SemaInit.cpp revision 4e47ecb6b2e399d2a7cc3a91d1eab9e501c5580f
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Initialization.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Sema/Designator.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/SemaInternal.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28#include <map>
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35/// \brief Check whether T is compatible with a wide character type (wchar_t,
36/// char16_t or char32_t).
37static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38  if (Context.typesAreCompatible(Context.getWideCharType(), T))
39    return true;
40  if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41    return Context.typesAreCompatible(Context.Char16Ty, T) ||
42           Context.typesAreCompatible(Context.Char32Ty, T);
43  }
44  return false;
45}
46
47enum StringInitFailureKind {
48  SIF_None,
49  SIF_NarrowStringIntoWideChar,
50  SIF_WideStringIntoChar,
51  SIF_IncompatWideStringIntoWideChar,
52  SIF_Other
53};
54
55/// \brief Check whether the array of type AT can be initialized by the Init
56/// expression by means of string initialization. Returns SIF_None if so,
57/// otherwise returns a StringInitFailureKind that describes why the
58/// initialization would not work.
59static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60                                          ASTContext &Context) {
61  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62    return SIF_Other;
63
64  // See if this is a string literal or @encode.
65  Init = Init->IgnoreParens();
66
67  // Handle @encode, which is a narrow string.
68  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69    return SIF_None;
70
71  // Otherwise we can only handle string literals.
72  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73  if (SL == 0)
74    return SIF_Other;
75
76  const QualType ElemTy =
77      Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78
79  switch (SL->getKind()) {
80  case StringLiteral::Ascii:
81  case StringLiteral::UTF8:
82    // char array can be initialized with a narrow string.
83    // Only allow char x[] = "foo";  not char x[] = L"foo";
84    if (ElemTy->isCharType())
85      return SIF_None;
86    if (IsWideCharCompatible(ElemTy, Context))
87      return SIF_NarrowStringIntoWideChar;
88    return SIF_Other;
89  // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90  // "An array with element type compatible with a qualified or unqualified
91  // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92  // string literal with the corresponding encoding prefix (L, u, or U,
93  // respectively), optionally enclosed in braces.
94  case StringLiteral::UTF16:
95    if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96      return SIF_None;
97    if (ElemTy->isCharType())
98      return SIF_WideStringIntoChar;
99    if (IsWideCharCompatible(ElemTy, Context))
100      return SIF_IncompatWideStringIntoWideChar;
101    return SIF_Other;
102  case StringLiteral::UTF32:
103    if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104      return SIF_None;
105    if (ElemTy->isCharType())
106      return SIF_WideStringIntoChar;
107    if (IsWideCharCompatible(ElemTy, Context))
108      return SIF_IncompatWideStringIntoWideChar;
109    return SIF_Other;
110  case StringLiteral::Wide:
111    if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112      return SIF_None;
113    if (ElemTy->isCharType())
114      return SIF_WideStringIntoChar;
115    if (IsWideCharCompatible(ElemTy, Context))
116      return SIF_IncompatWideStringIntoWideChar;
117    return SIF_Other;
118  }
119
120  llvm_unreachable("missed a StringLiteral kind?");
121}
122
123static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124                                          ASTContext &Context) {
125  const ArrayType *arrayType = Context.getAsArrayType(declType);
126  if (!arrayType)
127    return SIF_Other;
128  return IsStringInit(init, arrayType, Context);
129}
130
131/// Update the type of a string literal, including any surrounding parentheses,
132/// to match the type of the object which it is initializing.
133static void updateStringLiteralType(Expr *E, QualType Ty) {
134  while (true) {
135    E->setType(Ty);
136    if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137      break;
138    else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139      E = PE->getSubExpr();
140    else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141      E = UO->getSubExpr();
142    else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143      E = GSE->getResultExpr();
144    else
145      llvm_unreachable("unexpected expr in string literal init");
146  }
147}
148
149static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150                            Sema &S) {
151  // Get the length of the string as parsed.
152  uint64_t StrLength =
153    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
154
155
156  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157    // C99 6.7.8p14. We have an array of character type with unknown size
158    // being initialized to a string literal.
159    llvm::APInt ConstVal(32, StrLength);
160    // Return a new array type (C99 6.7.8p22).
161    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162                                           ConstVal,
163                                           ArrayType::Normal, 0);
164    updateStringLiteralType(Str, DeclT);
165    return;
166  }
167
168  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169
170  // We have an array of character type with known size.  However,
171  // the size may be smaller or larger than the string we are initializing.
172  // FIXME: Avoid truncation for 64-bit length strings.
173  if (S.getLangOpts().CPlusPlus) {
174    if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175      // For Pascal strings it's OK to strip off the terminating null character,
176      // so the example below is valid:
177      //
178      // unsigned char a[2] = "\pa";
179      if (SL->isPascal())
180        StrLength--;
181    }
182
183    // [dcl.init.string]p2
184    if (StrLength > CAT->getSize().getZExtValue())
185      S.Diag(Str->getLocStart(),
186             diag::err_initializer_string_for_char_array_too_long)
187        << Str->getSourceRange();
188  } else {
189    // C99 6.7.8p14.
190    if (StrLength-1 > CAT->getSize().getZExtValue())
191      S.Diag(Str->getLocStart(),
192             diag::warn_initializer_string_for_char_array_too_long)
193        << Str->getSourceRange();
194  }
195
196  // Set the type to the actual size that we are initializing.  If we have
197  // something like:
198  //   char x[1] = "foo";
199  // then this will set the string literal's type to char[1].
200  updateStringLiteralType(Str, DeclT);
201}
202
203//===----------------------------------------------------------------------===//
204// Semantic checking for initializer lists.
205//===----------------------------------------------------------------------===//
206
207/// @brief Semantic checking for initializer lists.
208///
209/// The InitListChecker class contains a set of routines that each
210/// handle the initialization of a certain kind of entity, e.g.,
211/// arrays, vectors, struct/union types, scalars, etc. The
212/// InitListChecker itself performs a recursive walk of the subobject
213/// structure of the type to be initialized, while stepping through
214/// the initializer list one element at a time. The IList and Index
215/// parameters to each of the Check* routines contain the active
216/// (syntactic) initializer list and the index into that initializer
217/// list that represents the current initializer. Each routine is
218/// responsible for moving that Index forward as it consumes elements.
219///
220/// Each Check* routine also has a StructuredList/StructuredIndex
221/// arguments, which contains the current "structured" (semantic)
222/// initializer list and the index into that initializer list where we
223/// are copying initializers as we map them over to the semantic
224/// list. Once we have completed our recursive walk of the subobject
225/// structure, we will have constructed a full semantic initializer
226/// list.
227///
228/// C99 designators cause changes in the initializer list traversal,
229/// because they make the initialization "jump" into a specific
230/// subobject and then continue the initialization from that
231/// point. CheckDesignatedInitializer() recursively steps into the
232/// designated subobject and manages backing out the recursion to
233/// initialize the subobjects after the one designated.
234namespace {
235class InitListChecker {
236  Sema &SemaRef;
237  bool hadError;
238  bool VerifyOnly; // no diagnostics, no structure building
239  llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
240  InitListExpr *FullyStructuredList;
241
242  void CheckImplicitInitList(const InitializedEntity &Entity,
243                             InitListExpr *ParentIList, QualType T,
244                             unsigned &Index, InitListExpr *StructuredList,
245                             unsigned &StructuredIndex);
246  void CheckExplicitInitList(const InitializedEntity &Entity,
247                             InitListExpr *IList, QualType &T,
248                             unsigned &Index, InitListExpr *StructuredList,
249                             unsigned &StructuredIndex,
250                             bool TopLevelObject = false);
251  void CheckListElementTypes(const InitializedEntity &Entity,
252                             InitListExpr *IList, QualType &DeclType,
253                             bool SubobjectIsDesignatorContext,
254                             unsigned &Index,
255                             InitListExpr *StructuredList,
256                             unsigned &StructuredIndex,
257                             bool TopLevelObject = false);
258  void CheckSubElementType(const InitializedEntity &Entity,
259                           InitListExpr *IList, QualType ElemType,
260                           unsigned &Index,
261                           InitListExpr *StructuredList,
262                           unsigned &StructuredIndex);
263  void CheckComplexType(const InitializedEntity &Entity,
264                        InitListExpr *IList, QualType DeclType,
265                        unsigned &Index,
266                        InitListExpr *StructuredList,
267                        unsigned &StructuredIndex);
268  void CheckScalarType(const InitializedEntity &Entity,
269                       InitListExpr *IList, QualType DeclType,
270                       unsigned &Index,
271                       InitListExpr *StructuredList,
272                       unsigned &StructuredIndex);
273  void CheckReferenceType(const InitializedEntity &Entity,
274                          InitListExpr *IList, QualType DeclType,
275                          unsigned &Index,
276                          InitListExpr *StructuredList,
277                          unsigned &StructuredIndex);
278  void CheckVectorType(const InitializedEntity &Entity,
279                       InitListExpr *IList, QualType DeclType, unsigned &Index,
280                       InitListExpr *StructuredList,
281                       unsigned &StructuredIndex);
282  void CheckStructUnionTypes(const InitializedEntity &Entity,
283                             InitListExpr *IList, QualType DeclType,
284                             RecordDecl::field_iterator Field,
285                             bool SubobjectIsDesignatorContext, unsigned &Index,
286                             InitListExpr *StructuredList,
287                             unsigned &StructuredIndex,
288                             bool TopLevelObject = false);
289  void CheckArrayType(const InitializedEntity &Entity,
290                      InitListExpr *IList, QualType &DeclType,
291                      llvm::APSInt elementIndex,
292                      bool SubobjectIsDesignatorContext, unsigned &Index,
293                      InitListExpr *StructuredList,
294                      unsigned &StructuredIndex);
295  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
296                                  InitListExpr *IList, DesignatedInitExpr *DIE,
297                                  unsigned DesigIdx,
298                                  QualType &CurrentObjectType,
299                                  RecordDecl::field_iterator *NextField,
300                                  llvm::APSInt *NextElementIndex,
301                                  unsigned &Index,
302                                  InitListExpr *StructuredList,
303                                  unsigned &StructuredIndex,
304                                  bool FinishSubobjectInit,
305                                  bool TopLevelObject);
306  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
307                                           QualType CurrentObjectType,
308                                           InitListExpr *StructuredList,
309                                           unsigned StructuredIndex,
310                                           SourceRange InitRange);
311  void UpdateStructuredListElement(InitListExpr *StructuredList,
312                                   unsigned &StructuredIndex,
313                                   Expr *expr);
314  int numArrayElements(QualType DeclType);
315  int numStructUnionElements(QualType DeclType);
316
317  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
318                               const InitializedEntity &ParentEntity,
319                               InitListExpr *ILE, bool &RequiresSecondPass);
320  void FillInValueInitializations(const InitializedEntity &Entity,
321                                  InitListExpr *ILE, bool &RequiresSecondPass);
322  bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
323                              Expr *InitExpr, FieldDecl *Field,
324                              bool TopLevelObject);
325  void CheckValueInitializable(const InitializedEntity &Entity);
326
327public:
328  InitListChecker(Sema &S, const InitializedEntity &Entity,
329                  InitListExpr *IL, QualType &T, bool VerifyOnly);
330  bool HadError() { return hadError; }
331
332  // @brief Retrieves the fully-structured initializer list used for
333  // semantic analysis and code generation.
334  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
335};
336} // end anonymous namespace
337
338void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
339  assert(VerifyOnly &&
340         "CheckValueInitializable is only inteded for verification mode.");
341
342  SourceLocation Loc;
343  InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
344                                                            true);
345  InitializationSequence InitSeq(SemaRef, Entity, Kind, None);
346  if (InitSeq.Failed())
347    hadError = true;
348}
349
350void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
351                                        const InitializedEntity &ParentEntity,
352                                              InitListExpr *ILE,
353                                              bool &RequiresSecondPass) {
354  SourceLocation Loc = ILE->getLocStart();
355  unsigned NumInits = ILE->getNumInits();
356  InitializedEntity MemberEntity
357    = InitializedEntity::InitializeMember(Field, &ParentEntity);
358  if (Init >= NumInits || !ILE->getInit(Init)) {
359    // If there's no explicit initializer but we have a default initializer, use
360    // that. This only happens in C++1y, since classes with default
361    // initializers are not aggregates in C++11.
362    if (Field->hasInClassInitializer()) {
363      Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
364                                             ILE->getRBraceLoc(), Field);
365      if (Init < NumInits)
366        ILE->setInit(Init, DIE);
367      else {
368        ILE->updateInit(SemaRef.Context, Init, DIE);
369        RequiresSecondPass = true;
370      }
371      return;
372    }
373
374    // FIXME: We probably don't need to handle references
375    // specially here, since value-initialization of references is
376    // handled in InitializationSequence.
377    if (Field->getType()->isReferenceType()) {
378      // C++ [dcl.init.aggr]p9:
379      //   If an incomplete or empty initializer-list leaves a
380      //   member of reference type uninitialized, the program is
381      //   ill-formed.
382      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
383        << Field->getType()
384        << ILE->getSyntacticForm()->getSourceRange();
385      SemaRef.Diag(Field->getLocation(),
386                   diag::note_uninit_reference_member);
387      hadError = true;
388      return;
389    }
390
391    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
392                                                              true);
393    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, None);
394    if (!InitSeq) {
395      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, None);
396      hadError = true;
397      return;
398    }
399
400    ExprResult MemberInit
401      = InitSeq.Perform(SemaRef, MemberEntity, Kind, None);
402    if (MemberInit.isInvalid()) {
403      hadError = true;
404      return;
405    }
406
407    if (hadError) {
408      // Do nothing
409    } else if (Init < NumInits) {
410      ILE->setInit(Init, MemberInit.takeAs<Expr>());
411    } else if (InitSeq.isConstructorInitialization()) {
412      // Value-initialization requires a constructor call, so
413      // extend the initializer list to include the constructor
414      // call and make a note that we'll need to take another pass
415      // through the initializer list.
416      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
417      RequiresSecondPass = true;
418    }
419  } else if (InitListExpr *InnerILE
420               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
421    FillInValueInitializations(MemberEntity, InnerILE,
422                               RequiresSecondPass);
423}
424
425/// Recursively replaces NULL values within the given initializer list
426/// with expressions that perform value-initialization of the
427/// appropriate type.
428void
429InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
430                                            InitListExpr *ILE,
431                                            bool &RequiresSecondPass) {
432  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
433         "Should not have void type");
434  SourceLocation Loc = ILE->getLocStart();
435  if (ILE->getSyntacticForm())
436    Loc = ILE->getSyntacticForm()->getLocStart();
437
438  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
439    const RecordDecl *RDecl = RType->getDecl();
440    if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
441      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
442                              Entity, ILE, RequiresSecondPass);
443    else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
444             cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
445      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
446                                      FieldEnd = RDecl->field_end();
447           Field != FieldEnd; ++Field) {
448        if (Field->hasInClassInitializer()) {
449          FillInValueInitForField(0, *Field, Entity, ILE, RequiresSecondPass);
450          break;
451        }
452      }
453    } else {
454      unsigned Init = 0;
455      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
456                                      FieldEnd = RDecl->field_end();
457           Field != FieldEnd; ++Field) {
458        if (Field->isUnnamedBitfield())
459          continue;
460
461        if (hadError)
462          return;
463
464        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
465        if (hadError)
466          return;
467
468        ++Init;
469
470        // Only look at the first initialization of a union.
471        if (RDecl->isUnion())
472          break;
473      }
474    }
475
476    return;
477  }
478
479  QualType ElementType;
480
481  InitializedEntity ElementEntity = Entity;
482  unsigned NumInits = ILE->getNumInits();
483  unsigned NumElements = NumInits;
484  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
485    ElementType = AType->getElementType();
486    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
487      NumElements = CAType->getSize().getZExtValue();
488    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
489                                                         0, Entity);
490  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
491    ElementType = VType->getElementType();
492    NumElements = VType->getNumElements();
493    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
494                                                         0, Entity);
495  } else
496    ElementType = ILE->getType();
497
498
499  for (unsigned Init = 0; Init != NumElements; ++Init) {
500    if (hadError)
501      return;
502
503    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
504        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
505      ElementEntity.setElementIndex(Init);
506
507    Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
508    if (!InitExpr && !ILE->hasArrayFiller()) {
509      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
510                                                                true);
511      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, None);
512      if (!InitSeq) {
513        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, None);
514        hadError = true;
515        return;
516      }
517
518      ExprResult ElementInit
519        = InitSeq.Perform(SemaRef, ElementEntity, Kind, None);
520      if (ElementInit.isInvalid()) {
521        hadError = true;
522        return;
523      }
524
525      if (hadError) {
526        // Do nothing
527      } else if (Init < NumInits) {
528        // For arrays, just set the expression used for value-initialization
529        // of the "holes" in the array.
530        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
531          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
532        else
533          ILE->setInit(Init, ElementInit.takeAs<Expr>());
534      } else {
535        // For arrays, just set the expression used for value-initialization
536        // of the rest of elements and exit.
537        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
538          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
539          return;
540        }
541
542        if (InitSeq.isConstructorInitialization()) {
543          // Value-initialization requires a constructor call, so
544          // extend the initializer list to include the constructor
545          // call and make a note that we'll need to take another pass
546          // through the initializer list.
547          ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
548          RequiresSecondPass = true;
549        }
550      }
551    } else if (InitListExpr *InnerILE
552                 = dyn_cast_or_null<InitListExpr>(InitExpr))
553      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
554  }
555}
556
557
558InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
559                                 InitListExpr *IL, QualType &T,
560                                 bool VerifyOnly)
561  : SemaRef(S), VerifyOnly(VerifyOnly) {
562  hadError = false;
563
564  unsigned newIndex = 0;
565  unsigned newStructuredIndex = 0;
566  FullyStructuredList
567    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
568  CheckExplicitInitList(Entity, IL, T, newIndex,
569                        FullyStructuredList, newStructuredIndex,
570                        /*TopLevelObject=*/true);
571
572  if (!hadError && !VerifyOnly) {
573    bool RequiresSecondPass = false;
574    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
575    if (RequiresSecondPass && !hadError)
576      FillInValueInitializations(Entity, FullyStructuredList,
577                                 RequiresSecondPass);
578  }
579}
580
581int InitListChecker::numArrayElements(QualType DeclType) {
582  // FIXME: use a proper constant
583  int maxElements = 0x7FFFFFFF;
584  if (const ConstantArrayType *CAT =
585        SemaRef.Context.getAsConstantArrayType(DeclType)) {
586    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
587  }
588  return maxElements;
589}
590
591int InitListChecker::numStructUnionElements(QualType DeclType) {
592  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
593  int InitializableMembers = 0;
594  for (RecordDecl::field_iterator
595         Field = structDecl->field_begin(),
596         FieldEnd = structDecl->field_end();
597       Field != FieldEnd; ++Field) {
598    if (!Field->isUnnamedBitfield())
599      ++InitializableMembers;
600  }
601  if (structDecl->isUnion())
602    return std::min(InitializableMembers, 1);
603  return InitializableMembers - structDecl->hasFlexibleArrayMember();
604}
605
606void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
607                                            InitListExpr *ParentIList,
608                                            QualType T, unsigned &Index,
609                                            InitListExpr *StructuredList,
610                                            unsigned &StructuredIndex) {
611  int maxElements = 0;
612
613  if (T->isArrayType())
614    maxElements = numArrayElements(T);
615  else if (T->isRecordType())
616    maxElements = numStructUnionElements(T);
617  else if (T->isVectorType())
618    maxElements = T->getAs<VectorType>()->getNumElements();
619  else
620    llvm_unreachable("CheckImplicitInitList(): Illegal type");
621
622  if (maxElements == 0) {
623    if (!VerifyOnly)
624      SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
625                   diag::err_implicit_empty_initializer);
626    ++Index;
627    hadError = true;
628    return;
629  }
630
631  // Build a structured initializer list corresponding to this subobject.
632  InitListExpr *StructuredSubobjectInitList
633    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
634                                 StructuredIndex,
635          SourceRange(ParentIList->getInit(Index)->getLocStart(),
636                      ParentIList->getSourceRange().getEnd()));
637  unsigned StructuredSubobjectInitIndex = 0;
638
639  // Check the element types and build the structural subobject.
640  unsigned StartIndex = Index;
641  CheckListElementTypes(Entity, ParentIList, T,
642                        /*SubobjectIsDesignatorContext=*/false, Index,
643                        StructuredSubobjectInitList,
644                        StructuredSubobjectInitIndex);
645
646  if (!VerifyOnly) {
647    StructuredSubobjectInitList->setType(T);
648
649    unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
650    // Update the structured sub-object initializer so that it's ending
651    // range corresponds with the end of the last initializer it used.
652    if (EndIndex < ParentIList->getNumInits()) {
653      SourceLocation EndLoc
654        = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
655      StructuredSubobjectInitList->setRBraceLoc(EndLoc);
656    }
657
658    // Complain about missing braces.
659    if (T->isArrayType() || T->isRecordType()) {
660      SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
661                   diag::warn_missing_braces)
662        << StructuredSubobjectInitList->getSourceRange()
663        << FixItHint::CreateInsertion(
664              StructuredSubobjectInitList->getLocStart(), "{")
665        << FixItHint::CreateInsertion(
666              SemaRef.PP.getLocForEndOfToken(
667                                      StructuredSubobjectInitList->getLocEnd()),
668              "}");
669    }
670  }
671}
672
673void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
674                                            InitListExpr *IList, QualType &T,
675                                            unsigned &Index,
676                                            InitListExpr *StructuredList,
677                                            unsigned &StructuredIndex,
678                                            bool TopLevelObject) {
679  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
680  if (!VerifyOnly) {
681    SyntacticToSemantic[IList] = StructuredList;
682    StructuredList->setSyntacticForm(IList);
683  }
684  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
685                        Index, StructuredList, StructuredIndex, TopLevelObject);
686  if (!VerifyOnly) {
687    QualType ExprTy = T;
688    if (!ExprTy->isArrayType())
689      ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
690    IList->setType(ExprTy);
691    StructuredList->setType(ExprTy);
692  }
693  if (hadError)
694    return;
695
696  if (Index < IList->getNumInits()) {
697    // We have leftover initializers
698    if (VerifyOnly) {
699      if (SemaRef.getLangOpts().CPlusPlus ||
700          (SemaRef.getLangOpts().OpenCL &&
701           IList->getType()->isVectorType())) {
702        hadError = true;
703      }
704      return;
705    }
706
707    if (StructuredIndex == 1 &&
708        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
709            SIF_None) {
710      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
711      if (SemaRef.getLangOpts().CPlusPlus) {
712        DK = diag::err_excess_initializers_in_char_array_initializer;
713        hadError = true;
714      }
715      // Special-case
716      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
717        << IList->getInit(Index)->getSourceRange();
718    } else if (!T->isIncompleteType()) {
719      // Don't complain for incomplete types, since we'll get an error
720      // elsewhere
721      QualType CurrentObjectType = StructuredList->getType();
722      int initKind =
723        CurrentObjectType->isArrayType()? 0 :
724        CurrentObjectType->isVectorType()? 1 :
725        CurrentObjectType->isScalarType()? 2 :
726        CurrentObjectType->isUnionType()? 3 :
727        4;
728
729      unsigned DK = diag::warn_excess_initializers;
730      if (SemaRef.getLangOpts().CPlusPlus) {
731        DK = diag::err_excess_initializers;
732        hadError = true;
733      }
734      if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
735        DK = diag::err_excess_initializers;
736        hadError = true;
737      }
738
739      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
740        << initKind << IList->getInit(Index)->getSourceRange();
741    }
742  }
743
744  if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
745      !TopLevelObject)
746    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
747      << IList->getSourceRange()
748      << FixItHint::CreateRemoval(IList->getLocStart())
749      << FixItHint::CreateRemoval(IList->getLocEnd());
750}
751
752void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
753                                            InitListExpr *IList,
754                                            QualType &DeclType,
755                                            bool SubobjectIsDesignatorContext,
756                                            unsigned &Index,
757                                            InitListExpr *StructuredList,
758                                            unsigned &StructuredIndex,
759                                            bool TopLevelObject) {
760  if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
761    // Explicitly braced initializer for complex type can be real+imaginary
762    // parts.
763    CheckComplexType(Entity, IList, DeclType, Index,
764                     StructuredList, StructuredIndex);
765  } else if (DeclType->isScalarType()) {
766    CheckScalarType(Entity, IList, DeclType, Index,
767                    StructuredList, StructuredIndex);
768  } else if (DeclType->isVectorType()) {
769    CheckVectorType(Entity, IList, DeclType, Index,
770                    StructuredList, StructuredIndex);
771  } else if (DeclType->isRecordType()) {
772    assert(DeclType->isAggregateType() &&
773           "non-aggregate records should be handed in CheckSubElementType");
774    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
775    CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
776                          SubobjectIsDesignatorContext, Index,
777                          StructuredList, StructuredIndex,
778                          TopLevelObject);
779  } else if (DeclType->isArrayType()) {
780    llvm::APSInt Zero(
781                    SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
782                    false);
783    CheckArrayType(Entity, IList, DeclType, Zero,
784                   SubobjectIsDesignatorContext, Index,
785                   StructuredList, StructuredIndex);
786  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
787    // This type is invalid, issue a diagnostic.
788    ++Index;
789    if (!VerifyOnly)
790      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
791        << DeclType;
792    hadError = true;
793  } else if (DeclType->isReferenceType()) {
794    CheckReferenceType(Entity, IList, DeclType, Index,
795                       StructuredList, StructuredIndex);
796  } else if (DeclType->isObjCObjectType()) {
797    if (!VerifyOnly)
798      SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
799        << DeclType;
800    hadError = true;
801  } else {
802    if (!VerifyOnly)
803      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
804        << DeclType;
805    hadError = true;
806  }
807}
808
809void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
810                                          InitListExpr *IList,
811                                          QualType ElemType,
812                                          unsigned &Index,
813                                          InitListExpr *StructuredList,
814                                          unsigned &StructuredIndex) {
815  Expr *expr = IList->getInit(Index);
816
817  if (ElemType->isReferenceType())
818    return CheckReferenceType(Entity, IList, ElemType, Index,
819                              StructuredList, StructuredIndex);
820
821  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
822    if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
823      unsigned newIndex = 0;
824      unsigned newStructuredIndex = 0;
825      InitListExpr *newStructuredList
826        = getStructuredSubobjectInit(IList, Index, ElemType,
827                                     StructuredList, StructuredIndex,
828                                     SubInitList->getSourceRange());
829      CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
830                            newStructuredList, newStructuredIndex);
831      ++StructuredIndex;
832      ++Index;
833      return;
834    }
835    assert(SemaRef.getLangOpts().CPlusPlus &&
836           "non-aggregate records are only possible in C++");
837    // C++ initialization is handled later.
838  }
839
840  if (ElemType->isScalarType())
841    return CheckScalarType(Entity, IList, ElemType, Index,
842                           StructuredList, StructuredIndex);
843
844  if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
845    // arrayType can be incomplete if we're initializing a flexible
846    // array member.  There's nothing we can do with the completed
847    // type here, though.
848
849    if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
850      if (!VerifyOnly) {
851        CheckStringInit(expr, ElemType, arrayType, SemaRef);
852        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
853      }
854      ++Index;
855      return;
856    }
857
858    // Fall through for subaggregate initialization.
859
860  } else if (SemaRef.getLangOpts().CPlusPlus) {
861    // C++ [dcl.init.aggr]p12:
862    //   All implicit type conversions (clause 4) are considered when
863    //   initializing the aggregate member with an initializer from
864    //   an initializer-list. If the initializer can initialize a
865    //   member, the member is initialized. [...]
866
867    // FIXME: Better EqualLoc?
868    InitializationKind Kind =
869      InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
870    InitializationSequence Seq(SemaRef, Entity, Kind, expr);
871
872    if (Seq) {
873      if (!VerifyOnly) {
874        ExprResult Result =
875          Seq.Perform(SemaRef, Entity, Kind, expr);
876        if (Result.isInvalid())
877          hadError = true;
878
879        UpdateStructuredListElement(StructuredList, StructuredIndex,
880                                    Result.takeAs<Expr>());
881      }
882      ++Index;
883      return;
884    }
885
886    // Fall through for subaggregate initialization
887  } else {
888    // C99 6.7.8p13:
889    //
890    //   The initializer for a structure or union object that has
891    //   automatic storage duration shall be either an initializer
892    //   list as described below, or a single expression that has
893    //   compatible structure or union type. In the latter case, the
894    //   initial value of the object, including unnamed members, is
895    //   that of the expression.
896    ExprResult ExprRes = SemaRef.Owned(expr);
897    if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
898        SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
899                                                 !VerifyOnly)
900          == Sema::Compatible) {
901      if (ExprRes.isInvalid())
902        hadError = true;
903      else {
904        ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
905          if (ExprRes.isInvalid())
906            hadError = true;
907      }
908      UpdateStructuredListElement(StructuredList, StructuredIndex,
909                                  ExprRes.takeAs<Expr>());
910      ++Index;
911      return;
912    }
913    ExprRes.release();
914    // Fall through for subaggregate initialization
915  }
916
917  // C++ [dcl.init.aggr]p12:
918  //
919  //   [...] Otherwise, if the member is itself a non-empty
920  //   subaggregate, brace elision is assumed and the initializer is
921  //   considered for the initialization of the first member of
922  //   the subaggregate.
923  if (!SemaRef.getLangOpts().OpenCL &&
924      (ElemType->isAggregateType() || ElemType->isVectorType())) {
925    CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
926                          StructuredIndex);
927    ++StructuredIndex;
928  } else {
929    if (!VerifyOnly) {
930      // We cannot initialize this element, so let
931      // PerformCopyInitialization produce the appropriate diagnostic.
932      SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
933                                        SemaRef.Owned(expr),
934                                        /*TopLevelOfInitList=*/true);
935    }
936    hadError = true;
937    ++Index;
938    ++StructuredIndex;
939  }
940}
941
942void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
943                                       InitListExpr *IList, QualType DeclType,
944                                       unsigned &Index,
945                                       InitListExpr *StructuredList,
946                                       unsigned &StructuredIndex) {
947  assert(Index == 0 && "Index in explicit init list must be zero");
948
949  // As an extension, clang supports complex initializers, which initialize
950  // a complex number component-wise.  When an explicit initializer list for
951  // a complex number contains two two initializers, this extension kicks in:
952  // it exepcts the initializer list to contain two elements convertible to
953  // the element type of the complex type. The first element initializes
954  // the real part, and the second element intitializes the imaginary part.
955
956  if (IList->getNumInits() != 2)
957    return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
958                           StructuredIndex);
959
960  // This is an extension in C.  (The builtin _Complex type does not exist
961  // in the C++ standard.)
962  if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
963    SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
964      << IList->getSourceRange();
965
966  // Initialize the complex number.
967  QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
968  InitializedEntity ElementEntity =
969    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
970
971  for (unsigned i = 0; i < 2; ++i) {
972    ElementEntity.setElementIndex(Index);
973    CheckSubElementType(ElementEntity, IList, elementType, Index,
974                        StructuredList, StructuredIndex);
975  }
976}
977
978
979void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
980                                      InitListExpr *IList, QualType DeclType,
981                                      unsigned &Index,
982                                      InitListExpr *StructuredList,
983                                      unsigned &StructuredIndex) {
984  if (Index >= IList->getNumInits()) {
985    if (!VerifyOnly)
986      SemaRef.Diag(IList->getLocStart(),
987                   SemaRef.getLangOpts().CPlusPlus11 ?
988                     diag::warn_cxx98_compat_empty_scalar_initializer :
989                     diag::err_empty_scalar_initializer)
990        << IList->getSourceRange();
991    hadError = !SemaRef.getLangOpts().CPlusPlus11;
992    ++Index;
993    ++StructuredIndex;
994    return;
995  }
996
997  Expr *expr = IList->getInit(Index);
998  if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
999    if (!VerifyOnly)
1000      SemaRef.Diag(SubIList->getLocStart(),
1001                   diag::warn_many_braces_around_scalar_init)
1002        << SubIList->getSourceRange();
1003
1004    CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1005                    StructuredIndex);
1006    return;
1007  } else if (isa<DesignatedInitExpr>(expr)) {
1008    if (!VerifyOnly)
1009      SemaRef.Diag(expr->getLocStart(),
1010                   diag::err_designator_for_scalar_init)
1011        << DeclType << expr->getSourceRange();
1012    hadError = true;
1013    ++Index;
1014    ++StructuredIndex;
1015    return;
1016  }
1017
1018  if (VerifyOnly) {
1019    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1020      hadError = true;
1021    ++Index;
1022    return;
1023  }
1024
1025  ExprResult Result =
1026    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1027                                      SemaRef.Owned(expr),
1028                                      /*TopLevelOfInitList=*/true);
1029
1030  Expr *ResultExpr = 0;
1031
1032  if (Result.isInvalid())
1033    hadError = true; // types weren't compatible.
1034  else {
1035    ResultExpr = Result.takeAs<Expr>();
1036
1037    if (ResultExpr != expr) {
1038      // The type was promoted, update initializer list.
1039      IList->setInit(Index, ResultExpr);
1040    }
1041  }
1042  if (hadError)
1043    ++StructuredIndex;
1044  else
1045    UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1046  ++Index;
1047}
1048
1049void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1050                                         InitListExpr *IList, QualType DeclType,
1051                                         unsigned &Index,
1052                                         InitListExpr *StructuredList,
1053                                         unsigned &StructuredIndex) {
1054  if (Index >= IList->getNumInits()) {
1055    // FIXME: It would be wonderful if we could point at the actual member. In
1056    // general, it would be useful to pass location information down the stack,
1057    // so that we know the location (or decl) of the "current object" being
1058    // initialized.
1059    if (!VerifyOnly)
1060      SemaRef.Diag(IList->getLocStart(),
1061                    diag::err_init_reference_member_uninitialized)
1062        << DeclType
1063        << IList->getSourceRange();
1064    hadError = true;
1065    ++Index;
1066    ++StructuredIndex;
1067    return;
1068  }
1069
1070  Expr *expr = IList->getInit(Index);
1071  if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1072    if (!VerifyOnly)
1073      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1074        << DeclType << IList->getSourceRange();
1075    hadError = true;
1076    ++Index;
1077    ++StructuredIndex;
1078    return;
1079  }
1080
1081  if (VerifyOnly) {
1082    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1083      hadError = true;
1084    ++Index;
1085    return;
1086  }
1087
1088  ExprResult Result =
1089    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1090                                      SemaRef.Owned(expr),
1091                                      /*TopLevelOfInitList=*/true);
1092
1093  if (Result.isInvalid())
1094    hadError = true;
1095
1096  expr = Result.takeAs<Expr>();
1097  IList->setInit(Index, expr);
1098
1099  if (hadError)
1100    ++StructuredIndex;
1101  else
1102    UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1103  ++Index;
1104}
1105
1106void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1107                                      InitListExpr *IList, QualType DeclType,
1108                                      unsigned &Index,
1109                                      InitListExpr *StructuredList,
1110                                      unsigned &StructuredIndex) {
1111  const VectorType *VT = DeclType->getAs<VectorType>();
1112  unsigned maxElements = VT->getNumElements();
1113  unsigned numEltsInit = 0;
1114  QualType elementType = VT->getElementType();
1115
1116  if (Index >= IList->getNumInits()) {
1117    // Make sure the element type can be value-initialized.
1118    if (VerifyOnly)
1119      CheckValueInitializable(
1120          InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1121    return;
1122  }
1123
1124  if (!SemaRef.getLangOpts().OpenCL) {
1125    // If the initializing element is a vector, try to copy-initialize
1126    // instead of breaking it apart (which is doomed to failure anyway).
1127    Expr *Init = IList->getInit(Index);
1128    if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1129      if (VerifyOnly) {
1130        if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1131          hadError = true;
1132        ++Index;
1133        return;
1134      }
1135
1136      ExprResult Result =
1137        SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1138                                          SemaRef.Owned(Init),
1139                                          /*TopLevelOfInitList=*/true);
1140
1141      Expr *ResultExpr = 0;
1142      if (Result.isInvalid())
1143        hadError = true; // types weren't compatible.
1144      else {
1145        ResultExpr = Result.takeAs<Expr>();
1146
1147        if (ResultExpr != Init) {
1148          // The type was promoted, update initializer list.
1149          IList->setInit(Index, ResultExpr);
1150        }
1151      }
1152      if (hadError)
1153        ++StructuredIndex;
1154      else
1155        UpdateStructuredListElement(StructuredList, StructuredIndex,
1156                                    ResultExpr);
1157      ++Index;
1158      return;
1159    }
1160
1161    InitializedEntity ElementEntity =
1162      InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1163
1164    for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1165      // Don't attempt to go past the end of the init list
1166      if (Index >= IList->getNumInits()) {
1167        if (VerifyOnly)
1168          CheckValueInitializable(ElementEntity);
1169        break;
1170      }
1171
1172      ElementEntity.setElementIndex(Index);
1173      CheckSubElementType(ElementEntity, IList, elementType, Index,
1174                          StructuredList, StructuredIndex);
1175    }
1176    return;
1177  }
1178
1179  InitializedEntity ElementEntity =
1180    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1181
1182  // OpenCL initializers allows vectors to be constructed from vectors.
1183  for (unsigned i = 0; i < maxElements; ++i) {
1184    // Don't attempt to go past the end of the init list
1185    if (Index >= IList->getNumInits())
1186      break;
1187
1188    ElementEntity.setElementIndex(Index);
1189
1190    QualType IType = IList->getInit(Index)->getType();
1191    if (!IType->isVectorType()) {
1192      CheckSubElementType(ElementEntity, IList, elementType, Index,
1193                          StructuredList, StructuredIndex);
1194      ++numEltsInit;
1195    } else {
1196      QualType VecType;
1197      const VectorType *IVT = IType->getAs<VectorType>();
1198      unsigned numIElts = IVT->getNumElements();
1199
1200      if (IType->isExtVectorType())
1201        VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1202      else
1203        VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1204                                                IVT->getVectorKind());
1205      CheckSubElementType(ElementEntity, IList, VecType, Index,
1206                          StructuredList, StructuredIndex);
1207      numEltsInit += numIElts;
1208    }
1209  }
1210
1211  // OpenCL requires all elements to be initialized.
1212  if (numEltsInit != maxElements) {
1213    if (!VerifyOnly)
1214      SemaRef.Diag(IList->getLocStart(),
1215                   diag::err_vector_incorrect_num_initializers)
1216        << (numEltsInit < maxElements) << maxElements << numEltsInit;
1217    hadError = true;
1218  }
1219}
1220
1221void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1222                                     InitListExpr *IList, QualType &DeclType,
1223                                     llvm::APSInt elementIndex,
1224                                     bool SubobjectIsDesignatorContext,
1225                                     unsigned &Index,
1226                                     InitListExpr *StructuredList,
1227                                     unsigned &StructuredIndex) {
1228  const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1229
1230  // Check for the special-case of initializing an array with a string.
1231  if (Index < IList->getNumInits()) {
1232    if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1233        SIF_None) {
1234      // We place the string literal directly into the resulting
1235      // initializer list. This is the only place where the structure
1236      // of the structured initializer list doesn't match exactly,
1237      // because doing so would involve allocating one character
1238      // constant for each string.
1239      if (!VerifyOnly) {
1240        CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1241        UpdateStructuredListElement(StructuredList, StructuredIndex,
1242                                    IList->getInit(Index));
1243        StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1244      }
1245      ++Index;
1246      return;
1247    }
1248  }
1249  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1250    // Check for VLAs; in standard C it would be possible to check this
1251    // earlier, but I don't know where clang accepts VLAs (gcc accepts
1252    // them in all sorts of strange places).
1253    if (!VerifyOnly)
1254      SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1255                    diag::err_variable_object_no_init)
1256        << VAT->getSizeExpr()->getSourceRange();
1257    hadError = true;
1258    ++Index;
1259    ++StructuredIndex;
1260    return;
1261  }
1262
1263  // We might know the maximum number of elements in advance.
1264  llvm::APSInt maxElements(elementIndex.getBitWidth(),
1265                           elementIndex.isUnsigned());
1266  bool maxElementsKnown = false;
1267  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1268    maxElements = CAT->getSize();
1269    elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1270    elementIndex.setIsUnsigned(maxElements.isUnsigned());
1271    maxElementsKnown = true;
1272  }
1273
1274  QualType elementType = arrayType->getElementType();
1275  while (Index < IList->getNumInits()) {
1276    Expr *Init = IList->getInit(Index);
1277    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1278      // If we're not the subobject that matches up with the '{' for
1279      // the designator, we shouldn't be handling the
1280      // designator. Return immediately.
1281      if (!SubobjectIsDesignatorContext)
1282        return;
1283
1284      // Handle this designated initializer. elementIndex will be
1285      // updated to be the next array element we'll initialize.
1286      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1287                                     DeclType, 0, &elementIndex, Index,
1288                                     StructuredList, StructuredIndex, true,
1289                                     false)) {
1290        hadError = true;
1291        continue;
1292      }
1293
1294      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1295        maxElements = maxElements.extend(elementIndex.getBitWidth());
1296      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1297        elementIndex = elementIndex.extend(maxElements.getBitWidth());
1298      elementIndex.setIsUnsigned(maxElements.isUnsigned());
1299
1300      // If the array is of incomplete type, keep track of the number of
1301      // elements in the initializer.
1302      if (!maxElementsKnown && elementIndex > maxElements)
1303        maxElements = elementIndex;
1304
1305      continue;
1306    }
1307
1308    // If we know the maximum number of elements, and we've already
1309    // hit it, stop consuming elements in the initializer list.
1310    if (maxElementsKnown && elementIndex == maxElements)
1311      break;
1312
1313    InitializedEntity ElementEntity =
1314      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1315                                           Entity);
1316    // Check this element.
1317    CheckSubElementType(ElementEntity, IList, elementType, Index,
1318                        StructuredList, StructuredIndex);
1319    ++elementIndex;
1320
1321    // If the array is of incomplete type, keep track of the number of
1322    // elements in the initializer.
1323    if (!maxElementsKnown && elementIndex > maxElements)
1324      maxElements = elementIndex;
1325  }
1326  if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1327    // If this is an incomplete array type, the actual type needs to
1328    // be calculated here.
1329    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1330    if (maxElements == Zero) {
1331      // Sizing an array implicitly to zero is not allowed by ISO C,
1332      // but is supported by GNU.
1333      SemaRef.Diag(IList->getLocStart(),
1334                    diag::ext_typecheck_zero_array_size);
1335    }
1336
1337    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1338                                                     ArrayType::Normal, 0);
1339  }
1340  if (!hadError && VerifyOnly) {
1341    // Check if there are any members of the array that get value-initialized.
1342    // If so, check if doing that is possible.
1343    // FIXME: This needs to detect holes left by designated initializers too.
1344    if (maxElementsKnown && elementIndex < maxElements)
1345      CheckValueInitializable(InitializedEntity::InitializeElement(
1346                                                  SemaRef.Context, 0, Entity));
1347  }
1348}
1349
1350bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1351                                             Expr *InitExpr,
1352                                             FieldDecl *Field,
1353                                             bool TopLevelObject) {
1354  // Handle GNU flexible array initializers.
1355  unsigned FlexArrayDiag;
1356  if (isa<InitListExpr>(InitExpr) &&
1357      cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1358    // Empty flexible array init always allowed as an extension
1359    FlexArrayDiag = diag::ext_flexible_array_init;
1360  } else if (SemaRef.getLangOpts().CPlusPlus) {
1361    // Disallow flexible array init in C++; it is not required for gcc
1362    // compatibility, and it needs work to IRGen correctly in general.
1363    FlexArrayDiag = diag::err_flexible_array_init;
1364  } else if (!TopLevelObject) {
1365    // Disallow flexible array init on non-top-level object
1366    FlexArrayDiag = diag::err_flexible_array_init;
1367  } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1368    // Disallow flexible array init on anything which is not a variable.
1369    FlexArrayDiag = diag::err_flexible_array_init;
1370  } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1371    // Disallow flexible array init on local variables.
1372    FlexArrayDiag = diag::err_flexible_array_init;
1373  } else {
1374    // Allow other cases.
1375    FlexArrayDiag = diag::ext_flexible_array_init;
1376  }
1377
1378  if (!VerifyOnly) {
1379    SemaRef.Diag(InitExpr->getLocStart(),
1380                 FlexArrayDiag)
1381      << InitExpr->getLocStart();
1382    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1383      << Field;
1384  }
1385
1386  return FlexArrayDiag != diag::ext_flexible_array_init;
1387}
1388
1389void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1390                                            InitListExpr *IList,
1391                                            QualType DeclType,
1392                                            RecordDecl::field_iterator Field,
1393                                            bool SubobjectIsDesignatorContext,
1394                                            unsigned &Index,
1395                                            InitListExpr *StructuredList,
1396                                            unsigned &StructuredIndex,
1397                                            bool TopLevelObject) {
1398  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1399
1400  // If the record is invalid, some of it's members are invalid. To avoid
1401  // confusion, we forgo checking the intializer for the entire record.
1402  if (structDecl->isInvalidDecl()) {
1403    // Assume it was supposed to consume a single initializer.
1404    ++Index;
1405    hadError = true;
1406    return;
1407  }
1408
1409  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1410    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1411
1412    // If there's a default initializer, use it.
1413    if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1414      if (VerifyOnly)
1415        return;
1416      for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1417           Field != FieldEnd; ++Field) {
1418        if (Field->hasInClassInitializer()) {
1419          StructuredList->setInitializedFieldInUnion(*Field);
1420          // FIXME: Actually build a CXXDefaultInitExpr?
1421          return;
1422        }
1423      }
1424    }
1425
1426    // Value-initialize the first named member of the union.
1427    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1428         Field != FieldEnd; ++Field) {
1429      if (Field->getDeclName()) {
1430        if (VerifyOnly)
1431          CheckValueInitializable(
1432              InitializedEntity::InitializeMember(*Field, &Entity));
1433        else
1434          StructuredList->setInitializedFieldInUnion(*Field);
1435        break;
1436      }
1437    }
1438    return;
1439  }
1440
1441  // If structDecl is a forward declaration, this loop won't do
1442  // anything except look at designated initializers; That's okay,
1443  // because an error should get printed out elsewhere. It might be
1444  // worthwhile to skip over the rest of the initializer, though.
1445  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1446  RecordDecl::field_iterator FieldEnd = RD->field_end();
1447  bool InitializedSomething = false;
1448  bool CheckForMissingFields = true;
1449  while (Index < IList->getNumInits()) {
1450    Expr *Init = IList->getInit(Index);
1451
1452    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1453      // If we're not the subobject that matches up with the '{' for
1454      // the designator, we shouldn't be handling the
1455      // designator. Return immediately.
1456      if (!SubobjectIsDesignatorContext)
1457        return;
1458
1459      // Handle this designated initializer. Field will be updated to
1460      // the next field that we'll be initializing.
1461      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1462                                     DeclType, &Field, 0, Index,
1463                                     StructuredList, StructuredIndex,
1464                                     true, TopLevelObject))
1465        hadError = true;
1466
1467      InitializedSomething = true;
1468
1469      // Disable check for missing fields when designators are used.
1470      // This matches gcc behaviour.
1471      CheckForMissingFields = false;
1472      continue;
1473    }
1474
1475    if (Field == FieldEnd) {
1476      // We've run out of fields. We're done.
1477      break;
1478    }
1479
1480    // We've already initialized a member of a union. We're done.
1481    if (InitializedSomething && DeclType->isUnionType())
1482      break;
1483
1484    // If we've hit the flexible array member at the end, we're done.
1485    if (Field->getType()->isIncompleteArrayType())
1486      break;
1487
1488    if (Field->isUnnamedBitfield()) {
1489      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1490      ++Field;
1491      continue;
1492    }
1493
1494    // Make sure we can use this declaration.
1495    bool InvalidUse;
1496    if (VerifyOnly)
1497      InvalidUse = !SemaRef.CanUseDecl(*Field);
1498    else
1499      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1500                                          IList->getInit(Index)->getLocStart());
1501    if (InvalidUse) {
1502      ++Index;
1503      ++Field;
1504      hadError = true;
1505      continue;
1506    }
1507
1508    InitializedEntity MemberEntity =
1509      InitializedEntity::InitializeMember(*Field, &Entity);
1510    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1511                        StructuredList, StructuredIndex);
1512    InitializedSomething = true;
1513
1514    if (DeclType->isUnionType() && !VerifyOnly) {
1515      // Initialize the first field within the union.
1516      StructuredList->setInitializedFieldInUnion(*Field);
1517    }
1518
1519    ++Field;
1520  }
1521
1522  // Emit warnings for missing struct field initializers.
1523  if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1524      Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1525      !DeclType->isUnionType()) {
1526    // It is possible we have one or more unnamed bitfields remaining.
1527    // Find first (if any) named field and emit warning.
1528    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1529         it != end; ++it) {
1530      if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1531        SemaRef.Diag(IList->getSourceRange().getEnd(),
1532                     diag::warn_missing_field_initializers) << it->getName();
1533        break;
1534      }
1535    }
1536  }
1537
1538  // Check that any remaining fields can be value-initialized.
1539  if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1540      !Field->getType()->isIncompleteArrayType()) {
1541    // FIXME: Should check for holes left by designated initializers too.
1542    for (; Field != FieldEnd && !hadError; ++Field) {
1543      if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1544        CheckValueInitializable(
1545            InitializedEntity::InitializeMember(*Field, &Entity));
1546    }
1547  }
1548
1549  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1550      Index >= IList->getNumInits())
1551    return;
1552
1553  if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1554                             TopLevelObject)) {
1555    hadError = true;
1556    ++Index;
1557    return;
1558  }
1559
1560  InitializedEntity MemberEntity =
1561    InitializedEntity::InitializeMember(*Field, &Entity);
1562
1563  if (isa<InitListExpr>(IList->getInit(Index)))
1564    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1565                        StructuredList, StructuredIndex);
1566  else
1567    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1568                          StructuredList, StructuredIndex);
1569}
1570
1571/// \brief Expand a field designator that refers to a member of an
1572/// anonymous struct or union into a series of field designators that
1573/// refers to the field within the appropriate subobject.
1574///
1575static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1576                                           DesignatedInitExpr *DIE,
1577                                           unsigned DesigIdx,
1578                                           IndirectFieldDecl *IndirectField) {
1579  typedef DesignatedInitExpr::Designator Designator;
1580
1581  // Build the replacement designators.
1582  SmallVector<Designator, 4> Replacements;
1583  for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1584       PE = IndirectField->chain_end(); PI != PE; ++PI) {
1585    if (PI + 1 == PE)
1586      Replacements.push_back(Designator((IdentifierInfo *)0,
1587                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1588                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1589    else
1590      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1591                                        SourceLocation()));
1592    assert(isa<FieldDecl>(*PI));
1593    Replacements.back().setField(cast<FieldDecl>(*PI));
1594  }
1595
1596  // Expand the current designator into the set of replacement
1597  // designators, so we have a full subobject path down to where the
1598  // member of the anonymous struct/union is actually stored.
1599  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1600                        &Replacements[0] + Replacements.size());
1601}
1602
1603/// \brief Given an implicit anonymous field, search the IndirectField that
1604///  corresponds to FieldName.
1605static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1606                                                 IdentifierInfo *FieldName) {
1607  if (!FieldName)
1608    return 0;
1609
1610  assert(AnonField->isAnonymousStructOrUnion());
1611  Decl *NextDecl = AnonField->getNextDeclInContext();
1612  while (IndirectFieldDecl *IF =
1613          dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1614    if (FieldName == IF->getAnonField()->getIdentifier())
1615      return IF;
1616    NextDecl = NextDecl->getNextDeclInContext();
1617  }
1618  return 0;
1619}
1620
1621static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1622                                                   DesignatedInitExpr *DIE) {
1623  unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1624  SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1625  for (unsigned I = 0; I < NumIndexExprs; ++I)
1626    IndexExprs[I] = DIE->getSubExpr(I + 1);
1627  return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1628                                    DIE->size(), IndexExprs,
1629                                    DIE->getEqualOrColonLoc(),
1630                                    DIE->usesGNUSyntax(), DIE->getInit());
1631}
1632
1633namespace {
1634
1635// Callback to only accept typo corrections that are for field members of
1636// the given struct or union.
1637class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1638 public:
1639  explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1640      : Record(RD) {}
1641
1642  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1643    FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1644    return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1645  }
1646
1647 private:
1648  RecordDecl *Record;
1649};
1650
1651}
1652
1653/// @brief Check the well-formedness of a C99 designated initializer.
1654///
1655/// Determines whether the designated initializer @p DIE, which
1656/// resides at the given @p Index within the initializer list @p
1657/// IList, is well-formed for a current object of type @p DeclType
1658/// (C99 6.7.8). The actual subobject that this designator refers to
1659/// within the current subobject is returned in either
1660/// @p NextField or @p NextElementIndex (whichever is appropriate).
1661///
1662/// @param IList  The initializer list in which this designated
1663/// initializer occurs.
1664///
1665/// @param DIE The designated initializer expression.
1666///
1667/// @param DesigIdx  The index of the current designator.
1668///
1669/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1670/// into which the designation in @p DIE should refer.
1671///
1672/// @param NextField  If non-NULL and the first designator in @p DIE is
1673/// a field, this will be set to the field declaration corresponding
1674/// to the field named by the designator.
1675///
1676/// @param NextElementIndex  If non-NULL and the first designator in @p
1677/// DIE is an array designator or GNU array-range designator, this
1678/// will be set to the last index initialized by this designator.
1679///
1680/// @param Index  Index into @p IList where the designated initializer
1681/// @p DIE occurs.
1682///
1683/// @param StructuredList  The initializer list expression that
1684/// describes all of the subobject initializers in the order they'll
1685/// actually be initialized.
1686///
1687/// @returns true if there was an error, false otherwise.
1688bool
1689InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1690                                            InitListExpr *IList,
1691                                            DesignatedInitExpr *DIE,
1692                                            unsigned DesigIdx,
1693                                            QualType &CurrentObjectType,
1694                                          RecordDecl::field_iterator *NextField,
1695                                            llvm::APSInt *NextElementIndex,
1696                                            unsigned &Index,
1697                                            InitListExpr *StructuredList,
1698                                            unsigned &StructuredIndex,
1699                                            bool FinishSubobjectInit,
1700                                            bool TopLevelObject) {
1701  if (DesigIdx == DIE->size()) {
1702    // Check the actual initialization for the designated object type.
1703    bool prevHadError = hadError;
1704
1705    // Temporarily remove the designator expression from the
1706    // initializer list that the child calls see, so that we don't try
1707    // to re-process the designator.
1708    unsigned OldIndex = Index;
1709    IList->setInit(OldIndex, DIE->getInit());
1710
1711    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1712                        StructuredList, StructuredIndex);
1713
1714    // Restore the designated initializer expression in the syntactic
1715    // form of the initializer list.
1716    if (IList->getInit(OldIndex) != DIE->getInit())
1717      DIE->setInit(IList->getInit(OldIndex));
1718    IList->setInit(OldIndex, DIE);
1719
1720    return hadError && !prevHadError;
1721  }
1722
1723  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1724  bool IsFirstDesignator = (DesigIdx == 0);
1725  if (!VerifyOnly) {
1726    assert((IsFirstDesignator || StructuredList) &&
1727           "Need a non-designated initializer list to start from");
1728
1729    // Determine the structural initializer list that corresponds to the
1730    // current subobject.
1731    StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1732      : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1733                                   StructuredList, StructuredIndex,
1734                                   SourceRange(D->getLocStart(),
1735                                               DIE->getLocEnd()));
1736    assert(StructuredList && "Expected a structured initializer list");
1737  }
1738
1739  if (D->isFieldDesignator()) {
1740    // C99 6.7.8p7:
1741    //
1742    //   If a designator has the form
1743    //
1744    //      . identifier
1745    //
1746    //   then the current object (defined below) shall have
1747    //   structure or union type and the identifier shall be the
1748    //   name of a member of that type.
1749    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1750    if (!RT) {
1751      SourceLocation Loc = D->getDotLoc();
1752      if (Loc.isInvalid())
1753        Loc = D->getFieldLoc();
1754      if (!VerifyOnly)
1755        SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1756          << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1757      ++Index;
1758      return true;
1759    }
1760
1761    // Note: we perform a linear search of the fields here, despite
1762    // the fact that we have a faster lookup method, because we always
1763    // need to compute the field's index.
1764    FieldDecl *KnownField = D->getField();
1765    IdentifierInfo *FieldName = D->getFieldName();
1766    unsigned FieldIndex = 0;
1767    RecordDecl::field_iterator
1768      Field = RT->getDecl()->field_begin(),
1769      FieldEnd = RT->getDecl()->field_end();
1770    for (; Field != FieldEnd; ++Field) {
1771      if (Field->isUnnamedBitfield())
1772        continue;
1773
1774      // If we find a field representing an anonymous field, look in the
1775      // IndirectFieldDecl that follow for the designated initializer.
1776      if (!KnownField && Field->isAnonymousStructOrUnion()) {
1777        if (IndirectFieldDecl *IF =
1778            FindIndirectFieldDesignator(*Field, FieldName)) {
1779          // In verify mode, don't modify the original.
1780          if (VerifyOnly)
1781            DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1782          ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1783          D = DIE->getDesignator(DesigIdx);
1784          break;
1785        }
1786      }
1787      if (KnownField && KnownField == *Field)
1788        break;
1789      if (FieldName && FieldName == Field->getIdentifier())
1790        break;
1791
1792      ++FieldIndex;
1793    }
1794
1795    if (Field == FieldEnd) {
1796      if (VerifyOnly) {
1797        ++Index;
1798        return true; // No typo correction when just trying this out.
1799      }
1800
1801      // There was no normal field in the struct with the designated
1802      // name. Perform another lookup for this name, which may find
1803      // something that we can't designate (e.g., a member function),
1804      // may find nothing, or may find a member of an anonymous
1805      // struct/union.
1806      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1807      FieldDecl *ReplacementField = 0;
1808      if (Lookup.empty()) {
1809        // Name lookup didn't find anything. Determine whether this
1810        // was a typo for another field name.
1811        FieldInitializerValidatorCCC Validator(RT->getDecl());
1812        TypoCorrection Corrected = SemaRef.CorrectTypo(
1813            DeclarationNameInfo(FieldName, D->getFieldLoc()),
1814            Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator,
1815            RT->getDecl());
1816        if (Corrected) {
1817          std::string CorrectedStr(
1818              Corrected.getAsString(SemaRef.getLangOpts()));
1819          std::string CorrectedQuotedStr(
1820              Corrected.getQuoted(SemaRef.getLangOpts()));
1821          ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1822          SemaRef.Diag(D->getFieldLoc(),
1823                       diag::err_field_designator_unknown_suggest)
1824            << FieldName << CurrentObjectType << CorrectedQuotedStr
1825            << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1826          SemaRef.Diag(ReplacementField->getLocation(),
1827                       diag::note_previous_decl) << CorrectedQuotedStr;
1828          hadError = true;
1829        } else {
1830          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1831            << FieldName << CurrentObjectType;
1832          ++Index;
1833          return true;
1834        }
1835      }
1836
1837      if (!ReplacementField) {
1838        // Name lookup found something, but it wasn't a field.
1839        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1840          << FieldName;
1841        SemaRef.Diag(Lookup.front()->getLocation(),
1842                      diag::note_field_designator_found);
1843        ++Index;
1844        return true;
1845      }
1846
1847      if (!KnownField) {
1848        // The replacement field comes from typo correction; find it
1849        // in the list of fields.
1850        FieldIndex = 0;
1851        Field = RT->getDecl()->field_begin();
1852        for (; Field != FieldEnd; ++Field) {
1853          if (Field->isUnnamedBitfield())
1854            continue;
1855
1856          if (ReplacementField == *Field ||
1857              Field->getIdentifier() == ReplacementField->getIdentifier())
1858            break;
1859
1860          ++FieldIndex;
1861        }
1862      }
1863    }
1864
1865    // All of the fields of a union are located at the same place in
1866    // the initializer list.
1867    if (RT->getDecl()->isUnion()) {
1868      FieldIndex = 0;
1869      if (!VerifyOnly)
1870        StructuredList->setInitializedFieldInUnion(*Field);
1871    }
1872
1873    // Make sure we can use this declaration.
1874    bool InvalidUse;
1875    if (VerifyOnly)
1876      InvalidUse = !SemaRef.CanUseDecl(*Field);
1877    else
1878      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1879    if (InvalidUse) {
1880      ++Index;
1881      return true;
1882    }
1883
1884    if (!VerifyOnly) {
1885      // Update the designator with the field declaration.
1886      D->setField(*Field);
1887
1888      // Make sure that our non-designated initializer list has space
1889      // for a subobject corresponding to this field.
1890      if (FieldIndex >= StructuredList->getNumInits())
1891        StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1892    }
1893
1894    // This designator names a flexible array member.
1895    if (Field->getType()->isIncompleteArrayType()) {
1896      bool Invalid = false;
1897      if ((DesigIdx + 1) != DIE->size()) {
1898        // We can't designate an object within the flexible array
1899        // member (because GCC doesn't allow it).
1900        if (!VerifyOnly) {
1901          DesignatedInitExpr::Designator *NextD
1902            = DIE->getDesignator(DesigIdx + 1);
1903          SemaRef.Diag(NextD->getLocStart(),
1904                        diag::err_designator_into_flexible_array_member)
1905            << SourceRange(NextD->getLocStart(),
1906                           DIE->getLocEnd());
1907          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1908            << *Field;
1909        }
1910        Invalid = true;
1911      }
1912
1913      if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1914          !isa<StringLiteral>(DIE->getInit())) {
1915        // The initializer is not an initializer list.
1916        if (!VerifyOnly) {
1917          SemaRef.Diag(DIE->getInit()->getLocStart(),
1918                        diag::err_flexible_array_init_needs_braces)
1919            << DIE->getInit()->getSourceRange();
1920          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1921            << *Field;
1922        }
1923        Invalid = true;
1924      }
1925
1926      // Check GNU flexible array initializer.
1927      if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1928                                             TopLevelObject))
1929        Invalid = true;
1930
1931      if (Invalid) {
1932        ++Index;
1933        return true;
1934      }
1935
1936      // Initialize the array.
1937      bool prevHadError = hadError;
1938      unsigned newStructuredIndex = FieldIndex;
1939      unsigned OldIndex = Index;
1940      IList->setInit(Index, DIE->getInit());
1941
1942      InitializedEntity MemberEntity =
1943        InitializedEntity::InitializeMember(*Field, &Entity);
1944      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1945                          StructuredList, newStructuredIndex);
1946
1947      IList->setInit(OldIndex, DIE);
1948      if (hadError && !prevHadError) {
1949        ++Field;
1950        ++FieldIndex;
1951        if (NextField)
1952          *NextField = Field;
1953        StructuredIndex = FieldIndex;
1954        return true;
1955      }
1956    } else {
1957      // Recurse to check later designated subobjects.
1958      QualType FieldType = Field->getType();
1959      unsigned newStructuredIndex = FieldIndex;
1960
1961      InitializedEntity MemberEntity =
1962        InitializedEntity::InitializeMember(*Field, &Entity);
1963      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1964                                     FieldType, 0, 0, Index,
1965                                     StructuredList, newStructuredIndex,
1966                                     true, false))
1967        return true;
1968    }
1969
1970    // Find the position of the next field to be initialized in this
1971    // subobject.
1972    ++Field;
1973    ++FieldIndex;
1974
1975    // If this the first designator, our caller will continue checking
1976    // the rest of this struct/class/union subobject.
1977    if (IsFirstDesignator) {
1978      if (NextField)
1979        *NextField = Field;
1980      StructuredIndex = FieldIndex;
1981      return false;
1982    }
1983
1984    if (!FinishSubobjectInit)
1985      return false;
1986
1987    // We've already initialized something in the union; we're done.
1988    if (RT->getDecl()->isUnion())
1989      return hadError;
1990
1991    // Check the remaining fields within this class/struct/union subobject.
1992    bool prevHadError = hadError;
1993
1994    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1995                          StructuredList, FieldIndex);
1996    return hadError && !prevHadError;
1997  }
1998
1999  // C99 6.7.8p6:
2000  //
2001  //   If a designator has the form
2002  //
2003  //      [ constant-expression ]
2004  //
2005  //   then the current object (defined below) shall have array
2006  //   type and the expression shall be an integer constant
2007  //   expression. If the array is of unknown size, any
2008  //   nonnegative value is valid.
2009  //
2010  // Additionally, cope with the GNU extension that permits
2011  // designators of the form
2012  //
2013  //      [ constant-expression ... constant-expression ]
2014  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2015  if (!AT) {
2016    if (!VerifyOnly)
2017      SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2018        << CurrentObjectType;
2019    ++Index;
2020    return true;
2021  }
2022
2023  Expr *IndexExpr = 0;
2024  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2025  if (D->isArrayDesignator()) {
2026    IndexExpr = DIE->getArrayIndex(*D);
2027    DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2028    DesignatedEndIndex = DesignatedStartIndex;
2029  } else {
2030    assert(D->isArrayRangeDesignator() && "Need array-range designator");
2031
2032    DesignatedStartIndex =
2033      DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2034    DesignatedEndIndex =
2035      DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2036    IndexExpr = DIE->getArrayRangeEnd(*D);
2037
2038    // Codegen can't handle evaluating array range designators that have side
2039    // effects, because we replicate the AST value for each initialized element.
2040    // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2041    // elements with something that has a side effect, so codegen can emit an
2042    // "error unsupported" error instead of miscompiling the app.
2043    if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2044        DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2045      FullyStructuredList->sawArrayRangeDesignator();
2046  }
2047
2048  if (isa<ConstantArrayType>(AT)) {
2049    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2050    DesignatedStartIndex
2051      = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2052    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2053    DesignatedEndIndex
2054      = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2055    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2056    if (DesignatedEndIndex >= MaxElements) {
2057      if (!VerifyOnly)
2058        SemaRef.Diag(IndexExpr->getLocStart(),
2059                      diag::err_array_designator_too_large)
2060          << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2061          << IndexExpr->getSourceRange();
2062      ++Index;
2063      return true;
2064    }
2065  } else {
2066    // Make sure the bit-widths and signedness match.
2067    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
2068      DesignatedEndIndex
2069        = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
2070    else if (DesignatedStartIndex.getBitWidth() <
2071             DesignatedEndIndex.getBitWidth())
2072      DesignatedStartIndex
2073        = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
2074    DesignatedStartIndex.setIsUnsigned(true);
2075    DesignatedEndIndex.setIsUnsigned(true);
2076  }
2077
2078  if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2079    // We're modifying a string literal init; we have to decompose the string
2080    // so we can modify the individual characters.
2081    ASTContext &Context = SemaRef.Context;
2082    Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2083
2084    // Compute the character type
2085    QualType CharTy = AT->getElementType();
2086
2087    // Compute the type of the integer literals.
2088    QualType PromotedCharTy = CharTy;
2089    if (CharTy->isPromotableIntegerType())
2090      PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2091    unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2092
2093    if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2094      // Get the length of the string.
2095      uint64_t StrLen = SL->getLength();
2096      if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2097        StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2098      StructuredList->resizeInits(Context, StrLen);
2099
2100      // Build a literal for each character in the string, and put them into
2101      // the init list.
2102      for (unsigned i = 0, e = StrLen; i != e; ++i) {
2103        llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2104        Expr *Init = new (Context) IntegerLiteral(
2105            Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2106        if (CharTy != PromotedCharTy)
2107          Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2108                                          Init, 0, VK_RValue);
2109        StructuredList->updateInit(Context, i, Init);
2110      }
2111    } else {
2112      ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2113      std::string Str;
2114      Context.getObjCEncodingForType(E->getEncodedType(), Str);
2115
2116      // Get the length of the string.
2117      uint64_t StrLen = Str.size();
2118      if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2119        StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2120      StructuredList->resizeInits(Context, StrLen);
2121
2122      // Build a literal for each character in the string, and put them into
2123      // the init list.
2124      for (unsigned i = 0, e = StrLen; i != e; ++i) {
2125        llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2126        Expr *Init = new (Context) IntegerLiteral(
2127            Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2128        if (CharTy != PromotedCharTy)
2129          Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2130                                          Init, 0, VK_RValue);
2131        StructuredList->updateInit(Context, i, Init);
2132      }
2133    }
2134  }
2135
2136  // Make sure that our non-designated initializer list has space
2137  // for a subobject corresponding to this array element.
2138  if (!VerifyOnly &&
2139      DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2140    StructuredList->resizeInits(SemaRef.Context,
2141                                DesignatedEndIndex.getZExtValue() + 1);
2142
2143  // Repeatedly perform subobject initializations in the range
2144  // [DesignatedStartIndex, DesignatedEndIndex].
2145
2146  // Move to the next designator
2147  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2148  unsigned OldIndex = Index;
2149
2150  InitializedEntity ElementEntity =
2151    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2152
2153  while (DesignatedStartIndex <= DesignatedEndIndex) {
2154    // Recurse to check later designated subobjects.
2155    QualType ElementType = AT->getElementType();
2156    Index = OldIndex;
2157
2158    ElementEntity.setElementIndex(ElementIndex);
2159    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2160                                   ElementType, 0, 0, Index,
2161                                   StructuredList, ElementIndex,
2162                                   (DesignatedStartIndex == DesignatedEndIndex),
2163                                   false))
2164      return true;
2165
2166    // Move to the next index in the array that we'll be initializing.
2167    ++DesignatedStartIndex;
2168    ElementIndex = DesignatedStartIndex.getZExtValue();
2169  }
2170
2171  // If this the first designator, our caller will continue checking
2172  // the rest of this array subobject.
2173  if (IsFirstDesignator) {
2174    if (NextElementIndex)
2175      *NextElementIndex = DesignatedStartIndex;
2176    StructuredIndex = ElementIndex;
2177    return false;
2178  }
2179
2180  if (!FinishSubobjectInit)
2181    return false;
2182
2183  // Check the remaining elements within this array subobject.
2184  bool prevHadError = hadError;
2185  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2186                 /*SubobjectIsDesignatorContext=*/false, Index,
2187                 StructuredList, ElementIndex);
2188  return hadError && !prevHadError;
2189}
2190
2191// Get the structured initializer list for a subobject of type
2192// @p CurrentObjectType.
2193InitListExpr *
2194InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2195                                            QualType CurrentObjectType,
2196                                            InitListExpr *StructuredList,
2197                                            unsigned StructuredIndex,
2198                                            SourceRange InitRange) {
2199  if (VerifyOnly)
2200    return 0; // No structured list in verification-only mode.
2201  Expr *ExistingInit = 0;
2202  if (!StructuredList)
2203    ExistingInit = SyntacticToSemantic.lookup(IList);
2204  else if (StructuredIndex < StructuredList->getNumInits())
2205    ExistingInit = StructuredList->getInit(StructuredIndex);
2206
2207  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2208    return Result;
2209
2210  if (ExistingInit) {
2211    // We are creating an initializer list that initializes the
2212    // subobjects of the current object, but there was already an
2213    // initialization that completely initialized the current
2214    // subobject, e.g., by a compound literal:
2215    //
2216    // struct X { int a, b; };
2217    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2218    //
2219    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2220    // designated initializer re-initializes the whole
2221    // subobject [0], overwriting previous initializers.
2222    SemaRef.Diag(InitRange.getBegin(),
2223                 diag::warn_subobject_initializer_overrides)
2224      << InitRange;
2225    SemaRef.Diag(ExistingInit->getLocStart(),
2226                  diag::note_previous_initializer)
2227      << /*FIXME:has side effects=*/0
2228      << ExistingInit->getSourceRange();
2229  }
2230
2231  InitListExpr *Result
2232    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2233                                         InitRange.getBegin(), None,
2234                                         InitRange.getEnd());
2235
2236  QualType ResultType = CurrentObjectType;
2237  if (!ResultType->isArrayType())
2238    ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2239  Result->setType(ResultType);
2240
2241  // Pre-allocate storage for the structured initializer list.
2242  unsigned NumElements = 0;
2243  unsigned NumInits = 0;
2244  bool GotNumInits = false;
2245  if (!StructuredList) {
2246    NumInits = IList->getNumInits();
2247    GotNumInits = true;
2248  } else if (Index < IList->getNumInits()) {
2249    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2250      NumInits = SubList->getNumInits();
2251      GotNumInits = true;
2252    }
2253  }
2254
2255  if (const ArrayType *AType
2256      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2257    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2258      NumElements = CAType->getSize().getZExtValue();
2259      // Simple heuristic so that we don't allocate a very large
2260      // initializer with many empty entries at the end.
2261      if (GotNumInits && NumElements > NumInits)
2262        NumElements = 0;
2263    }
2264  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2265    NumElements = VType->getNumElements();
2266  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2267    RecordDecl *RDecl = RType->getDecl();
2268    if (RDecl->isUnion())
2269      NumElements = 1;
2270    else
2271      NumElements = std::distance(RDecl->field_begin(),
2272                                  RDecl->field_end());
2273  }
2274
2275  Result->reserveInits(SemaRef.Context, NumElements);
2276
2277  // Link this new initializer list into the structured initializer
2278  // lists.
2279  if (StructuredList)
2280    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2281  else {
2282    Result->setSyntacticForm(IList);
2283    SyntacticToSemantic[IList] = Result;
2284  }
2285
2286  return Result;
2287}
2288
2289/// Update the initializer at index @p StructuredIndex within the
2290/// structured initializer list to the value @p expr.
2291void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2292                                                  unsigned &StructuredIndex,
2293                                                  Expr *expr) {
2294  // No structured initializer list to update
2295  if (!StructuredList)
2296    return;
2297
2298  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2299                                                  StructuredIndex, expr)) {
2300    // This initializer overwrites a previous initializer. Warn.
2301    SemaRef.Diag(expr->getLocStart(),
2302                  diag::warn_initializer_overrides)
2303      << expr->getSourceRange();
2304    SemaRef.Diag(PrevInit->getLocStart(),
2305                  diag::note_previous_initializer)
2306      << /*FIXME:has side effects=*/0
2307      << PrevInit->getSourceRange();
2308  }
2309
2310  ++StructuredIndex;
2311}
2312
2313/// Check that the given Index expression is a valid array designator
2314/// value. This is essentially just a wrapper around
2315/// VerifyIntegerConstantExpression that also checks for negative values
2316/// and produces a reasonable diagnostic if there is a
2317/// failure. Returns the index expression, possibly with an implicit cast
2318/// added, on success.  If everything went okay, Value will receive the
2319/// value of the constant expression.
2320static ExprResult
2321CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2322  SourceLocation Loc = Index->getLocStart();
2323
2324  // Make sure this is an integer constant expression.
2325  ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2326  if (Result.isInvalid())
2327    return Result;
2328
2329  if (Value.isSigned() && Value.isNegative())
2330    return S.Diag(Loc, diag::err_array_designator_negative)
2331      << Value.toString(10) << Index->getSourceRange();
2332
2333  Value.setIsUnsigned(true);
2334  return Result;
2335}
2336
2337ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2338                                            SourceLocation Loc,
2339                                            bool GNUSyntax,
2340                                            ExprResult Init) {
2341  typedef DesignatedInitExpr::Designator ASTDesignator;
2342
2343  bool Invalid = false;
2344  SmallVector<ASTDesignator, 32> Designators;
2345  SmallVector<Expr *, 32> InitExpressions;
2346
2347  // Build designators and check array designator expressions.
2348  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2349    const Designator &D = Desig.getDesignator(Idx);
2350    switch (D.getKind()) {
2351    case Designator::FieldDesignator:
2352      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2353                                          D.getFieldLoc()));
2354      break;
2355
2356    case Designator::ArrayDesignator: {
2357      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2358      llvm::APSInt IndexValue;
2359      if (!Index->isTypeDependent() && !Index->isValueDependent())
2360        Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2361      if (!Index)
2362        Invalid = true;
2363      else {
2364        Designators.push_back(ASTDesignator(InitExpressions.size(),
2365                                            D.getLBracketLoc(),
2366                                            D.getRBracketLoc()));
2367        InitExpressions.push_back(Index);
2368      }
2369      break;
2370    }
2371
2372    case Designator::ArrayRangeDesignator: {
2373      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2374      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2375      llvm::APSInt StartValue;
2376      llvm::APSInt EndValue;
2377      bool StartDependent = StartIndex->isTypeDependent() ||
2378                            StartIndex->isValueDependent();
2379      bool EndDependent = EndIndex->isTypeDependent() ||
2380                          EndIndex->isValueDependent();
2381      if (!StartDependent)
2382        StartIndex =
2383            CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2384      if (!EndDependent)
2385        EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2386
2387      if (!StartIndex || !EndIndex)
2388        Invalid = true;
2389      else {
2390        // Make sure we're comparing values with the same bit width.
2391        if (StartDependent || EndDependent) {
2392          // Nothing to compute.
2393        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2394          EndValue = EndValue.extend(StartValue.getBitWidth());
2395        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2396          StartValue = StartValue.extend(EndValue.getBitWidth());
2397
2398        if (!StartDependent && !EndDependent && EndValue < StartValue) {
2399          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2400            << StartValue.toString(10) << EndValue.toString(10)
2401            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2402          Invalid = true;
2403        } else {
2404          Designators.push_back(ASTDesignator(InitExpressions.size(),
2405                                              D.getLBracketLoc(),
2406                                              D.getEllipsisLoc(),
2407                                              D.getRBracketLoc()));
2408          InitExpressions.push_back(StartIndex);
2409          InitExpressions.push_back(EndIndex);
2410        }
2411      }
2412      break;
2413    }
2414    }
2415  }
2416
2417  if (Invalid || Init.isInvalid())
2418    return ExprError();
2419
2420  // Clear out the expressions within the designation.
2421  Desig.ClearExprs(*this);
2422
2423  DesignatedInitExpr *DIE
2424    = DesignatedInitExpr::Create(Context,
2425                                 Designators.data(), Designators.size(),
2426                                 InitExpressions, Loc, GNUSyntax,
2427                                 Init.takeAs<Expr>());
2428
2429  if (!getLangOpts().C99)
2430    Diag(DIE->getLocStart(), diag::ext_designated_init)
2431      << DIE->getSourceRange();
2432
2433  return Owned(DIE);
2434}
2435
2436//===----------------------------------------------------------------------===//
2437// Initialization entity
2438//===----------------------------------------------------------------------===//
2439
2440InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2441                                     const InitializedEntity &Parent)
2442  : Parent(&Parent), Index(Index)
2443{
2444  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2445    Kind = EK_ArrayElement;
2446    Type = AT->getElementType();
2447  } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2448    Kind = EK_VectorElement;
2449    Type = VT->getElementType();
2450  } else {
2451    const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2452    assert(CT && "Unexpected type");
2453    Kind = EK_ComplexElement;
2454    Type = CT->getElementType();
2455  }
2456}
2457
2458InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2459                                                    CXXBaseSpecifier *Base,
2460                                                    bool IsInheritedVirtualBase)
2461{
2462  InitializedEntity Result;
2463  Result.Kind = EK_Base;
2464  Result.Parent = 0;
2465  Result.Base = reinterpret_cast<uintptr_t>(Base);
2466  if (IsInheritedVirtualBase)
2467    Result.Base |= 0x01;
2468
2469  Result.Type = Base->getType();
2470  return Result;
2471}
2472
2473DeclarationName InitializedEntity::getName() const {
2474  switch (getKind()) {
2475  case EK_Parameter: {
2476    ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2477    return (D ? D->getDeclName() : DeclarationName());
2478  }
2479
2480  case EK_Variable:
2481  case EK_Member:
2482    return VariableOrMember->getDeclName();
2483
2484  case EK_LambdaCapture:
2485    return Capture.Var->getDeclName();
2486
2487  case EK_Result:
2488  case EK_Exception:
2489  case EK_New:
2490  case EK_Temporary:
2491  case EK_Base:
2492  case EK_Delegating:
2493  case EK_ArrayElement:
2494  case EK_VectorElement:
2495  case EK_ComplexElement:
2496  case EK_BlockElement:
2497  case EK_CompoundLiteralInit:
2498    return DeclarationName();
2499  }
2500
2501  llvm_unreachable("Invalid EntityKind!");
2502}
2503
2504DeclaratorDecl *InitializedEntity::getDecl() const {
2505  switch (getKind()) {
2506  case EK_Variable:
2507  case EK_Member:
2508    return VariableOrMember;
2509
2510  case EK_Parameter:
2511    return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2512
2513  case EK_Result:
2514  case EK_Exception:
2515  case EK_New:
2516  case EK_Temporary:
2517  case EK_Base:
2518  case EK_Delegating:
2519  case EK_ArrayElement:
2520  case EK_VectorElement:
2521  case EK_ComplexElement:
2522  case EK_BlockElement:
2523  case EK_LambdaCapture:
2524  case EK_CompoundLiteralInit:
2525    return 0;
2526  }
2527
2528  llvm_unreachable("Invalid EntityKind!");
2529}
2530
2531bool InitializedEntity::allowsNRVO() const {
2532  switch (getKind()) {
2533  case EK_Result:
2534  case EK_Exception:
2535    return LocAndNRVO.NRVO;
2536
2537  case EK_Variable:
2538  case EK_Parameter:
2539  case EK_Member:
2540  case EK_New:
2541  case EK_Temporary:
2542  case EK_CompoundLiteralInit:
2543  case EK_Base:
2544  case EK_Delegating:
2545  case EK_ArrayElement:
2546  case EK_VectorElement:
2547  case EK_ComplexElement:
2548  case EK_BlockElement:
2549  case EK_LambdaCapture:
2550    break;
2551  }
2552
2553  return false;
2554}
2555
2556unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
2557  assert(getParent() != this);
2558  unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
2559  for (unsigned I = 0; I != Depth; ++I)
2560    OS << "`-";
2561
2562  switch (getKind()) {
2563  case EK_Variable: OS << "Variable"; break;
2564  case EK_Parameter: OS << "Parameter"; break;
2565  case EK_Result: OS << "Result"; break;
2566  case EK_Exception: OS << "Exception"; break;
2567  case EK_Member: OS << "Member"; break;
2568  case EK_New: OS << "New"; break;
2569  case EK_Temporary: OS << "Temporary"; break;
2570  case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
2571  case EK_Base: OS << "Base"; break;
2572  case EK_Delegating: OS << "Delegating"; break;
2573  case EK_ArrayElement: OS << "ArrayElement " << Index; break;
2574  case EK_VectorElement: OS << "VectorElement " << Index; break;
2575  case EK_ComplexElement: OS << "ComplexElement " << Index; break;
2576  case EK_BlockElement: OS << "Block"; break;
2577  case EK_LambdaCapture:
2578    OS << "LambdaCapture ";
2579    getCapturedVar()->printName(OS);
2580    break;
2581  }
2582
2583  if (Decl *D = getDecl()) {
2584    OS << " ";
2585    cast<NamedDecl>(D)->printQualifiedName(OS);
2586  }
2587
2588  OS << " '" << getType().getAsString() << "'\n";
2589
2590  return Depth + 1;
2591}
2592
2593void InitializedEntity::dump() const {
2594  dumpImpl(llvm::errs());
2595}
2596
2597//===----------------------------------------------------------------------===//
2598// Initialization sequence
2599//===----------------------------------------------------------------------===//
2600
2601void InitializationSequence::Step::Destroy() {
2602  switch (Kind) {
2603  case SK_ResolveAddressOfOverloadedFunction:
2604  case SK_CastDerivedToBaseRValue:
2605  case SK_CastDerivedToBaseXValue:
2606  case SK_CastDerivedToBaseLValue:
2607  case SK_BindReference:
2608  case SK_BindReferenceToTemporary:
2609  case SK_ExtraneousCopyToTemporary:
2610  case SK_UserConversion:
2611  case SK_QualificationConversionRValue:
2612  case SK_QualificationConversionXValue:
2613  case SK_QualificationConversionLValue:
2614  case SK_LValueToRValue:
2615  case SK_ListInitialization:
2616  case SK_ListConstructorCall:
2617  case SK_UnwrapInitList:
2618  case SK_RewrapInitList:
2619  case SK_ConstructorInitialization:
2620  case SK_ZeroInitialization:
2621  case SK_CAssignment:
2622  case SK_StringInit:
2623  case SK_ObjCObjectConversion:
2624  case SK_ArrayInit:
2625  case SK_ParenthesizedArrayInit:
2626  case SK_PassByIndirectCopyRestore:
2627  case SK_PassByIndirectRestore:
2628  case SK_ProduceObjCObject:
2629  case SK_StdInitializerList:
2630  case SK_OCLSamplerInit:
2631  case SK_OCLZeroEvent:
2632    break;
2633
2634  case SK_ConversionSequence:
2635    delete ICS;
2636  }
2637}
2638
2639bool InitializationSequence::isDirectReferenceBinding() const {
2640  return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2641}
2642
2643bool InitializationSequence::isAmbiguous() const {
2644  if (!Failed())
2645    return false;
2646
2647  switch (getFailureKind()) {
2648  case FK_TooManyInitsForReference:
2649  case FK_ArrayNeedsInitList:
2650  case FK_ArrayNeedsInitListOrStringLiteral:
2651  case FK_ArrayNeedsInitListOrWideStringLiteral:
2652  case FK_NarrowStringIntoWideCharArray:
2653  case FK_WideStringIntoCharArray:
2654  case FK_IncompatWideStringIntoWideChar:
2655  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2656  case FK_NonConstLValueReferenceBindingToTemporary:
2657  case FK_NonConstLValueReferenceBindingToUnrelated:
2658  case FK_RValueReferenceBindingToLValue:
2659  case FK_ReferenceInitDropsQualifiers:
2660  case FK_ReferenceInitFailed:
2661  case FK_ConversionFailed:
2662  case FK_ConversionFromPropertyFailed:
2663  case FK_TooManyInitsForScalar:
2664  case FK_ReferenceBindingToInitList:
2665  case FK_InitListBadDestinationType:
2666  case FK_DefaultInitOfConst:
2667  case FK_Incomplete:
2668  case FK_ArrayTypeMismatch:
2669  case FK_NonConstantArrayInit:
2670  case FK_ListInitializationFailed:
2671  case FK_VariableLengthArrayHasInitializer:
2672  case FK_PlaceholderType:
2673  case FK_InitListElementCopyFailure:
2674  case FK_ExplicitConstructor:
2675    return false;
2676
2677  case FK_ReferenceInitOverloadFailed:
2678  case FK_UserConversionOverloadFailed:
2679  case FK_ConstructorOverloadFailed:
2680  case FK_ListConstructorOverloadFailed:
2681    return FailedOverloadResult == OR_Ambiguous;
2682  }
2683
2684  llvm_unreachable("Invalid EntityKind!");
2685}
2686
2687bool InitializationSequence::isConstructorInitialization() const {
2688  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2689}
2690
2691void
2692InitializationSequence
2693::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2694                                   DeclAccessPair Found,
2695                                   bool HadMultipleCandidates) {
2696  Step S;
2697  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2698  S.Type = Function->getType();
2699  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2700  S.Function.Function = Function;
2701  S.Function.FoundDecl = Found;
2702  Steps.push_back(S);
2703}
2704
2705void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2706                                                      ExprValueKind VK) {
2707  Step S;
2708  switch (VK) {
2709  case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2710  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2711  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2712  }
2713  S.Type = BaseType;
2714  Steps.push_back(S);
2715}
2716
2717void InitializationSequence::AddReferenceBindingStep(QualType T,
2718                                                     bool BindingTemporary) {
2719  Step S;
2720  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2721  S.Type = T;
2722  Steps.push_back(S);
2723}
2724
2725void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2726  Step S;
2727  S.Kind = SK_ExtraneousCopyToTemporary;
2728  S.Type = T;
2729  Steps.push_back(S);
2730}
2731
2732void
2733InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2734                                              DeclAccessPair FoundDecl,
2735                                              QualType T,
2736                                              bool HadMultipleCandidates) {
2737  Step S;
2738  S.Kind = SK_UserConversion;
2739  S.Type = T;
2740  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2741  S.Function.Function = Function;
2742  S.Function.FoundDecl = FoundDecl;
2743  Steps.push_back(S);
2744}
2745
2746void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2747                                                            ExprValueKind VK) {
2748  Step S;
2749  S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2750  switch (VK) {
2751  case VK_RValue:
2752    S.Kind = SK_QualificationConversionRValue;
2753    break;
2754  case VK_XValue:
2755    S.Kind = SK_QualificationConversionXValue;
2756    break;
2757  case VK_LValue:
2758    S.Kind = SK_QualificationConversionLValue;
2759    break;
2760  }
2761  S.Type = Ty;
2762  Steps.push_back(S);
2763}
2764
2765void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
2766  assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
2767
2768  Step S;
2769  S.Kind = SK_LValueToRValue;
2770  S.Type = Ty;
2771  Steps.push_back(S);
2772}
2773
2774void InitializationSequence::AddConversionSequenceStep(
2775                                       const ImplicitConversionSequence &ICS,
2776                                                       QualType T) {
2777  Step S;
2778  S.Kind = SK_ConversionSequence;
2779  S.Type = T;
2780  S.ICS = new ImplicitConversionSequence(ICS);
2781  Steps.push_back(S);
2782}
2783
2784void InitializationSequence::AddListInitializationStep(QualType T) {
2785  Step S;
2786  S.Kind = SK_ListInitialization;
2787  S.Type = T;
2788  Steps.push_back(S);
2789}
2790
2791void
2792InitializationSequence
2793::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2794                                   AccessSpecifier Access,
2795                                   QualType T,
2796                                   bool HadMultipleCandidates,
2797                                   bool FromInitList, bool AsInitList) {
2798  Step S;
2799  S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2800                                       : SK_ConstructorInitialization;
2801  S.Type = T;
2802  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2803  S.Function.Function = Constructor;
2804  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2805  Steps.push_back(S);
2806}
2807
2808void InitializationSequence::AddZeroInitializationStep(QualType T) {
2809  Step S;
2810  S.Kind = SK_ZeroInitialization;
2811  S.Type = T;
2812  Steps.push_back(S);
2813}
2814
2815void InitializationSequence::AddCAssignmentStep(QualType T) {
2816  Step S;
2817  S.Kind = SK_CAssignment;
2818  S.Type = T;
2819  Steps.push_back(S);
2820}
2821
2822void InitializationSequence::AddStringInitStep(QualType T) {
2823  Step S;
2824  S.Kind = SK_StringInit;
2825  S.Type = T;
2826  Steps.push_back(S);
2827}
2828
2829void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2830  Step S;
2831  S.Kind = SK_ObjCObjectConversion;
2832  S.Type = T;
2833  Steps.push_back(S);
2834}
2835
2836void InitializationSequence::AddArrayInitStep(QualType T) {
2837  Step S;
2838  S.Kind = SK_ArrayInit;
2839  S.Type = T;
2840  Steps.push_back(S);
2841}
2842
2843void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2844  Step S;
2845  S.Kind = SK_ParenthesizedArrayInit;
2846  S.Type = T;
2847  Steps.push_back(S);
2848}
2849
2850void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2851                                                              bool shouldCopy) {
2852  Step s;
2853  s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2854                       : SK_PassByIndirectRestore);
2855  s.Type = type;
2856  Steps.push_back(s);
2857}
2858
2859void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2860  Step S;
2861  S.Kind = SK_ProduceObjCObject;
2862  S.Type = T;
2863  Steps.push_back(S);
2864}
2865
2866void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2867  Step S;
2868  S.Kind = SK_StdInitializerList;
2869  S.Type = T;
2870  Steps.push_back(S);
2871}
2872
2873void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
2874  Step S;
2875  S.Kind = SK_OCLSamplerInit;
2876  S.Type = T;
2877  Steps.push_back(S);
2878}
2879
2880void InitializationSequence::AddOCLZeroEventStep(QualType T) {
2881  Step S;
2882  S.Kind = SK_OCLZeroEvent;
2883  S.Type = T;
2884  Steps.push_back(S);
2885}
2886
2887void InitializationSequence::RewrapReferenceInitList(QualType T,
2888                                                     InitListExpr *Syntactic) {
2889  assert(Syntactic->getNumInits() == 1 &&
2890         "Can only rewrap trivial init lists.");
2891  Step S;
2892  S.Kind = SK_UnwrapInitList;
2893  S.Type = Syntactic->getInit(0)->getType();
2894  Steps.insert(Steps.begin(), S);
2895
2896  S.Kind = SK_RewrapInitList;
2897  S.Type = T;
2898  S.WrappingSyntacticList = Syntactic;
2899  Steps.push_back(S);
2900}
2901
2902void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2903                                                OverloadingResult Result) {
2904  setSequenceKind(FailedSequence);
2905  this->Failure = Failure;
2906  this->FailedOverloadResult = Result;
2907}
2908
2909//===----------------------------------------------------------------------===//
2910// Attempt initialization
2911//===----------------------------------------------------------------------===//
2912
2913static void MaybeProduceObjCObject(Sema &S,
2914                                   InitializationSequence &Sequence,
2915                                   const InitializedEntity &Entity) {
2916  if (!S.getLangOpts().ObjCAutoRefCount) return;
2917
2918  /// When initializing a parameter, produce the value if it's marked
2919  /// __attribute__((ns_consumed)).
2920  if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2921    if (!Entity.isParameterConsumed())
2922      return;
2923
2924    assert(Entity.getType()->isObjCRetainableType() &&
2925           "consuming an object of unretainable type?");
2926    Sequence.AddProduceObjCObjectStep(Entity.getType());
2927
2928  /// When initializing a return value, if the return type is a
2929  /// retainable type, then returns need to immediately retain the
2930  /// object.  If an autorelease is required, it will be done at the
2931  /// last instant.
2932  } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2933    if (!Entity.getType()->isObjCRetainableType())
2934      return;
2935
2936    Sequence.AddProduceObjCObjectStep(Entity.getType());
2937  }
2938}
2939
2940static void TryListInitialization(Sema &S,
2941                                  const InitializedEntity &Entity,
2942                                  const InitializationKind &Kind,
2943                                  InitListExpr *InitList,
2944                                  InitializationSequence &Sequence);
2945
2946/// \brief When initializing from init list via constructor, handle
2947/// initialization of an object of type std::initializer_list<T>.
2948///
2949/// \return true if we have handled initialization of an object of type
2950/// std::initializer_list<T>, false otherwise.
2951static bool TryInitializerListConstruction(Sema &S,
2952                                           InitListExpr *List,
2953                                           QualType DestType,
2954                                           InitializationSequence &Sequence) {
2955  QualType E;
2956  if (!S.isStdInitializerList(DestType, &E))
2957    return false;
2958
2959  if (S.RequireCompleteType(List->getExprLoc(), E, 0)) {
2960    Sequence.setIncompleteTypeFailure(E);
2961    return true;
2962  }
2963
2964  // Try initializing a temporary array from the init list.
2965  QualType ArrayType = S.Context.getConstantArrayType(
2966      E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2967                                 List->getNumInits()),
2968      clang::ArrayType::Normal, 0);
2969  InitializedEntity HiddenArray =
2970      InitializedEntity::InitializeTemporary(ArrayType);
2971  InitializationKind Kind =
2972      InitializationKind::CreateDirectList(List->getExprLoc());
2973  TryListInitialization(S, HiddenArray, Kind, List, Sequence);
2974  if (Sequence)
2975    Sequence.AddStdInitializerListConstructionStep(DestType);
2976  return true;
2977}
2978
2979static OverloadingResult
2980ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
2981                           MultiExprArg Args,
2982                           OverloadCandidateSet &CandidateSet,
2983                           ArrayRef<NamedDecl *> Ctors,
2984                           OverloadCandidateSet::iterator &Best,
2985                           bool CopyInitializing, bool AllowExplicit,
2986                           bool OnlyListConstructors, bool InitListSyntax) {
2987  CandidateSet.clear();
2988
2989  for (ArrayRef<NamedDecl *>::iterator
2990         Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) {
2991    NamedDecl *D = *Con;
2992    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2993    bool SuppressUserConversions = false;
2994
2995    // Find the constructor (which may be a template).
2996    CXXConstructorDecl *Constructor = 0;
2997    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2998    if (ConstructorTmpl)
2999      Constructor = cast<CXXConstructorDecl>(
3000                                           ConstructorTmpl->getTemplatedDecl());
3001    else {
3002      Constructor = cast<CXXConstructorDecl>(D);
3003
3004      // If we're performing copy initialization using a copy constructor, we
3005      // suppress user-defined conversions on the arguments. We do the same for
3006      // move constructors.
3007      if ((CopyInitializing || (InitListSyntax && Args.size() == 1)) &&
3008          Constructor->isCopyOrMoveConstructor())
3009        SuppressUserConversions = true;
3010    }
3011
3012    if (!Constructor->isInvalidDecl() &&
3013        (AllowExplicit || !Constructor->isExplicit()) &&
3014        (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
3015      if (ConstructorTmpl)
3016        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3017                                       /*ExplicitArgs*/ 0, Args,
3018                                       CandidateSet, SuppressUserConversions);
3019      else {
3020        // C++ [over.match.copy]p1:
3021        //   - When initializing a temporary to be bound to the first parameter
3022        //     of a constructor that takes a reference to possibly cv-qualified
3023        //     T as its first argument, called with a single argument in the
3024        //     context of direct-initialization, explicit conversion functions
3025        //     are also considered.
3026        bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3027                                 Args.size() == 1 &&
3028                                 Constructor->isCopyOrMoveConstructor();
3029        S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
3030                               SuppressUserConversions,
3031                               /*PartialOverloading=*/false,
3032                               /*AllowExplicit=*/AllowExplicitConv);
3033      }
3034    }
3035  }
3036
3037  // Perform overload resolution and return the result.
3038  return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3039}
3040
3041/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3042/// enumerates the constructors of the initialized entity and performs overload
3043/// resolution to select the best.
3044/// If InitListSyntax is true, this is list-initialization of a non-aggregate
3045/// class type.
3046static void TryConstructorInitialization(Sema &S,
3047                                         const InitializedEntity &Entity,
3048                                         const InitializationKind &Kind,
3049                                         MultiExprArg Args, QualType DestType,
3050                                         InitializationSequence &Sequence,
3051                                         bool InitListSyntax = false) {
3052  assert((!InitListSyntax || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3053         "InitListSyntax must come with a single initializer list argument.");
3054
3055  // The type we're constructing needs to be complete.
3056  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3057    Sequence.setIncompleteTypeFailure(DestType);
3058    return;
3059  }
3060
3061  const RecordType *DestRecordType = DestType->getAs<RecordType>();
3062  assert(DestRecordType && "Constructor initialization requires record type");
3063  CXXRecordDecl *DestRecordDecl
3064    = cast<CXXRecordDecl>(DestRecordType->getDecl());
3065
3066  // Build the candidate set directly in the initialization sequence
3067  // structure, so that it will persist if we fail.
3068  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3069
3070  // Determine whether we are allowed to call explicit constructors or
3071  // explicit conversion operators.
3072  bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
3073  bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3074
3075  //   - Otherwise, if T is a class type, constructors are considered. The
3076  //     applicable constructors are enumerated, and the best one is chosen
3077  //     through overload resolution.
3078  DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
3079  // The container holding the constructors can under certain conditions
3080  // be changed while iterating (e.g. because of deserialization).
3081  // To be safe we copy the lookup results to a new container.
3082  SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3083
3084  OverloadingResult Result = OR_No_Viable_Function;
3085  OverloadCandidateSet::iterator Best;
3086  bool AsInitializerList = false;
3087
3088  // C++11 [over.match.list]p1:
3089  //   When objects of non-aggregate type T are list-initialized, overload
3090  //   resolution selects the constructor in two phases:
3091  //   - Initially, the candidate functions are the initializer-list
3092  //     constructors of the class T and the argument list consists of the
3093  //     initializer list as a single argument.
3094  if (InitListSyntax) {
3095    InitListExpr *ILE = cast<InitListExpr>(Args[0]);
3096    AsInitializerList = true;
3097
3098    // If the initializer list has no elements and T has a default constructor,
3099    // the first phase is omitted.
3100    if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
3101      Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3102                                          CandidateSet, Ctors, Best,
3103                                          CopyInitialization, AllowExplicit,
3104                                          /*OnlyListConstructor=*/true,
3105                                          InitListSyntax);
3106
3107    // Time to unwrap the init list.
3108    Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
3109  }
3110
3111  // C++11 [over.match.list]p1:
3112  //   - If no viable initializer-list constructor is found, overload resolution
3113  //     is performed again, where the candidate functions are all the
3114  //     constructors of the class T and the argument list consists of the
3115  //     elements of the initializer list.
3116  if (Result == OR_No_Viable_Function) {
3117    AsInitializerList = false;
3118    Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3119                                        CandidateSet, Ctors, Best,
3120                                        CopyInitialization, AllowExplicit,
3121                                        /*OnlyListConstructors=*/false,
3122                                        InitListSyntax);
3123  }
3124  if (Result) {
3125    Sequence.SetOverloadFailure(InitListSyntax ?
3126                      InitializationSequence::FK_ListConstructorOverloadFailed :
3127                      InitializationSequence::FK_ConstructorOverloadFailed,
3128                                Result);
3129    return;
3130  }
3131
3132  // C++11 [dcl.init]p6:
3133  //   If a program calls for the default initialization of an object
3134  //   of a const-qualified type T, T shall be a class type with a
3135  //   user-provided default constructor.
3136  if (Kind.getKind() == InitializationKind::IK_Default &&
3137      Entity.getType().isConstQualified() &&
3138      !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
3139    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3140    return;
3141  }
3142
3143  // C++11 [over.match.list]p1:
3144  //   In copy-list-initialization, if an explicit constructor is chosen, the
3145  //   initializer is ill-formed.
3146  CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3147  if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3148    Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3149    return;
3150  }
3151
3152  // Add the constructor initialization step. Any cv-qualification conversion is
3153  // subsumed by the initialization.
3154  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3155  Sequence.AddConstructorInitializationStep(CtorDecl,
3156                                            Best->FoundDecl.getAccess(),
3157                                            DestType, HadMultipleCandidates,
3158                                            InitListSyntax, AsInitializerList);
3159}
3160
3161static bool
3162ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3163                                             Expr *Initializer,
3164                                             QualType &SourceType,
3165                                             QualType &UnqualifiedSourceType,
3166                                             QualType UnqualifiedTargetType,
3167                                             InitializationSequence &Sequence) {
3168  if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3169        S.Context.OverloadTy) {
3170    DeclAccessPair Found;
3171    bool HadMultipleCandidates = false;
3172    if (FunctionDecl *Fn
3173        = S.ResolveAddressOfOverloadedFunction(Initializer,
3174                                               UnqualifiedTargetType,
3175                                               false, Found,
3176                                               &HadMultipleCandidates)) {
3177      Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3178                                                HadMultipleCandidates);
3179      SourceType = Fn->getType();
3180      UnqualifiedSourceType = SourceType.getUnqualifiedType();
3181    } else if (!UnqualifiedTargetType->isRecordType()) {
3182      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3183      return true;
3184    }
3185  }
3186  return false;
3187}
3188
3189static void TryReferenceInitializationCore(Sema &S,
3190                                           const InitializedEntity &Entity,
3191                                           const InitializationKind &Kind,
3192                                           Expr *Initializer,
3193                                           QualType cv1T1, QualType T1,
3194                                           Qualifiers T1Quals,
3195                                           QualType cv2T2, QualType T2,
3196                                           Qualifiers T2Quals,
3197                                           InitializationSequence &Sequence);
3198
3199static void TryValueInitialization(Sema &S,
3200                                   const InitializedEntity &Entity,
3201                                   const InitializationKind &Kind,
3202                                   InitializationSequence &Sequence,
3203                                   InitListExpr *InitList = 0);
3204
3205/// \brief Attempt list initialization of a reference.
3206static void TryReferenceListInitialization(Sema &S,
3207                                           const InitializedEntity &Entity,
3208                                           const InitializationKind &Kind,
3209                                           InitListExpr *InitList,
3210                                           InitializationSequence &Sequence) {
3211  // First, catch C++03 where this isn't possible.
3212  if (!S.getLangOpts().CPlusPlus11) {
3213    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3214    return;
3215  }
3216
3217  QualType DestType = Entity.getType();
3218  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3219  Qualifiers T1Quals;
3220  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3221
3222  // Reference initialization via an initializer list works thus:
3223  // If the initializer list consists of a single element that is
3224  // reference-related to the referenced type, bind directly to that element
3225  // (possibly creating temporaries).
3226  // Otherwise, initialize a temporary with the initializer list and
3227  // bind to that.
3228  if (InitList->getNumInits() == 1) {
3229    Expr *Initializer = InitList->getInit(0);
3230    QualType cv2T2 = Initializer->getType();
3231    Qualifiers T2Quals;
3232    QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3233
3234    // If this fails, creating a temporary wouldn't work either.
3235    if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3236                                                     T1, Sequence))
3237      return;
3238
3239    SourceLocation DeclLoc = Initializer->getLocStart();
3240    bool dummy1, dummy2, dummy3;
3241    Sema::ReferenceCompareResult RefRelationship
3242      = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3243                                       dummy2, dummy3);
3244    if (RefRelationship >= Sema::Ref_Related) {
3245      // Try to bind the reference here.
3246      TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3247                                     T1Quals, cv2T2, T2, T2Quals, Sequence);
3248      if (Sequence)
3249        Sequence.RewrapReferenceInitList(cv1T1, InitList);
3250      return;
3251    }
3252
3253    // Update the initializer if we've resolved an overloaded function.
3254    if (Sequence.step_begin() != Sequence.step_end())
3255      Sequence.RewrapReferenceInitList(cv1T1, InitList);
3256  }
3257
3258  // Not reference-related. Create a temporary and bind to that.
3259  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3260
3261  TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3262  if (Sequence) {
3263    if (DestType->isRValueReferenceType() ||
3264        (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3265      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3266    else
3267      Sequence.SetFailed(
3268          InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3269  }
3270}
3271
3272/// \brief Attempt list initialization (C++0x [dcl.init.list])
3273static void TryListInitialization(Sema &S,
3274                                  const InitializedEntity &Entity,
3275                                  const InitializationKind &Kind,
3276                                  InitListExpr *InitList,
3277                                  InitializationSequence &Sequence) {
3278  QualType DestType = Entity.getType();
3279
3280  // C++ doesn't allow scalar initialization with more than one argument.
3281  // But C99 complex numbers are scalars and it makes sense there.
3282  if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3283      !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3284    Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3285    return;
3286  }
3287  if (DestType->isReferenceType()) {
3288    TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3289    return;
3290  }
3291  if (DestType->isRecordType()) {
3292    if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3293      Sequence.setIncompleteTypeFailure(DestType);
3294      return;
3295    }
3296
3297    // C++11 [dcl.init.list]p3:
3298    //   - If T is an aggregate, aggregate initialization is performed.
3299    if (!DestType->isAggregateType()) {
3300      if (S.getLangOpts().CPlusPlus11) {
3301        //   - Otherwise, if the initializer list has no elements and T is a
3302        //     class type with a default constructor, the object is
3303        //     value-initialized.
3304        if (InitList->getNumInits() == 0) {
3305          CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3306          if (RD->hasDefaultConstructor()) {
3307            TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3308            return;
3309          }
3310        }
3311
3312        //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3313        //     an initializer_list object constructed [...]
3314        if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3315          return;
3316
3317        //   - Otherwise, if T is a class type, constructors are considered.
3318        Expr *InitListAsExpr = InitList;
3319        TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3320                                     Sequence, /*InitListSyntax*/true);
3321      } else
3322        Sequence.SetFailed(
3323            InitializationSequence::FK_InitListBadDestinationType);
3324      return;
3325    }
3326  }
3327
3328  InitListChecker CheckInitList(S, Entity, InitList,
3329          DestType, /*VerifyOnly=*/true);
3330  if (CheckInitList.HadError()) {
3331    Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3332    return;
3333  }
3334
3335  // Add the list initialization step with the built init list.
3336  Sequence.AddListInitializationStep(DestType);
3337}
3338
3339/// \brief Try a reference initialization that involves calling a conversion
3340/// function.
3341static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3342                                             const InitializedEntity &Entity,
3343                                             const InitializationKind &Kind,
3344                                             Expr *Initializer,
3345                                             bool AllowRValues,
3346                                             InitializationSequence &Sequence) {
3347  QualType DestType = Entity.getType();
3348  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3349  QualType T1 = cv1T1.getUnqualifiedType();
3350  QualType cv2T2 = Initializer->getType();
3351  QualType T2 = cv2T2.getUnqualifiedType();
3352
3353  bool DerivedToBase;
3354  bool ObjCConversion;
3355  bool ObjCLifetimeConversion;
3356  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3357                                         T1, T2, DerivedToBase,
3358                                         ObjCConversion,
3359                                         ObjCLifetimeConversion) &&
3360         "Must have incompatible references when binding via conversion");
3361  (void)DerivedToBase;
3362  (void)ObjCConversion;
3363  (void)ObjCLifetimeConversion;
3364
3365  // Build the candidate set directly in the initialization sequence
3366  // structure, so that it will persist if we fail.
3367  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3368  CandidateSet.clear();
3369
3370  // Determine whether we are allowed to call explicit constructors or
3371  // explicit conversion operators.
3372  bool AllowExplicit = Kind.AllowExplicit();
3373  bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
3374
3375  const RecordType *T1RecordType = 0;
3376  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3377      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3378    // The type we're converting to is a class type. Enumerate its constructors
3379    // to see if there is a suitable conversion.
3380    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3381
3382    DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl);
3383    // The container holding the constructors can under certain conditions
3384    // be changed while iterating (e.g. because of deserialization).
3385    // To be safe we copy the lookup results to a new container.
3386    SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3387    for (SmallVector<NamedDecl*, 16>::iterator
3388           CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
3389      NamedDecl *D = *CI;
3390      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3391
3392      // Find the constructor (which may be a template).
3393      CXXConstructorDecl *Constructor = 0;
3394      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3395      if (ConstructorTmpl)
3396        Constructor = cast<CXXConstructorDecl>(
3397                                         ConstructorTmpl->getTemplatedDecl());
3398      else
3399        Constructor = cast<CXXConstructorDecl>(D);
3400
3401      if (!Constructor->isInvalidDecl() &&
3402          Constructor->isConvertingConstructor(AllowExplicit)) {
3403        if (ConstructorTmpl)
3404          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3405                                         /*ExplicitArgs*/ 0,
3406                                         Initializer, CandidateSet,
3407                                         /*SuppressUserConversions=*/true);
3408        else
3409          S.AddOverloadCandidate(Constructor, FoundDecl,
3410                                 Initializer, CandidateSet,
3411                                 /*SuppressUserConversions=*/true);
3412      }
3413    }
3414  }
3415  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3416    return OR_No_Viable_Function;
3417
3418  const RecordType *T2RecordType = 0;
3419  if ((T2RecordType = T2->getAs<RecordType>()) &&
3420      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3421    // The type we're converting from is a class type, enumerate its conversion
3422    // functions.
3423    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3424
3425    std::pair<CXXRecordDecl::conversion_iterator,
3426              CXXRecordDecl::conversion_iterator>
3427      Conversions = T2RecordDecl->getVisibleConversionFunctions();
3428    for (CXXRecordDecl::conversion_iterator
3429           I = Conversions.first, E = Conversions.second; I != E; ++I) {
3430      NamedDecl *D = *I;
3431      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3432      if (isa<UsingShadowDecl>(D))
3433        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3434
3435      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3436      CXXConversionDecl *Conv;
3437      if (ConvTemplate)
3438        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3439      else
3440        Conv = cast<CXXConversionDecl>(D);
3441
3442      // If the conversion function doesn't return a reference type,
3443      // it can't be considered for this conversion unless we're allowed to
3444      // consider rvalues.
3445      // FIXME: Do we need to make sure that we only consider conversion
3446      // candidates with reference-compatible results? That might be needed to
3447      // break recursion.
3448      if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3449          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3450        if (ConvTemplate)
3451          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3452                                           ActingDC, Initializer,
3453                                           DestType, CandidateSet);
3454        else
3455          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3456                                   Initializer, DestType, CandidateSet);
3457      }
3458    }
3459  }
3460  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3461    return OR_No_Viable_Function;
3462
3463  SourceLocation DeclLoc = Initializer->getLocStart();
3464
3465  // Perform overload resolution. If it fails, return the failed result.
3466  OverloadCandidateSet::iterator Best;
3467  if (OverloadingResult Result
3468        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3469    return Result;
3470
3471  FunctionDecl *Function = Best->Function;
3472  // This is the overload that will be used for this initialization step if we
3473  // use this initialization. Mark it as referenced.
3474  Function->setReferenced();
3475
3476  // Compute the returned type of the conversion.
3477  if (isa<CXXConversionDecl>(Function))
3478    T2 = Function->getResultType();
3479  else
3480    T2 = cv1T1;
3481
3482  // Add the user-defined conversion step.
3483  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3484  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3485                                 T2.getNonLValueExprType(S.Context),
3486                                 HadMultipleCandidates);
3487
3488  // Determine whether we need to perform derived-to-base or
3489  // cv-qualification adjustments.
3490  ExprValueKind VK = VK_RValue;
3491  if (T2->isLValueReferenceType())
3492    VK = VK_LValue;
3493  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3494    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3495
3496  bool NewDerivedToBase = false;
3497  bool NewObjCConversion = false;
3498  bool NewObjCLifetimeConversion = false;
3499  Sema::ReferenceCompareResult NewRefRelationship
3500    = S.CompareReferenceRelationship(DeclLoc, T1,
3501                                     T2.getNonLValueExprType(S.Context),
3502                                     NewDerivedToBase, NewObjCConversion,
3503                                     NewObjCLifetimeConversion);
3504  if (NewRefRelationship == Sema::Ref_Incompatible) {
3505    // If the type we've converted to is not reference-related to the
3506    // type we're looking for, then there is another conversion step
3507    // we need to perform to produce a temporary of the right type
3508    // that we'll be binding to.
3509    ImplicitConversionSequence ICS;
3510    ICS.setStandard();
3511    ICS.Standard = Best->FinalConversion;
3512    T2 = ICS.Standard.getToType(2);
3513    Sequence.AddConversionSequenceStep(ICS, T2);
3514  } else if (NewDerivedToBase)
3515    Sequence.AddDerivedToBaseCastStep(
3516                                S.Context.getQualifiedType(T1,
3517                                  T2.getNonReferenceType().getQualifiers()),
3518                                      VK);
3519  else if (NewObjCConversion)
3520    Sequence.AddObjCObjectConversionStep(
3521                                S.Context.getQualifiedType(T1,
3522                                  T2.getNonReferenceType().getQualifiers()));
3523
3524  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3525    Sequence.AddQualificationConversionStep(cv1T1, VK);
3526
3527  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3528  return OR_Success;
3529}
3530
3531static void CheckCXX98CompatAccessibleCopy(Sema &S,
3532                                           const InitializedEntity &Entity,
3533                                           Expr *CurInitExpr);
3534
3535/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3536static void TryReferenceInitialization(Sema &S,
3537                                       const InitializedEntity &Entity,
3538                                       const InitializationKind &Kind,
3539                                       Expr *Initializer,
3540                                       InitializationSequence &Sequence) {
3541  QualType DestType = Entity.getType();
3542  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3543  Qualifiers T1Quals;
3544  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3545  QualType cv2T2 = Initializer->getType();
3546  Qualifiers T2Quals;
3547  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3548
3549  // If the initializer is the address of an overloaded function, try
3550  // to resolve the overloaded function. If all goes well, T2 is the
3551  // type of the resulting function.
3552  if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3553                                                   T1, Sequence))
3554    return;
3555
3556  // Delegate everything else to a subfunction.
3557  TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3558                                 T1Quals, cv2T2, T2, T2Quals, Sequence);
3559}
3560
3561/// Converts the target of reference initialization so that it has the
3562/// appropriate qualifiers and value kind.
3563///
3564/// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
3565/// \code
3566///   int x;
3567///   const int &r = x;
3568/// \endcode
3569///
3570/// In this case the reference is binding to a bitfield lvalue, which isn't
3571/// valid. Perform a load to create a lifetime-extended temporary instead.
3572/// \code
3573///   const int &r = someStruct.bitfield;
3574/// \endcode
3575static ExprValueKind
3576convertQualifiersAndValueKindIfNecessary(Sema &S,
3577                                         InitializationSequence &Sequence,
3578                                         Expr *Initializer,
3579                                         QualType cv1T1,
3580                                         Qualifiers T1Quals,
3581                                         Qualifiers T2Quals,
3582                                         bool IsLValueRef) {
3583  bool IsNonAddressableType = Initializer->refersToBitField() ||
3584                              Initializer->refersToVectorElement();
3585
3586  if (IsNonAddressableType) {
3587    // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
3588    // lvalue reference to a non-volatile const type, or the reference shall be
3589    // an rvalue reference.
3590    //
3591    // If not, we can't make a temporary and bind to that. Give up and allow the
3592    // error to be diagnosed later.
3593    if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
3594      assert(Initializer->isGLValue());
3595      return Initializer->getValueKind();
3596    }
3597
3598    // Force a load so we can materialize a temporary.
3599    Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
3600    return VK_RValue;
3601  }
3602
3603  if (T1Quals != T2Quals) {
3604    Sequence.AddQualificationConversionStep(cv1T1,
3605                                            Initializer->getValueKind());
3606  }
3607
3608  return Initializer->getValueKind();
3609}
3610
3611
3612/// \brief Reference initialization without resolving overloaded functions.
3613static void TryReferenceInitializationCore(Sema &S,
3614                                           const InitializedEntity &Entity,
3615                                           const InitializationKind &Kind,
3616                                           Expr *Initializer,
3617                                           QualType cv1T1, QualType T1,
3618                                           Qualifiers T1Quals,
3619                                           QualType cv2T2, QualType T2,
3620                                           Qualifiers T2Quals,
3621                                           InitializationSequence &Sequence) {
3622  QualType DestType = Entity.getType();
3623  SourceLocation DeclLoc = Initializer->getLocStart();
3624  // Compute some basic properties of the types and the initializer.
3625  bool isLValueRef = DestType->isLValueReferenceType();
3626  bool isRValueRef = !isLValueRef;
3627  bool DerivedToBase = false;
3628  bool ObjCConversion = false;
3629  bool ObjCLifetimeConversion = false;
3630  Expr::Classification InitCategory = Initializer->Classify(S.Context);
3631  Sema::ReferenceCompareResult RefRelationship
3632    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3633                                     ObjCConversion, ObjCLifetimeConversion);
3634
3635  // C++0x [dcl.init.ref]p5:
3636  //   A reference to type "cv1 T1" is initialized by an expression of type
3637  //   "cv2 T2" as follows:
3638  //
3639  //     - If the reference is an lvalue reference and the initializer
3640  //       expression
3641  // Note the analogous bullet points for rvlaue refs to functions. Because
3642  // there are no function rvalues in C++, rvalue refs to functions are treated
3643  // like lvalue refs.
3644  OverloadingResult ConvOvlResult = OR_Success;
3645  bool T1Function = T1->isFunctionType();
3646  if (isLValueRef || T1Function) {
3647    if (InitCategory.isLValue() &&
3648        (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3649         (Kind.isCStyleOrFunctionalCast() &&
3650          RefRelationship == Sema::Ref_Related))) {
3651      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3652      //     reference-compatible with "cv2 T2," or
3653      //
3654      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3655      // bit-field when we're determining whether the reference initialization
3656      // can occur. However, we do pay attention to whether it is a bit-field
3657      // to decide whether we're actually binding to a temporary created from
3658      // the bit-field.
3659      if (DerivedToBase)
3660        Sequence.AddDerivedToBaseCastStep(
3661                         S.Context.getQualifiedType(T1, T2Quals),
3662                         VK_LValue);
3663      else if (ObjCConversion)
3664        Sequence.AddObjCObjectConversionStep(
3665                                     S.Context.getQualifiedType(T1, T2Quals));
3666
3667      ExprValueKind ValueKind =
3668        convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
3669                                                 cv1T1, T1Quals, T2Quals,
3670                                                 isLValueRef);
3671      Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3672      return;
3673    }
3674
3675    //     - has a class type (i.e., T2 is a class type), where T1 is not
3676    //       reference-related to T2, and can be implicitly converted to an
3677    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3678    //       with "cv3 T3" (this conversion is selected by enumerating the
3679    //       applicable conversion functions (13.3.1.6) and choosing the best
3680    //       one through overload resolution (13.3)),
3681    // If we have an rvalue ref to function type here, the rhs must be
3682    // an rvalue.
3683    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3684        (isLValueRef || InitCategory.isRValue())) {
3685      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3686                                                       Initializer,
3687                                                   /*AllowRValues=*/isRValueRef,
3688                                                       Sequence);
3689      if (ConvOvlResult == OR_Success)
3690        return;
3691      if (ConvOvlResult != OR_No_Viable_Function) {
3692        Sequence.SetOverloadFailure(
3693                      InitializationSequence::FK_ReferenceInitOverloadFailed,
3694                                    ConvOvlResult);
3695      }
3696    }
3697  }
3698
3699  //     - Otherwise, the reference shall be an lvalue reference to a
3700  //       non-volatile const type (i.e., cv1 shall be const), or the reference
3701  //       shall be an rvalue reference.
3702  if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3703    if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3704      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3705    else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3706      Sequence.SetOverloadFailure(
3707                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3708                                  ConvOvlResult);
3709    else
3710      Sequence.SetFailed(InitCategory.isLValue()
3711        ? (RefRelationship == Sema::Ref_Related
3712             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3713             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3714        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3715
3716    return;
3717  }
3718
3719  //    - If the initializer expression
3720  //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3721  //        "cv1 T1" is reference-compatible with "cv2 T2"
3722  // Note: functions are handled below.
3723  if (!T1Function &&
3724      (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3725       (Kind.isCStyleOrFunctionalCast() &&
3726        RefRelationship == Sema::Ref_Related)) &&
3727      (InitCategory.isXValue() ||
3728       (InitCategory.isPRValue() && T2->isRecordType()) ||
3729       (InitCategory.isPRValue() && T2->isArrayType()))) {
3730    ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3731    if (InitCategory.isPRValue() && T2->isRecordType()) {
3732      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3733      // compiler the freedom to perform a copy here or bind to the
3734      // object, while C++0x requires that we bind directly to the
3735      // object. Hence, we always bind to the object without making an
3736      // extra copy. However, in C++03 requires that we check for the
3737      // presence of a suitable copy constructor:
3738      //
3739      //   The constructor that would be used to make the copy shall
3740      //   be callable whether or not the copy is actually done.
3741      if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
3742        Sequence.AddExtraneousCopyToTemporary(cv2T2);
3743      else if (S.getLangOpts().CPlusPlus11)
3744        CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3745    }
3746
3747    if (DerivedToBase)
3748      Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3749                                        ValueKind);
3750    else if (ObjCConversion)
3751      Sequence.AddObjCObjectConversionStep(
3752                                       S.Context.getQualifiedType(T1, T2Quals));
3753
3754    ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
3755                                                         Initializer, cv1T1,
3756                                                         T1Quals, T2Quals,
3757                                                         isLValueRef);
3758
3759    Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3760    return;
3761  }
3762
3763  //       - has a class type (i.e., T2 is a class type), where T1 is not
3764  //         reference-related to T2, and can be implicitly converted to an
3765  //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3766  //         where "cv1 T1" is reference-compatible with "cv3 T3",
3767  if (T2->isRecordType()) {
3768    if (RefRelationship == Sema::Ref_Incompatible) {
3769      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3770                                                       Kind, Initializer,
3771                                                       /*AllowRValues=*/true,
3772                                                       Sequence);
3773      if (ConvOvlResult)
3774        Sequence.SetOverloadFailure(
3775                      InitializationSequence::FK_ReferenceInitOverloadFailed,
3776                                    ConvOvlResult);
3777
3778      return;
3779    }
3780
3781    if ((RefRelationship == Sema::Ref_Compatible ||
3782         RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
3783        isRValueRef && InitCategory.isLValue()) {
3784      Sequence.SetFailed(
3785        InitializationSequence::FK_RValueReferenceBindingToLValue);
3786      return;
3787    }
3788
3789    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3790    return;
3791  }
3792
3793  //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3794  //        from the initializer expression using the rules for a non-reference
3795  //        copy-initialization (8.5). The reference is then bound to the
3796  //        temporary. [...]
3797
3798  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3799
3800  // FIXME: Why do we use an implicit conversion here rather than trying
3801  // copy-initialization?
3802  ImplicitConversionSequence ICS
3803    = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3804                              /*SuppressUserConversions=*/false,
3805                              /*AllowExplicit=*/false,
3806                              /*FIXME:InOverloadResolution=*/false,
3807                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3808                              /*AllowObjCWritebackConversion=*/false);
3809
3810  if (ICS.isBad()) {
3811    // FIXME: Use the conversion function set stored in ICS to turn
3812    // this into an overloading ambiguity diagnostic. However, we need
3813    // to keep that set as an OverloadCandidateSet rather than as some
3814    // other kind of set.
3815    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3816      Sequence.SetOverloadFailure(
3817                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3818                                  ConvOvlResult);
3819    else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3820      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3821    else
3822      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3823    return;
3824  } else {
3825    Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3826  }
3827
3828  //        [...] If T1 is reference-related to T2, cv1 must be the
3829  //        same cv-qualification as, or greater cv-qualification
3830  //        than, cv2; otherwise, the program is ill-formed.
3831  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3832  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3833  if (RefRelationship == Sema::Ref_Related &&
3834      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3835    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3836    return;
3837  }
3838
3839  //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3840  //   reference, the initializer expression shall not be an lvalue.
3841  if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3842      InitCategory.isLValue()) {
3843    Sequence.SetFailed(
3844                    InitializationSequence::FK_RValueReferenceBindingToLValue);
3845    return;
3846  }
3847
3848  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3849  return;
3850}
3851
3852/// \brief Attempt character array initialization from a string literal
3853/// (C++ [dcl.init.string], C99 6.7.8).
3854static void TryStringLiteralInitialization(Sema &S,
3855                                           const InitializedEntity &Entity,
3856                                           const InitializationKind &Kind,
3857                                           Expr *Initializer,
3858                                       InitializationSequence &Sequence) {
3859  Sequence.AddStringInitStep(Entity.getType());
3860}
3861
3862/// \brief Attempt value initialization (C++ [dcl.init]p7).
3863static void TryValueInitialization(Sema &S,
3864                                   const InitializedEntity &Entity,
3865                                   const InitializationKind &Kind,
3866                                   InitializationSequence &Sequence,
3867                                   InitListExpr *InitList) {
3868  assert((!InitList || InitList->getNumInits() == 0) &&
3869         "Shouldn't use value-init for non-empty init lists");
3870
3871  // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3872  //
3873  //   To value-initialize an object of type T means:
3874  QualType T = Entity.getType();
3875
3876  //     -- if T is an array type, then each element is value-initialized;
3877  T = S.Context.getBaseElementType(T);
3878
3879  if (const RecordType *RT = T->getAs<RecordType>()) {
3880    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3881      bool NeedZeroInitialization = true;
3882      if (!S.getLangOpts().CPlusPlus11) {
3883        // C++98:
3884        // -- if T is a class type (clause 9) with a user-declared constructor
3885        //    (12.1), then the default constructor for T is called (and the
3886        //    initialization is ill-formed if T has no accessible default
3887        //    constructor);
3888        if (ClassDecl->hasUserDeclaredConstructor())
3889          NeedZeroInitialization = false;
3890      } else {
3891        // C++11:
3892        // -- if T is a class type (clause 9) with either no default constructor
3893        //    (12.1 [class.ctor]) or a default constructor that is user-provided
3894        //    or deleted, then the object is default-initialized;
3895        CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3896        if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3897          NeedZeroInitialization = false;
3898      }
3899
3900      // -- if T is a (possibly cv-qualified) non-union class type without a
3901      //    user-provided or deleted default constructor, then the object is
3902      //    zero-initialized and, if T has a non-trivial default constructor,
3903      //    default-initialized;
3904      // The 'non-union' here was removed by DR1502. The 'non-trivial default
3905      // constructor' part was removed by DR1507.
3906      if (NeedZeroInitialization)
3907        Sequence.AddZeroInitializationStep(Entity.getType());
3908
3909      // C++03:
3910      // -- if T is a non-union class type without a user-declared constructor,
3911      //    then every non-static data member and base class component of T is
3912      //    value-initialized;
3913      // [...] A program that calls for [...] value-initialization of an
3914      // entity of reference type is ill-formed.
3915      //
3916      // C++11 doesn't need this handling, because value-initialization does not
3917      // occur recursively there, and the implicit default constructor is
3918      // defined as deleted in the problematic cases.
3919      if (!S.getLangOpts().CPlusPlus11 &&
3920          ClassDecl->hasUninitializedReferenceMember()) {
3921        Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
3922        return;
3923      }
3924
3925      // If this is list-value-initialization, pass the empty init list on when
3926      // building the constructor call. This affects the semantics of a few
3927      // things (such as whether an explicit default constructor can be called).
3928      Expr *InitListAsExpr = InitList;
3929      MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
3930      bool InitListSyntax = InitList;
3931
3932      return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
3933                                          InitListSyntax);
3934    }
3935  }
3936
3937  Sequence.AddZeroInitializationStep(Entity.getType());
3938}
3939
3940/// \brief Attempt default initialization (C++ [dcl.init]p6).
3941static void TryDefaultInitialization(Sema &S,
3942                                     const InitializedEntity &Entity,
3943                                     const InitializationKind &Kind,
3944                                     InitializationSequence &Sequence) {
3945  assert(Kind.getKind() == InitializationKind::IK_Default);
3946
3947  // C++ [dcl.init]p6:
3948  //   To default-initialize an object of type T means:
3949  //     - if T is an array type, each element is default-initialized;
3950  QualType DestType = S.Context.getBaseElementType(Entity.getType());
3951
3952  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3953  //       constructor for T is called (and the initialization is ill-formed if
3954  //       T has no accessible default constructor);
3955  if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
3956    TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
3957    return;
3958  }
3959
3960  //     - otherwise, no initialization is performed.
3961
3962  //   If a program calls for the default initialization of an object of
3963  //   a const-qualified type T, T shall be a class type with a user-provided
3964  //   default constructor.
3965  if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
3966    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3967    return;
3968  }
3969
3970  // If the destination type has a lifetime property, zero-initialize it.
3971  if (DestType.getQualifiers().hasObjCLifetime()) {
3972    Sequence.AddZeroInitializationStep(Entity.getType());
3973    return;
3974  }
3975}
3976
3977/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3978/// which enumerates all conversion functions and performs overload resolution
3979/// to select the best.
3980static void TryUserDefinedConversion(Sema &S,
3981                                     const InitializedEntity &Entity,
3982                                     const InitializationKind &Kind,
3983                                     Expr *Initializer,
3984                                     InitializationSequence &Sequence) {
3985  QualType DestType = Entity.getType();
3986  assert(!DestType->isReferenceType() && "References are handled elsewhere");
3987  QualType SourceType = Initializer->getType();
3988  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3989         "Must have a class type to perform a user-defined conversion");
3990
3991  // Build the candidate set directly in the initialization sequence
3992  // structure, so that it will persist if we fail.
3993  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3994  CandidateSet.clear();
3995
3996  // Determine whether we are allowed to call explicit constructors or
3997  // explicit conversion operators.
3998  bool AllowExplicit = Kind.AllowExplicit();
3999
4000  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4001    // The type we're converting to is a class type. Enumerate its constructors
4002    // to see if there is a suitable conversion.
4003    CXXRecordDecl *DestRecordDecl
4004      = cast<CXXRecordDecl>(DestRecordType->getDecl());
4005
4006    // Try to complete the type we're converting to.
4007    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
4008      DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
4009      // The container holding the constructors can under certain conditions
4010      // be changed while iterating. To be safe we copy the lookup results
4011      // to a new container.
4012      SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
4013      for (SmallVector<NamedDecl*, 8>::iterator
4014             Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
4015           Con != ConEnd; ++Con) {
4016        NamedDecl *D = *Con;
4017        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
4018
4019        // Find the constructor (which may be a template).
4020        CXXConstructorDecl *Constructor = 0;
4021        FunctionTemplateDecl *ConstructorTmpl
4022          = dyn_cast<FunctionTemplateDecl>(D);
4023        if (ConstructorTmpl)
4024          Constructor = cast<CXXConstructorDecl>(
4025                                           ConstructorTmpl->getTemplatedDecl());
4026        else
4027          Constructor = cast<CXXConstructorDecl>(D);
4028
4029        if (!Constructor->isInvalidDecl() &&
4030            Constructor->isConvertingConstructor(AllowExplicit)) {
4031          if (ConstructorTmpl)
4032            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4033                                           /*ExplicitArgs*/ 0,
4034                                           Initializer, CandidateSet,
4035                                           /*SuppressUserConversions=*/true);
4036          else
4037            S.AddOverloadCandidate(Constructor, FoundDecl,
4038                                   Initializer, CandidateSet,
4039                                   /*SuppressUserConversions=*/true);
4040        }
4041      }
4042    }
4043  }
4044
4045  SourceLocation DeclLoc = Initializer->getLocStart();
4046
4047  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4048    // The type we're converting from is a class type, enumerate its conversion
4049    // functions.
4050
4051    // We can only enumerate the conversion functions for a complete type; if
4052    // the type isn't complete, simply skip this step.
4053    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
4054      CXXRecordDecl *SourceRecordDecl
4055        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4056
4057      std::pair<CXXRecordDecl::conversion_iterator,
4058                CXXRecordDecl::conversion_iterator>
4059        Conversions = SourceRecordDecl->getVisibleConversionFunctions();
4060      for (CXXRecordDecl::conversion_iterator
4061             I = Conversions.first, E = Conversions.second; I != E; ++I) {
4062        NamedDecl *D = *I;
4063        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4064        if (isa<UsingShadowDecl>(D))
4065          D = cast<UsingShadowDecl>(D)->getTargetDecl();
4066
4067        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4068        CXXConversionDecl *Conv;
4069        if (ConvTemplate)
4070          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4071        else
4072          Conv = cast<CXXConversionDecl>(D);
4073
4074        if (AllowExplicit || !Conv->isExplicit()) {
4075          if (ConvTemplate)
4076            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4077                                             ActingDC, Initializer, DestType,
4078                                             CandidateSet);
4079          else
4080            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4081                                     Initializer, DestType, CandidateSet);
4082        }
4083      }
4084    }
4085  }
4086
4087  // Perform overload resolution. If it fails, return the failed result.
4088  OverloadCandidateSet::iterator Best;
4089  if (OverloadingResult Result
4090        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4091    Sequence.SetOverloadFailure(
4092                        InitializationSequence::FK_UserConversionOverloadFailed,
4093                                Result);
4094    return;
4095  }
4096
4097  FunctionDecl *Function = Best->Function;
4098  Function->setReferenced();
4099  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4100
4101  if (isa<CXXConstructorDecl>(Function)) {
4102    // Add the user-defined conversion step. Any cv-qualification conversion is
4103    // subsumed by the initialization. Per DR5, the created temporary is of the
4104    // cv-unqualified type of the destination.
4105    Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4106                                   DestType.getUnqualifiedType(),
4107                                   HadMultipleCandidates);
4108    return;
4109  }
4110
4111  // Add the user-defined conversion step that calls the conversion function.
4112  QualType ConvType = Function->getCallResultType();
4113  if (ConvType->getAs<RecordType>()) {
4114    // If we're converting to a class type, there may be an copy of
4115    // the resulting temporary object (possible to create an object of
4116    // a base class type). That copy is not a separate conversion, so
4117    // we just make a note of the actual destination type (possibly a
4118    // base class of the type returned by the conversion function) and
4119    // let the user-defined conversion step handle the conversion.
4120    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
4121                                   HadMultipleCandidates);
4122    return;
4123  }
4124
4125  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4126                                 HadMultipleCandidates);
4127
4128  // If the conversion following the call to the conversion function
4129  // is interesting, add it as a separate step.
4130  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4131      Best->FinalConversion.Third) {
4132    ImplicitConversionSequence ICS;
4133    ICS.setStandard();
4134    ICS.Standard = Best->FinalConversion;
4135    Sequence.AddConversionSequenceStep(ICS, DestType);
4136  }
4137}
4138
4139/// The non-zero enum values here are indexes into diagnostic alternatives.
4140enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4141
4142/// Determines whether this expression is an acceptable ICR source.
4143static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4144                                         bool isAddressOf, bool &isWeakAccess) {
4145  // Skip parens.
4146  e = e->IgnoreParens();
4147
4148  // Skip address-of nodes.
4149  if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4150    if (op->getOpcode() == UO_AddrOf)
4151      return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4152                                isWeakAccess);
4153
4154  // Skip certain casts.
4155  } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4156    switch (ce->getCastKind()) {
4157    case CK_Dependent:
4158    case CK_BitCast:
4159    case CK_LValueBitCast:
4160    case CK_NoOp:
4161      return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4162
4163    case CK_ArrayToPointerDecay:
4164      return IIK_nonscalar;
4165
4166    case CK_NullToPointer:
4167      return IIK_okay;
4168
4169    default:
4170      break;
4171    }
4172
4173  // If we have a declaration reference, it had better be a local variable.
4174  } else if (isa<DeclRefExpr>(e)) {
4175    // set isWeakAccess to true, to mean that there will be an implicit
4176    // load which requires a cleanup.
4177    if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4178      isWeakAccess = true;
4179
4180    if (!isAddressOf) return IIK_nonlocal;
4181
4182    VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4183    if (!var) return IIK_nonlocal;
4184
4185    return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4186
4187  // If we have a conditional operator, check both sides.
4188  } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4189    if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4190                                                isWeakAccess))
4191      return iik;
4192
4193    return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4194
4195  // These are never scalar.
4196  } else if (isa<ArraySubscriptExpr>(e)) {
4197    return IIK_nonscalar;
4198
4199  // Otherwise, it needs to be a null pointer constant.
4200  } else {
4201    return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4202            ? IIK_okay : IIK_nonlocal);
4203  }
4204
4205  return IIK_nonlocal;
4206}
4207
4208/// Check whether the given expression is a valid operand for an
4209/// indirect copy/restore.
4210static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4211  assert(src->isRValue());
4212  bool isWeakAccess = false;
4213  InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4214  // If isWeakAccess to true, there will be an implicit
4215  // load which requires a cleanup.
4216  if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4217    S.ExprNeedsCleanups = true;
4218
4219  if (iik == IIK_okay) return;
4220
4221  S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4222    << ((unsigned) iik - 1)  // shift index into diagnostic explanations
4223    << src->getSourceRange();
4224}
4225
4226/// \brief Determine whether we have compatible array types for the
4227/// purposes of GNU by-copy array initialization.
4228static bool hasCompatibleArrayTypes(ASTContext &Context,
4229                                    const ArrayType *Dest,
4230                                    const ArrayType *Source) {
4231  // If the source and destination array types are equivalent, we're
4232  // done.
4233  if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4234    return true;
4235
4236  // Make sure that the element types are the same.
4237  if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4238    return false;
4239
4240  // The only mismatch we allow is when the destination is an
4241  // incomplete array type and the source is a constant array type.
4242  return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4243}
4244
4245static bool tryObjCWritebackConversion(Sema &S,
4246                                       InitializationSequence &Sequence,
4247                                       const InitializedEntity &Entity,
4248                                       Expr *Initializer) {
4249  bool ArrayDecay = false;
4250  QualType ArgType = Initializer->getType();
4251  QualType ArgPointee;
4252  if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4253    ArrayDecay = true;
4254    ArgPointee = ArgArrayType->getElementType();
4255    ArgType = S.Context.getPointerType(ArgPointee);
4256  }
4257
4258  // Handle write-back conversion.
4259  QualType ConvertedArgType;
4260  if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4261                                   ConvertedArgType))
4262    return false;
4263
4264  // We should copy unless we're passing to an argument explicitly
4265  // marked 'out'.
4266  bool ShouldCopy = true;
4267  if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4268    ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4269
4270  // Do we need an lvalue conversion?
4271  if (ArrayDecay || Initializer->isGLValue()) {
4272    ImplicitConversionSequence ICS;
4273    ICS.setStandard();
4274    ICS.Standard.setAsIdentityConversion();
4275
4276    QualType ResultType;
4277    if (ArrayDecay) {
4278      ICS.Standard.First = ICK_Array_To_Pointer;
4279      ResultType = S.Context.getPointerType(ArgPointee);
4280    } else {
4281      ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4282      ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4283    }
4284
4285    Sequence.AddConversionSequenceStep(ICS, ResultType);
4286  }
4287
4288  Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4289  return true;
4290}
4291
4292static bool TryOCLSamplerInitialization(Sema &S,
4293                                        InitializationSequence &Sequence,
4294                                        QualType DestType,
4295                                        Expr *Initializer) {
4296  if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4297    !Initializer->isIntegerConstantExpr(S.getASTContext()))
4298    return false;
4299
4300  Sequence.AddOCLSamplerInitStep(DestType);
4301  return true;
4302}
4303
4304//
4305// OpenCL 1.2 spec, s6.12.10
4306//
4307// The event argument can also be used to associate the
4308// async_work_group_copy with a previous async copy allowing
4309// an event to be shared by multiple async copies; otherwise
4310// event should be zero.
4311//
4312static bool TryOCLZeroEventInitialization(Sema &S,
4313                                          InitializationSequence &Sequence,
4314                                          QualType DestType,
4315                                          Expr *Initializer) {
4316  if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4317      !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4318      (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4319    return false;
4320
4321  Sequence.AddOCLZeroEventStep(DestType);
4322  return true;
4323}
4324
4325InitializationSequence::InitializationSequence(Sema &S,
4326                                               const InitializedEntity &Entity,
4327                                               const InitializationKind &Kind,
4328                                               MultiExprArg Args)
4329    : FailedCandidateSet(Kind.getLocation()) {
4330  ASTContext &Context = S.Context;
4331
4332  // Eliminate non-overload placeholder types in the arguments.  We
4333  // need to do this before checking whether types are dependent
4334  // because lowering a pseudo-object expression might well give us
4335  // something of dependent type.
4336  for (unsigned I = 0, E = Args.size(); I != E; ++I)
4337    if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4338      // FIXME: should we be doing this here?
4339      ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4340      if (result.isInvalid()) {
4341        SetFailed(FK_PlaceholderType);
4342        return;
4343      }
4344      Args[I] = result.take();
4345    }
4346
4347  // C++0x [dcl.init]p16:
4348  //   The semantics of initializers are as follows. The destination type is
4349  //   the type of the object or reference being initialized and the source
4350  //   type is the type of the initializer expression. The source type is not
4351  //   defined when the initializer is a braced-init-list or when it is a
4352  //   parenthesized list of expressions.
4353  QualType DestType = Entity.getType();
4354
4355  if (DestType->isDependentType() ||
4356      Expr::hasAnyTypeDependentArguments(Args)) {
4357    SequenceKind = DependentSequence;
4358    return;
4359  }
4360
4361  // Almost everything is a normal sequence.
4362  setSequenceKind(NormalSequence);
4363
4364  QualType SourceType;
4365  Expr *Initializer = 0;
4366  if (Args.size() == 1) {
4367    Initializer = Args[0];
4368    if (!isa<InitListExpr>(Initializer))
4369      SourceType = Initializer->getType();
4370  }
4371
4372  //     - If the initializer is a (non-parenthesized) braced-init-list, the
4373  //       object is list-initialized (8.5.4).
4374  if (Kind.getKind() != InitializationKind::IK_Direct) {
4375    if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4376      TryListInitialization(S, Entity, Kind, InitList, *this);
4377      return;
4378    }
4379  }
4380
4381  //     - If the destination type is a reference type, see 8.5.3.
4382  if (DestType->isReferenceType()) {
4383    // C++0x [dcl.init.ref]p1:
4384    //   A variable declared to be a T& or T&&, that is, "reference to type T"
4385    //   (8.3.2), shall be initialized by an object, or function, of type T or
4386    //   by an object that can be converted into a T.
4387    // (Therefore, multiple arguments are not permitted.)
4388    if (Args.size() != 1)
4389      SetFailed(FK_TooManyInitsForReference);
4390    else
4391      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4392    return;
4393  }
4394
4395  //     - If the initializer is (), the object is value-initialized.
4396  if (Kind.getKind() == InitializationKind::IK_Value ||
4397      (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
4398    TryValueInitialization(S, Entity, Kind, *this);
4399    return;
4400  }
4401
4402  // Handle default initialization.
4403  if (Kind.getKind() == InitializationKind::IK_Default) {
4404    TryDefaultInitialization(S, Entity, Kind, *this);
4405    return;
4406  }
4407
4408  //     - If the destination type is an array of characters, an array of
4409  //       char16_t, an array of char32_t, or an array of wchar_t, and the
4410  //       initializer is a string literal, see 8.5.2.
4411  //     - Otherwise, if the destination type is an array, the program is
4412  //       ill-formed.
4413  if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4414    if (Initializer && isa<VariableArrayType>(DestAT)) {
4415      SetFailed(FK_VariableLengthArrayHasInitializer);
4416      return;
4417    }
4418
4419    if (Initializer) {
4420      switch (IsStringInit(Initializer, DestAT, Context)) {
4421      case SIF_None:
4422        TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4423        return;
4424      case SIF_NarrowStringIntoWideChar:
4425        SetFailed(FK_NarrowStringIntoWideCharArray);
4426        return;
4427      case SIF_WideStringIntoChar:
4428        SetFailed(FK_WideStringIntoCharArray);
4429        return;
4430      case SIF_IncompatWideStringIntoWideChar:
4431        SetFailed(FK_IncompatWideStringIntoWideChar);
4432        return;
4433      case SIF_Other:
4434        break;
4435      }
4436    }
4437
4438    // Note: as an GNU C extension, we allow initialization of an
4439    // array from a compound literal that creates an array of the same
4440    // type, so long as the initializer has no side effects.
4441    if (!S.getLangOpts().CPlusPlus && Initializer &&
4442        isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4443        Initializer->getType()->isArrayType()) {
4444      const ArrayType *SourceAT
4445        = Context.getAsArrayType(Initializer->getType());
4446      if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4447        SetFailed(FK_ArrayTypeMismatch);
4448      else if (Initializer->HasSideEffects(S.Context))
4449        SetFailed(FK_NonConstantArrayInit);
4450      else {
4451        AddArrayInitStep(DestType);
4452      }
4453    }
4454    // Note: as a GNU C++ extension, we allow list-initialization of a
4455    // class member of array type from a parenthesized initializer list.
4456    else if (S.getLangOpts().CPlusPlus &&
4457             Entity.getKind() == InitializedEntity::EK_Member &&
4458             Initializer && isa<InitListExpr>(Initializer)) {
4459      TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4460                            *this);
4461      AddParenthesizedArrayInitStep(DestType);
4462    } else if (DestAT->getElementType()->isCharType())
4463      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4464    else if (IsWideCharCompatible(DestAT->getElementType(), Context))
4465      SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
4466    else
4467      SetFailed(FK_ArrayNeedsInitList);
4468
4469    return;
4470  }
4471
4472  // Determine whether we should consider writeback conversions for
4473  // Objective-C ARC.
4474  bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4475    Entity.getKind() == InitializedEntity::EK_Parameter;
4476
4477  // We're at the end of the line for C: it's either a write-back conversion
4478  // or it's a C assignment. There's no need to check anything else.
4479  if (!S.getLangOpts().CPlusPlus) {
4480    // If allowed, check whether this is an Objective-C writeback conversion.
4481    if (allowObjCWritebackConversion &&
4482        tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4483      return;
4484    }
4485
4486    if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4487      return;
4488
4489    if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4490      return;
4491
4492    // Handle initialization in C
4493    AddCAssignmentStep(DestType);
4494    MaybeProduceObjCObject(S, *this, Entity);
4495    return;
4496  }
4497
4498  assert(S.getLangOpts().CPlusPlus);
4499
4500  //     - If the destination type is a (possibly cv-qualified) class type:
4501  if (DestType->isRecordType()) {
4502    //     - If the initialization is direct-initialization, or if it is
4503    //       copy-initialization where the cv-unqualified version of the
4504    //       source type is the same class as, or a derived class of, the
4505    //       class of the destination, constructors are considered. [...]
4506    if (Kind.getKind() == InitializationKind::IK_Direct ||
4507        (Kind.getKind() == InitializationKind::IK_Copy &&
4508         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4509          S.IsDerivedFrom(SourceType, DestType))))
4510      TryConstructorInitialization(S, Entity, Kind, Args,
4511                                   Entity.getType(), *this);
4512    //     - Otherwise (i.e., for the remaining copy-initialization cases),
4513    //       user-defined conversion sequences that can convert from the source
4514    //       type to the destination type or (when a conversion function is
4515    //       used) to a derived class thereof are enumerated as described in
4516    //       13.3.1.4, and the best one is chosen through overload resolution
4517    //       (13.3).
4518    else
4519      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4520    return;
4521  }
4522
4523  if (Args.size() > 1) {
4524    SetFailed(FK_TooManyInitsForScalar);
4525    return;
4526  }
4527  assert(Args.size() == 1 && "Zero-argument case handled above");
4528
4529  //    - Otherwise, if the source type is a (possibly cv-qualified) class
4530  //      type, conversion functions are considered.
4531  if (!SourceType.isNull() && SourceType->isRecordType()) {
4532    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4533    MaybeProduceObjCObject(S, *this, Entity);
4534    return;
4535  }
4536
4537  //    - Otherwise, the initial value of the object being initialized is the
4538  //      (possibly converted) value of the initializer expression. Standard
4539  //      conversions (Clause 4) will be used, if necessary, to convert the
4540  //      initializer expression to the cv-unqualified version of the
4541  //      destination type; no user-defined conversions are considered.
4542
4543  ImplicitConversionSequence ICS
4544    = S.TryImplicitConversion(Initializer, Entity.getType(),
4545                              /*SuppressUserConversions*/true,
4546                              /*AllowExplicitConversions*/ false,
4547                              /*InOverloadResolution*/ false,
4548                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4549                              allowObjCWritebackConversion);
4550
4551  if (ICS.isStandard() &&
4552      ICS.Standard.Second == ICK_Writeback_Conversion) {
4553    // Objective-C ARC writeback conversion.
4554
4555    // We should copy unless we're passing to an argument explicitly
4556    // marked 'out'.
4557    bool ShouldCopy = true;
4558    if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4559      ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4560
4561    // If there was an lvalue adjustment, add it as a separate conversion.
4562    if (ICS.Standard.First == ICK_Array_To_Pointer ||
4563        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4564      ImplicitConversionSequence LvalueICS;
4565      LvalueICS.setStandard();
4566      LvalueICS.Standard.setAsIdentityConversion();
4567      LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4568      LvalueICS.Standard.First = ICS.Standard.First;
4569      AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4570    }
4571
4572    AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4573  } else if (ICS.isBad()) {
4574    DeclAccessPair dap;
4575    if (Initializer->getType() == Context.OverloadTy &&
4576          !S.ResolveAddressOfOverloadedFunction(Initializer
4577                      , DestType, false, dap))
4578      SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4579    else
4580      SetFailed(InitializationSequence::FK_ConversionFailed);
4581  } else {
4582    AddConversionSequenceStep(ICS, Entity.getType());
4583
4584    MaybeProduceObjCObject(S, *this, Entity);
4585  }
4586}
4587
4588InitializationSequence::~InitializationSequence() {
4589  for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4590                                          StepEnd = Steps.end();
4591       Step != StepEnd; ++Step)
4592    Step->Destroy();
4593}
4594
4595//===----------------------------------------------------------------------===//
4596// Perform initialization
4597//===----------------------------------------------------------------------===//
4598static Sema::AssignmentAction
4599getAssignmentAction(const InitializedEntity &Entity) {
4600  switch(Entity.getKind()) {
4601  case InitializedEntity::EK_Variable:
4602  case InitializedEntity::EK_New:
4603  case InitializedEntity::EK_Exception:
4604  case InitializedEntity::EK_Base:
4605  case InitializedEntity::EK_Delegating:
4606    return Sema::AA_Initializing;
4607
4608  case InitializedEntity::EK_Parameter:
4609    if (Entity.getDecl() &&
4610        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4611      return Sema::AA_Sending;
4612
4613    return Sema::AA_Passing;
4614
4615  case InitializedEntity::EK_Result:
4616    return Sema::AA_Returning;
4617
4618  case InitializedEntity::EK_Temporary:
4619    // FIXME: Can we tell apart casting vs. converting?
4620    return Sema::AA_Casting;
4621
4622  case InitializedEntity::EK_Member:
4623  case InitializedEntity::EK_ArrayElement:
4624  case InitializedEntity::EK_VectorElement:
4625  case InitializedEntity::EK_ComplexElement:
4626  case InitializedEntity::EK_BlockElement:
4627  case InitializedEntity::EK_LambdaCapture:
4628  case InitializedEntity::EK_CompoundLiteralInit:
4629    return Sema::AA_Initializing;
4630  }
4631
4632  llvm_unreachable("Invalid EntityKind!");
4633}
4634
4635/// \brief Whether we should bind a created object as a temporary when
4636/// initializing the given entity.
4637static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4638  switch (Entity.getKind()) {
4639  case InitializedEntity::EK_ArrayElement:
4640  case InitializedEntity::EK_Member:
4641  case InitializedEntity::EK_Result:
4642  case InitializedEntity::EK_New:
4643  case InitializedEntity::EK_Variable:
4644  case InitializedEntity::EK_Base:
4645  case InitializedEntity::EK_Delegating:
4646  case InitializedEntity::EK_VectorElement:
4647  case InitializedEntity::EK_ComplexElement:
4648  case InitializedEntity::EK_Exception:
4649  case InitializedEntity::EK_BlockElement:
4650  case InitializedEntity::EK_LambdaCapture:
4651  case InitializedEntity::EK_CompoundLiteralInit:
4652    return false;
4653
4654  case InitializedEntity::EK_Parameter:
4655  case InitializedEntity::EK_Temporary:
4656    return true;
4657  }
4658
4659  llvm_unreachable("missed an InitializedEntity kind?");
4660}
4661
4662/// \brief Whether the given entity, when initialized with an object
4663/// created for that initialization, requires destruction.
4664static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4665  switch (Entity.getKind()) {
4666    case InitializedEntity::EK_Result:
4667    case InitializedEntity::EK_New:
4668    case InitializedEntity::EK_Base:
4669    case InitializedEntity::EK_Delegating:
4670    case InitializedEntity::EK_VectorElement:
4671    case InitializedEntity::EK_ComplexElement:
4672    case InitializedEntity::EK_BlockElement:
4673    case InitializedEntity::EK_LambdaCapture:
4674      return false;
4675
4676    case InitializedEntity::EK_Member:
4677    case InitializedEntity::EK_Variable:
4678    case InitializedEntity::EK_Parameter:
4679    case InitializedEntity::EK_Temporary:
4680    case InitializedEntity::EK_ArrayElement:
4681    case InitializedEntity::EK_Exception:
4682    case InitializedEntity::EK_CompoundLiteralInit:
4683      return true;
4684  }
4685
4686  llvm_unreachable("missed an InitializedEntity kind?");
4687}
4688
4689/// \brief Look for copy and move constructors and constructor templates, for
4690/// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4691static void LookupCopyAndMoveConstructors(Sema &S,
4692                                          OverloadCandidateSet &CandidateSet,
4693                                          CXXRecordDecl *Class,
4694                                          Expr *CurInitExpr) {
4695  DeclContext::lookup_result R = S.LookupConstructors(Class);
4696  // The container holding the constructors can under certain conditions
4697  // be changed while iterating (e.g. because of deserialization).
4698  // To be safe we copy the lookup results to a new container.
4699  SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
4700  for (SmallVector<NamedDecl*, 16>::iterator
4701         CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
4702    NamedDecl *D = *CI;
4703    CXXConstructorDecl *Constructor = 0;
4704
4705    if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
4706      // Handle copy/moveconstructors, only.
4707      if (!Constructor || Constructor->isInvalidDecl() ||
4708          !Constructor->isCopyOrMoveConstructor() ||
4709          !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4710        continue;
4711
4712      DeclAccessPair FoundDecl
4713        = DeclAccessPair::make(Constructor, Constructor->getAccess());
4714      S.AddOverloadCandidate(Constructor, FoundDecl,
4715                             CurInitExpr, CandidateSet);
4716      continue;
4717    }
4718
4719    // Handle constructor templates.
4720    FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
4721    if (ConstructorTmpl->isInvalidDecl())
4722      continue;
4723
4724    Constructor = cast<CXXConstructorDecl>(
4725                                         ConstructorTmpl->getTemplatedDecl());
4726    if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4727      continue;
4728
4729    // FIXME: Do we need to limit this to copy-constructor-like
4730    // candidates?
4731    DeclAccessPair FoundDecl
4732      = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4733    S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4734                                   CurInitExpr, CandidateSet, true);
4735  }
4736}
4737
4738/// \brief Get the location at which initialization diagnostics should appear.
4739static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4740                                           Expr *Initializer) {
4741  switch (Entity.getKind()) {
4742  case InitializedEntity::EK_Result:
4743    return Entity.getReturnLoc();
4744
4745  case InitializedEntity::EK_Exception:
4746    return Entity.getThrowLoc();
4747
4748  case InitializedEntity::EK_Variable:
4749    return Entity.getDecl()->getLocation();
4750
4751  case InitializedEntity::EK_LambdaCapture:
4752    return Entity.getCaptureLoc();
4753
4754  case InitializedEntity::EK_ArrayElement:
4755  case InitializedEntity::EK_Member:
4756  case InitializedEntity::EK_Parameter:
4757  case InitializedEntity::EK_Temporary:
4758  case InitializedEntity::EK_New:
4759  case InitializedEntity::EK_Base:
4760  case InitializedEntity::EK_Delegating:
4761  case InitializedEntity::EK_VectorElement:
4762  case InitializedEntity::EK_ComplexElement:
4763  case InitializedEntity::EK_BlockElement:
4764  case InitializedEntity::EK_CompoundLiteralInit:
4765    return Initializer->getLocStart();
4766  }
4767  llvm_unreachable("missed an InitializedEntity kind?");
4768}
4769
4770/// \brief Make a (potentially elidable) temporary copy of the object
4771/// provided by the given initializer by calling the appropriate copy
4772/// constructor.
4773///
4774/// \param S The Sema object used for type-checking.
4775///
4776/// \param T The type of the temporary object, which must either be
4777/// the type of the initializer expression or a superclass thereof.
4778///
4779/// \param Entity The entity being initialized.
4780///
4781/// \param CurInit The initializer expression.
4782///
4783/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4784/// is permitted in C++03 (but not C++0x) when binding a reference to
4785/// an rvalue.
4786///
4787/// \returns An expression that copies the initializer expression into
4788/// a temporary object, or an error expression if a copy could not be
4789/// created.
4790static ExprResult CopyObject(Sema &S,
4791                             QualType T,
4792                             const InitializedEntity &Entity,
4793                             ExprResult CurInit,
4794                             bool IsExtraneousCopy) {
4795  // Determine which class type we're copying to.
4796  Expr *CurInitExpr = (Expr *)CurInit.get();
4797  CXXRecordDecl *Class = 0;
4798  if (const RecordType *Record = T->getAs<RecordType>())
4799    Class = cast<CXXRecordDecl>(Record->getDecl());
4800  if (!Class)
4801    return CurInit;
4802
4803  // C++0x [class.copy]p32:
4804  //   When certain criteria are met, an implementation is allowed to
4805  //   omit the copy/move construction of a class object, even if the
4806  //   copy/move constructor and/or destructor for the object have
4807  //   side effects. [...]
4808  //     - when a temporary class object that has not been bound to a
4809  //       reference (12.2) would be copied/moved to a class object
4810  //       with the same cv-unqualified type, the copy/move operation
4811  //       can be omitted by constructing the temporary object
4812  //       directly into the target of the omitted copy/move
4813  //
4814  // Note that the other three bullets are handled elsewhere. Copy
4815  // elision for return statements and throw expressions are handled as part
4816  // of constructor initialization, while copy elision for exception handlers
4817  // is handled by the run-time.
4818  bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4819  SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4820
4821  // Make sure that the type we are copying is complete.
4822  if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
4823    return CurInit;
4824
4825  // Perform overload resolution using the class's copy/move constructors.
4826  // Only consider constructors and constructor templates. Per
4827  // C++0x [dcl.init]p16, second bullet to class types, this initialization
4828  // is direct-initialization.
4829  OverloadCandidateSet CandidateSet(Loc);
4830  LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4831
4832  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4833
4834  OverloadCandidateSet::iterator Best;
4835  switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4836  case OR_Success:
4837    break;
4838
4839  case OR_No_Viable_Function:
4840    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4841           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4842           : diag::err_temp_copy_no_viable)
4843      << (int)Entity.getKind() << CurInitExpr->getType()
4844      << CurInitExpr->getSourceRange();
4845    CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4846    if (!IsExtraneousCopy || S.isSFINAEContext())
4847      return ExprError();
4848    return CurInit;
4849
4850  case OR_Ambiguous:
4851    S.Diag(Loc, diag::err_temp_copy_ambiguous)
4852      << (int)Entity.getKind() << CurInitExpr->getType()
4853      << CurInitExpr->getSourceRange();
4854    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4855    return ExprError();
4856
4857  case OR_Deleted:
4858    S.Diag(Loc, diag::err_temp_copy_deleted)
4859      << (int)Entity.getKind() << CurInitExpr->getType()
4860      << CurInitExpr->getSourceRange();
4861    S.NoteDeletedFunction(Best->Function);
4862    return ExprError();
4863  }
4864
4865  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4866  SmallVector<Expr*, 8> ConstructorArgs;
4867  CurInit.release(); // Ownership transferred into MultiExprArg, below.
4868
4869  S.CheckConstructorAccess(Loc, Constructor, Entity,
4870                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
4871
4872  if (IsExtraneousCopy) {
4873    // If this is a totally extraneous copy for C++03 reference
4874    // binding purposes, just return the original initialization
4875    // expression. We don't generate an (elided) copy operation here
4876    // because doing so would require us to pass down a flag to avoid
4877    // infinite recursion, where each step adds another extraneous,
4878    // elidable copy.
4879
4880    // Instantiate the default arguments of any extra parameters in
4881    // the selected copy constructor, as if we were going to create a
4882    // proper call to the copy constructor.
4883    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4884      ParmVarDecl *Parm = Constructor->getParamDecl(I);
4885      if (S.RequireCompleteType(Loc, Parm->getType(),
4886                                diag::err_call_incomplete_argument))
4887        break;
4888
4889      // Build the default argument expression; we don't actually care
4890      // if this succeeds or not, because this routine will complain
4891      // if there was a problem.
4892      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4893    }
4894
4895    return S.Owned(CurInitExpr);
4896  }
4897
4898  // Determine the arguments required to actually perform the
4899  // constructor call (we might have derived-to-base conversions, or
4900  // the copy constructor may have default arguments).
4901  if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
4902    return ExprError();
4903
4904  // Actually perform the constructor call.
4905  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4906                                    ConstructorArgs,
4907                                    HadMultipleCandidates,
4908                                    /*ListInit*/ false,
4909                                    /*ZeroInit*/ false,
4910                                    CXXConstructExpr::CK_Complete,
4911                                    SourceRange());
4912
4913  // If we're supposed to bind temporaries, do so.
4914  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4915    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4916  return CurInit;
4917}
4918
4919/// \brief Check whether elidable copy construction for binding a reference to
4920/// a temporary would have succeeded if we were building in C++98 mode, for
4921/// -Wc++98-compat.
4922static void CheckCXX98CompatAccessibleCopy(Sema &S,
4923                                           const InitializedEntity &Entity,
4924                                           Expr *CurInitExpr) {
4925  assert(S.getLangOpts().CPlusPlus11);
4926
4927  const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4928  if (!Record)
4929    return;
4930
4931  SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4932  if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4933        == DiagnosticsEngine::Ignored)
4934    return;
4935
4936  // Find constructors which would have been considered.
4937  OverloadCandidateSet CandidateSet(Loc);
4938  LookupCopyAndMoveConstructors(
4939      S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4940
4941  // Perform overload resolution.
4942  OverloadCandidateSet::iterator Best;
4943  OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4944
4945  PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4946    << OR << (int)Entity.getKind() << CurInitExpr->getType()
4947    << CurInitExpr->getSourceRange();
4948
4949  switch (OR) {
4950  case OR_Success:
4951    S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4952                             Entity, Best->FoundDecl.getAccess(), Diag);
4953    // FIXME: Check default arguments as far as that's possible.
4954    break;
4955
4956  case OR_No_Viable_Function:
4957    S.Diag(Loc, Diag);
4958    CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4959    break;
4960
4961  case OR_Ambiguous:
4962    S.Diag(Loc, Diag);
4963    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4964    break;
4965
4966  case OR_Deleted:
4967    S.Diag(Loc, Diag);
4968    S.NoteDeletedFunction(Best->Function);
4969    break;
4970  }
4971}
4972
4973void InitializationSequence::PrintInitLocationNote(Sema &S,
4974                                              const InitializedEntity &Entity) {
4975  if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
4976    if (Entity.getDecl()->getLocation().isInvalid())
4977      return;
4978
4979    if (Entity.getDecl()->getDeclName())
4980      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
4981        << Entity.getDecl()->getDeclName();
4982    else
4983      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
4984  }
4985}
4986
4987static bool isReferenceBinding(const InitializationSequence::Step &s) {
4988  return s.Kind == InitializationSequence::SK_BindReference ||
4989         s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
4990}
4991
4992/// Returns true if the parameters describe a constructor initialization of
4993/// an explicit temporary object, e.g. "Point(x, y)".
4994static bool isExplicitTemporary(const InitializedEntity &Entity,
4995                                const InitializationKind &Kind,
4996                                unsigned NumArgs) {
4997  switch (Entity.getKind()) {
4998  case InitializedEntity::EK_Temporary:
4999  case InitializedEntity::EK_CompoundLiteralInit:
5000    break;
5001  default:
5002    return false;
5003  }
5004
5005  switch (Kind.getKind()) {
5006  case InitializationKind::IK_DirectList:
5007    return true;
5008  // FIXME: Hack to work around cast weirdness.
5009  case InitializationKind::IK_Direct:
5010  case InitializationKind::IK_Value:
5011    return NumArgs != 1;
5012  default:
5013    return false;
5014  }
5015}
5016
5017static ExprResult
5018PerformConstructorInitialization(Sema &S,
5019                                 const InitializedEntity &Entity,
5020                                 const InitializationKind &Kind,
5021                                 MultiExprArg Args,
5022                                 const InitializationSequence::Step& Step,
5023                                 bool &ConstructorInitRequiresZeroInit,
5024                                 bool IsListInitialization) {
5025  unsigned NumArgs = Args.size();
5026  CXXConstructorDecl *Constructor
5027    = cast<CXXConstructorDecl>(Step.Function.Function);
5028  bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5029
5030  // Build a call to the selected constructor.
5031  SmallVector<Expr*, 8> ConstructorArgs;
5032  SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5033                         ? Kind.getEqualLoc()
5034                         : Kind.getLocation();
5035
5036  if (Kind.getKind() == InitializationKind::IK_Default) {
5037    // Force even a trivial, implicit default constructor to be
5038    // semantically checked. We do this explicitly because we don't build
5039    // the definition for completely trivial constructors.
5040    assert(Constructor->getParent() && "No parent class for constructor.");
5041    if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5042        Constructor->isTrivial() && !Constructor->isUsed(false))
5043      S.DefineImplicitDefaultConstructor(Loc, Constructor);
5044  }
5045
5046  ExprResult CurInit = S.Owned((Expr *)0);
5047
5048  // C++ [over.match.copy]p1:
5049  //   - When initializing a temporary to be bound to the first parameter
5050  //     of a constructor that takes a reference to possibly cv-qualified
5051  //     T as its first argument, called with a single argument in the
5052  //     context of direct-initialization, explicit conversion functions
5053  //     are also considered.
5054  bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
5055                           Args.size() == 1 &&
5056                           Constructor->isCopyOrMoveConstructor();
5057
5058  // Determine the arguments required to actually perform the constructor
5059  // call.
5060  if (S.CompleteConstructorCall(Constructor, Args,
5061                                Loc, ConstructorArgs,
5062                                AllowExplicitConv,
5063                                IsListInitialization))
5064    return ExprError();
5065
5066
5067  if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5068    // An explicitly-constructed temporary, e.g., X(1, 2).
5069    S.MarkFunctionReferenced(Loc, Constructor);
5070    if (S.DiagnoseUseOfDecl(Constructor, Loc))
5071      return ExprError();
5072
5073    TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5074    if (!TSInfo)
5075      TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5076    SourceRange ParenRange;
5077    if (Kind.getKind() != InitializationKind::IK_DirectList)
5078      ParenRange = Kind.getParenRange();
5079
5080    CurInit = S.Owned(
5081      new (S.Context) CXXTemporaryObjectExpr(S.Context, Constructor,
5082                                             TSInfo, ConstructorArgs,
5083                                             ParenRange, IsListInitialization,
5084                                             HadMultipleCandidates,
5085                                             ConstructorInitRequiresZeroInit));
5086  } else {
5087    CXXConstructExpr::ConstructionKind ConstructKind =
5088      CXXConstructExpr::CK_Complete;
5089
5090    if (Entity.getKind() == InitializedEntity::EK_Base) {
5091      ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5092        CXXConstructExpr::CK_VirtualBase :
5093        CXXConstructExpr::CK_NonVirtualBase;
5094    } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5095      ConstructKind = CXXConstructExpr::CK_Delegating;
5096    }
5097
5098    // Only get the parenthesis range if it is a direct construction.
5099    SourceRange parenRange =
5100        Kind.getKind() == InitializationKind::IK_Direct ?
5101        Kind.getParenRange() : SourceRange();
5102
5103    // If the entity allows NRVO, mark the construction as elidable
5104    // unconditionally.
5105    if (Entity.allowsNRVO())
5106      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5107                                        Constructor, /*Elidable=*/true,
5108                                        ConstructorArgs,
5109                                        HadMultipleCandidates,
5110                                        IsListInitialization,
5111                                        ConstructorInitRequiresZeroInit,
5112                                        ConstructKind,
5113                                        parenRange);
5114    else
5115      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5116                                        Constructor,
5117                                        ConstructorArgs,
5118                                        HadMultipleCandidates,
5119                                        IsListInitialization,
5120                                        ConstructorInitRequiresZeroInit,
5121                                        ConstructKind,
5122                                        parenRange);
5123  }
5124  if (CurInit.isInvalid())
5125    return ExprError();
5126
5127  // Only check access if all of that succeeded.
5128  S.CheckConstructorAccess(Loc, Constructor, Entity,
5129                           Step.Function.FoundDecl.getAccess());
5130  if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5131    return ExprError();
5132
5133  if (shouldBindAsTemporary(Entity))
5134    CurInit = S.MaybeBindToTemporary(CurInit.take());
5135
5136  return CurInit;
5137}
5138
5139/// Determine whether the specified InitializedEntity definitely has a lifetime
5140/// longer than the current full-expression. Conservatively returns false if
5141/// it's unclear.
5142static bool
5143InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5144  const InitializedEntity *Top = &Entity;
5145  while (Top->getParent())
5146    Top = Top->getParent();
5147
5148  switch (Top->getKind()) {
5149  case InitializedEntity::EK_Variable:
5150  case InitializedEntity::EK_Result:
5151  case InitializedEntity::EK_Exception:
5152  case InitializedEntity::EK_Member:
5153  case InitializedEntity::EK_New:
5154  case InitializedEntity::EK_Base:
5155  case InitializedEntity::EK_Delegating:
5156    return true;
5157
5158  case InitializedEntity::EK_ArrayElement:
5159  case InitializedEntity::EK_VectorElement:
5160  case InitializedEntity::EK_BlockElement:
5161  case InitializedEntity::EK_ComplexElement:
5162    // Could not determine what the full initialization is. Assume it might not
5163    // outlive the full-expression.
5164    return false;
5165
5166  case InitializedEntity::EK_Parameter:
5167  case InitializedEntity::EK_Temporary:
5168  case InitializedEntity::EK_LambdaCapture:
5169  case InitializedEntity::EK_CompoundLiteralInit:
5170    // The entity being initialized might not outlive the full-expression.
5171    return false;
5172  }
5173
5174  llvm_unreachable("unknown entity kind");
5175}
5176
5177/// Determine the declaration which an initialized entity ultimately refers to,
5178/// for the purpose of lifetime-extending a temporary bound to a reference in
5179/// the initialization of \p Entity.
5180static const ValueDecl *
5181getDeclForTemporaryLifetimeExtension(const InitializedEntity &Entity,
5182                                     const ValueDecl *FallbackDecl = 0) {
5183  // C++11 [class.temporary]p5:
5184  switch (Entity.getKind()) {
5185  case InitializedEntity::EK_Variable:
5186    //   The temporary [...] persists for the lifetime of the reference
5187    return Entity.getDecl();
5188
5189  case InitializedEntity::EK_Member:
5190    // For subobjects, we look at the complete object.
5191    if (Entity.getParent())
5192      return getDeclForTemporaryLifetimeExtension(*Entity.getParent(),
5193                                                  Entity.getDecl());
5194
5195    //   except:
5196    //   -- A temporary bound to a reference member in a constructor's
5197    //      ctor-initializer persists until the constructor exits.
5198    return Entity.getDecl();
5199
5200  case InitializedEntity::EK_Parameter:
5201    //   -- A temporary bound to a reference parameter in a function call
5202    //      persists until the completion of the full-expression containing
5203    //      the call.
5204  case InitializedEntity::EK_Result:
5205    //   -- The lifetime of a temporary bound to the returned value in a
5206    //      function return statement is not extended; the temporary is
5207    //      destroyed at the end of the full-expression in the return statement.
5208  case InitializedEntity::EK_New:
5209    //   -- A temporary bound to a reference in a new-initializer persists
5210    //      until the completion of the full-expression containing the
5211    //      new-initializer.
5212    return 0;
5213
5214  case InitializedEntity::EK_Temporary:
5215  case InitializedEntity::EK_CompoundLiteralInit:
5216    // We don't yet know the storage duration of the surrounding temporary.
5217    // Assume it's got full-expression duration for now, it will patch up our
5218    // storage duration if that's not correct.
5219    return 0;
5220
5221  case InitializedEntity::EK_ArrayElement:
5222    // For subobjects, we look at the complete object.
5223    return getDeclForTemporaryLifetimeExtension(*Entity.getParent(),
5224                                                FallbackDecl);
5225
5226  case InitializedEntity::EK_Base:
5227  case InitializedEntity::EK_Delegating:
5228    // We can reach this case for aggregate initialization in a constructor:
5229    //   struct A { int &&r; };
5230    //   struct B : A { B() : A{0} {} };
5231    // In this case, use the innermost field decl as the context.
5232    return FallbackDecl;
5233
5234  case InitializedEntity::EK_BlockElement:
5235  case InitializedEntity::EK_LambdaCapture:
5236  case InitializedEntity::EK_Exception:
5237  case InitializedEntity::EK_VectorElement:
5238  case InitializedEntity::EK_ComplexElement:
5239    llvm_unreachable("should not materialize a temporary to initialize this");
5240  }
5241  llvm_unreachable("unknown entity kind");
5242}
5243
5244static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD);
5245
5246/// Update a glvalue expression that is used as the initializer of a reference
5247/// to note that its lifetime is extended.
5248static void performReferenceExtension(Expr *Init, const ValueDecl *ExtendingD) {
5249  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5250    if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
5251      // This is just redundant braces around an initializer. Step over it.
5252      Init = ILE->getInit(0);
5253    }
5254  }
5255
5256  if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
5257    // Update the storage duration of the materialized temporary.
5258    // FIXME: Rebuild the expression instead of mutating it.
5259    ME->setExtendingDecl(ExtendingD);
5260    performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingD);
5261  }
5262}
5263
5264/// Update a prvalue expression that is going to be materialized as a
5265/// lifetime-extended temporary.
5266static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD) {
5267  // Dig out the expression which constructs the extended temporary.
5268  SmallVector<const Expr *, 2> CommaLHSs;
5269  SmallVector<SubobjectAdjustment, 2> Adjustments;
5270  Init = const_cast<Expr *>(
5271      Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5272
5273  if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
5274    Init = BTE->getSubExpr();
5275
5276  if (CXXStdInitializerListExpr *ILE =
5277          dyn_cast<CXXStdInitializerListExpr>(Init))
5278    return performReferenceExtension(ILE->getSubExpr(), ExtendingD);
5279
5280  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5281    if (ILE->getType()->isArrayType()) {
5282      for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
5283        performLifetimeExtension(ILE->getInit(I), ExtendingD);
5284      return;
5285    }
5286
5287    if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
5288      assert(RD->isAggregate() && "aggregate init on non-aggregate");
5289
5290      // If we lifetime-extend a braced initializer which is initializing an
5291      // aggregate, and that aggregate contains reference members which are
5292      // bound to temporaries, those temporaries are also lifetime-extended.
5293      if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
5294          ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
5295        performReferenceExtension(ILE->getInit(0), ExtendingD);
5296      else {
5297        unsigned Index = 0;
5298        for (RecordDecl::field_iterator I = RD->field_begin(),
5299                                        E = RD->field_end();
5300             I != E; ++I) {
5301          if (I->isUnnamedBitfield())
5302            continue;
5303          if (I->getType()->isReferenceType())
5304            performReferenceExtension(ILE->getInit(Index), ExtendingD);
5305          else if (isa<InitListExpr>(ILE->getInit(Index)))
5306            // This may be either aggregate-initialization of a member or
5307            // initialization of a std::initializer_list object. Either way,
5308            // we should recursively lifetime-extend that initializer.
5309            performLifetimeExtension(ILE->getInit(Index), ExtendingD);
5310          ++Index;
5311        }
5312      }
5313    }
5314  }
5315}
5316
5317static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
5318                                    const Expr *Init, bool IsInitializerList,
5319                                    const ValueDecl *ExtendingDecl) {
5320  // Warn if a field lifetime-extends a temporary.
5321  if (isa<FieldDecl>(ExtendingDecl)) {
5322    if (IsInitializerList) {
5323      S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
5324        << /*at end of constructor*/true;
5325      return;
5326    }
5327
5328    bool IsSubobjectMember = false;
5329    for (const InitializedEntity *Ent = Entity.getParent(); Ent;
5330         Ent = Ent->getParent()) {
5331      if (Ent->getKind() != InitializedEntity::EK_Base) {
5332        IsSubobjectMember = true;
5333        break;
5334      }
5335    }
5336    S.Diag(Init->getExprLoc(),
5337           diag::warn_bind_ref_member_to_temporary)
5338      << ExtendingDecl << Init->getSourceRange()
5339      << IsSubobjectMember << IsInitializerList;
5340    if (IsSubobjectMember)
5341      S.Diag(ExtendingDecl->getLocation(),
5342             diag::note_ref_subobject_of_member_declared_here);
5343    else
5344      S.Diag(ExtendingDecl->getLocation(),
5345             diag::note_ref_or_ptr_member_declared_here)
5346        << /*is pointer*/false;
5347  }
5348}
5349
5350ExprResult
5351InitializationSequence::Perform(Sema &S,
5352                                const InitializedEntity &Entity,
5353                                const InitializationKind &Kind,
5354                                MultiExprArg Args,
5355                                QualType *ResultType) {
5356  if (Failed()) {
5357    Diagnose(S, Entity, Kind, Args);
5358    return ExprError();
5359  }
5360
5361  if (getKind() == DependentSequence) {
5362    // If the declaration is a non-dependent, incomplete array type
5363    // that has an initializer, then its type will be completed once
5364    // the initializer is instantiated.
5365    if (ResultType && !Entity.getType()->isDependentType() &&
5366        Args.size() == 1) {
5367      QualType DeclType = Entity.getType();
5368      if (const IncompleteArrayType *ArrayT
5369                           = S.Context.getAsIncompleteArrayType(DeclType)) {
5370        // FIXME: We don't currently have the ability to accurately
5371        // compute the length of an initializer list without
5372        // performing full type-checking of the initializer list
5373        // (since we have to determine where braces are implicitly
5374        // introduced and such).  So, we fall back to making the array
5375        // type a dependently-sized array type with no specified
5376        // bound.
5377        if (isa<InitListExpr>((Expr *)Args[0])) {
5378          SourceRange Brackets;
5379
5380          // Scavange the location of the brackets from the entity, if we can.
5381          if (DeclaratorDecl *DD = Entity.getDecl()) {
5382            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
5383              TypeLoc TL = TInfo->getTypeLoc();
5384              if (IncompleteArrayTypeLoc ArrayLoc =
5385                      TL.getAs<IncompleteArrayTypeLoc>())
5386                Brackets = ArrayLoc.getBracketsRange();
5387            }
5388          }
5389
5390          *ResultType
5391            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
5392                                                   /*NumElts=*/0,
5393                                                   ArrayT->getSizeModifier(),
5394                                       ArrayT->getIndexTypeCVRQualifiers(),
5395                                                   Brackets);
5396        }
5397
5398      }
5399    }
5400    if (Kind.getKind() == InitializationKind::IK_Direct &&
5401        !Kind.isExplicitCast()) {
5402      // Rebuild the ParenListExpr.
5403      SourceRange ParenRange = Kind.getParenRange();
5404      return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
5405                                  Args);
5406    }
5407    assert(Kind.getKind() == InitializationKind::IK_Copy ||
5408           Kind.isExplicitCast() ||
5409           Kind.getKind() == InitializationKind::IK_DirectList);
5410    return ExprResult(Args[0]);
5411  }
5412
5413  // No steps means no initialization.
5414  if (Steps.empty())
5415    return S.Owned((Expr *)0);
5416
5417  if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
5418      Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
5419      Entity.getKind() != InitializedEntity::EK_Parameter) {
5420    // Produce a C++98 compatibility warning if we are initializing a reference
5421    // from an initializer list. For parameters, we produce a better warning
5422    // elsewhere.
5423    Expr *Init = Args[0];
5424    S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
5425      << Init->getSourceRange();
5426  }
5427
5428  // Diagnose cases where we initialize a pointer to an array temporary, and the
5429  // pointer obviously outlives the temporary.
5430  if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
5431      Entity.getType()->isPointerType() &&
5432      InitializedEntityOutlivesFullExpression(Entity)) {
5433    Expr *Init = Args[0];
5434    Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
5435    if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
5436      S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
5437        << Init->getSourceRange();
5438  }
5439
5440  QualType DestType = Entity.getType().getNonReferenceType();
5441  // FIXME: Ugly hack around the fact that Entity.getType() is not
5442  // the same as Entity.getDecl()->getType() in cases involving type merging,
5443  //  and we want latter when it makes sense.
5444  if (ResultType)
5445    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
5446                                     Entity.getType();
5447
5448  ExprResult CurInit = S.Owned((Expr *)0);
5449
5450  // For initialization steps that start with a single initializer,
5451  // grab the only argument out the Args and place it into the "current"
5452  // initializer.
5453  switch (Steps.front().Kind) {
5454  case SK_ResolveAddressOfOverloadedFunction:
5455  case SK_CastDerivedToBaseRValue:
5456  case SK_CastDerivedToBaseXValue:
5457  case SK_CastDerivedToBaseLValue:
5458  case SK_BindReference:
5459  case SK_BindReferenceToTemporary:
5460  case SK_ExtraneousCopyToTemporary:
5461  case SK_UserConversion:
5462  case SK_QualificationConversionLValue:
5463  case SK_QualificationConversionXValue:
5464  case SK_QualificationConversionRValue:
5465  case SK_LValueToRValue:
5466  case SK_ConversionSequence:
5467  case SK_ListInitialization:
5468  case SK_UnwrapInitList:
5469  case SK_RewrapInitList:
5470  case SK_CAssignment:
5471  case SK_StringInit:
5472  case SK_ObjCObjectConversion:
5473  case SK_ArrayInit:
5474  case SK_ParenthesizedArrayInit:
5475  case SK_PassByIndirectCopyRestore:
5476  case SK_PassByIndirectRestore:
5477  case SK_ProduceObjCObject:
5478  case SK_StdInitializerList:
5479  case SK_OCLSamplerInit:
5480  case SK_OCLZeroEvent: {
5481    assert(Args.size() == 1);
5482    CurInit = Args[0];
5483    if (!CurInit.get()) return ExprError();
5484    break;
5485  }
5486
5487  case SK_ConstructorInitialization:
5488  case SK_ListConstructorCall:
5489  case SK_ZeroInitialization:
5490    break;
5491  }
5492
5493  // Walk through the computed steps for the initialization sequence,
5494  // performing the specified conversions along the way.
5495  bool ConstructorInitRequiresZeroInit = false;
5496  for (step_iterator Step = step_begin(), StepEnd = step_end();
5497       Step != StepEnd; ++Step) {
5498    if (CurInit.isInvalid())
5499      return ExprError();
5500
5501    QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
5502
5503    switch (Step->Kind) {
5504    case SK_ResolveAddressOfOverloadedFunction:
5505      // Overload resolution determined which function invoke; update the
5506      // initializer to reflect that choice.
5507      S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
5508      if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
5509        return ExprError();
5510      CurInit = S.FixOverloadedFunctionReference(CurInit,
5511                                                 Step->Function.FoundDecl,
5512                                                 Step->Function.Function);
5513      break;
5514
5515    case SK_CastDerivedToBaseRValue:
5516    case SK_CastDerivedToBaseXValue:
5517    case SK_CastDerivedToBaseLValue: {
5518      // We have a derived-to-base cast that produces either an rvalue or an
5519      // lvalue. Perform that cast.
5520
5521      CXXCastPath BasePath;
5522
5523      // Casts to inaccessible base classes are allowed with C-style casts.
5524      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
5525      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
5526                                         CurInit.get()->getLocStart(),
5527                                         CurInit.get()->getSourceRange(),
5528                                         &BasePath, IgnoreBaseAccess))
5529        return ExprError();
5530
5531      if (S.BasePathInvolvesVirtualBase(BasePath)) {
5532        QualType T = SourceType;
5533        if (const PointerType *Pointer = T->getAs<PointerType>())
5534          T = Pointer->getPointeeType();
5535        if (const RecordType *RecordTy = T->getAs<RecordType>())
5536          S.MarkVTableUsed(CurInit.get()->getLocStart(),
5537                           cast<CXXRecordDecl>(RecordTy->getDecl()));
5538      }
5539
5540      ExprValueKind VK =
5541          Step->Kind == SK_CastDerivedToBaseLValue ?
5542              VK_LValue :
5543              (Step->Kind == SK_CastDerivedToBaseXValue ?
5544                   VK_XValue :
5545                   VK_RValue);
5546      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5547                                                 Step->Type,
5548                                                 CK_DerivedToBase,
5549                                                 CurInit.get(),
5550                                                 &BasePath, VK));
5551      break;
5552    }
5553
5554    case SK_BindReference:
5555      // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
5556      if (CurInit.get()->refersToBitField()) {
5557        // We don't necessarily have an unambiguous source bit-field.
5558        FieldDecl *BitField = CurInit.get()->getSourceBitField();
5559        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
5560          << Entity.getType().isVolatileQualified()
5561          << (BitField ? BitField->getDeclName() : DeclarationName())
5562          << (BitField != NULL)
5563          << CurInit.get()->getSourceRange();
5564        if (BitField)
5565          S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
5566
5567        return ExprError();
5568      }
5569
5570      if (CurInit.get()->refersToVectorElement()) {
5571        // References cannot bind to vector elements.
5572        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
5573          << Entity.getType().isVolatileQualified()
5574          << CurInit.get()->getSourceRange();
5575        PrintInitLocationNote(S, Entity);
5576        return ExprError();
5577      }
5578
5579      // Reference binding does not have any corresponding ASTs.
5580
5581      // Check exception specifications
5582      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5583        return ExprError();
5584
5585      break;
5586
5587    case SK_BindReferenceToTemporary: {
5588      // Make sure the "temporary" is actually an rvalue.
5589      assert(CurInit.get()->isRValue() && "not a temporary");
5590
5591      // Check exception specifications
5592      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5593        return ExprError();
5594
5595      // Maybe lifetime-extend the temporary's subobjects to match the
5596      // entity's lifetime.
5597      const ValueDecl *ExtendingDecl =
5598          getDeclForTemporaryLifetimeExtension(Entity);
5599      if (ExtendingDecl) {
5600        performLifetimeExtension(CurInit.get(), ExtendingDecl);
5601        warnOnLifetimeExtension(S, Entity, CurInit.get(), false, ExtendingDecl);
5602      }
5603
5604      // Materialize the temporary into memory.
5605      MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr(
5606          Entity.getType().getNonReferenceType(), CurInit.get(),
5607          Entity.getType()->isLValueReferenceType(), ExtendingDecl);
5608
5609      // If we're binding to an Objective-C object that has lifetime, we
5610      // need cleanups. Likewise if we're extending this temporary to automatic
5611      // storage duration -- we need to register its cleanup during the
5612      // full-expression's cleanups.
5613      if ((S.getLangOpts().ObjCAutoRefCount &&
5614           MTE->getType()->isObjCLifetimeType()) ||
5615          (MTE->getStorageDuration() == SD_Automatic &&
5616           MTE->getType().isDestructedType()))
5617        S.ExprNeedsCleanups = true;
5618
5619      CurInit = S.Owned(MTE);
5620      break;
5621    }
5622
5623    case SK_ExtraneousCopyToTemporary:
5624      CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5625                           /*IsExtraneousCopy=*/true);
5626      break;
5627
5628    case SK_UserConversion: {
5629      // We have a user-defined conversion that invokes either a constructor
5630      // or a conversion function.
5631      CastKind CastKind;
5632      bool IsCopy = false;
5633      FunctionDecl *Fn = Step->Function.Function;
5634      DeclAccessPair FoundFn = Step->Function.FoundDecl;
5635      bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5636      bool CreatedObject = false;
5637      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5638        // Build a call to the selected constructor.
5639        SmallVector<Expr*, 8> ConstructorArgs;
5640        SourceLocation Loc = CurInit.get()->getLocStart();
5641        CurInit.release(); // Ownership transferred into MultiExprArg, below.
5642
5643        // Determine the arguments required to actually perform the constructor
5644        // call.
5645        Expr *Arg = CurInit.get();
5646        if (S.CompleteConstructorCall(Constructor,
5647                                      MultiExprArg(&Arg, 1),
5648                                      Loc, ConstructorArgs))
5649          return ExprError();
5650
5651        // Build an expression that constructs a temporary.
5652        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5653                                          ConstructorArgs,
5654                                          HadMultipleCandidates,
5655                                          /*ListInit*/ false,
5656                                          /*ZeroInit*/ false,
5657                                          CXXConstructExpr::CK_Complete,
5658                                          SourceRange());
5659        if (CurInit.isInvalid())
5660          return ExprError();
5661
5662        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5663                                 FoundFn.getAccess());
5664        if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5665          return ExprError();
5666
5667        CastKind = CK_ConstructorConversion;
5668        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5669        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5670            S.IsDerivedFrom(SourceType, Class))
5671          IsCopy = true;
5672
5673        CreatedObject = true;
5674      } else {
5675        // Build a call to the conversion function.
5676        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5677        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5678                                    FoundFn);
5679        if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5680          return ExprError();
5681
5682        // FIXME: Should we move this initialization into a separate
5683        // derived-to-base conversion? I believe the answer is "no", because
5684        // we don't want to turn off access control here for c-style casts.
5685        ExprResult CurInitExprRes =
5686          S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5687                                                FoundFn, Conversion);
5688        if(CurInitExprRes.isInvalid())
5689          return ExprError();
5690        CurInit = CurInitExprRes;
5691
5692        // Build the actual call to the conversion function.
5693        CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5694                                           HadMultipleCandidates);
5695        if (CurInit.isInvalid() || !CurInit.get())
5696          return ExprError();
5697
5698        CastKind = CK_UserDefinedConversion;
5699
5700        CreatedObject = Conversion->getResultType()->isRecordType();
5701      }
5702
5703      bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5704      bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5705
5706      if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5707        QualType T = CurInit.get()->getType();
5708        if (const RecordType *Record = T->getAs<RecordType>()) {
5709          CXXDestructorDecl *Destructor
5710            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5711          S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5712                                  S.PDiag(diag::err_access_dtor_temp) << T);
5713          S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5714          if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
5715            return ExprError();
5716        }
5717      }
5718
5719      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5720                                                 CurInit.get()->getType(),
5721                                                 CastKind, CurInit.get(), 0,
5722                                                CurInit.get()->getValueKind()));
5723      if (MaybeBindToTemp)
5724        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5725      if (RequiresCopy)
5726        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5727                             CurInit, /*IsExtraneousCopy=*/false);
5728      break;
5729    }
5730
5731    case SK_QualificationConversionLValue:
5732    case SK_QualificationConversionXValue:
5733    case SK_QualificationConversionRValue: {
5734      // Perform a qualification conversion; these can never go wrong.
5735      ExprValueKind VK =
5736          Step->Kind == SK_QualificationConversionLValue ?
5737              VK_LValue :
5738              (Step->Kind == SK_QualificationConversionXValue ?
5739                   VK_XValue :
5740                   VK_RValue);
5741      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5742      break;
5743    }
5744
5745    case SK_LValueToRValue: {
5746      assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
5747      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5748                                                 CK_LValueToRValue,
5749                                                 CurInit.take(),
5750                                                 /*BasePath=*/0,
5751                                                 VK_RValue));
5752      break;
5753    }
5754
5755    case SK_ConversionSequence: {
5756      Sema::CheckedConversionKind CCK
5757        = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5758        : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5759        : Kind.isExplicitCast()? Sema::CCK_OtherCast
5760        : Sema::CCK_ImplicitConversion;
5761      ExprResult CurInitExprRes =
5762        S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5763                                    getAssignmentAction(Entity), CCK);
5764      if (CurInitExprRes.isInvalid())
5765        return ExprError();
5766      CurInit = CurInitExprRes;
5767      break;
5768    }
5769
5770    case SK_ListInitialization: {
5771      InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5772      // If we're not initializing the top-level entity, we need to create an
5773      // InitializeTemporary entity for our target type.
5774      QualType Ty = Step->Type;
5775      bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
5776      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5777      InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
5778      InitListChecker PerformInitList(S, InitEntity,
5779          InitList, Ty, /*VerifyOnly=*/false);
5780      if (PerformInitList.HadError())
5781        return ExprError();
5782
5783      // Hack: We must update *ResultType if available in order to set the
5784      // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5785      // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5786      if (ResultType &&
5787          ResultType->getNonReferenceType()->isIncompleteArrayType()) {
5788        if ((*ResultType)->isRValueReferenceType())
5789          Ty = S.Context.getRValueReferenceType(Ty);
5790        else if ((*ResultType)->isLValueReferenceType())
5791          Ty = S.Context.getLValueReferenceType(Ty,
5792            (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5793        *ResultType = Ty;
5794      }
5795
5796      InitListExpr *StructuredInitList =
5797          PerformInitList.getFullyStructuredList();
5798      CurInit.release();
5799      CurInit = shouldBindAsTemporary(InitEntity)
5800          ? S.MaybeBindToTemporary(StructuredInitList)
5801          : S.Owned(StructuredInitList);
5802      break;
5803    }
5804
5805    case SK_ListConstructorCall: {
5806      // When an initializer list is passed for a parameter of type "reference
5807      // to object", we don't get an EK_Temporary entity, but instead an
5808      // EK_Parameter entity with reference type.
5809      // FIXME: This is a hack. What we really should do is create a user
5810      // conversion step for this case, but this makes it considerably more
5811      // complicated. For now, this will do.
5812      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5813                                        Entity.getType().getNonReferenceType());
5814      bool UseTemporary = Entity.getType()->isReferenceType();
5815      assert(Args.size() == 1 && "expected a single argument for list init");
5816      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5817      S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
5818        << InitList->getSourceRange();
5819      MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5820      CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
5821                                                                   Entity,
5822                                                 Kind, Arg, *Step,
5823                                               ConstructorInitRequiresZeroInit,
5824                                               /*IsListInitialization*/ true);
5825      break;
5826    }
5827
5828    case SK_UnwrapInitList:
5829      CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5830      break;
5831
5832    case SK_RewrapInitList: {
5833      Expr *E = CurInit.take();
5834      InitListExpr *Syntactic = Step->WrappingSyntacticList;
5835      InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5836          Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
5837      ILE->setSyntacticForm(Syntactic);
5838      ILE->setType(E->getType());
5839      ILE->setValueKind(E->getValueKind());
5840      CurInit = S.Owned(ILE);
5841      break;
5842    }
5843
5844    case SK_ConstructorInitialization: {
5845      // When an initializer list is passed for a parameter of type "reference
5846      // to object", we don't get an EK_Temporary entity, but instead an
5847      // EK_Parameter entity with reference type.
5848      // FIXME: This is a hack. What we really should do is create a user
5849      // conversion step for this case, but this makes it considerably more
5850      // complicated. For now, this will do.
5851      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5852                                        Entity.getType().getNonReferenceType());
5853      bool UseTemporary = Entity.getType()->isReferenceType();
5854      CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
5855                                                                 : Entity,
5856                                                 Kind, Args, *Step,
5857                                               ConstructorInitRequiresZeroInit,
5858                                               /*IsListInitialization*/ false);
5859      break;
5860    }
5861
5862    case SK_ZeroInitialization: {
5863      step_iterator NextStep = Step;
5864      ++NextStep;
5865      if (NextStep != StepEnd &&
5866          (NextStep->Kind == SK_ConstructorInitialization ||
5867           NextStep->Kind == SK_ListConstructorCall)) {
5868        // The need for zero-initialization is recorded directly into
5869        // the call to the object's constructor within the next step.
5870        ConstructorInitRequiresZeroInit = true;
5871      } else if (Kind.getKind() == InitializationKind::IK_Value &&
5872                 S.getLangOpts().CPlusPlus &&
5873                 !Kind.isImplicitValueInit()) {
5874        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5875        if (!TSInfo)
5876          TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5877                                                    Kind.getRange().getBegin());
5878
5879        CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5880                              TSInfo->getType().getNonLValueExprType(S.Context),
5881                                                                 TSInfo,
5882                                                    Kind.getRange().getEnd()));
5883      } else {
5884        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5885      }
5886      break;
5887    }
5888
5889    case SK_CAssignment: {
5890      QualType SourceType = CurInit.get()->getType();
5891      ExprResult Result = CurInit;
5892      Sema::AssignConvertType ConvTy =
5893        S.CheckSingleAssignmentConstraints(Step->Type, Result);
5894      if (Result.isInvalid())
5895        return ExprError();
5896      CurInit = Result;
5897
5898      // If this is a call, allow conversion to a transparent union.
5899      ExprResult CurInitExprRes = CurInit;
5900      if (ConvTy != Sema::Compatible &&
5901          Entity.getKind() == InitializedEntity::EK_Parameter &&
5902          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
5903            == Sema::Compatible)
5904        ConvTy = Sema::Compatible;
5905      if (CurInitExprRes.isInvalid())
5906        return ExprError();
5907      CurInit = CurInitExprRes;
5908
5909      bool Complained;
5910      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
5911                                     Step->Type, SourceType,
5912                                     CurInit.get(),
5913                                     getAssignmentAction(Entity),
5914                                     &Complained)) {
5915        PrintInitLocationNote(S, Entity);
5916        return ExprError();
5917      } else if (Complained)
5918        PrintInitLocationNote(S, Entity);
5919      break;
5920    }
5921
5922    case SK_StringInit: {
5923      QualType Ty = Step->Type;
5924      CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
5925                      S.Context.getAsArrayType(Ty), S);
5926      break;
5927    }
5928
5929    case SK_ObjCObjectConversion:
5930      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5931                          CK_ObjCObjectLValueCast,
5932                          CurInit.get()->getValueKind());
5933      break;
5934
5935    case SK_ArrayInit:
5936      // Okay: we checked everything before creating this step. Note that
5937      // this is a GNU extension.
5938      S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
5939        << Step->Type << CurInit.get()->getType()
5940        << CurInit.get()->getSourceRange();
5941
5942      // If the destination type is an incomplete array type, update the
5943      // type accordingly.
5944      if (ResultType) {
5945        if (const IncompleteArrayType *IncompleteDest
5946                           = S.Context.getAsIncompleteArrayType(Step->Type)) {
5947          if (const ConstantArrayType *ConstantSource
5948                 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
5949            *ResultType = S.Context.getConstantArrayType(
5950                                             IncompleteDest->getElementType(),
5951                                             ConstantSource->getSize(),
5952                                             ArrayType::Normal, 0);
5953          }
5954        }
5955      }
5956      break;
5957
5958    case SK_ParenthesizedArrayInit:
5959      // Okay: we checked everything before creating this step. Note that
5960      // this is a GNU extension.
5961      S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
5962        << CurInit.get()->getSourceRange();
5963      break;
5964
5965    case SK_PassByIndirectCopyRestore:
5966    case SK_PassByIndirectRestore:
5967      checkIndirectCopyRestoreSource(S, CurInit.get());
5968      CurInit = S.Owned(new (S.Context)
5969                        ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
5970                                Step->Kind == SK_PassByIndirectCopyRestore));
5971      break;
5972
5973    case SK_ProduceObjCObject:
5974      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5975                                                 CK_ARCProduceObject,
5976                                                 CurInit.take(), 0, VK_RValue));
5977      break;
5978
5979    case SK_StdInitializerList: {
5980      S.Diag(CurInit.get()->getExprLoc(),
5981             diag::warn_cxx98_compat_initializer_list_init)
5982        << CurInit.get()->getSourceRange();
5983
5984      // Maybe lifetime-extend the array temporary's subobjects to match the
5985      // entity's lifetime.
5986      const ValueDecl *ExtendingDecl =
5987          getDeclForTemporaryLifetimeExtension(Entity);
5988      if (ExtendingDecl) {
5989        performLifetimeExtension(CurInit.get(), ExtendingDecl);
5990        warnOnLifetimeExtension(S, Entity, CurInit.get(), true, ExtendingDecl);
5991      }
5992
5993      // Materialize the temporary into memory.
5994      MaterializeTemporaryExpr *MTE = new (S.Context)
5995          MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(),
5996                                   /*lvalue reference*/ false, ExtendingDecl);
5997
5998      // Wrap it in a construction of a std::initializer_list<T>.
5999      CurInit = S.Owned(
6000          new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE));
6001
6002      // Bind the result, in case the library has given initializer_list a
6003      // non-trivial destructor.
6004      if (shouldBindAsTemporary(Entity))
6005        CurInit = S.MaybeBindToTemporary(CurInit.take());
6006      break;
6007    }
6008
6009    case SK_OCLSamplerInit: {
6010      assert(Step->Type->isSamplerT() &&
6011             "Sampler initialization on non sampler type.");
6012
6013      QualType SourceType = CurInit.get()->getType();
6014      InitializedEntity::EntityKind EntityKind = Entity.getKind();
6015
6016      if (EntityKind == InitializedEntity::EK_Parameter) {
6017        if (!SourceType->isSamplerT())
6018          S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
6019            << SourceType;
6020      } else if (EntityKind != InitializedEntity::EK_Variable) {
6021        llvm_unreachable("Invalid EntityKind!");
6022      }
6023
6024      break;
6025    }
6026    case SK_OCLZeroEvent: {
6027      assert(Step->Type->isEventT() &&
6028             "Event initialization on non event type.");
6029
6030      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
6031                                    CK_ZeroToOCLEvent,
6032                                    CurInit.get()->getValueKind());
6033      break;
6034    }
6035    }
6036  }
6037
6038  // Diagnose non-fatal problems with the completed initialization.
6039  if (Entity.getKind() == InitializedEntity::EK_Member &&
6040      cast<FieldDecl>(Entity.getDecl())->isBitField())
6041    S.CheckBitFieldInitialization(Kind.getLocation(),
6042                                  cast<FieldDecl>(Entity.getDecl()),
6043                                  CurInit.get());
6044
6045  return CurInit;
6046}
6047
6048/// Somewhere within T there is an uninitialized reference subobject.
6049/// Dig it out and diagnose it.
6050static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
6051                                           QualType T) {
6052  if (T->isReferenceType()) {
6053    S.Diag(Loc, diag::err_reference_without_init)
6054      << T.getNonReferenceType();
6055    return true;
6056  }
6057
6058  CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6059  if (!RD || !RD->hasUninitializedReferenceMember())
6060    return false;
6061
6062  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
6063                                     FE = RD->field_end(); FI != FE; ++FI) {
6064    if (FI->isUnnamedBitfield())
6065      continue;
6066
6067    if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
6068      S.Diag(Loc, diag::note_value_initialization_here) << RD;
6069      return true;
6070    }
6071  }
6072
6073  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
6074                                          BE = RD->bases_end();
6075       BI != BE; ++BI) {
6076    if (DiagnoseUninitializedReference(S, BI->getLocStart(), BI->getType())) {
6077      S.Diag(Loc, diag::note_value_initialization_here) << RD;
6078      return true;
6079    }
6080  }
6081
6082  return false;
6083}
6084
6085
6086//===----------------------------------------------------------------------===//
6087// Diagnose initialization failures
6088//===----------------------------------------------------------------------===//
6089
6090/// Emit notes associated with an initialization that failed due to a
6091/// "simple" conversion failure.
6092static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
6093                                   Expr *op) {
6094  QualType destType = entity.getType();
6095  if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
6096      op->getType()->isObjCObjectPointerType()) {
6097
6098    // Emit a possible note about the conversion failing because the
6099    // operand is a message send with a related result type.
6100    S.EmitRelatedResultTypeNote(op);
6101
6102    // Emit a possible note about a return failing because we're
6103    // expecting a related result type.
6104    if (entity.getKind() == InitializedEntity::EK_Result)
6105      S.EmitRelatedResultTypeNoteForReturn(destType);
6106  }
6107}
6108
6109bool InitializationSequence::Diagnose(Sema &S,
6110                                      const InitializedEntity &Entity,
6111                                      const InitializationKind &Kind,
6112                                      ArrayRef<Expr *> Args) {
6113  if (!Failed())
6114    return false;
6115
6116  QualType DestType = Entity.getType();
6117  switch (Failure) {
6118  case FK_TooManyInitsForReference:
6119    // FIXME: Customize for the initialized entity?
6120    if (Args.empty()) {
6121      // Dig out the reference subobject which is uninitialized and diagnose it.
6122      // If this is value-initialization, this could be nested some way within
6123      // the target type.
6124      assert(Kind.getKind() == InitializationKind::IK_Value ||
6125             DestType->isReferenceType());
6126      bool Diagnosed =
6127        DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
6128      assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
6129      (void)Diagnosed;
6130    } else  // FIXME: diagnostic below could be better!
6131      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
6132        << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
6133    break;
6134
6135  case FK_ArrayNeedsInitList:
6136    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
6137    break;
6138  case FK_ArrayNeedsInitListOrStringLiteral:
6139    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
6140    break;
6141  case FK_ArrayNeedsInitListOrWideStringLiteral:
6142    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
6143    break;
6144  case FK_NarrowStringIntoWideCharArray:
6145    S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
6146    break;
6147  case FK_WideStringIntoCharArray:
6148    S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
6149    break;
6150  case FK_IncompatWideStringIntoWideChar:
6151    S.Diag(Kind.getLocation(),
6152           diag::err_array_init_incompat_wide_string_into_wchar);
6153    break;
6154  case FK_ArrayTypeMismatch:
6155  case FK_NonConstantArrayInit:
6156    S.Diag(Kind.getLocation(),
6157           (Failure == FK_ArrayTypeMismatch
6158              ? diag::err_array_init_different_type
6159              : diag::err_array_init_non_constant_array))
6160      << DestType.getNonReferenceType()
6161      << Args[0]->getType()
6162      << Args[0]->getSourceRange();
6163    break;
6164
6165  case FK_VariableLengthArrayHasInitializer:
6166    S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
6167      << Args[0]->getSourceRange();
6168    break;
6169
6170  case FK_AddressOfOverloadFailed: {
6171    DeclAccessPair Found;
6172    S.ResolveAddressOfOverloadedFunction(Args[0],
6173                                         DestType.getNonReferenceType(),
6174                                         true,
6175                                         Found);
6176    break;
6177  }
6178
6179  case FK_ReferenceInitOverloadFailed:
6180  case FK_UserConversionOverloadFailed:
6181    switch (FailedOverloadResult) {
6182    case OR_Ambiguous:
6183      if (Failure == FK_UserConversionOverloadFailed)
6184        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
6185          << Args[0]->getType() << DestType
6186          << Args[0]->getSourceRange();
6187      else
6188        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
6189          << DestType << Args[0]->getType()
6190          << Args[0]->getSourceRange();
6191
6192      FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6193      break;
6194
6195    case OR_No_Viable_Function:
6196      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
6197        << Args[0]->getType() << DestType.getNonReferenceType()
6198        << Args[0]->getSourceRange();
6199      FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6200      break;
6201
6202    case OR_Deleted: {
6203      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
6204        << Args[0]->getType() << DestType.getNonReferenceType()
6205        << Args[0]->getSourceRange();
6206      OverloadCandidateSet::iterator Best;
6207      OverloadingResult Ovl
6208        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
6209                                                true);
6210      if (Ovl == OR_Deleted) {
6211        S.NoteDeletedFunction(Best->Function);
6212      } else {
6213        llvm_unreachable("Inconsistent overload resolution?");
6214      }
6215      break;
6216    }
6217
6218    case OR_Success:
6219      llvm_unreachable("Conversion did not fail!");
6220    }
6221    break;
6222
6223  case FK_NonConstLValueReferenceBindingToTemporary:
6224    if (isa<InitListExpr>(Args[0])) {
6225      S.Diag(Kind.getLocation(),
6226             diag::err_lvalue_reference_bind_to_initlist)
6227      << DestType.getNonReferenceType().isVolatileQualified()
6228      << DestType.getNonReferenceType()
6229      << Args[0]->getSourceRange();
6230      break;
6231    }
6232    // Intentional fallthrough
6233
6234  case FK_NonConstLValueReferenceBindingToUnrelated:
6235    S.Diag(Kind.getLocation(),
6236           Failure == FK_NonConstLValueReferenceBindingToTemporary
6237             ? diag::err_lvalue_reference_bind_to_temporary
6238             : diag::err_lvalue_reference_bind_to_unrelated)
6239      << DestType.getNonReferenceType().isVolatileQualified()
6240      << DestType.getNonReferenceType()
6241      << Args[0]->getType()
6242      << Args[0]->getSourceRange();
6243    break;
6244
6245  case FK_RValueReferenceBindingToLValue:
6246    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
6247      << DestType.getNonReferenceType() << Args[0]->getType()
6248      << Args[0]->getSourceRange();
6249    break;
6250
6251  case FK_ReferenceInitDropsQualifiers:
6252    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
6253      << DestType.getNonReferenceType()
6254      << Args[0]->getType()
6255      << Args[0]->getSourceRange();
6256    break;
6257
6258  case FK_ReferenceInitFailed:
6259    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
6260      << DestType.getNonReferenceType()
6261      << Args[0]->isLValue()
6262      << Args[0]->getType()
6263      << Args[0]->getSourceRange();
6264    emitBadConversionNotes(S, Entity, Args[0]);
6265    break;
6266
6267  case FK_ConversionFailed: {
6268    QualType FromType = Args[0]->getType();
6269    PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
6270      << (int)Entity.getKind()
6271      << DestType
6272      << Args[0]->isLValue()
6273      << FromType
6274      << Args[0]->getSourceRange();
6275    S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
6276    S.Diag(Kind.getLocation(), PDiag);
6277    emitBadConversionNotes(S, Entity, Args[0]);
6278    break;
6279  }
6280
6281  case FK_ConversionFromPropertyFailed:
6282    // No-op. This error has already been reported.
6283    break;
6284
6285  case FK_TooManyInitsForScalar: {
6286    SourceRange R;
6287
6288    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
6289      R = SourceRange(InitList->getInit(0)->getLocEnd(),
6290                      InitList->getLocEnd());
6291    else
6292      R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
6293
6294    R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
6295    if (Kind.isCStyleOrFunctionalCast())
6296      S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
6297        << R;
6298    else
6299      S.Diag(Kind.getLocation(), diag::err_excess_initializers)
6300        << /*scalar=*/2 << R;
6301    break;
6302  }
6303
6304  case FK_ReferenceBindingToInitList:
6305    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
6306      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
6307    break;
6308
6309  case FK_InitListBadDestinationType:
6310    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
6311      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
6312    break;
6313
6314  case FK_ListConstructorOverloadFailed:
6315  case FK_ConstructorOverloadFailed: {
6316    SourceRange ArgsRange;
6317    if (Args.size())
6318      ArgsRange = SourceRange(Args.front()->getLocStart(),
6319                              Args.back()->getLocEnd());
6320
6321    if (Failure == FK_ListConstructorOverloadFailed) {
6322      assert(Args.size() == 1 && "List construction from other than 1 argument.");
6323      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6324      Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
6325    }
6326
6327    // FIXME: Using "DestType" for the entity we're printing is probably
6328    // bad.
6329    switch (FailedOverloadResult) {
6330      case OR_Ambiguous:
6331        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
6332          << DestType << ArgsRange;
6333        FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6334        break;
6335
6336      case OR_No_Viable_Function:
6337        if (Kind.getKind() == InitializationKind::IK_Default &&
6338            (Entity.getKind() == InitializedEntity::EK_Base ||
6339             Entity.getKind() == InitializedEntity::EK_Member) &&
6340            isa<CXXConstructorDecl>(S.CurContext)) {
6341          // This is implicit default initialization of a member or
6342          // base within a constructor. If no viable function was
6343          // found, notify the user that she needs to explicitly
6344          // initialize this base/member.
6345          CXXConstructorDecl *Constructor
6346            = cast<CXXConstructorDecl>(S.CurContext);
6347          if (Entity.getKind() == InitializedEntity::EK_Base) {
6348            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6349              << (Constructor->getInheritedConstructor() ? 2 :
6350                  Constructor->isImplicit() ? 1 : 0)
6351              << S.Context.getTypeDeclType(Constructor->getParent())
6352              << /*base=*/0
6353              << Entity.getType();
6354
6355            RecordDecl *BaseDecl
6356              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
6357                                                                  ->getDecl();
6358            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
6359              << S.Context.getTagDeclType(BaseDecl);
6360          } else {
6361            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6362              << (Constructor->getInheritedConstructor() ? 2 :
6363                  Constructor->isImplicit() ? 1 : 0)
6364              << S.Context.getTypeDeclType(Constructor->getParent())
6365              << /*member=*/1
6366              << Entity.getName();
6367            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
6368
6369            if (const RecordType *Record
6370                                 = Entity.getType()->getAs<RecordType>())
6371              S.Diag(Record->getDecl()->getLocation(),
6372                     diag::note_previous_decl)
6373                << S.Context.getTagDeclType(Record->getDecl());
6374          }
6375          break;
6376        }
6377
6378        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
6379          << DestType << ArgsRange;
6380        FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6381        break;
6382
6383      case OR_Deleted: {
6384        OverloadCandidateSet::iterator Best;
6385        OverloadingResult Ovl
6386          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6387        if (Ovl != OR_Deleted) {
6388          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6389            << true << DestType << ArgsRange;
6390          llvm_unreachable("Inconsistent overload resolution?");
6391          break;
6392        }
6393
6394        // If this is a defaulted or implicitly-declared function, then
6395        // it was implicitly deleted. Make it clear that the deletion was
6396        // implicit.
6397        if (S.isImplicitlyDeleted(Best->Function))
6398          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
6399            << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
6400            << DestType << ArgsRange;
6401        else
6402          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6403            << true << DestType << ArgsRange;
6404
6405        S.NoteDeletedFunction(Best->Function);
6406        break;
6407      }
6408
6409      case OR_Success:
6410        llvm_unreachable("Conversion did not fail!");
6411    }
6412  }
6413  break;
6414
6415  case FK_DefaultInitOfConst:
6416    if (Entity.getKind() == InitializedEntity::EK_Member &&
6417        isa<CXXConstructorDecl>(S.CurContext)) {
6418      // This is implicit default-initialization of a const member in
6419      // a constructor. Complain that it needs to be explicitly
6420      // initialized.
6421      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
6422      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
6423        << (Constructor->getInheritedConstructor() ? 2 :
6424            Constructor->isImplicit() ? 1 : 0)
6425        << S.Context.getTypeDeclType(Constructor->getParent())
6426        << /*const=*/1
6427        << Entity.getName();
6428      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
6429        << Entity.getName();
6430    } else {
6431      S.Diag(Kind.getLocation(), diag::err_default_init_const)
6432        << DestType << (bool)DestType->getAs<RecordType>();
6433    }
6434    break;
6435
6436  case FK_Incomplete:
6437    S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
6438                          diag::err_init_incomplete_type);
6439    break;
6440
6441  case FK_ListInitializationFailed: {
6442    // Run the init list checker again to emit diagnostics.
6443    InitListExpr* InitList = cast<InitListExpr>(Args[0]);
6444    QualType DestType = Entity.getType();
6445    InitListChecker DiagnoseInitList(S, Entity, InitList,
6446            DestType, /*VerifyOnly=*/false);
6447    assert(DiagnoseInitList.HadError() &&
6448           "Inconsistent init list check result.");
6449    break;
6450  }
6451
6452  case FK_PlaceholderType: {
6453    // FIXME: Already diagnosed!
6454    break;
6455  }
6456
6457  case FK_InitListElementCopyFailure: {
6458    // Try to perform all copies again.
6459    InitListExpr* InitList = cast<InitListExpr>(Args[0]);
6460    unsigned NumInits = InitList->getNumInits();
6461    QualType DestType = Entity.getType();
6462    QualType E;
6463    bool Success = S.isStdInitializerList(DestType.getNonReferenceType(), &E);
6464    (void)Success;
6465    assert(Success && "Where did the std::initializer_list go?");
6466    InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
6467        S.Context.getConstantArrayType(E,
6468            llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
6469                        NumInits),
6470            ArrayType::Normal, 0));
6471    InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
6472        0, HiddenArray);
6473    // Show at most 3 errors. Otherwise, you'd get a lot of errors for errors
6474    // where the init list type is wrong, e.g.
6475    //   std::initializer_list<void*> list = { 1, 2, 3, 4, 5, 6, 7, 8 };
6476    // FIXME: Emit a note if we hit the limit?
6477    int ErrorCount = 0;
6478    for (unsigned i = 0; i < NumInits && ErrorCount < 3; ++i) {
6479      Element.setElementIndex(i);
6480      ExprResult Init = S.Owned(InitList->getInit(i));
6481      if (S.PerformCopyInitialization(Element, Init.get()->getExprLoc(), Init)
6482           .isInvalid())
6483        ++ErrorCount;
6484    }
6485    break;
6486  }
6487
6488  case FK_ExplicitConstructor: {
6489    S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
6490      << Args[0]->getSourceRange();
6491    OverloadCandidateSet::iterator Best;
6492    OverloadingResult Ovl
6493      = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6494    (void)Ovl;
6495    assert(Ovl == OR_Success && "Inconsistent overload resolution");
6496    CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
6497    S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
6498    break;
6499  }
6500  }
6501
6502  PrintInitLocationNote(S, Entity);
6503  return true;
6504}
6505
6506void InitializationSequence::dump(raw_ostream &OS) const {
6507  switch (SequenceKind) {
6508  case FailedSequence: {
6509    OS << "Failed sequence: ";
6510    switch (Failure) {
6511    case FK_TooManyInitsForReference:
6512      OS << "too many initializers for reference";
6513      break;
6514
6515    case FK_ArrayNeedsInitList:
6516      OS << "array requires initializer list";
6517      break;
6518
6519    case FK_ArrayNeedsInitListOrStringLiteral:
6520      OS << "array requires initializer list or string literal";
6521      break;
6522
6523    case FK_ArrayNeedsInitListOrWideStringLiteral:
6524      OS << "array requires initializer list or wide string literal";
6525      break;
6526
6527    case FK_NarrowStringIntoWideCharArray:
6528      OS << "narrow string into wide char array";
6529      break;
6530
6531    case FK_WideStringIntoCharArray:
6532      OS << "wide string into char array";
6533      break;
6534
6535    case FK_IncompatWideStringIntoWideChar:
6536      OS << "incompatible wide string into wide char array";
6537      break;
6538
6539    case FK_ArrayTypeMismatch:
6540      OS << "array type mismatch";
6541      break;
6542
6543    case FK_NonConstantArrayInit:
6544      OS << "non-constant array initializer";
6545      break;
6546
6547    case FK_AddressOfOverloadFailed:
6548      OS << "address of overloaded function failed";
6549      break;
6550
6551    case FK_ReferenceInitOverloadFailed:
6552      OS << "overload resolution for reference initialization failed";
6553      break;
6554
6555    case FK_NonConstLValueReferenceBindingToTemporary:
6556      OS << "non-const lvalue reference bound to temporary";
6557      break;
6558
6559    case FK_NonConstLValueReferenceBindingToUnrelated:
6560      OS << "non-const lvalue reference bound to unrelated type";
6561      break;
6562
6563    case FK_RValueReferenceBindingToLValue:
6564      OS << "rvalue reference bound to an lvalue";
6565      break;
6566
6567    case FK_ReferenceInitDropsQualifiers:
6568      OS << "reference initialization drops qualifiers";
6569      break;
6570
6571    case FK_ReferenceInitFailed:
6572      OS << "reference initialization failed";
6573      break;
6574
6575    case FK_ConversionFailed:
6576      OS << "conversion failed";
6577      break;
6578
6579    case FK_ConversionFromPropertyFailed:
6580      OS << "conversion from property failed";
6581      break;
6582
6583    case FK_TooManyInitsForScalar:
6584      OS << "too many initializers for scalar";
6585      break;
6586
6587    case FK_ReferenceBindingToInitList:
6588      OS << "referencing binding to initializer list";
6589      break;
6590
6591    case FK_InitListBadDestinationType:
6592      OS << "initializer list for non-aggregate, non-scalar type";
6593      break;
6594
6595    case FK_UserConversionOverloadFailed:
6596      OS << "overloading failed for user-defined conversion";
6597      break;
6598
6599    case FK_ConstructorOverloadFailed:
6600      OS << "constructor overloading failed";
6601      break;
6602
6603    case FK_DefaultInitOfConst:
6604      OS << "default initialization of a const variable";
6605      break;
6606
6607    case FK_Incomplete:
6608      OS << "initialization of incomplete type";
6609      break;
6610
6611    case FK_ListInitializationFailed:
6612      OS << "list initialization checker failure";
6613      break;
6614
6615    case FK_VariableLengthArrayHasInitializer:
6616      OS << "variable length array has an initializer";
6617      break;
6618
6619    case FK_PlaceholderType:
6620      OS << "initializer expression isn't contextually valid";
6621      break;
6622
6623    case FK_ListConstructorOverloadFailed:
6624      OS << "list constructor overloading failed";
6625      break;
6626
6627    case FK_InitListElementCopyFailure:
6628      OS << "copy construction of initializer list element failed";
6629      break;
6630
6631    case FK_ExplicitConstructor:
6632      OS << "list copy initialization chose explicit constructor";
6633      break;
6634    }
6635    OS << '\n';
6636    return;
6637  }
6638
6639  case DependentSequence:
6640    OS << "Dependent sequence\n";
6641    return;
6642
6643  case NormalSequence:
6644    OS << "Normal sequence: ";
6645    break;
6646  }
6647
6648  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
6649    if (S != step_begin()) {
6650      OS << " -> ";
6651    }
6652
6653    switch (S->Kind) {
6654    case SK_ResolveAddressOfOverloadedFunction:
6655      OS << "resolve address of overloaded function";
6656      break;
6657
6658    case SK_CastDerivedToBaseRValue:
6659      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
6660      break;
6661
6662    case SK_CastDerivedToBaseXValue:
6663      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
6664      break;
6665
6666    case SK_CastDerivedToBaseLValue:
6667      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
6668      break;
6669
6670    case SK_BindReference:
6671      OS << "bind reference to lvalue";
6672      break;
6673
6674    case SK_BindReferenceToTemporary:
6675      OS << "bind reference to a temporary";
6676      break;
6677
6678    case SK_ExtraneousCopyToTemporary:
6679      OS << "extraneous C++03 copy to temporary";
6680      break;
6681
6682    case SK_UserConversion:
6683      OS << "user-defined conversion via " << *S->Function.Function;
6684      break;
6685
6686    case SK_QualificationConversionRValue:
6687      OS << "qualification conversion (rvalue)";
6688      break;
6689
6690    case SK_QualificationConversionXValue:
6691      OS << "qualification conversion (xvalue)";
6692      break;
6693
6694    case SK_QualificationConversionLValue:
6695      OS << "qualification conversion (lvalue)";
6696      break;
6697
6698    case SK_LValueToRValue:
6699      OS << "load (lvalue to rvalue)";
6700      break;
6701
6702    case SK_ConversionSequence:
6703      OS << "implicit conversion sequence (";
6704      S->ICS->DebugPrint(); // FIXME: use OS
6705      OS << ")";
6706      break;
6707
6708    case SK_ListInitialization:
6709      OS << "list aggregate initialization";
6710      break;
6711
6712    case SK_ListConstructorCall:
6713      OS << "list initialization via constructor";
6714      break;
6715
6716    case SK_UnwrapInitList:
6717      OS << "unwrap reference initializer list";
6718      break;
6719
6720    case SK_RewrapInitList:
6721      OS << "rewrap reference initializer list";
6722      break;
6723
6724    case SK_ConstructorInitialization:
6725      OS << "constructor initialization";
6726      break;
6727
6728    case SK_ZeroInitialization:
6729      OS << "zero initialization";
6730      break;
6731
6732    case SK_CAssignment:
6733      OS << "C assignment";
6734      break;
6735
6736    case SK_StringInit:
6737      OS << "string initialization";
6738      break;
6739
6740    case SK_ObjCObjectConversion:
6741      OS << "Objective-C object conversion";
6742      break;
6743
6744    case SK_ArrayInit:
6745      OS << "array initialization";
6746      break;
6747
6748    case SK_ParenthesizedArrayInit:
6749      OS << "parenthesized array initialization";
6750      break;
6751
6752    case SK_PassByIndirectCopyRestore:
6753      OS << "pass by indirect copy and restore";
6754      break;
6755
6756    case SK_PassByIndirectRestore:
6757      OS << "pass by indirect restore";
6758      break;
6759
6760    case SK_ProduceObjCObject:
6761      OS << "Objective-C object retension";
6762      break;
6763
6764    case SK_StdInitializerList:
6765      OS << "std::initializer_list from initializer list";
6766      break;
6767
6768    case SK_OCLSamplerInit:
6769      OS << "OpenCL sampler_t from integer constant";
6770      break;
6771
6772    case SK_OCLZeroEvent:
6773      OS << "OpenCL event_t from zero";
6774      break;
6775    }
6776
6777    OS << " [" << S->Type.getAsString() << ']';
6778  }
6779
6780  OS << '\n';
6781}
6782
6783void InitializationSequence::dump() const {
6784  dump(llvm::errs());
6785}
6786
6787static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
6788                                        QualType EntityType,
6789                                        const Expr *PreInit,
6790                                        const Expr *PostInit) {
6791  if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
6792    return;
6793
6794  // A narrowing conversion can only appear as the final implicit conversion in
6795  // an initialization sequence.
6796  const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
6797  if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
6798    return;
6799
6800  const ImplicitConversionSequence &ICS = *LastStep.ICS;
6801  const StandardConversionSequence *SCS = 0;
6802  switch (ICS.getKind()) {
6803  case ImplicitConversionSequence::StandardConversion:
6804    SCS = &ICS.Standard;
6805    break;
6806  case ImplicitConversionSequence::UserDefinedConversion:
6807    SCS = &ICS.UserDefined.After;
6808    break;
6809  case ImplicitConversionSequence::AmbiguousConversion:
6810  case ImplicitConversionSequence::EllipsisConversion:
6811  case ImplicitConversionSequence::BadConversion:
6812    return;
6813  }
6814
6815  // Determine the type prior to the narrowing conversion. If a conversion
6816  // operator was used, this may be different from both the type of the entity
6817  // and of the pre-initialization expression.
6818  QualType PreNarrowingType = PreInit->getType();
6819  if (Seq.step_begin() + 1 != Seq.step_end())
6820    PreNarrowingType = Seq.step_end()[-2].Type;
6821
6822  // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6823  APValue ConstantValue;
6824  QualType ConstantType;
6825  switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6826                                ConstantType)) {
6827  case NK_Not_Narrowing:
6828    // No narrowing occurred.
6829    return;
6830
6831  case NK_Type_Narrowing:
6832    // This was a floating-to-integer conversion, which is always considered a
6833    // narrowing conversion even if the value is a constant and can be
6834    // represented exactly as an integer.
6835    S.Diag(PostInit->getLocStart(),
6836           S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6837             diag::warn_init_list_type_narrowing
6838           : S.isSFINAEContext()?
6839             diag::err_init_list_type_narrowing_sfinae
6840           : diag::err_init_list_type_narrowing)
6841      << PostInit->getSourceRange()
6842      << PreNarrowingType.getLocalUnqualifiedType()
6843      << EntityType.getLocalUnqualifiedType();
6844    break;
6845
6846  case NK_Constant_Narrowing:
6847    // A constant value was narrowed.
6848    S.Diag(PostInit->getLocStart(),
6849           S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6850             diag::warn_init_list_constant_narrowing
6851           : S.isSFINAEContext()?
6852             diag::err_init_list_constant_narrowing_sfinae
6853           : diag::err_init_list_constant_narrowing)
6854      << PostInit->getSourceRange()
6855      << ConstantValue.getAsString(S.getASTContext(), ConstantType)
6856      << EntityType.getLocalUnqualifiedType();
6857    break;
6858
6859  case NK_Variable_Narrowing:
6860    // A variable's value may have been narrowed.
6861    S.Diag(PostInit->getLocStart(),
6862           S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6863             diag::warn_init_list_variable_narrowing
6864           : S.isSFINAEContext()?
6865             diag::err_init_list_variable_narrowing_sfinae
6866           : diag::err_init_list_variable_narrowing)
6867      << PostInit->getSourceRange()
6868      << PreNarrowingType.getLocalUnqualifiedType()
6869      << EntityType.getLocalUnqualifiedType();
6870    break;
6871  }
6872
6873  SmallString<128> StaticCast;
6874  llvm::raw_svector_ostream OS(StaticCast);
6875  OS << "static_cast<";
6876  if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
6877    // It's important to use the typedef's name if there is one so that the
6878    // fixit doesn't break code using types like int64_t.
6879    //
6880    // FIXME: This will break if the typedef requires qualification.  But
6881    // getQualifiedNameAsString() includes non-machine-parsable components.
6882    OS << *TT->getDecl();
6883  } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
6884    OS << BT->getName(S.getLangOpts());
6885  else {
6886    // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
6887    // with a broken cast.
6888    return;
6889  }
6890  OS << ">(";
6891  S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
6892    << PostInit->getSourceRange()
6893    << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
6894    << FixItHint::CreateInsertion(
6895      S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
6896}
6897
6898//===----------------------------------------------------------------------===//
6899// Initialization helper functions
6900//===----------------------------------------------------------------------===//
6901bool
6902Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
6903                                   ExprResult Init) {
6904  if (Init.isInvalid())
6905    return false;
6906
6907  Expr *InitE = Init.get();
6908  assert(InitE && "No initialization expression");
6909
6910  InitializationKind Kind
6911    = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
6912  InitializationSequence Seq(*this, Entity, Kind, InitE);
6913  return !Seq.Failed();
6914}
6915
6916ExprResult
6917Sema::PerformCopyInitialization(const InitializedEntity &Entity,
6918                                SourceLocation EqualLoc,
6919                                ExprResult Init,
6920                                bool TopLevelOfInitList,
6921                                bool AllowExplicit) {
6922  if (Init.isInvalid())
6923    return ExprError();
6924
6925  Expr *InitE = Init.get();
6926  assert(InitE && "No initialization expression?");
6927
6928  if (EqualLoc.isInvalid())
6929    EqualLoc = InitE->getLocStart();
6930
6931  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
6932                                                           EqualLoc,
6933                                                           AllowExplicit);
6934  InitializationSequence Seq(*this, Entity, Kind, InitE);
6935  Init.release();
6936
6937  ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
6938
6939  if (!Result.isInvalid() && TopLevelOfInitList)
6940    DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
6941                                InitE, Result.get());
6942
6943  return Result;
6944}
6945