SemaInit.cpp revision 46f4659f9d012ca2e2050c1fc39a59666114b3f9
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14// This file also implements Sema::CheckInitializerTypes.
15//
16//===----------------------------------------------------------------------===//
17
18#include "SemaInit.h"
19#include "Lookup.h"
20#include "Sema.h"
21#include "clang/Parse/Designator.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/TypeLoc.h"
26#include "llvm/Support/ErrorHandling.h"
27#include <map>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Sema Initialization Checking
32//===----------------------------------------------------------------------===//
33
34static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
35  const ArrayType *AT = Context.getAsArrayType(DeclType);
36  if (!AT) return 0;
37
38  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
39    return 0;
40
41  // See if this is a string literal or @encode.
42  Init = Init->IgnoreParens();
43
44  // Handle @encode, which is a narrow string.
45  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
46    return Init;
47
48  // Otherwise we can only handle string literals.
49  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
50  if (SL == 0) return 0;
51
52  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
53  // char array can be initialized with a narrow string.
54  // Only allow char x[] = "foo";  not char x[] = L"foo";
55  if (!SL->isWide())
56    return ElemTy->isCharType() ? Init : 0;
57
58  // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
59  // correction from DR343): "An array with element type compatible with a
60  // qualified or unqualified version of wchar_t may be initialized by a wide
61  // string literal, optionally enclosed in braces."
62  if (Context.typesAreCompatible(Context.getWCharType(),
63                                 ElemTy.getUnqualifiedType()))
64    return Init;
65
66  return 0;
67}
68
69static Sema::OwningExprResult
70CheckSingleInitializer(const InitializedEntity *Entity,
71                       Sema::OwningExprResult Init, QualType DeclType, Sema &S){
72  Expr *InitExpr = Init.takeAs<Expr>();
73
74  // Get the type before calling CheckSingleAssignmentConstraints(), since
75  // it can promote the expression.
76  QualType InitType = InitExpr->getType();
77
78  if (S.getLangOptions().CPlusPlus) {
79    if (Entity) {
80      assert(Entity->getType() == DeclType);
81
82      // C++ [dcl.init.aggr]p2:
83      //   Each member is copy-initialized from the corresponding
84      //   initializer-clause
85      Sema::OwningExprResult Result =
86        S.PerformCopyInitialization(*Entity, InitExpr->getLocStart(),
87                                    S.Owned(InitExpr));
88
89      return move(Result);
90    } else {
91      // FIXME: I dislike this error message. A lot.
92      if (S.PerformImplicitConversion(InitExpr, DeclType,
93                                      Sema::AA_Initializing,
94                                      /*DirectInit=*/false)) {
95        ImplicitConversionSequence ICS;
96        OverloadCandidateSet CandidateSet;
97        if (S.IsUserDefinedConversion(InitExpr, DeclType, ICS.UserDefined,
98                                      CandidateSet,
99                                      true, false, false) != OR_Ambiguous) {
100          S.Diag(InitExpr->getSourceRange().getBegin(),
101                        diag::err_typecheck_convert_incompatible)
102                          << DeclType << InitExpr->getType()
103                          << Sema::AA_Initializing
104                          << InitExpr->getSourceRange();
105          return S.ExprError();
106        }
107        S.Diag(InitExpr->getSourceRange().getBegin(),
108               diag::err_typecheck_convert_ambiguous)
109              << DeclType << InitExpr->getType() << InitExpr->getSourceRange();
110        S.PrintOverloadCandidates(CandidateSet, Sema::OCD_AllCandidates,
111                                  &InitExpr, 1);
112
113        return S.ExprError();
114      }
115
116      Init.release();
117      return S.Owned(InitExpr);
118    }
119  }
120
121  Sema::AssignConvertType ConvTy =
122    S.CheckSingleAssignmentConstraints(DeclType, InitExpr);
123  if (S.DiagnoseAssignmentResult(ConvTy, InitExpr->getLocStart(), DeclType,
124                                 InitType, InitExpr, Sema::AA_Initializing))
125    return S.ExprError();
126
127  Init.release();
128  return S.Owned(InitExpr);
129}
130
131static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
132  // Get the length of the string as parsed.
133  uint64_t StrLength =
134    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
135
136
137  const ArrayType *AT = S.Context.getAsArrayType(DeclT);
138  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
139    // C99 6.7.8p14. We have an array of character type with unknown size
140    // being initialized to a string literal.
141    llvm::APSInt ConstVal(32);
142    ConstVal = StrLength;
143    // Return a new array type (C99 6.7.8p22).
144    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
145                                           ConstVal,
146                                           ArrayType::Normal, 0);
147    return;
148  }
149
150  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
151
152  // C99 6.7.8p14. We have an array of character type with known size.  However,
153  // the size may be smaller or larger than the string we are initializing.
154  // FIXME: Avoid truncation for 64-bit length strings.
155  if (StrLength-1 > CAT->getSize().getZExtValue())
156    S.Diag(Str->getSourceRange().getBegin(),
157           diag::warn_initializer_string_for_char_array_too_long)
158      << Str->getSourceRange();
159
160  // Set the type to the actual size that we are initializing.  If we have
161  // something like:
162  //   char x[1] = "foo";
163  // then this will set the string literal's type to char[1].
164  Str->setType(DeclT);
165}
166
167//===----------------------------------------------------------------------===//
168// Semantic checking for initializer lists.
169//===----------------------------------------------------------------------===//
170
171/// @brief Semantic checking for initializer lists.
172///
173/// The InitListChecker class contains a set of routines that each
174/// handle the initialization of a certain kind of entity, e.g.,
175/// arrays, vectors, struct/union types, scalars, etc. The
176/// InitListChecker itself performs a recursive walk of the subobject
177/// structure of the type to be initialized, while stepping through
178/// the initializer list one element at a time. The IList and Index
179/// parameters to each of the Check* routines contain the active
180/// (syntactic) initializer list and the index into that initializer
181/// list that represents the current initializer. Each routine is
182/// responsible for moving that Index forward as it consumes elements.
183///
184/// Each Check* routine also has a StructuredList/StructuredIndex
185/// arguments, which contains the current the "structured" (semantic)
186/// initializer list and the index into that initializer list where we
187/// are copying initializers as we map them over to the semantic
188/// list. Once we have completed our recursive walk of the subobject
189/// structure, we will have constructed a full semantic initializer
190/// list.
191///
192/// C99 designators cause changes in the initializer list traversal,
193/// because they make the initialization "jump" into a specific
194/// subobject and then continue the initialization from that
195/// point. CheckDesignatedInitializer() recursively steps into the
196/// designated subobject and manages backing out the recursion to
197/// initialize the subobjects after the one designated.
198namespace {
199class InitListChecker {
200  Sema &SemaRef;
201  bool hadError;
202  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
203  InitListExpr *FullyStructuredList;
204
205  void CheckImplicitInitList(InitListExpr *ParentIList, QualType T,
206                             unsigned &Index, InitListExpr *StructuredList,
207                             unsigned &StructuredIndex,
208                             bool TopLevelObject = false);
209  void CheckExplicitInitList(const InitializedEntity *Entity,
210                             InitListExpr *IList, QualType &T,
211                             unsigned &Index, InitListExpr *StructuredList,
212                             unsigned &StructuredIndex,
213                             bool TopLevelObject = false);
214  void CheckListElementTypes(const InitializedEntity *Entity,
215                             InitListExpr *IList, QualType &DeclType,
216                             bool SubobjectIsDesignatorContext,
217                             unsigned &Index,
218                             InitListExpr *StructuredList,
219                             unsigned &StructuredIndex,
220                             bool TopLevelObject = false);
221  void CheckSubElementType(const InitializedEntity *Entity,
222                           InitListExpr *IList, QualType ElemType,
223                           unsigned &Index,
224                           InitListExpr *StructuredList,
225                           unsigned &StructuredIndex);
226  void CheckScalarType(const InitializedEntity *Entity,
227                       InitListExpr *IList, QualType DeclType,
228                       unsigned &Index,
229                       InitListExpr *StructuredList,
230                       unsigned &StructuredIndex);
231  void CheckReferenceType(InitListExpr *IList, QualType DeclType,
232                          unsigned &Index,
233                          InitListExpr *StructuredList,
234                          unsigned &StructuredIndex);
235  void CheckVectorType(const InitializedEntity *Entity,
236                       InitListExpr *IList, QualType DeclType, unsigned &Index,
237                       InitListExpr *StructuredList,
238                       unsigned &StructuredIndex);
239  void CheckStructUnionTypes(InitListExpr *IList, QualType DeclType,
240                             RecordDecl::field_iterator Field,
241                             bool SubobjectIsDesignatorContext, unsigned &Index,
242                             InitListExpr *StructuredList,
243                             unsigned &StructuredIndex,
244                             bool TopLevelObject = false);
245  void CheckArrayType(InitListExpr *IList, QualType &DeclType,
246                      llvm::APSInt elementIndex,
247                      bool SubobjectIsDesignatorContext, unsigned &Index,
248                      InitListExpr *StructuredList,
249                      unsigned &StructuredIndex);
250  bool CheckDesignatedInitializer(InitListExpr *IList, DesignatedInitExpr *DIE,
251                                  unsigned DesigIdx,
252                                  QualType &CurrentObjectType,
253                                  RecordDecl::field_iterator *NextField,
254                                  llvm::APSInt *NextElementIndex,
255                                  unsigned &Index,
256                                  InitListExpr *StructuredList,
257                                  unsigned &StructuredIndex,
258                                  bool FinishSubobjectInit,
259                                  bool TopLevelObject);
260  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
261                                           QualType CurrentObjectType,
262                                           InitListExpr *StructuredList,
263                                           unsigned StructuredIndex,
264                                           SourceRange InitRange);
265  void UpdateStructuredListElement(InitListExpr *StructuredList,
266                                   unsigned &StructuredIndex,
267                                   Expr *expr);
268  int numArrayElements(QualType DeclType);
269  int numStructUnionElements(QualType DeclType);
270
271  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
272                               const InitializedEntity &ParentEntity,
273                               InitListExpr *ILE, bool &RequiresSecondPass);
274  void FillInValueInitializations(const InitializedEntity &Entity,
275                                  InitListExpr *ILE, bool &RequiresSecondPass);
276public:
277  InitListChecker(Sema &S, const InitializedEntity &Entity,
278                  InitListExpr *IL, QualType &T);
279  bool HadError() { return hadError; }
280
281  // @brief Retrieves the fully-structured initializer list used for
282  // semantic analysis and code generation.
283  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
284};
285} // end anonymous namespace
286
287void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
288                                        const InitializedEntity &ParentEntity,
289                                              InitListExpr *ILE,
290                                              bool &RequiresSecondPass) {
291  SourceLocation Loc = ILE->getSourceRange().getBegin();
292  unsigned NumInits = ILE->getNumInits();
293  InitializedEntity MemberEntity
294    = InitializedEntity::InitializeMember(Field, &ParentEntity);
295  if (Init >= NumInits || !ILE->getInit(Init)) {
296    // FIXME: We probably don't need to handle references
297    // specially here, since value-initialization of references is
298    // handled in InitializationSequence.
299    if (Field->getType()->isReferenceType()) {
300      // C++ [dcl.init.aggr]p9:
301      //   If an incomplete or empty initializer-list leaves a
302      //   member of reference type uninitialized, the program is
303      //   ill-formed.
304      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
305        << Field->getType()
306        << ILE->getSyntacticForm()->getSourceRange();
307      SemaRef.Diag(Field->getLocation(),
308                   diag::note_uninit_reference_member);
309      hadError = true;
310      return;
311    }
312
313    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
314                                                              true);
315    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
316    if (!InitSeq) {
317      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
318      hadError = true;
319      return;
320    }
321
322    Sema::OwningExprResult MemberInit
323      = InitSeq.Perform(SemaRef, MemberEntity, Kind,
324                        Sema::MultiExprArg(SemaRef, 0, 0));
325    if (MemberInit.isInvalid()) {
326      hadError = true;
327      return;
328    }
329
330    if (hadError) {
331      // Do nothing
332    } else if (Init < NumInits) {
333      ILE->setInit(Init, MemberInit.takeAs<Expr>());
334    } else if (InitSeq.getKind()
335                 == InitializationSequence::ConstructorInitialization) {
336      // Value-initialization requires a constructor call, so
337      // extend the initializer list to include the constructor
338      // call and make a note that we'll need to take another pass
339      // through the initializer list.
340      ILE->updateInit(Init, MemberInit.takeAs<Expr>());
341      RequiresSecondPass = true;
342    }
343  } else if (InitListExpr *InnerILE
344               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
345    FillInValueInitializations(MemberEntity, InnerILE,
346                               RequiresSecondPass);
347}
348
349/// Recursively replaces NULL values within the given initializer list
350/// with expressions that perform value-initialization of the
351/// appropriate type.
352void
353InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
354                                            InitListExpr *ILE,
355                                            bool &RequiresSecondPass) {
356  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
357         "Should not have void type");
358  SourceLocation Loc = ILE->getSourceRange().getBegin();
359  if (ILE->getSyntacticForm())
360    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
361
362  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
363    if (RType->getDecl()->isUnion() &&
364        ILE->getInitializedFieldInUnion())
365      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
366                              Entity, ILE, RequiresSecondPass);
367    else {
368      unsigned Init = 0;
369      for (RecordDecl::field_iterator
370             Field = RType->getDecl()->field_begin(),
371             FieldEnd = RType->getDecl()->field_end();
372           Field != FieldEnd; ++Field) {
373        if (Field->isUnnamedBitfield())
374          continue;
375
376        if (hadError)
377          return;
378
379        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
380        if (hadError)
381          return;
382
383        ++Init;
384
385        // Only look at the first initialization of a union.
386        if (RType->getDecl()->isUnion())
387          break;
388      }
389    }
390
391    return;
392  }
393
394  QualType ElementType;
395
396  InitializedEntity ElementEntity = Entity;
397  unsigned NumInits = ILE->getNumInits();
398  unsigned NumElements = NumInits;
399  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
400    ElementType = AType->getElementType();
401    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
402      NumElements = CAType->getSize().getZExtValue();
403    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
404                                                         0, Entity);
405  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
406    ElementType = VType->getElementType();
407    NumElements = VType->getNumElements();
408    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
409                                                         0, Entity);
410  } else
411    ElementType = ILE->getType();
412
413
414  for (unsigned Init = 0; Init != NumElements; ++Init) {
415    if (hadError)
416      return;
417
418    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
419        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
420      ElementEntity.setElementIndex(Init);
421
422    if (Init >= NumInits || !ILE->getInit(Init)) {
423      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
424                                                                true);
425      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
426      if (!InitSeq) {
427        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
428        hadError = true;
429        return;
430      }
431
432      Sema::OwningExprResult ElementInit
433        = InitSeq.Perform(SemaRef, ElementEntity, Kind,
434                          Sema::MultiExprArg(SemaRef, 0, 0));
435      if (ElementInit.isInvalid()) {
436        hadError = true;
437        return;
438      }
439
440      if (hadError) {
441        // Do nothing
442      } else if (Init < NumInits) {
443        ILE->setInit(Init, ElementInit.takeAs<Expr>());
444      } else if (InitSeq.getKind()
445                   == InitializationSequence::ConstructorInitialization) {
446        // Value-initialization requires a constructor call, so
447        // extend the initializer list to include the constructor
448        // call and make a note that we'll need to take another pass
449        // through the initializer list.
450        ILE->updateInit(Init, ElementInit.takeAs<Expr>());
451        RequiresSecondPass = true;
452      }
453    } else if (InitListExpr *InnerILE
454                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
455      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
456  }
457}
458
459
460InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
461                                 InitListExpr *IL, QualType &T)
462  : SemaRef(S) {
463  hadError = false;
464
465  unsigned newIndex = 0;
466  unsigned newStructuredIndex = 0;
467  FullyStructuredList
468    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
469  CheckExplicitInitList(&Entity, IL, T, newIndex,
470                        FullyStructuredList, newStructuredIndex,
471                        /*TopLevelObject=*/true);
472
473  if (!hadError) {
474    bool RequiresSecondPass = false;
475    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
476    if (RequiresSecondPass && !hadError)
477      FillInValueInitializations(Entity, FullyStructuredList,
478                                 RequiresSecondPass);
479  }
480}
481
482int InitListChecker::numArrayElements(QualType DeclType) {
483  // FIXME: use a proper constant
484  int maxElements = 0x7FFFFFFF;
485  if (const ConstantArrayType *CAT =
486        SemaRef.Context.getAsConstantArrayType(DeclType)) {
487    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
488  }
489  return maxElements;
490}
491
492int InitListChecker::numStructUnionElements(QualType DeclType) {
493  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
494  int InitializableMembers = 0;
495  for (RecordDecl::field_iterator
496         Field = structDecl->field_begin(),
497         FieldEnd = structDecl->field_end();
498       Field != FieldEnd; ++Field) {
499    if ((*Field)->getIdentifier() || !(*Field)->isBitField())
500      ++InitializableMembers;
501  }
502  if (structDecl->isUnion())
503    return std::min(InitializableMembers, 1);
504  return InitializableMembers - structDecl->hasFlexibleArrayMember();
505}
506
507void InitListChecker::CheckImplicitInitList(InitListExpr *ParentIList,
508                                            QualType T, unsigned &Index,
509                                            InitListExpr *StructuredList,
510                                            unsigned &StructuredIndex,
511                                            bool TopLevelObject) {
512  int maxElements = 0;
513
514  if (T->isArrayType())
515    maxElements = numArrayElements(T);
516  else if (T->isStructureType() || T->isUnionType())
517    maxElements = numStructUnionElements(T);
518  else if (T->isVectorType())
519    maxElements = T->getAs<VectorType>()->getNumElements();
520  else
521    assert(0 && "CheckImplicitInitList(): Illegal type");
522
523  if (maxElements == 0) {
524    SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
525                  diag::err_implicit_empty_initializer);
526    ++Index;
527    hadError = true;
528    return;
529  }
530
531  // Build a structured initializer list corresponding to this subobject.
532  InitListExpr *StructuredSubobjectInitList
533    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
534                                 StructuredIndex,
535          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
536                      ParentIList->getSourceRange().getEnd()));
537  unsigned StructuredSubobjectInitIndex = 0;
538
539  // Check the element types and build the structural subobject.
540  unsigned StartIndex = Index;
541  CheckListElementTypes(0, ParentIList, T, false, Index,
542                        StructuredSubobjectInitList,
543                        StructuredSubobjectInitIndex,
544                        TopLevelObject);
545  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
546  StructuredSubobjectInitList->setType(T);
547
548  // Update the structured sub-object initializer so that it's ending
549  // range corresponds with the end of the last initializer it used.
550  if (EndIndex < ParentIList->getNumInits()) {
551    SourceLocation EndLoc
552      = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
553    StructuredSubobjectInitList->setRBraceLoc(EndLoc);
554  }
555}
556
557void InitListChecker::CheckExplicitInitList(const InitializedEntity *Entity,
558                                            InitListExpr *IList, QualType &T,
559                                            unsigned &Index,
560                                            InitListExpr *StructuredList,
561                                            unsigned &StructuredIndex,
562                                            bool TopLevelObject) {
563  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
564  SyntacticToSemantic[IList] = StructuredList;
565  StructuredList->setSyntacticForm(IList);
566  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
567                        Index, StructuredList, StructuredIndex, TopLevelObject);
568  IList->setType(T);
569  StructuredList->setType(T);
570  if (hadError)
571    return;
572
573  if (Index < IList->getNumInits()) {
574    // We have leftover initializers
575    if (StructuredIndex == 1 &&
576        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
577      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
578      if (SemaRef.getLangOptions().CPlusPlus) {
579        DK = diag::err_excess_initializers_in_char_array_initializer;
580        hadError = true;
581      }
582      // Special-case
583      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
584        << IList->getInit(Index)->getSourceRange();
585    } else if (!T->isIncompleteType()) {
586      // Don't complain for incomplete types, since we'll get an error
587      // elsewhere
588      QualType CurrentObjectType = StructuredList->getType();
589      int initKind =
590        CurrentObjectType->isArrayType()? 0 :
591        CurrentObjectType->isVectorType()? 1 :
592        CurrentObjectType->isScalarType()? 2 :
593        CurrentObjectType->isUnionType()? 3 :
594        4;
595
596      unsigned DK = diag::warn_excess_initializers;
597      if (SemaRef.getLangOptions().CPlusPlus) {
598        DK = diag::err_excess_initializers;
599        hadError = true;
600      }
601      if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
602        DK = diag::err_excess_initializers;
603        hadError = true;
604      }
605
606      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
607        << initKind << IList->getInit(Index)->getSourceRange();
608    }
609  }
610
611  if (T->isScalarType() && !TopLevelObject)
612    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
613      << IList->getSourceRange()
614      << CodeModificationHint::CreateRemoval(IList->getLocStart())
615      << CodeModificationHint::CreateRemoval(IList->getLocEnd());
616}
617
618void InitListChecker::CheckListElementTypes(const InitializedEntity *Entity,
619                                            InitListExpr *IList,
620                                            QualType &DeclType,
621                                            bool SubobjectIsDesignatorContext,
622                                            unsigned &Index,
623                                            InitListExpr *StructuredList,
624                                            unsigned &StructuredIndex,
625                                            bool TopLevelObject) {
626  if (DeclType->isScalarType()) {
627    CheckScalarType(Entity, IList, DeclType, Index,
628                    StructuredList, StructuredIndex);
629  } else if (DeclType->isVectorType()) {
630    CheckVectorType(Entity, IList, DeclType, Index,
631                    StructuredList, StructuredIndex);
632  } else if (DeclType->isAggregateType()) {
633    if (DeclType->isRecordType()) {
634      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
635      CheckStructUnionTypes(IList, DeclType, RD->field_begin(),
636                            SubobjectIsDesignatorContext, Index,
637                            StructuredList, StructuredIndex,
638                            TopLevelObject);
639    } else if (DeclType->isArrayType()) {
640      llvm::APSInt Zero(
641                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
642                      false);
643      CheckArrayType(IList, DeclType, Zero, SubobjectIsDesignatorContext, Index,
644                     StructuredList, StructuredIndex);
645    } else
646      assert(0 && "Aggregate that isn't a structure or array?!");
647  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
648    // This type is invalid, issue a diagnostic.
649    ++Index;
650    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
651      << DeclType;
652    hadError = true;
653  } else if (DeclType->isRecordType()) {
654    // C++ [dcl.init]p14:
655    //   [...] If the class is an aggregate (8.5.1), and the initializer
656    //   is a brace-enclosed list, see 8.5.1.
657    //
658    // Note: 8.5.1 is handled below; here, we diagnose the case where
659    // we have an initializer list and a destination type that is not
660    // an aggregate.
661    // FIXME: In C++0x, this is yet another form of initialization.
662    SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
663      << DeclType << IList->getSourceRange();
664    hadError = true;
665  } else if (DeclType->isReferenceType()) {
666    CheckReferenceType(IList, DeclType, Index, StructuredList, StructuredIndex);
667  } else {
668    // In C, all types are either scalars or aggregates, but
669    // additional handling is needed here for C++ (and possibly others?).
670    assert(0 && "Unsupported initializer type");
671  }
672}
673
674void InitListChecker::CheckSubElementType(const InitializedEntity *Entity,
675                                          InitListExpr *IList,
676                                          QualType ElemType,
677                                          unsigned &Index,
678                                          InitListExpr *StructuredList,
679                                          unsigned &StructuredIndex) {
680  Expr *expr = IList->getInit(Index);
681  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
682    unsigned newIndex = 0;
683    unsigned newStructuredIndex = 0;
684    InitListExpr *newStructuredList
685      = getStructuredSubobjectInit(IList, Index, ElemType,
686                                   StructuredList, StructuredIndex,
687                                   SubInitList->getSourceRange());
688    CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
689                          newStructuredList, newStructuredIndex);
690    ++StructuredIndex;
691    ++Index;
692  } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
693    CheckStringInit(Str, ElemType, SemaRef);
694    UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
695    ++Index;
696  } else if (ElemType->isScalarType()) {
697    CheckScalarType(Entity, IList, ElemType, Index,
698                    StructuredList, StructuredIndex);
699  } else if (ElemType->isReferenceType()) {
700    CheckReferenceType(IList, ElemType, Index, StructuredList, StructuredIndex);
701  } else {
702    if (SemaRef.getLangOptions().CPlusPlus) {
703      // C++ [dcl.init.aggr]p12:
704      //   All implicit type conversions (clause 4) are considered when
705      //   initializing the aggregate member with an ini- tializer from
706      //   an initializer-list. If the initializer can initialize a
707      //   member, the member is initialized. [...]
708      ImplicitConversionSequence ICS
709        = SemaRef.TryCopyInitialization(expr, ElemType,
710                                        /*SuppressUserConversions=*/false,
711                                        /*ForceRValue=*/false,
712                                        /*InOverloadResolution=*/false);
713
714      if (!ICS.isBad()) {
715        if (SemaRef.PerformImplicitConversion(expr, ElemType, ICS,
716                                              Sema::AA_Initializing))
717          hadError = true;
718        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
719        ++Index;
720        return;
721      }
722
723      // Fall through for subaggregate initialization
724    } else {
725      // C99 6.7.8p13:
726      //
727      //   The initializer for a structure or union object that has
728      //   automatic storage duration shall be either an initializer
729      //   list as described below, or a single expression that has
730      //   compatible structure or union type. In the latter case, the
731      //   initial value of the object, including unnamed members, is
732      //   that of the expression.
733      if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
734          SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) {
735        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
736        ++Index;
737        return;
738      }
739
740      // Fall through for subaggregate initialization
741    }
742
743    // C++ [dcl.init.aggr]p12:
744    //
745    //   [...] Otherwise, if the member is itself a non-empty
746    //   subaggregate, brace elision is assumed and the initializer is
747    //   considered for the initialization of the first member of
748    //   the subaggregate.
749    if (ElemType->isAggregateType() || ElemType->isVectorType()) {
750      CheckImplicitInitList(IList, ElemType, Index, StructuredList,
751                            StructuredIndex);
752      ++StructuredIndex;
753    } else {
754      // We cannot initialize this element, so let
755      // PerformCopyInitialization produce the appropriate diagnostic.
756      SemaRef.PerformCopyInitialization(expr, ElemType, Sema::AA_Initializing);
757      hadError = true;
758      ++Index;
759      ++StructuredIndex;
760    }
761  }
762}
763
764void InitListChecker::CheckScalarType(const InitializedEntity *Entity,
765                                      InitListExpr *IList, QualType DeclType,
766                                      unsigned &Index,
767                                      InitListExpr *StructuredList,
768                                      unsigned &StructuredIndex) {
769  if (Index < IList->getNumInits()) {
770    Expr *expr = IList->getInit(Index);
771    if (isa<InitListExpr>(expr)) {
772      SemaRef.Diag(IList->getLocStart(),
773                    diag::err_many_braces_around_scalar_init)
774        << IList->getSourceRange();
775      hadError = true;
776      ++Index;
777      ++StructuredIndex;
778      return;
779    } else if (isa<DesignatedInitExpr>(expr)) {
780      SemaRef.Diag(expr->getSourceRange().getBegin(),
781                    diag::err_designator_for_scalar_init)
782        << DeclType << expr->getSourceRange();
783      hadError = true;
784      ++Index;
785      ++StructuredIndex;
786      return;
787    }
788
789    Sema::OwningExprResult Result =
790      CheckSingleInitializer(Entity, SemaRef.Owned(expr), DeclType, SemaRef);
791
792    Expr *ResultExpr;
793
794    if (Result.isInvalid())
795      hadError = true; // types weren't compatible.
796    else {
797      ResultExpr = Result.takeAs<Expr>();
798
799      if (ResultExpr != expr) {
800        // The type was promoted, update initializer list.
801        IList->setInit(Index, ResultExpr);
802      }
803    }
804    if (hadError)
805      ++StructuredIndex;
806    else
807      UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
808    ++Index;
809  } else {
810    SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
811      << IList->getSourceRange();
812    hadError = true;
813    ++Index;
814    ++StructuredIndex;
815    return;
816  }
817}
818
819void InitListChecker::CheckReferenceType(InitListExpr *IList, QualType DeclType,
820                                         unsigned &Index,
821                                         InitListExpr *StructuredList,
822                                         unsigned &StructuredIndex) {
823  if (Index < IList->getNumInits()) {
824    Expr *expr = IList->getInit(Index);
825    if (isa<InitListExpr>(expr)) {
826      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
827        << DeclType << IList->getSourceRange();
828      hadError = true;
829      ++Index;
830      ++StructuredIndex;
831      return;
832    }
833
834    Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
835    if (SemaRef.CheckReferenceInit(expr, DeclType,
836                                   /*FIXME:*/expr->getLocStart(),
837                                   /*SuppressUserConversions=*/false,
838                                   /*AllowExplicit=*/false,
839                                   /*ForceRValue=*/false))
840      hadError = true;
841    else if (savExpr != expr) {
842      // The type was promoted, update initializer list.
843      IList->setInit(Index, expr);
844    }
845    if (hadError)
846      ++StructuredIndex;
847    else
848      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
849    ++Index;
850  } else {
851    // FIXME: It would be wonderful if we could point at the actual member. In
852    // general, it would be useful to pass location information down the stack,
853    // so that we know the location (or decl) of the "current object" being
854    // initialized.
855    SemaRef.Diag(IList->getLocStart(),
856                  diag::err_init_reference_member_uninitialized)
857      << DeclType
858      << IList->getSourceRange();
859    hadError = true;
860    ++Index;
861    ++StructuredIndex;
862    return;
863  }
864}
865
866void InitListChecker::CheckVectorType(const InitializedEntity *Entity,
867                                      InitListExpr *IList, QualType DeclType,
868                                      unsigned &Index,
869                                      InitListExpr *StructuredList,
870                                      unsigned &StructuredIndex) {
871  if (Index < IList->getNumInits()) {
872    const VectorType *VT = DeclType->getAs<VectorType>();
873    unsigned maxElements = VT->getNumElements();
874    unsigned numEltsInit = 0;
875    QualType elementType = VT->getElementType();
876
877    if (!SemaRef.getLangOptions().OpenCL) {
878      // FIXME: Once we know Entity is never null we can remove this check,
879      // as well as the else block.
880      if (Entity) {
881        InitializedEntity ElementEntity =
882          InitializedEntity::InitializeElement(SemaRef.Context, 0, *Entity);
883
884        for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
885          // Don't attempt to go past the end of the init list
886          if (Index >= IList->getNumInits())
887            break;
888
889          ElementEntity.setElementIndex(Index);
890          CheckSubElementType(&ElementEntity, IList, elementType, Index,
891                              StructuredList, StructuredIndex);
892        }
893      } else {
894        for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
895          // Don't attempt to go past the end of the init list
896          if (Index >= IList->getNumInits())
897            break;
898
899          CheckSubElementType(0, IList, elementType, Index,
900                              StructuredList, StructuredIndex);
901        }
902      }
903    } else {
904      // OpenCL initializers allows vectors to be constructed from vectors.
905      for (unsigned i = 0; i < maxElements; ++i) {
906        // Don't attempt to go past the end of the init list
907        if (Index >= IList->getNumInits())
908          break;
909        QualType IType = IList->getInit(Index)->getType();
910        if (!IType->isVectorType()) {
911          CheckSubElementType(0, IList, elementType, Index,
912                              StructuredList, StructuredIndex);
913          ++numEltsInit;
914        } else {
915          const VectorType *IVT = IType->getAs<VectorType>();
916          unsigned numIElts = IVT->getNumElements();
917          QualType VecType = SemaRef.Context.getExtVectorType(elementType,
918                                                              numIElts);
919          CheckSubElementType(0, IList, VecType, Index,
920                              StructuredList, StructuredIndex);
921          numEltsInit += numIElts;
922        }
923      }
924    }
925
926    // OpenCL & AltiVec require all elements to be initialized.
927    if (numEltsInit != maxElements)
928      if (SemaRef.getLangOptions().OpenCL || SemaRef.getLangOptions().AltiVec)
929        SemaRef.Diag(IList->getSourceRange().getBegin(),
930                     diag::err_vector_incorrect_num_initializers)
931          << (numEltsInit < maxElements) << maxElements << numEltsInit;
932  }
933}
934
935void InitListChecker::CheckArrayType(InitListExpr *IList, QualType &DeclType,
936                                     llvm::APSInt elementIndex,
937                                     bool SubobjectIsDesignatorContext,
938                                     unsigned &Index,
939                                     InitListExpr *StructuredList,
940                                     unsigned &StructuredIndex) {
941  // Check for the special-case of initializing an array with a string.
942  if (Index < IList->getNumInits()) {
943    if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
944                                 SemaRef.Context)) {
945      CheckStringInit(Str, DeclType, SemaRef);
946      // We place the string literal directly into the resulting
947      // initializer list. This is the only place where the structure
948      // of the structured initializer list doesn't match exactly,
949      // because doing so would involve allocating one character
950      // constant for each string.
951      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
952      StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
953      ++Index;
954      return;
955    }
956  }
957  if (const VariableArrayType *VAT =
958        SemaRef.Context.getAsVariableArrayType(DeclType)) {
959    // Check for VLAs; in standard C it would be possible to check this
960    // earlier, but I don't know where clang accepts VLAs (gcc accepts
961    // them in all sorts of strange places).
962    SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
963                  diag::err_variable_object_no_init)
964      << VAT->getSizeExpr()->getSourceRange();
965    hadError = true;
966    ++Index;
967    ++StructuredIndex;
968    return;
969  }
970
971  // We might know the maximum number of elements in advance.
972  llvm::APSInt maxElements(elementIndex.getBitWidth(),
973                           elementIndex.isUnsigned());
974  bool maxElementsKnown = false;
975  if (const ConstantArrayType *CAT =
976        SemaRef.Context.getAsConstantArrayType(DeclType)) {
977    maxElements = CAT->getSize();
978    elementIndex.extOrTrunc(maxElements.getBitWidth());
979    elementIndex.setIsUnsigned(maxElements.isUnsigned());
980    maxElementsKnown = true;
981  }
982
983  QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
984                             ->getElementType();
985  while (Index < IList->getNumInits()) {
986    Expr *Init = IList->getInit(Index);
987    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
988      // If we're not the subobject that matches up with the '{' for
989      // the designator, we shouldn't be handling the
990      // designator. Return immediately.
991      if (!SubobjectIsDesignatorContext)
992        return;
993
994      // Handle this designated initializer. elementIndex will be
995      // updated to be the next array element we'll initialize.
996      if (CheckDesignatedInitializer(IList, DIE, 0,
997                                     DeclType, 0, &elementIndex, Index,
998                                     StructuredList, StructuredIndex, true,
999                                     false)) {
1000        hadError = true;
1001        continue;
1002      }
1003
1004      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1005        maxElements.extend(elementIndex.getBitWidth());
1006      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1007        elementIndex.extend(maxElements.getBitWidth());
1008      elementIndex.setIsUnsigned(maxElements.isUnsigned());
1009
1010      // If the array is of incomplete type, keep track of the number of
1011      // elements in the initializer.
1012      if (!maxElementsKnown && elementIndex > maxElements)
1013        maxElements = elementIndex;
1014
1015      continue;
1016    }
1017
1018    // If we know the maximum number of elements, and we've already
1019    // hit it, stop consuming elements in the initializer list.
1020    if (maxElementsKnown && elementIndex == maxElements)
1021      break;
1022
1023    // Check this element.
1024    CheckSubElementType(0, IList, elementType, Index,
1025                        StructuredList, StructuredIndex);
1026    ++elementIndex;
1027
1028    // If the array is of incomplete type, keep track of the number of
1029    // elements in the initializer.
1030    if (!maxElementsKnown && elementIndex > maxElements)
1031      maxElements = elementIndex;
1032  }
1033  if (!hadError && DeclType->isIncompleteArrayType()) {
1034    // If this is an incomplete array type, the actual type needs to
1035    // be calculated here.
1036    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1037    if (maxElements == Zero) {
1038      // Sizing an array implicitly to zero is not allowed by ISO C,
1039      // but is supported by GNU.
1040      SemaRef.Diag(IList->getLocStart(),
1041                    diag::ext_typecheck_zero_array_size);
1042    }
1043
1044    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1045                                                     ArrayType::Normal, 0);
1046  }
1047}
1048
1049void InitListChecker::CheckStructUnionTypes(InitListExpr *IList,
1050                                            QualType DeclType,
1051                                            RecordDecl::field_iterator Field,
1052                                            bool SubobjectIsDesignatorContext,
1053                                            unsigned &Index,
1054                                            InitListExpr *StructuredList,
1055                                            unsigned &StructuredIndex,
1056                                            bool TopLevelObject) {
1057  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1058
1059  // If the record is invalid, some of it's members are invalid. To avoid
1060  // confusion, we forgo checking the intializer for the entire record.
1061  if (structDecl->isInvalidDecl()) {
1062    hadError = true;
1063    return;
1064  }
1065
1066  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1067    // Value-initialize the first named member of the union.
1068    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1069    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1070         Field != FieldEnd; ++Field) {
1071      if (Field->getDeclName()) {
1072        StructuredList->setInitializedFieldInUnion(*Field);
1073        break;
1074      }
1075    }
1076    return;
1077  }
1078
1079  // If structDecl is a forward declaration, this loop won't do
1080  // anything except look at designated initializers; That's okay,
1081  // because an error should get printed out elsewhere. It might be
1082  // worthwhile to skip over the rest of the initializer, though.
1083  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1084  RecordDecl::field_iterator FieldEnd = RD->field_end();
1085  bool InitializedSomething = false;
1086  while (Index < IList->getNumInits()) {
1087    Expr *Init = IList->getInit(Index);
1088
1089    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1090      // If we're not the subobject that matches up with the '{' for
1091      // the designator, we shouldn't be handling the
1092      // designator. Return immediately.
1093      if (!SubobjectIsDesignatorContext)
1094        return;
1095
1096      // Handle this designated initializer. Field will be updated to
1097      // the next field that we'll be initializing.
1098      if (CheckDesignatedInitializer(IList, DIE, 0,
1099                                     DeclType, &Field, 0, Index,
1100                                     StructuredList, StructuredIndex,
1101                                     true, TopLevelObject))
1102        hadError = true;
1103
1104      InitializedSomething = true;
1105      continue;
1106    }
1107
1108    if (Field == FieldEnd) {
1109      // We've run out of fields. We're done.
1110      break;
1111    }
1112
1113    // We've already initialized a member of a union. We're done.
1114    if (InitializedSomething && DeclType->isUnionType())
1115      break;
1116
1117    // If we've hit the flexible array member at the end, we're done.
1118    if (Field->getType()->isIncompleteArrayType())
1119      break;
1120
1121    if (Field->isUnnamedBitfield()) {
1122      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1123      ++Field;
1124      continue;
1125    }
1126
1127    CheckSubElementType(0, IList, Field->getType(), Index,
1128                        StructuredList, StructuredIndex);
1129    InitializedSomething = true;
1130
1131    if (DeclType->isUnionType()) {
1132      // Initialize the first field within the union.
1133      StructuredList->setInitializedFieldInUnion(*Field);
1134    }
1135
1136    ++Field;
1137  }
1138
1139  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1140      Index >= IList->getNumInits())
1141    return;
1142
1143  // Handle GNU flexible array initializers.
1144  if (!TopLevelObject &&
1145      (!isa<InitListExpr>(IList->getInit(Index)) ||
1146       cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1147    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1148                  diag::err_flexible_array_init_nonempty)
1149      << IList->getInit(Index)->getSourceRange().getBegin();
1150    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1151      << *Field;
1152    hadError = true;
1153    ++Index;
1154    return;
1155  } else {
1156    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1157                 diag::ext_flexible_array_init)
1158      << IList->getInit(Index)->getSourceRange().getBegin();
1159    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1160      << *Field;
1161  }
1162
1163  if (isa<InitListExpr>(IList->getInit(Index)))
1164    CheckSubElementType(0, IList, Field->getType(), Index, StructuredList,
1165                        StructuredIndex);
1166  else
1167    CheckImplicitInitList(IList, Field->getType(), Index, StructuredList,
1168                          StructuredIndex);
1169}
1170
1171/// \brief Expand a field designator that refers to a member of an
1172/// anonymous struct or union into a series of field designators that
1173/// refers to the field within the appropriate subobject.
1174///
1175/// Field/FieldIndex will be updated to point to the (new)
1176/// currently-designated field.
1177static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1178                                           DesignatedInitExpr *DIE,
1179                                           unsigned DesigIdx,
1180                                           FieldDecl *Field,
1181                                        RecordDecl::field_iterator &FieldIter,
1182                                           unsigned &FieldIndex) {
1183  typedef DesignatedInitExpr::Designator Designator;
1184
1185  // Build the path from the current object to the member of the
1186  // anonymous struct/union (backwards).
1187  llvm::SmallVector<FieldDecl *, 4> Path;
1188  SemaRef.BuildAnonymousStructUnionMemberPath(Field, Path);
1189
1190  // Build the replacement designators.
1191  llvm::SmallVector<Designator, 4> Replacements;
1192  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
1193         FI = Path.rbegin(), FIEnd = Path.rend();
1194       FI != FIEnd; ++FI) {
1195    if (FI + 1 == FIEnd)
1196      Replacements.push_back(Designator((IdentifierInfo *)0,
1197                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1198                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1199    else
1200      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1201                                        SourceLocation()));
1202    Replacements.back().setField(*FI);
1203  }
1204
1205  // Expand the current designator into the set of replacement
1206  // designators, so we have a full subobject path down to where the
1207  // member of the anonymous struct/union is actually stored.
1208  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1209                        &Replacements[0] + Replacements.size());
1210
1211  // Update FieldIter/FieldIndex;
1212  RecordDecl *Record = cast<RecordDecl>(Path.back()->getDeclContext());
1213  FieldIter = Record->field_begin();
1214  FieldIndex = 0;
1215  for (RecordDecl::field_iterator FEnd = Record->field_end();
1216       FieldIter != FEnd; ++FieldIter) {
1217    if (FieldIter->isUnnamedBitfield())
1218        continue;
1219
1220    if (*FieldIter == Path.back())
1221      return;
1222
1223    ++FieldIndex;
1224  }
1225
1226  assert(false && "Unable to find anonymous struct/union field");
1227}
1228
1229/// @brief Check the well-formedness of a C99 designated initializer.
1230///
1231/// Determines whether the designated initializer @p DIE, which
1232/// resides at the given @p Index within the initializer list @p
1233/// IList, is well-formed for a current object of type @p DeclType
1234/// (C99 6.7.8). The actual subobject that this designator refers to
1235/// within the current subobject is returned in either
1236/// @p NextField or @p NextElementIndex (whichever is appropriate).
1237///
1238/// @param IList  The initializer list in which this designated
1239/// initializer occurs.
1240///
1241/// @param DIE The designated initializer expression.
1242///
1243/// @param DesigIdx  The index of the current designator.
1244///
1245/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1246/// into which the designation in @p DIE should refer.
1247///
1248/// @param NextField  If non-NULL and the first designator in @p DIE is
1249/// a field, this will be set to the field declaration corresponding
1250/// to the field named by the designator.
1251///
1252/// @param NextElementIndex  If non-NULL and the first designator in @p
1253/// DIE is an array designator or GNU array-range designator, this
1254/// will be set to the last index initialized by this designator.
1255///
1256/// @param Index  Index into @p IList where the designated initializer
1257/// @p DIE occurs.
1258///
1259/// @param StructuredList  The initializer list expression that
1260/// describes all of the subobject initializers in the order they'll
1261/// actually be initialized.
1262///
1263/// @returns true if there was an error, false otherwise.
1264bool
1265InitListChecker::CheckDesignatedInitializer(InitListExpr *IList,
1266                                      DesignatedInitExpr *DIE,
1267                                      unsigned DesigIdx,
1268                                      QualType &CurrentObjectType,
1269                                      RecordDecl::field_iterator *NextField,
1270                                      llvm::APSInt *NextElementIndex,
1271                                      unsigned &Index,
1272                                      InitListExpr *StructuredList,
1273                                      unsigned &StructuredIndex,
1274                                            bool FinishSubobjectInit,
1275                                            bool TopLevelObject) {
1276  if (DesigIdx == DIE->size()) {
1277    // Check the actual initialization for the designated object type.
1278    bool prevHadError = hadError;
1279
1280    // Temporarily remove the designator expression from the
1281    // initializer list that the child calls see, so that we don't try
1282    // to re-process the designator.
1283    unsigned OldIndex = Index;
1284    IList->setInit(OldIndex, DIE->getInit());
1285
1286    CheckSubElementType(0, IList, CurrentObjectType, Index,
1287                        StructuredList, StructuredIndex);
1288
1289    // Restore the designated initializer expression in the syntactic
1290    // form of the initializer list.
1291    if (IList->getInit(OldIndex) != DIE->getInit())
1292      DIE->setInit(IList->getInit(OldIndex));
1293    IList->setInit(OldIndex, DIE);
1294
1295    return hadError && !prevHadError;
1296  }
1297
1298  bool IsFirstDesignator = (DesigIdx == 0);
1299  assert((IsFirstDesignator || StructuredList) &&
1300         "Need a non-designated initializer list to start from");
1301
1302  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1303  // Determine the structural initializer list that corresponds to the
1304  // current subobject.
1305  StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1306    : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1307                                 StructuredList, StructuredIndex,
1308                                 SourceRange(D->getStartLocation(),
1309                                             DIE->getSourceRange().getEnd()));
1310  assert(StructuredList && "Expected a structured initializer list");
1311
1312  if (D->isFieldDesignator()) {
1313    // C99 6.7.8p7:
1314    //
1315    //   If a designator has the form
1316    //
1317    //      . identifier
1318    //
1319    //   then the current object (defined below) shall have
1320    //   structure or union type and the identifier shall be the
1321    //   name of a member of that type.
1322    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1323    if (!RT) {
1324      SourceLocation Loc = D->getDotLoc();
1325      if (Loc.isInvalid())
1326        Loc = D->getFieldLoc();
1327      SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1328        << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1329      ++Index;
1330      return true;
1331    }
1332
1333    // Note: we perform a linear search of the fields here, despite
1334    // the fact that we have a faster lookup method, because we always
1335    // need to compute the field's index.
1336    FieldDecl *KnownField = D->getField();
1337    IdentifierInfo *FieldName = D->getFieldName();
1338    unsigned FieldIndex = 0;
1339    RecordDecl::field_iterator
1340      Field = RT->getDecl()->field_begin(),
1341      FieldEnd = RT->getDecl()->field_end();
1342    for (; Field != FieldEnd; ++Field) {
1343      if (Field->isUnnamedBitfield())
1344        continue;
1345
1346      if (KnownField == *Field || Field->getIdentifier() == FieldName)
1347        break;
1348
1349      ++FieldIndex;
1350    }
1351
1352    if (Field == FieldEnd) {
1353      // There was no normal field in the struct with the designated
1354      // name. Perform another lookup for this name, which may find
1355      // something that we can't designate (e.g., a member function),
1356      // may find nothing, or may find a member of an anonymous
1357      // struct/union.
1358      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1359      FieldDecl *ReplacementField = 0;
1360      if (Lookup.first == Lookup.second) {
1361        // Name lookup didn't find anything. Determine whether this
1362        // was a typo for another field name.
1363        LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
1364                       Sema::LookupMemberName);
1365        if (SemaRef.CorrectTypo(R, /*Scope=*/0, /*SS=*/0, RT->getDecl()) &&
1366            (ReplacementField = R.getAsSingle<FieldDecl>()) &&
1367            ReplacementField->getDeclContext()->getLookupContext()
1368                                                      ->Equals(RT->getDecl())) {
1369          SemaRef.Diag(D->getFieldLoc(),
1370                       diag::err_field_designator_unknown_suggest)
1371            << FieldName << CurrentObjectType << R.getLookupName()
1372            << CodeModificationHint::CreateReplacement(D->getFieldLoc(),
1373                                               R.getLookupName().getAsString());
1374          SemaRef.Diag(ReplacementField->getLocation(),
1375                       diag::note_previous_decl)
1376            << ReplacementField->getDeclName();
1377        } else {
1378          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1379            << FieldName << CurrentObjectType;
1380          ++Index;
1381          return true;
1382        }
1383      } else if (!KnownField) {
1384        // Determine whether we found a field at all.
1385        ReplacementField = dyn_cast<FieldDecl>(*Lookup.first);
1386      }
1387
1388      if (!ReplacementField) {
1389        // Name lookup found something, but it wasn't a field.
1390        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1391          << FieldName;
1392        SemaRef.Diag((*Lookup.first)->getLocation(),
1393                      diag::note_field_designator_found);
1394        ++Index;
1395        return true;
1396      }
1397
1398      if (!KnownField &&
1399          cast<RecordDecl>((ReplacementField)->getDeclContext())
1400                                                 ->isAnonymousStructOrUnion()) {
1401        // Handle an field designator that refers to a member of an
1402        // anonymous struct or union.
1403        ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx,
1404                                       ReplacementField,
1405                                       Field, FieldIndex);
1406        D = DIE->getDesignator(DesigIdx);
1407      } else if (!KnownField) {
1408        // The replacement field comes from typo correction; find it
1409        // in the list of fields.
1410        FieldIndex = 0;
1411        Field = RT->getDecl()->field_begin();
1412        for (; Field != FieldEnd; ++Field) {
1413          if (Field->isUnnamedBitfield())
1414            continue;
1415
1416          if (ReplacementField == *Field ||
1417              Field->getIdentifier() == ReplacementField->getIdentifier())
1418            break;
1419
1420          ++FieldIndex;
1421        }
1422      }
1423    } else if (!KnownField &&
1424               cast<RecordDecl>((*Field)->getDeclContext())
1425                 ->isAnonymousStructOrUnion()) {
1426      ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, *Field,
1427                                     Field, FieldIndex);
1428      D = DIE->getDesignator(DesigIdx);
1429    }
1430
1431    // All of the fields of a union are located at the same place in
1432    // the initializer list.
1433    if (RT->getDecl()->isUnion()) {
1434      FieldIndex = 0;
1435      StructuredList->setInitializedFieldInUnion(*Field);
1436    }
1437
1438    // Update the designator with the field declaration.
1439    D->setField(*Field);
1440
1441    // Make sure that our non-designated initializer list has space
1442    // for a subobject corresponding to this field.
1443    if (FieldIndex >= StructuredList->getNumInits())
1444      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1445
1446    // This designator names a flexible array member.
1447    if (Field->getType()->isIncompleteArrayType()) {
1448      bool Invalid = false;
1449      if ((DesigIdx + 1) != DIE->size()) {
1450        // We can't designate an object within the flexible array
1451        // member (because GCC doesn't allow it).
1452        DesignatedInitExpr::Designator *NextD
1453          = DIE->getDesignator(DesigIdx + 1);
1454        SemaRef.Diag(NextD->getStartLocation(),
1455                      diag::err_designator_into_flexible_array_member)
1456          << SourceRange(NextD->getStartLocation(),
1457                         DIE->getSourceRange().getEnd());
1458        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1459          << *Field;
1460        Invalid = true;
1461      }
1462
1463      if (!hadError && !isa<InitListExpr>(DIE->getInit())) {
1464        // The initializer is not an initializer list.
1465        SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1466                      diag::err_flexible_array_init_needs_braces)
1467          << DIE->getInit()->getSourceRange();
1468        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1469          << *Field;
1470        Invalid = true;
1471      }
1472
1473      // Handle GNU flexible array initializers.
1474      if (!Invalid && !TopLevelObject &&
1475          cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1476        SemaRef.Diag(DIE->getSourceRange().getBegin(),
1477                      diag::err_flexible_array_init_nonempty)
1478          << DIE->getSourceRange().getBegin();
1479        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1480          << *Field;
1481        Invalid = true;
1482      }
1483
1484      if (Invalid) {
1485        ++Index;
1486        return true;
1487      }
1488
1489      // Initialize the array.
1490      bool prevHadError = hadError;
1491      unsigned newStructuredIndex = FieldIndex;
1492      unsigned OldIndex = Index;
1493      IList->setInit(Index, DIE->getInit());
1494      CheckSubElementType(0, IList, Field->getType(), Index,
1495                          StructuredList, newStructuredIndex);
1496      IList->setInit(OldIndex, DIE);
1497      if (hadError && !prevHadError) {
1498        ++Field;
1499        ++FieldIndex;
1500        if (NextField)
1501          *NextField = Field;
1502        StructuredIndex = FieldIndex;
1503        return true;
1504      }
1505    } else {
1506      // Recurse to check later designated subobjects.
1507      QualType FieldType = (*Field)->getType();
1508      unsigned newStructuredIndex = FieldIndex;
1509      if (CheckDesignatedInitializer(IList, DIE, DesigIdx + 1, FieldType, 0, 0,
1510                                     Index, StructuredList, newStructuredIndex,
1511                                     true, false))
1512        return true;
1513    }
1514
1515    // Find the position of the next field to be initialized in this
1516    // subobject.
1517    ++Field;
1518    ++FieldIndex;
1519
1520    // If this the first designator, our caller will continue checking
1521    // the rest of this struct/class/union subobject.
1522    if (IsFirstDesignator) {
1523      if (NextField)
1524        *NextField = Field;
1525      StructuredIndex = FieldIndex;
1526      return false;
1527    }
1528
1529    if (!FinishSubobjectInit)
1530      return false;
1531
1532    // We've already initialized something in the union; we're done.
1533    if (RT->getDecl()->isUnion())
1534      return hadError;
1535
1536    // Check the remaining fields within this class/struct/union subobject.
1537    bool prevHadError = hadError;
1538    CheckStructUnionTypes(IList, CurrentObjectType, Field, false, Index,
1539                          StructuredList, FieldIndex);
1540    return hadError && !prevHadError;
1541  }
1542
1543  // C99 6.7.8p6:
1544  //
1545  //   If a designator has the form
1546  //
1547  //      [ constant-expression ]
1548  //
1549  //   then the current object (defined below) shall have array
1550  //   type and the expression shall be an integer constant
1551  //   expression. If the array is of unknown size, any
1552  //   nonnegative value is valid.
1553  //
1554  // Additionally, cope with the GNU extension that permits
1555  // designators of the form
1556  //
1557  //      [ constant-expression ... constant-expression ]
1558  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1559  if (!AT) {
1560    SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1561      << CurrentObjectType;
1562    ++Index;
1563    return true;
1564  }
1565
1566  Expr *IndexExpr = 0;
1567  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1568  if (D->isArrayDesignator()) {
1569    IndexExpr = DIE->getArrayIndex(*D);
1570    DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1571    DesignatedEndIndex = DesignatedStartIndex;
1572  } else {
1573    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1574
1575
1576    DesignatedStartIndex =
1577      DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1578    DesignatedEndIndex =
1579      DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1580    IndexExpr = DIE->getArrayRangeEnd(*D);
1581
1582    if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
1583      FullyStructuredList->sawArrayRangeDesignator();
1584  }
1585
1586  if (isa<ConstantArrayType>(AT)) {
1587    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1588    DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1589    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1590    DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1591    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1592    if (DesignatedEndIndex >= MaxElements) {
1593      SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1594                    diag::err_array_designator_too_large)
1595        << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1596        << IndexExpr->getSourceRange();
1597      ++Index;
1598      return true;
1599    }
1600  } else {
1601    // Make sure the bit-widths and signedness match.
1602    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1603      DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1604    else if (DesignatedStartIndex.getBitWidth() <
1605             DesignatedEndIndex.getBitWidth())
1606      DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1607    DesignatedStartIndex.setIsUnsigned(true);
1608    DesignatedEndIndex.setIsUnsigned(true);
1609  }
1610
1611  // Make sure that our non-designated initializer list has space
1612  // for a subobject corresponding to this array element.
1613  if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1614    StructuredList->resizeInits(SemaRef.Context,
1615                                DesignatedEndIndex.getZExtValue() + 1);
1616
1617  // Repeatedly perform subobject initializations in the range
1618  // [DesignatedStartIndex, DesignatedEndIndex].
1619
1620  // Move to the next designator
1621  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1622  unsigned OldIndex = Index;
1623  while (DesignatedStartIndex <= DesignatedEndIndex) {
1624    // Recurse to check later designated subobjects.
1625    QualType ElementType = AT->getElementType();
1626    Index = OldIndex;
1627    if (CheckDesignatedInitializer(IList, DIE, DesigIdx + 1, ElementType, 0, 0,
1628                                   Index, StructuredList, ElementIndex,
1629                                   (DesignatedStartIndex == DesignatedEndIndex),
1630                                   false))
1631      return true;
1632
1633    // Move to the next index in the array that we'll be initializing.
1634    ++DesignatedStartIndex;
1635    ElementIndex = DesignatedStartIndex.getZExtValue();
1636  }
1637
1638  // If this the first designator, our caller will continue checking
1639  // the rest of this array subobject.
1640  if (IsFirstDesignator) {
1641    if (NextElementIndex)
1642      *NextElementIndex = DesignatedStartIndex;
1643    StructuredIndex = ElementIndex;
1644    return false;
1645  }
1646
1647  if (!FinishSubobjectInit)
1648    return false;
1649
1650  // Check the remaining elements within this array subobject.
1651  bool prevHadError = hadError;
1652  CheckArrayType(IList, CurrentObjectType, DesignatedStartIndex, false, Index,
1653                 StructuredList, ElementIndex);
1654  return hadError && !prevHadError;
1655}
1656
1657// Get the structured initializer list for a subobject of type
1658// @p CurrentObjectType.
1659InitListExpr *
1660InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1661                                            QualType CurrentObjectType,
1662                                            InitListExpr *StructuredList,
1663                                            unsigned StructuredIndex,
1664                                            SourceRange InitRange) {
1665  Expr *ExistingInit = 0;
1666  if (!StructuredList)
1667    ExistingInit = SyntacticToSemantic[IList];
1668  else if (StructuredIndex < StructuredList->getNumInits())
1669    ExistingInit = StructuredList->getInit(StructuredIndex);
1670
1671  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1672    return Result;
1673
1674  if (ExistingInit) {
1675    // We are creating an initializer list that initializes the
1676    // subobjects of the current object, but there was already an
1677    // initialization that completely initialized the current
1678    // subobject, e.g., by a compound literal:
1679    //
1680    // struct X { int a, b; };
1681    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1682    //
1683    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1684    // designated initializer re-initializes the whole
1685    // subobject [0], overwriting previous initializers.
1686    SemaRef.Diag(InitRange.getBegin(),
1687                 diag::warn_subobject_initializer_overrides)
1688      << InitRange;
1689    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1690                  diag::note_previous_initializer)
1691      << /*FIXME:has side effects=*/0
1692      << ExistingInit->getSourceRange();
1693  }
1694
1695  InitListExpr *Result
1696    = new (SemaRef.Context) InitListExpr(InitRange.getBegin(), 0, 0,
1697                                         InitRange.getEnd());
1698
1699  Result->setType(CurrentObjectType);
1700
1701  // Pre-allocate storage for the structured initializer list.
1702  unsigned NumElements = 0;
1703  unsigned NumInits = 0;
1704  if (!StructuredList)
1705    NumInits = IList->getNumInits();
1706  else if (Index < IList->getNumInits()) {
1707    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1708      NumInits = SubList->getNumInits();
1709  }
1710
1711  if (const ArrayType *AType
1712      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1713    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1714      NumElements = CAType->getSize().getZExtValue();
1715      // Simple heuristic so that we don't allocate a very large
1716      // initializer with many empty entries at the end.
1717      if (NumInits && NumElements > NumInits)
1718        NumElements = 0;
1719    }
1720  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
1721    NumElements = VType->getNumElements();
1722  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
1723    RecordDecl *RDecl = RType->getDecl();
1724    if (RDecl->isUnion())
1725      NumElements = 1;
1726    else
1727      NumElements = std::distance(RDecl->field_begin(),
1728                                  RDecl->field_end());
1729  }
1730
1731  if (NumElements < NumInits)
1732    NumElements = IList->getNumInits();
1733
1734  Result->reserveInits(NumElements);
1735
1736  // Link this new initializer list into the structured initializer
1737  // lists.
1738  if (StructuredList)
1739    StructuredList->updateInit(StructuredIndex, Result);
1740  else {
1741    Result->setSyntacticForm(IList);
1742    SyntacticToSemantic[IList] = Result;
1743  }
1744
1745  return Result;
1746}
1747
1748/// Update the initializer at index @p StructuredIndex within the
1749/// structured initializer list to the value @p expr.
1750void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1751                                                  unsigned &StructuredIndex,
1752                                                  Expr *expr) {
1753  // No structured initializer list to update
1754  if (!StructuredList)
1755    return;
1756
1757  if (Expr *PrevInit = StructuredList->updateInit(StructuredIndex, expr)) {
1758    // This initializer overwrites a previous initializer. Warn.
1759    SemaRef.Diag(expr->getSourceRange().getBegin(),
1760                  diag::warn_initializer_overrides)
1761      << expr->getSourceRange();
1762    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1763                  diag::note_previous_initializer)
1764      << /*FIXME:has side effects=*/0
1765      << PrevInit->getSourceRange();
1766  }
1767
1768  ++StructuredIndex;
1769}
1770
1771/// Check that the given Index expression is a valid array designator
1772/// value. This is essentailly just a wrapper around
1773/// VerifyIntegerConstantExpression that also checks for negative values
1774/// and produces a reasonable diagnostic if there is a
1775/// failure. Returns true if there was an error, false otherwise.  If
1776/// everything went okay, Value will receive the value of the constant
1777/// expression.
1778static bool
1779CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1780  SourceLocation Loc = Index->getSourceRange().getBegin();
1781
1782  // Make sure this is an integer constant expression.
1783  if (S.VerifyIntegerConstantExpression(Index, &Value))
1784    return true;
1785
1786  if (Value.isSigned() && Value.isNegative())
1787    return S.Diag(Loc, diag::err_array_designator_negative)
1788      << Value.toString(10) << Index->getSourceRange();
1789
1790  Value.setIsUnsigned(true);
1791  return false;
1792}
1793
1794Sema::OwningExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1795                                                        SourceLocation Loc,
1796                                                        bool GNUSyntax,
1797                                                        OwningExprResult Init) {
1798  typedef DesignatedInitExpr::Designator ASTDesignator;
1799
1800  bool Invalid = false;
1801  llvm::SmallVector<ASTDesignator, 32> Designators;
1802  llvm::SmallVector<Expr *, 32> InitExpressions;
1803
1804  // Build designators and check array designator expressions.
1805  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1806    const Designator &D = Desig.getDesignator(Idx);
1807    switch (D.getKind()) {
1808    case Designator::FieldDesignator:
1809      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1810                                          D.getFieldLoc()));
1811      break;
1812
1813    case Designator::ArrayDesignator: {
1814      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1815      llvm::APSInt IndexValue;
1816      if (!Index->isTypeDependent() &&
1817          !Index->isValueDependent() &&
1818          CheckArrayDesignatorExpr(*this, Index, IndexValue))
1819        Invalid = true;
1820      else {
1821        Designators.push_back(ASTDesignator(InitExpressions.size(),
1822                                            D.getLBracketLoc(),
1823                                            D.getRBracketLoc()));
1824        InitExpressions.push_back(Index);
1825      }
1826      break;
1827    }
1828
1829    case Designator::ArrayRangeDesignator: {
1830      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1831      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1832      llvm::APSInt StartValue;
1833      llvm::APSInt EndValue;
1834      bool StartDependent = StartIndex->isTypeDependent() ||
1835                            StartIndex->isValueDependent();
1836      bool EndDependent = EndIndex->isTypeDependent() ||
1837                          EndIndex->isValueDependent();
1838      if ((!StartDependent &&
1839           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1840          (!EndDependent &&
1841           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1842        Invalid = true;
1843      else {
1844        // Make sure we're comparing values with the same bit width.
1845        if (StartDependent || EndDependent) {
1846          // Nothing to compute.
1847        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1848          EndValue.extend(StartValue.getBitWidth());
1849        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1850          StartValue.extend(EndValue.getBitWidth());
1851
1852        if (!StartDependent && !EndDependent && EndValue < StartValue) {
1853          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1854            << StartValue.toString(10) << EndValue.toString(10)
1855            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1856          Invalid = true;
1857        } else {
1858          Designators.push_back(ASTDesignator(InitExpressions.size(),
1859                                              D.getLBracketLoc(),
1860                                              D.getEllipsisLoc(),
1861                                              D.getRBracketLoc()));
1862          InitExpressions.push_back(StartIndex);
1863          InitExpressions.push_back(EndIndex);
1864        }
1865      }
1866      break;
1867    }
1868    }
1869  }
1870
1871  if (Invalid || Init.isInvalid())
1872    return ExprError();
1873
1874  // Clear out the expressions within the designation.
1875  Desig.ClearExprs(*this);
1876
1877  DesignatedInitExpr *DIE
1878    = DesignatedInitExpr::Create(Context,
1879                                 Designators.data(), Designators.size(),
1880                                 InitExpressions.data(), InitExpressions.size(),
1881                                 Loc, GNUSyntax, Init.takeAs<Expr>());
1882  return Owned(DIE);
1883}
1884
1885bool Sema::CheckInitList(const InitializedEntity &Entity,
1886                         InitListExpr *&InitList, QualType &DeclType) {
1887  InitListChecker CheckInitList(*this, Entity, InitList, DeclType);
1888  if (!CheckInitList.HadError())
1889    InitList = CheckInitList.getFullyStructuredList();
1890
1891  return CheckInitList.HadError();
1892}
1893
1894//===----------------------------------------------------------------------===//
1895// Initialization entity
1896//===----------------------------------------------------------------------===//
1897
1898InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
1899                                     const InitializedEntity &Parent)
1900  : Parent(&Parent), Index(Index)
1901{
1902  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
1903    Kind = EK_ArrayElement;
1904    Type = AT->getElementType();
1905  } else {
1906    Kind = EK_VectorElement;
1907    Type = Parent.getType()->getAs<VectorType>()->getElementType();
1908  }
1909}
1910
1911InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
1912                                                    CXXBaseSpecifier *Base)
1913{
1914  InitializedEntity Result;
1915  Result.Kind = EK_Base;
1916  Result.Base = Base;
1917  Result.Type = Base->getType();
1918  return Result;
1919}
1920
1921DeclarationName InitializedEntity::getName() const {
1922  switch (getKind()) {
1923  case EK_Parameter:
1924    if (!VariableOrMember)
1925      return DeclarationName();
1926    // Fall through
1927
1928  case EK_Variable:
1929  case EK_Member:
1930    return VariableOrMember->getDeclName();
1931
1932  case EK_Result:
1933  case EK_Exception:
1934  case EK_New:
1935  case EK_Temporary:
1936  case EK_Base:
1937  case EK_ArrayElement:
1938  case EK_VectorElement:
1939    return DeclarationName();
1940  }
1941
1942  // Silence GCC warning
1943  return DeclarationName();
1944}
1945
1946DeclaratorDecl *InitializedEntity::getDecl() const {
1947  switch (getKind()) {
1948  case EK_Variable:
1949  case EK_Parameter:
1950  case EK_Member:
1951    return VariableOrMember;
1952
1953  case EK_Result:
1954  case EK_Exception:
1955  case EK_New:
1956  case EK_Temporary:
1957  case EK_Base:
1958  case EK_ArrayElement:
1959  case EK_VectorElement:
1960    return 0;
1961  }
1962
1963  // Silence GCC warning
1964  return 0;
1965}
1966
1967//===----------------------------------------------------------------------===//
1968// Initialization sequence
1969//===----------------------------------------------------------------------===//
1970
1971void InitializationSequence::Step::Destroy() {
1972  switch (Kind) {
1973  case SK_ResolveAddressOfOverloadedFunction:
1974  case SK_CastDerivedToBaseRValue:
1975  case SK_CastDerivedToBaseLValue:
1976  case SK_BindReference:
1977  case SK_BindReferenceToTemporary:
1978  case SK_UserConversion:
1979  case SK_QualificationConversionRValue:
1980  case SK_QualificationConversionLValue:
1981  case SK_ListInitialization:
1982  case SK_ConstructorInitialization:
1983  case SK_ZeroInitialization:
1984  case SK_CAssignment:
1985  case SK_StringInit:
1986    break;
1987
1988  case SK_ConversionSequence:
1989    delete ICS;
1990  }
1991}
1992
1993void InitializationSequence::AddAddressOverloadResolutionStep(
1994                                                      FunctionDecl *Function) {
1995  Step S;
1996  S.Kind = SK_ResolveAddressOfOverloadedFunction;
1997  S.Type = Function->getType();
1998  S.Function = Function;
1999  Steps.push_back(S);
2000}
2001
2002void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2003                                                      bool IsLValue) {
2004  Step S;
2005  S.Kind = IsLValue? SK_CastDerivedToBaseLValue : SK_CastDerivedToBaseRValue;
2006  S.Type = BaseType;
2007  Steps.push_back(S);
2008}
2009
2010void InitializationSequence::AddReferenceBindingStep(QualType T,
2011                                                     bool BindingTemporary) {
2012  Step S;
2013  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2014  S.Type = T;
2015  Steps.push_back(S);
2016}
2017
2018void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2019                                                   QualType T) {
2020  Step S;
2021  S.Kind = SK_UserConversion;
2022  S.Type = T;
2023  S.Function = Function;
2024  Steps.push_back(S);
2025}
2026
2027void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2028                                                            bool IsLValue) {
2029  Step S;
2030  S.Kind = IsLValue? SK_QualificationConversionLValue
2031                   : SK_QualificationConversionRValue;
2032  S.Type = Ty;
2033  Steps.push_back(S);
2034}
2035
2036void InitializationSequence::AddConversionSequenceStep(
2037                                       const ImplicitConversionSequence &ICS,
2038                                                       QualType T) {
2039  Step S;
2040  S.Kind = SK_ConversionSequence;
2041  S.Type = T;
2042  S.ICS = new ImplicitConversionSequence(ICS);
2043  Steps.push_back(S);
2044}
2045
2046void InitializationSequence::AddListInitializationStep(QualType T) {
2047  Step S;
2048  S.Kind = SK_ListInitialization;
2049  S.Type = T;
2050  Steps.push_back(S);
2051}
2052
2053void
2054InitializationSequence::AddConstructorInitializationStep(
2055                                              CXXConstructorDecl *Constructor,
2056                                                         QualType T) {
2057  Step S;
2058  S.Kind = SK_ConstructorInitialization;
2059  S.Type = T;
2060  S.Function = Constructor;
2061  Steps.push_back(S);
2062}
2063
2064void InitializationSequence::AddZeroInitializationStep(QualType T) {
2065  Step S;
2066  S.Kind = SK_ZeroInitialization;
2067  S.Type = T;
2068  Steps.push_back(S);
2069}
2070
2071void InitializationSequence::AddCAssignmentStep(QualType T) {
2072  Step S;
2073  S.Kind = SK_CAssignment;
2074  S.Type = T;
2075  Steps.push_back(S);
2076}
2077
2078void InitializationSequence::AddStringInitStep(QualType T) {
2079  Step S;
2080  S.Kind = SK_StringInit;
2081  S.Type = T;
2082  Steps.push_back(S);
2083}
2084
2085void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2086                                                OverloadingResult Result) {
2087  SequenceKind = FailedSequence;
2088  this->Failure = Failure;
2089  this->FailedOverloadResult = Result;
2090}
2091
2092//===----------------------------------------------------------------------===//
2093// Attempt initialization
2094//===----------------------------------------------------------------------===//
2095
2096/// \brief Attempt list initialization (C++0x [dcl.init.list])
2097static void TryListInitialization(Sema &S,
2098                                  const InitializedEntity &Entity,
2099                                  const InitializationKind &Kind,
2100                                  InitListExpr *InitList,
2101                                  InitializationSequence &Sequence) {
2102  // FIXME: We only perform rudimentary checking of list
2103  // initializations at this point, then assume that any list
2104  // initialization of an array, aggregate, or scalar will be
2105  // well-formed. We we actually "perform" list initialization, we'll
2106  // do all of the necessary checking.  C++0x initializer lists will
2107  // force us to perform more checking here.
2108  Sequence.setSequenceKind(InitializationSequence::ListInitialization);
2109
2110  QualType DestType = Entity.getType();
2111
2112  // C++ [dcl.init]p13:
2113  //   If T is a scalar type, then a declaration of the form
2114  //
2115  //     T x = { a };
2116  //
2117  //   is equivalent to
2118  //
2119  //     T x = a;
2120  if (DestType->isScalarType()) {
2121    if (InitList->getNumInits() > 1 && S.getLangOptions().CPlusPlus) {
2122      Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
2123      return;
2124    }
2125
2126    // Assume scalar initialization from a single value works.
2127  } else if (DestType->isAggregateType()) {
2128    // Assume aggregate initialization works.
2129  } else if (DestType->isVectorType()) {
2130    // Assume vector initialization works.
2131  } else if (DestType->isReferenceType()) {
2132    // FIXME: C++0x defines behavior for this.
2133    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2134    return;
2135  } else if (DestType->isRecordType()) {
2136    // FIXME: C++0x defines behavior for this
2137    Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
2138  }
2139
2140  // Add a general "list initialization" step.
2141  Sequence.AddListInitializationStep(DestType);
2142}
2143
2144/// \brief Try a reference initialization that involves calling a conversion
2145/// function.
2146///
2147/// FIXME: look intos DRs 656, 896
2148static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
2149                                             const InitializedEntity &Entity,
2150                                             const InitializationKind &Kind,
2151                                                          Expr *Initializer,
2152                                                          bool AllowRValues,
2153                                             InitializationSequence &Sequence) {
2154  QualType DestType = Entity.getType();
2155  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2156  QualType T1 = cv1T1.getUnqualifiedType();
2157  QualType cv2T2 = Initializer->getType();
2158  QualType T2 = cv2T2.getUnqualifiedType();
2159
2160  bool DerivedToBase;
2161  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
2162                                         T1, T2, DerivedToBase) &&
2163         "Must have incompatible references when binding via conversion");
2164  (void)DerivedToBase;
2165
2166  // Build the candidate set directly in the initialization sequence
2167  // structure, so that it will persist if we fail.
2168  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2169  CandidateSet.clear();
2170
2171  // Determine whether we are allowed to call explicit constructors or
2172  // explicit conversion operators.
2173  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2174
2175  const RecordType *T1RecordType = 0;
2176  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>())) {
2177    // The type we're converting to is a class type. Enumerate its constructors
2178    // to see if there is a suitable conversion.
2179    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
2180
2181    DeclarationName ConstructorName
2182      = S.Context.DeclarationNames.getCXXConstructorName(
2183                           S.Context.getCanonicalType(T1).getUnqualifiedType());
2184    DeclContext::lookup_iterator Con, ConEnd;
2185    for (llvm::tie(Con, ConEnd) = T1RecordDecl->lookup(ConstructorName);
2186         Con != ConEnd; ++Con) {
2187      // Find the constructor (which may be a template).
2188      CXXConstructorDecl *Constructor = 0;
2189      FunctionTemplateDecl *ConstructorTmpl
2190        = dyn_cast<FunctionTemplateDecl>(*Con);
2191      if (ConstructorTmpl)
2192        Constructor = cast<CXXConstructorDecl>(
2193                                         ConstructorTmpl->getTemplatedDecl());
2194      else
2195        Constructor = cast<CXXConstructorDecl>(*Con);
2196
2197      if (!Constructor->isInvalidDecl() &&
2198          Constructor->isConvertingConstructor(AllowExplicit)) {
2199        if (ConstructorTmpl)
2200          S.AddTemplateOverloadCandidate(ConstructorTmpl, /*ExplicitArgs*/ 0,
2201                                         &Initializer, 1, CandidateSet);
2202        else
2203          S.AddOverloadCandidate(Constructor, &Initializer, 1, CandidateSet);
2204      }
2205    }
2206  }
2207
2208  if (const RecordType *T2RecordType = T2->getAs<RecordType>()) {
2209    // The type we're converting from is a class type, enumerate its conversion
2210    // functions.
2211    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
2212
2213    // Determine the type we are converting to. If we are allowed to
2214    // convert to an rvalue, take the type that the destination type
2215    // refers to.
2216    QualType ToType = AllowRValues? cv1T1 : DestType;
2217
2218    const UnresolvedSetImpl *Conversions
2219      = T2RecordDecl->getVisibleConversionFunctions();
2220    for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2221           E = Conversions->end(); I != E; ++I) {
2222      NamedDecl *D = *I;
2223      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2224      if (isa<UsingShadowDecl>(D))
2225        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2226
2227      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2228      CXXConversionDecl *Conv;
2229      if (ConvTemplate)
2230        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2231      else
2232        Conv = cast<CXXConversionDecl>(*I);
2233
2234      // If the conversion function doesn't return a reference type,
2235      // it can't be considered for this conversion unless we're allowed to
2236      // consider rvalues.
2237      // FIXME: Do we need to make sure that we only consider conversion
2238      // candidates with reference-compatible results? That might be needed to
2239      // break recursion.
2240      if ((AllowExplicit || !Conv->isExplicit()) &&
2241          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
2242        if (ConvTemplate)
2243          S.AddTemplateConversionCandidate(ConvTemplate, ActingDC, Initializer,
2244                                           ToType, CandidateSet);
2245        else
2246          S.AddConversionCandidate(Conv, ActingDC, Initializer, cv1T1,
2247                                   CandidateSet);
2248      }
2249    }
2250  }
2251
2252  SourceLocation DeclLoc = Initializer->getLocStart();
2253
2254  // Perform overload resolution. If it fails, return the failed result.
2255  OverloadCandidateSet::iterator Best;
2256  if (OverloadingResult Result
2257        = S.BestViableFunction(CandidateSet, DeclLoc, Best))
2258    return Result;
2259
2260  FunctionDecl *Function = Best->Function;
2261
2262  // Compute the returned type of the conversion.
2263  if (isa<CXXConversionDecl>(Function))
2264    T2 = Function->getResultType();
2265  else
2266    T2 = cv1T1;
2267
2268  // Add the user-defined conversion step.
2269  Sequence.AddUserConversionStep(Function, T2.getNonReferenceType());
2270
2271  // Determine whether we need to perform derived-to-base or
2272  // cv-qualification adjustments.
2273  bool NewDerivedToBase = false;
2274  Sema::ReferenceCompareResult NewRefRelationship
2275    = S.CompareReferenceRelationship(DeclLoc, T1, T2.getNonReferenceType(),
2276                                     NewDerivedToBase);
2277  assert(NewRefRelationship != Sema::Ref_Incompatible &&
2278         "Overload resolution picked a bad conversion function");
2279  (void)NewRefRelationship;
2280  if (NewDerivedToBase)
2281    Sequence.AddDerivedToBaseCastStep(
2282                                S.Context.getQualifiedType(T1,
2283                                  T2.getNonReferenceType().getQualifiers()),
2284                                  /*isLValue=*/true);
2285
2286  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
2287    Sequence.AddQualificationConversionStep(cv1T1, T2->isReferenceType());
2288
2289  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
2290  return OR_Success;
2291}
2292
2293/// \brief Attempt reference initialization (C++0x [dcl.init.list])
2294static void TryReferenceInitialization(Sema &S,
2295                                       const InitializedEntity &Entity,
2296                                       const InitializationKind &Kind,
2297                                       Expr *Initializer,
2298                                       InitializationSequence &Sequence) {
2299  Sequence.setSequenceKind(InitializationSequence::ReferenceBinding);
2300
2301  QualType DestType = Entity.getType();
2302  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2303  Qualifiers T1Quals;
2304  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2305  QualType cv2T2 = Initializer->getType();
2306  Qualifiers T2Quals;
2307  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
2308  SourceLocation DeclLoc = Initializer->getLocStart();
2309
2310  // If the initializer is the address of an overloaded function, try
2311  // to resolve the overloaded function. If all goes well, T2 is the
2312  // type of the resulting function.
2313  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2314    FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
2315                                                            T1,
2316                                                            false);
2317    if (!Fn) {
2318      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2319      return;
2320    }
2321
2322    Sequence.AddAddressOverloadResolutionStep(Fn);
2323    cv2T2 = Fn->getType();
2324    T2 = cv2T2.getUnqualifiedType();
2325  }
2326
2327  // FIXME: Rvalue references
2328  bool ForceRValue = false;
2329
2330  // Compute some basic properties of the types and the initializer.
2331  bool isLValueRef = DestType->isLValueReferenceType();
2332  bool isRValueRef = !isLValueRef;
2333  bool DerivedToBase = false;
2334  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2335                                    Initializer->isLvalue(S.Context);
2336  Sema::ReferenceCompareResult RefRelationship
2337    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase);
2338
2339  // C++0x [dcl.init.ref]p5:
2340  //   A reference to type "cv1 T1" is initialized by an expression of type
2341  //   "cv2 T2" as follows:
2342  //
2343  //     - If the reference is an lvalue reference and the initializer
2344  //       expression
2345  OverloadingResult ConvOvlResult = OR_Success;
2346  if (isLValueRef) {
2347    if (InitLvalue == Expr::LV_Valid &&
2348        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2349      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
2350      //     reference-compatible with "cv2 T2," or
2351      //
2352      // Per C++ [over.best.ics]p2, we ignore whether the lvalue is a
2353      // bit-field when we're determining whether the reference initialization
2354      // can occur. This property will be checked by PerformInitialization.
2355      if (DerivedToBase)
2356        Sequence.AddDerivedToBaseCastStep(
2357                         S.Context.getQualifiedType(T1, T2Quals),
2358                         /*isLValue=*/true);
2359      if (T1Quals != T2Quals)
2360        Sequence.AddQualificationConversionStep(cv1T1, /*IsLValue=*/true);
2361      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/false);
2362      return;
2363    }
2364
2365    //     - has a class type (i.e., T2 is a class type), where T1 is not
2366    //       reference-related to T2, and can be implicitly converted to an
2367    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
2368    //       with "cv3 T3" (this conversion is selected by enumerating the
2369    //       applicable conversion functions (13.3.1.6) and choosing the best
2370    //       one through overload resolution (13.3)),
2371    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType()) {
2372      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
2373                                                       Initializer,
2374                                                       /*AllowRValues=*/false,
2375                                                       Sequence);
2376      if (ConvOvlResult == OR_Success)
2377        return;
2378      if (ConvOvlResult != OR_No_Viable_Function) {
2379        Sequence.SetOverloadFailure(
2380                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2381                                    ConvOvlResult);
2382      }
2383    }
2384  }
2385
2386  //     - Otherwise, the reference shall be an lvalue reference to a
2387  //       non-volatile const type (i.e., cv1 shall be const), or the reference
2388  //       shall be an rvalue reference and the initializer expression shall
2389  //       be an rvalue.
2390  if (!((isLValueRef && T1Quals.hasConst()) ||
2391        (isRValueRef && InitLvalue != Expr::LV_Valid))) {
2392    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2393      Sequence.SetOverloadFailure(
2394                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2395                                  ConvOvlResult);
2396    else if (isLValueRef)
2397      Sequence.SetFailed(InitLvalue == Expr::LV_Valid
2398        ? (RefRelationship == Sema::Ref_Related
2399             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
2400             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
2401        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
2402    else
2403      Sequence.SetFailed(
2404                    InitializationSequence::FK_RValueReferenceBindingToLValue);
2405
2406    return;
2407  }
2408
2409  //       - If T1 and T2 are class types and
2410  if (T1->isRecordType() && T2->isRecordType()) {
2411    //       - the initializer expression is an rvalue and "cv1 T1" is
2412    //         reference-compatible with "cv2 T2", or
2413    if (InitLvalue != Expr::LV_Valid &&
2414        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2415      if (DerivedToBase)
2416        Sequence.AddDerivedToBaseCastStep(
2417                         S.Context.getQualifiedType(T1, T2Quals),
2418                         /*isLValue=*/false);
2419      if (T1Quals != T2Quals)
2420        Sequence.AddQualificationConversionStep(cv1T1, /*IsLValue=*/false);
2421      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2422      return;
2423    }
2424
2425    //       - T1 is not reference-related to T2 and the initializer expression
2426    //         can be implicitly converted to an rvalue of type "cv3 T3" (this
2427    //         conversion is selected by enumerating the applicable conversion
2428    //         functions (13.3.1.6) and choosing the best one through overload
2429    //         resolution (13.3)),
2430    if (RefRelationship == Sema::Ref_Incompatible) {
2431      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
2432                                                       Kind, Initializer,
2433                                                       /*AllowRValues=*/true,
2434                                                       Sequence);
2435      if (ConvOvlResult)
2436        Sequence.SetOverloadFailure(
2437                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2438                                    ConvOvlResult);
2439
2440      return;
2441    }
2442
2443    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2444    return;
2445  }
2446
2447  //      - If the initializer expression is an rvalue, with T2 an array type,
2448  //        and "cv1 T1" is reference-compatible with "cv2 T2," the reference
2449  //        is bound to the object represented by the rvalue (see 3.10).
2450  // FIXME: How can an array type be reference-compatible with anything?
2451  // Don't we mean the element types of T1 and T2?
2452
2453  //      - Otherwise, a temporary of type “cv1 T1” is created and initialized
2454  //        from the initializer expression using the rules for a non-reference
2455  //        copy initialization (8.5). The reference is then bound to the
2456  //        temporary. [...]
2457  // Determine whether we are allowed to call explicit constructors or
2458  // explicit conversion operators.
2459  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
2460  ImplicitConversionSequence ICS
2461    = S.TryImplicitConversion(Initializer, cv1T1,
2462                              /*SuppressUserConversions=*/false, AllowExplicit,
2463                              /*ForceRValue=*/false,
2464                              /*FIXME:InOverloadResolution=*/false,
2465                              /*UserCast=*/Kind.isExplicitCast());
2466
2467  if (ICS.isBad()) {
2468    // FIXME: Use the conversion function set stored in ICS to turn
2469    // this into an overloading ambiguity diagnostic. However, we need
2470    // to keep that set as an OverloadCandidateSet rather than as some
2471    // other kind of set.
2472    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2473      Sequence.SetOverloadFailure(
2474                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2475                                  ConvOvlResult);
2476    else
2477      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
2478    return;
2479  }
2480
2481  //        [...] If T1 is reference-related to T2, cv1 must be the
2482  //        same cv-qualification as, or greater cv-qualification
2483  //        than, cv2; otherwise, the program is ill-formed.
2484  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
2485  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
2486  if (RefRelationship == Sema::Ref_Related &&
2487      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
2488    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2489    return;
2490  }
2491
2492  // Perform the actual conversion.
2493  Sequence.AddConversionSequenceStep(ICS, cv1T1);
2494  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2495  return;
2496}
2497
2498/// \brief Attempt character array initialization from a string literal
2499/// (C++ [dcl.init.string], C99 6.7.8).
2500static void TryStringLiteralInitialization(Sema &S,
2501                                           const InitializedEntity &Entity,
2502                                           const InitializationKind &Kind,
2503                                           Expr *Initializer,
2504                                       InitializationSequence &Sequence) {
2505  Sequence.setSequenceKind(InitializationSequence::StringInit);
2506  Sequence.AddStringInitStep(Entity.getType());
2507}
2508
2509/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2510/// enumerates the constructors of the initialized entity and performs overload
2511/// resolution to select the best.
2512static void TryConstructorInitialization(Sema &S,
2513                                         const InitializedEntity &Entity,
2514                                         const InitializationKind &Kind,
2515                                         Expr **Args, unsigned NumArgs,
2516                                         QualType DestType,
2517                                         InitializationSequence &Sequence) {
2518  if (Kind.getKind() == InitializationKind::IK_Copy)
2519    Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
2520  else
2521    Sequence.setSequenceKind(InitializationSequence::ConstructorInitialization);
2522
2523  // Build the candidate set directly in the initialization sequence
2524  // structure, so that it will persist if we fail.
2525  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2526  CandidateSet.clear();
2527
2528  // Determine whether we are allowed to call explicit constructors or
2529  // explicit conversion operators.
2530  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
2531                        Kind.getKind() == InitializationKind::IK_Value ||
2532                        Kind.getKind() == InitializationKind::IK_Default);
2533
2534  // The type we're converting to is a class type. Enumerate its constructors
2535  // to see if one is suitable.
2536  const RecordType *DestRecordType = DestType->getAs<RecordType>();
2537  assert(DestRecordType && "Constructor initialization requires record type");
2538  CXXRecordDecl *DestRecordDecl
2539    = cast<CXXRecordDecl>(DestRecordType->getDecl());
2540
2541  DeclarationName ConstructorName
2542    = S.Context.DeclarationNames.getCXXConstructorName(
2543                     S.Context.getCanonicalType(DestType).getUnqualifiedType());
2544  DeclContext::lookup_iterator Con, ConEnd;
2545  for (llvm::tie(Con, ConEnd) = DestRecordDecl->lookup(ConstructorName);
2546       Con != ConEnd; ++Con) {
2547    // Find the constructor (which may be a template).
2548    CXXConstructorDecl *Constructor = 0;
2549    FunctionTemplateDecl *ConstructorTmpl
2550      = dyn_cast<FunctionTemplateDecl>(*Con);
2551    if (ConstructorTmpl)
2552      Constructor = cast<CXXConstructorDecl>(
2553                                           ConstructorTmpl->getTemplatedDecl());
2554    else
2555      Constructor = cast<CXXConstructorDecl>(*Con);
2556
2557    if (!Constructor->isInvalidDecl() &&
2558        (AllowExplicit || !Constructor->isExplicit())) {
2559      if (ConstructorTmpl)
2560        S.AddTemplateOverloadCandidate(ConstructorTmpl, /*ExplicitArgs*/ 0,
2561                                       Args, NumArgs, CandidateSet);
2562      else
2563        S.AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2564    }
2565  }
2566
2567  SourceLocation DeclLoc = Kind.getLocation();
2568
2569  // Perform overload resolution. If it fails, return the failed result.
2570  OverloadCandidateSet::iterator Best;
2571  if (OverloadingResult Result
2572        = S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2573    Sequence.SetOverloadFailure(
2574                          InitializationSequence::FK_ConstructorOverloadFailed,
2575                                Result);
2576    return;
2577  }
2578
2579  // Add the constructor initialization step. Any cv-qualification conversion is
2580  // subsumed by the initialization.
2581  if (Kind.getKind() == InitializationKind::IK_Copy) {
2582    Sequence.AddUserConversionStep(Best->Function, DestType);
2583  } else {
2584    Sequence.AddConstructorInitializationStep(
2585                                      cast<CXXConstructorDecl>(Best->Function),
2586                                      DestType);
2587  }
2588}
2589
2590/// \brief Attempt value initialization (C++ [dcl.init]p7).
2591static void TryValueInitialization(Sema &S,
2592                                   const InitializedEntity &Entity,
2593                                   const InitializationKind &Kind,
2594                                   InitializationSequence &Sequence) {
2595  // C++ [dcl.init]p5:
2596  //
2597  //   To value-initialize an object of type T means:
2598  QualType T = Entity.getType();
2599
2600  //     -- if T is an array type, then each element is value-initialized;
2601  while (const ArrayType *AT = S.Context.getAsArrayType(T))
2602    T = AT->getElementType();
2603
2604  if (const RecordType *RT = T->getAs<RecordType>()) {
2605    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2606      // -- if T is a class type (clause 9) with a user-declared
2607      //    constructor (12.1), then the default constructor for T is
2608      //    called (and the initialization is ill-formed if T has no
2609      //    accessible default constructor);
2610      //
2611      // FIXME: we really want to refer to a single subobject of the array,
2612      // but Entity doesn't have a way to capture that (yet).
2613      if (ClassDecl->hasUserDeclaredConstructor())
2614        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2615
2616      // -- if T is a (possibly cv-qualified) non-union class type
2617      //    without a user-provided constructor, then the object is
2618      //    zero-initialized and, if T’s implicitly-declared default
2619      //    constructor is non-trivial, that constructor is called.
2620      if ((ClassDecl->getTagKind() == TagDecl::TK_class ||
2621           ClassDecl->getTagKind() == TagDecl::TK_struct) &&
2622          !ClassDecl->hasTrivialConstructor()) {
2623        Sequence.AddZeroInitializationStep(Entity.getType());
2624        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2625      }
2626    }
2627  }
2628
2629  Sequence.AddZeroInitializationStep(Entity.getType());
2630  Sequence.setSequenceKind(InitializationSequence::ZeroInitialization);
2631}
2632
2633/// \brief Attempt default initialization (C++ [dcl.init]p6).
2634static void TryDefaultInitialization(Sema &S,
2635                                     const InitializedEntity &Entity,
2636                                     const InitializationKind &Kind,
2637                                     InitializationSequence &Sequence) {
2638  assert(Kind.getKind() == InitializationKind::IK_Default);
2639
2640  // C++ [dcl.init]p6:
2641  //   To default-initialize an object of type T means:
2642  //     - if T is an array type, each element is default-initialized;
2643  QualType DestType = Entity.getType();
2644  while (const ArrayType *Array = S.Context.getAsArrayType(DestType))
2645    DestType = Array->getElementType();
2646
2647  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
2648  //       constructor for T is called (and the initialization is ill-formed if
2649  //       T has no accessible default constructor);
2650  if (DestType->isRecordType()) {
2651    // FIXME: If a program calls for the default initialization of an object of
2652    // a const-qualified type T, T shall be a class type with a user-provided
2653    // default constructor.
2654    return TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType,
2655                                        Sequence);
2656  }
2657
2658  //     - otherwise, no initialization is performed.
2659  Sequence.setSequenceKind(InitializationSequence::NoInitialization);
2660
2661  //   If a program calls for the default initialization of an object of
2662  //   a const-qualified type T, T shall be a class type with a user-provided
2663  //   default constructor.
2664  if (DestType.isConstQualified())
2665    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2666}
2667
2668/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
2669/// which enumerates all conversion functions and performs overload resolution
2670/// to select the best.
2671static void TryUserDefinedConversion(Sema &S,
2672                                     const InitializedEntity &Entity,
2673                                     const InitializationKind &Kind,
2674                                     Expr *Initializer,
2675                                     InitializationSequence &Sequence) {
2676  Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
2677
2678  QualType DestType = Entity.getType();
2679  assert(!DestType->isReferenceType() && "References are handled elsewhere");
2680  QualType SourceType = Initializer->getType();
2681  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
2682         "Must have a class type to perform a user-defined conversion");
2683
2684  // Build the candidate set directly in the initialization sequence
2685  // structure, so that it will persist if we fail.
2686  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2687  CandidateSet.clear();
2688
2689  // Determine whether we are allowed to call explicit constructors or
2690  // explicit conversion operators.
2691  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2692
2693  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
2694    // The type we're converting to is a class type. Enumerate its constructors
2695    // to see if there is a suitable conversion.
2696    CXXRecordDecl *DestRecordDecl
2697      = cast<CXXRecordDecl>(DestRecordType->getDecl());
2698
2699    DeclarationName ConstructorName
2700      = S.Context.DeclarationNames.getCXXConstructorName(
2701                     S.Context.getCanonicalType(DestType).getUnqualifiedType());
2702    DeclContext::lookup_iterator Con, ConEnd;
2703    for (llvm::tie(Con, ConEnd) = DestRecordDecl->lookup(ConstructorName);
2704         Con != ConEnd; ++Con) {
2705      // Find the constructor (which may be a template).
2706      CXXConstructorDecl *Constructor = 0;
2707      FunctionTemplateDecl *ConstructorTmpl
2708        = dyn_cast<FunctionTemplateDecl>(*Con);
2709      if (ConstructorTmpl)
2710        Constructor = cast<CXXConstructorDecl>(
2711                                           ConstructorTmpl->getTemplatedDecl());
2712      else
2713        Constructor = cast<CXXConstructorDecl>(*Con);
2714
2715      if (!Constructor->isInvalidDecl() &&
2716          Constructor->isConvertingConstructor(AllowExplicit)) {
2717        if (ConstructorTmpl)
2718          S.AddTemplateOverloadCandidate(ConstructorTmpl, /*ExplicitArgs*/ 0,
2719                                         &Initializer, 1, CandidateSet);
2720        else
2721          S.AddOverloadCandidate(Constructor, &Initializer, 1, CandidateSet);
2722      }
2723    }
2724  }
2725
2726  SourceLocation DeclLoc = Initializer->getLocStart();
2727
2728  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
2729    // The type we're converting from is a class type, enumerate its conversion
2730    // functions.
2731
2732    // We can only enumerate the conversion functions for a complete type; if
2733    // the type isn't complete, simply skip this step.
2734    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
2735      CXXRecordDecl *SourceRecordDecl
2736        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
2737
2738      const UnresolvedSetImpl *Conversions
2739        = SourceRecordDecl->getVisibleConversionFunctions();
2740      for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2741           E = Conversions->end();
2742           I != E; ++I) {
2743        NamedDecl *D = *I;
2744        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2745        if (isa<UsingShadowDecl>(D))
2746          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2747
2748        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2749        CXXConversionDecl *Conv;
2750        if (ConvTemplate)
2751          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2752        else
2753          Conv = cast<CXXConversionDecl>(*I);
2754
2755        if (AllowExplicit || !Conv->isExplicit()) {
2756          if (ConvTemplate)
2757            S.AddTemplateConversionCandidate(ConvTemplate, ActingDC,
2758                                             Initializer, DestType,
2759                                             CandidateSet);
2760          else
2761            S.AddConversionCandidate(Conv, ActingDC, Initializer, DestType,
2762                                     CandidateSet);
2763        }
2764      }
2765    }
2766  }
2767
2768  // Perform overload resolution. If it fails, return the failed result.
2769  OverloadCandidateSet::iterator Best;
2770  if (OverloadingResult Result
2771        = S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2772    Sequence.SetOverloadFailure(
2773                        InitializationSequence::FK_UserConversionOverloadFailed,
2774                                Result);
2775    return;
2776  }
2777
2778  FunctionDecl *Function = Best->Function;
2779
2780  if (isa<CXXConstructorDecl>(Function)) {
2781    // Add the user-defined conversion step. Any cv-qualification conversion is
2782    // subsumed by the initialization.
2783    Sequence.AddUserConversionStep(Function, DestType);
2784    return;
2785  }
2786
2787  // Add the user-defined conversion step that calls the conversion function.
2788  QualType ConvType = Function->getResultType().getNonReferenceType();
2789  Sequence.AddUserConversionStep(Function, ConvType);
2790
2791  // If the conversion following the call to the conversion function is
2792  // interesting, add it as a separate step.
2793  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
2794      Best->FinalConversion.Third) {
2795    ImplicitConversionSequence ICS;
2796    ICS.setStandard();
2797    ICS.Standard = Best->FinalConversion;
2798    Sequence.AddConversionSequenceStep(ICS, DestType);
2799  }
2800}
2801
2802/// \brief Attempt an implicit conversion (C++ [conv]) converting from one
2803/// non-class type to another.
2804static void TryImplicitConversion(Sema &S,
2805                                  const InitializedEntity &Entity,
2806                                  const InitializationKind &Kind,
2807                                  Expr *Initializer,
2808                                  InitializationSequence &Sequence) {
2809  ImplicitConversionSequence ICS
2810    = S.TryImplicitConversion(Initializer, Entity.getType(),
2811                              /*SuppressUserConversions=*/true,
2812                              /*AllowExplicit=*/false,
2813                              /*ForceRValue=*/false,
2814                              /*FIXME:InOverloadResolution=*/false,
2815                              /*UserCast=*/Kind.isExplicitCast());
2816
2817  if (ICS.isBad()) {
2818    Sequence.SetFailed(InitializationSequence::FK_ConversionFailed);
2819    return;
2820  }
2821
2822  Sequence.AddConversionSequenceStep(ICS, Entity.getType());
2823}
2824
2825InitializationSequence::InitializationSequence(Sema &S,
2826                                               const InitializedEntity &Entity,
2827                                               const InitializationKind &Kind,
2828                                               Expr **Args,
2829                                               unsigned NumArgs) {
2830  ASTContext &Context = S.Context;
2831
2832  // C++0x [dcl.init]p16:
2833  //   The semantics of initializers are as follows. The destination type is
2834  //   the type of the object or reference being initialized and the source
2835  //   type is the type of the initializer expression. The source type is not
2836  //   defined when the initializer is a braced-init-list or when it is a
2837  //   parenthesized list of expressions.
2838  QualType DestType = Entity.getType();
2839
2840  if (DestType->isDependentType() ||
2841      Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
2842    SequenceKind = DependentSequence;
2843    return;
2844  }
2845
2846  QualType SourceType;
2847  Expr *Initializer = 0;
2848  if (NumArgs == 1) {
2849    Initializer = Args[0];
2850    if (!isa<InitListExpr>(Initializer))
2851      SourceType = Initializer->getType();
2852  }
2853
2854  //     - If the initializer is a braced-init-list, the object is
2855  //       list-initialized (8.5.4).
2856  if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
2857    TryListInitialization(S, Entity, Kind, InitList, *this);
2858    return;
2859  }
2860
2861  //     - If the destination type is a reference type, see 8.5.3.
2862  if (DestType->isReferenceType()) {
2863    // C++0x [dcl.init.ref]p1:
2864    //   A variable declared to be a T& or T&&, that is, "reference to type T"
2865    //   (8.3.2), shall be initialized by an object, or function, of type T or
2866    //   by an object that can be converted into a T.
2867    // (Therefore, multiple arguments are not permitted.)
2868    if (NumArgs != 1)
2869      SetFailed(FK_TooManyInitsForReference);
2870    else
2871      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
2872    return;
2873  }
2874
2875  //     - If the destination type is an array of characters, an array of
2876  //       char16_t, an array of char32_t, or an array of wchar_t, and the
2877  //       initializer is a string literal, see 8.5.2.
2878  if (Initializer && IsStringInit(Initializer, DestType, Context)) {
2879    TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
2880    return;
2881  }
2882
2883  //     - If the initializer is (), the object is value-initialized.
2884  if (Kind.getKind() == InitializationKind::IK_Value ||
2885      (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
2886    TryValueInitialization(S, Entity, Kind, *this);
2887    return;
2888  }
2889
2890  // Handle default initialization.
2891  if (Kind.getKind() == InitializationKind::IK_Default){
2892    TryDefaultInitialization(S, Entity, Kind, *this);
2893    return;
2894  }
2895
2896  //     - Otherwise, if the destination type is an array, the program is
2897  //       ill-formed.
2898  if (const ArrayType *AT = Context.getAsArrayType(DestType)) {
2899    if (AT->getElementType()->isAnyCharacterType())
2900      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
2901    else
2902      SetFailed(FK_ArrayNeedsInitList);
2903
2904    return;
2905  }
2906
2907  // Handle initialization in C
2908  if (!S.getLangOptions().CPlusPlus) {
2909    setSequenceKind(CAssignment);
2910    AddCAssignmentStep(DestType);
2911    return;
2912  }
2913
2914  //     - If the destination type is a (possibly cv-qualified) class type:
2915  if (DestType->isRecordType()) {
2916    //     - If the initialization is direct-initialization, or if it is
2917    //       copy-initialization where the cv-unqualified version of the
2918    //       source type is the same class as, or a derived class of, the
2919    //       class of the destination, constructors are considered. [...]
2920    if (Kind.getKind() == InitializationKind::IK_Direct ||
2921        (Kind.getKind() == InitializationKind::IK_Copy &&
2922         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
2923          S.IsDerivedFrom(SourceType, DestType))))
2924      TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
2925                                   Entity.getType(), *this);
2926    //     - Otherwise (i.e., for the remaining copy-initialization cases),
2927    //       user-defined conversion sequences that can convert from the source
2928    //       type to the destination type or (when a conversion function is
2929    //       used) to a derived class thereof are enumerated as described in
2930    //       13.3.1.4, and the best one is chosen through overload resolution
2931    //       (13.3).
2932    else
2933      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
2934    return;
2935  }
2936
2937  if (NumArgs > 1) {
2938    SetFailed(FK_TooManyInitsForScalar);
2939    return;
2940  }
2941  assert(NumArgs == 1 && "Zero-argument case handled above");
2942
2943  //    - Otherwise, if the source type is a (possibly cv-qualified) class
2944  //      type, conversion functions are considered.
2945  if (!SourceType.isNull() && SourceType->isRecordType()) {
2946    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
2947    return;
2948  }
2949
2950  //    - Otherwise, the initial value of the object being initialized is the
2951  //      (possibly converted) value of the initializer expression. Standard
2952  //      conversions (Clause 4) will be used, if necessary, to convert the
2953  //      initializer expression to the cv-unqualified version of the
2954  //      destination type; no user-defined conversions are considered.
2955  setSequenceKind(StandardConversion);
2956  TryImplicitConversion(S, Entity, Kind, Initializer, *this);
2957}
2958
2959InitializationSequence::~InitializationSequence() {
2960  for (llvm::SmallVectorImpl<Step>::iterator Step = Steps.begin(),
2961                                          StepEnd = Steps.end();
2962       Step != StepEnd; ++Step)
2963    Step->Destroy();
2964}
2965
2966//===----------------------------------------------------------------------===//
2967// Perform initialization
2968//===----------------------------------------------------------------------===//
2969static Sema::AssignmentAction
2970getAssignmentAction(const InitializedEntity &Entity) {
2971  switch(Entity.getKind()) {
2972  case InitializedEntity::EK_Variable:
2973  case InitializedEntity::EK_New:
2974    return Sema::AA_Initializing;
2975
2976  case InitializedEntity::EK_Parameter:
2977    // FIXME: Can we tell when we're sending vs. passing?
2978    return Sema::AA_Passing;
2979
2980  case InitializedEntity::EK_Result:
2981    return Sema::AA_Returning;
2982
2983  case InitializedEntity::EK_Exception:
2984  case InitializedEntity::EK_Base:
2985    llvm_unreachable("No assignment action for C++-specific initialization");
2986    break;
2987
2988  case InitializedEntity::EK_Temporary:
2989    // FIXME: Can we tell apart casting vs. converting?
2990    return Sema::AA_Casting;
2991
2992  case InitializedEntity::EK_Member:
2993  case InitializedEntity::EK_ArrayElement:
2994  case InitializedEntity::EK_VectorElement:
2995    return Sema::AA_Initializing;
2996  }
2997
2998  return Sema::AA_Converting;
2999}
3000
3001static bool shouldBindAsTemporary(const InitializedEntity &Entity,
3002                                  bool IsCopy) {
3003  switch (Entity.getKind()) {
3004  case InitializedEntity::EK_Result:
3005  case InitializedEntity::EK_Exception:
3006    return !IsCopy;
3007
3008  case InitializedEntity::EK_New:
3009  case InitializedEntity::EK_Variable:
3010  case InitializedEntity::EK_Base:
3011  case InitializedEntity::EK_Member:
3012  case InitializedEntity::EK_ArrayElement:
3013  case InitializedEntity::EK_VectorElement:
3014    return false;
3015
3016  case InitializedEntity::EK_Parameter:
3017  case InitializedEntity::EK_Temporary:
3018    return true;
3019  }
3020
3021  llvm_unreachable("missed an InitializedEntity kind?");
3022}
3023
3024/// \brief If we need to perform an additional copy of the initialized object
3025/// for this kind of entity (e.g., the result of a function or an object being
3026/// thrown), make the copy.
3027static Sema::OwningExprResult CopyIfRequiredForEntity(Sema &S,
3028                                            const InitializedEntity &Entity,
3029                                             const InitializationKind &Kind,
3030                                             Sema::OwningExprResult CurInit) {
3031  SourceLocation Loc;
3032
3033  switch (Entity.getKind()) {
3034  case InitializedEntity::EK_Result:
3035    if (Entity.getType()->isReferenceType())
3036      return move(CurInit);
3037    Loc = Entity.getReturnLoc();
3038    break;
3039
3040  case InitializedEntity::EK_Exception:
3041    Loc = Entity.getThrowLoc();
3042    break;
3043
3044  case InitializedEntity::EK_Variable:
3045    if (Entity.getType()->isReferenceType() ||
3046        Kind.getKind() != InitializationKind::IK_Copy)
3047      return move(CurInit);
3048    Loc = Entity.getDecl()->getLocation();
3049    break;
3050
3051  case InitializedEntity::EK_Parameter:
3052    // FIXME: Do we need this initialization for a parameter?
3053    return move(CurInit);
3054
3055  case InitializedEntity::EK_New:
3056  case InitializedEntity::EK_Temporary:
3057  case InitializedEntity::EK_Base:
3058  case InitializedEntity::EK_Member:
3059  case InitializedEntity::EK_ArrayElement:
3060  case InitializedEntity::EK_VectorElement:
3061    // We don't need to copy for any of these initialized entities.
3062    return move(CurInit);
3063  }
3064
3065  Expr *CurInitExpr = (Expr *)CurInit.get();
3066  CXXRecordDecl *Class = 0;
3067  if (const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>())
3068    Class = cast<CXXRecordDecl>(Record->getDecl());
3069  if (!Class)
3070    return move(CurInit);
3071
3072  // Perform overload resolution using the class's copy constructors.
3073  DeclarationName ConstructorName
3074    = S.Context.DeclarationNames.getCXXConstructorName(
3075                  S.Context.getCanonicalType(S.Context.getTypeDeclType(Class)));
3076  DeclContext::lookup_iterator Con, ConEnd;
3077  OverloadCandidateSet CandidateSet;
3078  for (llvm::tie(Con, ConEnd) = Class->lookup(ConstructorName);
3079       Con != ConEnd; ++Con) {
3080    // Find the constructor (which may be a template).
3081    CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(*Con);
3082    if (!Constructor || Constructor->isInvalidDecl() ||
3083        !Constructor->isCopyConstructor())
3084      continue;
3085
3086    S.AddOverloadCandidate(Constructor, &CurInitExpr, 1, CandidateSet);
3087  }
3088
3089  OverloadCandidateSet::iterator Best;
3090  switch (S.BestViableFunction(CandidateSet, Loc, Best)) {
3091  case OR_Success:
3092    break;
3093
3094  case OR_No_Viable_Function:
3095    S.Diag(Loc, diag::err_temp_copy_no_viable)
3096      << (int)Entity.getKind() << CurInitExpr->getType()
3097      << CurInitExpr->getSourceRange();
3098    S.PrintOverloadCandidates(CandidateSet, Sema::OCD_AllCandidates,
3099                              &CurInitExpr, 1);
3100    return S.ExprError();
3101
3102  case OR_Ambiguous:
3103    S.Diag(Loc, diag::err_temp_copy_ambiguous)
3104      << (int)Entity.getKind() << CurInitExpr->getType()
3105      << CurInitExpr->getSourceRange();
3106    S.PrintOverloadCandidates(CandidateSet, Sema::OCD_ViableCandidates,
3107                              &CurInitExpr, 1);
3108    return S.ExprError();
3109
3110  case OR_Deleted:
3111    S.Diag(Loc, diag::err_temp_copy_deleted)
3112      << (int)Entity.getKind() << CurInitExpr->getType()
3113      << CurInitExpr->getSourceRange();
3114    S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3115      << Best->Function->isDeleted();
3116    return S.ExprError();
3117  }
3118
3119  CurInit.release();
3120  return S.BuildCXXConstructExpr(Loc, CurInitExpr->getType(),
3121                                 cast<CXXConstructorDecl>(Best->Function),
3122                                 /*Elidable=*/true,
3123                                 Sema::MultiExprArg(S,
3124                                                    (void**)&CurInitExpr, 1));
3125}
3126
3127Action::OwningExprResult
3128InitializationSequence::Perform(Sema &S,
3129                                const InitializedEntity &Entity,
3130                                const InitializationKind &Kind,
3131                                Action::MultiExprArg Args,
3132                                QualType *ResultType) {
3133  if (SequenceKind == FailedSequence) {
3134    unsigned NumArgs = Args.size();
3135    Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
3136    return S.ExprError();
3137  }
3138
3139  if (SequenceKind == DependentSequence) {
3140    // If the declaration is a non-dependent, incomplete array type
3141    // that has an initializer, then its type will be completed once
3142    // the initializer is instantiated.
3143    if (ResultType && !Entity.getType()->isDependentType() &&
3144        Args.size() == 1) {
3145      QualType DeclType = Entity.getType();
3146      if (const IncompleteArrayType *ArrayT
3147                           = S.Context.getAsIncompleteArrayType(DeclType)) {
3148        // FIXME: We don't currently have the ability to accurately
3149        // compute the length of an initializer list without
3150        // performing full type-checking of the initializer list
3151        // (since we have to determine where braces are implicitly
3152        // introduced and such).  So, we fall back to making the array
3153        // type a dependently-sized array type with no specified
3154        // bound.
3155        if (isa<InitListExpr>((Expr *)Args.get()[0])) {
3156          SourceRange Brackets;
3157
3158          // Scavange the location of the brackets from the entity, if we can.
3159          if (DeclaratorDecl *DD = Entity.getDecl()) {
3160            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
3161              TypeLoc TL = TInfo->getTypeLoc();
3162              if (IncompleteArrayTypeLoc *ArrayLoc
3163                                      = dyn_cast<IncompleteArrayTypeLoc>(&TL))
3164              Brackets = ArrayLoc->getBracketsRange();
3165            }
3166          }
3167
3168          *ResultType
3169            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
3170                                                   /*NumElts=*/0,
3171                                                   ArrayT->getSizeModifier(),
3172                                       ArrayT->getIndexTypeCVRQualifiers(),
3173                                                   Brackets);
3174        }
3175
3176      }
3177    }
3178
3179    if (Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast())
3180      return Sema::OwningExprResult(S, Args.release()[0]);
3181
3182    unsigned NumArgs = Args.size();
3183    return S.Owned(new (S.Context) ParenListExpr(S.Context,
3184                                                 SourceLocation(),
3185                                                 (Expr **)Args.release(),
3186                                                 NumArgs,
3187                                                 SourceLocation()));
3188  }
3189
3190  if (SequenceKind == NoInitialization)
3191    return S.Owned((Expr *)0);
3192
3193  QualType DestType = Entity.getType().getNonReferenceType();
3194  // FIXME: Ugly hack around the fact that Entity.getType() is not
3195  // the same as Entity.getDecl()->getType() in cases involving type merging,
3196  //  and we want latter when it makes sense.
3197  if (ResultType)
3198    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
3199                                     Entity.getType();
3200
3201  Sema::OwningExprResult CurInit = S.Owned((Expr *)0);
3202
3203  assert(!Steps.empty() && "Cannot have an empty initialization sequence");
3204
3205  // For initialization steps that start with a single initializer,
3206  // grab the only argument out the Args and place it into the "current"
3207  // initializer.
3208  switch (Steps.front().Kind) {
3209  case SK_ResolveAddressOfOverloadedFunction:
3210  case SK_CastDerivedToBaseRValue:
3211  case SK_CastDerivedToBaseLValue:
3212  case SK_BindReference:
3213  case SK_BindReferenceToTemporary:
3214  case SK_UserConversion:
3215  case SK_QualificationConversionLValue:
3216  case SK_QualificationConversionRValue:
3217  case SK_ConversionSequence:
3218  case SK_ListInitialization:
3219  case SK_CAssignment:
3220  case SK_StringInit:
3221    assert(Args.size() == 1);
3222    CurInit = Sema::OwningExprResult(S, ((Expr **)(Args.get()))[0]->Retain());
3223    if (CurInit.isInvalid())
3224      return S.ExprError();
3225    break;
3226
3227  case SK_ConstructorInitialization:
3228  case SK_ZeroInitialization:
3229    break;
3230  }
3231
3232  // Walk through the computed steps for the initialization sequence,
3233  // performing the specified conversions along the way.
3234  bool ConstructorInitRequiresZeroInit = false;
3235  for (step_iterator Step = step_begin(), StepEnd = step_end();
3236       Step != StepEnd; ++Step) {
3237    if (CurInit.isInvalid())
3238      return S.ExprError();
3239
3240    Expr *CurInitExpr = (Expr *)CurInit.get();
3241    QualType SourceType = CurInitExpr? CurInitExpr->getType() : QualType();
3242
3243    switch (Step->Kind) {
3244    case SK_ResolveAddressOfOverloadedFunction:
3245      // Overload resolution determined which function invoke; update the
3246      // initializer to reflect that choice.
3247      CurInit = S.FixOverloadedFunctionReference(move(CurInit), Step->Function);
3248      break;
3249
3250    case SK_CastDerivedToBaseRValue:
3251    case SK_CastDerivedToBaseLValue: {
3252      // We have a derived-to-base cast that produces either an rvalue or an
3253      // lvalue. Perform that cast.
3254
3255      // Casts to inaccessible base classes are allowed with C-style casts.
3256      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3257      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
3258                                         CurInitExpr->getLocStart(),
3259                                         CurInitExpr->getSourceRange(),
3260                                         IgnoreBaseAccess))
3261        return S.ExprError();
3262
3263      CurInit = S.Owned(new (S.Context) ImplicitCastExpr(Step->Type,
3264                                                    CastExpr::CK_DerivedToBase,
3265                                                      (Expr*)CurInit.release(),
3266                                     Step->Kind == SK_CastDerivedToBaseLValue));
3267      break;
3268    }
3269
3270    case SK_BindReference:
3271      if (FieldDecl *BitField = CurInitExpr->getBitField()) {
3272        // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
3273        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
3274          << Entity.getType().isVolatileQualified()
3275          << BitField->getDeclName()
3276          << CurInitExpr->getSourceRange();
3277        S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
3278        return S.ExprError();
3279      }
3280
3281      // Reference binding does not have any corresponding ASTs.
3282
3283      // Check exception specifications
3284      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3285        return S.ExprError();
3286      break;
3287
3288    case SK_BindReferenceToTemporary:
3289      // Check exception specifications
3290      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3291        return S.ExprError();
3292
3293      // FIXME: At present, we have no AST to describe when we need to make a
3294      // temporary to bind a reference to. We should.
3295      break;
3296
3297    case SK_UserConversion: {
3298      // We have a user-defined conversion that invokes either a constructor
3299      // or a conversion function.
3300      CastExpr::CastKind CastKind = CastExpr::CK_Unknown;
3301      bool IsCopy = false;
3302      if (CXXConstructorDecl *Constructor
3303                              = dyn_cast<CXXConstructorDecl>(Step->Function)) {
3304        // Build a call to the selected constructor.
3305        ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3306        SourceLocation Loc = CurInitExpr->getLocStart();
3307        CurInit.release(); // Ownership transferred into MultiExprArg, below.
3308
3309        // Determine the arguments required to actually perform the constructor
3310        // call.
3311        if (S.CompleteConstructorCall(Constructor,
3312                                      Sema::MultiExprArg(S,
3313                                                         (void **)&CurInitExpr,
3314                                                         1),
3315                                      Loc, ConstructorArgs))
3316          return S.ExprError();
3317
3318        // Build the an expression that constructs a temporary.
3319        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
3320                                          move_arg(ConstructorArgs));
3321        if (CurInit.isInvalid())
3322          return S.ExprError();
3323
3324        CastKind = CastExpr::CK_ConstructorConversion;
3325        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
3326        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
3327            S.IsDerivedFrom(SourceType, Class))
3328          IsCopy = true;
3329      } else {
3330        // Build a call to the conversion function.
3331        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Step->Function);
3332
3333        // FIXME: Should we move this initialization into a separate
3334        // derived-to-base conversion? I believe the answer is "no", because
3335        // we don't want to turn off access control here for c-style casts.
3336        if (S.PerformObjectArgumentInitialization(CurInitExpr, Conversion))
3337          return S.ExprError();
3338
3339        // Do a little dance to make sure that CurInit has the proper
3340        // pointer.
3341        CurInit.release();
3342
3343        // Build the actual call to the conversion function.
3344        CurInit = S.Owned(S.BuildCXXMemberCallExpr(CurInitExpr, Conversion));
3345        if (CurInit.isInvalid() || !CurInit.get())
3346          return S.ExprError();
3347
3348        CastKind = CastExpr::CK_UserDefinedConversion;
3349      }
3350
3351      if (shouldBindAsTemporary(Entity, IsCopy))
3352        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3353
3354      CurInitExpr = CurInit.takeAs<Expr>();
3355      CurInit = S.Owned(new (S.Context) ImplicitCastExpr(CurInitExpr->getType(),
3356                                                         CastKind,
3357                                                         CurInitExpr,
3358                                                         false));
3359
3360      if (!IsCopy)
3361        CurInit = CopyIfRequiredForEntity(S, Entity, Kind, move(CurInit));
3362      break;
3363    }
3364
3365    case SK_QualificationConversionLValue:
3366    case SK_QualificationConversionRValue:
3367      // Perform a qualification conversion; these can never go wrong.
3368      S.ImpCastExprToType(CurInitExpr, Step->Type,
3369                          CastExpr::CK_NoOp,
3370                          Step->Kind == SK_QualificationConversionLValue);
3371      CurInit.release();
3372      CurInit = S.Owned(CurInitExpr);
3373      break;
3374
3375    case SK_ConversionSequence:
3376        if (S.PerformImplicitConversion(CurInitExpr, Step->Type, Sema::AA_Converting,
3377                                      false, false, *Step->ICS))
3378        return S.ExprError();
3379
3380      CurInit.release();
3381      CurInit = S.Owned(CurInitExpr);
3382      break;
3383
3384    case SK_ListInitialization: {
3385      InitListExpr *InitList = cast<InitListExpr>(CurInitExpr);
3386      QualType Ty = Step->Type;
3387      if (S.CheckInitList(Entity, InitList, ResultType? *ResultType : Ty))
3388        return S.ExprError();
3389
3390      CurInit.release();
3391      CurInit = S.Owned(InitList);
3392      break;
3393    }
3394
3395    case SK_ConstructorInitialization: {
3396      CXXConstructorDecl *Constructor
3397        = cast<CXXConstructorDecl>(Step->Function);
3398
3399      // Build a call to the selected constructor.
3400      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3401      SourceLocation Loc = Kind.getLocation();
3402
3403      // Determine the arguments required to actually perform the constructor
3404      // call.
3405      if (S.CompleteConstructorCall(Constructor, move(Args),
3406                                    Loc, ConstructorArgs))
3407        return S.ExprError();
3408
3409      // Build the an expression that constructs a temporary.
3410      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3411                                        Constructor,
3412                                        move_arg(ConstructorArgs),
3413                                        ConstructorInitRequiresZeroInit);
3414      if (CurInit.isInvalid())
3415        return S.ExprError();
3416
3417      bool Elidable
3418        = cast<CXXConstructExpr>((Expr *)CurInit.get())->isElidable();
3419      if (shouldBindAsTemporary(Entity, Elidable))
3420        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3421
3422      if (!Elidable)
3423        CurInit = CopyIfRequiredForEntity(S, Entity, Kind, move(CurInit));
3424      break;
3425    }
3426
3427    case SK_ZeroInitialization: {
3428      step_iterator NextStep = Step;
3429      ++NextStep;
3430      if (NextStep != StepEnd &&
3431          NextStep->Kind == SK_ConstructorInitialization) {
3432        // The need for zero-initialization is recorded directly into
3433        // the call to the object's constructor within the next step.
3434        ConstructorInitRequiresZeroInit = true;
3435      } else if (Kind.getKind() == InitializationKind::IK_Value &&
3436                 S.getLangOptions().CPlusPlus &&
3437                 !Kind.isImplicitValueInit()) {
3438        CurInit = S.Owned(new (S.Context) CXXZeroInitValueExpr(Step->Type,
3439                                                   Kind.getRange().getBegin(),
3440                                                    Kind.getRange().getEnd()));
3441      } else {
3442        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
3443      }
3444      break;
3445    }
3446
3447    case SK_CAssignment: {
3448      QualType SourceType = CurInitExpr->getType();
3449      Sema::AssignConvertType ConvTy =
3450        S.CheckSingleAssignmentConstraints(Step->Type, CurInitExpr);
3451
3452      // If this is a call, allow conversion to a transparent union.
3453      if (ConvTy != Sema::Compatible &&
3454          Entity.getKind() == InitializedEntity::EK_Parameter &&
3455          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExpr)
3456            == Sema::Compatible)
3457        ConvTy = Sema::Compatible;
3458
3459      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
3460                                     Step->Type, SourceType,
3461                                     CurInitExpr, getAssignmentAction(Entity)))
3462        return S.ExprError();
3463
3464      CurInit.release();
3465      CurInit = S.Owned(CurInitExpr);
3466      break;
3467    }
3468
3469    case SK_StringInit: {
3470      QualType Ty = Step->Type;
3471      CheckStringInit(CurInitExpr, ResultType ? *ResultType : Ty, S);
3472      break;
3473    }
3474    }
3475  }
3476
3477  return move(CurInit);
3478}
3479
3480//===----------------------------------------------------------------------===//
3481// Diagnose initialization failures
3482//===----------------------------------------------------------------------===//
3483bool InitializationSequence::Diagnose(Sema &S,
3484                                      const InitializedEntity &Entity,
3485                                      const InitializationKind &Kind,
3486                                      Expr **Args, unsigned NumArgs) {
3487  if (SequenceKind != FailedSequence)
3488    return false;
3489
3490  QualType DestType = Entity.getType();
3491  switch (Failure) {
3492  case FK_TooManyInitsForReference:
3493    S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
3494      << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
3495    break;
3496
3497  case FK_ArrayNeedsInitList:
3498  case FK_ArrayNeedsInitListOrStringLiteral:
3499    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
3500      << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
3501    break;
3502
3503  case FK_AddressOfOverloadFailed:
3504    S.ResolveAddressOfOverloadedFunction(Args[0],
3505                                         DestType.getNonReferenceType(),
3506                                         true);
3507    break;
3508
3509  case FK_ReferenceInitOverloadFailed:
3510  case FK_UserConversionOverloadFailed:
3511    switch (FailedOverloadResult) {
3512    case OR_Ambiguous:
3513      if (Failure == FK_UserConversionOverloadFailed)
3514        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
3515          << Args[0]->getType() << DestType
3516          << Args[0]->getSourceRange();
3517      else
3518        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
3519          << DestType << Args[0]->getType()
3520          << Args[0]->getSourceRange();
3521
3522      S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_ViableCandidates,
3523                                Args, NumArgs);
3524      break;
3525
3526    case OR_No_Viable_Function:
3527      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
3528        << Args[0]->getType() << DestType.getNonReferenceType()
3529        << Args[0]->getSourceRange();
3530      S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_AllCandidates,
3531                                Args, NumArgs);
3532      break;
3533
3534    case OR_Deleted: {
3535      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
3536        << Args[0]->getType() << DestType.getNonReferenceType()
3537        << Args[0]->getSourceRange();
3538      OverloadCandidateSet::iterator Best;
3539      OverloadingResult Ovl = S.BestViableFunction(FailedCandidateSet,
3540                                                   Kind.getLocation(),
3541                                                   Best);
3542      if (Ovl == OR_Deleted) {
3543        S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3544          << Best->Function->isDeleted();
3545      } else {
3546        llvm_unreachable("Inconsistent overload resolution?");
3547      }
3548      break;
3549    }
3550
3551    case OR_Success:
3552      llvm_unreachable("Conversion did not fail!");
3553      break;
3554    }
3555    break;
3556
3557  case FK_NonConstLValueReferenceBindingToTemporary:
3558  case FK_NonConstLValueReferenceBindingToUnrelated:
3559    S.Diag(Kind.getLocation(),
3560           Failure == FK_NonConstLValueReferenceBindingToTemporary
3561             ? diag::err_lvalue_reference_bind_to_temporary
3562             : diag::err_lvalue_reference_bind_to_unrelated)
3563      << DestType.getNonReferenceType()
3564      << Args[0]->getType()
3565      << Args[0]->getSourceRange();
3566    break;
3567
3568  case FK_RValueReferenceBindingToLValue:
3569    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
3570      << Args[0]->getSourceRange();
3571    break;
3572
3573  case FK_ReferenceInitDropsQualifiers:
3574    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
3575      << DestType.getNonReferenceType()
3576      << Args[0]->getType()
3577      << Args[0]->getSourceRange();
3578    break;
3579
3580  case FK_ReferenceInitFailed:
3581    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
3582      << DestType.getNonReferenceType()
3583      << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
3584      << Args[0]->getType()
3585      << Args[0]->getSourceRange();
3586    break;
3587
3588  case FK_ConversionFailed:
3589    S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
3590      << (int)Entity.getKind()
3591      << DestType
3592      << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
3593      << Args[0]->getType()
3594      << Args[0]->getSourceRange();
3595    break;
3596
3597  case FK_TooManyInitsForScalar: {
3598    SourceRange R;
3599
3600    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
3601      R = SourceRange(InitList->getInit(1)->getLocStart(),
3602                      InitList->getLocEnd());
3603    else
3604      R = SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
3605
3606    S.Diag(Kind.getLocation(), diag::err_excess_initializers)
3607      << /*scalar=*/2 << R;
3608    break;
3609  }
3610
3611  case FK_ReferenceBindingToInitList:
3612    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
3613      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
3614    break;
3615
3616  case FK_InitListBadDestinationType:
3617    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
3618      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
3619    break;
3620
3621  case FK_ConstructorOverloadFailed: {
3622    SourceRange ArgsRange;
3623    if (NumArgs)
3624      ArgsRange = SourceRange(Args[0]->getLocStart(),
3625                              Args[NumArgs - 1]->getLocEnd());
3626
3627    // FIXME: Using "DestType" for the entity we're printing is probably
3628    // bad.
3629    switch (FailedOverloadResult) {
3630      case OR_Ambiguous:
3631        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
3632          << DestType << ArgsRange;
3633        S.PrintOverloadCandidates(FailedCandidateSet,
3634                                  Sema::OCD_ViableCandidates, Args, NumArgs);
3635        break;
3636
3637      case OR_No_Viable_Function:
3638        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
3639          << DestType << ArgsRange;
3640        S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_AllCandidates,
3641                                  Args, NumArgs);
3642        break;
3643
3644      case OR_Deleted: {
3645        S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
3646          << true << DestType << ArgsRange;
3647        OverloadCandidateSet::iterator Best;
3648        OverloadingResult Ovl = S.BestViableFunction(FailedCandidateSet,
3649                                                     Kind.getLocation(),
3650                                                     Best);
3651        if (Ovl == OR_Deleted) {
3652          S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3653            << Best->Function->isDeleted();
3654        } else {
3655          llvm_unreachable("Inconsistent overload resolution?");
3656        }
3657        break;
3658      }
3659
3660      case OR_Success:
3661        llvm_unreachable("Conversion did not fail!");
3662        break;
3663    }
3664    break;
3665  }
3666
3667  case FK_DefaultInitOfConst:
3668    S.Diag(Kind.getLocation(), diag::err_default_init_const)
3669      << DestType;
3670    break;
3671  }
3672
3673  return true;
3674}
3675
3676//===----------------------------------------------------------------------===//
3677// Initialization helper functions
3678//===----------------------------------------------------------------------===//
3679Sema::OwningExprResult
3680Sema::PerformCopyInitialization(const InitializedEntity &Entity,
3681                                SourceLocation EqualLoc,
3682                                OwningExprResult Init) {
3683  if (Init.isInvalid())
3684    return ExprError();
3685
3686  Expr *InitE = (Expr *)Init.get();
3687  assert(InitE && "No initialization expression?");
3688
3689  if (EqualLoc.isInvalid())
3690    EqualLoc = InitE->getLocStart();
3691
3692  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
3693                                                           EqualLoc);
3694  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
3695  Init.release();
3696  return Seq.Perform(*this, Entity, Kind,
3697                     MultiExprArg(*this, (void**)&InitE, 1));
3698}
3699