SemaInit.cpp revision 34acd3e62c4ca3a2904f2515ff2a1a94c7d27b01
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14// This file also implements Sema::CheckInitializerTypes.
15//
16//===----------------------------------------------------------------------===//
17
18#include "Sema.h"
19#include "clang/Parse/Designator.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include <map>
24using namespace clang;
25
26//===----------------------------------------------------------------------===//
27// Sema Initialization Checking
28//===----------------------------------------------------------------------===//
29
30static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
31  const ArrayType *AT = Context.getAsArrayType(DeclType);
32  if (!AT) return 0;
33
34  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
35    return 0;
36
37  // See if this is a string literal or @encode.
38  Init = Init->IgnoreParens();
39
40  // Handle @encode, which is a narrow string.
41  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
42    return Init;
43
44  // Otherwise we can only handle string literals.
45  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
46  if (SL == 0) return 0;
47
48  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
49  // char array can be initialized with a narrow string.
50  // Only allow char x[] = "foo";  not char x[] = L"foo";
51  if (!SL->isWide())
52    return ElemTy->isCharType() ? Init : 0;
53
54  // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
55  // correction from DR343): "An array with element type compatible with a
56  // qualified or unqualified version of wchar_t may be initialized by a wide
57  // string literal, optionally enclosed in braces."
58  if (Context.typesAreCompatible(Context.getWCharType(),
59                                 ElemTy.getUnqualifiedType()))
60    return Init;
61
62  return 0;
63}
64
65static bool CheckSingleInitializer(Expr *&Init, QualType DeclType,
66                                   bool DirectInit, Sema &S) {
67  // Get the type before calling CheckSingleAssignmentConstraints(), since
68  // it can promote the expression.
69  QualType InitType = Init->getType();
70
71  if (S.getLangOptions().CPlusPlus) {
72    // FIXME: I dislike this error message. A lot.
73    if (S.PerformImplicitConversion(Init, DeclType,
74                                    "initializing", DirectInit)) {
75      ImplicitConversionSequence ICS;
76      OverloadCandidateSet CandidateSet;
77      if (S.IsUserDefinedConversion(Init, DeclType, ICS.UserDefined,
78                              CandidateSet,
79                              true, false, false) != S.OR_Ambiguous)
80        return S.Diag(Init->getSourceRange().getBegin(),
81                      diag::err_typecheck_convert_incompatible)
82                      << DeclType << Init->getType() << "initializing"
83                      << Init->getSourceRange();
84      S.Diag(Init->getSourceRange().getBegin(),
85             diag::err_typecheck_convert_ambiguous)
86            << DeclType << Init->getType() << Init->getSourceRange();
87      S.PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
88      return true;
89    }
90    return false;
91  }
92
93  Sema::AssignConvertType ConvTy =
94    S.CheckSingleAssignmentConstraints(DeclType, Init);
95  return S.DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
96                                  InitType, Init, "initializing");
97}
98
99static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
100  // Get the length of the string as parsed.
101  uint64_t StrLength =
102    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
103
104
105  const ArrayType *AT = S.Context.getAsArrayType(DeclT);
106  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
107    // C99 6.7.8p14. We have an array of character type with unknown size
108    // being initialized to a string literal.
109    llvm::APSInt ConstVal(32);
110    ConstVal = StrLength;
111    // Return a new array type (C99 6.7.8p22).
112    DeclT = S.Context.getConstantArrayWithoutExprType(IAT->getElementType(),
113                                                      ConstVal,
114                                                      ArrayType::Normal, 0);
115    return;
116  }
117
118  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
119
120  // C99 6.7.8p14. We have an array of character type with known size.  However,
121  // the size may be smaller or larger than the string we are initializing.
122  // FIXME: Avoid truncation for 64-bit length strings.
123  if (StrLength-1 > CAT->getSize().getZExtValue())
124    S.Diag(Str->getSourceRange().getBegin(),
125           diag::warn_initializer_string_for_char_array_too_long)
126      << Str->getSourceRange();
127
128  // Set the type to the actual size that we are initializing.  If we have
129  // something like:
130  //   char x[1] = "foo";
131  // then this will set the string literal's type to char[1].
132  Str->setType(DeclT);
133}
134
135bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
136                                 SourceLocation InitLoc,
137                                 DeclarationName InitEntity, bool DirectInit) {
138  if (DeclType->isDependentType() ||
139      Init->isTypeDependent() || Init->isValueDependent())
140    return false;
141
142  // C++ [dcl.init.ref]p1:
143  //   A variable declared to be a T& or T&&, that is "reference to type T"
144  //   (8.3.2), shall be initialized by an object, or function, of
145  //   type T or by an object that can be converted into a T.
146  if (DeclType->isReferenceType())
147    return CheckReferenceInit(Init, DeclType,
148                              /*SuppressUserConversions=*/false,
149                              /*AllowExplicit=*/DirectInit,
150                              /*ForceRValue=*/false);
151
152  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
153  // of unknown size ("[]") or an object type that is not a variable array type.
154  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
155    return Diag(InitLoc,  diag::err_variable_object_no_init)
156    << VAT->getSizeExpr()->getSourceRange();
157
158  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
159  if (!InitList) {
160    // FIXME: Handle wide strings
161    if (Expr *Str = IsStringInit(Init, DeclType, Context)) {
162      CheckStringInit(Str, DeclType, *this);
163      return false;
164    }
165
166    // C++ [dcl.init]p14:
167    //   -- If the destination type is a (possibly cv-qualified) class
168    //      type:
169    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
170      QualType DeclTypeC = Context.getCanonicalType(DeclType);
171      QualType InitTypeC = Context.getCanonicalType(Init->getType());
172
173      //   -- If the initialization is direct-initialization, or if it is
174      //      copy-initialization where the cv-unqualified version of the
175      //      source type is the same class as, or a derived class of, the
176      //      class of the destination, constructors are considered.
177      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
178          IsDerivedFrom(InitTypeC, DeclTypeC)) {
179        const CXXRecordDecl *RD =
180          cast<CXXRecordDecl>(DeclType->getAs<RecordType>()->getDecl());
181
182        // No need to make a CXXConstructExpr if both the ctor and dtor are
183        // trivial.
184        if (RD->hasTrivialConstructor() && RD->hasTrivialDestructor())
185          return false;
186
187        ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
188
189        CXXConstructorDecl *Constructor
190          = PerformInitializationByConstructor(DeclType,
191                                               MultiExprArg(*this,
192                                                            (void **)&Init, 1),
193                                               InitLoc, Init->getSourceRange(),
194                                               InitEntity,
195                                               DirectInit? IK_Direct : IK_Copy,
196                                               ConstructorArgs);
197        if (!Constructor)
198          return true;
199
200        OwningExprResult InitResult =
201          BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
202                                DeclType, Constructor,
203                                move_arg(ConstructorArgs));
204        if (InitResult.isInvalid())
205          return true;
206
207        Init = InitResult.takeAs<Expr>();
208        return false;
209      }
210
211      //   -- Otherwise (i.e., for the remaining copy-initialization
212      //      cases), user-defined conversion sequences that can
213      //      convert from the source type to the destination type or
214      //      (when a conversion function is used) to a derived class
215      //      thereof are enumerated as described in 13.3.1.4, and the
216      //      best one is chosen through overload resolution
217      //      (13.3). If the conversion cannot be done or is
218      //      ambiguous, the initialization is ill-formed. The
219      //      function selected is called with the initializer
220      //      expression as its argument; if the function is a
221      //      constructor, the call initializes a temporary of the
222      //      destination type.
223      // FIXME: We're pretending to do copy elision here; return to this when we
224      // have ASTs for such things.
225      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
226        return false;
227
228      if (InitEntity)
229        return Diag(InitLoc, diag::err_cannot_initialize_decl)
230          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
231          << Init->getType() << Init->getSourceRange();
232      return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
233        << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
234        << Init->getType() << Init->getSourceRange();
235    }
236
237    // C99 6.7.8p16.
238    if (DeclType->isArrayType())
239      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
240        << Init->getSourceRange();
241
242    return CheckSingleInitializer(Init, DeclType, DirectInit, *this);
243  }
244
245  bool hadError = CheckInitList(InitList, DeclType);
246  Init = InitList;
247  return hadError;
248}
249
250//===----------------------------------------------------------------------===//
251// Semantic checking for initializer lists.
252//===----------------------------------------------------------------------===//
253
254/// @brief Semantic checking for initializer lists.
255///
256/// The InitListChecker class contains a set of routines that each
257/// handle the initialization of a certain kind of entity, e.g.,
258/// arrays, vectors, struct/union types, scalars, etc. The
259/// InitListChecker itself performs a recursive walk of the subobject
260/// structure of the type to be initialized, while stepping through
261/// the initializer list one element at a time. The IList and Index
262/// parameters to each of the Check* routines contain the active
263/// (syntactic) initializer list and the index into that initializer
264/// list that represents the current initializer. Each routine is
265/// responsible for moving that Index forward as it consumes elements.
266///
267/// Each Check* routine also has a StructuredList/StructuredIndex
268/// arguments, which contains the current the "structured" (semantic)
269/// initializer list and the index into that initializer list where we
270/// are copying initializers as we map them over to the semantic
271/// list. Once we have completed our recursive walk of the subobject
272/// structure, we will have constructed a full semantic initializer
273/// list.
274///
275/// C99 designators cause changes in the initializer list traversal,
276/// because they make the initialization "jump" into a specific
277/// subobject and then continue the initialization from that
278/// point. CheckDesignatedInitializer() recursively steps into the
279/// designated subobject and manages backing out the recursion to
280/// initialize the subobjects after the one designated.
281namespace {
282class InitListChecker {
283  Sema &SemaRef;
284  bool hadError;
285  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
286  InitListExpr *FullyStructuredList;
287
288  void CheckImplicitInitList(InitListExpr *ParentIList, QualType T,
289                             unsigned &Index, InitListExpr *StructuredList,
290                             unsigned &StructuredIndex,
291                             bool TopLevelObject = false);
292  void CheckExplicitInitList(InitListExpr *IList, QualType &T,
293                             unsigned &Index, InitListExpr *StructuredList,
294                             unsigned &StructuredIndex,
295                             bool TopLevelObject = false);
296  void CheckListElementTypes(InitListExpr *IList, QualType &DeclType,
297                             bool SubobjectIsDesignatorContext,
298                             unsigned &Index,
299                             InitListExpr *StructuredList,
300                             unsigned &StructuredIndex,
301                             bool TopLevelObject = false);
302  void CheckSubElementType(InitListExpr *IList, QualType ElemType,
303                           unsigned &Index,
304                           InitListExpr *StructuredList,
305                           unsigned &StructuredIndex);
306  void CheckScalarType(InitListExpr *IList, QualType DeclType,
307                       unsigned &Index,
308                       InitListExpr *StructuredList,
309                       unsigned &StructuredIndex);
310  void CheckReferenceType(InitListExpr *IList, QualType DeclType,
311                          unsigned &Index,
312                          InitListExpr *StructuredList,
313                          unsigned &StructuredIndex);
314  void CheckVectorType(InitListExpr *IList, QualType DeclType, unsigned &Index,
315                       InitListExpr *StructuredList,
316                       unsigned &StructuredIndex);
317  void CheckStructUnionTypes(InitListExpr *IList, QualType DeclType,
318                             RecordDecl::field_iterator Field,
319                             bool SubobjectIsDesignatorContext, unsigned &Index,
320                             InitListExpr *StructuredList,
321                             unsigned &StructuredIndex,
322                             bool TopLevelObject = false);
323  void CheckArrayType(InitListExpr *IList, QualType &DeclType,
324                      llvm::APSInt elementIndex,
325                      bool SubobjectIsDesignatorContext, unsigned &Index,
326                      InitListExpr *StructuredList,
327                      unsigned &StructuredIndex);
328  bool CheckDesignatedInitializer(InitListExpr *IList, DesignatedInitExpr *DIE,
329                                  unsigned DesigIdx,
330                                  QualType &CurrentObjectType,
331                                  RecordDecl::field_iterator *NextField,
332                                  llvm::APSInt *NextElementIndex,
333                                  unsigned &Index,
334                                  InitListExpr *StructuredList,
335                                  unsigned &StructuredIndex,
336                                  bool FinishSubobjectInit,
337                                  bool TopLevelObject);
338  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
339                                           QualType CurrentObjectType,
340                                           InitListExpr *StructuredList,
341                                           unsigned StructuredIndex,
342                                           SourceRange InitRange);
343  void UpdateStructuredListElement(InitListExpr *StructuredList,
344                                   unsigned &StructuredIndex,
345                                   Expr *expr);
346  int numArrayElements(QualType DeclType);
347  int numStructUnionElements(QualType DeclType);
348
349  void FillInValueInitializations(InitListExpr *ILE);
350public:
351  InitListChecker(Sema &S, InitListExpr *IL, QualType &T);
352  bool HadError() { return hadError; }
353
354  // @brief Retrieves the fully-structured initializer list used for
355  // semantic analysis and code generation.
356  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
357};
358} // end anonymous namespace
359
360/// Recursively replaces NULL values within the given initializer list
361/// with expressions that perform value-initialization of the
362/// appropriate type.
363void InitListChecker::FillInValueInitializations(InitListExpr *ILE) {
364  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
365         "Should not have void type");
366  SourceLocation Loc = ILE->getSourceRange().getBegin();
367  if (ILE->getSyntacticForm())
368    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
369
370  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
371    unsigned Init = 0, NumInits = ILE->getNumInits();
372    for (RecordDecl::field_iterator
373           Field = RType->getDecl()->field_begin(),
374           FieldEnd = RType->getDecl()->field_end();
375         Field != FieldEnd; ++Field) {
376      if (Field->isUnnamedBitfield())
377        continue;
378
379      if (Init >= NumInits || !ILE->getInit(Init)) {
380        if (Field->getType()->isReferenceType()) {
381          // C++ [dcl.init.aggr]p9:
382          //   If an incomplete or empty initializer-list leaves a
383          //   member of reference type uninitialized, the program is
384          //   ill-formed.
385          SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
386            << Field->getType()
387            << ILE->getSyntacticForm()->getSourceRange();
388          SemaRef.Diag(Field->getLocation(),
389                        diag::note_uninit_reference_member);
390          hadError = true;
391          return;
392        } else if (SemaRef.CheckValueInitialization(Field->getType(), Loc)) {
393          hadError = true;
394          return;
395        }
396
397        // FIXME: If value-initialization involves calling a constructor, should
398        // we make that call explicit in the representation (even when it means
399        // extending the initializer list)?
400        if (Init < NumInits && !hadError)
401          ILE->setInit(Init,
402              new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()));
403      } else if (InitListExpr *InnerILE
404                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
405        FillInValueInitializations(InnerILE);
406      ++Init;
407
408      // Only look at the first initialization of a union.
409      if (RType->getDecl()->isUnion())
410        break;
411    }
412
413    return;
414  }
415
416  QualType ElementType;
417
418  unsigned NumInits = ILE->getNumInits();
419  unsigned NumElements = NumInits;
420  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
421    ElementType = AType->getElementType();
422    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
423      NumElements = CAType->getSize().getZExtValue();
424  } else if (const VectorType *VType = ILE->getType()->getAsVectorType()) {
425    ElementType = VType->getElementType();
426    NumElements = VType->getNumElements();
427  } else
428    ElementType = ILE->getType();
429
430  for (unsigned Init = 0; Init != NumElements; ++Init) {
431    if (Init >= NumInits || !ILE->getInit(Init)) {
432      if (SemaRef.CheckValueInitialization(ElementType, Loc)) {
433        hadError = true;
434        return;
435      }
436
437      // FIXME: If value-initialization involves calling a constructor, should
438      // we make that call explicit in the representation (even when it means
439      // extending the initializer list)?
440      if (Init < NumInits && !hadError)
441        ILE->setInit(Init,
442                     new (SemaRef.Context) ImplicitValueInitExpr(ElementType));
443    } else if (InitListExpr *InnerILE
444               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
445      FillInValueInitializations(InnerILE);
446  }
447}
448
449
450InitListChecker::InitListChecker(Sema &S, InitListExpr *IL, QualType &T)
451  : SemaRef(S) {
452  hadError = false;
453
454  unsigned newIndex = 0;
455  unsigned newStructuredIndex = 0;
456  FullyStructuredList
457    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
458  CheckExplicitInitList(IL, T, newIndex, FullyStructuredList, newStructuredIndex,
459                        /*TopLevelObject=*/true);
460
461  if (!hadError)
462    FillInValueInitializations(FullyStructuredList);
463}
464
465int InitListChecker::numArrayElements(QualType DeclType) {
466  // FIXME: use a proper constant
467  int maxElements = 0x7FFFFFFF;
468  if (const ConstantArrayType *CAT =
469        SemaRef.Context.getAsConstantArrayType(DeclType)) {
470    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
471  }
472  return maxElements;
473}
474
475int InitListChecker::numStructUnionElements(QualType DeclType) {
476  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
477  int InitializableMembers = 0;
478  for (RecordDecl::field_iterator
479         Field = structDecl->field_begin(),
480         FieldEnd = structDecl->field_end();
481       Field != FieldEnd; ++Field) {
482    if ((*Field)->getIdentifier() || !(*Field)->isBitField())
483      ++InitializableMembers;
484  }
485  if (structDecl->isUnion())
486    return std::min(InitializableMembers, 1);
487  return InitializableMembers - structDecl->hasFlexibleArrayMember();
488}
489
490void InitListChecker::CheckImplicitInitList(InitListExpr *ParentIList,
491                                            QualType T, unsigned &Index,
492                                            InitListExpr *StructuredList,
493                                            unsigned &StructuredIndex,
494                                            bool TopLevelObject) {
495  int maxElements = 0;
496
497  if (T->isArrayType())
498    maxElements = numArrayElements(T);
499  else if (T->isStructureType() || T->isUnionType())
500    maxElements = numStructUnionElements(T);
501  else if (T->isVectorType())
502    maxElements = T->getAsVectorType()->getNumElements();
503  else
504    assert(0 && "CheckImplicitInitList(): Illegal type");
505
506  if (maxElements == 0) {
507    SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
508                  diag::err_implicit_empty_initializer);
509    ++Index;
510    hadError = true;
511    return;
512  }
513
514  // Build a structured initializer list corresponding to this subobject.
515  InitListExpr *StructuredSubobjectInitList
516    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
517                                 StructuredIndex,
518          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
519                      ParentIList->getSourceRange().getEnd()));
520  unsigned StructuredSubobjectInitIndex = 0;
521
522  // Check the element types and build the structural subobject.
523  unsigned StartIndex = Index;
524  CheckListElementTypes(ParentIList, T, false, Index,
525                        StructuredSubobjectInitList,
526                        StructuredSubobjectInitIndex,
527                        TopLevelObject);
528  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
529  StructuredSubobjectInitList->setType(T);
530
531  // Update the structured sub-object initializer so that it's ending
532  // range corresponds with the end of the last initializer it used.
533  if (EndIndex < ParentIList->getNumInits()) {
534    SourceLocation EndLoc
535      = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
536    StructuredSubobjectInitList->setRBraceLoc(EndLoc);
537  }
538}
539
540void InitListChecker::CheckExplicitInitList(InitListExpr *IList, QualType &T,
541                                            unsigned &Index,
542                                            InitListExpr *StructuredList,
543                                            unsigned &StructuredIndex,
544                                            bool TopLevelObject) {
545  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
546  SyntacticToSemantic[IList] = StructuredList;
547  StructuredList->setSyntacticForm(IList);
548  CheckListElementTypes(IList, T, true, Index, StructuredList,
549                        StructuredIndex, TopLevelObject);
550  IList->setType(T);
551  StructuredList->setType(T);
552  if (hadError)
553    return;
554
555  if (Index < IList->getNumInits()) {
556    // We have leftover initializers
557    if (StructuredIndex == 1 &&
558        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
559      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
560      if (SemaRef.getLangOptions().CPlusPlus) {
561        DK = diag::err_excess_initializers_in_char_array_initializer;
562        hadError = true;
563      }
564      // Special-case
565      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
566        << IList->getInit(Index)->getSourceRange();
567    } else if (!T->isIncompleteType()) {
568      // Don't complain for incomplete types, since we'll get an error
569      // elsewhere
570      QualType CurrentObjectType = StructuredList->getType();
571      int initKind =
572        CurrentObjectType->isArrayType()? 0 :
573        CurrentObjectType->isVectorType()? 1 :
574        CurrentObjectType->isScalarType()? 2 :
575        CurrentObjectType->isUnionType()? 3 :
576        4;
577
578      unsigned DK = diag::warn_excess_initializers;
579      if (SemaRef.getLangOptions().CPlusPlus) {
580        DK = diag::err_excess_initializers;
581        hadError = true;
582      }
583      if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
584        DK = diag::err_excess_initializers;
585        hadError = true;
586      }
587
588      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
589        << initKind << IList->getInit(Index)->getSourceRange();
590    }
591  }
592
593  if (T->isScalarType() && !TopLevelObject)
594    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
595      << IList->getSourceRange()
596      << CodeModificationHint::CreateRemoval(SourceRange(IList->getLocStart()))
597      << CodeModificationHint::CreateRemoval(SourceRange(IList->getLocEnd()));
598}
599
600void InitListChecker::CheckListElementTypes(InitListExpr *IList,
601                                            QualType &DeclType,
602                                            bool SubobjectIsDesignatorContext,
603                                            unsigned &Index,
604                                            InitListExpr *StructuredList,
605                                            unsigned &StructuredIndex,
606                                            bool TopLevelObject) {
607  if (DeclType->isScalarType()) {
608    CheckScalarType(IList, DeclType, Index, StructuredList, StructuredIndex);
609  } else if (DeclType->isVectorType()) {
610    CheckVectorType(IList, DeclType, Index, StructuredList, StructuredIndex);
611  } else if (DeclType->isAggregateType()) {
612    if (DeclType->isRecordType()) {
613      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
614      CheckStructUnionTypes(IList, DeclType, RD->field_begin(),
615                            SubobjectIsDesignatorContext, Index,
616                            StructuredList, StructuredIndex,
617                            TopLevelObject);
618    } else if (DeclType->isArrayType()) {
619      llvm::APSInt Zero(
620                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
621                      false);
622      CheckArrayType(IList, DeclType, Zero, SubobjectIsDesignatorContext, Index,
623                     StructuredList, StructuredIndex);
624    } else
625      assert(0 && "Aggregate that isn't a structure or array?!");
626  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
627    // This type is invalid, issue a diagnostic.
628    ++Index;
629    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
630      << DeclType;
631    hadError = true;
632  } else if (DeclType->isRecordType()) {
633    // C++ [dcl.init]p14:
634    //   [...] If the class is an aggregate (8.5.1), and the initializer
635    //   is a brace-enclosed list, see 8.5.1.
636    //
637    // Note: 8.5.1 is handled below; here, we diagnose the case where
638    // we have an initializer list and a destination type that is not
639    // an aggregate.
640    // FIXME: In C++0x, this is yet another form of initialization.
641    SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
642      << DeclType << IList->getSourceRange();
643    hadError = true;
644  } else if (DeclType->isReferenceType()) {
645    CheckReferenceType(IList, DeclType, Index, StructuredList, StructuredIndex);
646  } else {
647    // In C, all types are either scalars or aggregates, but
648    // additional handling is needed here for C++ (and possibly others?).
649    assert(0 && "Unsupported initializer type");
650  }
651}
652
653void InitListChecker::CheckSubElementType(InitListExpr *IList,
654                                          QualType ElemType,
655                                          unsigned &Index,
656                                          InitListExpr *StructuredList,
657                                          unsigned &StructuredIndex) {
658  Expr *expr = IList->getInit(Index);
659  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
660    unsigned newIndex = 0;
661    unsigned newStructuredIndex = 0;
662    InitListExpr *newStructuredList
663      = getStructuredSubobjectInit(IList, Index, ElemType,
664                                   StructuredList, StructuredIndex,
665                                   SubInitList->getSourceRange());
666    CheckExplicitInitList(SubInitList, ElemType, newIndex,
667                          newStructuredList, newStructuredIndex);
668    ++StructuredIndex;
669    ++Index;
670  } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
671    CheckStringInit(Str, ElemType, SemaRef);
672    UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
673    ++Index;
674  } else if (ElemType->isScalarType()) {
675    CheckScalarType(IList, ElemType, Index, StructuredList, StructuredIndex);
676  } else if (ElemType->isReferenceType()) {
677    CheckReferenceType(IList, ElemType, Index, StructuredList, StructuredIndex);
678  } else {
679    if (SemaRef.getLangOptions().CPlusPlus) {
680      // C++ [dcl.init.aggr]p12:
681      //   All implicit type conversions (clause 4) are considered when
682      //   initializing the aggregate member with an ini- tializer from
683      //   an initializer-list. If the initializer can initialize a
684      //   member, the member is initialized. [...]
685      ImplicitConversionSequence ICS
686        = SemaRef.TryCopyInitialization(expr, ElemType,
687                                        /*SuppressUserConversions=*/false,
688                                        /*ForceRValue=*/false,
689                                        /*InOverloadResolution=*/false);
690
691      if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion) {
692        if (SemaRef.PerformImplicitConversion(expr, ElemType, ICS,
693                                               "initializing"))
694          hadError = true;
695        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
696        ++Index;
697        return;
698      }
699
700      // Fall through for subaggregate initialization
701    } else {
702      // C99 6.7.8p13:
703      //
704      //   The initializer for a structure or union object that has
705      //   automatic storage duration shall be either an initializer
706      //   list as described below, or a single expression that has
707      //   compatible structure or union type. In the latter case, the
708      //   initial value of the object, including unnamed members, is
709      //   that of the expression.
710      if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
711          SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) {
712        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
713        ++Index;
714        return;
715      }
716
717      // Fall through for subaggregate initialization
718    }
719
720    // C++ [dcl.init.aggr]p12:
721    //
722    //   [...] Otherwise, if the member is itself a non-empty
723    //   subaggregate, brace elision is assumed and the initializer is
724    //   considered for the initialization of the first member of
725    //   the subaggregate.
726    if (ElemType->isAggregateType() || ElemType->isVectorType()) {
727      CheckImplicitInitList(IList, ElemType, Index, StructuredList,
728                            StructuredIndex);
729      ++StructuredIndex;
730    } else {
731      // We cannot initialize this element, so let
732      // PerformCopyInitialization produce the appropriate diagnostic.
733      SemaRef.PerformCopyInitialization(expr, ElemType, "initializing");
734      hadError = true;
735      ++Index;
736      ++StructuredIndex;
737    }
738  }
739}
740
741void InitListChecker::CheckScalarType(InitListExpr *IList, QualType DeclType,
742                                      unsigned &Index,
743                                      InitListExpr *StructuredList,
744                                      unsigned &StructuredIndex) {
745  if (Index < IList->getNumInits()) {
746    Expr *expr = IList->getInit(Index);
747    if (isa<InitListExpr>(expr)) {
748      SemaRef.Diag(IList->getLocStart(),
749                    diag::err_many_braces_around_scalar_init)
750        << IList->getSourceRange();
751      hadError = true;
752      ++Index;
753      ++StructuredIndex;
754      return;
755    } else if (isa<DesignatedInitExpr>(expr)) {
756      SemaRef.Diag(expr->getSourceRange().getBegin(),
757                    diag::err_designator_for_scalar_init)
758        << DeclType << expr->getSourceRange();
759      hadError = true;
760      ++Index;
761      ++StructuredIndex;
762      return;
763    }
764
765    Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
766    if (CheckSingleInitializer(expr, DeclType, false, SemaRef))
767      hadError = true; // types weren't compatible.
768    else if (savExpr != expr) {
769      // The type was promoted, update initializer list.
770      IList->setInit(Index, expr);
771    }
772    if (hadError)
773      ++StructuredIndex;
774    else
775      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
776    ++Index;
777  } else {
778    SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
779      << IList->getSourceRange();
780    hadError = true;
781    ++Index;
782    ++StructuredIndex;
783    return;
784  }
785}
786
787void InitListChecker::CheckReferenceType(InitListExpr *IList, QualType DeclType,
788                                         unsigned &Index,
789                                         InitListExpr *StructuredList,
790                                         unsigned &StructuredIndex) {
791  if (Index < IList->getNumInits()) {
792    Expr *expr = IList->getInit(Index);
793    if (isa<InitListExpr>(expr)) {
794      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
795        << DeclType << IList->getSourceRange();
796      hadError = true;
797      ++Index;
798      ++StructuredIndex;
799      return;
800    }
801
802    Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
803    if (SemaRef.CheckReferenceInit(expr, DeclType,
804                                   /*SuppressUserConversions=*/false,
805                                   /*AllowExplicit=*/false,
806                                   /*ForceRValue=*/false))
807      hadError = true;
808    else if (savExpr != expr) {
809      // The type was promoted, update initializer list.
810      IList->setInit(Index, expr);
811    }
812    if (hadError)
813      ++StructuredIndex;
814    else
815      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
816    ++Index;
817  } else {
818    // FIXME: It would be wonderful if we could point at the actual member. In
819    // general, it would be useful to pass location information down the stack,
820    // so that we know the location (or decl) of the "current object" being
821    // initialized.
822    SemaRef.Diag(IList->getLocStart(),
823                  diag::err_init_reference_member_uninitialized)
824      << DeclType
825      << IList->getSourceRange();
826    hadError = true;
827    ++Index;
828    ++StructuredIndex;
829    return;
830  }
831}
832
833void InitListChecker::CheckVectorType(InitListExpr *IList, QualType DeclType,
834                                      unsigned &Index,
835                                      InitListExpr *StructuredList,
836                                      unsigned &StructuredIndex) {
837  if (Index < IList->getNumInits()) {
838    const VectorType *VT = DeclType->getAsVectorType();
839    unsigned maxElements = VT->getNumElements();
840    unsigned numEltsInit = 0;
841    QualType elementType = VT->getElementType();
842
843    if (!SemaRef.getLangOptions().OpenCL) {
844      for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
845        // Don't attempt to go past the end of the init list
846        if (Index >= IList->getNumInits())
847          break;
848        CheckSubElementType(IList, elementType, Index,
849                            StructuredList, StructuredIndex);
850      }
851    } else {
852      // OpenCL initializers allows vectors to be constructed from vectors.
853      for (unsigned i = 0; i < maxElements; ++i) {
854        // Don't attempt to go past the end of the init list
855        if (Index >= IList->getNumInits())
856          break;
857        QualType IType = IList->getInit(Index)->getType();
858        if (!IType->isVectorType()) {
859          CheckSubElementType(IList, elementType, Index,
860                              StructuredList, StructuredIndex);
861          ++numEltsInit;
862        } else {
863          const VectorType *IVT = IType->getAsVectorType();
864          unsigned numIElts = IVT->getNumElements();
865          QualType VecType = SemaRef.Context.getExtVectorType(elementType,
866                                                              numIElts);
867          CheckSubElementType(IList, VecType, Index,
868                              StructuredList, StructuredIndex);
869          numEltsInit += numIElts;
870        }
871      }
872    }
873
874    // OpenCL & AltiVec require all elements to be initialized.
875    if (numEltsInit != maxElements)
876      if (SemaRef.getLangOptions().OpenCL || SemaRef.getLangOptions().AltiVec)
877        SemaRef.Diag(IList->getSourceRange().getBegin(),
878                     diag::err_vector_incorrect_num_initializers)
879          << (numEltsInit < maxElements) << maxElements << numEltsInit;
880  }
881}
882
883void InitListChecker::CheckArrayType(InitListExpr *IList, QualType &DeclType,
884                                     llvm::APSInt elementIndex,
885                                     bool SubobjectIsDesignatorContext,
886                                     unsigned &Index,
887                                     InitListExpr *StructuredList,
888                                     unsigned &StructuredIndex) {
889  // Check for the special-case of initializing an array with a string.
890  if (Index < IList->getNumInits()) {
891    if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
892                                 SemaRef.Context)) {
893      CheckStringInit(Str, DeclType, SemaRef);
894      // We place the string literal directly into the resulting
895      // initializer list. This is the only place where the structure
896      // of the structured initializer list doesn't match exactly,
897      // because doing so would involve allocating one character
898      // constant for each string.
899      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
900      StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
901      ++Index;
902      return;
903    }
904  }
905  if (const VariableArrayType *VAT =
906        SemaRef.Context.getAsVariableArrayType(DeclType)) {
907    // Check for VLAs; in standard C it would be possible to check this
908    // earlier, but I don't know where clang accepts VLAs (gcc accepts
909    // them in all sorts of strange places).
910    SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
911                  diag::err_variable_object_no_init)
912      << VAT->getSizeExpr()->getSourceRange();
913    hadError = true;
914    ++Index;
915    ++StructuredIndex;
916    return;
917  }
918
919  // We might know the maximum number of elements in advance.
920  llvm::APSInt maxElements(elementIndex.getBitWidth(),
921                           elementIndex.isUnsigned());
922  bool maxElementsKnown = false;
923  if (const ConstantArrayType *CAT =
924        SemaRef.Context.getAsConstantArrayType(DeclType)) {
925    maxElements = CAT->getSize();
926    elementIndex.extOrTrunc(maxElements.getBitWidth());
927    elementIndex.setIsUnsigned(maxElements.isUnsigned());
928    maxElementsKnown = true;
929  }
930
931  QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
932                             ->getElementType();
933  while (Index < IList->getNumInits()) {
934    Expr *Init = IList->getInit(Index);
935    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
936      // If we're not the subobject that matches up with the '{' for
937      // the designator, we shouldn't be handling the
938      // designator. Return immediately.
939      if (!SubobjectIsDesignatorContext)
940        return;
941
942      // Handle this designated initializer. elementIndex will be
943      // updated to be the next array element we'll initialize.
944      if (CheckDesignatedInitializer(IList, DIE, 0,
945                                     DeclType, 0, &elementIndex, Index,
946                                     StructuredList, StructuredIndex, true,
947                                     false)) {
948        hadError = true;
949        continue;
950      }
951
952      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
953        maxElements.extend(elementIndex.getBitWidth());
954      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
955        elementIndex.extend(maxElements.getBitWidth());
956      elementIndex.setIsUnsigned(maxElements.isUnsigned());
957
958      // If the array is of incomplete type, keep track of the number of
959      // elements in the initializer.
960      if (!maxElementsKnown && elementIndex > maxElements)
961        maxElements = elementIndex;
962
963      continue;
964    }
965
966    // If we know the maximum number of elements, and we've already
967    // hit it, stop consuming elements in the initializer list.
968    if (maxElementsKnown && elementIndex == maxElements)
969      break;
970
971    // Check this element.
972    CheckSubElementType(IList, elementType, Index,
973                        StructuredList, StructuredIndex);
974    ++elementIndex;
975
976    // If the array is of incomplete type, keep track of the number of
977    // elements in the initializer.
978    if (!maxElementsKnown && elementIndex > maxElements)
979      maxElements = elementIndex;
980  }
981  if (!hadError && DeclType->isIncompleteArrayType()) {
982    // If this is an incomplete array type, the actual type needs to
983    // be calculated here.
984    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
985    if (maxElements == Zero) {
986      // Sizing an array implicitly to zero is not allowed by ISO C,
987      // but is supported by GNU.
988      SemaRef.Diag(IList->getLocStart(),
989                    diag::ext_typecheck_zero_array_size);
990    }
991
992    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
993                                                     ArrayType::Normal, 0);
994  }
995}
996
997void InitListChecker::CheckStructUnionTypes(InitListExpr *IList,
998                                            QualType DeclType,
999                                            RecordDecl::field_iterator Field,
1000                                            bool SubobjectIsDesignatorContext,
1001                                            unsigned &Index,
1002                                            InitListExpr *StructuredList,
1003                                            unsigned &StructuredIndex,
1004                                            bool TopLevelObject) {
1005  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1006
1007  // If the record is invalid, some of it's members are invalid. To avoid
1008  // confusion, we forgo checking the intializer for the entire record.
1009  if (structDecl->isInvalidDecl()) {
1010    hadError = true;
1011    return;
1012  }
1013
1014  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1015    // Value-initialize the first named member of the union.
1016    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1017    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1018         Field != FieldEnd; ++Field) {
1019      if (Field->getDeclName()) {
1020        StructuredList->setInitializedFieldInUnion(*Field);
1021        break;
1022      }
1023    }
1024    return;
1025  }
1026
1027  // If structDecl is a forward declaration, this loop won't do
1028  // anything except look at designated initializers; That's okay,
1029  // because an error should get printed out elsewhere. It might be
1030  // worthwhile to skip over the rest of the initializer, though.
1031  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1032  RecordDecl::field_iterator FieldEnd = RD->field_end();
1033  bool InitializedSomething = false;
1034  while (Index < IList->getNumInits()) {
1035    Expr *Init = IList->getInit(Index);
1036
1037    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1038      // If we're not the subobject that matches up with the '{' for
1039      // the designator, we shouldn't be handling the
1040      // designator. Return immediately.
1041      if (!SubobjectIsDesignatorContext)
1042        return;
1043
1044      // Handle this designated initializer. Field will be updated to
1045      // the next field that we'll be initializing.
1046      if (CheckDesignatedInitializer(IList, DIE, 0,
1047                                     DeclType, &Field, 0, Index,
1048                                     StructuredList, StructuredIndex,
1049                                     true, TopLevelObject))
1050        hadError = true;
1051
1052      InitializedSomething = true;
1053      continue;
1054    }
1055
1056    if (Field == FieldEnd) {
1057      // We've run out of fields. We're done.
1058      break;
1059    }
1060
1061    // We've already initialized a member of a union. We're done.
1062    if (InitializedSomething && DeclType->isUnionType())
1063      break;
1064
1065    // If we've hit the flexible array member at the end, we're done.
1066    if (Field->getType()->isIncompleteArrayType())
1067      break;
1068
1069    if (Field->isUnnamedBitfield()) {
1070      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1071      ++Field;
1072      continue;
1073    }
1074
1075    CheckSubElementType(IList, Field->getType(), Index,
1076                        StructuredList, StructuredIndex);
1077    InitializedSomething = true;
1078
1079    if (DeclType->isUnionType()) {
1080      // Initialize the first field within the union.
1081      StructuredList->setInitializedFieldInUnion(*Field);
1082    }
1083
1084    ++Field;
1085  }
1086
1087  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1088      Index >= IList->getNumInits())
1089    return;
1090
1091  // Handle GNU flexible array initializers.
1092  if (!TopLevelObject &&
1093      (!isa<InitListExpr>(IList->getInit(Index)) ||
1094       cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1095    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1096                  diag::err_flexible_array_init_nonempty)
1097      << IList->getInit(Index)->getSourceRange().getBegin();
1098    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1099      << *Field;
1100    hadError = true;
1101    ++Index;
1102    return;
1103  } else {
1104    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1105                 diag::ext_flexible_array_init)
1106      << IList->getInit(Index)->getSourceRange().getBegin();
1107    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1108      << *Field;
1109  }
1110
1111  if (isa<InitListExpr>(IList->getInit(Index)))
1112    CheckSubElementType(IList, Field->getType(), Index, StructuredList,
1113                        StructuredIndex);
1114  else
1115    CheckImplicitInitList(IList, Field->getType(), Index, StructuredList,
1116                          StructuredIndex);
1117}
1118
1119/// \brief Expand a field designator that refers to a member of an
1120/// anonymous struct or union into a series of field designators that
1121/// refers to the field within the appropriate subobject.
1122///
1123/// Field/FieldIndex will be updated to point to the (new)
1124/// currently-designated field.
1125static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1126                                           DesignatedInitExpr *DIE,
1127                                           unsigned DesigIdx,
1128                                           FieldDecl *Field,
1129                                        RecordDecl::field_iterator &FieldIter,
1130                                           unsigned &FieldIndex) {
1131  typedef DesignatedInitExpr::Designator Designator;
1132
1133  // Build the path from the current object to the member of the
1134  // anonymous struct/union (backwards).
1135  llvm::SmallVector<FieldDecl *, 4> Path;
1136  SemaRef.BuildAnonymousStructUnionMemberPath(Field, Path);
1137
1138  // Build the replacement designators.
1139  llvm::SmallVector<Designator, 4> Replacements;
1140  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
1141         FI = Path.rbegin(), FIEnd = Path.rend();
1142       FI != FIEnd; ++FI) {
1143    if (FI + 1 == FIEnd)
1144      Replacements.push_back(Designator((IdentifierInfo *)0,
1145                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1146                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1147    else
1148      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1149                                        SourceLocation()));
1150    Replacements.back().setField(*FI);
1151  }
1152
1153  // Expand the current designator into the set of replacement
1154  // designators, so we have a full subobject path down to where the
1155  // member of the anonymous struct/union is actually stored.
1156  DIE->ExpandDesignator(DesigIdx, &Replacements[0],
1157                        &Replacements[0] + Replacements.size());
1158
1159  // Update FieldIter/FieldIndex;
1160  RecordDecl *Record = cast<RecordDecl>(Path.back()->getDeclContext());
1161  FieldIter = Record->field_begin();
1162  FieldIndex = 0;
1163  for (RecordDecl::field_iterator FEnd = Record->field_end();
1164       FieldIter != FEnd; ++FieldIter) {
1165    if (FieldIter->isUnnamedBitfield())
1166        continue;
1167
1168    if (*FieldIter == Path.back())
1169      return;
1170
1171    ++FieldIndex;
1172  }
1173
1174  assert(false && "Unable to find anonymous struct/union field");
1175}
1176
1177/// @brief Check the well-formedness of a C99 designated initializer.
1178///
1179/// Determines whether the designated initializer @p DIE, which
1180/// resides at the given @p Index within the initializer list @p
1181/// IList, is well-formed for a current object of type @p DeclType
1182/// (C99 6.7.8). The actual subobject that this designator refers to
1183/// within the current subobject is returned in either
1184/// @p NextField or @p NextElementIndex (whichever is appropriate).
1185///
1186/// @param IList  The initializer list in which this designated
1187/// initializer occurs.
1188///
1189/// @param DIE The designated initializer expression.
1190///
1191/// @param DesigIdx  The index of the current designator.
1192///
1193/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1194/// into which the designation in @p DIE should refer.
1195///
1196/// @param NextField  If non-NULL and the first designator in @p DIE is
1197/// a field, this will be set to the field declaration corresponding
1198/// to the field named by the designator.
1199///
1200/// @param NextElementIndex  If non-NULL and the first designator in @p
1201/// DIE is an array designator or GNU array-range designator, this
1202/// will be set to the last index initialized by this designator.
1203///
1204/// @param Index  Index into @p IList where the designated initializer
1205/// @p DIE occurs.
1206///
1207/// @param StructuredList  The initializer list expression that
1208/// describes all of the subobject initializers in the order they'll
1209/// actually be initialized.
1210///
1211/// @returns true if there was an error, false otherwise.
1212bool
1213InitListChecker::CheckDesignatedInitializer(InitListExpr *IList,
1214                                      DesignatedInitExpr *DIE,
1215                                      unsigned DesigIdx,
1216                                      QualType &CurrentObjectType,
1217                                      RecordDecl::field_iterator *NextField,
1218                                      llvm::APSInt *NextElementIndex,
1219                                      unsigned &Index,
1220                                      InitListExpr *StructuredList,
1221                                      unsigned &StructuredIndex,
1222                                            bool FinishSubobjectInit,
1223                                            bool TopLevelObject) {
1224  if (DesigIdx == DIE->size()) {
1225    // Check the actual initialization for the designated object type.
1226    bool prevHadError = hadError;
1227
1228    // Temporarily remove the designator expression from the
1229    // initializer list that the child calls see, so that we don't try
1230    // to re-process the designator.
1231    unsigned OldIndex = Index;
1232    IList->setInit(OldIndex, DIE->getInit());
1233
1234    CheckSubElementType(IList, CurrentObjectType, Index,
1235                        StructuredList, StructuredIndex);
1236
1237    // Restore the designated initializer expression in the syntactic
1238    // form of the initializer list.
1239    if (IList->getInit(OldIndex) != DIE->getInit())
1240      DIE->setInit(IList->getInit(OldIndex));
1241    IList->setInit(OldIndex, DIE);
1242
1243    return hadError && !prevHadError;
1244  }
1245
1246  bool IsFirstDesignator = (DesigIdx == 0);
1247  assert((IsFirstDesignator || StructuredList) &&
1248         "Need a non-designated initializer list to start from");
1249
1250  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1251  // Determine the structural initializer list that corresponds to the
1252  // current subobject.
1253  StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1254    : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1255                                 StructuredList, StructuredIndex,
1256                                 SourceRange(D->getStartLocation(),
1257                                             DIE->getSourceRange().getEnd()));
1258  assert(StructuredList && "Expected a structured initializer list");
1259
1260  if (D->isFieldDesignator()) {
1261    // C99 6.7.8p7:
1262    //
1263    //   If a designator has the form
1264    //
1265    //      . identifier
1266    //
1267    //   then the current object (defined below) shall have
1268    //   structure or union type and the identifier shall be the
1269    //   name of a member of that type.
1270    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1271    if (!RT) {
1272      SourceLocation Loc = D->getDotLoc();
1273      if (Loc.isInvalid())
1274        Loc = D->getFieldLoc();
1275      SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1276        << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1277      ++Index;
1278      return true;
1279    }
1280
1281    // Note: we perform a linear search of the fields here, despite
1282    // the fact that we have a faster lookup method, because we always
1283    // need to compute the field's index.
1284    FieldDecl *KnownField = D->getField();
1285    IdentifierInfo *FieldName = D->getFieldName();
1286    unsigned FieldIndex = 0;
1287    RecordDecl::field_iterator
1288      Field = RT->getDecl()->field_begin(),
1289      FieldEnd = RT->getDecl()->field_end();
1290    for (; Field != FieldEnd; ++Field) {
1291      if (Field->isUnnamedBitfield())
1292        continue;
1293
1294      if (KnownField == *Field || Field->getIdentifier() == FieldName)
1295        break;
1296
1297      ++FieldIndex;
1298    }
1299
1300    if (Field == FieldEnd) {
1301      // There was no normal field in the struct with the designated
1302      // name. Perform another lookup for this name, which may find
1303      // something that we can't designate (e.g., a member function),
1304      // may find nothing, or may find a member of an anonymous
1305      // struct/union.
1306      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1307      if (Lookup.first == Lookup.second) {
1308        // Name lookup didn't find anything.
1309        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1310          << FieldName << CurrentObjectType;
1311        ++Index;
1312        return true;
1313      } else if (!KnownField && isa<FieldDecl>(*Lookup.first) &&
1314                 cast<RecordDecl>((*Lookup.first)->getDeclContext())
1315                   ->isAnonymousStructOrUnion()) {
1316        // Handle an field designator that refers to a member of an
1317        // anonymous struct or union.
1318        ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx,
1319                                       cast<FieldDecl>(*Lookup.first),
1320                                       Field, FieldIndex);
1321        D = DIE->getDesignator(DesigIdx);
1322      } else {
1323        // Name lookup found something, but it wasn't a field.
1324        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1325          << FieldName;
1326        SemaRef.Diag((*Lookup.first)->getLocation(),
1327                      diag::note_field_designator_found);
1328        ++Index;
1329        return true;
1330      }
1331    } else if (!KnownField &&
1332               cast<RecordDecl>((*Field)->getDeclContext())
1333                 ->isAnonymousStructOrUnion()) {
1334      ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, *Field,
1335                                     Field, FieldIndex);
1336      D = DIE->getDesignator(DesigIdx);
1337    }
1338
1339    // All of the fields of a union are located at the same place in
1340    // the initializer list.
1341    if (RT->getDecl()->isUnion()) {
1342      FieldIndex = 0;
1343      StructuredList->setInitializedFieldInUnion(*Field);
1344    }
1345
1346    // Update the designator with the field declaration.
1347    D->setField(*Field);
1348
1349    // Make sure that our non-designated initializer list has space
1350    // for a subobject corresponding to this field.
1351    if (FieldIndex >= StructuredList->getNumInits())
1352      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1353
1354    // This designator names a flexible array member.
1355    if (Field->getType()->isIncompleteArrayType()) {
1356      bool Invalid = false;
1357      if ((DesigIdx + 1) != DIE->size()) {
1358        // We can't designate an object within the flexible array
1359        // member (because GCC doesn't allow it).
1360        DesignatedInitExpr::Designator *NextD
1361          = DIE->getDesignator(DesigIdx + 1);
1362        SemaRef.Diag(NextD->getStartLocation(),
1363                      diag::err_designator_into_flexible_array_member)
1364          << SourceRange(NextD->getStartLocation(),
1365                         DIE->getSourceRange().getEnd());
1366        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1367          << *Field;
1368        Invalid = true;
1369      }
1370
1371      if (!hadError && !isa<InitListExpr>(DIE->getInit())) {
1372        // The initializer is not an initializer list.
1373        SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1374                      diag::err_flexible_array_init_needs_braces)
1375          << DIE->getInit()->getSourceRange();
1376        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1377          << *Field;
1378        Invalid = true;
1379      }
1380
1381      // Handle GNU flexible array initializers.
1382      if (!Invalid && !TopLevelObject &&
1383          cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1384        SemaRef.Diag(DIE->getSourceRange().getBegin(),
1385                      diag::err_flexible_array_init_nonempty)
1386          << DIE->getSourceRange().getBegin();
1387        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1388          << *Field;
1389        Invalid = true;
1390      }
1391
1392      if (Invalid) {
1393        ++Index;
1394        return true;
1395      }
1396
1397      // Initialize the array.
1398      bool prevHadError = hadError;
1399      unsigned newStructuredIndex = FieldIndex;
1400      unsigned OldIndex = Index;
1401      IList->setInit(Index, DIE->getInit());
1402      CheckSubElementType(IList, Field->getType(), Index,
1403                          StructuredList, newStructuredIndex);
1404      IList->setInit(OldIndex, DIE);
1405      if (hadError && !prevHadError) {
1406        ++Field;
1407        ++FieldIndex;
1408        if (NextField)
1409          *NextField = Field;
1410        StructuredIndex = FieldIndex;
1411        return true;
1412      }
1413    } else {
1414      // Recurse to check later designated subobjects.
1415      QualType FieldType = (*Field)->getType();
1416      unsigned newStructuredIndex = FieldIndex;
1417      if (CheckDesignatedInitializer(IList, DIE, DesigIdx + 1, FieldType, 0, 0,
1418                                     Index, StructuredList, newStructuredIndex,
1419                                     true, false))
1420        return true;
1421    }
1422
1423    // Find the position of the next field to be initialized in this
1424    // subobject.
1425    ++Field;
1426    ++FieldIndex;
1427
1428    // If this the first designator, our caller will continue checking
1429    // the rest of this struct/class/union subobject.
1430    if (IsFirstDesignator) {
1431      if (NextField)
1432        *NextField = Field;
1433      StructuredIndex = FieldIndex;
1434      return false;
1435    }
1436
1437    if (!FinishSubobjectInit)
1438      return false;
1439
1440    // We've already initialized something in the union; we're done.
1441    if (RT->getDecl()->isUnion())
1442      return hadError;
1443
1444    // Check the remaining fields within this class/struct/union subobject.
1445    bool prevHadError = hadError;
1446    CheckStructUnionTypes(IList, CurrentObjectType, Field, false, Index,
1447                          StructuredList, FieldIndex);
1448    return hadError && !prevHadError;
1449  }
1450
1451  // C99 6.7.8p6:
1452  //
1453  //   If a designator has the form
1454  //
1455  //      [ constant-expression ]
1456  //
1457  //   then the current object (defined below) shall have array
1458  //   type and the expression shall be an integer constant
1459  //   expression. If the array is of unknown size, any
1460  //   nonnegative value is valid.
1461  //
1462  // Additionally, cope with the GNU extension that permits
1463  // designators of the form
1464  //
1465  //      [ constant-expression ... constant-expression ]
1466  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1467  if (!AT) {
1468    SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1469      << CurrentObjectType;
1470    ++Index;
1471    return true;
1472  }
1473
1474  Expr *IndexExpr = 0;
1475  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1476  if (D->isArrayDesignator()) {
1477    IndexExpr = DIE->getArrayIndex(*D);
1478    DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1479    DesignatedEndIndex = DesignatedStartIndex;
1480  } else {
1481    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1482
1483
1484    DesignatedStartIndex =
1485      DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1486    DesignatedEndIndex =
1487      DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1488    IndexExpr = DIE->getArrayRangeEnd(*D);
1489
1490    if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
1491      FullyStructuredList->sawArrayRangeDesignator();
1492  }
1493
1494  if (isa<ConstantArrayType>(AT)) {
1495    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1496    DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1497    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1498    DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1499    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1500    if (DesignatedEndIndex >= MaxElements) {
1501      SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1502                    diag::err_array_designator_too_large)
1503        << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1504        << IndexExpr->getSourceRange();
1505      ++Index;
1506      return true;
1507    }
1508  } else {
1509    // Make sure the bit-widths and signedness match.
1510    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1511      DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1512    else if (DesignatedStartIndex.getBitWidth() <
1513             DesignatedEndIndex.getBitWidth())
1514      DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1515    DesignatedStartIndex.setIsUnsigned(true);
1516    DesignatedEndIndex.setIsUnsigned(true);
1517  }
1518
1519  // Make sure that our non-designated initializer list has space
1520  // for a subobject corresponding to this array element.
1521  if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1522    StructuredList->resizeInits(SemaRef.Context,
1523                                DesignatedEndIndex.getZExtValue() + 1);
1524
1525  // Repeatedly perform subobject initializations in the range
1526  // [DesignatedStartIndex, DesignatedEndIndex].
1527
1528  // Move to the next designator
1529  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1530  unsigned OldIndex = Index;
1531  while (DesignatedStartIndex <= DesignatedEndIndex) {
1532    // Recurse to check later designated subobjects.
1533    QualType ElementType = AT->getElementType();
1534    Index = OldIndex;
1535    if (CheckDesignatedInitializer(IList, DIE, DesigIdx + 1, ElementType, 0, 0,
1536                                   Index, StructuredList, ElementIndex,
1537                                   (DesignatedStartIndex == DesignatedEndIndex),
1538                                   false))
1539      return true;
1540
1541    // Move to the next index in the array that we'll be initializing.
1542    ++DesignatedStartIndex;
1543    ElementIndex = DesignatedStartIndex.getZExtValue();
1544  }
1545
1546  // If this the first designator, our caller will continue checking
1547  // the rest of this array subobject.
1548  if (IsFirstDesignator) {
1549    if (NextElementIndex)
1550      *NextElementIndex = DesignatedStartIndex;
1551    StructuredIndex = ElementIndex;
1552    return false;
1553  }
1554
1555  if (!FinishSubobjectInit)
1556    return false;
1557
1558  // Check the remaining elements within this array subobject.
1559  bool prevHadError = hadError;
1560  CheckArrayType(IList, CurrentObjectType, DesignatedStartIndex, false, Index,
1561                 StructuredList, ElementIndex);
1562  return hadError && !prevHadError;
1563}
1564
1565// Get the structured initializer list for a subobject of type
1566// @p CurrentObjectType.
1567InitListExpr *
1568InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1569                                            QualType CurrentObjectType,
1570                                            InitListExpr *StructuredList,
1571                                            unsigned StructuredIndex,
1572                                            SourceRange InitRange) {
1573  Expr *ExistingInit = 0;
1574  if (!StructuredList)
1575    ExistingInit = SyntacticToSemantic[IList];
1576  else if (StructuredIndex < StructuredList->getNumInits())
1577    ExistingInit = StructuredList->getInit(StructuredIndex);
1578
1579  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1580    return Result;
1581
1582  if (ExistingInit) {
1583    // We are creating an initializer list that initializes the
1584    // subobjects of the current object, but there was already an
1585    // initialization that completely initialized the current
1586    // subobject, e.g., by a compound literal:
1587    //
1588    // struct X { int a, b; };
1589    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1590    //
1591    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1592    // designated initializer re-initializes the whole
1593    // subobject [0], overwriting previous initializers.
1594    SemaRef.Diag(InitRange.getBegin(),
1595                 diag::warn_subobject_initializer_overrides)
1596      << InitRange;
1597    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1598                  diag::note_previous_initializer)
1599      << /*FIXME:has side effects=*/0
1600      << ExistingInit->getSourceRange();
1601  }
1602
1603  InitListExpr *Result
1604    = new (SemaRef.Context) InitListExpr(InitRange.getBegin(), 0, 0,
1605                                         InitRange.getEnd());
1606
1607  Result->setType(CurrentObjectType);
1608
1609  // Pre-allocate storage for the structured initializer list.
1610  unsigned NumElements = 0;
1611  unsigned NumInits = 0;
1612  if (!StructuredList)
1613    NumInits = IList->getNumInits();
1614  else if (Index < IList->getNumInits()) {
1615    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1616      NumInits = SubList->getNumInits();
1617  }
1618
1619  if (const ArrayType *AType
1620      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1621    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1622      NumElements = CAType->getSize().getZExtValue();
1623      // Simple heuristic so that we don't allocate a very large
1624      // initializer with many empty entries at the end.
1625      if (NumInits && NumElements > NumInits)
1626        NumElements = 0;
1627    }
1628  } else if (const VectorType *VType = CurrentObjectType->getAsVectorType())
1629    NumElements = VType->getNumElements();
1630  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
1631    RecordDecl *RDecl = RType->getDecl();
1632    if (RDecl->isUnion())
1633      NumElements = 1;
1634    else
1635      NumElements = std::distance(RDecl->field_begin(),
1636                                  RDecl->field_end());
1637  }
1638
1639  if (NumElements < NumInits)
1640    NumElements = IList->getNumInits();
1641
1642  Result->reserveInits(NumElements);
1643
1644  // Link this new initializer list into the structured initializer
1645  // lists.
1646  if (StructuredList)
1647    StructuredList->updateInit(StructuredIndex, Result);
1648  else {
1649    Result->setSyntacticForm(IList);
1650    SyntacticToSemantic[IList] = Result;
1651  }
1652
1653  return Result;
1654}
1655
1656/// Update the initializer at index @p StructuredIndex within the
1657/// structured initializer list to the value @p expr.
1658void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1659                                                  unsigned &StructuredIndex,
1660                                                  Expr *expr) {
1661  // No structured initializer list to update
1662  if (!StructuredList)
1663    return;
1664
1665  if (Expr *PrevInit = StructuredList->updateInit(StructuredIndex, expr)) {
1666    // This initializer overwrites a previous initializer. Warn.
1667    SemaRef.Diag(expr->getSourceRange().getBegin(),
1668                  diag::warn_initializer_overrides)
1669      << expr->getSourceRange();
1670    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1671                  diag::note_previous_initializer)
1672      << /*FIXME:has side effects=*/0
1673      << PrevInit->getSourceRange();
1674  }
1675
1676  ++StructuredIndex;
1677}
1678
1679/// Check that the given Index expression is a valid array designator
1680/// value. This is essentailly just a wrapper around
1681/// VerifyIntegerConstantExpression that also checks for negative values
1682/// and produces a reasonable diagnostic if there is a
1683/// failure. Returns true if there was an error, false otherwise.  If
1684/// everything went okay, Value will receive the value of the constant
1685/// expression.
1686static bool
1687CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1688  SourceLocation Loc = Index->getSourceRange().getBegin();
1689
1690  // Make sure this is an integer constant expression.
1691  if (S.VerifyIntegerConstantExpression(Index, &Value))
1692    return true;
1693
1694  if (Value.isSigned() && Value.isNegative())
1695    return S.Diag(Loc, diag::err_array_designator_negative)
1696      << Value.toString(10) << Index->getSourceRange();
1697
1698  Value.setIsUnsigned(true);
1699  return false;
1700}
1701
1702Sema::OwningExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1703                                                        SourceLocation Loc,
1704                                                        bool GNUSyntax,
1705                                                        OwningExprResult Init) {
1706  typedef DesignatedInitExpr::Designator ASTDesignator;
1707
1708  bool Invalid = false;
1709  llvm::SmallVector<ASTDesignator, 32> Designators;
1710  llvm::SmallVector<Expr *, 32> InitExpressions;
1711
1712  // Build designators and check array designator expressions.
1713  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1714    const Designator &D = Desig.getDesignator(Idx);
1715    switch (D.getKind()) {
1716    case Designator::FieldDesignator:
1717      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1718                                          D.getFieldLoc()));
1719      break;
1720
1721    case Designator::ArrayDesignator: {
1722      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1723      llvm::APSInt IndexValue;
1724      if (!Index->isTypeDependent() &&
1725          !Index->isValueDependent() &&
1726          CheckArrayDesignatorExpr(*this, Index, IndexValue))
1727        Invalid = true;
1728      else {
1729        Designators.push_back(ASTDesignator(InitExpressions.size(),
1730                                            D.getLBracketLoc(),
1731                                            D.getRBracketLoc()));
1732        InitExpressions.push_back(Index);
1733      }
1734      break;
1735    }
1736
1737    case Designator::ArrayRangeDesignator: {
1738      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1739      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1740      llvm::APSInt StartValue;
1741      llvm::APSInt EndValue;
1742      bool StartDependent = StartIndex->isTypeDependent() ||
1743                            StartIndex->isValueDependent();
1744      bool EndDependent = EndIndex->isTypeDependent() ||
1745                          EndIndex->isValueDependent();
1746      if ((!StartDependent &&
1747           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1748          (!EndDependent &&
1749           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1750        Invalid = true;
1751      else {
1752        // Make sure we're comparing values with the same bit width.
1753        if (StartDependent || EndDependent) {
1754          // Nothing to compute.
1755        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1756          EndValue.extend(StartValue.getBitWidth());
1757        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1758          StartValue.extend(EndValue.getBitWidth());
1759
1760        if (!StartDependent && !EndDependent && EndValue < StartValue) {
1761          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1762            << StartValue.toString(10) << EndValue.toString(10)
1763            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1764          Invalid = true;
1765        } else {
1766          Designators.push_back(ASTDesignator(InitExpressions.size(),
1767                                              D.getLBracketLoc(),
1768                                              D.getEllipsisLoc(),
1769                                              D.getRBracketLoc()));
1770          InitExpressions.push_back(StartIndex);
1771          InitExpressions.push_back(EndIndex);
1772        }
1773      }
1774      break;
1775    }
1776    }
1777  }
1778
1779  if (Invalid || Init.isInvalid())
1780    return ExprError();
1781
1782  // Clear out the expressions within the designation.
1783  Desig.ClearExprs(*this);
1784
1785  DesignatedInitExpr *DIE
1786    = DesignatedInitExpr::Create(Context,
1787                                 Designators.data(), Designators.size(),
1788                                 InitExpressions.data(), InitExpressions.size(),
1789                                 Loc, GNUSyntax, Init.takeAs<Expr>());
1790  return Owned(DIE);
1791}
1792
1793bool Sema::CheckInitList(InitListExpr *&InitList, QualType &DeclType) {
1794  InitListChecker CheckInitList(*this, InitList, DeclType);
1795  if (!CheckInitList.HadError())
1796    InitList = CheckInitList.getFullyStructuredList();
1797
1798  return CheckInitList.HadError();
1799}
1800
1801/// \brief Diagnose any semantic errors with value-initialization of
1802/// the given type.
1803///
1804/// Value-initialization effectively zero-initializes any types
1805/// without user-declared constructors, and calls the default
1806/// constructor for a for any type that has a user-declared
1807/// constructor (C++ [dcl.init]p5). Value-initialization can fail when
1808/// a type with a user-declared constructor does not have an
1809/// accessible, non-deleted default constructor. In C, everything can
1810/// be value-initialized, which corresponds to C's notion of
1811/// initializing objects with static storage duration when no
1812/// initializer is provided for that object.
1813///
1814/// \returns true if there was an error, false otherwise.
1815bool Sema::CheckValueInitialization(QualType Type, SourceLocation Loc) {
1816  // C++ [dcl.init]p5:
1817  //
1818  //   To value-initialize an object of type T means:
1819
1820  //     -- if T is an array type, then each element is value-initialized;
1821  if (const ArrayType *AT = Context.getAsArrayType(Type))
1822    return CheckValueInitialization(AT->getElementType(), Loc);
1823
1824  if (const RecordType *RT = Type->getAs<RecordType>()) {
1825    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1826      // -- if T is a class type (clause 9) with a user-declared
1827      //    constructor (12.1), then the default constructor for T is
1828      //    called (and the initialization is ill-formed if T has no
1829      //    accessible default constructor);
1830      if (ClassDecl->hasUserDeclaredConstructor()) {
1831        ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1832
1833        CXXConstructorDecl *Constructor
1834          = PerformInitializationByConstructor(Type,
1835                                               MultiExprArg(*this, 0, 0),
1836                                               Loc, SourceRange(Loc),
1837                                               DeclarationName(),
1838                                               IK_Direct,
1839                                               ConstructorArgs);
1840        if (!Constructor)
1841          return true;
1842
1843        OwningExprResult Init
1844          = BuildCXXConstructExpr(Loc, Type, Constructor,
1845                                  move_arg(ConstructorArgs));
1846        if (Init.isInvalid())
1847          return true;
1848
1849        // FIXME: Actually perform the value-initialization!
1850        return false;
1851      }
1852    }
1853  }
1854
1855  if (Type->isReferenceType()) {
1856    // C++ [dcl.init]p5:
1857    //   [...] A program that calls for default-initialization or
1858    //   value-initialization of an entity of reference type is
1859    //   ill-formed. [...]
1860    // FIXME: Once we have code that goes through this path, add an actual
1861    // diagnostic :)
1862  }
1863
1864  return false;
1865}
1866