    int maxElements = VT->getNumElements();
804    QualType elementType = VT->getElementType();
805
806    for (int i = 0; i < maxElements; ++i) {
807      // Don't attempt to go past the end of the init list
808      if (Index >= IList->getNumInits())
809        break;
810      CheckSubElementType(IList, elementType, Index,
811                          StructuredList, StructuredIndex);
812    }
813  }
814}
815
816void InitListChecker::CheckArrayType(InitListExpr *IList, QualType &DeclType,
817                                     llvm::APSInt elementIndex,
818                                     bool SubobjectIsDesignatorContext,
819                                     unsigned &Index,
820                                     InitListExpr *StructuredList,
821                                     unsigned &StructuredIndex) {
822  // Check for the special-case of initializing an array with a string.
823  if (Index < IList->getNumInits()) {
824    if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
825                                 SemaRef.Context)) {
826      CheckStringInit(Str, DeclType, SemaRef);
827      // We place the string literal directly into the resulting
828      // initializer list. This is the only place where the structure
829      // of the structured initializer list doesn't match exactly,
830      // because doing so would involve allocating one character
831      // constant for each string.
832      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
833      StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
834      ++Index;
835      return;
836    }
837  }
838  if (const VariableArrayType *VAT =
839        SemaRef.Context.getAsVariableArrayType(DeclType)) {
840    // Check for VLAs; in standard C it would be possible to check this
841    // earlier, but I don't know where clang accepts VLAs (gcc accepts
842    // them in all sorts of strange places).
843    SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
844                  diag::err_variable_object_no_init)
845      << VAT->getSizeExpr()->getSourceRange();
846    hadError = true;
847    ++Index;
848    ++StructuredIndex;
849    return;
850  }
851
852  // We might know the maximum number of elements in advance.
853  llvm::APSInt maxElements(elementIndex.getBitWidth(),
854                           elementIndex.isUnsigned());
855  bool maxElementsKnown = false;
856  if (const ConstantArrayType *CAT =
857        SemaRef.Context.getAsConstantArrayType(DeclType)) {
858    maxElements = CAT->getSize();
859    elementIndex.extOrTrunc(maxElements.getBitWidth());
860    elementIndex.setIsUnsigned(maxElements.isUnsigned());
861    maxElementsKnown = true;
862  }
863
864  QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
865                             ->getElementType();
866  while (Index < IList->getNumInits()) {
867    Expr *Init = IList->getInit(Index);
868    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
869      // If we're not the subobject that matches up with the '{' for
870      // the designator, we shouldn't be handling the
871      // designator. Return immediately.
872      if (!SubobjectIsDesignatorContext)
873        return;
874
875      // Handle this designated initializer. elementIndex will be
876      // updated to be the next array element we'll initialize.
877      if (CheckDesignatedInitializer(IList, DIE, 0,
878                                     DeclType, 0, &elementIndex, Index,
879                                     StructuredList, StructuredIndex, true,
880                                     false)) {
881        hadError = true;
882        continue;
883      }
884
885      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
886        maxElements.extend(elementIndex.getBitWidth());
887      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
888        elementIndex.extend(maxElements.getBitWidth());
889      elementIndex.setIsUnsigned(maxElements.isUnsigned());
890
891      // If the array is of incomplete type, keep track of the number of
892      // elements in the initializer.
893      if (!maxElementsKnown && elementIndex > maxElements)
894        maxElements = elementIndex;
895
896      continue;
897    }
898
899    // If we know the maximum number of elements, and we've already
900    // hit it, stop consuming elements in the initializer list.
901    if (maxElementsKnown && elementIndex == maxElements)
902      break;
903
904    // Check this element.
905    CheckSubElementType(IList, elementType, Index,
906                        StructuredList, StructuredIndex);
907    ++elementIndex;
908
909    // If the array is of incomplete type, keep track of the number of
910    // elements in the initializer.
911    if (!maxElementsKnown && elementIndex > maxElements)
912      maxElements = elementIndex;
913  }
914  if (!hadError && DeclType->isIncompleteArrayType()) {
915    // If this is an incomplete array type, the actual type needs to
916    // be calculated here.
917    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
918    if (maxElements == Zero) {
919      // Sizing an array implicitly to zero is not allowed by ISO C,
920      // but is supported by GNU.
921      SemaRef.Diag(IList->getLocStart(),
922                    diag::ext_typecheck_zero_array_size);
923    }
924
925    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
926                                                     ArrayType::Normal, 0);
927  }
928}
929
930void InitListChecker::CheckStructUnionTypes(InitListExpr *IList,
931                                            QualType DeclType,
932                                            RecordDecl::field_iterator Field,
933                                            bool SubobjectIsDesignatorContext,
934                                            unsigned &Index,
935                                            InitListExpr *StructuredList,
936                                            unsigned &StructuredIndex,
937                                            bool TopLevelObject) {
938  RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl();
939
940  // If the record is invalid, some of it's members are invalid. To avoid
941  // confusion, we forgo checking the intializer for the entire record.
942  if (structDecl->isInvalidDecl()) {
943    hadError = true;
944    return;
945  }
946
947  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
948    // Value-initialize the first named member of the union.
949    RecordDecl *RD = DeclType->getAsRecordType()->getDecl();
950    for (RecordDecl::field_iterator FieldEnd = RD->field_end(SemaRef.Context);
951         Field != FieldEnd; ++Field) {
952      if (Field->getDeclName()) {
953        StructuredList->setInitializedFieldInUnion(*Field);
954        break;
955      }
956    }
957    return;
958  }
959
960  // If structDecl is a forward declaration, this loop won't do
961  // anything except look at designated initializers; That's okay,
962  // because an error should get printed out elsewhere. It might be
963  // worthwhile to skip over the rest of the initializer, though.
964  RecordDecl *RD = DeclType->getAsRecordType()->getDecl();
965  RecordDecl::field_iterator FieldEnd = RD->field_end(SemaRef.Context);
966  bool InitializedSomething = false;
967  while (Index < IList->getNumInits()) {
968    Expr *Init = IList->getInit(Index);
969
970    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
971      // If we're not the subobject that matches up with the '{' for
972      // the designator, we shouldn't be handling the
973      // designator. Return immediately.
974      if (!SubobjectIsDesignatorContext)
975        return;
976
977      // Handle this designated initializer. Field will be updated to
978      // the next field that we'll be initializing.
979      if (CheckDesignatedInitializer(IList, DIE, 0,
980                                     DeclType, &Field, 0, Index,
981                                     StructuredList, StructuredIndex,
982                                     true, TopLevelObject))
983        hadError = true;
984
985      InitializedSomething = true;
986      continue;
987    }
988
989    if (Field == FieldEnd) {
990      // We've run out of fields. We're done.
991      break;
992    }
993
994    // We've already initialized a member of a union. We're done.
995    if (InitializedSomething && DeclType->isUnionType())
996      break;
997
998    // If we've hit the flexible array member at the end, we're done.
999    if (Field->getType()->isIncompleteArrayType())
1000      break;
1001
1002    if (Field->isUnnamedBitfield()) {
1003      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1004      ++Field;
1005      continue;
1006    }
1007
1008    CheckSubElementType(IList, Field->getType(), Index,
1009                        StructuredList, StructuredIndex);
1010    InitializedSomething = true;
1011
1012    if (DeclType->isUnionType()) {
1013      // Initialize the first field within the union.
1014      StructuredList->setInitializedFieldInUnion(*Field);
1015    }
1016
1017    ++Field;
1018  }
1019
1020  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1021      Index >= IList->getNumInits())
1022    return;
1023
1024  // Handle GNU flexible array initializers.
1025  if (!TopLevelObject &&
1026      (!isa<InitListExpr>(IList->getInit(Index)) ||
1027       cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1028    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1029                  diag::err_flexible_array_init_nonempty)
1030      << IList->getInit(Index)->getSourceRange().getBegin();
1031    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1032      << *Field;
1033    hadError = true;
1034    ++Index;
1035    return;
1036  } else {
1037    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1038                 diag::ext_flexible_array_init)
1039      << IList->getInit(Index)->getSourceRange().getBegin();
1040    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1041      << *Field;
1042  }
1043
1044  if (isa<InitListExpr>(IList->getInit(Index)))
1045    CheckSubElementType(IList, Field->getType(), Index, StructuredList,
1046                        StructuredIndex);
1047  else
1048    CheckImplicitInitList(IList, Field->getType(), Index, StructuredList,
1049                          StructuredIndex);
1050}
1051
1052/// \brief Expand a field designator that refers to a member of an
1053/// anonymous struct or union into a series of field designators that
1054/// refers to the field within the appropriate subobject.
1055///
1056/// Field/FieldIndex will be updated to point to the (new)
1057/// currently-designated field.
1058static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1059                                           DesignatedInitExpr *DIE,
1060                                           unsigned DesigIdx,
1061                                           FieldDecl *Field,
1062                                        RecordDecl::field_iterator &FieldIter,
1063                                           unsigned &FieldIndex) {
1064  typedef DesignatedInitExpr::Designator Designator;
1065
1066  // Build the path from the current object to the member of the
1067  // anonymous struct/union (backwards).
1068  llvm::SmallVector<FieldDecl *, 4> Path;
1069  SemaRef.BuildAnonymousStructUnionMemberPath(Field, Path);
1070
1071  // Build the replacement designators.
1072  llvm::SmallVector<Designator, 4> Replacements;
1073  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
1074         FI = Path.rbegin(), FIEnd = Path.rend();
1075       FI != FIEnd; ++FI) {
1076    if (FI + 1 == FIEnd)
1077      Replacements.push_back(Designator((IdentifierInfo *)0,
1078                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1079                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1080    else
1081      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1082                                        SourceLocation()));
1083    Replacements.back().setField(*FI);
1084  }
1085
1086  // Expand the current designator into the set of replacement
1087  // designators, so we have a full subobject path down to where the
1088  // member of the anonymous struct/union is actually stored.
1089  DIE->ExpandDesignator(DesigIdx, &Replacements[0],
1090                        &Replacements[0] + Replacements.size());
1091
1092  // Update FieldIter/FieldIndex;
1093  RecordDecl *Record = cast<RecordDecl>(Path.back()->getDeclContext());
1094  FieldIter = Record->field_begin(SemaRef.Context);
1095  FieldIndex = 0;
1096  for (RecordDecl::field_iterator FEnd = Record->field_end(SemaRef.Context);
1097       FieldIter != FEnd; ++FieldIter) {
1098    if (FieldIter->isUnnamedBitfield())
1099        continue;
1100
1101    if (*FieldIter == Path.back())
1102      return;
1103
1104    ++FieldIndex;
1105  }
1106
1107  assert(false && "Unable to find anonymous struct/union field");
1108}
1109
1110/// @brief Check the well-formedness of a C99 designated initializer.
1111///
1112/// Determines whether the designated initializer @p DIE, which
1113/// resides at the given @p Index within the initializer list @p
1114/// IList, is well-formed for a current object of type @p DeclType
1115/// (C99 6.7.8). The actual subobject that this designator refers to
1116/// within the current subobject is returned in either
1117/// @p NextField or @p NextElementIndex (whichever is appropriate).
1118///
1119/// @param IList  The initializer list in which this designated
1120/// initializer occurs.
1121///
1122/// @param DIE The designated initializer expression.
1123///
1124/// @param DesigIdx  The index of the current designator.
1125///
1126/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1127/// into which the designation in @p DIE should refer.
1128///
1129/// @param NextField  If non-NULL and the first designator in @p DIE is
1130/// a field, this will be set to the field declaration corresponding
1131/// to the field named by the designator.
1132///
1133/// @param NextElementIndex  If non-NULL and the first designator in @p
1134/// DIE is an array designator or GNU array-range designator, this
1135/// will be set to the last index initialized by this designator.
1136///
1137/// @param Index  Index into @p IList where the designated initializer
1138/// @p DIE occurs.
1139///
1140/// @param StructuredList  The initializer list expression that
1141/// describes all of the subobject initializers in the order they'll
1142/// actually be initialized.
1143///
1144/// @returns true if there was an error, false otherwise.
1145bool
1146InitListChecker::CheckDesignatedInitializer(InitListExpr *IList,
1147                                      DesignatedInitExpr *DIE,
1148                                      unsigned DesigIdx,
1149                                      QualType &CurrentObjectType,
1150                                      RecordDecl::field_iterator *NextField,
1151                                      llvm::APSInt *NextElementIndex,
1152                                      unsigned &Index,
1153                                      InitListExpr *StructuredList,
1154                                      unsigned &StructuredIndex,
1155                                            bool FinishSubobjectInit,
1156                                            bool TopLevelObject) {
1157  if (DesigIdx == DIE->size()) {
1158    // Check the actual initialization for the designated object type.
1159    bool prevHadError = hadError;
1160
1161    // Temporarily remove the designator expression from the
1162    // initializer list that the child calls see, so that we don't try
1163    // to re-process the designator.
1164    unsigned OldIndex = Index;
1165    IList->setInit(OldIndex, DIE->getInit());
1166
1167    CheckSubElementType(IList, CurrentObjectType, Index,
1168                        StructuredList, StructuredIndex);
1169
1170    // Restore the designated initializer expression in the syntactic
1171    // form of the initializer list.
1172    if (IList->getInit(OldIndex) != DIE->getInit())
1173      DIE->setInit(IList->getInit(OldIndex));
1174    IList->setInit(OldIndex, DIE);
1175
1176    return hadError && !prevHadError;
1177  }
1178
1179  bool IsFirstDesignator = (DesigIdx == 0);
1180  assert((IsFirstDesignator || StructuredList) &&
1181         "Need a non-designated initializer list to start from");
1182
1183  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1184  // Determine the structural initializer list that corresponds to the
1185  // current subobject.
1186  StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1187    : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1188                                 StructuredList, StructuredIndex,
1189                                 SourceRange(D->getStartLocation(),
1190                                             DIE->getSourceRange().getEnd()));
1191  assert(StructuredList && "Expected a structured initializer list");
1192
1193  if (D->isFieldDesignator()) {
1194    // C99 6.7.8p7:
1195    //
1196    //   If a designator has the form
1197    //
1198    //      . identifier
1199    //
1200    //   then the current object (defined below) shall have
1201    //   structure or union type and the identifier shall be the
1202    //   name of a member of that type.
1203    const RecordType *RT = CurrentObjectType->getAsRecordType();
1204    if (!RT) {
1205      SourceLocation Loc = D->getDotLoc();
1206      if (Loc.isInvalid())
1207        Loc = D->getFieldLoc();
1208      SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1209        << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1210      ++Index;
1211      return true;
1212    }
1213
1214    // Note: we perform a linear search of the fields here, despite
1215    // the fact that we have a faster lookup method, because we always
1216    // need to compute the field's index.
1217    FieldDecl *KnownField = D->getField();
1218    IdentifierInfo *FieldName = D->getFieldName();
1219    unsigned FieldIndex = 0;
1220    RecordDecl::field_iterator
1221      Field = RT->getDecl()->field_begin(SemaRef.Context),
1222      FieldEnd = RT->getDecl()->field_end(SemaRef.Context);
1223    for (; Field != FieldEnd; ++Field) {
1224      if (Field->isUnnamedBitfield())
1225        continue;
1226
1227      if (KnownField == *Field || Field->getIdentifier() == FieldName)
1228        break;
1229
1230      ++FieldIndex;
1231    }
1232
1233    if (Field == FieldEnd) {
1234      // There was no normal field in the struct with the designated
1235      // name. Perform another lookup for this name, which may find
1236      // something that we can't designate (e.g., a member function),
1237      // may find nothing, or may find a member of an anonymous
1238      // struct/union.
1239      DeclContext::lookup_result Lookup
1240        = RT->getDecl()->lookup(SemaRef.Context, FieldName);
1241      if (Lookup.first == Lookup.second) {
1242        // Name lookup didn't find anything.
1243        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1244          << FieldName << CurrentObjectType;
1245        ++Index;
1246        return true;
1247      } else if (!KnownField && isa<FieldDecl>(*Lookup.first) &&
1248                 cast<RecordDecl>((*Lookup.first)->getDeclContext())
1249                   ->isAnonymousStructOrUnion()) {
1250        // Handle an field designator that refers to a member of an
1251        // anonymous struct or union.
1252        ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx,
1253                                       cast<FieldDecl>(*Lookup.first),
1254                                       Field, FieldIndex);
1255        D = DIE->getDesignator(DesigIdx);
1256      } else {
1257        // Name lookup found something, but it wasn't a field.
1258        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1259          << FieldName;
1260        SemaRef.Diag((*Lookup.first)->getLocation(),
1261                      diag::note_field_designator_found);
1262        ++Index;
1263        return true;
1264      }
1265    } else if (!KnownField &&
1266               cast<RecordDecl>((*Field)->getDeclContext())
1267                 ->isAnonymousStructOrUnion()) {
1268      ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, *Field,
1269                                     Field, FieldIndex);
1270      D = DIE->getDesignator(DesigIdx);
1271    }
1272
1273    // All of the fields of a union are located at the same place in
1274    // the initializer list.
1275    if (RT->getDecl()->isUnion()) {
1276      FieldIndex = 0;
1277      StructuredList->setInitializedFieldInUnion(*Field);
1278    }
1279
1280    // Update the designator with the field declaration.
1281    D->setField(*Field);
1282
1283    // Make sure that our non-designated initializer list has space
1284    // for a subobject corresponding to this field.
1285    if (FieldIndex >= StructuredList->getNumInits())
1286      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1287
1288    // This designator names a flexible array member.
1289    if (Field->getType()->isIncompleteArrayType()) {
1290      bool Invalid = false;
1291      if ((DesigIdx + 1) != DIE->size()) {
1292        // We can't designate an object within the flexible array
1293        // member (because GCC doesn't allow it).
1294        DesignatedInitExpr::Designator *NextD
1295          = DIE->getDesignator(DesigIdx + 1);
1296        SemaRef.Diag(NextD->getStartLocation(),
1297                      diag::err_designator_into_flexible_array_member)
1298          << SourceRange(NextD->getStartLocation(),
1299                         DIE->getSourceRange().getEnd());
1300        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1301          << *Field;
1302        Invalid = true;
1303      }
1304
1305      if (!hadError && !isa<InitListExpr>(DIE->getInit())) {
1306        // The initializer is not an initializer list.
1307        SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1308                      diag::err_flexible_array_init_needs_braces)
1309          << DIE->getInit()->getSourceRange();
1310        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1311          << *Field;
1312        Invalid = true;
1313      }
1314
1315      // Handle GNU flexible array initializers.
1316      if (!Invalid && !TopLevelObject &&
1317          cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1318        SemaRef.Diag(DIE->getSourceRange().getBegin(),
1319                      diag::err_flexible_array_init_nonempty)
1320          << DIE->getSourceRange().getBegin();
1321        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1322          << *Field;
1323        Invalid = true;
1324      }
1325
1326      if (Invalid) {
1327        ++Index;
1328        return true;
1329      }
1330
1331      // Initialize the array.
1332      bool prevHadError = hadError;
1333      unsigned newStructuredIndex = FieldIndex;
1334      unsigned OldIndex = Index;
1335      IList->setInit(Index, DIE->getInit());
1336      CheckSubElementType(IList, Field->getType(), Index,
1337                          StructuredList, newStructuredIndex);
1338      IList->setInit(OldIndex, DIE);
1339      if (hadError && !prevHadError) {
1340        ++Field;
1341        ++FieldIndex;
1342        if (NextField)
1343          *NextField = Field;
1344        StructuredIndex = FieldIndex;
1345        return true;
1346      }
1347    } else {
1348      // Recurse to check later designated subobjects.
1349      QualType FieldType = (*Field)->getType();
1350      unsigned newStructuredIndex = FieldIndex;
1351      if (CheckDesignatedInitializer(IList, DIE, DesigIdx + 1, FieldType, 0, 0,
1352                                     Index, StructuredList, newStructuredIndex,
1353                                     true, false))
1354        return true;
1355    }
1356
1357    // Find the position of the next field to be initialized in this
1358    // subobject.
1359    ++Field;
1360    ++FieldIndex;
1361
1362    // If this the first designator, our caller will continue checking
1363    // the rest of this struct/class/union subobject.
1364    if (IsFirstDesignator) {
1365      if (NextField)
1366        *NextField = Field;
1367      StructuredIndex = FieldIndex;
1368      return false;
1369    }
1370
1371    if (!FinishSubobjectInit)
1372      return false;
1373
1374    // We've already initialized something in the union; we're done.
1375    if (RT->getDecl()->isUnion())
1376      return hadError;
1377
1378    // Check the remaining fields within this class/struct/union subobject.
1379    bool prevHadError = hadError;
1380    CheckStructUnionTypes(IList, CurrentObjectType, Field, false, Index,
1381                          StructuredList, FieldIndex);
1382    return hadError && !prevHadError;
1383  }
1384
1385  // C99 6.7.8p6:
1386  //
1387  //   If a designator has the form
1388  //
1389  //      [ constant-expression ]
1390  //
1391  //   then the current object (defined below) shall have array
1392  //   type and the expression shall be an integer constant
1393  //   expression. If the array is of unknown size, any
1394  //   nonnegative value is valid.
1395  //
1396  // Additionally, cope with the GNU extension that permits
1397  // designators of the form
1398  //
1399  //      [ constant-expression ... constant-expression ]
1400  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1401  if (!AT) {
1402    SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1403      << CurrentObjectType;
1404    ++Index;
1405    return true;
1406  }
1407
1408  Expr *IndexExpr = 0;
1409  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1410  if (D->isArrayDesignator()) {
1411    IndexExpr = DIE->getArrayIndex(*D);
1412    DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1413    DesignatedEndIndex = DesignatedStartIndex;
1414  } else {
1415    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1416
1417
1418    DesignatedStartIndex =
1419      DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1420    DesignatedEndIndex =
1421      DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1422    IndexExpr = DIE->getArrayRangeEnd(*D);
1423
1424    if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
1425      FullyStructuredList->sawArrayRangeDesignator();
1426  }
1427
1428  if (isa<ConstantArrayType>(AT)) {
1429    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1430    DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1431    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1432    DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1433    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1434    if (DesignatedEndIndex >= MaxElements) {
1435      SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1436                    diag::err_array_designator_too_large)
1437        << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1438        << IndexExpr->getSourceRange();
1439      ++Index;
1440      return true;
1441    }
1442  } else {
1443    // Make sure the bit-widths and signedness match.
1444    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1445      DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1446    else if (DesignatedStartIndex.getBitWidth() <
1447             DesignatedEndIndex.getBitWidth())
1448      DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1449    DesignatedStartIndex.setIsUnsigned(true);
1450    DesignatedEndIndex.setIsUnsigned(true);
1451  }
1452
1453  // Make sure that our non-designated initializer list has space
1454  // for a subobject corresponding to this array element.
1455  if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1456    StructuredList->resizeInits(SemaRef.Context,
1457                                DesignatedEndIndex.getZExtValue() + 1);
1458
1459  // Repeatedly perform subobject initializations in the range
1460  // [DesignatedStartIndex, DesignatedEndIndex].
1461
1462  // Move to the next designator
1463  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1464  unsigned OldIndex = Index;
1465  while (DesignatedStartIndex <= DesignatedEndIndex) {
1466    // Recurse to check later designated subobjects.
1467    QualType ElementType = AT->getElementType();
1468    Index = OldIndex;
1469    if (CheckDesignatedInitializer(IList, DIE, DesigIdx + 1, ElementType, 0, 0,
1470                                   Index, StructuredList, ElementIndex,
1471                                   (DesignatedStartIndex == DesignatedEndIndex),
1472                                   false))
1473      return true;
1474
1475    // Move to the next index in the array that we'll be initializing.
1476    ++DesignatedStartIndex;
1477    ElementIndex = DesignatedStartIndex.getZExtValue();
1478  }
1479
1480  // If this the first designator, our caller will continue checking
1481  // the rest of this array subobject.
1482  if (IsFirstDesignator) {
1483    if (NextElementIndex)
1484      *NextElementIndex = DesignatedStartIndex;
1485    StructuredIndex = ElementIndex;
1486    return false;
1487  }
1488
1489  if (!FinishSubobjectInit)
1490    return false;
1491
1492  // Check the remaining elements within this array subobject.
1493  bool prevHadError = hadError;
1494  CheckArrayType(IList, CurrentObjectType, DesignatedStartIndex, false, Index,
1495                 StructuredList, ElementIndex);
1496  return hadError && !prevHadError;
1497}
1498
1499// Get the structured initializer list for a subobject of type
1500// @p CurrentObjectType.
1501InitListExpr *
1502InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1503                                            QualType CurrentObjectType,
1504                                            InitListExpr *StructuredList,
1505                                            unsigned StructuredIndex,
1506                                            SourceRange InitRange) {
1507  Expr *ExistingInit = 0;
1508  if (!StructuredList)
1509    ExistingInit = SyntacticToSemantic[IList];
1510  else if (StructuredIndex < StructuredList->getNumInits())
1511    ExistingInit = StructuredList->getInit(StructuredIndex);
1512
1513  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1514    return Result;
1515
1516  if (ExistingInit) {
1517    // We are creating an initializer list that initializes the
1518    // subobjects of the current object, but there was already an
1519    // initialization that completely initialized the current
1520    // subobject, e.g., by a compound literal:
1521    //
1522    // struct X { int a, b; };
1523    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1524    //
1525    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1526    // designated initializer re-initializes the whole
1527    // subobject [0], overwriting previous initializers.
1528    SemaRef.Diag(InitRange.getBegin(),
1529                 diag::warn_subobject_initializer_overrides)
1530      << InitRange;
1531    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1532                  diag::note_previous_initializer)
1533      << /*FIXME:has side effects=*/0
1534      << ExistingInit->getSourceRange();
1535  }
1536
1537  InitListExpr *Result
1538    = new (SemaRef.Context) InitListExpr(InitRange.getBegin(), 0, 0,
1539                                         InitRange.getEnd());
1540
1541  Result->setType(CurrentObjectType);
1542
1543  // Pre-allocate storage for the structured initializer list.
1544  unsigned NumElements = 0;
1545  unsigned NumInits = 0;
1546  if (!StructuredList)
1547    NumInits = IList->getNumInits();
1548  else if (Index < IList->getNumInits()) {
1549    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1550      NumInits = SubList->getNumInits();
1551  }
1552
1553  if (const ArrayType *AType
1554      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1555    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1556      NumElements = CAType->getSize().getZExtValue();
1557      // Simple heuristic so that we don't allocate a very large
1558      // initializer with many empty entries at the end.
1559      if (NumInits && NumElements > NumInits)
1560        NumElements = 0;
1561    }
1562  } else if (const VectorType *VType = CurrentObjectType->getAsVectorType())
1563    NumElements = VType->getNumElements();
1564  else if (const RecordType *RType = CurrentObjectType->getAsRecordType()) {
1565    RecordDecl *RDecl = RType->getDecl();
1566    if (RDecl->isUnion())
1567      NumElements = 1;
1568    else
1569      NumElements = std::distance(RDecl->field_begin(SemaRef.Context),
1570                                  RDecl->field_end(SemaRef.Context));
1571  }
1572
1573  if (NumElements < NumInits)
1574    NumElements = IList->getNumInits();
1575
1576  Result->reserveInits(NumElements);
1577
1578  // Link this new initializer list into the structured initializer
1579  // lists.
1580  if (StructuredList)
1581    StructuredList->updateInit(StructuredIndex, Result);
1582  else {
1583    Result->setSyntacticForm(IList);
1584    SyntacticToSemantic[IList] = Result;
1585  }
1586
1587  return Result;
1588}
1589
1590/// Update the initializer at index @p StructuredIndex within the
1591/// structured initializer list to the value @p expr.
1592void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1593                                                  unsigned &StructuredIndex,
1594                                                  Expr *expr) {
1595  // No structured initializer list to update
1596  if (!StructuredList)
1597    return;
1598
1599  if (Expr *PrevInit = StructuredList->updateInit(StructuredIndex, expr)) {
1600    // This initializer overwrites a previous initializer. Warn.
1601    SemaRef.Diag(expr->getSourceRange().getBegin(),
1602                  diag::warn_initializer_overrides)
1603      << expr->getSourceRange();
1604    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1605                  diag::note_previous_initializer)
1606      << /*FIXME:has side effects=*/0
1607      << PrevInit->getSourceRange();
1608  }
1609
1610  ++StructuredIndex;
1611}
1612
1613/// Check that the given Index expression is a valid array designator
1614/// value. This is essentailly just a wrapper around
1615/// VerifyIntegerConstantExpression that also checks for negative values
1616/// and produces a reasonable diagnostic if there is a
1617/// failure. Returns true if there was an error, false otherwise.  If
1618/// everything went okay, Value will receive the value of the constant
1619/// expression.
1620static bool
1621CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1622  SourceLocation Loc = Index->getSourceRange().getBegin();
1623
1624  // Make sure this is an integer constant expression.
1625  if (S.VerifyIntegerConstantExpression(Index, &Value))
1626    return true;
1627
1628  if (Value.isSigned() && Value.isNegative())
1629    return S.Diag(Loc, diag::err_array_designator_negative)
1630      << Value.toString(10) << Index->getSourceRange();
1631
1632  Value.setIsUnsigned(true);
1633  return false;
1634}
1635
1636Sema::OwningExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1637                                                        SourceLocation Loc,
1638                                                        bool GNUSyntax,
1639                                                        OwningExprResult Init) {
1640  typedef DesignatedInitExpr::Designator ASTDesignator;
1641
1642  bool Invalid = false;
1643  llvm::SmallVector<ASTDesignator, 32> Designators;
1644  llvm::SmallVector<Expr *, 32> InitExpressions;
1645
1646  // Build designators and check array designator expressions.
1647  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1648    const Designator &D = Desig.getDesignator(Idx);
1649    switch (D.getKind()) {
1650    case Designator::FieldDesignator:
1651      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1652                                          D.getFieldLoc()));
1653      break;
1654
1655    case Designator::ArrayDesignator: {
1656      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1657      llvm::APSInt IndexValue;
1658      if (!Index->isTypeDependent() &&
1659          !Index->isValueDependent() &&
1660          CheckArrayDesignatorExpr(*this, Index, IndexValue))
1661        Invalid = true;
1662      else {
1663        Designators.push_back(ASTDesignator(InitExpressions.size(),
1664                                            D.getLBracketLoc(),
1665                                            D.getRBracketLoc()));
1666        InitExpressions.push_back(Index);
1667      }
1668      break;
1669    }
1670
1671    case Designator::ArrayRangeDesignator: {
1672      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1673      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1674      llvm::APSInt StartValue;
1675      llvm::APSInt EndValue;
1676      bool StartDependent = StartIndex->isTypeDependent() ||
1677                            StartIndex->isValueDependent();
1678      bool EndDependent = EndIndex->isTypeDependent() ||
1679                          EndIndex->isValueDependent();
1680      if ((!StartDependent &&
1681           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1682          (!EndDependent &&
1683           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1684        Invalid = true;
1685      else {
1686        // Make sure we're comparing values with the same bit width.
1687        if (StartDependent || EndDependent) {
1688          // Nothing to compute.
1689        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1690          EndValue.extend(StartValue.getBitWidth());
1691        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1692          StartValue.extend(EndValue.getBitWidth());
1693
1694        if (!StartDependent && !EndDependent && EndValue < StartValue) {
1695          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1696            << StartValue.toString(10) << EndValue.toString(10)
1697            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1698          Invalid = true;
1699        } else {
1700          Designators.push_back(ASTDesignator(InitExpressions.size(),
1701                                              D.getLBracketLoc(),
1702                                              D.getEllipsisLoc(),
1703                                              D.getRBracketLoc()));
1704          InitExpressions.push_back(StartIndex);
1705          InitExpressions.push_back(EndIndex);
1706        }
1707      }
1708      break;
1709    }
1710    }
1711  }
1712
1713  if (Invalid || Init.isInvalid())
1714    return ExprError();
1715
1716  // Clear out the expressions within the designation.
1717  Desig.ClearExprs(*this);
1718
1719  DesignatedInitExpr *DIE
1720    = DesignatedInitExpr::Create(Context,
1721                                 Designators.data(), Designators.size(),
1722                                 InitExpressions.data(), InitExpressions.size(),
1723                                 Loc, GNUSyntax, Init.takeAs<Expr>());
1724  return Owned(DIE);
1725}
1726
1727bool Sema::CheckInitList(InitListExpr *&InitList, QualType &DeclType) {
1728  InitListChecker CheckInitList(*this, InitList, DeclType);
1729  if (!CheckInitList.HadError())
1730    InitList = CheckInitList.getFullyStructuredList();
1731
1732  return CheckInitList.HadError();
1733}
1734
1735/// \brief Diagnose any semantic errors with value-initialization of
1736/// the given type.
1737///
1738/// Value-initialization effectively zero-initializes any types
1739/// without user-declared constructors, and calls the default
1740/// constructor for a for any type that has a user-declared
1741/// constructor (C++ [dcl.init]p5). Value-initialization can fail when
1742/// a type with a user-declared constructor does not have an
1743/// accessible, non-deleted default constructor. In C, everything can
1744/// be value-initialized, which corresponds to C's notion of
1745/// initializing objects with static storage duration when no
1746/// initializer is provided for that object.
1747///
1748/// \returns true if there was an error, false otherwise.
1749bool Sema::CheckValueInitialization(QualType Type, SourceLocation Loc) {
1750  // C++ [dcl.init]p5:
1751  //
1752  //   To value-initialize an object of type T means:
1753
1754  //     -- if T is an array type, then each element is value-initialized;
1755  if (const ArrayType *AT = Context.getAsArrayType(Type))
1756    return CheckValueInitialization(AT->getElementType(), Loc);
1757
1758  if (const RecordType *RT = Type->getAsRecordType()) {
1759    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1760      // -- if T is a class type (clause 9) with a user-declared
1761      //    constructor (12.1), then the default constructor for T is
1762      //    called (and the initialization is ill-formed if T has no
1763      //    accessible default constructor);
1764      if (ClassDecl->hasUserDeclaredConstructor())
1765        // FIXME: Eventually, we'll need to put the constructor decl into the
1766        // AST.
1767        return PerformInitializationByConstructor(Type, 0, 0, Loc,
1768                                                  SourceRange(Loc),
1769                                                  DeclarationName(),
1770                                                  IK_Direct);
1771    }
1772  }
1773
1774  if (Type->isReferenceType()) {
1775    // C++ [dcl.init]p5:
1776    //   [...] A program that calls for default-initialization or
1777    //   value-initialization of an entity of reference type is
1778    //   ill-formed. [...]
1779    // FIXME: Once we have code that goes through this path, add an actual
1780    // diagnostic :)
1781  }
1782
1783  return false;
1784}
1785