SemaInit.cpp revision 5058ef6c7ab13f285da81c787ea7a5ffe464e8a4
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14// This file also implements Sema::CheckInitializerTypes.
15//
16//===----------------------------------------------------------------------===//
17
18#include "clang/Sema/Designator.h"
19#include "clang/Sema/Initialization.h"
20#include "clang/Sema/Lookup.h"
21#include "clang/Sema/SemaInternal.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeLoc.h"
28#include "llvm/Support/ErrorHandling.h"
29#include <map>
30using namespace clang;
31
32//===----------------------------------------------------------------------===//
33// Sema Initialization Checking
34//===----------------------------------------------------------------------===//
35
36static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
37  const ArrayType *AT = Context.getAsArrayType(DeclType);
38  if (!AT) return 0;
39
40  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
41    return 0;
42
43  // See if this is a string literal or @encode.
44  Init = Init->IgnoreParens();
45
46  // Handle @encode, which is a narrow string.
47  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
48    return Init;
49
50  // Otherwise we can only handle string literals.
51  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
52  if (SL == 0) return 0;
53
54  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
55  // char array can be initialized with a narrow string.
56  // Only allow char x[] = "foo";  not char x[] = L"foo";
57  if (!SL->isWide())
58    return ElemTy->isCharType() ? Init : 0;
59
60  // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
61  // correction from DR343): "An array with element type compatible with a
62  // qualified or unqualified version of wchar_t may be initialized by a wide
63  // string literal, optionally enclosed in braces."
64  if (Context.typesAreCompatible(Context.getWCharType(),
65                                 ElemTy.getUnqualifiedType()))
66    return Init;
67
68  return 0;
69}
70
71static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
72  // Get the length of the string as parsed.
73  uint64_t StrLength =
74    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
75
76
77  const ArrayType *AT = S.Context.getAsArrayType(DeclT);
78  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
79    // C99 6.7.8p14. We have an array of character type with unknown size
80    // being initialized to a string literal.
81    llvm::APSInt ConstVal(32);
82    ConstVal = StrLength;
83    // Return a new array type (C99 6.7.8p22).
84    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
85                                           ConstVal,
86                                           ArrayType::Normal, 0);
87    return;
88  }
89
90  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
91
92  // C99 6.7.8p14. We have an array of character type with known size.  However,
93  // the size may be smaller or larger than the string we are initializing.
94  // FIXME: Avoid truncation for 64-bit length strings.
95  if (StrLength-1 > CAT->getSize().getZExtValue())
96    S.Diag(Str->getSourceRange().getBegin(),
97           diag::warn_initializer_string_for_char_array_too_long)
98      << Str->getSourceRange();
99
100  // Set the type to the actual size that we are initializing.  If we have
101  // something like:
102  //   char x[1] = "foo";
103  // then this will set the string literal's type to char[1].
104  Str->setType(DeclT);
105}
106
107//===----------------------------------------------------------------------===//
108// Semantic checking for initializer lists.
109//===----------------------------------------------------------------------===//
110
111/// @brief Semantic checking for initializer lists.
112///
113/// The InitListChecker class contains a set of routines that each
114/// handle the initialization of a certain kind of entity, e.g.,
115/// arrays, vectors, struct/union types, scalars, etc. The
116/// InitListChecker itself performs a recursive walk of the subobject
117/// structure of the type to be initialized, while stepping through
118/// the initializer list one element at a time. The IList and Index
119/// parameters to each of the Check* routines contain the active
120/// (syntactic) initializer list and the index into that initializer
121/// list that represents the current initializer. Each routine is
122/// responsible for moving that Index forward as it consumes elements.
123///
124/// Each Check* routine also has a StructuredList/StructuredIndex
125/// arguments, which contains the current the "structured" (semantic)
126/// initializer list and the index into that initializer list where we
127/// are copying initializers as we map them over to the semantic
128/// list. Once we have completed our recursive walk of the subobject
129/// structure, we will have constructed a full semantic initializer
130/// list.
131///
132/// C99 designators cause changes in the initializer list traversal,
133/// because they make the initialization "jump" into a specific
134/// subobject and then continue the initialization from that
135/// point. CheckDesignatedInitializer() recursively steps into the
136/// designated subobject and manages backing out the recursion to
137/// initialize the subobjects after the one designated.
138namespace {
139class InitListChecker {
140  Sema &SemaRef;
141  bool hadError;
142  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
143  InitListExpr *FullyStructuredList;
144
145  void CheckImplicitInitList(const InitializedEntity &Entity,
146                             InitListExpr *ParentIList, QualType T,
147                             unsigned &Index, InitListExpr *StructuredList,
148                             unsigned &StructuredIndex,
149                             bool TopLevelObject = false);
150  void CheckExplicitInitList(const InitializedEntity &Entity,
151                             InitListExpr *IList, QualType &T,
152                             unsigned &Index, InitListExpr *StructuredList,
153                             unsigned &StructuredIndex,
154                             bool TopLevelObject = false);
155  void CheckListElementTypes(const InitializedEntity &Entity,
156                             InitListExpr *IList, QualType &DeclType,
157                             bool SubobjectIsDesignatorContext,
158                             unsigned &Index,
159                             InitListExpr *StructuredList,
160                             unsigned &StructuredIndex,
161                             bool TopLevelObject = false);
162  void CheckSubElementType(const InitializedEntity &Entity,
163                           InitListExpr *IList, QualType ElemType,
164                           unsigned &Index,
165                           InitListExpr *StructuredList,
166                           unsigned &StructuredIndex);
167  void CheckScalarType(const InitializedEntity &Entity,
168                       InitListExpr *IList, QualType DeclType,
169                       unsigned &Index,
170                       InitListExpr *StructuredList,
171                       unsigned &StructuredIndex);
172  void CheckReferenceType(const InitializedEntity &Entity,
173                          InitListExpr *IList, QualType DeclType,
174                          unsigned &Index,
175                          InitListExpr *StructuredList,
176                          unsigned &StructuredIndex);
177  void CheckVectorType(const InitializedEntity &Entity,
178                       InitListExpr *IList, QualType DeclType, unsigned &Index,
179                       InitListExpr *StructuredList,
180                       unsigned &StructuredIndex);
181  void CheckStructUnionTypes(const InitializedEntity &Entity,
182                             InitListExpr *IList, QualType DeclType,
183                             RecordDecl::field_iterator Field,
184                             bool SubobjectIsDesignatorContext, unsigned &Index,
185                             InitListExpr *StructuredList,
186                             unsigned &StructuredIndex,
187                             bool TopLevelObject = false);
188  void CheckArrayType(const InitializedEntity &Entity,
189                      InitListExpr *IList, QualType &DeclType,
190                      llvm::APSInt elementIndex,
191                      bool SubobjectIsDesignatorContext, unsigned &Index,
192                      InitListExpr *StructuredList,
193                      unsigned &StructuredIndex);
194  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
195                                  InitListExpr *IList, DesignatedInitExpr *DIE,
196                                  unsigned DesigIdx,
197                                  QualType &CurrentObjectType,
198                                  RecordDecl::field_iterator *NextField,
199                                  llvm::APSInt *NextElementIndex,
200                                  unsigned &Index,
201                                  InitListExpr *StructuredList,
202                                  unsigned &StructuredIndex,
203                                  bool FinishSubobjectInit,
204                                  bool TopLevelObject);
205  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
206                                           QualType CurrentObjectType,
207                                           InitListExpr *StructuredList,
208                                           unsigned StructuredIndex,
209                                           SourceRange InitRange);
210  void UpdateStructuredListElement(InitListExpr *StructuredList,
211                                   unsigned &StructuredIndex,
212                                   Expr *expr);
213  int numArrayElements(QualType DeclType);
214  int numStructUnionElements(QualType DeclType);
215
216  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
217                               const InitializedEntity &ParentEntity,
218                               InitListExpr *ILE, bool &RequiresSecondPass);
219  void FillInValueInitializations(const InitializedEntity &Entity,
220                                  InitListExpr *ILE, bool &RequiresSecondPass);
221public:
222  InitListChecker(Sema &S, const InitializedEntity &Entity,
223                  InitListExpr *IL, QualType &T);
224  bool HadError() { return hadError; }
225
226  // @brief Retrieves the fully-structured initializer list used for
227  // semantic analysis and code generation.
228  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
229};
230} // end anonymous namespace
231
232void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
233                                        const InitializedEntity &ParentEntity,
234                                              InitListExpr *ILE,
235                                              bool &RequiresSecondPass) {
236  SourceLocation Loc = ILE->getSourceRange().getBegin();
237  unsigned NumInits = ILE->getNumInits();
238  InitializedEntity MemberEntity
239    = InitializedEntity::InitializeMember(Field, &ParentEntity);
240  if (Init >= NumInits || !ILE->getInit(Init)) {
241    // FIXME: We probably don't need to handle references
242    // specially here, since value-initialization of references is
243    // handled in InitializationSequence.
244    if (Field->getType()->isReferenceType()) {
245      // C++ [dcl.init.aggr]p9:
246      //   If an incomplete or empty initializer-list leaves a
247      //   member of reference type uninitialized, the program is
248      //   ill-formed.
249      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
250        << Field->getType()
251        << ILE->getSyntacticForm()->getSourceRange();
252      SemaRef.Diag(Field->getLocation(),
253                   diag::note_uninit_reference_member);
254      hadError = true;
255      return;
256    }
257
258    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
259                                                              true);
260    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
261    if (!InitSeq) {
262      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
263      hadError = true;
264      return;
265    }
266
267    ExprResult MemberInit
268      = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
269    if (MemberInit.isInvalid()) {
270      hadError = true;
271      return;
272    }
273
274    if (hadError) {
275      // Do nothing
276    } else if (Init < NumInits) {
277      ILE->setInit(Init, MemberInit.takeAs<Expr>());
278    } else if (InitSeq.getKind()
279                 == InitializationSequence::ConstructorInitialization) {
280      // Value-initialization requires a constructor call, so
281      // extend the initializer list to include the constructor
282      // call and make a note that we'll need to take another pass
283      // through the initializer list.
284      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
285      RequiresSecondPass = true;
286    }
287  } else if (InitListExpr *InnerILE
288               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
289    FillInValueInitializations(MemberEntity, InnerILE,
290                               RequiresSecondPass);
291}
292
293/// Recursively replaces NULL values within the given initializer list
294/// with expressions that perform value-initialization of the
295/// appropriate type.
296void
297InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
298                                            InitListExpr *ILE,
299                                            bool &RequiresSecondPass) {
300  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
301         "Should not have void type");
302  SourceLocation Loc = ILE->getSourceRange().getBegin();
303  if (ILE->getSyntacticForm())
304    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
305
306  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
307    if (RType->getDecl()->isUnion() &&
308        ILE->getInitializedFieldInUnion())
309      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
310                              Entity, ILE, RequiresSecondPass);
311    else {
312      unsigned Init = 0;
313      for (RecordDecl::field_iterator
314             Field = RType->getDecl()->field_begin(),
315             FieldEnd = RType->getDecl()->field_end();
316           Field != FieldEnd; ++Field) {
317        if (Field->isUnnamedBitfield())
318          continue;
319
320        if (hadError)
321          return;
322
323        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
324        if (hadError)
325          return;
326
327        ++Init;
328
329        // Only look at the first initialization of a union.
330        if (RType->getDecl()->isUnion())
331          break;
332      }
333    }
334
335    return;
336  }
337
338  QualType ElementType;
339
340  InitializedEntity ElementEntity = Entity;
341  unsigned NumInits = ILE->getNumInits();
342  unsigned NumElements = NumInits;
343  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
344    ElementType = AType->getElementType();
345    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
346      NumElements = CAType->getSize().getZExtValue();
347    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
348                                                         0, Entity);
349  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
350    ElementType = VType->getElementType();
351    NumElements = VType->getNumElements();
352    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
353                                                         0, Entity);
354  } else
355    ElementType = ILE->getType();
356
357
358  for (unsigned Init = 0; Init != NumElements; ++Init) {
359    if (hadError)
360      return;
361
362    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
363        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
364      ElementEntity.setElementIndex(Init);
365
366    if (Init >= NumInits || !ILE->getInit(Init)) {
367      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
368                                                                true);
369      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
370      if (!InitSeq) {
371        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
372        hadError = true;
373        return;
374      }
375
376      ExprResult ElementInit
377        = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
378      if (ElementInit.isInvalid()) {
379        hadError = true;
380        return;
381      }
382
383      if (hadError) {
384        // Do nothing
385      } else if (Init < NumInits) {
386        ILE->setInit(Init, ElementInit.takeAs<Expr>());
387      } else if (InitSeq.getKind()
388                   == InitializationSequence::ConstructorInitialization) {
389        // Value-initialization requires a constructor call, so
390        // extend the initializer list to include the constructor
391        // call and make a note that we'll need to take another pass
392        // through the initializer list.
393        ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
394        RequiresSecondPass = true;
395      }
396    } else if (InitListExpr *InnerILE
397                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
398      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
399  }
400}
401
402
403InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
404                                 InitListExpr *IL, QualType &T)
405  : SemaRef(S) {
406  hadError = false;
407
408  unsigned newIndex = 0;
409  unsigned newStructuredIndex = 0;
410  FullyStructuredList
411    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
412  CheckExplicitInitList(Entity, IL, T, newIndex,
413                        FullyStructuredList, newStructuredIndex,
414                        /*TopLevelObject=*/true);
415
416  if (!hadError) {
417    bool RequiresSecondPass = false;
418    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
419    if (RequiresSecondPass && !hadError)
420      FillInValueInitializations(Entity, FullyStructuredList,
421                                 RequiresSecondPass);
422  }
423}
424
425int InitListChecker::numArrayElements(QualType DeclType) {
426  // FIXME: use a proper constant
427  int maxElements = 0x7FFFFFFF;
428  if (const ConstantArrayType *CAT =
429        SemaRef.Context.getAsConstantArrayType(DeclType)) {
430    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
431  }
432  return maxElements;
433}
434
435int InitListChecker::numStructUnionElements(QualType DeclType) {
436  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
437  int InitializableMembers = 0;
438  for (RecordDecl::field_iterator
439         Field = structDecl->field_begin(),
440         FieldEnd = structDecl->field_end();
441       Field != FieldEnd; ++Field) {
442    if ((*Field)->getIdentifier() || !(*Field)->isBitField())
443      ++InitializableMembers;
444  }
445  if (structDecl->isUnion())
446    return std::min(InitializableMembers, 1);
447  return InitializableMembers - structDecl->hasFlexibleArrayMember();
448}
449
450void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
451                                            InitListExpr *ParentIList,
452                                            QualType T, unsigned &Index,
453                                            InitListExpr *StructuredList,
454                                            unsigned &StructuredIndex,
455                                            bool TopLevelObject) {
456  int maxElements = 0;
457
458  if (T->isArrayType())
459    maxElements = numArrayElements(T);
460  else if (T->isRecordType())
461    maxElements = numStructUnionElements(T);
462  else if (T->isVectorType())
463    maxElements = T->getAs<VectorType>()->getNumElements();
464  else
465    assert(0 && "CheckImplicitInitList(): Illegal type");
466
467  if (maxElements == 0) {
468    SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
469                  diag::err_implicit_empty_initializer);
470    ++Index;
471    hadError = true;
472    return;
473  }
474
475  // Build a structured initializer list corresponding to this subobject.
476  InitListExpr *StructuredSubobjectInitList
477    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
478                                 StructuredIndex,
479          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
480                      ParentIList->getSourceRange().getEnd()));
481  unsigned StructuredSubobjectInitIndex = 0;
482
483  // Check the element types and build the structural subobject.
484  unsigned StartIndex = Index;
485  CheckListElementTypes(Entity, ParentIList, T,
486                        /*SubobjectIsDesignatorContext=*/false, Index,
487                        StructuredSubobjectInitList,
488                        StructuredSubobjectInitIndex,
489                        TopLevelObject);
490  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
491  StructuredSubobjectInitList->setType(T);
492
493  // Update the structured sub-object initializer so that it's ending
494  // range corresponds with the end of the last initializer it used.
495  if (EndIndex < ParentIList->getNumInits()) {
496    SourceLocation EndLoc
497      = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
498    StructuredSubobjectInitList->setRBraceLoc(EndLoc);
499  }
500
501  // Warn about missing braces.
502  if (T->isArrayType() || T->isRecordType()) {
503    SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
504                 diag::warn_missing_braces)
505    << StructuredSubobjectInitList->getSourceRange()
506    << FixItHint::CreateInsertion(StructuredSubobjectInitList->getLocStart(),
507                                  "{")
508    << FixItHint::CreateInsertion(SemaRef.PP.getLocForEndOfToken(
509                                      StructuredSubobjectInitList->getLocEnd()),
510                                  "}");
511  }
512}
513
514void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
515                                            InitListExpr *IList, QualType &T,
516                                            unsigned &Index,
517                                            InitListExpr *StructuredList,
518                                            unsigned &StructuredIndex,
519                                            bool TopLevelObject) {
520  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
521  SyntacticToSemantic[IList] = StructuredList;
522  StructuredList->setSyntacticForm(IList);
523  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
524                        Index, StructuredList, StructuredIndex, TopLevelObject);
525  QualType ExprTy = T.getNonLValueExprType(SemaRef.Context);
526  IList->setType(ExprTy);
527  StructuredList->setType(ExprTy);
528  if (hadError)
529    return;
530
531  if (Index < IList->getNumInits()) {
532    // We have leftover initializers
533    if (StructuredIndex == 1 &&
534        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
535      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
536      if (SemaRef.getLangOptions().CPlusPlus) {
537        DK = diag::err_excess_initializers_in_char_array_initializer;
538        hadError = true;
539      }
540      // Special-case
541      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
542        << IList->getInit(Index)->getSourceRange();
543    } else if (!T->isIncompleteType()) {
544      // Don't complain for incomplete types, since we'll get an error
545      // elsewhere
546      QualType CurrentObjectType = StructuredList->getType();
547      int initKind =
548        CurrentObjectType->isArrayType()? 0 :
549        CurrentObjectType->isVectorType()? 1 :
550        CurrentObjectType->isScalarType()? 2 :
551        CurrentObjectType->isUnionType()? 3 :
552        4;
553
554      unsigned DK = diag::warn_excess_initializers;
555      if (SemaRef.getLangOptions().CPlusPlus) {
556        DK = diag::err_excess_initializers;
557        hadError = true;
558      }
559      if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
560        DK = diag::err_excess_initializers;
561        hadError = true;
562      }
563
564      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
565        << initKind << IList->getInit(Index)->getSourceRange();
566    }
567  }
568
569  if (T->isScalarType() && !TopLevelObject)
570    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
571      << IList->getSourceRange()
572      << FixItHint::CreateRemoval(IList->getLocStart())
573      << FixItHint::CreateRemoval(IList->getLocEnd());
574}
575
576void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
577                                            InitListExpr *IList,
578                                            QualType &DeclType,
579                                            bool SubobjectIsDesignatorContext,
580                                            unsigned &Index,
581                                            InitListExpr *StructuredList,
582                                            unsigned &StructuredIndex,
583                                            bool TopLevelObject) {
584  if (DeclType->isScalarType()) {
585    CheckScalarType(Entity, IList, DeclType, Index,
586                    StructuredList, StructuredIndex);
587  } else if (DeclType->isVectorType()) {
588    CheckVectorType(Entity, IList, DeclType, Index,
589                    StructuredList, StructuredIndex);
590  } else if (DeclType->isAggregateType()) {
591    if (DeclType->isRecordType()) {
592      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
593      CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
594                            SubobjectIsDesignatorContext, Index,
595                            StructuredList, StructuredIndex,
596                            TopLevelObject);
597    } else if (DeclType->isArrayType()) {
598      llvm::APSInt Zero(
599                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
600                      false);
601      CheckArrayType(Entity, IList, DeclType, Zero,
602                     SubobjectIsDesignatorContext, Index,
603                     StructuredList, StructuredIndex);
604    } else
605      assert(0 && "Aggregate that isn't a structure or array?!");
606  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
607    // This type is invalid, issue a diagnostic.
608    ++Index;
609    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
610      << DeclType;
611    hadError = true;
612  } else if (DeclType->isRecordType()) {
613    // C++ [dcl.init]p14:
614    //   [...] If the class is an aggregate (8.5.1), and the initializer
615    //   is a brace-enclosed list, see 8.5.1.
616    //
617    // Note: 8.5.1 is handled below; here, we diagnose the case where
618    // we have an initializer list and a destination type that is not
619    // an aggregate.
620    // FIXME: In C++0x, this is yet another form of initialization.
621    SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
622      << DeclType << IList->getSourceRange();
623    hadError = true;
624  } else if (DeclType->isReferenceType()) {
625    CheckReferenceType(Entity, IList, DeclType, Index,
626                       StructuredList, StructuredIndex);
627  } else if (DeclType->isObjCObjectType()) {
628    SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
629      << DeclType;
630    hadError = true;
631  } else {
632    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
633      << DeclType;
634    hadError = true;
635  }
636}
637
638void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
639                                          InitListExpr *IList,
640                                          QualType ElemType,
641                                          unsigned &Index,
642                                          InitListExpr *StructuredList,
643                                          unsigned &StructuredIndex) {
644  Expr *expr = IList->getInit(Index);
645  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
646    unsigned newIndex = 0;
647    unsigned newStructuredIndex = 0;
648    InitListExpr *newStructuredList
649      = getStructuredSubobjectInit(IList, Index, ElemType,
650                                   StructuredList, StructuredIndex,
651                                   SubInitList->getSourceRange());
652    CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
653                          newStructuredList, newStructuredIndex);
654    ++StructuredIndex;
655    ++Index;
656  } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
657    CheckStringInit(Str, ElemType, SemaRef);
658    UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
659    ++Index;
660  } else if (ElemType->isScalarType()) {
661    CheckScalarType(Entity, IList, ElemType, Index,
662                    StructuredList, StructuredIndex);
663  } else if (ElemType->isReferenceType()) {
664    CheckReferenceType(Entity, IList, ElemType, Index,
665                       StructuredList, StructuredIndex);
666  } else {
667    if (SemaRef.getLangOptions().CPlusPlus) {
668      // C++ [dcl.init.aggr]p12:
669      //   All implicit type conversions (clause 4) are considered when
670      //   initializing the aggregate member with an ini- tializer from
671      //   an initializer-list. If the initializer can initialize a
672      //   member, the member is initialized. [...]
673
674      // FIXME: Better EqualLoc?
675      InitializationKind Kind =
676        InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
677      InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
678
679      if (Seq) {
680        ExprResult Result =
681          Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
682        if (Result.isInvalid())
683          hadError = true;
684
685        UpdateStructuredListElement(StructuredList, StructuredIndex,
686                                    Result.takeAs<Expr>());
687        ++Index;
688        return;
689      }
690
691      // Fall through for subaggregate initialization
692    } else {
693      // C99 6.7.8p13:
694      //
695      //   The initializer for a structure or union object that has
696      //   automatic storage duration shall be either an initializer
697      //   list as described below, or a single expression that has
698      //   compatible structure or union type. In the latter case, the
699      //   initial value of the object, including unnamed members, is
700      //   that of the expression.
701      if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
702          SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) {
703        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
704        ++Index;
705        return;
706      }
707
708      // Fall through for subaggregate initialization
709    }
710
711    // C++ [dcl.init.aggr]p12:
712    //
713    //   [...] Otherwise, if the member is itself a non-empty
714    //   subaggregate, brace elision is assumed and the initializer is
715    //   considered for the initialization of the first member of
716    //   the subaggregate.
717    if (ElemType->isAggregateType() || ElemType->isVectorType()) {
718      CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
719                            StructuredIndex);
720      ++StructuredIndex;
721    } else {
722      // We cannot initialize this element, so let
723      // PerformCopyInitialization produce the appropriate diagnostic.
724      SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
725                                        SemaRef.Owned(expr));
726      IList->setInit(Index, 0);
727      hadError = true;
728      ++Index;
729      ++StructuredIndex;
730    }
731  }
732}
733
734void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
735                                      InitListExpr *IList, QualType DeclType,
736                                      unsigned &Index,
737                                      InitListExpr *StructuredList,
738                                      unsigned &StructuredIndex) {
739  if (Index < IList->getNumInits()) {
740    Expr *expr = IList->getInit(Index);
741    if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
742      SemaRef.Diag(SubIList->getLocStart(),
743                    diag::warn_many_braces_around_scalar_init)
744        << SubIList->getSourceRange();
745
746      CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
747                      StructuredIndex);
748      return;
749    } else if (isa<DesignatedInitExpr>(expr)) {
750      SemaRef.Diag(expr->getSourceRange().getBegin(),
751                    diag::err_designator_for_scalar_init)
752        << DeclType << expr->getSourceRange();
753      hadError = true;
754      ++Index;
755      ++StructuredIndex;
756      return;
757    }
758
759    ExprResult Result =
760      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
761                                        SemaRef.Owned(expr));
762
763    Expr *ResultExpr = 0;
764
765    if (Result.isInvalid())
766      hadError = true; // types weren't compatible.
767    else {
768      ResultExpr = Result.takeAs<Expr>();
769
770      if (ResultExpr != expr) {
771        // The type was promoted, update initializer list.
772        IList->setInit(Index, ResultExpr);
773      }
774    }
775    if (hadError)
776      ++StructuredIndex;
777    else
778      UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
779    ++Index;
780  } else {
781    SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
782      << IList->getSourceRange();
783    hadError = true;
784    ++Index;
785    ++StructuredIndex;
786    return;
787  }
788}
789
790void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
791                                         InitListExpr *IList, QualType DeclType,
792                                         unsigned &Index,
793                                         InitListExpr *StructuredList,
794                                         unsigned &StructuredIndex) {
795  if (Index < IList->getNumInits()) {
796    Expr *expr = IList->getInit(Index);
797    if (isa<InitListExpr>(expr)) {
798      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
799        << DeclType << IList->getSourceRange();
800      hadError = true;
801      ++Index;
802      ++StructuredIndex;
803      return;
804    }
805
806    ExprResult Result =
807      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
808                                        SemaRef.Owned(expr));
809
810    if (Result.isInvalid())
811      hadError = true;
812
813    expr = Result.takeAs<Expr>();
814    IList->setInit(Index, expr);
815
816    if (hadError)
817      ++StructuredIndex;
818    else
819      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
820    ++Index;
821  } else {
822    // FIXME: It would be wonderful if we could point at the actual member. In
823    // general, it would be useful to pass location information down the stack,
824    // so that we know the location (or decl) of the "current object" being
825    // initialized.
826    SemaRef.Diag(IList->getLocStart(),
827                  diag::err_init_reference_member_uninitialized)
828      << DeclType
829      << IList->getSourceRange();
830    hadError = true;
831    ++Index;
832    ++StructuredIndex;
833    return;
834  }
835}
836
837void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
838                                      InitListExpr *IList, QualType DeclType,
839                                      unsigned &Index,
840                                      InitListExpr *StructuredList,
841                                      unsigned &StructuredIndex) {
842  if (Index < IList->getNumInits()) {
843    const VectorType *VT = DeclType->getAs<VectorType>();
844    unsigned maxElements = VT->getNumElements();
845    unsigned numEltsInit = 0;
846    QualType elementType = VT->getElementType();
847
848    if (!SemaRef.getLangOptions().OpenCL) {
849      InitializedEntity ElementEntity =
850        InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
851
852      for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
853        // Don't attempt to go past the end of the init list
854        if (Index >= IList->getNumInits())
855          break;
856
857        ElementEntity.setElementIndex(Index);
858        CheckSubElementType(ElementEntity, IList, elementType, Index,
859                            StructuredList, StructuredIndex);
860      }
861    } else {
862      InitializedEntity ElementEntity =
863        InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
864
865      // OpenCL initializers allows vectors to be constructed from vectors.
866      for (unsigned i = 0; i < maxElements; ++i) {
867        // Don't attempt to go past the end of the init list
868        if (Index >= IList->getNumInits())
869          break;
870
871        ElementEntity.setElementIndex(Index);
872
873        QualType IType = IList->getInit(Index)->getType();
874        if (!IType->isVectorType()) {
875          CheckSubElementType(ElementEntity, IList, elementType, Index,
876                              StructuredList, StructuredIndex);
877          ++numEltsInit;
878        } else {
879          QualType VecType;
880          const VectorType *IVT = IType->getAs<VectorType>();
881          unsigned numIElts = IVT->getNumElements();
882
883          if (IType->isExtVectorType())
884            VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
885          else
886            VecType = SemaRef.Context.getVectorType(elementType, numIElts,
887                                                    IVT->getAltiVecSpecific());
888          CheckSubElementType(ElementEntity, IList, VecType, Index,
889                              StructuredList, StructuredIndex);
890          numEltsInit += numIElts;
891        }
892      }
893    }
894
895    // OpenCL requires all elements to be initialized.
896    if (numEltsInit != maxElements)
897      if (SemaRef.getLangOptions().OpenCL)
898        SemaRef.Diag(IList->getSourceRange().getBegin(),
899                     diag::err_vector_incorrect_num_initializers)
900          << (numEltsInit < maxElements) << maxElements << numEltsInit;
901  }
902}
903
904void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
905                                     InitListExpr *IList, QualType &DeclType,
906                                     llvm::APSInt elementIndex,
907                                     bool SubobjectIsDesignatorContext,
908                                     unsigned &Index,
909                                     InitListExpr *StructuredList,
910                                     unsigned &StructuredIndex) {
911  // Check for the special-case of initializing an array with a string.
912  if (Index < IList->getNumInits()) {
913    if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
914                                 SemaRef.Context)) {
915      CheckStringInit(Str, DeclType, SemaRef);
916      // We place the string literal directly into the resulting
917      // initializer list. This is the only place where the structure
918      // of the structured initializer list doesn't match exactly,
919      // because doing so would involve allocating one character
920      // constant for each string.
921      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
922      StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
923      ++Index;
924      return;
925    }
926  }
927  if (const VariableArrayType *VAT =
928        SemaRef.Context.getAsVariableArrayType(DeclType)) {
929    // Check for VLAs; in standard C it would be possible to check this
930    // earlier, but I don't know where clang accepts VLAs (gcc accepts
931    // them in all sorts of strange places).
932    SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
933                  diag::err_variable_object_no_init)
934      << VAT->getSizeExpr()->getSourceRange();
935    hadError = true;
936    ++Index;
937    ++StructuredIndex;
938    return;
939  }
940
941  // We might know the maximum number of elements in advance.
942  llvm::APSInt maxElements(elementIndex.getBitWidth(),
943                           elementIndex.isUnsigned());
944  bool maxElementsKnown = false;
945  if (const ConstantArrayType *CAT =
946        SemaRef.Context.getAsConstantArrayType(DeclType)) {
947    maxElements = CAT->getSize();
948    elementIndex.extOrTrunc(maxElements.getBitWidth());
949    elementIndex.setIsUnsigned(maxElements.isUnsigned());
950    maxElementsKnown = true;
951  }
952
953  QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
954                             ->getElementType();
955  while (Index < IList->getNumInits()) {
956    Expr *Init = IList->getInit(Index);
957    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
958      // If we're not the subobject that matches up with the '{' for
959      // the designator, we shouldn't be handling the
960      // designator. Return immediately.
961      if (!SubobjectIsDesignatorContext)
962        return;
963
964      // Handle this designated initializer. elementIndex will be
965      // updated to be the next array element we'll initialize.
966      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
967                                     DeclType, 0, &elementIndex, Index,
968                                     StructuredList, StructuredIndex, true,
969                                     false)) {
970        hadError = true;
971        continue;
972      }
973
974      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
975        maxElements.extend(elementIndex.getBitWidth());
976      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
977        elementIndex.extend(maxElements.getBitWidth());
978      elementIndex.setIsUnsigned(maxElements.isUnsigned());
979
980      // If the array is of incomplete type, keep track of the number of
981      // elements in the initializer.
982      if (!maxElementsKnown && elementIndex > maxElements)
983        maxElements = elementIndex;
984
985      continue;
986    }
987
988    // If we know the maximum number of elements, and we've already
989    // hit it, stop consuming elements in the initializer list.
990    if (maxElementsKnown && elementIndex == maxElements)
991      break;
992
993    InitializedEntity ElementEntity =
994      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
995                                           Entity);
996    // Check this element.
997    CheckSubElementType(ElementEntity, IList, elementType, Index,
998                        StructuredList, StructuredIndex);
999    ++elementIndex;
1000
1001    // If the array is of incomplete type, keep track of the number of
1002    // elements in the initializer.
1003    if (!maxElementsKnown && elementIndex > maxElements)
1004      maxElements = elementIndex;
1005  }
1006  if (!hadError && DeclType->isIncompleteArrayType()) {
1007    // If this is an incomplete array type, the actual type needs to
1008    // be calculated here.
1009    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1010    if (maxElements == Zero) {
1011      // Sizing an array implicitly to zero is not allowed by ISO C,
1012      // but is supported by GNU.
1013      SemaRef.Diag(IList->getLocStart(),
1014                    diag::ext_typecheck_zero_array_size);
1015    }
1016
1017    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1018                                                     ArrayType::Normal, 0);
1019  }
1020}
1021
1022void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1023                                            InitListExpr *IList,
1024                                            QualType DeclType,
1025                                            RecordDecl::field_iterator Field,
1026                                            bool SubobjectIsDesignatorContext,
1027                                            unsigned &Index,
1028                                            InitListExpr *StructuredList,
1029                                            unsigned &StructuredIndex,
1030                                            bool TopLevelObject) {
1031  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1032
1033  // If the record is invalid, some of it's members are invalid. To avoid
1034  // confusion, we forgo checking the intializer for the entire record.
1035  if (structDecl->isInvalidDecl()) {
1036    hadError = true;
1037    return;
1038  }
1039
1040  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1041    // Value-initialize the first named member of the union.
1042    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1043    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1044         Field != FieldEnd; ++Field) {
1045      if (Field->getDeclName()) {
1046        StructuredList->setInitializedFieldInUnion(*Field);
1047        break;
1048      }
1049    }
1050    return;
1051  }
1052
1053  // If structDecl is a forward declaration, this loop won't do
1054  // anything except look at designated initializers; That's okay,
1055  // because an error should get printed out elsewhere. It might be
1056  // worthwhile to skip over the rest of the initializer, though.
1057  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1058  RecordDecl::field_iterator FieldEnd = RD->field_end();
1059  bool InitializedSomething = false;
1060  bool CheckForMissingFields = true;
1061  while (Index < IList->getNumInits()) {
1062    Expr *Init = IList->getInit(Index);
1063
1064    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1065      // If we're not the subobject that matches up with the '{' for
1066      // the designator, we shouldn't be handling the
1067      // designator. Return immediately.
1068      if (!SubobjectIsDesignatorContext)
1069        return;
1070
1071      // Handle this designated initializer. Field will be updated to
1072      // the next field that we'll be initializing.
1073      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1074                                     DeclType, &Field, 0, Index,
1075                                     StructuredList, StructuredIndex,
1076                                     true, TopLevelObject))
1077        hadError = true;
1078
1079      InitializedSomething = true;
1080
1081      // Disable check for missing fields when designators are used.
1082      // This matches gcc behaviour.
1083      CheckForMissingFields = false;
1084      continue;
1085    }
1086
1087    if (Field == FieldEnd) {
1088      // We've run out of fields. We're done.
1089      break;
1090    }
1091
1092    // We've already initialized a member of a union. We're done.
1093    if (InitializedSomething && DeclType->isUnionType())
1094      break;
1095
1096    // If we've hit the flexible array member at the end, we're done.
1097    if (Field->getType()->isIncompleteArrayType())
1098      break;
1099
1100    if (Field->isUnnamedBitfield()) {
1101      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1102      ++Field;
1103      continue;
1104    }
1105
1106    InitializedEntity MemberEntity =
1107      InitializedEntity::InitializeMember(*Field, &Entity);
1108    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1109                        StructuredList, StructuredIndex);
1110    InitializedSomething = true;
1111
1112    if (DeclType->isUnionType()) {
1113      // Initialize the first field within the union.
1114      StructuredList->setInitializedFieldInUnion(*Field);
1115    }
1116
1117    ++Field;
1118  }
1119
1120  // Emit warnings for missing struct field initializers.
1121  if (InitializedSomething && CheckForMissingFields && Field != FieldEnd &&
1122      !Field->getType()->isIncompleteArrayType() && !DeclType->isUnionType()) {
1123    // It is possible we have one or more unnamed bitfields remaining.
1124    // Find first (if any) named field and emit warning.
1125    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1126         it != end; ++it) {
1127      if (!it->isUnnamedBitfield()) {
1128        SemaRef.Diag(IList->getSourceRange().getEnd(),
1129                     diag::warn_missing_field_initializers) << it->getName();
1130        break;
1131      }
1132    }
1133  }
1134
1135  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1136      Index >= IList->getNumInits())
1137    return;
1138
1139  // Handle GNU flexible array initializers.
1140  if (!TopLevelObject &&
1141      (!isa<InitListExpr>(IList->getInit(Index)) ||
1142       cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1143    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1144                  diag::err_flexible_array_init_nonempty)
1145      << IList->getInit(Index)->getSourceRange().getBegin();
1146    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1147      << *Field;
1148    hadError = true;
1149    ++Index;
1150    return;
1151  } else {
1152    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1153                 diag::ext_flexible_array_init)
1154      << IList->getInit(Index)->getSourceRange().getBegin();
1155    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1156      << *Field;
1157  }
1158
1159  InitializedEntity MemberEntity =
1160    InitializedEntity::InitializeMember(*Field, &Entity);
1161
1162  if (isa<InitListExpr>(IList->getInit(Index)))
1163    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1164                        StructuredList, StructuredIndex);
1165  else
1166    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1167                          StructuredList, StructuredIndex);
1168}
1169
1170/// \brief Expand a field designator that refers to a member of an
1171/// anonymous struct or union into a series of field designators that
1172/// refers to the field within the appropriate subobject.
1173///
1174/// Field/FieldIndex will be updated to point to the (new)
1175/// currently-designated field.
1176static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1177                                           DesignatedInitExpr *DIE,
1178                                           unsigned DesigIdx,
1179                                           FieldDecl *Field,
1180                                        RecordDecl::field_iterator &FieldIter,
1181                                           unsigned &FieldIndex) {
1182  typedef DesignatedInitExpr::Designator Designator;
1183
1184  // Build the path from the current object to the member of the
1185  // anonymous struct/union (backwards).
1186  llvm::SmallVector<FieldDecl *, 4> Path;
1187  SemaRef.BuildAnonymousStructUnionMemberPath(Field, Path);
1188
1189  // Build the replacement designators.
1190  llvm::SmallVector<Designator, 4> Replacements;
1191  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
1192         FI = Path.rbegin(), FIEnd = Path.rend();
1193       FI != FIEnd; ++FI) {
1194    if (FI + 1 == FIEnd)
1195      Replacements.push_back(Designator((IdentifierInfo *)0,
1196                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1197                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1198    else
1199      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1200                                        SourceLocation()));
1201    Replacements.back().setField(*FI);
1202  }
1203
1204  // Expand the current designator into the set of replacement
1205  // designators, so we have a full subobject path down to where the
1206  // member of the anonymous struct/union is actually stored.
1207  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1208                        &Replacements[0] + Replacements.size());
1209
1210  // Update FieldIter/FieldIndex;
1211  RecordDecl *Record = cast<RecordDecl>(Path.back()->getDeclContext());
1212  FieldIter = Record->field_begin();
1213  FieldIndex = 0;
1214  for (RecordDecl::field_iterator FEnd = Record->field_end();
1215       FieldIter != FEnd; ++FieldIter) {
1216    if (FieldIter->isUnnamedBitfield())
1217        continue;
1218
1219    if (*FieldIter == Path.back())
1220      return;
1221
1222    ++FieldIndex;
1223  }
1224
1225  assert(false && "Unable to find anonymous struct/union field");
1226}
1227
1228/// @brief Check the well-formedness of a C99 designated initializer.
1229///
1230/// Determines whether the designated initializer @p DIE, which
1231/// resides at the given @p Index within the initializer list @p
1232/// IList, is well-formed for a current object of type @p DeclType
1233/// (C99 6.7.8). The actual subobject that this designator refers to
1234/// within the current subobject is returned in either
1235/// @p NextField or @p NextElementIndex (whichever is appropriate).
1236///
1237/// @param IList  The initializer list in which this designated
1238/// initializer occurs.
1239///
1240/// @param DIE The designated initializer expression.
1241///
1242/// @param DesigIdx  The index of the current designator.
1243///
1244/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1245/// into which the designation in @p DIE should refer.
1246///
1247/// @param NextField  If non-NULL and the first designator in @p DIE is
1248/// a field, this will be set to the field declaration corresponding
1249/// to the field named by the designator.
1250///
1251/// @param NextElementIndex  If non-NULL and the first designator in @p
1252/// DIE is an array designator or GNU array-range designator, this
1253/// will be set to the last index initialized by this designator.
1254///
1255/// @param Index  Index into @p IList where the designated initializer
1256/// @p DIE occurs.
1257///
1258/// @param StructuredList  The initializer list expression that
1259/// describes all of the subobject initializers in the order they'll
1260/// actually be initialized.
1261///
1262/// @returns true if there was an error, false otherwise.
1263bool
1264InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1265                                            InitListExpr *IList,
1266                                      DesignatedInitExpr *DIE,
1267                                      unsigned DesigIdx,
1268                                      QualType &CurrentObjectType,
1269                                      RecordDecl::field_iterator *NextField,
1270                                      llvm::APSInt *NextElementIndex,
1271                                      unsigned &Index,
1272                                      InitListExpr *StructuredList,
1273                                      unsigned &StructuredIndex,
1274                                            bool FinishSubobjectInit,
1275                                            bool TopLevelObject) {
1276  if (DesigIdx == DIE->size()) {
1277    // Check the actual initialization for the designated object type.
1278    bool prevHadError = hadError;
1279
1280    // Temporarily remove the designator expression from the
1281    // initializer list that the child calls see, so that we don't try
1282    // to re-process the designator.
1283    unsigned OldIndex = Index;
1284    IList->setInit(OldIndex, DIE->getInit());
1285
1286    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1287                        StructuredList, StructuredIndex);
1288
1289    // Restore the designated initializer expression in the syntactic
1290    // form of the initializer list.
1291    if (IList->getInit(OldIndex) != DIE->getInit())
1292      DIE->setInit(IList->getInit(OldIndex));
1293    IList->setInit(OldIndex, DIE);
1294
1295    return hadError && !prevHadError;
1296  }
1297
1298  bool IsFirstDesignator = (DesigIdx == 0);
1299  assert((IsFirstDesignator || StructuredList) &&
1300         "Need a non-designated initializer list to start from");
1301
1302  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1303  // Determine the structural initializer list that corresponds to the
1304  // current subobject.
1305  StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1306    : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1307                                 StructuredList, StructuredIndex,
1308                                 SourceRange(D->getStartLocation(),
1309                                             DIE->getSourceRange().getEnd()));
1310  assert(StructuredList && "Expected a structured initializer list");
1311
1312  if (D->isFieldDesignator()) {
1313    // C99 6.7.8p7:
1314    //
1315    //   If a designator has the form
1316    //
1317    //      . identifier
1318    //
1319    //   then the current object (defined below) shall have
1320    //   structure or union type and the identifier shall be the
1321    //   name of a member of that type.
1322    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1323    if (!RT) {
1324      SourceLocation Loc = D->getDotLoc();
1325      if (Loc.isInvalid())
1326        Loc = D->getFieldLoc();
1327      SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1328        << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1329      ++Index;
1330      return true;
1331    }
1332
1333    // Note: we perform a linear search of the fields here, despite
1334    // the fact that we have a faster lookup method, because we always
1335    // need to compute the field's index.
1336    FieldDecl *KnownField = D->getField();
1337    IdentifierInfo *FieldName = D->getFieldName();
1338    unsigned FieldIndex = 0;
1339    RecordDecl::field_iterator
1340      Field = RT->getDecl()->field_begin(),
1341      FieldEnd = RT->getDecl()->field_end();
1342    for (; Field != FieldEnd; ++Field) {
1343      if (Field->isUnnamedBitfield())
1344        continue;
1345
1346      if (KnownField == *Field || Field->getIdentifier() == FieldName)
1347        break;
1348
1349      ++FieldIndex;
1350    }
1351
1352    if (Field == FieldEnd) {
1353      // There was no normal field in the struct with the designated
1354      // name. Perform another lookup for this name, which may find
1355      // something that we can't designate (e.g., a member function),
1356      // may find nothing, or may find a member of an anonymous
1357      // struct/union.
1358      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1359      FieldDecl *ReplacementField = 0;
1360      if (Lookup.first == Lookup.second) {
1361        // Name lookup didn't find anything. Determine whether this
1362        // was a typo for another field name.
1363        LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
1364                       Sema::LookupMemberName);
1365        if (SemaRef.CorrectTypo(R, /*Scope=*/0, /*SS=*/0, RT->getDecl(), false,
1366                                Sema::CTC_NoKeywords) &&
1367            (ReplacementField = R.getAsSingle<FieldDecl>()) &&
1368            ReplacementField->getDeclContext()->getLookupContext()
1369                                                      ->Equals(RT->getDecl())) {
1370          SemaRef.Diag(D->getFieldLoc(),
1371                       diag::err_field_designator_unknown_suggest)
1372            << FieldName << CurrentObjectType << R.getLookupName()
1373            << FixItHint::CreateReplacement(D->getFieldLoc(),
1374                                            R.getLookupName().getAsString());
1375          SemaRef.Diag(ReplacementField->getLocation(),
1376                       diag::note_previous_decl)
1377            << ReplacementField->getDeclName();
1378        } else {
1379          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1380            << FieldName << CurrentObjectType;
1381          ++Index;
1382          return true;
1383        }
1384      } else if (!KnownField) {
1385        // Determine whether we found a field at all.
1386        ReplacementField = dyn_cast<FieldDecl>(*Lookup.first);
1387      }
1388
1389      if (!ReplacementField) {
1390        // Name lookup found something, but it wasn't a field.
1391        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1392          << FieldName;
1393        SemaRef.Diag((*Lookup.first)->getLocation(),
1394                      diag::note_field_designator_found);
1395        ++Index;
1396        return true;
1397      }
1398
1399      if (!KnownField &&
1400          cast<RecordDecl>((ReplacementField)->getDeclContext())
1401                                                 ->isAnonymousStructOrUnion()) {
1402        // Handle an field designator that refers to a member of an
1403        // anonymous struct or union.
1404        ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx,
1405                                       ReplacementField,
1406                                       Field, FieldIndex);
1407        D = DIE->getDesignator(DesigIdx);
1408      } else if (!KnownField) {
1409        // The replacement field comes from typo correction; find it
1410        // in the list of fields.
1411        FieldIndex = 0;
1412        Field = RT->getDecl()->field_begin();
1413        for (; Field != FieldEnd; ++Field) {
1414          if (Field->isUnnamedBitfield())
1415            continue;
1416
1417          if (ReplacementField == *Field ||
1418              Field->getIdentifier() == ReplacementField->getIdentifier())
1419            break;
1420
1421          ++FieldIndex;
1422        }
1423      }
1424    } else if (!KnownField &&
1425               cast<RecordDecl>((*Field)->getDeclContext())
1426                 ->isAnonymousStructOrUnion()) {
1427      ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, *Field,
1428                                     Field, FieldIndex);
1429      D = DIE->getDesignator(DesigIdx);
1430    }
1431
1432    // All of the fields of a union are located at the same place in
1433    // the initializer list.
1434    if (RT->getDecl()->isUnion()) {
1435      FieldIndex = 0;
1436      StructuredList->setInitializedFieldInUnion(*Field);
1437    }
1438
1439    // Update the designator with the field declaration.
1440    D->setField(*Field);
1441
1442    // Make sure that our non-designated initializer list has space
1443    // for a subobject corresponding to this field.
1444    if (FieldIndex >= StructuredList->getNumInits())
1445      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1446
1447    // This designator names a flexible array member.
1448    if (Field->getType()->isIncompleteArrayType()) {
1449      bool Invalid = false;
1450      if ((DesigIdx + 1) != DIE->size()) {
1451        // We can't designate an object within the flexible array
1452        // member (because GCC doesn't allow it).
1453        DesignatedInitExpr::Designator *NextD
1454          = DIE->getDesignator(DesigIdx + 1);
1455        SemaRef.Diag(NextD->getStartLocation(),
1456                      diag::err_designator_into_flexible_array_member)
1457          << SourceRange(NextD->getStartLocation(),
1458                         DIE->getSourceRange().getEnd());
1459        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1460          << *Field;
1461        Invalid = true;
1462      }
1463
1464      if (!hadError && !isa<InitListExpr>(DIE->getInit())) {
1465        // The initializer is not an initializer list.
1466        SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1467                      diag::err_flexible_array_init_needs_braces)
1468          << DIE->getInit()->getSourceRange();
1469        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1470          << *Field;
1471        Invalid = true;
1472      }
1473
1474      // Handle GNU flexible array initializers.
1475      if (!Invalid && !TopLevelObject &&
1476          cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1477        SemaRef.Diag(DIE->getSourceRange().getBegin(),
1478                      diag::err_flexible_array_init_nonempty)
1479          << DIE->getSourceRange().getBegin();
1480        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1481          << *Field;
1482        Invalid = true;
1483      }
1484
1485      if (Invalid) {
1486        ++Index;
1487        return true;
1488      }
1489
1490      // Initialize the array.
1491      bool prevHadError = hadError;
1492      unsigned newStructuredIndex = FieldIndex;
1493      unsigned OldIndex = Index;
1494      IList->setInit(Index, DIE->getInit());
1495
1496      InitializedEntity MemberEntity =
1497        InitializedEntity::InitializeMember(*Field, &Entity);
1498      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1499                          StructuredList, newStructuredIndex);
1500
1501      IList->setInit(OldIndex, DIE);
1502      if (hadError && !prevHadError) {
1503        ++Field;
1504        ++FieldIndex;
1505        if (NextField)
1506          *NextField = Field;
1507        StructuredIndex = FieldIndex;
1508        return true;
1509      }
1510    } else {
1511      // Recurse to check later designated subobjects.
1512      QualType FieldType = (*Field)->getType();
1513      unsigned newStructuredIndex = FieldIndex;
1514
1515      InitializedEntity MemberEntity =
1516        InitializedEntity::InitializeMember(*Field, &Entity);
1517      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1518                                     FieldType, 0, 0, Index,
1519                                     StructuredList, newStructuredIndex,
1520                                     true, false))
1521        return true;
1522    }
1523
1524    // Find the position of the next field to be initialized in this
1525    // subobject.
1526    ++Field;
1527    ++FieldIndex;
1528
1529    // If this the first designator, our caller will continue checking
1530    // the rest of this struct/class/union subobject.
1531    if (IsFirstDesignator) {
1532      if (NextField)
1533        *NextField = Field;
1534      StructuredIndex = FieldIndex;
1535      return false;
1536    }
1537
1538    if (!FinishSubobjectInit)
1539      return false;
1540
1541    // We've already initialized something in the union; we're done.
1542    if (RT->getDecl()->isUnion())
1543      return hadError;
1544
1545    // Check the remaining fields within this class/struct/union subobject.
1546    bool prevHadError = hadError;
1547
1548    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1549                          StructuredList, FieldIndex);
1550    return hadError && !prevHadError;
1551  }
1552
1553  // C99 6.7.8p6:
1554  //
1555  //   If a designator has the form
1556  //
1557  //      [ constant-expression ]
1558  //
1559  //   then the current object (defined below) shall have array
1560  //   type and the expression shall be an integer constant
1561  //   expression. If the array is of unknown size, any
1562  //   nonnegative value is valid.
1563  //
1564  // Additionally, cope with the GNU extension that permits
1565  // designators of the form
1566  //
1567  //      [ constant-expression ... constant-expression ]
1568  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1569  if (!AT) {
1570    SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1571      << CurrentObjectType;
1572    ++Index;
1573    return true;
1574  }
1575
1576  Expr *IndexExpr = 0;
1577  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1578  if (D->isArrayDesignator()) {
1579    IndexExpr = DIE->getArrayIndex(*D);
1580    DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1581    DesignatedEndIndex = DesignatedStartIndex;
1582  } else {
1583    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1584
1585
1586    DesignatedStartIndex =
1587      DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1588    DesignatedEndIndex =
1589      DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1590    IndexExpr = DIE->getArrayRangeEnd(*D);
1591
1592    if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
1593      FullyStructuredList->sawArrayRangeDesignator();
1594  }
1595
1596  if (isa<ConstantArrayType>(AT)) {
1597    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1598    DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1599    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1600    DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1601    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1602    if (DesignatedEndIndex >= MaxElements) {
1603      SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1604                    diag::err_array_designator_too_large)
1605        << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1606        << IndexExpr->getSourceRange();
1607      ++Index;
1608      return true;
1609    }
1610  } else {
1611    // Make sure the bit-widths and signedness match.
1612    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1613      DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1614    else if (DesignatedStartIndex.getBitWidth() <
1615             DesignatedEndIndex.getBitWidth())
1616      DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1617    DesignatedStartIndex.setIsUnsigned(true);
1618    DesignatedEndIndex.setIsUnsigned(true);
1619  }
1620
1621  // Make sure that our non-designated initializer list has space
1622  // for a subobject corresponding to this array element.
1623  if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1624    StructuredList->resizeInits(SemaRef.Context,
1625                                DesignatedEndIndex.getZExtValue() + 1);
1626
1627  // Repeatedly perform subobject initializations in the range
1628  // [DesignatedStartIndex, DesignatedEndIndex].
1629
1630  // Move to the next designator
1631  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1632  unsigned OldIndex = Index;
1633
1634  InitializedEntity ElementEntity =
1635    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1636
1637  while (DesignatedStartIndex <= DesignatedEndIndex) {
1638    // Recurse to check later designated subobjects.
1639    QualType ElementType = AT->getElementType();
1640    Index = OldIndex;
1641
1642    ElementEntity.setElementIndex(ElementIndex);
1643    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
1644                                   ElementType, 0, 0, Index,
1645                                   StructuredList, ElementIndex,
1646                                   (DesignatedStartIndex == DesignatedEndIndex),
1647                                   false))
1648      return true;
1649
1650    // Move to the next index in the array that we'll be initializing.
1651    ++DesignatedStartIndex;
1652    ElementIndex = DesignatedStartIndex.getZExtValue();
1653  }
1654
1655  // If this the first designator, our caller will continue checking
1656  // the rest of this array subobject.
1657  if (IsFirstDesignator) {
1658    if (NextElementIndex)
1659      *NextElementIndex = DesignatedStartIndex;
1660    StructuredIndex = ElementIndex;
1661    return false;
1662  }
1663
1664  if (!FinishSubobjectInit)
1665    return false;
1666
1667  // Check the remaining elements within this array subobject.
1668  bool prevHadError = hadError;
1669  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
1670                 /*SubobjectIsDesignatorContext=*/false, Index,
1671                 StructuredList, ElementIndex);
1672  return hadError && !prevHadError;
1673}
1674
1675// Get the structured initializer list for a subobject of type
1676// @p CurrentObjectType.
1677InitListExpr *
1678InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1679                                            QualType CurrentObjectType,
1680                                            InitListExpr *StructuredList,
1681                                            unsigned StructuredIndex,
1682                                            SourceRange InitRange) {
1683  Expr *ExistingInit = 0;
1684  if (!StructuredList)
1685    ExistingInit = SyntacticToSemantic[IList];
1686  else if (StructuredIndex < StructuredList->getNumInits())
1687    ExistingInit = StructuredList->getInit(StructuredIndex);
1688
1689  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1690    return Result;
1691
1692  if (ExistingInit) {
1693    // We are creating an initializer list that initializes the
1694    // subobjects of the current object, but there was already an
1695    // initialization that completely initialized the current
1696    // subobject, e.g., by a compound literal:
1697    //
1698    // struct X { int a, b; };
1699    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1700    //
1701    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1702    // designated initializer re-initializes the whole
1703    // subobject [0], overwriting previous initializers.
1704    SemaRef.Diag(InitRange.getBegin(),
1705                 diag::warn_subobject_initializer_overrides)
1706      << InitRange;
1707    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1708                  diag::note_previous_initializer)
1709      << /*FIXME:has side effects=*/0
1710      << ExistingInit->getSourceRange();
1711  }
1712
1713  InitListExpr *Result
1714    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
1715                                         InitRange.getBegin(), 0, 0,
1716                                         InitRange.getEnd());
1717
1718  Result->setType(CurrentObjectType.getNonLValueExprType(SemaRef.Context));
1719
1720  // Pre-allocate storage for the structured initializer list.
1721  unsigned NumElements = 0;
1722  unsigned NumInits = 0;
1723  if (!StructuredList)
1724    NumInits = IList->getNumInits();
1725  else if (Index < IList->getNumInits()) {
1726    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1727      NumInits = SubList->getNumInits();
1728  }
1729
1730  if (const ArrayType *AType
1731      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1732    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1733      NumElements = CAType->getSize().getZExtValue();
1734      // Simple heuristic so that we don't allocate a very large
1735      // initializer with many empty entries at the end.
1736      if (NumInits && NumElements > NumInits)
1737        NumElements = 0;
1738    }
1739  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
1740    NumElements = VType->getNumElements();
1741  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
1742    RecordDecl *RDecl = RType->getDecl();
1743    if (RDecl->isUnion())
1744      NumElements = 1;
1745    else
1746      NumElements = std::distance(RDecl->field_begin(),
1747                                  RDecl->field_end());
1748  }
1749
1750  if (NumElements < NumInits)
1751    NumElements = IList->getNumInits();
1752
1753  Result->reserveInits(SemaRef.Context, NumElements);
1754
1755  // Link this new initializer list into the structured initializer
1756  // lists.
1757  if (StructuredList)
1758    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
1759  else {
1760    Result->setSyntacticForm(IList);
1761    SyntacticToSemantic[IList] = Result;
1762  }
1763
1764  return Result;
1765}
1766
1767/// Update the initializer at index @p StructuredIndex within the
1768/// structured initializer list to the value @p expr.
1769void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1770                                                  unsigned &StructuredIndex,
1771                                                  Expr *expr) {
1772  // No structured initializer list to update
1773  if (!StructuredList)
1774    return;
1775
1776  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
1777                                                  StructuredIndex, expr)) {
1778    // This initializer overwrites a previous initializer. Warn.
1779    SemaRef.Diag(expr->getSourceRange().getBegin(),
1780                  diag::warn_initializer_overrides)
1781      << expr->getSourceRange();
1782    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1783                  diag::note_previous_initializer)
1784      << /*FIXME:has side effects=*/0
1785      << PrevInit->getSourceRange();
1786  }
1787
1788  ++StructuredIndex;
1789}
1790
1791/// Check that the given Index expression is a valid array designator
1792/// value. This is essentailly just a wrapper around
1793/// VerifyIntegerConstantExpression that also checks for negative values
1794/// and produces a reasonable diagnostic if there is a
1795/// failure. Returns true if there was an error, false otherwise.  If
1796/// everything went okay, Value will receive the value of the constant
1797/// expression.
1798static bool
1799CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1800  SourceLocation Loc = Index->getSourceRange().getBegin();
1801
1802  // Make sure this is an integer constant expression.
1803  if (S.VerifyIntegerConstantExpression(Index, &Value))
1804    return true;
1805
1806  if (Value.isSigned() && Value.isNegative())
1807    return S.Diag(Loc, diag::err_array_designator_negative)
1808      << Value.toString(10) << Index->getSourceRange();
1809
1810  Value.setIsUnsigned(true);
1811  return false;
1812}
1813
1814ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1815                                                        SourceLocation Loc,
1816                                                        bool GNUSyntax,
1817                                                        ExprResult Init) {
1818  typedef DesignatedInitExpr::Designator ASTDesignator;
1819
1820  bool Invalid = false;
1821  llvm::SmallVector<ASTDesignator, 32> Designators;
1822  llvm::SmallVector<Expr *, 32> InitExpressions;
1823
1824  // Build designators and check array designator expressions.
1825  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1826    const Designator &D = Desig.getDesignator(Idx);
1827    switch (D.getKind()) {
1828    case Designator::FieldDesignator:
1829      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1830                                          D.getFieldLoc()));
1831      break;
1832
1833    case Designator::ArrayDesignator: {
1834      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1835      llvm::APSInt IndexValue;
1836      if (!Index->isTypeDependent() &&
1837          !Index->isValueDependent() &&
1838          CheckArrayDesignatorExpr(*this, Index, IndexValue))
1839        Invalid = true;
1840      else {
1841        Designators.push_back(ASTDesignator(InitExpressions.size(),
1842                                            D.getLBracketLoc(),
1843                                            D.getRBracketLoc()));
1844        InitExpressions.push_back(Index);
1845      }
1846      break;
1847    }
1848
1849    case Designator::ArrayRangeDesignator: {
1850      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1851      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1852      llvm::APSInt StartValue;
1853      llvm::APSInt EndValue;
1854      bool StartDependent = StartIndex->isTypeDependent() ||
1855                            StartIndex->isValueDependent();
1856      bool EndDependent = EndIndex->isTypeDependent() ||
1857                          EndIndex->isValueDependent();
1858      if ((!StartDependent &&
1859           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1860          (!EndDependent &&
1861           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1862        Invalid = true;
1863      else {
1864        // Make sure we're comparing values with the same bit width.
1865        if (StartDependent || EndDependent) {
1866          // Nothing to compute.
1867        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1868          EndValue.extend(StartValue.getBitWidth());
1869        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1870          StartValue.extend(EndValue.getBitWidth());
1871
1872        if (!StartDependent && !EndDependent && EndValue < StartValue) {
1873          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1874            << StartValue.toString(10) << EndValue.toString(10)
1875            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1876          Invalid = true;
1877        } else {
1878          Designators.push_back(ASTDesignator(InitExpressions.size(),
1879                                              D.getLBracketLoc(),
1880                                              D.getEllipsisLoc(),
1881                                              D.getRBracketLoc()));
1882          InitExpressions.push_back(StartIndex);
1883          InitExpressions.push_back(EndIndex);
1884        }
1885      }
1886      break;
1887    }
1888    }
1889  }
1890
1891  if (Invalid || Init.isInvalid())
1892    return ExprError();
1893
1894  // Clear out the expressions within the designation.
1895  Desig.ClearExprs(*this);
1896
1897  DesignatedInitExpr *DIE
1898    = DesignatedInitExpr::Create(Context,
1899                                 Designators.data(), Designators.size(),
1900                                 InitExpressions.data(), InitExpressions.size(),
1901                                 Loc, GNUSyntax, Init.takeAs<Expr>());
1902  return Owned(DIE);
1903}
1904
1905bool Sema::CheckInitList(const InitializedEntity &Entity,
1906                         InitListExpr *&InitList, QualType &DeclType) {
1907  InitListChecker CheckInitList(*this, Entity, InitList, DeclType);
1908  if (!CheckInitList.HadError())
1909    InitList = CheckInitList.getFullyStructuredList();
1910
1911  return CheckInitList.HadError();
1912}
1913
1914//===----------------------------------------------------------------------===//
1915// Initialization entity
1916//===----------------------------------------------------------------------===//
1917
1918InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
1919                                     const InitializedEntity &Parent)
1920  : Parent(&Parent), Index(Index)
1921{
1922  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
1923    Kind = EK_ArrayElement;
1924    Type = AT->getElementType();
1925  } else {
1926    Kind = EK_VectorElement;
1927    Type = Parent.getType()->getAs<VectorType>()->getElementType();
1928  }
1929}
1930
1931InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
1932                                                    CXXBaseSpecifier *Base,
1933                                                    bool IsInheritedVirtualBase)
1934{
1935  InitializedEntity Result;
1936  Result.Kind = EK_Base;
1937  Result.Base = reinterpret_cast<uintptr_t>(Base);
1938  if (IsInheritedVirtualBase)
1939    Result.Base |= 0x01;
1940
1941  Result.Type = Base->getType();
1942  return Result;
1943}
1944
1945DeclarationName InitializedEntity::getName() const {
1946  switch (getKind()) {
1947  case EK_Parameter:
1948    if (!VariableOrMember)
1949      return DeclarationName();
1950    // Fall through
1951
1952  case EK_Variable:
1953  case EK_Member:
1954    return VariableOrMember->getDeclName();
1955
1956  case EK_Result:
1957  case EK_Exception:
1958  case EK_New:
1959  case EK_Temporary:
1960  case EK_Base:
1961  case EK_ArrayElement:
1962  case EK_VectorElement:
1963  case EK_BlockElement:
1964    return DeclarationName();
1965  }
1966
1967  // Silence GCC warning
1968  return DeclarationName();
1969}
1970
1971DeclaratorDecl *InitializedEntity::getDecl() const {
1972  switch (getKind()) {
1973  case EK_Variable:
1974  case EK_Parameter:
1975  case EK_Member:
1976    return VariableOrMember;
1977
1978  case EK_Result:
1979  case EK_Exception:
1980  case EK_New:
1981  case EK_Temporary:
1982  case EK_Base:
1983  case EK_ArrayElement:
1984  case EK_VectorElement:
1985  case EK_BlockElement:
1986    return 0;
1987  }
1988
1989  // Silence GCC warning
1990  return 0;
1991}
1992
1993bool InitializedEntity::allowsNRVO() const {
1994  switch (getKind()) {
1995  case EK_Result:
1996  case EK_Exception:
1997    return LocAndNRVO.NRVO;
1998
1999  case EK_Variable:
2000  case EK_Parameter:
2001  case EK_Member:
2002  case EK_New:
2003  case EK_Temporary:
2004  case EK_Base:
2005  case EK_ArrayElement:
2006  case EK_VectorElement:
2007  case EK_BlockElement:
2008    break;
2009  }
2010
2011  return false;
2012}
2013
2014//===----------------------------------------------------------------------===//
2015// Initialization sequence
2016//===----------------------------------------------------------------------===//
2017
2018void InitializationSequence::Step::Destroy() {
2019  switch (Kind) {
2020  case SK_ResolveAddressOfOverloadedFunction:
2021  case SK_CastDerivedToBaseRValue:
2022  case SK_CastDerivedToBaseXValue:
2023  case SK_CastDerivedToBaseLValue:
2024  case SK_BindReference:
2025  case SK_BindReferenceToTemporary:
2026  case SK_ExtraneousCopyToTemporary:
2027  case SK_UserConversion:
2028  case SK_QualificationConversionRValue:
2029  case SK_QualificationConversionXValue:
2030  case SK_QualificationConversionLValue:
2031  case SK_ListInitialization:
2032  case SK_ConstructorInitialization:
2033  case SK_ZeroInitialization:
2034  case SK_CAssignment:
2035  case SK_StringInit:
2036  case SK_ObjCObjectConversion:
2037    break;
2038
2039  case SK_ConversionSequence:
2040    delete ICS;
2041  }
2042}
2043
2044bool InitializationSequence::isDirectReferenceBinding() const {
2045  return getKind() == ReferenceBinding && Steps.back().Kind == SK_BindReference;
2046}
2047
2048bool InitializationSequence::isAmbiguous() const {
2049  if (getKind() != FailedSequence)
2050    return false;
2051
2052  switch (getFailureKind()) {
2053  case FK_TooManyInitsForReference:
2054  case FK_ArrayNeedsInitList:
2055  case FK_ArrayNeedsInitListOrStringLiteral:
2056  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2057  case FK_NonConstLValueReferenceBindingToTemporary:
2058  case FK_NonConstLValueReferenceBindingToUnrelated:
2059  case FK_RValueReferenceBindingToLValue:
2060  case FK_ReferenceInitDropsQualifiers:
2061  case FK_ReferenceInitFailed:
2062  case FK_ConversionFailed:
2063  case FK_TooManyInitsForScalar:
2064  case FK_ReferenceBindingToInitList:
2065  case FK_InitListBadDestinationType:
2066  case FK_DefaultInitOfConst:
2067  case FK_Incomplete:
2068    return false;
2069
2070  case FK_ReferenceInitOverloadFailed:
2071  case FK_UserConversionOverloadFailed:
2072  case FK_ConstructorOverloadFailed:
2073    return FailedOverloadResult == OR_Ambiguous;
2074  }
2075
2076  return false;
2077}
2078
2079bool InitializationSequence::isConstructorInitialization() const {
2080  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2081}
2082
2083void InitializationSequence::AddAddressOverloadResolutionStep(
2084                                                      FunctionDecl *Function,
2085                                                      DeclAccessPair Found) {
2086  Step S;
2087  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2088  S.Type = Function->getType();
2089  S.Function.Function = Function;
2090  S.Function.FoundDecl = Found;
2091  Steps.push_back(S);
2092}
2093
2094void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2095                                                      ExprValueKind VK) {
2096  Step S;
2097  switch (VK) {
2098  case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2099  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2100  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2101  default: llvm_unreachable("No such category");
2102  }
2103  S.Type = BaseType;
2104  Steps.push_back(S);
2105}
2106
2107void InitializationSequence::AddReferenceBindingStep(QualType T,
2108                                                     bool BindingTemporary) {
2109  Step S;
2110  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2111  S.Type = T;
2112  Steps.push_back(S);
2113}
2114
2115void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2116  Step S;
2117  S.Kind = SK_ExtraneousCopyToTemporary;
2118  S.Type = T;
2119  Steps.push_back(S);
2120}
2121
2122void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2123                                                   DeclAccessPair FoundDecl,
2124                                                   QualType T) {
2125  Step S;
2126  S.Kind = SK_UserConversion;
2127  S.Type = T;
2128  S.Function.Function = Function;
2129  S.Function.FoundDecl = FoundDecl;
2130  Steps.push_back(S);
2131}
2132
2133void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2134                                                            ExprValueKind VK) {
2135  Step S;
2136  S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2137  switch (VK) {
2138  case VK_RValue:
2139    S.Kind = SK_QualificationConversionRValue;
2140    break;
2141  case VK_XValue:
2142    S.Kind = SK_QualificationConversionXValue;
2143    break;
2144  case VK_LValue:
2145    S.Kind = SK_QualificationConversionLValue;
2146    break;
2147  }
2148  S.Type = Ty;
2149  Steps.push_back(S);
2150}
2151
2152void InitializationSequence::AddConversionSequenceStep(
2153                                       const ImplicitConversionSequence &ICS,
2154                                                       QualType T) {
2155  Step S;
2156  S.Kind = SK_ConversionSequence;
2157  S.Type = T;
2158  S.ICS = new ImplicitConversionSequence(ICS);
2159  Steps.push_back(S);
2160}
2161
2162void InitializationSequence::AddListInitializationStep(QualType T) {
2163  Step S;
2164  S.Kind = SK_ListInitialization;
2165  S.Type = T;
2166  Steps.push_back(S);
2167}
2168
2169void
2170InitializationSequence::AddConstructorInitializationStep(
2171                                              CXXConstructorDecl *Constructor,
2172                                                       AccessSpecifier Access,
2173                                                         QualType T) {
2174  Step S;
2175  S.Kind = SK_ConstructorInitialization;
2176  S.Type = T;
2177  S.Function.Function = Constructor;
2178  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2179  Steps.push_back(S);
2180}
2181
2182void InitializationSequence::AddZeroInitializationStep(QualType T) {
2183  Step S;
2184  S.Kind = SK_ZeroInitialization;
2185  S.Type = T;
2186  Steps.push_back(S);
2187}
2188
2189void InitializationSequence::AddCAssignmentStep(QualType T) {
2190  Step S;
2191  S.Kind = SK_CAssignment;
2192  S.Type = T;
2193  Steps.push_back(S);
2194}
2195
2196void InitializationSequence::AddStringInitStep(QualType T) {
2197  Step S;
2198  S.Kind = SK_StringInit;
2199  S.Type = T;
2200  Steps.push_back(S);
2201}
2202
2203void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2204  Step S;
2205  S.Kind = SK_ObjCObjectConversion;
2206  S.Type = T;
2207  Steps.push_back(S);
2208}
2209
2210void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2211                                                OverloadingResult Result) {
2212  SequenceKind = FailedSequence;
2213  this->Failure = Failure;
2214  this->FailedOverloadResult = Result;
2215}
2216
2217//===----------------------------------------------------------------------===//
2218// Attempt initialization
2219//===----------------------------------------------------------------------===//
2220
2221/// \brief Attempt list initialization (C++0x [dcl.init.list])
2222static void TryListInitialization(Sema &S,
2223                                  const InitializedEntity &Entity,
2224                                  const InitializationKind &Kind,
2225                                  InitListExpr *InitList,
2226                                  InitializationSequence &Sequence) {
2227  // FIXME: We only perform rudimentary checking of list
2228  // initializations at this point, then assume that any list
2229  // initialization of an array, aggregate, or scalar will be
2230  // well-formed. When we actually "perform" list initialization, we'll
2231  // do all of the necessary checking.  C++0x initializer lists will
2232  // force us to perform more checking here.
2233  Sequence.setSequenceKind(InitializationSequence::ListInitialization);
2234
2235  QualType DestType = Entity.getType();
2236
2237  // C++ [dcl.init]p13:
2238  //   If T is a scalar type, then a declaration of the form
2239  //
2240  //     T x = { a };
2241  //
2242  //   is equivalent to
2243  //
2244  //     T x = a;
2245  if (DestType->isScalarType()) {
2246    if (InitList->getNumInits() > 1 && S.getLangOptions().CPlusPlus) {
2247      Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
2248      return;
2249    }
2250
2251    // Assume scalar initialization from a single value works.
2252  } else if (DestType->isAggregateType()) {
2253    // Assume aggregate initialization works.
2254  } else if (DestType->isVectorType()) {
2255    // Assume vector initialization works.
2256  } else if (DestType->isReferenceType()) {
2257    // FIXME: C++0x defines behavior for this.
2258    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2259    return;
2260  } else if (DestType->isRecordType()) {
2261    // FIXME: C++0x defines behavior for this
2262    Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
2263  }
2264
2265  // Add a general "list initialization" step.
2266  Sequence.AddListInitializationStep(DestType);
2267}
2268
2269/// \brief Try a reference initialization that involves calling a conversion
2270/// function.
2271static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
2272                                             const InitializedEntity &Entity,
2273                                             const InitializationKind &Kind,
2274                                                          Expr *Initializer,
2275                                                          bool AllowRValues,
2276                                             InitializationSequence &Sequence) {
2277  QualType DestType = Entity.getType();
2278  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2279  QualType T1 = cv1T1.getUnqualifiedType();
2280  QualType cv2T2 = Initializer->getType();
2281  QualType T2 = cv2T2.getUnqualifiedType();
2282
2283  bool DerivedToBase;
2284  bool ObjCConversion;
2285  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
2286                                         T1, T2, DerivedToBase,
2287                                         ObjCConversion) &&
2288         "Must have incompatible references when binding via conversion");
2289  (void)DerivedToBase;
2290  (void)ObjCConversion;
2291
2292  // Build the candidate set directly in the initialization sequence
2293  // structure, so that it will persist if we fail.
2294  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2295  CandidateSet.clear();
2296
2297  // Determine whether we are allowed to call explicit constructors or
2298  // explicit conversion operators.
2299  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2300
2301  const RecordType *T1RecordType = 0;
2302  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
2303      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
2304    // The type we're converting to is a class type. Enumerate its constructors
2305    // to see if there is a suitable conversion.
2306    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
2307
2308    DeclContext::lookup_iterator Con, ConEnd;
2309    for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
2310         Con != ConEnd; ++Con) {
2311      NamedDecl *D = *Con;
2312      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2313
2314      // Find the constructor (which may be a template).
2315      CXXConstructorDecl *Constructor = 0;
2316      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2317      if (ConstructorTmpl)
2318        Constructor = cast<CXXConstructorDecl>(
2319                                         ConstructorTmpl->getTemplatedDecl());
2320      else
2321        Constructor = cast<CXXConstructorDecl>(D);
2322
2323      if (!Constructor->isInvalidDecl() &&
2324          Constructor->isConvertingConstructor(AllowExplicit)) {
2325        if (ConstructorTmpl)
2326          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2327                                         /*ExplicitArgs*/ 0,
2328                                         &Initializer, 1, CandidateSet);
2329        else
2330          S.AddOverloadCandidate(Constructor, FoundDecl,
2331                                 &Initializer, 1, CandidateSet);
2332      }
2333    }
2334  }
2335  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
2336    return OR_No_Viable_Function;
2337
2338  const RecordType *T2RecordType = 0;
2339  if ((T2RecordType = T2->getAs<RecordType>()) &&
2340      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
2341    // The type we're converting from is a class type, enumerate its conversion
2342    // functions.
2343    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
2344
2345    // Determine the type we are converting to. If we are allowed to
2346    // convert to an rvalue, take the type that the destination type
2347    // refers to.
2348    QualType ToType = AllowRValues? cv1T1 : DestType;
2349
2350    const UnresolvedSetImpl *Conversions
2351      = T2RecordDecl->getVisibleConversionFunctions();
2352    for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2353           E = Conversions->end(); I != E; ++I) {
2354      NamedDecl *D = *I;
2355      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2356      if (isa<UsingShadowDecl>(D))
2357        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2358
2359      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2360      CXXConversionDecl *Conv;
2361      if (ConvTemplate)
2362        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2363      else
2364        Conv = cast<CXXConversionDecl>(D);
2365
2366      // If the conversion function doesn't return a reference type,
2367      // it can't be considered for this conversion unless we're allowed to
2368      // consider rvalues.
2369      // FIXME: Do we need to make sure that we only consider conversion
2370      // candidates with reference-compatible results? That might be needed to
2371      // break recursion.
2372      if ((AllowExplicit || !Conv->isExplicit()) &&
2373          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
2374        if (ConvTemplate)
2375          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2376                                           ActingDC, Initializer,
2377                                           ToType, CandidateSet);
2378        else
2379          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2380                                   Initializer, ToType, CandidateSet);
2381      }
2382    }
2383  }
2384  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
2385    return OR_No_Viable_Function;
2386
2387  SourceLocation DeclLoc = Initializer->getLocStart();
2388
2389  // Perform overload resolution. If it fails, return the failed result.
2390  OverloadCandidateSet::iterator Best;
2391  if (OverloadingResult Result
2392        = CandidateSet.BestViableFunction(S, DeclLoc, Best))
2393    return Result;
2394
2395  FunctionDecl *Function = Best->Function;
2396
2397  // Compute the returned type of the conversion.
2398  if (isa<CXXConversionDecl>(Function))
2399    T2 = Function->getResultType();
2400  else
2401    T2 = cv1T1;
2402
2403  // Add the user-defined conversion step.
2404  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
2405                                 T2.getNonLValueExprType(S.Context));
2406
2407  // Determine whether we need to perform derived-to-base or
2408  // cv-qualification adjustments.
2409  ExprValueKind VK = VK_RValue;
2410  if (T2->isLValueReferenceType())
2411    VK = VK_LValue;
2412  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
2413    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
2414
2415  bool NewDerivedToBase = false;
2416  bool NewObjCConversion = false;
2417  Sema::ReferenceCompareResult NewRefRelationship
2418    = S.CompareReferenceRelationship(DeclLoc, T1,
2419                                     T2.getNonLValueExprType(S.Context),
2420                                     NewDerivedToBase, NewObjCConversion);
2421  if (NewRefRelationship == Sema::Ref_Incompatible) {
2422    // If the type we've converted to is not reference-related to the
2423    // type we're looking for, then there is another conversion step
2424    // we need to perform to produce a temporary of the right type
2425    // that we'll be binding to.
2426    ImplicitConversionSequence ICS;
2427    ICS.setStandard();
2428    ICS.Standard = Best->FinalConversion;
2429    T2 = ICS.Standard.getToType(2);
2430    Sequence.AddConversionSequenceStep(ICS, T2);
2431  } else if (NewDerivedToBase)
2432    Sequence.AddDerivedToBaseCastStep(
2433                                S.Context.getQualifiedType(T1,
2434                                  T2.getNonReferenceType().getQualifiers()),
2435                                      VK);
2436  else if (NewObjCConversion)
2437    Sequence.AddObjCObjectConversionStep(
2438                                S.Context.getQualifiedType(T1,
2439                                  T2.getNonReferenceType().getQualifiers()));
2440
2441  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
2442    Sequence.AddQualificationConversionStep(cv1T1, VK);
2443
2444  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
2445  return OR_Success;
2446}
2447
2448/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
2449static void TryReferenceInitialization(Sema &S,
2450                                       const InitializedEntity &Entity,
2451                                       const InitializationKind &Kind,
2452                                       Expr *Initializer,
2453                                       InitializationSequence &Sequence) {
2454  Sequence.setSequenceKind(InitializationSequence::ReferenceBinding);
2455
2456  QualType DestType = Entity.getType();
2457  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2458  Qualifiers T1Quals;
2459  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2460  QualType cv2T2 = Initializer->getType();
2461  Qualifiers T2Quals;
2462  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
2463  SourceLocation DeclLoc = Initializer->getLocStart();
2464
2465  // If the initializer is the address of an overloaded function, try
2466  // to resolve the overloaded function. If all goes well, T2 is the
2467  // type of the resulting function.
2468  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2469    DeclAccessPair Found;
2470    FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
2471                                                            T1,
2472                                                            false,
2473                                                            Found);
2474    if (!Fn) {
2475      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2476      return;
2477    }
2478
2479    Sequence.AddAddressOverloadResolutionStep(Fn, Found);
2480    cv2T2 = Fn->getType();
2481    T2 = cv2T2.getUnqualifiedType();
2482  }
2483
2484  // Compute some basic properties of the types and the initializer.
2485  bool isLValueRef = DestType->isLValueReferenceType();
2486  bool isRValueRef = !isLValueRef;
2487  bool DerivedToBase = false;
2488  bool ObjCConversion = false;
2489  Expr::Classification InitCategory = Initializer->Classify(S.Context);
2490  Sema::ReferenceCompareResult RefRelationship
2491    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
2492                                     ObjCConversion);
2493
2494  // C++0x [dcl.init.ref]p5:
2495  //   A reference to type "cv1 T1" is initialized by an expression of type
2496  //   "cv2 T2" as follows:
2497  //
2498  //     - If the reference is an lvalue reference and the initializer
2499  //       expression
2500  // Note the analogous bullet points for rvlaue refs to functions. Because
2501  // there are no function rvalues in C++, rvalue refs to functions are treated
2502  // like lvalue refs.
2503  OverloadingResult ConvOvlResult = OR_Success;
2504  bool T1Function = T1->isFunctionType();
2505  if (isLValueRef || T1Function) {
2506    if (InitCategory.isLValue() &&
2507        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2508      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
2509      //     reference-compatible with "cv2 T2," or
2510      //
2511      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
2512      // bit-field when we're determining whether the reference initialization
2513      // can occur. However, we do pay attention to whether it is a bit-field
2514      // to decide whether we're actually binding to a temporary created from
2515      // the bit-field.
2516      if (DerivedToBase)
2517        Sequence.AddDerivedToBaseCastStep(
2518                         S.Context.getQualifiedType(T1, T2Quals),
2519                         VK_LValue);
2520      else if (ObjCConversion)
2521        Sequence.AddObjCObjectConversionStep(
2522                                     S.Context.getQualifiedType(T1, T2Quals));
2523
2524      if (T1Quals != T2Quals)
2525        Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
2526      bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
2527        (Initializer->getBitField() || Initializer->refersToVectorElement());
2528      Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
2529      return;
2530    }
2531
2532    //     - has a class type (i.e., T2 is a class type), where T1 is not
2533    //       reference-related to T2, and can be implicitly converted to an
2534    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
2535    //       with "cv3 T3" (this conversion is selected by enumerating the
2536    //       applicable conversion functions (13.3.1.6) and choosing the best
2537    //       one through overload resolution (13.3)),
2538    // If we have an rvalue ref to function type here, the rhs must be
2539    // an rvalue.
2540    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
2541        (isLValueRef || InitCategory.isRValue())) {
2542      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
2543                                                       Initializer,
2544                                                   /*AllowRValues=*/isRValueRef,
2545                                                       Sequence);
2546      if (ConvOvlResult == OR_Success)
2547        return;
2548      if (ConvOvlResult != OR_No_Viable_Function) {
2549        Sequence.SetOverloadFailure(
2550                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2551                                    ConvOvlResult);
2552      }
2553    }
2554  }
2555
2556  //     - Otherwise, the reference shall be an lvalue reference to a
2557  //       non-volatile const type (i.e., cv1 shall be const), or the reference
2558  //       shall be an rvalue reference and the initializer expression shall
2559  //       be an rvalue or have a function type.
2560  // We handled the function type stuff above.
2561  if (!((isLValueRef && T1Quals.hasConst() && !T1Quals.hasVolatile()) ||
2562        (isRValueRef && InitCategory.isRValue()))) {
2563    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2564      Sequence.SetOverloadFailure(
2565                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2566                                  ConvOvlResult);
2567    else if (isLValueRef)
2568      Sequence.SetFailed(InitCategory.isLValue()
2569        ? (RefRelationship == Sema::Ref_Related
2570             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
2571             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
2572        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
2573    else
2574      Sequence.SetFailed(
2575                    InitializationSequence::FK_RValueReferenceBindingToLValue);
2576
2577    return;
2578  }
2579
2580  //       - [If T1 is not a function type], if T2 is a class type and
2581  if (!T1Function && T2->isRecordType()) {
2582    bool isXValue = InitCategory.isXValue();
2583    //       - the initializer expression is an rvalue and "cv1 T1" is
2584    //         reference-compatible with "cv2 T2", or
2585    if (InitCategory.isRValue() &&
2586        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2587      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
2588      // compiler the freedom to perform a copy here or bind to the
2589      // object, while C++0x requires that we bind directly to the
2590      // object. Hence, we always bind to the object without making an
2591      // extra copy. However, in C++03 requires that we check for the
2592      // presence of a suitable copy constructor:
2593      //
2594      //   The constructor that would be used to make the copy shall
2595      //   be callable whether or not the copy is actually done.
2596      if (!S.getLangOptions().CPlusPlus0x)
2597        Sequence.AddExtraneousCopyToTemporary(cv2T2);
2598
2599      if (DerivedToBase)
2600        Sequence.AddDerivedToBaseCastStep(
2601                         S.Context.getQualifiedType(T1, T2Quals),
2602                         isXValue ? VK_XValue : VK_RValue);
2603      else if (ObjCConversion)
2604        Sequence.AddObjCObjectConversionStep(
2605                                     S.Context.getQualifiedType(T1, T2Quals));
2606
2607      if (T1Quals != T2Quals)
2608        Sequence.AddQualificationConversionStep(cv1T1,
2609                                            isXValue ? VK_XValue : VK_RValue);
2610      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/!isXValue);
2611      return;
2612    }
2613
2614    //       - T1 is not reference-related to T2 and the initializer expression
2615    //         can be implicitly converted to an rvalue of type "cv3 T3" (this
2616    //         conversion is selected by enumerating the applicable conversion
2617    //         functions (13.3.1.6) and choosing the best one through overload
2618    //         resolution (13.3)),
2619    if (RefRelationship == Sema::Ref_Incompatible) {
2620      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
2621                                                       Kind, Initializer,
2622                                                       /*AllowRValues=*/true,
2623                                                       Sequence);
2624      if (ConvOvlResult)
2625        Sequence.SetOverloadFailure(
2626                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2627                                    ConvOvlResult);
2628
2629      return;
2630    }
2631
2632    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2633    return;
2634  }
2635
2636  //      - If the initializer expression is an rvalue, with T2 an array type,
2637  //        and "cv1 T1" is reference-compatible with "cv2 T2," the reference
2638  //        is bound to the object represented by the rvalue (see 3.10).
2639  // FIXME: How can an array type be reference-compatible with anything?
2640  // Don't we mean the element types of T1 and T2?
2641
2642  //      - Otherwise, a temporary of type “cv1 T1” is created and initialized
2643  //        from the initializer expression using the rules for a non-reference
2644  //        copy initialization (8.5). The reference is then bound to the
2645  //        temporary. [...]
2646
2647  // Determine whether we are allowed to call explicit constructors or
2648  // explicit conversion operators.
2649  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
2650
2651  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
2652
2653  if (S.TryImplicitConversion(Sequence, TempEntity, Initializer,
2654                              /*SuppressUserConversions*/ false,
2655                              AllowExplicit,
2656                              /*FIXME:InOverloadResolution=*/false)) {
2657    // FIXME: Use the conversion function set stored in ICS to turn
2658    // this into an overloading ambiguity diagnostic. However, we need
2659    // to keep that set as an OverloadCandidateSet rather than as some
2660    // other kind of set.
2661    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2662      Sequence.SetOverloadFailure(
2663                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2664                                  ConvOvlResult);
2665    else
2666      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
2667    return;
2668  }
2669
2670  //        [...] If T1 is reference-related to T2, cv1 must be the
2671  //        same cv-qualification as, or greater cv-qualification
2672  //        than, cv2; otherwise, the program is ill-formed.
2673  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
2674  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
2675  if (RefRelationship == Sema::Ref_Related &&
2676      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
2677    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2678    return;
2679  }
2680
2681  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2682  return;
2683}
2684
2685/// \brief Attempt character array initialization from a string literal
2686/// (C++ [dcl.init.string], C99 6.7.8).
2687static void TryStringLiteralInitialization(Sema &S,
2688                                           const InitializedEntity &Entity,
2689                                           const InitializationKind &Kind,
2690                                           Expr *Initializer,
2691                                       InitializationSequence &Sequence) {
2692  Sequence.setSequenceKind(InitializationSequence::StringInit);
2693  Sequence.AddStringInitStep(Entity.getType());
2694}
2695
2696/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2697/// enumerates the constructors of the initialized entity and performs overload
2698/// resolution to select the best.
2699static void TryConstructorInitialization(Sema &S,
2700                                         const InitializedEntity &Entity,
2701                                         const InitializationKind &Kind,
2702                                         Expr **Args, unsigned NumArgs,
2703                                         QualType DestType,
2704                                         InitializationSequence &Sequence) {
2705  Sequence.setSequenceKind(InitializationSequence::ConstructorInitialization);
2706
2707  // Build the candidate set directly in the initialization sequence
2708  // structure, so that it will persist if we fail.
2709  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2710  CandidateSet.clear();
2711
2712  // Determine whether we are allowed to call explicit constructors or
2713  // explicit conversion operators.
2714  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
2715                        Kind.getKind() == InitializationKind::IK_Value ||
2716                        Kind.getKind() == InitializationKind::IK_Default);
2717
2718  // The type we're constructing needs to be complete.
2719  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2720    Sequence.SetFailed(InitializationSequence::FK_Incomplete);
2721    return;
2722  }
2723
2724  // The type we're converting to is a class type. Enumerate its constructors
2725  // to see if one is suitable.
2726  const RecordType *DestRecordType = DestType->getAs<RecordType>();
2727  assert(DestRecordType && "Constructor initialization requires record type");
2728  CXXRecordDecl *DestRecordDecl
2729    = cast<CXXRecordDecl>(DestRecordType->getDecl());
2730
2731  DeclContext::lookup_iterator Con, ConEnd;
2732  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
2733       Con != ConEnd; ++Con) {
2734    NamedDecl *D = *Con;
2735    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2736    bool SuppressUserConversions = false;
2737
2738    // Find the constructor (which may be a template).
2739    CXXConstructorDecl *Constructor = 0;
2740    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2741    if (ConstructorTmpl)
2742      Constructor = cast<CXXConstructorDecl>(
2743                                           ConstructorTmpl->getTemplatedDecl());
2744    else {
2745      Constructor = cast<CXXConstructorDecl>(D);
2746
2747      // If we're performing copy initialization using a copy constructor, we
2748      // suppress user-defined conversions on the arguments.
2749      // FIXME: Move constructors?
2750      if (Kind.getKind() == InitializationKind::IK_Copy &&
2751          Constructor->isCopyConstructor())
2752        SuppressUserConversions = true;
2753    }
2754
2755    if (!Constructor->isInvalidDecl() &&
2756        (AllowExplicit || !Constructor->isExplicit())) {
2757      if (ConstructorTmpl)
2758        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2759                                       /*ExplicitArgs*/ 0,
2760                                       Args, NumArgs, CandidateSet,
2761                                       SuppressUserConversions);
2762      else
2763        S.AddOverloadCandidate(Constructor, FoundDecl,
2764                               Args, NumArgs, CandidateSet,
2765                               SuppressUserConversions);
2766    }
2767  }
2768
2769  SourceLocation DeclLoc = Kind.getLocation();
2770
2771  // Perform overload resolution. If it fails, return the failed result.
2772  OverloadCandidateSet::iterator Best;
2773  if (OverloadingResult Result
2774        = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
2775    Sequence.SetOverloadFailure(
2776                          InitializationSequence::FK_ConstructorOverloadFailed,
2777                                Result);
2778    return;
2779  }
2780
2781  // C++0x [dcl.init]p6:
2782  //   If a program calls for the default initialization of an object
2783  //   of a const-qualified type T, T shall be a class type with a
2784  //   user-provided default constructor.
2785  if (Kind.getKind() == InitializationKind::IK_Default &&
2786      Entity.getType().isConstQualified() &&
2787      cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
2788    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2789    return;
2790  }
2791
2792  // Add the constructor initialization step. Any cv-qualification conversion is
2793  // subsumed by the initialization.
2794  Sequence.AddConstructorInitializationStep(
2795                                      cast<CXXConstructorDecl>(Best->Function),
2796                                      Best->FoundDecl.getAccess(),
2797                                      DestType);
2798}
2799
2800/// \brief Attempt value initialization (C++ [dcl.init]p7).
2801static void TryValueInitialization(Sema &S,
2802                                   const InitializedEntity &Entity,
2803                                   const InitializationKind &Kind,
2804                                   InitializationSequence &Sequence) {
2805  // C++ [dcl.init]p5:
2806  //
2807  //   To value-initialize an object of type T means:
2808  QualType T = Entity.getType();
2809
2810  //     -- if T is an array type, then each element is value-initialized;
2811  while (const ArrayType *AT = S.Context.getAsArrayType(T))
2812    T = AT->getElementType();
2813
2814  if (const RecordType *RT = T->getAs<RecordType>()) {
2815    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2816      // -- if T is a class type (clause 9) with a user-declared
2817      //    constructor (12.1), then the default constructor for T is
2818      //    called (and the initialization is ill-formed if T has no
2819      //    accessible default constructor);
2820      //
2821      // FIXME: we really want to refer to a single subobject of the array,
2822      // but Entity doesn't have a way to capture that (yet).
2823      if (ClassDecl->hasUserDeclaredConstructor())
2824        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2825
2826      // -- if T is a (possibly cv-qualified) non-union class type
2827      //    without a user-provided constructor, then the object is
2828      //    zero-initialized and, if T’s implicitly-declared default
2829      //    constructor is non-trivial, that constructor is called.
2830      if ((ClassDecl->getTagKind() == TTK_Class ||
2831           ClassDecl->getTagKind() == TTK_Struct)) {
2832        Sequence.AddZeroInitializationStep(Entity.getType());
2833        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2834      }
2835    }
2836  }
2837
2838  Sequence.AddZeroInitializationStep(Entity.getType());
2839  Sequence.setSequenceKind(InitializationSequence::ZeroInitialization);
2840}
2841
2842/// \brief Attempt default initialization (C++ [dcl.init]p6).
2843static void TryDefaultInitialization(Sema &S,
2844                                     const InitializedEntity &Entity,
2845                                     const InitializationKind &Kind,
2846                                     InitializationSequence &Sequence) {
2847  assert(Kind.getKind() == InitializationKind::IK_Default);
2848
2849  // C++ [dcl.init]p6:
2850  //   To default-initialize an object of type T means:
2851  //     - if T is an array type, each element is default-initialized;
2852  QualType DestType = Entity.getType();
2853  while (const ArrayType *Array = S.Context.getAsArrayType(DestType))
2854    DestType = Array->getElementType();
2855
2856  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
2857  //       constructor for T is called (and the initialization is ill-formed if
2858  //       T has no accessible default constructor);
2859  if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
2860    TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
2861    return;
2862  }
2863
2864  //     - otherwise, no initialization is performed.
2865  Sequence.setSequenceKind(InitializationSequence::NoInitialization);
2866
2867  //   If a program calls for the default initialization of an object of
2868  //   a const-qualified type T, T shall be a class type with a user-provided
2869  //   default constructor.
2870  if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus)
2871    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2872}
2873
2874/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
2875/// which enumerates all conversion functions and performs overload resolution
2876/// to select the best.
2877static void TryUserDefinedConversion(Sema &S,
2878                                     const InitializedEntity &Entity,
2879                                     const InitializationKind &Kind,
2880                                     Expr *Initializer,
2881                                     InitializationSequence &Sequence) {
2882  Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
2883
2884  QualType DestType = Entity.getType();
2885  assert(!DestType->isReferenceType() && "References are handled elsewhere");
2886  QualType SourceType = Initializer->getType();
2887  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
2888         "Must have a class type to perform a user-defined conversion");
2889
2890  // Build the candidate set directly in the initialization sequence
2891  // structure, so that it will persist if we fail.
2892  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2893  CandidateSet.clear();
2894
2895  // Determine whether we are allowed to call explicit constructors or
2896  // explicit conversion operators.
2897  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2898
2899  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
2900    // The type we're converting to is a class type. Enumerate its constructors
2901    // to see if there is a suitable conversion.
2902    CXXRecordDecl *DestRecordDecl
2903      = cast<CXXRecordDecl>(DestRecordType->getDecl());
2904
2905    // Try to complete the type we're converting to.
2906    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2907      DeclContext::lookup_iterator Con, ConEnd;
2908      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
2909           Con != ConEnd; ++Con) {
2910        NamedDecl *D = *Con;
2911        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2912
2913        // Find the constructor (which may be a template).
2914        CXXConstructorDecl *Constructor = 0;
2915        FunctionTemplateDecl *ConstructorTmpl
2916          = dyn_cast<FunctionTemplateDecl>(D);
2917        if (ConstructorTmpl)
2918          Constructor = cast<CXXConstructorDecl>(
2919                                           ConstructorTmpl->getTemplatedDecl());
2920        else
2921          Constructor = cast<CXXConstructorDecl>(D);
2922
2923        if (!Constructor->isInvalidDecl() &&
2924            Constructor->isConvertingConstructor(AllowExplicit)) {
2925          if (ConstructorTmpl)
2926            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2927                                           /*ExplicitArgs*/ 0,
2928                                           &Initializer, 1, CandidateSet,
2929                                           /*SuppressUserConversions=*/true);
2930          else
2931            S.AddOverloadCandidate(Constructor, FoundDecl,
2932                                   &Initializer, 1, CandidateSet,
2933                                   /*SuppressUserConversions=*/true);
2934        }
2935      }
2936    }
2937  }
2938
2939  SourceLocation DeclLoc = Initializer->getLocStart();
2940
2941  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
2942    // The type we're converting from is a class type, enumerate its conversion
2943    // functions.
2944
2945    // We can only enumerate the conversion functions for a complete type; if
2946    // the type isn't complete, simply skip this step.
2947    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
2948      CXXRecordDecl *SourceRecordDecl
2949        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
2950
2951      const UnresolvedSetImpl *Conversions
2952        = SourceRecordDecl->getVisibleConversionFunctions();
2953      for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2954           E = Conversions->end();
2955           I != E; ++I) {
2956        NamedDecl *D = *I;
2957        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2958        if (isa<UsingShadowDecl>(D))
2959          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2960
2961        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2962        CXXConversionDecl *Conv;
2963        if (ConvTemplate)
2964          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2965        else
2966          Conv = cast<CXXConversionDecl>(D);
2967
2968        if (AllowExplicit || !Conv->isExplicit()) {
2969          if (ConvTemplate)
2970            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2971                                             ActingDC, Initializer, DestType,
2972                                             CandidateSet);
2973          else
2974            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2975                                     Initializer, DestType, CandidateSet);
2976        }
2977      }
2978    }
2979  }
2980
2981  // Perform overload resolution. If it fails, return the failed result.
2982  OverloadCandidateSet::iterator Best;
2983  if (OverloadingResult Result
2984        = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
2985    Sequence.SetOverloadFailure(
2986                        InitializationSequence::FK_UserConversionOverloadFailed,
2987                                Result);
2988    return;
2989  }
2990
2991  FunctionDecl *Function = Best->Function;
2992
2993  if (isa<CXXConstructorDecl>(Function)) {
2994    // Add the user-defined conversion step. Any cv-qualification conversion is
2995    // subsumed by the initialization.
2996    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
2997    return;
2998  }
2999
3000  // Add the user-defined conversion step that calls the conversion function.
3001  QualType ConvType = Function->getCallResultType();
3002  if (ConvType->getAs<RecordType>()) {
3003    // If we're converting to a class type, there may be an copy if
3004    // the resulting temporary object (possible to create an object of
3005    // a base class type). That copy is not a separate conversion, so
3006    // we just make a note of the actual destination type (possibly a
3007    // base class of the type returned by the conversion function) and
3008    // let the user-defined conversion step handle the conversion.
3009    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3010    return;
3011  }
3012
3013  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType);
3014
3015  // If the conversion following the call to the conversion function
3016  // is interesting, add it as a separate step.
3017  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3018      Best->FinalConversion.Third) {
3019    ImplicitConversionSequence ICS;
3020    ICS.setStandard();
3021    ICS.Standard = Best->FinalConversion;
3022    Sequence.AddConversionSequenceStep(ICS, DestType);
3023  }
3024}
3025
3026InitializationSequence::InitializationSequence(Sema &S,
3027                                               const InitializedEntity &Entity,
3028                                               const InitializationKind &Kind,
3029                                               Expr **Args,
3030                                               unsigned NumArgs)
3031    : FailedCandidateSet(Kind.getLocation()) {
3032  ASTContext &Context = S.Context;
3033
3034  // C++0x [dcl.init]p16:
3035  //   The semantics of initializers are as follows. The destination type is
3036  //   the type of the object or reference being initialized and the source
3037  //   type is the type of the initializer expression. The source type is not
3038  //   defined when the initializer is a braced-init-list or when it is a
3039  //   parenthesized list of expressions.
3040  QualType DestType = Entity.getType();
3041
3042  if (DestType->isDependentType() ||
3043      Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
3044    SequenceKind = DependentSequence;
3045    return;
3046  }
3047
3048  QualType SourceType;
3049  Expr *Initializer = 0;
3050  if (NumArgs == 1) {
3051    Initializer = Args[0];
3052    if (!isa<InitListExpr>(Initializer))
3053      SourceType = Initializer->getType();
3054  }
3055
3056  //     - If the initializer is a braced-init-list, the object is
3057  //       list-initialized (8.5.4).
3058  if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
3059    TryListInitialization(S, Entity, Kind, InitList, *this);
3060    return;
3061  }
3062
3063  //     - If the destination type is a reference type, see 8.5.3.
3064  if (DestType->isReferenceType()) {
3065    // C++0x [dcl.init.ref]p1:
3066    //   A variable declared to be a T& or T&&, that is, "reference to type T"
3067    //   (8.3.2), shall be initialized by an object, or function, of type T or
3068    //   by an object that can be converted into a T.
3069    // (Therefore, multiple arguments are not permitted.)
3070    if (NumArgs != 1)
3071      SetFailed(FK_TooManyInitsForReference);
3072    else
3073      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
3074    return;
3075  }
3076
3077  //     - If the destination type is an array of characters, an array of
3078  //       char16_t, an array of char32_t, or an array of wchar_t, and the
3079  //       initializer is a string literal, see 8.5.2.
3080  if (Initializer && IsStringInit(Initializer, DestType, Context)) {
3081    TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
3082    return;
3083  }
3084
3085  //     - If the initializer is (), the object is value-initialized.
3086  if (Kind.getKind() == InitializationKind::IK_Value ||
3087      (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
3088    TryValueInitialization(S, Entity, Kind, *this);
3089    return;
3090  }
3091
3092  // Handle default initialization.
3093  if (Kind.getKind() == InitializationKind::IK_Default){
3094    TryDefaultInitialization(S, Entity, Kind, *this);
3095    return;
3096  }
3097
3098  //     - Otherwise, if the destination type is an array, the program is
3099  //       ill-formed.
3100  if (const ArrayType *AT = Context.getAsArrayType(DestType)) {
3101    if (AT->getElementType()->isAnyCharacterType())
3102      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
3103    else
3104      SetFailed(FK_ArrayNeedsInitList);
3105
3106    return;
3107  }
3108
3109  // Handle initialization in C
3110  if (!S.getLangOptions().CPlusPlus) {
3111    setSequenceKind(CAssignment);
3112    AddCAssignmentStep(DestType);
3113    return;
3114  }
3115
3116  //     - If the destination type is a (possibly cv-qualified) class type:
3117  if (DestType->isRecordType()) {
3118    //     - If the initialization is direct-initialization, or if it is
3119    //       copy-initialization where the cv-unqualified version of the
3120    //       source type is the same class as, or a derived class of, the
3121    //       class of the destination, constructors are considered. [...]
3122    if (Kind.getKind() == InitializationKind::IK_Direct ||
3123        (Kind.getKind() == InitializationKind::IK_Copy &&
3124         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
3125          S.IsDerivedFrom(SourceType, DestType))))
3126      TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
3127                                   Entity.getType(), *this);
3128    //     - Otherwise (i.e., for the remaining copy-initialization cases),
3129    //       user-defined conversion sequences that can convert from the source
3130    //       type to the destination type or (when a conversion function is
3131    //       used) to a derived class thereof are enumerated as described in
3132    //       13.3.1.4, and the best one is chosen through overload resolution
3133    //       (13.3).
3134    else
3135      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3136    return;
3137  }
3138
3139  if (NumArgs > 1) {
3140    SetFailed(FK_TooManyInitsForScalar);
3141    return;
3142  }
3143  assert(NumArgs == 1 && "Zero-argument case handled above");
3144
3145  //    - Otherwise, if the source type is a (possibly cv-qualified) class
3146  //      type, conversion functions are considered.
3147  if (!SourceType.isNull() && SourceType->isRecordType()) {
3148    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3149    return;
3150  }
3151
3152  //    - Otherwise, the initial value of the object being initialized is the
3153  //      (possibly converted) value of the initializer expression. Standard
3154  //      conversions (Clause 4) will be used, if necessary, to convert the
3155  //      initializer expression to the cv-unqualified version of the
3156  //      destination type; no user-defined conversions are considered.
3157  if (S.TryImplicitConversion(*this, Entity, Initializer,
3158                              /*SuppressUserConversions*/ true,
3159                              /*AllowExplicitConversions*/ false,
3160                              /*InOverloadResolution*/ false))
3161    SetFailed(InitializationSequence::FK_ConversionFailed);
3162  else
3163    setSequenceKind(StandardConversion);
3164}
3165
3166InitializationSequence::~InitializationSequence() {
3167  for (llvm::SmallVectorImpl<Step>::iterator Step = Steps.begin(),
3168                                          StepEnd = Steps.end();
3169       Step != StepEnd; ++Step)
3170    Step->Destroy();
3171}
3172
3173//===----------------------------------------------------------------------===//
3174// Perform initialization
3175//===----------------------------------------------------------------------===//
3176static Sema::AssignmentAction
3177getAssignmentAction(const InitializedEntity &Entity) {
3178  switch(Entity.getKind()) {
3179  case InitializedEntity::EK_Variable:
3180  case InitializedEntity::EK_New:
3181    return Sema::AA_Initializing;
3182
3183  case InitializedEntity::EK_Parameter:
3184    if (Entity.getDecl() &&
3185        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
3186      return Sema::AA_Sending;
3187
3188    return Sema::AA_Passing;
3189
3190  case InitializedEntity::EK_Result:
3191    return Sema::AA_Returning;
3192
3193  case InitializedEntity::EK_Exception:
3194  case InitializedEntity::EK_Base:
3195    llvm_unreachable("No assignment action for C++-specific initialization");
3196    break;
3197
3198  case InitializedEntity::EK_Temporary:
3199    // FIXME: Can we tell apart casting vs. converting?
3200    return Sema::AA_Casting;
3201
3202  case InitializedEntity::EK_Member:
3203  case InitializedEntity::EK_ArrayElement:
3204  case InitializedEntity::EK_VectorElement:
3205  case InitializedEntity::EK_BlockElement:
3206    return Sema::AA_Initializing;
3207  }
3208
3209  return Sema::AA_Converting;
3210}
3211
3212/// \brief Whether we should binding a created object as a temporary when
3213/// initializing the given entity.
3214static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
3215  switch (Entity.getKind()) {
3216  case InitializedEntity::EK_ArrayElement:
3217  case InitializedEntity::EK_Member:
3218  case InitializedEntity::EK_Result:
3219  case InitializedEntity::EK_New:
3220  case InitializedEntity::EK_Variable:
3221  case InitializedEntity::EK_Base:
3222  case InitializedEntity::EK_VectorElement:
3223  case InitializedEntity::EK_Exception:
3224  case InitializedEntity::EK_BlockElement:
3225    return false;
3226
3227  case InitializedEntity::EK_Parameter:
3228  case InitializedEntity::EK_Temporary:
3229    return true;
3230  }
3231
3232  llvm_unreachable("missed an InitializedEntity kind?");
3233}
3234
3235/// \brief Whether the given entity, when initialized with an object
3236/// created for that initialization, requires destruction.
3237static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
3238  switch (Entity.getKind()) {
3239    case InitializedEntity::EK_Member:
3240    case InitializedEntity::EK_Result:
3241    case InitializedEntity::EK_New:
3242    case InitializedEntity::EK_Base:
3243    case InitializedEntity::EK_VectorElement:
3244    case InitializedEntity::EK_BlockElement:
3245      return false;
3246
3247    case InitializedEntity::EK_Variable:
3248    case InitializedEntity::EK_Parameter:
3249    case InitializedEntity::EK_Temporary:
3250    case InitializedEntity::EK_ArrayElement:
3251    case InitializedEntity::EK_Exception:
3252      return true;
3253  }
3254
3255  llvm_unreachable("missed an InitializedEntity kind?");
3256}
3257
3258/// \brief Make a (potentially elidable) temporary copy of the object
3259/// provided by the given initializer by calling the appropriate copy
3260/// constructor.
3261///
3262/// \param S The Sema object used for type-checking.
3263///
3264/// \param T The type of the temporary object, which must either by
3265/// the type of the initializer expression or a superclass thereof.
3266///
3267/// \param Enter The entity being initialized.
3268///
3269/// \param CurInit The initializer expression.
3270///
3271/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
3272/// is permitted in C++03 (but not C++0x) when binding a reference to
3273/// an rvalue.
3274///
3275/// \returns An expression that copies the initializer expression into
3276/// a temporary object, or an error expression if a copy could not be
3277/// created.
3278static ExprResult CopyObject(Sema &S,
3279                                         QualType T,
3280                                         const InitializedEntity &Entity,
3281                                         ExprResult CurInit,
3282                                         bool IsExtraneousCopy) {
3283  // Determine which class type we're copying to.
3284  Expr *CurInitExpr = (Expr *)CurInit.get();
3285  CXXRecordDecl *Class = 0;
3286  if (const RecordType *Record = T->getAs<RecordType>())
3287    Class = cast<CXXRecordDecl>(Record->getDecl());
3288  if (!Class)
3289    return move(CurInit);
3290
3291  // C++0x [class.copy]p34:
3292  //   When certain criteria are met, an implementation is allowed to
3293  //   omit the copy/move construction of a class object, even if the
3294  //   copy/move constructor and/or destructor for the object have
3295  //   side effects. [...]
3296  //     - when a temporary class object that has not been bound to a
3297  //       reference (12.2) would be copied/moved to a class object
3298  //       with the same cv-unqualified type, the copy/move operation
3299  //       can be omitted by constructing the temporary object
3300  //       directly into the target of the omitted copy/move
3301  //
3302  // Note that the other three bullets are handled elsewhere. Copy
3303  // elision for return statements and throw expressions are handled as part
3304  // of constructor initialization, while copy elision for exception handlers
3305  // is handled by the run-time.
3306  bool Elidable = CurInitExpr->isTemporaryObject() &&
3307     S.Context.hasSameUnqualifiedType(T, CurInitExpr->getType());
3308  SourceLocation Loc;
3309  switch (Entity.getKind()) {
3310  case InitializedEntity::EK_Result:
3311    Loc = Entity.getReturnLoc();
3312    break;
3313
3314  case InitializedEntity::EK_Exception:
3315    Loc = Entity.getThrowLoc();
3316    break;
3317
3318  case InitializedEntity::EK_Variable:
3319    Loc = Entity.getDecl()->getLocation();
3320    break;
3321
3322  case InitializedEntity::EK_ArrayElement:
3323  case InitializedEntity::EK_Member:
3324  case InitializedEntity::EK_Parameter:
3325  case InitializedEntity::EK_Temporary:
3326  case InitializedEntity::EK_New:
3327  case InitializedEntity::EK_Base:
3328  case InitializedEntity::EK_VectorElement:
3329  case InitializedEntity::EK_BlockElement:
3330    Loc = CurInitExpr->getLocStart();
3331    break;
3332  }
3333
3334  // Make sure that the type we are copying is complete.
3335  if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
3336    return move(CurInit);
3337
3338  // Perform overload resolution using the class's copy constructors.
3339  DeclContext::lookup_iterator Con, ConEnd;
3340  OverloadCandidateSet CandidateSet(Loc);
3341  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
3342       Con != ConEnd; ++Con) {
3343    // Only consider copy constructors.
3344    CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(*Con);
3345    if (!Constructor || Constructor->isInvalidDecl() ||
3346        !Constructor->isCopyConstructor() ||
3347        !Constructor->isConvertingConstructor(/*AllowExplicit=*/false))
3348      continue;
3349
3350    DeclAccessPair FoundDecl
3351      = DeclAccessPair::make(Constructor, Constructor->getAccess());
3352    S.AddOverloadCandidate(Constructor, FoundDecl,
3353                           &CurInitExpr, 1, CandidateSet);
3354  }
3355
3356  OverloadCandidateSet::iterator Best;
3357  switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
3358  case OR_Success:
3359    break;
3360
3361  case OR_No_Viable_Function:
3362    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
3363           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
3364           : diag::err_temp_copy_no_viable)
3365      << (int)Entity.getKind() << CurInitExpr->getType()
3366      << CurInitExpr->getSourceRange();
3367    CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1);
3368    if (!IsExtraneousCopy || S.isSFINAEContext())
3369      return ExprError();
3370    return move(CurInit);
3371
3372  case OR_Ambiguous:
3373    S.Diag(Loc, diag::err_temp_copy_ambiguous)
3374      << (int)Entity.getKind() << CurInitExpr->getType()
3375      << CurInitExpr->getSourceRange();
3376    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1);
3377    return ExprError();
3378
3379  case OR_Deleted:
3380    S.Diag(Loc, diag::err_temp_copy_deleted)
3381      << (int)Entity.getKind() << CurInitExpr->getType()
3382      << CurInitExpr->getSourceRange();
3383    S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3384      << Best->Function->isDeleted();
3385    return ExprError();
3386  }
3387
3388  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3389  ASTOwningVector<Expr*> ConstructorArgs(S);
3390  CurInit.release(); // Ownership transferred into MultiExprArg, below.
3391
3392  S.CheckConstructorAccess(Loc, Constructor, Entity,
3393                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
3394
3395  if (IsExtraneousCopy) {
3396    // If this is a totally extraneous copy for C++03 reference
3397    // binding purposes, just return the original initialization
3398    // expression. We don't generate an (elided) copy operation here
3399    // because doing so would require us to pass down a flag to avoid
3400    // infinite recursion, where each step adds another extraneous,
3401    // elidable copy.
3402
3403    // Instantiate the default arguments of any extra parameters in
3404    // the selected copy constructor, as if we were going to create a
3405    // proper call to the copy constructor.
3406    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
3407      ParmVarDecl *Parm = Constructor->getParamDecl(I);
3408      if (S.RequireCompleteType(Loc, Parm->getType(),
3409                                S.PDiag(diag::err_call_incomplete_argument)))
3410        break;
3411
3412      // Build the default argument expression; we don't actually care
3413      // if this succeeds or not, because this routine will complain
3414      // if there was a problem.
3415      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
3416    }
3417
3418    return S.Owned(CurInitExpr);
3419  }
3420
3421  // Determine the arguments required to actually perform the
3422  // constructor call (we might have derived-to-base conversions, or
3423  // the copy constructor may have default arguments).
3424  if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
3425                                Loc, ConstructorArgs))
3426    return ExprError();
3427
3428  // Actually perform the constructor call.
3429  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
3430                                    move_arg(ConstructorArgs),
3431                                    /*ZeroInit*/ false,
3432                                    CXXConstructExpr::CK_Complete);
3433
3434  // If we're supposed to bind temporaries, do so.
3435  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
3436    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3437  return move(CurInit);
3438}
3439
3440void InitializationSequence::PrintInitLocationNote(Sema &S,
3441                                              const InitializedEntity &Entity) {
3442  if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
3443    if (Entity.getDecl()->getLocation().isInvalid())
3444      return;
3445
3446    if (Entity.getDecl()->getDeclName())
3447      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
3448        << Entity.getDecl()->getDeclName();
3449    else
3450      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
3451  }
3452}
3453
3454ExprResult
3455InitializationSequence::Perform(Sema &S,
3456                                const InitializedEntity &Entity,
3457                                const InitializationKind &Kind,
3458                                MultiExprArg Args,
3459                                QualType *ResultType) {
3460  if (SequenceKind == FailedSequence) {
3461    unsigned NumArgs = Args.size();
3462    Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
3463    return ExprError();
3464  }
3465
3466  if (SequenceKind == DependentSequence) {
3467    // If the declaration is a non-dependent, incomplete array type
3468    // that has an initializer, then its type will be completed once
3469    // the initializer is instantiated.
3470    if (ResultType && !Entity.getType()->isDependentType() &&
3471        Args.size() == 1) {
3472      QualType DeclType = Entity.getType();
3473      if (const IncompleteArrayType *ArrayT
3474                           = S.Context.getAsIncompleteArrayType(DeclType)) {
3475        // FIXME: We don't currently have the ability to accurately
3476        // compute the length of an initializer list without
3477        // performing full type-checking of the initializer list
3478        // (since we have to determine where braces are implicitly
3479        // introduced and such).  So, we fall back to making the array
3480        // type a dependently-sized array type with no specified
3481        // bound.
3482        if (isa<InitListExpr>((Expr *)Args.get()[0])) {
3483          SourceRange Brackets;
3484
3485          // Scavange the location of the brackets from the entity, if we can.
3486          if (DeclaratorDecl *DD = Entity.getDecl()) {
3487            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
3488              TypeLoc TL = TInfo->getTypeLoc();
3489              if (IncompleteArrayTypeLoc *ArrayLoc
3490                                      = dyn_cast<IncompleteArrayTypeLoc>(&TL))
3491              Brackets = ArrayLoc->getBracketsRange();
3492            }
3493          }
3494
3495          *ResultType
3496            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
3497                                                   /*NumElts=*/0,
3498                                                   ArrayT->getSizeModifier(),
3499                                       ArrayT->getIndexTypeCVRQualifiers(),
3500                                                   Brackets);
3501        }
3502
3503      }
3504    }
3505
3506    if (Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast())
3507      return ExprResult(Args.release()[0]);
3508
3509    if (Args.size() == 0)
3510      return S.Owned((Expr *)0);
3511
3512    unsigned NumArgs = Args.size();
3513    return S.Owned(new (S.Context) ParenListExpr(S.Context,
3514                                                 SourceLocation(),
3515                                                 (Expr **)Args.release(),
3516                                                 NumArgs,
3517                                                 SourceLocation()));
3518  }
3519
3520  if (SequenceKind == NoInitialization)
3521    return S.Owned((Expr *)0);
3522
3523  QualType DestType = Entity.getType().getNonReferenceType();
3524  // FIXME: Ugly hack around the fact that Entity.getType() is not
3525  // the same as Entity.getDecl()->getType() in cases involving type merging,
3526  //  and we want latter when it makes sense.
3527  if (ResultType)
3528    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
3529                                     Entity.getType();
3530
3531  ExprResult CurInit = S.Owned((Expr *)0);
3532
3533  assert(!Steps.empty() && "Cannot have an empty initialization sequence");
3534
3535  // For initialization steps that start with a single initializer,
3536  // grab the only argument out the Args and place it into the "current"
3537  // initializer.
3538  switch (Steps.front().Kind) {
3539  case SK_ResolveAddressOfOverloadedFunction:
3540  case SK_CastDerivedToBaseRValue:
3541  case SK_CastDerivedToBaseXValue:
3542  case SK_CastDerivedToBaseLValue:
3543  case SK_BindReference:
3544  case SK_BindReferenceToTemporary:
3545  case SK_ExtraneousCopyToTemporary:
3546  case SK_UserConversion:
3547  case SK_QualificationConversionLValue:
3548  case SK_QualificationConversionXValue:
3549  case SK_QualificationConversionRValue:
3550  case SK_ConversionSequence:
3551  case SK_ListInitialization:
3552  case SK_CAssignment:
3553  case SK_StringInit:
3554  case SK_ObjCObjectConversion:
3555    assert(Args.size() == 1);
3556    CurInit = ExprResult(((Expr **)(Args.get()))[0]->Retain());
3557    if (CurInit.isInvalid())
3558      return ExprError();
3559    break;
3560
3561  case SK_ConstructorInitialization:
3562  case SK_ZeroInitialization:
3563    break;
3564  }
3565
3566  // Walk through the computed steps for the initialization sequence,
3567  // performing the specified conversions along the way.
3568  bool ConstructorInitRequiresZeroInit = false;
3569  for (step_iterator Step = step_begin(), StepEnd = step_end();
3570       Step != StepEnd; ++Step) {
3571    if (CurInit.isInvalid())
3572      return ExprError();
3573
3574    Expr *CurInitExpr = (Expr *)CurInit.get();
3575    QualType SourceType = CurInitExpr? CurInitExpr->getType() : QualType();
3576
3577    switch (Step->Kind) {
3578    case SK_ResolveAddressOfOverloadedFunction:
3579      // Overload resolution determined which function invoke; update the
3580      // initializer to reflect that choice.
3581      S.CheckAddressOfMemberAccess(CurInitExpr, Step->Function.FoundDecl);
3582      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
3583      CurInit = S.FixOverloadedFunctionReference(move(CurInit),
3584                                                 Step->Function.FoundDecl,
3585                                                 Step->Function.Function);
3586      break;
3587
3588    case SK_CastDerivedToBaseRValue:
3589    case SK_CastDerivedToBaseXValue:
3590    case SK_CastDerivedToBaseLValue: {
3591      // We have a derived-to-base cast that produces either an rvalue or an
3592      // lvalue. Perform that cast.
3593
3594      CXXCastPath BasePath;
3595
3596      // Casts to inaccessible base classes are allowed with C-style casts.
3597      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3598      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
3599                                         CurInitExpr->getLocStart(),
3600                                         CurInitExpr->getSourceRange(),
3601                                         &BasePath, IgnoreBaseAccess))
3602        return ExprError();
3603
3604      if (S.BasePathInvolvesVirtualBase(BasePath)) {
3605        QualType T = SourceType;
3606        if (const PointerType *Pointer = T->getAs<PointerType>())
3607          T = Pointer->getPointeeType();
3608        if (const RecordType *RecordTy = T->getAs<RecordType>())
3609          S.MarkVTableUsed(CurInitExpr->getLocStart(),
3610                           cast<CXXRecordDecl>(RecordTy->getDecl()));
3611      }
3612
3613      ExprValueKind VK =
3614          Step->Kind == SK_CastDerivedToBaseLValue ?
3615              VK_LValue :
3616              (Step->Kind == SK_CastDerivedToBaseXValue ?
3617                   VK_XValue :
3618                   VK_RValue);
3619      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
3620                                                 Step->Type,
3621                                                 CK_DerivedToBase,
3622                                                 CurInit.get(),
3623                                                 &BasePath, VK));
3624      break;
3625    }
3626
3627    case SK_BindReference:
3628      if (FieldDecl *BitField = CurInitExpr->getBitField()) {
3629        // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
3630        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
3631          << Entity.getType().isVolatileQualified()
3632          << BitField->getDeclName()
3633          << CurInitExpr->getSourceRange();
3634        S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
3635        return ExprError();
3636      }
3637
3638      if (CurInitExpr->refersToVectorElement()) {
3639        // References cannot bind to vector elements.
3640        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
3641          << Entity.getType().isVolatileQualified()
3642          << CurInitExpr->getSourceRange();
3643        PrintInitLocationNote(S, Entity);
3644        return ExprError();
3645      }
3646
3647      // Reference binding does not have any corresponding ASTs.
3648
3649      // Check exception specifications
3650      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3651        return ExprError();
3652
3653      break;
3654
3655    case SK_BindReferenceToTemporary:
3656      // Reference binding does not have any corresponding ASTs.
3657
3658      // Check exception specifications
3659      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3660        return ExprError();
3661
3662      break;
3663
3664    case SK_ExtraneousCopyToTemporary:
3665      CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
3666                           /*IsExtraneousCopy=*/true);
3667      break;
3668
3669    case SK_UserConversion: {
3670      // We have a user-defined conversion that invokes either a constructor
3671      // or a conversion function.
3672      CastKind CastKind = CK_Unknown;
3673      bool IsCopy = false;
3674      FunctionDecl *Fn = Step->Function.Function;
3675      DeclAccessPair FoundFn = Step->Function.FoundDecl;
3676      bool CreatedObject = false;
3677      bool IsLvalue = false;
3678      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
3679        // Build a call to the selected constructor.
3680        ASTOwningVector<Expr*> ConstructorArgs(S);
3681        SourceLocation Loc = CurInitExpr->getLocStart();
3682        CurInit.release(); // Ownership transferred into MultiExprArg, below.
3683
3684        // Determine the arguments required to actually perform the constructor
3685        // call.
3686        if (S.CompleteConstructorCall(Constructor,
3687                                      MultiExprArg(&CurInitExpr, 1),
3688                                      Loc, ConstructorArgs))
3689          return ExprError();
3690
3691        // Build the an expression that constructs a temporary.
3692        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
3693                                          move_arg(ConstructorArgs),
3694                                          /*ZeroInit*/ false,
3695                                          CXXConstructExpr::CK_Complete);
3696        if (CurInit.isInvalid())
3697          return ExprError();
3698
3699        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
3700                                 FoundFn.getAccess());
3701        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
3702
3703        CastKind = CK_ConstructorConversion;
3704        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
3705        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
3706            S.IsDerivedFrom(SourceType, Class))
3707          IsCopy = true;
3708
3709        CreatedObject = true;
3710      } else {
3711        // Build a call to the conversion function.
3712        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
3713        IsLvalue = Conversion->getResultType()->isLValueReferenceType();
3714        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInitExpr, 0,
3715                                    FoundFn);
3716        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
3717
3718        // FIXME: Should we move this initialization into a separate
3719        // derived-to-base conversion? I believe the answer is "no", because
3720        // we don't want to turn off access control here for c-style casts.
3721        if (S.PerformObjectArgumentInitialization(CurInitExpr, /*Qualifier=*/0,
3722                                                  FoundFn, Conversion))
3723          return ExprError();
3724
3725        // Do a little dance to make sure that CurInit has the proper
3726        // pointer.
3727        CurInit.release();
3728
3729        // Build the actual call to the conversion function.
3730        CurInit = S.Owned(S.BuildCXXMemberCallExpr(CurInitExpr, FoundFn,
3731                                                   Conversion));
3732        if (CurInit.isInvalid() || !CurInit.get())
3733          return ExprError();
3734
3735        CastKind = CK_UserDefinedConversion;
3736
3737        CreatedObject = Conversion->getResultType()->isRecordType();
3738      }
3739
3740      bool RequiresCopy = !IsCopy &&
3741        getKind() != InitializationSequence::ReferenceBinding;
3742      if (RequiresCopy || shouldBindAsTemporary(Entity))
3743        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3744      else if (CreatedObject && shouldDestroyTemporary(Entity)) {
3745        CurInitExpr = static_cast<Expr *>(CurInit.get());
3746        QualType T = CurInitExpr->getType();
3747        if (const RecordType *Record = T->getAs<RecordType>()) {
3748          CXXDestructorDecl *Destructor
3749            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
3750          S.CheckDestructorAccess(CurInitExpr->getLocStart(), Destructor,
3751                                  S.PDiag(diag::err_access_dtor_temp) << T);
3752          S.MarkDeclarationReferenced(CurInitExpr->getLocStart(), Destructor);
3753        }
3754      }
3755
3756      CurInitExpr = CurInit.takeAs<Expr>();
3757      // FIXME: xvalues
3758      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
3759                                                 CurInitExpr->getType(),
3760                                                 CastKind, CurInitExpr, 0,
3761                                           IsLvalue ? VK_LValue : VK_RValue));
3762
3763      if (RequiresCopy)
3764        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
3765                             move(CurInit), /*IsExtraneousCopy=*/false);
3766
3767      break;
3768    }
3769
3770    case SK_QualificationConversionLValue:
3771    case SK_QualificationConversionXValue:
3772    case SK_QualificationConversionRValue: {
3773      // Perform a qualification conversion; these can never go wrong.
3774      ExprValueKind VK =
3775          Step->Kind == SK_QualificationConversionLValue ?
3776              VK_LValue :
3777              (Step->Kind == SK_QualificationConversionXValue ?
3778                   VK_XValue :
3779                   VK_RValue);
3780      S.ImpCastExprToType(CurInitExpr, Step->Type, CK_NoOp, VK);
3781      CurInit.release();
3782      CurInit = S.Owned(CurInitExpr);
3783      break;
3784    }
3785
3786    case SK_ConversionSequence: {
3787      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3788
3789      if (S.PerformImplicitConversion(CurInitExpr, Step->Type, *Step->ICS,
3790                                      Sema::AA_Converting, IgnoreBaseAccess))
3791        return ExprError();
3792
3793      CurInit.release();
3794      CurInit = S.Owned(CurInitExpr);
3795      break;
3796    }
3797
3798    case SK_ListInitialization: {
3799      InitListExpr *InitList = cast<InitListExpr>(CurInitExpr);
3800      QualType Ty = Step->Type;
3801      if (S.CheckInitList(Entity, InitList, ResultType? *ResultType : Ty))
3802        return ExprError();
3803
3804      CurInit.release();
3805      CurInit = S.Owned(InitList);
3806      break;
3807    }
3808
3809    case SK_ConstructorInitialization: {
3810      unsigned NumArgs = Args.size();
3811      CXXConstructorDecl *Constructor
3812        = cast<CXXConstructorDecl>(Step->Function.Function);
3813
3814      // Build a call to the selected constructor.
3815      ASTOwningVector<Expr*> ConstructorArgs(S);
3816      SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
3817                             ? Kind.getEqualLoc()
3818                             : Kind.getLocation();
3819
3820      if (Kind.getKind() == InitializationKind::IK_Default) {
3821        // Force even a trivial, implicit default constructor to be
3822        // semantically checked. We do this explicitly because we don't build
3823        // the definition for completely trivial constructors.
3824        CXXRecordDecl *ClassDecl = Constructor->getParent();
3825        assert(ClassDecl && "No parent class for constructor.");
3826        if (Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3827            ClassDecl->hasTrivialConstructor() && !Constructor->isUsed(false))
3828          S.DefineImplicitDefaultConstructor(Loc, Constructor);
3829      }
3830
3831      // Determine the arguments required to actually perform the constructor
3832      // call.
3833      if (S.CompleteConstructorCall(Constructor, move(Args),
3834                                    Loc, ConstructorArgs))
3835        return ExprError();
3836
3837
3838      if (Entity.getKind() == InitializedEntity::EK_Temporary &&
3839          NumArgs != 1 && // FIXME: Hack to work around cast weirdness
3840          (Kind.getKind() == InitializationKind::IK_Direct ||
3841           Kind.getKind() == InitializationKind::IK_Value)) {
3842        // An explicitly-constructed temporary, e.g., X(1, 2).
3843        unsigned NumExprs = ConstructorArgs.size();
3844        Expr **Exprs = (Expr **)ConstructorArgs.take();
3845        S.MarkDeclarationReferenced(Loc, Constructor);
3846        CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
3847                                                                 Constructor,
3848                                                              Entity.getType(),
3849                                                                 Loc,
3850                                                                 Exprs,
3851                                                                 NumExprs,
3852                                                Kind.getParenRange().getEnd(),
3853                                             ConstructorInitRequiresZeroInit));
3854      } else {
3855        CXXConstructExpr::ConstructionKind ConstructKind =
3856          CXXConstructExpr::CK_Complete;
3857
3858        if (Entity.getKind() == InitializedEntity::EK_Base) {
3859          ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
3860            CXXConstructExpr::CK_VirtualBase :
3861            CXXConstructExpr::CK_NonVirtualBase;
3862        }
3863
3864        // If the entity allows NRVO, mark the construction as elidable
3865        // unconditionally.
3866        if (Entity.allowsNRVO())
3867          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3868                                            Constructor, /*Elidable=*/true,
3869                                            move_arg(ConstructorArgs),
3870                                            ConstructorInitRequiresZeroInit,
3871                                            ConstructKind);
3872        else
3873          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3874                                            Constructor,
3875                                            move_arg(ConstructorArgs),
3876                                            ConstructorInitRequiresZeroInit,
3877                                            ConstructKind);
3878      }
3879      if (CurInit.isInvalid())
3880        return ExprError();
3881
3882      // Only check access if all of that succeeded.
3883      S.CheckConstructorAccess(Loc, Constructor, Entity,
3884                               Step->Function.FoundDecl.getAccess());
3885      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Loc);
3886
3887      if (shouldBindAsTemporary(Entity))
3888        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3889
3890      break;
3891    }
3892
3893    case SK_ZeroInitialization: {
3894      step_iterator NextStep = Step;
3895      ++NextStep;
3896      if (NextStep != StepEnd &&
3897          NextStep->Kind == SK_ConstructorInitialization) {
3898        // The need for zero-initialization is recorded directly into
3899        // the call to the object's constructor within the next step.
3900        ConstructorInitRequiresZeroInit = true;
3901      } else if (Kind.getKind() == InitializationKind::IK_Value &&
3902                 S.getLangOptions().CPlusPlus &&
3903                 !Kind.isImplicitValueInit()) {
3904        CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(Step->Type,
3905                                                   Kind.getRange().getBegin(),
3906                                                    Kind.getRange().getEnd()));
3907      } else {
3908        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
3909      }
3910      break;
3911    }
3912
3913    case SK_CAssignment: {
3914      QualType SourceType = CurInitExpr->getType();
3915      Sema::AssignConvertType ConvTy =
3916        S.CheckSingleAssignmentConstraints(Step->Type, CurInitExpr);
3917
3918      // If this is a call, allow conversion to a transparent union.
3919      if (ConvTy != Sema::Compatible &&
3920          Entity.getKind() == InitializedEntity::EK_Parameter &&
3921          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExpr)
3922            == Sema::Compatible)
3923        ConvTy = Sema::Compatible;
3924
3925      bool Complained;
3926      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
3927                                     Step->Type, SourceType,
3928                                     CurInitExpr,
3929                                     getAssignmentAction(Entity),
3930                                     &Complained)) {
3931        PrintInitLocationNote(S, Entity);
3932        return ExprError();
3933      } else if (Complained)
3934        PrintInitLocationNote(S, Entity);
3935
3936      CurInit.release();
3937      CurInit = S.Owned(CurInitExpr);
3938      break;
3939    }
3940
3941    case SK_StringInit: {
3942      QualType Ty = Step->Type;
3943      CheckStringInit(CurInitExpr, ResultType ? *ResultType : Ty, S);
3944      break;
3945    }
3946
3947    case SK_ObjCObjectConversion:
3948      S.ImpCastExprToType(CurInitExpr, Step->Type,
3949                          CK_ObjCObjectLValueCast,
3950                          S.CastCategory(CurInitExpr));
3951      CurInit.release();
3952      CurInit = S.Owned(CurInitExpr);
3953      break;
3954    }
3955  }
3956
3957  return move(CurInit);
3958}
3959
3960//===----------------------------------------------------------------------===//
3961// Diagnose initialization failures
3962//===----------------------------------------------------------------------===//
3963bool InitializationSequence::Diagnose(Sema &S,
3964                                      const InitializedEntity &Entity,
3965                                      const InitializationKind &Kind,
3966                                      Expr **Args, unsigned NumArgs) {
3967  if (SequenceKind != FailedSequence)
3968    return false;
3969
3970  QualType DestType = Entity.getType();
3971  switch (Failure) {
3972  case FK_TooManyInitsForReference:
3973    // FIXME: Customize for the initialized entity?
3974    if (NumArgs == 0)
3975      S.Diag(Kind.getLocation(), diag::err_reference_without_init)
3976        << DestType.getNonReferenceType();
3977    else  // FIXME: diagnostic below could be better!
3978      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
3979        << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
3980    break;
3981
3982  case FK_ArrayNeedsInitList:
3983  case FK_ArrayNeedsInitListOrStringLiteral:
3984    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
3985      << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
3986    break;
3987
3988  case FK_AddressOfOverloadFailed: {
3989    DeclAccessPair Found;
3990    S.ResolveAddressOfOverloadedFunction(Args[0],
3991                                         DestType.getNonReferenceType(),
3992                                         true,
3993                                         Found);
3994    break;
3995  }
3996
3997  case FK_ReferenceInitOverloadFailed:
3998  case FK_UserConversionOverloadFailed:
3999    switch (FailedOverloadResult) {
4000    case OR_Ambiguous:
4001      if (Failure == FK_UserConversionOverloadFailed)
4002        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
4003          << Args[0]->getType() << DestType
4004          << Args[0]->getSourceRange();
4005      else
4006        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
4007          << DestType << Args[0]->getType()
4008          << Args[0]->getSourceRange();
4009
4010      FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args, NumArgs);
4011      break;
4012
4013    case OR_No_Viable_Function:
4014      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
4015        << Args[0]->getType() << DestType.getNonReferenceType()
4016        << Args[0]->getSourceRange();
4017      FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
4018      break;
4019
4020    case OR_Deleted: {
4021      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
4022        << Args[0]->getType() << DestType.getNonReferenceType()
4023        << Args[0]->getSourceRange();
4024      OverloadCandidateSet::iterator Best;
4025      OverloadingResult Ovl
4026        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
4027      if (Ovl == OR_Deleted) {
4028        S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4029          << Best->Function->isDeleted();
4030      } else {
4031        llvm_unreachable("Inconsistent overload resolution?");
4032      }
4033      break;
4034    }
4035
4036    case OR_Success:
4037      llvm_unreachable("Conversion did not fail!");
4038      break;
4039    }
4040    break;
4041
4042  case FK_NonConstLValueReferenceBindingToTemporary:
4043  case FK_NonConstLValueReferenceBindingToUnrelated:
4044    S.Diag(Kind.getLocation(),
4045           Failure == FK_NonConstLValueReferenceBindingToTemporary
4046             ? diag::err_lvalue_reference_bind_to_temporary
4047             : diag::err_lvalue_reference_bind_to_unrelated)
4048      << DestType.getNonReferenceType().isVolatileQualified()
4049      << DestType.getNonReferenceType()
4050      << Args[0]->getType()
4051      << Args[0]->getSourceRange();
4052    break;
4053
4054  case FK_RValueReferenceBindingToLValue:
4055    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
4056      << Args[0]->getSourceRange();
4057    break;
4058
4059  case FK_ReferenceInitDropsQualifiers:
4060    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
4061      << DestType.getNonReferenceType()
4062      << Args[0]->getType()
4063      << Args[0]->getSourceRange();
4064    break;
4065
4066  case FK_ReferenceInitFailed:
4067    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
4068      << DestType.getNonReferenceType()
4069      << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
4070      << Args[0]->getType()
4071      << Args[0]->getSourceRange();
4072    break;
4073
4074  case FK_ConversionFailed:
4075    S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
4076      << (int)Entity.getKind()
4077      << DestType
4078      << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
4079      << Args[0]->getType()
4080      << Args[0]->getSourceRange();
4081    break;
4082
4083  case FK_TooManyInitsForScalar: {
4084    SourceRange R;
4085
4086    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
4087      R = SourceRange(InitList->getInit(1)->getLocStart(),
4088                      InitList->getLocEnd());
4089    else
4090      R = SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
4091
4092    S.Diag(Kind.getLocation(), diag::err_excess_initializers)
4093      << /*scalar=*/2 << R;
4094    break;
4095  }
4096
4097  case FK_ReferenceBindingToInitList:
4098    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
4099      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
4100    break;
4101
4102  case FK_InitListBadDestinationType:
4103    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
4104      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
4105    break;
4106
4107  case FK_ConstructorOverloadFailed: {
4108    SourceRange ArgsRange;
4109    if (NumArgs)
4110      ArgsRange = SourceRange(Args[0]->getLocStart(),
4111                              Args[NumArgs - 1]->getLocEnd());
4112
4113    // FIXME: Using "DestType" for the entity we're printing is probably
4114    // bad.
4115    switch (FailedOverloadResult) {
4116      case OR_Ambiguous:
4117        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
4118          << DestType << ArgsRange;
4119        FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
4120                                          Args, NumArgs);
4121        break;
4122
4123      case OR_No_Viable_Function:
4124        if (Kind.getKind() == InitializationKind::IK_Default &&
4125            (Entity.getKind() == InitializedEntity::EK_Base ||
4126             Entity.getKind() == InitializedEntity::EK_Member) &&
4127            isa<CXXConstructorDecl>(S.CurContext)) {
4128          // This is implicit default initialization of a member or
4129          // base within a constructor. If no viable function was
4130          // found, notify the user that she needs to explicitly
4131          // initialize this base/member.
4132          CXXConstructorDecl *Constructor
4133            = cast<CXXConstructorDecl>(S.CurContext);
4134          if (Entity.getKind() == InitializedEntity::EK_Base) {
4135            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4136              << Constructor->isImplicit()
4137              << S.Context.getTypeDeclType(Constructor->getParent())
4138              << /*base=*/0
4139              << Entity.getType();
4140
4141            RecordDecl *BaseDecl
4142              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
4143                                                                  ->getDecl();
4144            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
4145              << S.Context.getTagDeclType(BaseDecl);
4146          } else {
4147            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4148              << Constructor->isImplicit()
4149              << S.Context.getTypeDeclType(Constructor->getParent())
4150              << /*member=*/1
4151              << Entity.getName();
4152            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
4153
4154            if (const RecordType *Record
4155                                 = Entity.getType()->getAs<RecordType>())
4156              S.Diag(Record->getDecl()->getLocation(),
4157                     diag::note_previous_decl)
4158                << S.Context.getTagDeclType(Record->getDecl());
4159          }
4160          break;
4161        }
4162
4163        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
4164          << DestType << ArgsRange;
4165        FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
4166        break;
4167
4168      case OR_Deleted: {
4169        S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
4170          << true << DestType << ArgsRange;
4171        OverloadCandidateSet::iterator Best;
4172        OverloadingResult Ovl
4173          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
4174        if (Ovl == OR_Deleted) {
4175          S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4176            << Best->Function->isDeleted();
4177        } else {
4178          llvm_unreachable("Inconsistent overload resolution?");
4179        }
4180        break;
4181      }
4182
4183      case OR_Success:
4184        llvm_unreachable("Conversion did not fail!");
4185        break;
4186    }
4187    break;
4188  }
4189
4190  case FK_DefaultInitOfConst:
4191    if (Entity.getKind() == InitializedEntity::EK_Member &&
4192        isa<CXXConstructorDecl>(S.CurContext)) {
4193      // This is implicit default-initialization of a const member in
4194      // a constructor. Complain that it needs to be explicitly
4195      // initialized.
4196      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
4197      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
4198        << Constructor->isImplicit()
4199        << S.Context.getTypeDeclType(Constructor->getParent())
4200        << /*const=*/1
4201        << Entity.getName();
4202      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
4203        << Entity.getName();
4204    } else {
4205      S.Diag(Kind.getLocation(), diag::err_default_init_const)
4206        << DestType << (bool)DestType->getAs<RecordType>();
4207    }
4208    break;
4209
4210    case FK_Incomplete:
4211      S.RequireCompleteType(Kind.getLocation(), DestType,
4212                            diag::err_init_incomplete_type);
4213      break;
4214  }
4215
4216  PrintInitLocationNote(S, Entity);
4217  return true;
4218}
4219
4220void InitializationSequence::dump(llvm::raw_ostream &OS) const {
4221  switch (SequenceKind) {
4222  case FailedSequence: {
4223    OS << "Failed sequence: ";
4224    switch (Failure) {
4225    case FK_TooManyInitsForReference:
4226      OS << "too many initializers for reference";
4227      break;
4228
4229    case FK_ArrayNeedsInitList:
4230      OS << "array requires initializer list";
4231      break;
4232
4233    case FK_ArrayNeedsInitListOrStringLiteral:
4234      OS << "array requires initializer list or string literal";
4235      break;
4236
4237    case FK_AddressOfOverloadFailed:
4238      OS << "address of overloaded function failed";
4239      break;
4240
4241    case FK_ReferenceInitOverloadFailed:
4242      OS << "overload resolution for reference initialization failed";
4243      break;
4244
4245    case FK_NonConstLValueReferenceBindingToTemporary:
4246      OS << "non-const lvalue reference bound to temporary";
4247      break;
4248
4249    case FK_NonConstLValueReferenceBindingToUnrelated:
4250      OS << "non-const lvalue reference bound to unrelated type";
4251      break;
4252
4253    case FK_RValueReferenceBindingToLValue:
4254      OS << "rvalue reference bound to an lvalue";
4255      break;
4256
4257    case FK_ReferenceInitDropsQualifiers:
4258      OS << "reference initialization drops qualifiers";
4259      break;
4260
4261    case FK_ReferenceInitFailed:
4262      OS << "reference initialization failed";
4263      break;
4264
4265    case FK_ConversionFailed:
4266      OS << "conversion failed";
4267      break;
4268
4269    case FK_TooManyInitsForScalar:
4270      OS << "too many initializers for scalar";
4271      break;
4272
4273    case FK_ReferenceBindingToInitList:
4274      OS << "referencing binding to initializer list";
4275      break;
4276
4277    case FK_InitListBadDestinationType:
4278      OS << "initializer list for non-aggregate, non-scalar type";
4279      break;
4280
4281    case FK_UserConversionOverloadFailed:
4282      OS << "overloading failed for user-defined conversion";
4283      break;
4284
4285    case FK_ConstructorOverloadFailed:
4286      OS << "constructor overloading failed";
4287      break;
4288
4289    case FK_DefaultInitOfConst:
4290      OS << "default initialization of a const variable";
4291      break;
4292
4293    case FK_Incomplete:
4294      OS << "initialization of incomplete type";
4295      break;
4296    }
4297    OS << '\n';
4298    return;
4299  }
4300
4301  case DependentSequence:
4302    OS << "Dependent sequence: ";
4303    return;
4304
4305  case UserDefinedConversion:
4306    OS << "User-defined conversion sequence: ";
4307    break;
4308
4309  case ConstructorInitialization:
4310    OS << "Constructor initialization sequence: ";
4311    break;
4312
4313  case ReferenceBinding:
4314    OS << "Reference binding: ";
4315    break;
4316
4317  case ListInitialization:
4318    OS << "List initialization: ";
4319    break;
4320
4321  case ZeroInitialization:
4322    OS << "Zero initialization\n";
4323    return;
4324
4325  case NoInitialization:
4326    OS << "No initialization\n";
4327    return;
4328
4329  case StandardConversion:
4330    OS << "Standard conversion: ";
4331    break;
4332
4333  case CAssignment:
4334    OS << "C assignment: ";
4335    break;
4336
4337  case StringInit:
4338    OS << "String initialization: ";
4339    break;
4340  }
4341
4342  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
4343    if (S != step_begin()) {
4344      OS << " -> ";
4345    }
4346
4347    switch (S->Kind) {
4348    case SK_ResolveAddressOfOverloadedFunction:
4349      OS << "resolve address of overloaded function";
4350      break;
4351
4352    case SK_CastDerivedToBaseRValue:
4353      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
4354      break;
4355
4356    case SK_CastDerivedToBaseXValue:
4357      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
4358      break;
4359
4360    case SK_CastDerivedToBaseLValue:
4361      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
4362      break;
4363
4364    case SK_BindReference:
4365      OS << "bind reference to lvalue";
4366      break;
4367
4368    case SK_BindReferenceToTemporary:
4369      OS << "bind reference to a temporary";
4370      break;
4371
4372    case SK_ExtraneousCopyToTemporary:
4373      OS << "extraneous C++03 copy to temporary";
4374      break;
4375
4376    case SK_UserConversion:
4377      OS << "user-defined conversion via " << S->Function.Function;
4378      break;
4379
4380    case SK_QualificationConversionRValue:
4381      OS << "qualification conversion (rvalue)";
4382
4383    case SK_QualificationConversionXValue:
4384      OS << "qualification conversion (xvalue)";
4385
4386    case SK_QualificationConversionLValue:
4387      OS << "qualification conversion (lvalue)";
4388      break;
4389
4390    case SK_ConversionSequence:
4391      OS << "implicit conversion sequence (";
4392      S->ICS->DebugPrint(); // FIXME: use OS
4393      OS << ")";
4394      break;
4395
4396    case SK_ListInitialization:
4397      OS << "list initialization";
4398      break;
4399
4400    case SK_ConstructorInitialization:
4401      OS << "constructor initialization";
4402      break;
4403
4404    case SK_ZeroInitialization:
4405      OS << "zero initialization";
4406      break;
4407
4408    case SK_CAssignment:
4409      OS << "C assignment";
4410      break;
4411
4412    case SK_StringInit:
4413      OS << "string initialization";
4414      break;
4415
4416    case SK_ObjCObjectConversion:
4417      OS << "Objective-C object conversion";
4418      break;
4419    }
4420  }
4421}
4422
4423void InitializationSequence::dump() const {
4424  dump(llvm::errs());
4425}
4426
4427//===----------------------------------------------------------------------===//
4428// Initialization helper functions
4429//===----------------------------------------------------------------------===//
4430ExprResult
4431Sema::PerformCopyInitialization(const InitializedEntity &Entity,
4432                                SourceLocation EqualLoc,
4433                                ExprResult Init) {
4434  if (Init.isInvalid())
4435    return ExprError();
4436
4437  Expr *InitE = (Expr *)Init.get();
4438  assert(InitE && "No initialization expression?");
4439
4440  if (EqualLoc.isInvalid())
4441    EqualLoc = InitE->getLocStart();
4442
4443  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
4444                                                           EqualLoc);
4445  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
4446  Init.release();
4447  return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
4448}
4449