SemaInit.cpp revision 5f9e272e632e951b1efe824cd16acb4d96077930
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/Sema/Designator.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/SemaInternal.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/TypeLoc.h"
26#include "llvm/Support/ErrorHandling.h"
27#include <map>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Sema Initialization Checking
32//===----------------------------------------------------------------------===//
33
34static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
35                          ASTContext &Context) {
36  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
37    return 0;
38
39  // See if this is a string literal or @encode.
40  Init = Init->IgnoreParens();
41
42  // Handle @encode, which is a narrow string.
43  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
44    return Init;
45
46  // Otherwise we can only handle string literals.
47  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
48  if (SL == 0) return 0;
49
50  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
51  // char array can be initialized with a narrow string.
52  // Only allow char x[] = "foo";  not char x[] = L"foo";
53  if (!SL->isWide())
54    return ElemTy->isCharType() ? Init : 0;
55
56  // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
57  // correction from DR343): "An array with element type compatible with a
58  // qualified or unqualified version of wchar_t may be initialized by a wide
59  // string literal, optionally enclosed in braces."
60  if (Context.typesAreCompatible(Context.getWCharType(),
61                                 ElemTy.getUnqualifiedType()))
62    return Init;
63
64  return 0;
65}
66
67static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
68  const ArrayType *arrayType = Context.getAsArrayType(declType);
69  if (!arrayType) return 0;
70
71  return IsStringInit(init, arrayType, Context);
72}
73
74static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
75                            Sema &S) {
76  // Get the length of the string as parsed.
77  uint64_t StrLength =
78    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
79
80
81  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
82    // C99 6.7.8p14. We have an array of character type with unknown size
83    // being initialized to a string literal.
84    llvm::APSInt ConstVal(32);
85    ConstVal = StrLength;
86    // Return a new array type (C99 6.7.8p22).
87    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
88                                           ConstVal,
89                                           ArrayType::Normal, 0);
90    return;
91  }
92
93  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
94
95  // We have an array of character type with known size.  However,
96  // the size may be smaller or larger than the string we are initializing.
97  // FIXME: Avoid truncation for 64-bit length strings.
98  if (S.getLangOptions().CPlusPlus) {
99    if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
100      // For Pascal strings it's OK to strip off the terminating null character,
101      // so the example below is valid:
102      //
103      // unsigned char a[2] = "\pa";
104      if (SL->isPascal())
105        StrLength--;
106    }
107
108    // [dcl.init.string]p2
109    if (StrLength > CAT->getSize().getZExtValue())
110      S.Diag(Str->getSourceRange().getBegin(),
111             diag::err_initializer_string_for_char_array_too_long)
112        << Str->getSourceRange();
113  } else {
114    // C99 6.7.8p14.
115    if (StrLength-1 > CAT->getSize().getZExtValue())
116      S.Diag(Str->getSourceRange().getBegin(),
117             diag::warn_initializer_string_for_char_array_too_long)
118        << Str->getSourceRange();
119  }
120
121  // Set the type to the actual size that we are initializing.  If we have
122  // something like:
123  //   char x[1] = "foo";
124  // then this will set the string literal's type to char[1].
125  Str->setType(DeclT);
126}
127
128//===----------------------------------------------------------------------===//
129// Semantic checking for initializer lists.
130//===----------------------------------------------------------------------===//
131
132/// @brief Semantic checking for initializer lists.
133///
134/// The InitListChecker class contains a set of routines that each
135/// handle the initialization of a certain kind of entity, e.g.,
136/// arrays, vectors, struct/union types, scalars, etc. The
137/// InitListChecker itself performs a recursive walk of the subobject
138/// structure of the type to be initialized, while stepping through
139/// the initializer list one element at a time. The IList and Index
140/// parameters to each of the Check* routines contain the active
141/// (syntactic) initializer list and the index into that initializer
142/// list that represents the current initializer. Each routine is
143/// responsible for moving that Index forward as it consumes elements.
144///
145/// Each Check* routine also has a StructuredList/StructuredIndex
146/// arguments, which contains the current "structured" (semantic)
147/// initializer list and the index into that initializer list where we
148/// are copying initializers as we map them over to the semantic
149/// list. Once we have completed our recursive walk of the subobject
150/// structure, we will have constructed a full semantic initializer
151/// list.
152///
153/// C99 designators cause changes in the initializer list traversal,
154/// because they make the initialization "jump" into a specific
155/// subobject and then continue the initialization from that
156/// point. CheckDesignatedInitializer() recursively steps into the
157/// designated subobject and manages backing out the recursion to
158/// initialize the subobjects after the one designated.
159namespace {
160class InitListChecker {
161  Sema &SemaRef;
162  bool hadError;
163  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
164  InitListExpr *FullyStructuredList;
165
166  void CheckImplicitInitList(const InitializedEntity &Entity,
167                             InitListExpr *ParentIList, QualType T,
168                             unsigned &Index, InitListExpr *StructuredList,
169                             unsigned &StructuredIndex,
170                             bool TopLevelObject = false);
171  void CheckExplicitInitList(const InitializedEntity &Entity,
172                             InitListExpr *IList, QualType &T,
173                             unsigned &Index, InitListExpr *StructuredList,
174                             unsigned &StructuredIndex,
175                             bool TopLevelObject = false);
176  void CheckListElementTypes(const InitializedEntity &Entity,
177                             InitListExpr *IList, QualType &DeclType,
178                             bool SubobjectIsDesignatorContext,
179                             unsigned &Index,
180                             InitListExpr *StructuredList,
181                             unsigned &StructuredIndex,
182                             bool TopLevelObject = false);
183  void CheckSubElementType(const InitializedEntity &Entity,
184                           InitListExpr *IList, QualType ElemType,
185                           unsigned &Index,
186                           InitListExpr *StructuredList,
187                           unsigned &StructuredIndex);
188  void CheckScalarType(const InitializedEntity &Entity,
189                       InitListExpr *IList, QualType DeclType,
190                       unsigned &Index,
191                       InitListExpr *StructuredList,
192                       unsigned &StructuredIndex);
193  void CheckReferenceType(const InitializedEntity &Entity,
194                          InitListExpr *IList, QualType DeclType,
195                          unsigned &Index,
196                          InitListExpr *StructuredList,
197                          unsigned &StructuredIndex);
198  void CheckVectorType(const InitializedEntity &Entity,
199                       InitListExpr *IList, QualType DeclType, unsigned &Index,
200                       InitListExpr *StructuredList,
201                       unsigned &StructuredIndex);
202  void CheckStructUnionTypes(const InitializedEntity &Entity,
203                             InitListExpr *IList, QualType DeclType,
204                             RecordDecl::field_iterator Field,
205                             bool SubobjectIsDesignatorContext, unsigned &Index,
206                             InitListExpr *StructuredList,
207                             unsigned &StructuredIndex,
208                             bool TopLevelObject = false);
209  void CheckArrayType(const InitializedEntity &Entity,
210                      InitListExpr *IList, QualType &DeclType,
211                      llvm::APSInt elementIndex,
212                      bool SubobjectIsDesignatorContext, unsigned &Index,
213                      InitListExpr *StructuredList,
214                      unsigned &StructuredIndex);
215  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
216                                  InitListExpr *IList, DesignatedInitExpr *DIE,
217                                  unsigned DesigIdx,
218                                  QualType &CurrentObjectType,
219                                  RecordDecl::field_iterator *NextField,
220                                  llvm::APSInt *NextElementIndex,
221                                  unsigned &Index,
222                                  InitListExpr *StructuredList,
223                                  unsigned &StructuredIndex,
224                                  bool FinishSubobjectInit,
225                                  bool TopLevelObject);
226  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
227                                           QualType CurrentObjectType,
228                                           InitListExpr *StructuredList,
229                                           unsigned StructuredIndex,
230                                           SourceRange InitRange);
231  void UpdateStructuredListElement(InitListExpr *StructuredList,
232                                   unsigned &StructuredIndex,
233                                   Expr *expr);
234  int numArrayElements(QualType DeclType);
235  int numStructUnionElements(QualType DeclType);
236
237  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
238                               const InitializedEntity &ParentEntity,
239                               InitListExpr *ILE, bool &RequiresSecondPass);
240  void FillInValueInitializations(const InitializedEntity &Entity,
241                                  InitListExpr *ILE, bool &RequiresSecondPass);
242public:
243  InitListChecker(Sema &S, const InitializedEntity &Entity,
244                  InitListExpr *IL, QualType &T);
245  bool HadError() { return hadError; }
246
247  // @brief Retrieves the fully-structured initializer list used for
248  // semantic analysis and code generation.
249  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
250};
251} // end anonymous namespace
252
253void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
254                                        const InitializedEntity &ParentEntity,
255                                              InitListExpr *ILE,
256                                              bool &RequiresSecondPass) {
257  SourceLocation Loc = ILE->getSourceRange().getBegin();
258  unsigned NumInits = ILE->getNumInits();
259  InitializedEntity MemberEntity
260    = InitializedEntity::InitializeMember(Field, &ParentEntity);
261  if (Init >= NumInits || !ILE->getInit(Init)) {
262    // FIXME: We probably don't need to handle references
263    // specially here, since value-initialization of references is
264    // handled in InitializationSequence.
265    if (Field->getType()->isReferenceType()) {
266      // C++ [dcl.init.aggr]p9:
267      //   If an incomplete or empty initializer-list leaves a
268      //   member of reference type uninitialized, the program is
269      //   ill-formed.
270      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
271        << Field->getType()
272        << ILE->getSyntacticForm()->getSourceRange();
273      SemaRef.Diag(Field->getLocation(),
274                   diag::note_uninit_reference_member);
275      hadError = true;
276      return;
277    }
278
279    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
280                                                              true);
281    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
282    if (!InitSeq) {
283      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
284      hadError = true;
285      return;
286    }
287
288    ExprResult MemberInit
289      = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
290    if (MemberInit.isInvalid()) {
291      hadError = true;
292      return;
293    }
294
295    if (hadError) {
296      // Do nothing
297    } else if (Init < NumInits) {
298      ILE->setInit(Init, MemberInit.takeAs<Expr>());
299    } else if (InitSeq.isConstructorInitialization()) {
300      // Value-initialization requires a constructor call, so
301      // extend the initializer list to include the constructor
302      // call and make a note that we'll need to take another pass
303      // through the initializer list.
304      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
305      RequiresSecondPass = true;
306    }
307  } else if (InitListExpr *InnerILE
308               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
309    FillInValueInitializations(MemberEntity, InnerILE,
310                               RequiresSecondPass);
311}
312
313/// Recursively replaces NULL values within the given initializer list
314/// with expressions that perform value-initialization of the
315/// appropriate type.
316void
317InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
318                                            InitListExpr *ILE,
319                                            bool &RequiresSecondPass) {
320  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
321         "Should not have void type");
322  SourceLocation Loc = ILE->getSourceRange().getBegin();
323  if (ILE->getSyntacticForm())
324    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
325
326  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
327    if (RType->getDecl()->isUnion() &&
328        ILE->getInitializedFieldInUnion())
329      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
330                              Entity, ILE, RequiresSecondPass);
331    else {
332      unsigned Init = 0;
333      for (RecordDecl::field_iterator
334             Field = RType->getDecl()->field_begin(),
335             FieldEnd = RType->getDecl()->field_end();
336           Field != FieldEnd; ++Field) {
337        if (Field->isUnnamedBitfield())
338          continue;
339
340        if (hadError)
341          return;
342
343        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
344        if (hadError)
345          return;
346
347        ++Init;
348
349        // Only look at the first initialization of a union.
350        if (RType->getDecl()->isUnion())
351          break;
352      }
353    }
354
355    return;
356  }
357
358  QualType ElementType;
359
360  InitializedEntity ElementEntity = Entity;
361  unsigned NumInits = ILE->getNumInits();
362  unsigned NumElements = NumInits;
363  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
364    ElementType = AType->getElementType();
365    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
366      NumElements = CAType->getSize().getZExtValue();
367    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
368                                                         0, Entity);
369  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
370    ElementType = VType->getElementType();
371    NumElements = VType->getNumElements();
372    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
373                                                         0, Entity);
374  } else
375    ElementType = ILE->getType();
376
377
378  for (unsigned Init = 0; Init != NumElements; ++Init) {
379    if (hadError)
380      return;
381
382    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
383        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
384      ElementEntity.setElementIndex(Init);
385
386    if (Init >= NumInits || !ILE->getInit(Init)) {
387      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
388                                                                true);
389      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
390      if (!InitSeq) {
391        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
392        hadError = true;
393        return;
394      }
395
396      ExprResult ElementInit
397        = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
398      if (ElementInit.isInvalid()) {
399        hadError = true;
400        return;
401      }
402
403      if (hadError) {
404        // Do nothing
405      } else if (Init < NumInits) {
406        // For arrays, just set the expression used for value-initialization
407        // of the "holes" in the array.
408        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
409          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
410        else
411          ILE->setInit(Init, ElementInit.takeAs<Expr>());
412      } else {
413        // For arrays, just set the expression used for value-initialization
414        // of the rest of elements and exit.
415        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
416          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
417          return;
418        }
419
420        if (InitSeq.isConstructorInitialization()) {
421          // Value-initialization requires a constructor call, so
422          // extend the initializer list to include the constructor
423          // call and make a note that we'll need to take another pass
424          // through the initializer list.
425          ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
426          RequiresSecondPass = true;
427        }
428      }
429    } else if (InitListExpr *InnerILE
430                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
431      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
432  }
433}
434
435
436InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
437                                 InitListExpr *IL, QualType &T)
438  : SemaRef(S) {
439  hadError = false;
440
441  unsigned newIndex = 0;
442  unsigned newStructuredIndex = 0;
443  FullyStructuredList
444    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
445  CheckExplicitInitList(Entity, IL, T, newIndex,
446                        FullyStructuredList, newStructuredIndex,
447                        /*TopLevelObject=*/true);
448
449  if (!hadError) {
450    bool RequiresSecondPass = false;
451    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
452    if (RequiresSecondPass && !hadError)
453      FillInValueInitializations(Entity, FullyStructuredList,
454                                 RequiresSecondPass);
455  }
456}
457
458int InitListChecker::numArrayElements(QualType DeclType) {
459  // FIXME: use a proper constant
460  int maxElements = 0x7FFFFFFF;
461  if (const ConstantArrayType *CAT =
462        SemaRef.Context.getAsConstantArrayType(DeclType)) {
463    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
464  }
465  return maxElements;
466}
467
468int InitListChecker::numStructUnionElements(QualType DeclType) {
469  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
470  int InitializableMembers = 0;
471  for (RecordDecl::field_iterator
472         Field = structDecl->field_begin(),
473         FieldEnd = structDecl->field_end();
474       Field != FieldEnd; ++Field) {
475    if ((*Field)->getIdentifier() || !(*Field)->isBitField())
476      ++InitializableMembers;
477  }
478  if (structDecl->isUnion())
479    return std::min(InitializableMembers, 1);
480  return InitializableMembers - structDecl->hasFlexibleArrayMember();
481}
482
483void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
484                                            InitListExpr *ParentIList,
485                                            QualType T, unsigned &Index,
486                                            InitListExpr *StructuredList,
487                                            unsigned &StructuredIndex,
488                                            bool TopLevelObject) {
489  int maxElements = 0;
490
491  if (T->isArrayType())
492    maxElements = numArrayElements(T);
493  else if (T->isRecordType())
494    maxElements = numStructUnionElements(T);
495  else if (T->isVectorType())
496    maxElements = T->getAs<VectorType>()->getNumElements();
497  else
498    assert(0 && "CheckImplicitInitList(): Illegal type");
499
500  if (maxElements == 0) {
501    SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
502                  diag::err_implicit_empty_initializer);
503    ++Index;
504    hadError = true;
505    return;
506  }
507
508  // Build a structured initializer list corresponding to this subobject.
509  InitListExpr *StructuredSubobjectInitList
510    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
511                                 StructuredIndex,
512          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
513                      ParentIList->getSourceRange().getEnd()));
514  unsigned StructuredSubobjectInitIndex = 0;
515
516  // Check the element types and build the structural subobject.
517  unsigned StartIndex = Index;
518  CheckListElementTypes(Entity, ParentIList, T,
519                        /*SubobjectIsDesignatorContext=*/false, Index,
520                        StructuredSubobjectInitList,
521                        StructuredSubobjectInitIndex,
522                        TopLevelObject);
523  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
524  StructuredSubobjectInitList->setType(T);
525
526  // Update the structured sub-object initializer so that it's ending
527  // range corresponds with the end of the last initializer it used.
528  if (EndIndex < ParentIList->getNumInits()) {
529    SourceLocation EndLoc
530      = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
531    StructuredSubobjectInitList->setRBraceLoc(EndLoc);
532  }
533
534  // Warn about missing braces.
535  if (T->isArrayType() || T->isRecordType()) {
536    SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
537                 diag::warn_missing_braces)
538    << StructuredSubobjectInitList->getSourceRange()
539    << FixItHint::CreateInsertion(StructuredSubobjectInitList->getLocStart(),
540                                  "{")
541    << FixItHint::CreateInsertion(SemaRef.PP.getLocForEndOfToken(
542                                      StructuredSubobjectInitList->getLocEnd()),
543                                  "}");
544  }
545}
546
547void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
548                                            InitListExpr *IList, QualType &T,
549                                            unsigned &Index,
550                                            InitListExpr *StructuredList,
551                                            unsigned &StructuredIndex,
552                                            bool TopLevelObject) {
553  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
554  SyntacticToSemantic[IList] = StructuredList;
555  StructuredList->setSyntacticForm(IList);
556  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
557                        Index, StructuredList, StructuredIndex, TopLevelObject);
558  QualType ExprTy = T.getNonLValueExprType(SemaRef.Context);
559  IList->setType(ExprTy);
560  StructuredList->setType(ExprTy);
561  if (hadError)
562    return;
563
564  if (Index < IList->getNumInits()) {
565    // We have leftover initializers
566    if (StructuredIndex == 1 &&
567        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
568      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
569      if (SemaRef.getLangOptions().CPlusPlus) {
570        DK = diag::err_excess_initializers_in_char_array_initializer;
571        hadError = true;
572      }
573      // Special-case
574      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
575        << IList->getInit(Index)->getSourceRange();
576    } else if (!T->isIncompleteType()) {
577      // Don't complain for incomplete types, since we'll get an error
578      // elsewhere
579      QualType CurrentObjectType = StructuredList->getType();
580      int initKind =
581        CurrentObjectType->isArrayType()? 0 :
582        CurrentObjectType->isVectorType()? 1 :
583        CurrentObjectType->isScalarType()? 2 :
584        CurrentObjectType->isUnionType()? 3 :
585        4;
586
587      unsigned DK = diag::warn_excess_initializers;
588      if (SemaRef.getLangOptions().CPlusPlus) {
589        DK = diag::err_excess_initializers;
590        hadError = true;
591      }
592      if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
593        DK = diag::err_excess_initializers;
594        hadError = true;
595      }
596
597      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
598        << initKind << IList->getInit(Index)->getSourceRange();
599    }
600  }
601
602  if (T->isScalarType() && !TopLevelObject)
603    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
604      << IList->getSourceRange()
605      << FixItHint::CreateRemoval(IList->getLocStart())
606      << FixItHint::CreateRemoval(IList->getLocEnd());
607}
608
609void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
610                                            InitListExpr *IList,
611                                            QualType &DeclType,
612                                            bool SubobjectIsDesignatorContext,
613                                            unsigned &Index,
614                                            InitListExpr *StructuredList,
615                                            unsigned &StructuredIndex,
616                                            bool TopLevelObject) {
617  if (DeclType->isScalarType()) {
618    CheckScalarType(Entity, IList, DeclType, Index,
619                    StructuredList, StructuredIndex);
620  } else if (DeclType->isVectorType()) {
621    CheckVectorType(Entity, IList, DeclType, Index,
622                    StructuredList, StructuredIndex);
623  } else if (DeclType->isAggregateType()) {
624    if (DeclType->isRecordType()) {
625      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
626      CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
627                            SubobjectIsDesignatorContext, Index,
628                            StructuredList, StructuredIndex,
629                            TopLevelObject);
630    } else if (DeclType->isArrayType()) {
631      llvm::APSInt Zero(
632                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
633                      false);
634      CheckArrayType(Entity, IList, DeclType, Zero,
635                     SubobjectIsDesignatorContext, Index,
636                     StructuredList, StructuredIndex);
637    } else
638      assert(0 && "Aggregate that isn't a structure or array?!");
639  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
640    // This type is invalid, issue a diagnostic.
641    ++Index;
642    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
643      << DeclType;
644    hadError = true;
645  } else if (DeclType->isRecordType()) {
646    // C++ [dcl.init]p14:
647    //   [...] If the class is an aggregate (8.5.1), and the initializer
648    //   is a brace-enclosed list, see 8.5.1.
649    //
650    // Note: 8.5.1 is handled below; here, we diagnose the case where
651    // we have an initializer list and a destination type that is not
652    // an aggregate.
653    // FIXME: In C++0x, this is yet another form of initialization.
654    SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
655      << DeclType << IList->getSourceRange();
656    hadError = true;
657  } else if (DeclType->isReferenceType()) {
658    CheckReferenceType(Entity, IList, DeclType, Index,
659                       StructuredList, StructuredIndex);
660  } else if (DeclType->isObjCObjectType()) {
661    SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
662      << DeclType;
663    hadError = true;
664  } else {
665    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
666      << DeclType;
667    hadError = true;
668  }
669}
670
671void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
672                                          InitListExpr *IList,
673                                          QualType ElemType,
674                                          unsigned &Index,
675                                          InitListExpr *StructuredList,
676                                          unsigned &StructuredIndex) {
677  Expr *expr = IList->getInit(Index);
678  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
679    unsigned newIndex = 0;
680    unsigned newStructuredIndex = 0;
681    InitListExpr *newStructuredList
682      = getStructuredSubobjectInit(IList, Index, ElemType,
683                                   StructuredList, StructuredIndex,
684                                   SubInitList->getSourceRange());
685    CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
686                          newStructuredList, newStructuredIndex);
687    ++StructuredIndex;
688    ++Index;
689    return;
690  } else if (ElemType->isScalarType()) {
691    return CheckScalarType(Entity, IList, ElemType, Index,
692                           StructuredList, StructuredIndex);
693  } else if (ElemType->isReferenceType()) {
694    return CheckReferenceType(Entity, IList, ElemType, Index,
695                              StructuredList, StructuredIndex);
696  }
697
698  if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
699    // arrayType can be incomplete if we're initializing a flexible
700    // array member.  There's nothing we can do with the completed
701    // type here, though.
702
703    if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
704      CheckStringInit(Str, ElemType, arrayType, SemaRef);
705      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
706      ++Index;
707      return;
708    }
709
710    // Fall through for subaggregate initialization.
711
712  } else if (SemaRef.getLangOptions().CPlusPlus) {
713    // C++ [dcl.init.aggr]p12:
714    //   All implicit type conversions (clause 4) are considered when
715    //   initializing the aggregate member with an ini- tializer from
716    //   an initializer-list. If the initializer can initialize a
717    //   member, the member is initialized. [...]
718
719    // FIXME: Better EqualLoc?
720    InitializationKind Kind =
721      InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
722    InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
723
724    if (Seq) {
725      ExprResult Result =
726        Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
727      if (Result.isInvalid())
728        hadError = true;
729
730      UpdateStructuredListElement(StructuredList, StructuredIndex,
731                                  Result.takeAs<Expr>());
732      ++Index;
733      return;
734    }
735
736    // Fall through for subaggregate initialization
737  } else {
738    // C99 6.7.8p13:
739    //
740    //   The initializer for a structure or union object that has
741    //   automatic storage duration shall be either an initializer
742    //   list as described below, or a single expression that has
743    //   compatible structure or union type. In the latter case, the
744    //   initial value of the object, including unnamed members, is
745    //   that of the expression.
746    ExprResult ExprRes = SemaRef.Owned(expr);
747    if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
748        SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes)
749          == Sema::Compatible) {
750      if (ExprRes.isInvalid())
751        hadError = true;
752      else {
753        ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
754	      if (ExprRes.isInvalid())
755	        hadError = true;
756      }
757      UpdateStructuredListElement(StructuredList, StructuredIndex,
758                                  ExprRes.takeAs<Expr>());
759      ++Index;
760      return;
761    }
762    ExprRes.release();
763    // Fall through for subaggregate initialization
764  }
765
766  // C++ [dcl.init.aggr]p12:
767  //
768  //   [...] Otherwise, if the member is itself a non-empty
769  //   subaggregate, brace elision is assumed and the initializer is
770  //   considered for the initialization of the first member of
771  //   the subaggregate.
772  if (!SemaRef.getLangOptions().OpenCL &&
773      (ElemType->isAggregateType() || ElemType->isVectorType())) {
774    CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
775                          StructuredIndex);
776    ++StructuredIndex;
777  } else {
778    // We cannot initialize this element, so let
779    // PerformCopyInitialization produce the appropriate diagnostic.
780    SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
781                                      SemaRef.Owned(expr));
782    hadError = true;
783    ++Index;
784    ++StructuredIndex;
785  }
786}
787
788void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
789                                      InitListExpr *IList, QualType DeclType,
790                                      unsigned &Index,
791                                      InitListExpr *StructuredList,
792                                      unsigned &StructuredIndex) {
793  if (Index >= IList->getNumInits()) {
794    SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
795      << IList->getSourceRange();
796    hadError = true;
797    ++Index;
798    ++StructuredIndex;
799    return;
800  }
801
802  Expr *expr = IList->getInit(Index);
803  if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
804    SemaRef.Diag(SubIList->getLocStart(),
805                 diag::warn_many_braces_around_scalar_init)
806      << SubIList->getSourceRange();
807
808    CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
809                    StructuredIndex);
810    return;
811  } else if (isa<DesignatedInitExpr>(expr)) {
812    SemaRef.Diag(expr->getSourceRange().getBegin(),
813                 diag::err_designator_for_scalar_init)
814      << DeclType << expr->getSourceRange();
815    hadError = true;
816    ++Index;
817    ++StructuredIndex;
818    return;
819  }
820
821  ExprResult Result =
822    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
823                                      SemaRef.Owned(expr));
824
825  Expr *ResultExpr = 0;
826
827  if (Result.isInvalid())
828    hadError = true; // types weren't compatible.
829  else {
830    ResultExpr = Result.takeAs<Expr>();
831
832    if (ResultExpr != expr) {
833      // The type was promoted, update initializer list.
834      IList->setInit(Index, ResultExpr);
835    }
836  }
837  if (hadError)
838    ++StructuredIndex;
839  else
840    UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
841  ++Index;
842}
843
844void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
845                                         InitListExpr *IList, QualType DeclType,
846                                         unsigned &Index,
847                                         InitListExpr *StructuredList,
848                                         unsigned &StructuredIndex) {
849  if (Index < IList->getNumInits()) {
850    Expr *expr = IList->getInit(Index);
851    if (isa<InitListExpr>(expr)) {
852      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
853        << DeclType << IList->getSourceRange();
854      hadError = true;
855      ++Index;
856      ++StructuredIndex;
857      return;
858    }
859
860    ExprResult Result =
861      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
862                                        SemaRef.Owned(expr));
863
864    if (Result.isInvalid())
865      hadError = true;
866
867    expr = Result.takeAs<Expr>();
868    IList->setInit(Index, expr);
869
870    if (hadError)
871      ++StructuredIndex;
872    else
873      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
874    ++Index;
875  } else {
876    // FIXME: It would be wonderful if we could point at the actual member. In
877    // general, it would be useful to pass location information down the stack,
878    // so that we know the location (or decl) of the "current object" being
879    // initialized.
880    SemaRef.Diag(IList->getLocStart(),
881                  diag::err_init_reference_member_uninitialized)
882      << DeclType
883      << IList->getSourceRange();
884    hadError = true;
885    ++Index;
886    ++StructuredIndex;
887    return;
888  }
889}
890
891void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
892                                      InitListExpr *IList, QualType DeclType,
893                                      unsigned &Index,
894                                      InitListExpr *StructuredList,
895                                      unsigned &StructuredIndex) {
896  if (Index >= IList->getNumInits())
897    return;
898
899  const VectorType *VT = DeclType->getAs<VectorType>();
900  unsigned maxElements = VT->getNumElements();
901  unsigned numEltsInit = 0;
902  QualType elementType = VT->getElementType();
903
904  if (!SemaRef.getLangOptions().OpenCL) {
905    // If the initializing element is a vector, try to copy-initialize
906    // instead of breaking it apart (which is doomed to failure anyway).
907    Expr *Init = IList->getInit(Index);
908    if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
909      ExprResult Result =
910        SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
911                                          SemaRef.Owned(Init));
912
913      Expr *ResultExpr = 0;
914      if (Result.isInvalid())
915        hadError = true; // types weren't compatible.
916      else {
917        ResultExpr = Result.takeAs<Expr>();
918
919        if (ResultExpr != Init) {
920          // The type was promoted, update initializer list.
921          IList->setInit(Index, ResultExpr);
922        }
923      }
924      if (hadError)
925        ++StructuredIndex;
926      else
927        UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
928      ++Index;
929      return;
930    }
931
932    InitializedEntity ElementEntity =
933      InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
934
935    for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
936      // Don't attempt to go past the end of the init list
937      if (Index >= IList->getNumInits())
938        break;
939
940      ElementEntity.setElementIndex(Index);
941      CheckSubElementType(ElementEntity, IList, elementType, Index,
942                          StructuredList, StructuredIndex);
943    }
944    return;
945  }
946
947  InitializedEntity ElementEntity =
948    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
949
950  // OpenCL initializers allows vectors to be constructed from vectors.
951  for (unsigned i = 0; i < maxElements; ++i) {
952    // Don't attempt to go past the end of the init list
953    if (Index >= IList->getNumInits())
954      break;
955
956    ElementEntity.setElementIndex(Index);
957
958    QualType IType = IList->getInit(Index)->getType();
959    if (!IType->isVectorType()) {
960      CheckSubElementType(ElementEntity, IList, elementType, Index,
961                          StructuredList, StructuredIndex);
962      ++numEltsInit;
963    } else {
964      QualType VecType;
965      const VectorType *IVT = IType->getAs<VectorType>();
966      unsigned numIElts = IVT->getNumElements();
967
968      if (IType->isExtVectorType())
969        VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
970      else
971        VecType = SemaRef.Context.getVectorType(elementType, numIElts,
972                                                IVT->getVectorKind());
973      CheckSubElementType(ElementEntity, IList, VecType, Index,
974                          StructuredList, StructuredIndex);
975      numEltsInit += numIElts;
976    }
977  }
978
979  // OpenCL requires all elements to be initialized.
980  if (numEltsInit != maxElements)
981    if (SemaRef.getLangOptions().OpenCL)
982      SemaRef.Diag(IList->getSourceRange().getBegin(),
983                   diag::err_vector_incorrect_num_initializers)
984        << (numEltsInit < maxElements) << maxElements << numEltsInit;
985}
986
987void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
988                                     InitListExpr *IList, QualType &DeclType,
989                                     llvm::APSInt elementIndex,
990                                     bool SubobjectIsDesignatorContext,
991                                     unsigned &Index,
992                                     InitListExpr *StructuredList,
993                                     unsigned &StructuredIndex) {
994  const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
995
996  // Check for the special-case of initializing an array with a string.
997  if (Index < IList->getNumInits()) {
998    if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
999                                 SemaRef.Context)) {
1000      CheckStringInit(Str, DeclType, arrayType, SemaRef);
1001      // We place the string literal directly into the resulting
1002      // initializer list. This is the only place where the structure
1003      // of the structured initializer list doesn't match exactly,
1004      // because doing so would involve allocating one character
1005      // constant for each string.
1006      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
1007      StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1008      ++Index;
1009      return;
1010    }
1011  }
1012  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1013    // Check for VLAs; in standard C it would be possible to check this
1014    // earlier, but I don't know where clang accepts VLAs (gcc accepts
1015    // them in all sorts of strange places).
1016    SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1017                  diag::err_variable_object_no_init)
1018      << VAT->getSizeExpr()->getSourceRange();
1019    hadError = true;
1020    ++Index;
1021    ++StructuredIndex;
1022    return;
1023  }
1024
1025  // We might know the maximum number of elements in advance.
1026  llvm::APSInt maxElements(elementIndex.getBitWidth(),
1027                           elementIndex.isUnsigned());
1028  bool maxElementsKnown = false;
1029  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1030    maxElements = CAT->getSize();
1031    elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1032    elementIndex.setIsUnsigned(maxElements.isUnsigned());
1033    maxElementsKnown = true;
1034  }
1035
1036  QualType elementType = arrayType->getElementType();
1037  while (Index < IList->getNumInits()) {
1038    Expr *Init = IList->getInit(Index);
1039    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1040      // If we're not the subobject that matches up with the '{' for
1041      // the designator, we shouldn't be handling the
1042      // designator. Return immediately.
1043      if (!SubobjectIsDesignatorContext)
1044        return;
1045
1046      // Handle this designated initializer. elementIndex will be
1047      // updated to be the next array element we'll initialize.
1048      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1049                                     DeclType, 0, &elementIndex, Index,
1050                                     StructuredList, StructuredIndex, true,
1051                                     false)) {
1052        hadError = true;
1053        continue;
1054      }
1055
1056      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1057        maxElements = maxElements.extend(elementIndex.getBitWidth());
1058      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1059        elementIndex = elementIndex.extend(maxElements.getBitWidth());
1060      elementIndex.setIsUnsigned(maxElements.isUnsigned());
1061
1062      // If the array is of incomplete type, keep track of the number of
1063      // elements in the initializer.
1064      if (!maxElementsKnown && elementIndex > maxElements)
1065        maxElements = elementIndex;
1066
1067      continue;
1068    }
1069
1070    // If we know the maximum number of elements, and we've already
1071    // hit it, stop consuming elements in the initializer list.
1072    if (maxElementsKnown && elementIndex == maxElements)
1073      break;
1074
1075    InitializedEntity ElementEntity =
1076      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1077                                           Entity);
1078    // Check this element.
1079    CheckSubElementType(ElementEntity, IList, elementType, Index,
1080                        StructuredList, StructuredIndex);
1081    ++elementIndex;
1082
1083    // If the array is of incomplete type, keep track of the number of
1084    // elements in the initializer.
1085    if (!maxElementsKnown && elementIndex > maxElements)
1086      maxElements = elementIndex;
1087  }
1088  if (!hadError && DeclType->isIncompleteArrayType()) {
1089    // If this is an incomplete array type, the actual type needs to
1090    // be calculated here.
1091    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1092    if (maxElements == Zero) {
1093      // Sizing an array implicitly to zero is not allowed by ISO C,
1094      // but is supported by GNU.
1095      SemaRef.Diag(IList->getLocStart(),
1096                    diag::ext_typecheck_zero_array_size);
1097    }
1098
1099    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1100                                                     ArrayType::Normal, 0);
1101  }
1102}
1103
1104void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1105                                            InitListExpr *IList,
1106                                            QualType DeclType,
1107                                            RecordDecl::field_iterator Field,
1108                                            bool SubobjectIsDesignatorContext,
1109                                            unsigned &Index,
1110                                            InitListExpr *StructuredList,
1111                                            unsigned &StructuredIndex,
1112                                            bool TopLevelObject) {
1113  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1114
1115  // If the record is invalid, some of it's members are invalid. To avoid
1116  // confusion, we forgo checking the intializer for the entire record.
1117  if (structDecl->isInvalidDecl()) {
1118    hadError = true;
1119    return;
1120  }
1121
1122  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1123    // Value-initialize the first named member of the union.
1124    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1125    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1126         Field != FieldEnd; ++Field) {
1127      if (Field->getDeclName()) {
1128        StructuredList->setInitializedFieldInUnion(*Field);
1129        break;
1130      }
1131    }
1132    return;
1133  }
1134
1135  // If structDecl is a forward declaration, this loop won't do
1136  // anything except look at designated initializers; That's okay,
1137  // because an error should get printed out elsewhere. It might be
1138  // worthwhile to skip over the rest of the initializer, though.
1139  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1140  RecordDecl::field_iterator FieldEnd = RD->field_end();
1141  bool InitializedSomething = false;
1142  bool CheckForMissingFields = true;
1143  while (Index < IList->getNumInits()) {
1144    Expr *Init = IList->getInit(Index);
1145
1146    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1147      // If we're not the subobject that matches up with the '{' for
1148      // the designator, we shouldn't be handling the
1149      // designator. Return immediately.
1150      if (!SubobjectIsDesignatorContext)
1151        return;
1152
1153      // Handle this designated initializer. Field will be updated to
1154      // the next field that we'll be initializing.
1155      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1156                                     DeclType, &Field, 0, Index,
1157                                     StructuredList, StructuredIndex,
1158                                     true, TopLevelObject))
1159        hadError = true;
1160
1161      InitializedSomething = true;
1162
1163      // Disable check for missing fields when designators are used.
1164      // This matches gcc behaviour.
1165      CheckForMissingFields = false;
1166      continue;
1167    }
1168
1169    if (Field == FieldEnd) {
1170      // We've run out of fields. We're done.
1171      break;
1172    }
1173
1174    // We've already initialized a member of a union. We're done.
1175    if (InitializedSomething && DeclType->isUnionType())
1176      break;
1177
1178    // If we've hit the flexible array member at the end, we're done.
1179    if (Field->getType()->isIncompleteArrayType())
1180      break;
1181
1182    if (Field->isUnnamedBitfield()) {
1183      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1184      ++Field;
1185      continue;
1186    }
1187
1188    // Make sure we can use this declaration.
1189    if (SemaRef.DiagnoseUseOfDecl(*Field,
1190                                  IList->getInit(Index)->getLocStart())) {
1191      ++Index;
1192      ++Field;
1193      hadError = true;
1194      continue;
1195    }
1196
1197    InitializedEntity MemberEntity =
1198      InitializedEntity::InitializeMember(*Field, &Entity);
1199    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1200                        StructuredList, StructuredIndex);
1201    InitializedSomething = true;
1202
1203    if (DeclType->isUnionType()) {
1204      // Initialize the first field within the union.
1205      StructuredList->setInitializedFieldInUnion(*Field);
1206    }
1207
1208    ++Field;
1209  }
1210
1211  // Emit warnings for missing struct field initializers.
1212  if (InitializedSomething && CheckForMissingFields && Field != FieldEnd &&
1213      !Field->getType()->isIncompleteArrayType() && !DeclType->isUnionType()) {
1214    // It is possible we have one or more unnamed bitfields remaining.
1215    // Find first (if any) named field and emit warning.
1216    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1217         it != end; ++it) {
1218      if (!it->isUnnamedBitfield()) {
1219        SemaRef.Diag(IList->getSourceRange().getEnd(),
1220                     diag::warn_missing_field_initializers) << it->getName();
1221        break;
1222      }
1223    }
1224  }
1225
1226  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1227      Index >= IList->getNumInits())
1228    return;
1229
1230  // Handle GNU flexible array initializers.
1231  if (!TopLevelObject &&
1232      (!isa<InitListExpr>(IList->getInit(Index)) ||
1233       cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1234    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1235                  diag::err_flexible_array_init_nonempty)
1236      << IList->getInit(Index)->getSourceRange().getBegin();
1237    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1238      << *Field;
1239    hadError = true;
1240    ++Index;
1241    return;
1242  } else {
1243    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1244                 diag::ext_flexible_array_init)
1245      << IList->getInit(Index)->getSourceRange().getBegin();
1246    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1247      << *Field;
1248  }
1249
1250  InitializedEntity MemberEntity =
1251    InitializedEntity::InitializeMember(*Field, &Entity);
1252
1253  if (isa<InitListExpr>(IList->getInit(Index)))
1254    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1255                        StructuredList, StructuredIndex);
1256  else
1257    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1258                          StructuredList, StructuredIndex);
1259}
1260
1261/// \brief Expand a field designator that refers to a member of an
1262/// anonymous struct or union into a series of field designators that
1263/// refers to the field within the appropriate subobject.
1264///
1265static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1266                                           DesignatedInitExpr *DIE,
1267                                           unsigned DesigIdx,
1268                                           IndirectFieldDecl *IndirectField) {
1269  typedef DesignatedInitExpr::Designator Designator;
1270
1271  // Build the replacement designators.
1272  SmallVector<Designator, 4> Replacements;
1273  for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1274       PE = IndirectField->chain_end(); PI != PE; ++PI) {
1275    if (PI + 1 == PE)
1276      Replacements.push_back(Designator((IdentifierInfo *)0,
1277                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1278                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1279    else
1280      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1281                                        SourceLocation()));
1282    assert(isa<FieldDecl>(*PI));
1283    Replacements.back().setField(cast<FieldDecl>(*PI));
1284  }
1285
1286  // Expand the current designator into the set of replacement
1287  // designators, so we have a full subobject path down to where the
1288  // member of the anonymous struct/union is actually stored.
1289  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1290                        &Replacements[0] + Replacements.size());
1291}
1292
1293/// \brief Given an implicit anonymous field, search the IndirectField that
1294///  corresponds to FieldName.
1295static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1296                                                 IdentifierInfo *FieldName) {
1297  assert(AnonField->isAnonymousStructOrUnion());
1298  Decl *NextDecl = AnonField->getNextDeclInContext();
1299  while (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(NextDecl)) {
1300    if (FieldName && FieldName == IF->getAnonField()->getIdentifier())
1301      return IF;
1302    NextDecl = NextDecl->getNextDeclInContext();
1303  }
1304  return 0;
1305}
1306
1307/// @brief Check the well-formedness of a C99 designated initializer.
1308///
1309/// Determines whether the designated initializer @p DIE, which
1310/// resides at the given @p Index within the initializer list @p
1311/// IList, is well-formed for a current object of type @p DeclType
1312/// (C99 6.7.8). The actual subobject that this designator refers to
1313/// within the current subobject is returned in either
1314/// @p NextField or @p NextElementIndex (whichever is appropriate).
1315///
1316/// @param IList  The initializer list in which this designated
1317/// initializer occurs.
1318///
1319/// @param DIE The designated initializer expression.
1320///
1321/// @param DesigIdx  The index of the current designator.
1322///
1323/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1324/// into which the designation in @p DIE should refer.
1325///
1326/// @param NextField  If non-NULL and the first designator in @p DIE is
1327/// a field, this will be set to the field declaration corresponding
1328/// to the field named by the designator.
1329///
1330/// @param NextElementIndex  If non-NULL and the first designator in @p
1331/// DIE is an array designator or GNU array-range designator, this
1332/// will be set to the last index initialized by this designator.
1333///
1334/// @param Index  Index into @p IList where the designated initializer
1335/// @p DIE occurs.
1336///
1337/// @param StructuredList  The initializer list expression that
1338/// describes all of the subobject initializers in the order they'll
1339/// actually be initialized.
1340///
1341/// @returns true if there was an error, false otherwise.
1342bool
1343InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1344                                            InitListExpr *IList,
1345                                      DesignatedInitExpr *DIE,
1346                                      unsigned DesigIdx,
1347                                      QualType &CurrentObjectType,
1348                                      RecordDecl::field_iterator *NextField,
1349                                      llvm::APSInt *NextElementIndex,
1350                                      unsigned &Index,
1351                                      InitListExpr *StructuredList,
1352                                      unsigned &StructuredIndex,
1353                                            bool FinishSubobjectInit,
1354                                            bool TopLevelObject) {
1355  if (DesigIdx == DIE->size()) {
1356    // Check the actual initialization for the designated object type.
1357    bool prevHadError = hadError;
1358
1359    // Temporarily remove the designator expression from the
1360    // initializer list that the child calls see, so that we don't try
1361    // to re-process the designator.
1362    unsigned OldIndex = Index;
1363    IList->setInit(OldIndex, DIE->getInit());
1364
1365    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1366                        StructuredList, StructuredIndex);
1367
1368    // Restore the designated initializer expression in the syntactic
1369    // form of the initializer list.
1370    if (IList->getInit(OldIndex) != DIE->getInit())
1371      DIE->setInit(IList->getInit(OldIndex));
1372    IList->setInit(OldIndex, DIE);
1373
1374    return hadError && !prevHadError;
1375  }
1376
1377  bool IsFirstDesignator = (DesigIdx == 0);
1378  assert((IsFirstDesignator || StructuredList) &&
1379         "Need a non-designated initializer list to start from");
1380
1381  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1382  // Determine the structural initializer list that corresponds to the
1383  // current subobject.
1384  StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1385    : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1386                                 StructuredList, StructuredIndex,
1387                                 SourceRange(D->getStartLocation(),
1388                                             DIE->getSourceRange().getEnd()));
1389  assert(StructuredList && "Expected a structured initializer list");
1390
1391  if (D->isFieldDesignator()) {
1392    // C99 6.7.8p7:
1393    //
1394    //   If a designator has the form
1395    //
1396    //      . identifier
1397    //
1398    //   then the current object (defined below) shall have
1399    //   structure or union type and the identifier shall be the
1400    //   name of a member of that type.
1401    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1402    if (!RT) {
1403      SourceLocation Loc = D->getDotLoc();
1404      if (Loc.isInvalid())
1405        Loc = D->getFieldLoc();
1406      SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1407        << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1408      ++Index;
1409      return true;
1410    }
1411
1412    // Note: we perform a linear search of the fields here, despite
1413    // the fact that we have a faster lookup method, because we always
1414    // need to compute the field's index.
1415    FieldDecl *KnownField = D->getField();
1416    IdentifierInfo *FieldName = D->getFieldName();
1417    unsigned FieldIndex = 0;
1418    RecordDecl::field_iterator
1419      Field = RT->getDecl()->field_begin(),
1420      FieldEnd = RT->getDecl()->field_end();
1421    for (; Field != FieldEnd; ++Field) {
1422      if (Field->isUnnamedBitfield())
1423        continue;
1424
1425      // If we find a field representing an anonymous field, look in the
1426      // IndirectFieldDecl that follow for the designated initializer.
1427      if (!KnownField && Field->isAnonymousStructOrUnion()) {
1428        if (IndirectFieldDecl *IF =
1429            FindIndirectFieldDesignator(*Field, FieldName)) {
1430          ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1431          D = DIE->getDesignator(DesigIdx);
1432          break;
1433        }
1434      }
1435      if (KnownField && KnownField == *Field)
1436        break;
1437      if (FieldName && FieldName == Field->getIdentifier())
1438        break;
1439
1440      ++FieldIndex;
1441    }
1442
1443    if (Field == FieldEnd) {
1444      // There was no normal field in the struct with the designated
1445      // name. Perform another lookup for this name, which may find
1446      // something that we can't designate (e.g., a member function),
1447      // may find nothing, or may find a member of an anonymous
1448      // struct/union.
1449      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1450      FieldDecl *ReplacementField = 0;
1451      if (Lookup.first == Lookup.second) {
1452        // Name lookup didn't find anything. Determine whether this
1453        // was a typo for another field name.
1454        LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
1455                       Sema::LookupMemberName);
1456        TypoCorrection Corrected = SemaRef.CorrectTypo(
1457            DeclarationNameInfo(FieldName, D->getFieldLoc()),
1458            Sema::LookupMemberName, /*Scope=*/NULL, /*SS=*/NULL,
1459            RT->getDecl(), false, Sema::CTC_NoKeywords);
1460        if ((ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>()) &&
1461            ReplacementField->getDeclContext()->getRedeclContext()
1462                                                      ->Equals(RT->getDecl())) {
1463          std::string CorrectedStr(
1464              Corrected.getAsString(SemaRef.getLangOptions()));
1465          std::string CorrectedQuotedStr(
1466              Corrected.getQuoted(SemaRef.getLangOptions()));
1467          SemaRef.Diag(D->getFieldLoc(),
1468                       diag::err_field_designator_unknown_suggest)
1469            << FieldName << CurrentObjectType << CorrectedQuotedStr
1470            << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1471          SemaRef.Diag(ReplacementField->getLocation(),
1472                       diag::note_previous_decl) << CorrectedQuotedStr;
1473        } else {
1474          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1475            << FieldName << CurrentObjectType;
1476          ++Index;
1477          return true;
1478        }
1479      }
1480
1481      if (!ReplacementField) {
1482        // Name lookup found something, but it wasn't a field.
1483        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1484          << FieldName;
1485        SemaRef.Diag((*Lookup.first)->getLocation(),
1486                      diag::note_field_designator_found);
1487        ++Index;
1488        return true;
1489      }
1490
1491      if (!KnownField) {
1492        // The replacement field comes from typo correction; find it
1493        // in the list of fields.
1494        FieldIndex = 0;
1495        Field = RT->getDecl()->field_begin();
1496        for (; Field != FieldEnd; ++Field) {
1497          if (Field->isUnnamedBitfield())
1498            continue;
1499
1500          if (ReplacementField == *Field ||
1501              Field->getIdentifier() == ReplacementField->getIdentifier())
1502            break;
1503
1504          ++FieldIndex;
1505        }
1506      }
1507    }
1508
1509    // All of the fields of a union are located at the same place in
1510    // the initializer list.
1511    if (RT->getDecl()->isUnion()) {
1512      FieldIndex = 0;
1513      StructuredList->setInitializedFieldInUnion(*Field);
1514    }
1515
1516    // Make sure we can use this declaration.
1517    if (SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc())) {
1518      ++Index;
1519      return true;
1520    }
1521
1522    // Update the designator with the field declaration.
1523    D->setField(*Field);
1524
1525    // Make sure that our non-designated initializer list has space
1526    // for a subobject corresponding to this field.
1527    if (FieldIndex >= StructuredList->getNumInits())
1528      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1529
1530    // This designator names a flexible array member.
1531    if (Field->getType()->isIncompleteArrayType()) {
1532      bool Invalid = false;
1533      if ((DesigIdx + 1) != DIE->size()) {
1534        // We can't designate an object within the flexible array
1535        // member (because GCC doesn't allow it).
1536        DesignatedInitExpr::Designator *NextD
1537          = DIE->getDesignator(DesigIdx + 1);
1538        SemaRef.Diag(NextD->getStartLocation(),
1539                      diag::err_designator_into_flexible_array_member)
1540          << SourceRange(NextD->getStartLocation(),
1541                         DIE->getSourceRange().getEnd());
1542        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1543          << *Field;
1544        Invalid = true;
1545      }
1546
1547      if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1548          !isa<StringLiteral>(DIE->getInit())) {
1549        // The initializer is not an initializer list.
1550        SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1551                      diag::err_flexible_array_init_needs_braces)
1552          << DIE->getInit()->getSourceRange();
1553        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1554          << *Field;
1555        Invalid = true;
1556      }
1557
1558      // Handle GNU flexible array initializers.
1559      if (!Invalid && !TopLevelObject &&
1560          cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1561        SemaRef.Diag(DIE->getSourceRange().getBegin(),
1562                      diag::err_flexible_array_init_nonempty)
1563          << DIE->getSourceRange().getBegin();
1564        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1565          << *Field;
1566        Invalid = true;
1567      }
1568
1569      if (Invalid) {
1570        ++Index;
1571        return true;
1572      }
1573
1574      // Initialize the array.
1575      bool prevHadError = hadError;
1576      unsigned newStructuredIndex = FieldIndex;
1577      unsigned OldIndex = Index;
1578      IList->setInit(Index, DIE->getInit());
1579
1580      InitializedEntity MemberEntity =
1581        InitializedEntity::InitializeMember(*Field, &Entity);
1582      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1583                          StructuredList, newStructuredIndex);
1584
1585      IList->setInit(OldIndex, DIE);
1586      if (hadError && !prevHadError) {
1587        ++Field;
1588        ++FieldIndex;
1589        if (NextField)
1590          *NextField = Field;
1591        StructuredIndex = FieldIndex;
1592        return true;
1593      }
1594    } else {
1595      // Recurse to check later designated subobjects.
1596      QualType FieldType = (*Field)->getType();
1597      unsigned newStructuredIndex = FieldIndex;
1598
1599      InitializedEntity MemberEntity =
1600        InitializedEntity::InitializeMember(*Field, &Entity);
1601      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1602                                     FieldType, 0, 0, Index,
1603                                     StructuredList, newStructuredIndex,
1604                                     true, false))
1605        return true;
1606    }
1607
1608    // Find the position of the next field to be initialized in this
1609    // subobject.
1610    ++Field;
1611    ++FieldIndex;
1612
1613    // If this the first designator, our caller will continue checking
1614    // the rest of this struct/class/union subobject.
1615    if (IsFirstDesignator) {
1616      if (NextField)
1617        *NextField = Field;
1618      StructuredIndex = FieldIndex;
1619      return false;
1620    }
1621
1622    if (!FinishSubobjectInit)
1623      return false;
1624
1625    // We've already initialized something in the union; we're done.
1626    if (RT->getDecl()->isUnion())
1627      return hadError;
1628
1629    // Check the remaining fields within this class/struct/union subobject.
1630    bool prevHadError = hadError;
1631
1632    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1633                          StructuredList, FieldIndex);
1634    return hadError && !prevHadError;
1635  }
1636
1637  // C99 6.7.8p6:
1638  //
1639  //   If a designator has the form
1640  //
1641  //      [ constant-expression ]
1642  //
1643  //   then the current object (defined below) shall have array
1644  //   type and the expression shall be an integer constant
1645  //   expression. If the array is of unknown size, any
1646  //   nonnegative value is valid.
1647  //
1648  // Additionally, cope with the GNU extension that permits
1649  // designators of the form
1650  //
1651  //      [ constant-expression ... constant-expression ]
1652  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1653  if (!AT) {
1654    SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1655      << CurrentObjectType;
1656    ++Index;
1657    return true;
1658  }
1659
1660  Expr *IndexExpr = 0;
1661  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1662  if (D->isArrayDesignator()) {
1663    IndexExpr = DIE->getArrayIndex(*D);
1664    DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1665    DesignatedEndIndex = DesignatedStartIndex;
1666  } else {
1667    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1668
1669    DesignatedStartIndex =
1670      DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1671    DesignatedEndIndex =
1672      DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1673    IndexExpr = DIE->getArrayRangeEnd(*D);
1674
1675    // Codegen can't handle evaluating array range designators that have side
1676    // effects, because we replicate the AST value for each initialized element.
1677    // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
1678    // elements with something that has a side effect, so codegen can emit an
1679    // "error unsupported" error instead of miscompiling the app.
1680    if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
1681        DIE->getInit()->HasSideEffects(SemaRef.Context))
1682      FullyStructuredList->sawArrayRangeDesignator();
1683  }
1684
1685  if (isa<ConstantArrayType>(AT)) {
1686    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1687    DesignatedStartIndex
1688      = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1689    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1690    DesignatedEndIndex
1691      = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1692    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1693    if (DesignatedEndIndex >= MaxElements) {
1694      SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1695                    diag::err_array_designator_too_large)
1696        << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1697        << IndexExpr->getSourceRange();
1698      ++Index;
1699      return true;
1700    }
1701  } else {
1702    // Make sure the bit-widths and signedness match.
1703    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1704      DesignatedEndIndex
1705        = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1706    else if (DesignatedStartIndex.getBitWidth() <
1707             DesignatedEndIndex.getBitWidth())
1708      DesignatedStartIndex
1709        = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1710    DesignatedStartIndex.setIsUnsigned(true);
1711    DesignatedEndIndex.setIsUnsigned(true);
1712  }
1713
1714  // Make sure that our non-designated initializer list has space
1715  // for a subobject corresponding to this array element.
1716  if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1717    StructuredList->resizeInits(SemaRef.Context,
1718                                DesignatedEndIndex.getZExtValue() + 1);
1719
1720  // Repeatedly perform subobject initializations in the range
1721  // [DesignatedStartIndex, DesignatedEndIndex].
1722
1723  // Move to the next designator
1724  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1725  unsigned OldIndex = Index;
1726
1727  InitializedEntity ElementEntity =
1728    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1729
1730  while (DesignatedStartIndex <= DesignatedEndIndex) {
1731    // Recurse to check later designated subobjects.
1732    QualType ElementType = AT->getElementType();
1733    Index = OldIndex;
1734
1735    ElementEntity.setElementIndex(ElementIndex);
1736    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
1737                                   ElementType, 0, 0, Index,
1738                                   StructuredList, ElementIndex,
1739                                   (DesignatedStartIndex == DesignatedEndIndex),
1740                                   false))
1741      return true;
1742
1743    // Move to the next index in the array that we'll be initializing.
1744    ++DesignatedStartIndex;
1745    ElementIndex = DesignatedStartIndex.getZExtValue();
1746  }
1747
1748  // If this the first designator, our caller will continue checking
1749  // the rest of this array subobject.
1750  if (IsFirstDesignator) {
1751    if (NextElementIndex)
1752      *NextElementIndex = DesignatedStartIndex;
1753    StructuredIndex = ElementIndex;
1754    return false;
1755  }
1756
1757  if (!FinishSubobjectInit)
1758    return false;
1759
1760  // Check the remaining elements within this array subobject.
1761  bool prevHadError = hadError;
1762  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
1763                 /*SubobjectIsDesignatorContext=*/false, Index,
1764                 StructuredList, ElementIndex);
1765  return hadError && !prevHadError;
1766}
1767
1768// Get the structured initializer list for a subobject of type
1769// @p CurrentObjectType.
1770InitListExpr *
1771InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1772                                            QualType CurrentObjectType,
1773                                            InitListExpr *StructuredList,
1774                                            unsigned StructuredIndex,
1775                                            SourceRange InitRange) {
1776  Expr *ExistingInit = 0;
1777  if (!StructuredList)
1778    ExistingInit = SyntacticToSemantic[IList];
1779  else if (StructuredIndex < StructuredList->getNumInits())
1780    ExistingInit = StructuredList->getInit(StructuredIndex);
1781
1782  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1783    return Result;
1784
1785  if (ExistingInit) {
1786    // We are creating an initializer list that initializes the
1787    // subobjects of the current object, but there was already an
1788    // initialization that completely initialized the current
1789    // subobject, e.g., by a compound literal:
1790    //
1791    // struct X { int a, b; };
1792    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1793    //
1794    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1795    // designated initializer re-initializes the whole
1796    // subobject [0], overwriting previous initializers.
1797    SemaRef.Diag(InitRange.getBegin(),
1798                 diag::warn_subobject_initializer_overrides)
1799      << InitRange;
1800    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1801                  diag::note_previous_initializer)
1802      << /*FIXME:has side effects=*/0
1803      << ExistingInit->getSourceRange();
1804  }
1805
1806  InitListExpr *Result
1807    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
1808                                         InitRange.getBegin(), 0, 0,
1809                                         InitRange.getEnd());
1810
1811  Result->setType(CurrentObjectType.getNonLValueExprType(SemaRef.Context));
1812
1813  // Pre-allocate storage for the structured initializer list.
1814  unsigned NumElements = 0;
1815  unsigned NumInits = 0;
1816  bool GotNumInits = false;
1817  if (!StructuredList) {
1818    NumInits = IList->getNumInits();
1819    GotNumInits = true;
1820  } else if (Index < IList->getNumInits()) {
1821    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
1822      NumInits = SubList->getNumInits();
1823      GotNumInits = true;
1824    }
1825  }
1826
1827  if (const ArrayType *AType
1828      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1829    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1830      NumElements = CAType->getSize().getZExtValue();
1831      // Simple heuristic so that we don't allocate a very large
1832      // initializer with many empty entries at the end.
1833      if (GotNumInits && NumElements > NumInits)
1834        NumElements = 0;
1835    }
1836  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
1837    NumElements = VType->getNumElements();
1838  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
1839    RecordDecl *RDecl = RType->getDecl();
1840    if (RDecl->isUnion())
1841      NumElements = 1;
1842    else
1843      NumElements = std::distance(RDecl->field_begin(),
1844                                  RDecl->field_end());
1845  }
1846
1847  if (NumElements < NumInits)
1848    NumElements = IList->getNumInits();
1849
1850  Result->reserveInits(SemaRef.Context, NumElements);
1851
1852  // Link this new initializer list into the structured initializer
1853  // lists.
1854  if (StructuredList)
1855    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
1856  else {
1857    Result->setSyntacticForm(IList);
1858    SyntacticToSemantic[IList] = Result;
1859  }
1860
1861  return Result;
1862}
1863
1864/// Update the initializer at index @p StructuredIndex within the
1865/// structured initializer list to the value @p expr.
1866void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1867                                                  unsigned &StructuredIndex,
1868                                                  Expr *expr) {
1869  // No structured initializer list to update
1870  if (!StructuredList)
1871    return;
1872
1873  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
1874                                                  StructuredIndex, expr)) {
1875    // This initializer overwrites a previous initializer. Warn.
1876    SemaRef.Diag(expr->getSourceRange().getBegin(),
1877                  diag::warn_initializer_overrides)
1878      << expr->getSourceRange();
1879    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1880                  diag::note_previous_initializer)
1881      << /*FIXME:has side effects=*/0
1882      << PrevInit->getSourceRange();
1883  }
1884
1885  ++StructuredIndex;
1886}
1887
1888/// Check that the given Index expression is a valid array designator
1889/// value. This is essentailly just a wrapper around
1890/// VerifyIntegerConstantExpression that also checks for negative values
1891/// and produces a reasonable diagnostic if there is a
1892/// failure. Returns true if there was an error, false otherwise.  If
1893/// everything went okay, Value will receive the value of the constant
1894/// expression.
1895static bool
1896CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1897  SourceLocation Loc = Index->getSourceRange().getBegin();
1898
1899  // Make sure this is an integer constant expression.
1900  if (S.VerifyIntegerConstantExpression(Index, &Value))
1901    return true;
1902
1903  if (Value.isSigned() && Value.isNegative())
1904    return S.Diag(Loc, diag::err_array_designator_negative)
1905      << Value.toString(10) << Index->getSourceRange();
1906
1907  Value.setIsUnsigned(true);
1908  return false;
1909}
1910
1911ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1912                                            SourceLocation Loc,
1913                                            bool GNUSyntax,
1914                                            ExprResult Init) {
1915  typedef DesignatedInitExpr::Designator ASTDesignator;
1916
1917  bool Invalid = false;
1918  SmallVector<ASTDesignator, 32> Designators;
1919  SmallVector<Expr *, 32> InitExpressions;
1920
1921  // Build designators and check array designator expressions.
1922  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1923    const Designator &D = Desig.getDesignator(Idx);
1924    switch (D.getKind()) {
1925    case Designator::FieldDesignator:
1926      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1927                                          D.getFieldLoc()));
1928      break;
1929
1930    case Designator::ArrayDesignator: {
1931      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1932      llvm::APSInt IndexValue;
1933      if (!Index->isTypeDependent() &&
1934          !Index->isValueDependent() &&
1935          CheckArrayDesignatorExpr(*this, Index, IndexValue))
1936        Invalid = true;
1937      else {
1938        Designators.push_back(ASTDesignator(InitExpressions.size(),
1939                                            D.getLBracketLoc(),
1940                                            D.getRBracketLoc()));
1941        InitExpressions.push_back(Index);
1942      }
1943      break;
1944    }
1945
1946    case Designator::ArrayRangeDesignator: {
1947      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1948      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1949      llvm::APSInt StartValue;
1950      llvm::APSInt EndValue;
1951      bool StartDependent = StartIndex->isTypeDependent() ||
1952                            StartIndex->isValueDependent();
1953      bool EndDependent = EndIndex->isTypeDependent() ||
1954                          EndIndex->isValueDependent();
1955      if ((!StartDependent &&
1956           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1957          (!EndDependent &&
1958           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1959        Invalid = true;
1960      else {
1961        // Make sure we're comparing values with the same bit width.
1962        if (StartDependent || EndDependent) {
1963          // Nothing to compute.
1964        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1965          EndValue = EndValue.extend(StartValue.getBitWidth());
1966        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1967          StartValue = StartValue.extend(EndValue.getBitWidth());
1968
1969        if (!StartDependent && !EndDependent && EndValue < StartValue) {
1970          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1971            << StartValue.toString(10) << EndValue.toString(10)
1972            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1973          Invalid = true;
1974        } else {
1975          Designators.push_back(ASTDesignator(InitExpressions.size(),
1976                                              D.getLBracketLoc(),
1977                                              D.getEllipsisLoc(),
1978                                              D.getRBracketLoc()));
1979          InitExpressions.push_back(StartIndex);
1980          InitExpressions.push_back(EndIndex);
1981        }
1982      }
1983      break;
1984    }
1985    }
1986  }
1987
1988  if (Invalid || Init.isInvalid())
1989    return ExprError();
1990
1991  // Clear out the expressions within the designation.
1992  Desig.ClearExprs(*this);
1993
1994  DesignatedInitExpr *DIE
1995    = DesignatedInitExpr::Create(Context,
1996                                 Designators.data(), Designators.size(),
1997                                 InitExpressions.data(), InitExpressions.size(),
1998                                 Loc, GNUSyntax, Init.takeAs<Expr>());
1999
2000  if (getLangOptions().CPlusPlus)
2001    Diag(DIE->getLocStart(), diag::ext_designated_init_cxx)
2002      << DIE->getSourceRange();
2003  else if (!getLangOptions().C99)
2004    Diag(DIE->getLocStart(), diag::ext_designated_init)
2005      << DIE->getSourceRange();
2006
2007  return Owned(DIE);
2008}
2009
2010bool Sema::CheckInitList(const InitializedEntity &Entity,
2011                         InitListExpr *&InitList, QualType &DeclType) {
2012  InitListChecker CheckInitList(*this, Entity, InitList, DeclType);
2013  if (!CheckInitList.HadError())
2014    InitList = CheckInitList.getFullyStructuredList();
2015
2016  return CheckInitList.HadError();
2017}
2018
2019//===----------------------------------------------------------------------===//
2020// Initialization entity
2021//===----------------------------------------------------------------------===//
2022
2023InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2024                                     const InitializedEntity &Parent)
2025  : Parent(&Parent), Index(Index)
2026{
2027  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2028    Kind = EK_ArrayElement;
2029    Type = AT->getElementType();
2030  } else {
2031    Kind = EK_VectorElement;
2032    Type = Parent.getType()->getAs<VectorType>()->getElementType();
2033  }
2034}
2035
2036InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2037                                                    CXXBaseSpecifier *Base,
2038                                                    bool IsInheritedVirtualBase)
2039{
2040  InitializedEntity Result;
2041  Result.Kind = EK_Base;
2042  Result.Base = reinterpret_cast<uintptr_t>(Base);
2043  if (IsInheritedVirtualBase)
2044    Result.Base |= 0x01;
2045
2046  Result.Type = Base->getType();
2047  return Result;
2048}
2049
2050DeclarationName InitializedEntity::getName() const {
2051  switch (getKind()) {
2052  case EK_Parameter: {
2053    ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2054    return (D ? D->getDeclName() : DeclarationName());
2055  }
2056
2057  case EK_Variable:
2058  case EK_Member:
2059    return VariableOrMember->getDeclName();
2060
2061  case EK_Result:
2062  case EK_Exception:
2063  case EK_New:
2064  case EK_Temporary:
2065  case EK_Base:
2066  case EK_Delegating:
2067  case EK_ArrayElement:
2068  case EK_VectorElement:
2069  case EK_BlockElement:
2070    return DeclarationName();
2071  }
2072
2073  // Silence GCC warning
2074  return DeclarationName();
2075}
2076
2077DeclaratorDecl *InitializedEntity::getDecl() const {
2078  switch (getKind()) {
2079  case EK_Variable:
2080  case EK_Member:
2081    return VariableOrMember;
2082
2083  case EK_Parameter:
2084    return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2085
2086  case EK_Result:
2087  case EK_Exception:
2088  case EK_New:
2089  case EK_Temporary:
2090  case EK_Base:
2091  case EK_Delegating:
2092  case EK_ArrayElement:
2093  case EK_VectorElement:
2094  case EK_BlockElement:
2095    return 0;
2096  }
2097
2098  // Silence GCC warning
2099  return 0;
2100}
2101
2102bool InitializedEntity::allowsNRVO() const {
2103  switch (getKind()) {
2104  case EK_Result:
2105  case EK_Exception:
2106    return LocAndNRVO.NRVO;
2107
2108  case EK_Variable:
2109  case EK_Parameter:
2110  case EK_Member:
2111  case EK_New:
2112  case EK_Temporary:
2113  case EK_Base:
2114  case EK_Delegating:
2115  case EK_ArrayElement:
2116  case EK_VectorElement:
2117  case EK_BlockElement:
2118    break;
2119  }
2120
2121  return false;
2122}
2123
2124//===----------------------------------------------------------------------===//
2125// Initialization sequence
2126//===----------------------------------------------------------------------===//
2127
2128void InitializationSequence::Step::Destroy() {
2129  switch (Kind) {
2130  case SK_ResolveAddressOfOverloadedFunction:
2131  case SK_CastDerivedToBaseRValue:
2132  case SK_CastDerivedToBaseXValue:
2133  case SK_CastDerivedToBaseLValue:
2134  case SK_BindReference:
2135  case SK_BindReferenceToTemporary:
2136  case SK_ExtraneousCopyToTemporary:
2137  case SK_UserConversion:
2138  case SK_QualificationConversionRValue:
2139  case SK_QualificationConversionXValue:
2140  case SK_QualificationConversionLValue:
2141  case SK_ListInitialization:
2142  case SK_ConstructorInitialization:
2143  case SK_ZeroInitialization:
2144  case SK_CAssignment:
2145  case SK_StringInit:
2146  case SK_ObjCObjectConversion:
2147  case SK_ArrayInit:
2148  case SK_PassByIndirectCopyRestore:
2149  case SK_PassByIndirectRestore:
2150  case SK_ProduceObjCObject:
2151    break;
2152
2153  case SK_ConversionSequence:
2154    delete ICS;
2155  }
2156}
2157
2158bool InitializationSequence::isDirectReferenceBinding() const {
2159  return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2160}
2161
2162bool InitializationSequence::isAmbiguous() const {
2163  if (!Failed())
2164    return false;
2165
2166  switch (getFailureKind()) {
2167  case FK_TooManyInitsForReference:
2168  case FK_ArrayNeedsInitList:
2169  case FK_ArrayNeedsInitListOrStringLiteral:
2170  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2171  case FK_NonConstLValueReferenceBindingToTemporary:
2172  case FK_NonConstLValueReferenceBindingToUnrelated:
2173  case FK_RValueReferenceBindingToLValue:
2174  case FK_ReferenceInitDropsQualifiers:
2175  case FK_ReferenceInitFailed:
2176  case FK_ConversionFailed:
2177  case FK_ConversionFromPropertyFailed:
2178  case FK_TooManyInitsForScalar:
2179  case FK_ReferenceBindingToInitList:
2180  case FK_InitListBadDestinationType:
2181  case FK_DefaultInitOfConst:
2182  case FK_Incomplete:
2183  case FK_ArrayTypeMismatch:
2184  case FK_NonConstantArrayInit:
2185    return false;
2186
2187  case FK_ReferenceInitOverloadFailed:
2188  case FK_UserConversionOverloadFailed:
2189  case FK_ConstructorOverloadFailed:
2190    return FailedOverloadResult == OR_Ambiguous;
2191  }
2192
2193  return false;
2194}
2195
2196bool InitializationSequence::isConstructorInitialization() const {
2197  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2198}
2199
2200void InitializationSequence::AddAddressOverloadResolutionStep(
2201                                                      FunctionDecl *Function,
2202                                                      DeclAccessPair Found) {
2203  Step S;
2204  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2205  S.Type = Function->getType();
2206  S.Function.Function = Function;
2207  S.Function.FoundDecl = Found;
2208  Steps.push_back(S);
2209}
2210
2211void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2212                                                      ExprValueKind VK) {
2213  Step S;
2214  switch (VK) {
2215  case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2216  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2217  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2218  default: llvm_unreachable("No such category");
2219  }
2220  S.Type = BaseType;
2221  Steps.push_back(S);
2222}
2223
2224void InitializationSequence::AddReferenceBindingStep(QualType T,
2225                                                     bool BindingTemporary) {
2226  Step S;
2227  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2228  S.Type = T;
2229  Steps.push_back(S);
2230}
2231
2232void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2233  Step S;
2234  S.Kind = SK_ExtraneousCopyToTemporary;
2235  S.Type = T;
2236  Steps.push_back(S);
2237}
2238
2239void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2240                                                   DeclAccessPair FoundDecl,
2241                                                   QualType T) {
2242  Step S;
2243  S.Kind = SK_UserConversion;
2244  S.Type = T;
2245  S.Function.Function = Function;
2246  S.Function.FoundDecl = FoundDecl;
2247  Steps.push_back(S);
2248}
2249
2250void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2251                                                            ExprValueKind VK) {
2252  Step S;
2253  S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2254  switch (VK) {
2255  case VK_RValue:
2256    S.Kind = SK_QualificationConversionRValue;
2257    break;
2258  case VK_XValue:
2259    S.Kind = SK_QualificationConversionXValue;
2260    break;
2261  case VK_LValue:
2262    S.Kind = SK_QualificationConversionLValue;
2263    break;
2264  }
2265  S.Type = Ty;
2266  Steps.push_back(S);
2267}
2268
2269void InitializationSequence::AddConversionSequenceStep(
2270                                       const ImplicitConversionSequence &ICS,
2271                                                       QualType T) {
2272  Step S;
2273  S.Kind = SK_ConversionSequence;
2274  S.Type = T;
2275  S.ICS = new ImplicitConversionSequence(ICS);
2276  Steps.push_back(S);
2277}
2278
2279void InitializationSequence::AddListInitializationStep(QualType T) {
2280  Step S;
2281  S.Kind = SK_ListInitialization;
2282  S.Type = T;
2283  Steps.push_back(S);
2284}
2285
2286void
2287InitializationSequence::AddConstructorInitializationStep(
2288                                              CXXConstructorDecl *Constructor,
2289                                                       AccessSpecifier Access,
2290                                                         QualType T) {
2291  Step S;
2292  S.Kind = SK_ConstructorInitialization;
2293  S.Type = T;
2294  S.Function.Function = Constructor;
2295  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2296  Steps.push_back(S);
2297}
2298
2299void InitializationSequence::AddZeroInitializationStep(QualType T) {
2300  Step S;
2301  S.Kind = SK_ZeroInitialization;
2302  S.Type = T;
2303  Steps.push_back(S);
2304}
2305
2306void InitializationSequence::AddCAssignmentStep(QualType T) {
2307  Step S;
2308  S.Kind = SK_CAssignment;
2309  S.Type = T;
2310  Steps.push_back(S);
2311}
2312
2313void InitializationSequence::AddStringInitStep(QualType T) {
2314  Step S;
2315  S.Kind = SK_StringInit;
2316  S.Type = T;
2317  Steps.push_back(S);
2318}
2319
2320void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2321  Step S;
2322  S.Kind = SK_ObjCObjectConversion;
2323  S.Type = T;
2324  Steps.push_back(S);
2325}
2326
2327void InitializationSequence::AddArrayInitStep(QualType T) {
2328  Step S;
2329  S.Kind = SK_ArrayInit;
2330  S.Type = T;
2331  Steps.push_back(S);
2332}
2333
2334void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2335                                                              bool shouldCopy) {
2336  Step s;
2337  s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2338                       : SK_PassByIndirectRestore);
2339  s.Type = type;
2340  Steps.push_back(s);
2341}
2342
2343void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2344  Step S;
2345  S.Kind = SK_ProduceObjCObject;
2346  S.Type = T;
2347  Steps.push_back(S);
2348}
2349
2350void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2351                                                OverloadingResult Result) {
2352  setSequenceKind(FailedSequence);
2353  this->Failure = Failure;
2354  this->FailedOverloadResult = Result;
2355}
2356
2357//===----------------------------------------------------------------------===//
2358// Attempt initialization
2359//===----------------------------------------------------------------------===//
2360
2361static void MaybeProduceObjCObject(Sema &S,
2362                                   InitializationSequence &Sequence,
2363                                   const InitializedEntity &Entity) {
2364  if (!S.getLangOptions().ObjCAutoRefCount) return;
2365
2366  /// When initializing a parameter, produce the value if it's marked
2367  /// __attribute__((ns_consumed)).
2368  if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2369    if (!Entity.isParameterConsumed())
2370      return;
2371
2372    assert(Entity.getType()->isObjCRetainableType() &&
2373           "consuming an object of unretainable type?");
2374    Sequence.AddProduceObjCObjectStep(Entity.getType());
2375
2376  /// When initializing a return value, if the return type is a
2377  /// retainable type, then returns need to immediately retain the
2378  /// object.  If an autorelease is required, it will be done at the
2379  /// last instant.
2380  } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2381    if (!Entity.getType()->isObjCRetainableType())
2382      return;
2383
2384    Sequence.AddProduceObjCObjectStep(Entity.getType());
2385  }
2386}
2387
2388/// \brief Attempt list initialization (C++0x [dcl.init.list])
2389static void TryListInitialization(Sema &S,
2390                                  const InitializedEntity &Entity,
2391                                  const InitializationKind &Kind,
2392                                  InitListExpr *InitList,
2393                                  InitializationSequence &Sequence) {
2394  // FIXME: We only perform rudimentary checking of list
2395  // initializations at this point, then assume that any list
2396  // initialization of an array, aggregate, or scalar will be
2397  // well-formed. When we actually "perform" list initialization, we'll
2398  // do all of the necessary checking.  C++0x initializer lists will
2399  // force us to perform more checking here.
2400
2401  QualType DestType = Entity.getType();
2402
2403  // C++ [dcl.init]p13:
2404  //   If T is a scalar type, then a declaration of the form
2405  //
2406  //     T x = { a };
2407  //
2408  //   is equivalent to
2409  //
2410  //     T x = a;
2411  if (DestType->isScalarType()) {
2412    if (InitList->getNumInits() > 1 && S.getLangOptions().CPlusPlus) {
2413      Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
2414      return;
2415    }
2416
2417    // Assume scalar initialization from a single value works.
2418  } else if (DestType->isAggregateType()) {
2419    // Assume aggregate initialization works.
2420  } else if (DestType->isVectorType()) {
2421    // Assume vector initialization works.
2422  } else if (DestType->isReferenceType()) {
2423    // FIXME: C++0x defines behavior for this.
2424    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2425    return;
2426  } else if (DestType->isRecordType()) {
2427    // FIXME: C++0x defines behavior for this
2428    Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
2429  }
2430
2431  // Add a general "list initialization" step.
2432  Sequence.AddListInitializationStep(DestType);
2433}
2434
2435/// \brief Try a reference initialization that involves calling a conversion
2436/// function.
2437static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
2438                                             const InitializedEntity &Entity,
2439                                             const InitializationKind &Kind,
2440                                                          Expr *Initializer,
2441                                                          bool AllowRValues,
2442                                             InitializationSequence &Sequence) {
2443  QualType DestType = Entity.getType();
2444  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2445  QualType T1 = cv1T1.getUnqualifiedType();
2446  QualType cv2T2 = Initializer->getType();
2447  QualType T2 = cv2T2.getUnqualifiedType();
2448
2449  bool DerivedToBase;
2450  bool ObjCConversion;
2451  bool ObjCLifetimeConversion;
2452  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
2453                                         T1, T2, DerivedToBase,
2454                                         ObjCConversion,
2455                                         ObjCLifetimeConversion) &&
2456         "Must have incompatible references when binding via conversion");
2457  (void)DerivedToBase;
2458  (void)ObjCConversion;
2459  (void)ObjCLifetimeConversion;
2460
2461  // Build the candidate set directly in the initialization sequence
2462  // structure, so that it will persist if we fail.
2463  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2464  CandidateSet.clear();
2465
2466  // Determine whether we are allowed to call explicit constructors or
2467  // explicit conversion operators.
2468  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2469
2470  const RecordType *T1RecordType = 0;
2471  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
2472      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
2473    // The type we're converting to is a class type. Enumerate its constructors
2474    // to see if there is a suitable conversion.
2475    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
2476
2477    DeclContext::lookup_iterator Con, ConEnd;
2478    for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
2479         Con != ConEnd; ++Con) {
2480      NamedDecl *D = *Con;
2481      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2482
2483      // Find the constructor (which may be a template).
2484      CXXConstructorDecl *Constructor = 0;
2485      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2486      if (ConstructorTmpl)
2487        Constructor = cast<CXXConstructorDecl>(
2488                                         ConstructorTmpl->getTemplatedDecl());
2489      else
2490        Constructor = cast<CXXConstructorDecl>(D);
2491
2492      if (!Constructor->isInvalidDecl() &&
2493          Constructor->isConvertingConstructor(AllowExplicit)) {
2494        if (ConstructorTmpl)
2495          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2496                                         /*ExplicitArgs*/ 0,
2497                                         &Initializer, 1, CandidateSet,
2498                                         /*SuppressUserConversions=*/true);
2499        else
2500          S.AddOverloadCandidate(Constructor, FoundDecl,
2501                                 &Initializer, 1, CandidateSet,
2502                                 /*SuppressUserConversions=*/true);
2503      }
2504    }
2505  }
2506  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
2507    return OR_No_Viable_Function;
2508
2509  const RecordType *T2RecordType = 0;
2510  if ((T2RecordType = T2->getAs<RecordType>()) &&
2511      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
2512    // The type we're converting from is a class type, enumerate its conversion
2513    // functions.
2514    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
2515
2516    const UnresolvedSetImpl *Conversions
2517      = T2RecordDecl->getVisibleConversionFunctions();
2518    for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2519           E = Conversions->end(); I != E; ++I) {
2520      NamedDecl *D = *I;
2521      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2522      if (isa<UsingShadowDecl>(D))
2523        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2524
2525      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2526      CXXConversionDecl *Conv;
2527      if (ConvTemplate)
2528        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2529      else
2530        Conv = cast<CXXConversionDecl>(D);
2531
2532      // If the conversion function doesn't return a reference type,
2533      // it can't be considered for this conversion unless we're allowed to
2534      // consider rvalues.
2535      // FIXME: Do we need to make sure that we only consider conversion
2536      // candidates with reference-compatible results? That might be needed to
2537      // break recursion.
2538      if ((AllowExplicit || !Conv->isExplicit()) &&
2539          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
2540        if (ConvTemplate)
2541          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2542                                           ActingDC, Initializer,
2543                                           DestType, CandidateSet);
2544        else
2545          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2546                                   Initializer, DestType, CandidateSet);
2547      }
2548    }
2549  }
2550  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
2551    return OR_No_Viable_Function;
2552
2553  SourceLocation DeclLoc = Initializer->getLocStart();
2554
2555  // Perform overload resolution. If it fails, return the failed result.
2556  OverloadCandidateSet::iterator Best;
2557  if (OverloadingResult Result
2558        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
2559    return Result;
2560
2561  FunctionDecl *Function = Best->Function;
2562
2563  // This is the overload that will actually be used for the initialization, so
2564  // mark it as used.
2565  S.MarkDeclarationReferenced(DeclLoc, Function);
2566
2567  // Compute the returned type of the conversion.
2568  if (isa<CXXConversionDecl>(Function))
2569    T2 = Function->getResultType();
2570  else
2571    T2 = cv1T1;
2572
2573  // Add the user-defined conversion step.
2574  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
2575                                 T2.getNonLValueExprType(S.Context));
2576
2577  // Determine whether we need to perform derived-to-base or
2578  // cv-qualification adjustments.
2579  ExprValueKind VK = VK_RValue;
2580  if (T2->isLValueReferenceType())
2581    VK = VK_LValue;
2582  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
2583    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
2584
2585  bool NewDerivedToBase = false;
2586  bool NewObjCConversion = false;
2587  bool NewObjCLifetimeConversion = false;
2588  Sema::ReferenceCompareResult NewRefRelationship
2589    = S.CompareReferenceRelationship(DeclLoc, T1,
2590                                     T2.getNonLValueExprType(S.Context),
2591                                     NewDerivedToBase, NewObjCConversion,
2592                                     NewObjCLifetimeConversion);
2593  if (NewRefRelationship == Sema::Ref_Incompatible) {
2594    // If the type we've converted to is not reference-related to the
2595    // type we're looking for, then there is another conversion step
2596    // we need to perform to produce a temporary of the right type
2597    // that we'll be binding to.
2598    ImplicitConversionSequence ICS;
2599    ICS.setStandard();
2600    ICS.Standard = Best->FinalConversion;
2601    T2 = ICS.Standard.getToType(2);
2602    Sequence.AddConversionSequenceStep(ICS, T2);
2603  } else if (NewDerivedToBase)
2604    Sequence.AddDerivedToBaseCastStep(
2605                                S.Context.getQualifiedType(T1,
2606                                  T2.getNonReferenceType().getQualifiers()),
2607                                      VK);
2608  else if (NewObjCConversion)
2609    Sequence.AddObjCObjectConversionStep(
2610                                S.Context.getQualifiedType(T1,
2611                                  T2.getNonReferenceType().getQualifiers()));
2612
2613  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
2614    Sequence.AddQualificationConversionStep(cv1T1, VK);
2615
2616  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
2617  return OR_Success;
2618}
2619
2620/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
2621static void TryReferenceInitialization(Sema &S,
2622                                       const InitializedEntity &Entity,
2623                                       const InitializationKind &Kind,
2624                                       Expr *Initializer,
2625                                       InitializationSequence &Sequence) {
2626  QualType DestType = Entity.getType();
2627  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2628  Qualifiers T1Quals;
2629  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2630  QualType cv2T2 = Initializer->getType();
2631  Qualifiers T2Quals;
2632  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
2633  SourceLocation DeclLoc = Initializer->getLocStart();
2634
2635  // If the initializer is the address of an overloaded function, try
2636  // to resolve the overloaded function. If all goes well, T2 is the
2637  // type of the resulting function.
2638  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2639    DeclAccessPair Found;
2640    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
2641                                                                T1,
2642                                                                false,
2643                                                                Found)) {
2644      Sequence.AddAddressOverloadResolutionStep(Fn, Found);
2645      cv2T2 = Fn->getType();
2646      T2 = cv2T2.getUnqualifiedType();
2647    } else if (!T1->isRecordType()) {
2648      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2649      return;
2650    }
2651  }
2652
2653  // Compute some basic properties of the types and the initializer.
2654  bool isLValueRef = DestType->isLValueReferenceType();
2655  bool isRValueRef = !isLValueRef;
2656  bool DerivedToBase = false;
2657  bool ObjCConversion = false;
2658  bool ObjCLifetimeConversion = false;
2659  Expr::Classification InitCategory = Initializer->Classify(S.Context);
2660  Sema::ReferenceCompareResult RefRelationship
2661    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
2662                                     ObjCConversion, ObjCLifetimeConversion);
2663
2664  // C++0x [dcl.init.ref]p5:
2665  //   A reference to type "cv1 T1" is initialized by an expression of type
2666  //   "cv2 T2" as follows:
2667  //
2668  //     - If the reference is an lvalue reference and the initializer
2669  //       expression
2670  // Note the analogous bullet points for rvlaue refs to functions. Because
2671  // there are no function rvalues in C++, rvalue refs to functions are treated
2672  // like lvalue refs.
2673  OverloadingResult ConvOvlResult = OR_Success;
2674  bool T1Function = T1->isFunctionType();
2675  if (isLValueRef || T1Function) {
2676    if (InitCategory.isLValue() &&
2677        (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
2678         (Kind.isCStyleOrFunctionalCast() &&
2679          RefRelationship == Sema::Ref_Related))) {
2680      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
2681      //     reference-compatible with "cv2 T2," or
2682      //
2683      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
2684      // bit-field when we're determining whether the reference initialization
2685      // can occur. However, we do pay attention to whether it is a bit-field
2686      // to decide whether we're actually binding to a temporary created from
2687      // the bit-field.
2688      if (DerivedToBase)
2689        Sequence.AddDerivedToBaseCastStep(
2690                         S.Context.getQualifiedType(T1, T2Quals),
2691                         VK_LValue);
2692      else if (ObjCConversion)
2693        Sequence.AddObjCObjectConversionStep(
2694                                     S.Context.getQualifiedType(T1, T2Quals));
2695
2696      if (T1Quals != T2Quals)
2697        Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
2698      bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
2699        (Initializer->getBitField() || Initializer->refersToVectorElement());
2700      Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
2701      return;
2702    }
2703
2704    //     - has a class type (i.e., T2 is a class type), where T1 is not
2705    //       reference-related to T2, and can be implicitly converted to an
2706    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
2707    //       with "cv3 T3" (this conversion is selected by enumerating the
2708    //       applicable conversion functions (13.3.1.6) and choosing the best
2709    //       one through overload resolution (13.3)),
2710    // If we have an rvalue ref to function type here, the rhs must be
2711    // an rvalue.
2712    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
2713        (isLValueRef || InitCategory.isRValue())) {
2714      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
2715                                                       Initializer,
2716                                                   /*AllowRValues=*/isRValueRef,
2717                                                       Sequence);
2718      if (ConvOvlResult == OR_Success)
2719        return;
2720      if (ConvOvlResult != OR_No_Viable_Function) {
2721        Sequence.SetOverloadFailure(
2722                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2723                                    ConvOvlResult);
2724      }
2725    }
2726  }
2727
2728  //     - Otherwise, the reference shall be an lvalue reference to a
2729  //       non-volatile const type (i.e., cv1 shall be const), or the reference
2730  //       shall be an rvalue reference.
2731  if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
2732    if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
2733      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2734    else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2735      Sequence.SetOverloadFailure(
2736                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2737                                  ConvOvlResult);
2738    else
2739      Sequence.SetFailed(InitCategory.isLValue()
2740        ? (RefRelationship == Sema::Ref_Related
2741             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
2742             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
2743        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
2744
2745    return;
2746  }
2747
2748  //    - If the initializer expression
2749  //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
2750  //        "cv1 T1" is reference-compatible with "cv2 T2"
2751  // Note: functions are handled below.
2752  if (!T1Function &&
2753      (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
2754       (Kind.isCStyleOrFunctionalCast() &&
2755        RefRelationship == Sema::Ref_Related)) &&
2756      (InitCategory.isXValue() ||
2757       (InitCategory.isPRValue() && T2->isRecordType()) ||
2758       (InitCategory.isPRValue() && T2->isArrayType()))) {
2759    ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
2760    if (InitCategory.isPRValue() && T2->isRecordType()) {
2761      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
2762      // compiler the freedom to perform a copy here or bind to the
2763      // object, while C++0x requires that we bind directly to the
2764      // object. Hence, we always bind to the object without making an
2765      // extra copy. However, in C++03 requires that we check for the
2766      // presence of a suitable copy constructor:
2767      //
2768      //   The constructor that would be used to make the copy shall
2769      //   be callable whether or not the copy is actually done.
2770      if (!S.getLangOptions().CPlusPlus0x && !S.getLangOptions().Microsoft)
2771        Sequence.AddExtraneousCopyToTemporary(cv2T2);
2772    }
2773
2774    if (DerivedToBase)
2775      Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
2776                                        ValueKind);
2777    else if (ObjCConversion)
2778      Sequence.AddObjCObjectConversionStep(
2779                                       S.Context.getQualifiedType(T1, T2Quals));
2780
2781    if (T1Quals != T2Quals)
2782      Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
2783    Sequence.AddReferenceBindingStep(cv1T1,
2784         /*bindingTemporary=*/(InitCategory.isPRValue() && !T2->isArrayType()));
2785    return;
2786  }
2787
2788  //       - has a class type (i.e., T2 is a class type), where T1 is not
2789  //         reference-related to T2, and can be implicitly converted to an
2790  //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
2791  //         where "cv1 T1" is reference-compatible with "cv3 T3",
2792  if (T2->isRecordType()) {
2793    if (RefRelationship == Sema::Ref_Incompatible) {
2794      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
2795                                                       Kind, Initializer,
2796                                                       /*AllowRValues=*/true,
2797                                                       Sequence);
2798      if (ConvOvlResult)
2799        Sequence.SetOverloadFailure(
2800                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2801                                    ConvOvlResult);
2802
2803      return;
2804    }
2805
2806    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2807    return;
2808  }
2809
2810  //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
2811  //        from the initializer expression using the rules for a non-reference
2812  //        copy initialization (8.5). The reference is then bound to the
2813  //        temporary. [...]
2814
2815  // Determine whether we are allowed to call explicit constructors or
2816  // explicit conversion operators.
2817  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
2818
2819  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
2820
2821  ImplicitConversionSequence ICS
2822    = S.TryImplicitConversion(Initializer, TempEntity.getType(),
2823                              /*SuppressUserConversions*/ false,
2824                              AllowExplicit,
2825                              /*FIXME:InOverloadResolution=*/false,
2826                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
2827                              /*AllowObjCWritebackConversion=*/false);
2828
2829  if (ICS.isBad()) {
2830    // FIXME: Use the conversion function set stored in ICS to turn
2831    // this into an overloading ambiguity diagnostic. However, we need
2832    // to keep that set as an OverloadCandidateSet rather than as some
2833    // other kind of set.
2834    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2835      Sequence.SetOverloadFailure(
2836                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2837                                  ConvOvlResult);
2838    else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
2839      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2840    else
2841      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
2842    return;
2843  } else {
2844    Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
2845  }
2846
2847  //        [...] If T1 is reference-related to T2, cv1 must be the
2848  //        same cv-qualification as, or greater cv-qualification
2849  //        than, cv2; otherwise, the program is ill-formed.
2850  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
2851  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
2852  if (RefRelationship == Sema::Ref_Related &&
2853      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
2854    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2855    return;
2856  }
2857
2858  //   [...] If T1 is reference-related to T2 and the reference is an rvalue
2859  //   reference, the initializer expression shall not be an lvalue.
2860  if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
2861      InitCategory.isLValue()) {
2862    Sequence.SetFailed(
2863                    InitializationSequence::FK_RValueReferenceBindingToLValue);
2864    return;
2865  }
2866
2867  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2868  return;
2869}
2870
2871/// \brief Attempt character array initialization from a string literal
2872/// (C++ [dcl.init.string], C99 6.7.8).
2873static void TryStringLiteralInitialization(Sema &S,
2874                                           const InitializedEntity &Entity,
2875                                           const InitializationKind &Kind,
2876                                           Expr *Initializer,
2877                                       InitializationSequence &Sequence) {
2878  Sequence.AddStringInitStep(Entity.getType());
2879}
2880
2881/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2882/// enumerates the constructors of the initialized entity and performs overload
2883/// resolution to select the best.
2884static void TryConstructorInitialization(Sema &S,
2885                                         const InitializedEntity &Entity,
2886                                         const InitializationKind &Kind,
2887                                         Expr **Args, unsigned NumArgs,
2888                                         QualType DestType,
2889                                         InitializationSequence &Sequence) {
2890  // Build the candidate set directly in the initialization sequence
2891  // structure, so that it will persist if we fail.
2892  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2893  CandidateSet.clear();
2894
2895  // Determine whether we are allowed to call explicit constructors or
2896  // explicit conversion operators.
2897  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
2898                        Kind.getKind() == InitializationKind::IK_Value ||
2899                        Kind.getKind() == InitializationKind::IK_Default);
2900
2901  // The type we're constructing needs to be complete.
2902  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2903    Sequence.SetFailed(InitializationSequence::FK_Incomplete);
2904    return;
2905  }
2906
2907  // The type we're converting to is a class type. Enumerate its constructors
2908  // to see if one is suitable.
2909  const RecordType *DestRecordType = DestType->getAs<RecordType>();
2910  assert(DestRecordType && "Constructor initialization requires record type");
2911  CXXRecordDecl *DestRecordDecl
2912    = cast<CXXRecordDecl>(DestRecordType->getDecl());
2913
2914  DeclContext::lookup_iterator Con, ConEnd;
2915  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
2916       Con != ConEnd; ++Con) {
2917    NamedDecl *D = *Con;
2918    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2919    bool SuppressUserConversions = false;
2920
2921    // Find the constructor (which may be a template).
2922    CXXConstructorDecl *Constructor = 0;
2923    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2924    if (ConstructorTmpl)
2925      Constructor = cast<CXXConstructorDecl>(
2926                                           ConstructorTmpl->getTemplatedDecl());
2927    else {
2928      Constructor = cast<CXXConstructorDecl>(D);
2929
2930      // If we're performing copy initialization using a copy constructor, we
2931      // suppress user-defined conversions on the arguments.
2932      // FIXME: Move constructors?
2933      if (Kind.getKind() == InitializationKind::IK_Copy &&
2934          Constructor->isCopyConstructor())
2935        SuppressUserConversions = true;
2936    }
2937
2938    if (!Constructor->isInvalidDecl() &&
2939        (AllowExplicit || !Constructor->isExplicit())) {
2940      if (ConstructorTmpl)
2941        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2942                                       /*ExplicitArgs*/ 0,
2943                                       Args, NumArgs, CandidateSet,
2944                                       SuppressUserConversions);
2945      else
2946        S.AddOverloadCandidate(Constructor, FoundDecl,
2947                               Args, NumArgs, CandidateSet,
2948                               SuppressUserConversions);
2949    }
2950  }
2951
2952  SourceLocation DeclLoc = Kind.getLocation();
2953
2954  // Perform overload resolution. If it fails, return the failed result.
2955  OverloadCandidateSet::iterator Best;
2956  if (OverloadingResult Result
2957        = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
2958    Sequence.SetOverloadFailure(
2959                          InitializationSequence::FK_ConstructorOverloadFailed,
2960                                Result);
2961    return;
2962  }
2963
2964  // C++0x [dcl.init]p6:
2965  //   If a program calls for the default initialization of an object
2966  //   of a const-qualified type T, T shall be a class type with a
2967  //   user-provided default constructor.
2968  if (Kind.getKind() == InitializationKind::IK_Default &&
2969      Entity.getType().isConstQualified() &&
2970      cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
2971    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2972    return;
2973  }
2974
2975  // Add the constructor initialization step. Any cv-qualification conversion is
2976  // subsumed by the initialization.
2977  Sequence.AddConstructorInitializationStep(
2978                                      cast<CXXConstructorDecl>(Best->Function),
2979                                      Best->FoundDecl.getAccess(),
2980                                      DestType);
2981}
2982
2983/// \brief Attempt value initialization (C++ [dcl.init]p7).
2984static void TryValueInitialization(Sema &S,
2985                                   const InitializedEntity &Entity,
2986                                   const InitializationKind &Kind,
2987                                   InitializationSequence &Sequence) {
2988  // C++ [dcl.init]p5:
2989  //
2990  //   To value-initialize an object of type T means:
2991  QualType T = Entity.getType();
2992
2993  //     -- if T is an array type, then each element is value-initialized;
2994  while (const ArrayType *AT = S.Context.getAsArrayType(T))
2995    T = AT->getElementType();
2996
2997  if (const RecordType *RT = T->getAs<RecordType>()) {
2998    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2999      // -- if T is a class type (clause 9) with a user-declared
3000      //    constructor (12.1), then the default constructor for T is
3001      //    called (and the initialization is ill-formed if T has no
3002      //    accessible default constructor);
3003      //
3004      // FIXME: we really want to refer to a single subobject of the array,
3005      // but Entity doesn't have a way to capture that (yet).
3006      if (ClassDecl->hasUserDeclaredConstructor())
3007        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
3008
3009      // -- if T is a (possibly cv-qualified) non-union class type
3010      //    without a user-provided constructor, then the object is
3011      //    zero-initialized and, if T's implicitly-declared default
3012      //    constructor is non-trivial, that constructor is called.
3013      if ((ClassDecl->getTagKind() == TTK_Class ||
3014           ClassDecl->getTagKind() == TTK_Struct)) {
3015        Sequence.AddZeroInitializationStep(Entity.getType());
3016        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
3017      }
3018    }
3019  }
3020
3021  Sequence.AddZeroInitializationStep(Entity.getType());
3022}
3023
3024/// \brief Attempt default initialization (C++ [dcl.init]p6).
3025static void TryDefaultInitialization(Sema &S,
3026                                     const InitializedEntity &Entity,
3027                                     const InitializationKind &Kind,
3028                                     InitializationSequence &Sequence) {
3029  assert(Kind.getKind() == InitializationKind::IK_Default);
3030
3031  // C++ [dcl.init]p6:
3032  //   To default-initialize an object of type T means:
3033  //     - if T is an array type, each element is default-initialized;
3034  QualType DestType = S.Context.getBaseElementType(Entity.getType());
3035
3036  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3037  //       constructor for T is called (and the initialization is ill-formed if
3038  //       T has no accessible default constructor);
3039  if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
3040    TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
3041    return;
3042  }
3043
3044  //     - otherwise, no initialization is performed.
3045
3046  //   If a program calls for the default initialization of an object of
3047  //   a const-qualified type T, T shall be a class type with a user-provided
3048  //   default constructor.
3049  if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus) {
3050    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3051    return;
3052  }
3053
3054  // If the destination type has a lifetime property, zero-initialize it.
3055  if (DestType.getQualifiers().hasObjCLifetime()) {
3056    Sequence.AddZeroInitializationStep(Entity.getType());
3057    return;
3058  }
3059}
3060
3061/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3062/// which enumerates all conversion functions and performs overload resolution
3063/// to select the best.
3064static void TryUserDefinedConversion(Sema &S,
3065                                     const InitializedEntity &Entity,
3066                                     const InitializationKind &Kind,
3067                                     Expr *Initializer,
3068                                     InitializationSequence &Sequence) {
3069  QualType DestType = Entity.getType();
3070  assert(!DestType->isReferenceType() && "References are handled elsewhere");
3071  QualType SourceType = Initializer->getType();
3072  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3073         "Must have a class type to perform a user-defined conversion");
3074
3075  // Build the candidate set directly in the initialization sequence
3076  // structure, so that it will persist if we fail.
3077  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3078  CandidateSet.clear();
3079
3080  // Determine whether we are allowed to call explicit constructors or
3081  // explicit conversion operators.
3082  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
3083
3084  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
3085    // The type we're converting to is a class type. Enumerate its constructors
3086    // to see if there is a suitable conversion.
3087    CXXRecordDecl *DestRecordDecl
3088      = cast<CXXRecordDecl>(DestRecordType->getDecl());
3089
3090    // Try to complete the type we're converting to.
3091    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3092      DeclContext::lookup_iterator Con, ConEnd;
3093      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
3094           Con != ConEnd; ++Con) {
3095        NamedDecl *D = *Con;
3096        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3097
3098        // Find the constructor (which may be a template).
3099        CXXConstructorDecl *Constructor = 0;
3100        FunctionTemplateDecl *ConstructorTmpl
3101          = dyn_cast<FunctionTemplateDecl>(D);
3102        if (ConstructorTmpl)
3103          Constructor = cast<CXXConstructorDecl>(
3104                                           ConstructorTmpl->getTemplatedDecl());
3105        else
3106          Constructor = cast<CXXConstructorDecl>(D);
3107
3108        if (!Constructor->isInvalidDecl() &&
3109            Constructor->isConvertingConstructor(AllowExplicit)) {
3110          if (ConstructorTmpl)
3111            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3112                                           /*ExplicitArgs*/ 0,
3113                                           &Initializer, 1, CandidateSet,
3114                                           /*SuppressUserConversions=*/true);
3115          else
3116            S.AddOverloadCandidate(Constructor, FoundDecl,
3117                                   &Initializer, 1, CandidateSet,
3118                                   /*SuppressUserConversions=*/true);
3119        }
3120      }
3121    }
3122  }
3123
3124  SourceLocation DeclLoc = Initializer->getLocStart();
3125
3126  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3127    // The type we're converting from is a class type, enumerate its conversion
3128    // functions.
3129
3130    // We can only enumerate the conversion functions for a complete type; if
3131    // the type isn't complete, simply skip this step.
3132    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3133      CXXRecordDecl *SourceRecordDecl
3134        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3135
3136      const UnresolvedSetImpl *Conversions
3137        = SourceRecordDecl->getVisibleConversionFunctions();
3138      for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3139           E = Conversions->end();
3140           I != E; ++I) {
3141        NamedDecl *D = *I;
3142        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3143        if (isa<UsingShadowDecl>(D))
3144          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3145
3146        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3147        CXXConversionDecl *Conv;
3148        if (ConvTemplate)
3149          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3150        else
3151          Conv = cast<CXXConversionDecl>(D);
3152
3153        if (AllowExplicit || !Conv->isExplicit()) {
3154          if (ConvTemplate)
3155            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3156                                             ActingDC, Initializer, DestType,
3157                                             CandidateSet);
3158          else
3159            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3160                                     Initializer, DestType, CandidateSet);
3161        }
3162      }
3163    }
3164  }
3165
3166  // Perform overload resolution. If it fails, return the failed result.
3167  OverloadCandidateSet::iterator Best;
3168  if (OverloadingResult Result
3169        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3170    Sequence.SetOverloadFailure(
3171                        InitializationSequence::FK_UserConversionOverloadFailed,
3172                                Result);
3173    return;
3174  }
3175
3176  FunctionDecl *Function = Best->Function;
3177  S.MarkDeclarationReferenced(DeclLoc, Function);
3178
3179  if (isa<CXXConstructorDecl>(Function)) {
3180    // Add the user-defined conversion step. Any cv-qualification conversion is
3181    // subsumed by the initialization.
3182    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3183    return;
3184  }
3185
3186  // Add the user-defined conversion step that calls the conversion function.
3187  QualType ConvType = Function->getCallResultType();
3188  if (ConvType->getAs<RecordType>()) {
3189    // If we're converting to a class type, there may be an copy if
3190    // the resulting temporary object (possible to create an object of
3191    // a base class type). That copy is not a separate conversion, so
3192    // we just make a note of the actual destination type (possibly a
3193    // base class of the type returned by the conversion function) and
3194    // let the user-defined conversion step handle the conversion.
3195    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3196    return;
3197  }
3198
3199  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType);
3200
3201  // If the conversion following the call to the conversion function
3202  // is interesting, add it as a separate step.
3203  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3204      Best->FinalConversion.Third) {
3205    ImplicitConversionSequence ICS;
3206    ICS.setStandard();
3207    ICS.Standard = Best->FinalConversion;
3208    Sequence.AddConversionSequenceStep(ICS, DestType);
3209  }
3210}
3211
3212/// The non-zero enum values here are indexes into diagnostic alternatives.
3213enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
3214
3215/// Determines whether this expression is an acceptable ICR source.
3216static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
3217                                         bool isAddressOf) {
3218  // Skip parens.
3219  e = e->IgnoreParens();
3220
3221  // Skip address-of nodes.
3222  if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
3223    if (op->getOpcode() == UO_AddrOf)
3224      return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true);
3225
3226  // Skip certain casts.
3227  } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
3228    switch (ce->getCastKind()) {
3229    case CK_Dependent:
3230    case CK_BitCast:
3231    case CK_LValueBitCast:
3232    case CK_NoOp:
3233      return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf);
3234
3235    case CK_ArrayToPointerDecay:
3236      return IIK_nonscalar;
3237
3238    case CK_NullToPointer:
3239      return IIK_okay;
3240
3241    default:
3242      break;
3243    }
3244
3245  // If we have a declaration reference, it had better be a local variable.
3246  } else if (isa<DeclRefExpr>(e) || isa<BlockDeclRefExpr>(e)) {
3247    if (!isAddressOf) return IIK_nonlocal;
3248
3249    VarDecl *var;
3250    if (isa<DeclRefExpr>(e)) {
3251      var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
3252      if (!var) return IIK_nonlocal;
3253    } else {
3254      var = cast<BlockDeclRefExpr>(e)->getDecl();
3255    }
3256
3257    return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
3258
3259  // If we have a conditional operator, check both sides.
3260  } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
3261    if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf))
3262      return iik;
3263
3264    return isInvalidICRSource(C, cond->getRHS(), isAddressOf);
3265
3266  // These are never scalar.
3267  } else if (isa<ArraySubscriptExpr>(e)) {
3268    return IIK_nonscalar;
3269
3270  // Otherwise, it needs to be a null pointer constant.
3271  } else {
3272    return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
3273            ? IIK_okay : IIK_nonlocal);
3274  }
3275
3276  return IIK_nonlocal;
3277}
3278
3279/// Check whether the given expression is a valid operand for an
3280/// indirect copy/restore.
3281static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
3282  assert(src->isRValue());
3283
3284  InvalidICRKind iik = isInvalidICRSource(S.Context, src, false);
3285  if (iik == IIK_okay) return;
3286
3287  S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
3288    << ((unsigned) iik - 1)  // shift index into diagnostic explanations
3289    << src->getSourceRange();
3290}
3291
3292/// \brief Determine whether we have compatible array types for the
3293/// purposes of GNU by-copy array initialization.
3294static bool hasCompatibleArrayTypes(ASTContext &Context,
3295                                    const ArrayType *Dest,
3296                                    const ArrayType *Source) {
3297  // If the source and destination array types are equivalent, we're
3298  // done.
3299  if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
3300    return true;
3301
3302  // Make sure that the element types are the same.
3303  if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
3304    return false;
3305
3306  // The only mismatch we allow is when the destination is an
3307  // incomplete array type and the source is a constant array type.
3308  return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
3309}
3310
3311static bool tryObjCWritebackConversion(Sema &S,
3312                                       InitializationSequence &Sequence,
3313                                       const InitializedEntity &Entity,
3314                                       Expr *Initializer) {
3315  bool ArrayDecay = false;
3316  QualType ArgType = Initializer->getType();
3317  QualType ArgPointee;
3318  if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
3319    ArrayDecay = true;
3320    ArgPointee = ArgArrayType->getElementType();
3321    ArgType = S.Context.getPointerType(ArgPointee);
3322  }
3323
3324  // Handle write-back conversion.
3325  QualType ConvertedArgType;
3326  if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
3327                                   ConvertedArgType))
3328    return false;
3329
3330  // We should copy unless we're passing to an argument explicitly
3331  // marked 'out'.
3332  bool ShouldCopy = true;
3333  if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
3334    ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
3335
3336  // Do we need an lvalue conversion?
3337  if (ArrayDecay || Initializer->isGLValue()) {
3338    ImplicitConversionSequence ICS;
3339    ICS.setStandard();
3340    ICS.Standard.setAsIdentityConversion();
3341
3342    QualType ResultType;
3343    if (ArrayDecay) {
3344      ICS.Standard.First = ICK_Array_To_Pointer;
3345      ResultType = S.Context.getPointerType(ArgPointee);
3346    } else {
3347      ICS.Standard.First = ICK_Lvalue_To_Rvalue;
3348      ResultType = Initializer->getType().getNonLValueExprType(S.Context);
3349    }
3350
3351    Sequence.AddConversionSequenceStep(ICS, ResultType);
3352  }
3353
3354  Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
3355  return true;
3356}
3357
3358InitializationSequence::InitializationSequence(Sema &S,
3359                                               const InitializedEntity &Entity,
3360                                               const InitializationKind &Kind,
3361                                               Expr **Args,
3362                                               unsigned NumArgs)
3363    : FailedCandidateSet(Kind.getLocation()) {
3364  ASTContext &Context = S.Context;
3365
3366  // C++0x [dcl.init]p16:
3367  //   The semantics of initializers are as follows. The destination type is
3368  //   the type of the object or reference being initialized and the source
3369  //   type is the type of the initializer expression. The source type is not
3370  //   defined when the initializer is a braced-init-list or when it is a
3371  //   parenthesized list of expressions.
3372  QualType DestType = Entity.getType();
3373
3374  if (DestType->isDependentType() ||
3375      Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
3376    SequenceKind = DependentSequence;
3377    return;
3378  }
3379
3380  // Almost everything is a normal sequence.
3381  setSequenceKind(NormalSequence);
3382
3383  for (unsigned I = 0; I != NumArgs; ++I)
3384    if (Args[I]->getObjectKind() == OK_ObjCProperty) {
3385      ExprResult Result = S.ConvertPropertyForRValue(Args[I]);
3386      if (Result.isInvalid()) {
3387        SetFailed(FK_ConversionFromPropertyFailed);
3388        return;
3389      }
3390      Args[I] = Result.take();
3391    }
3392
3393  QualType SourceType;
3394  Expr *Initializer = 0;
3395  if (NumArgs == 1) {
3396    Initializer = Args[0];
3397    if (!isa<InitListExpr>(Initializer))
3398      SourceType = Initializer->getType();
3399  }
3400
3401  //     - If the initializer is a braced-init-list, the object is
3402  //       list-initialized (8.5.4).
3403  if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
3404    TryListInitialization(S, Entity, Kind, InitList, *this);
3405    return;
3406  }
3407
3408  //     - If the destination type is a reference type, see 8.5.3.
3409  if (DestType->isReferenceType()) {
3410    // C++0x [dcl.init.ref]p1:
3411    //   A variable declared to be a T& or T&&, that is, "reference to type T"
3412    //   (8.3.2), shall be initialized by an object, or function, of type T or
3413    //   by an object that can be converted into a T.
3414    // (Therefore, multiple arguments are not permitted.)
3415    if (NumArgs != 1)
3416      SetFailed(FK_TooManyInitsForReference);
3417    else
3418      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
3419    return;
3420  }
3421
3422  //     - If the initializer is (), the object is value-initialized.
3423  if (Kind.getKind() == InitializationKind::IK_Value ||
3424      (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
3425    TryValueInitialization(S, Entity, Kind, *this);
3426    return;
3427  }
3428
3429  // Handle default initialization.
3430  if (Kind.getKind() == InitializationKind::IK_Default) {
3431    TryDefaultInitialization(S, Entity, Kind, *this);
3432    return;
3433  }
3434
3435  //     - If the destination type is an array of characters, an array of
3436  //       char16_t, an array of char32_t, or an array of wchar_t, and the
3437  //       initializer is a string literal, see 8.5.2.
3438  //     - Otherwise, if the destination type is an array, the program is
3439  //       ill-formed.
3440  if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
3441    if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
3442      TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
3443      return;
3444    }
3445
3446    // Note: as an GNU C extension, we allow initialization of an
3447    // array from a compound literal that creates an array of the same
3448    // type, so long as the initializer has no side effects.
3449    if (!S.getLangOptions().CPlusPlus && Initializer &&
3450        isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
3451        Initializer->getType()->isArrayType()) {
3452      const ArrayType *SourceAT
3453        = Context.getAsArrayType(Initializer->getType());
3454      if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
3455        SetFailed(FK_ArrayTypeMismatch);
3456      else if (Initializer->HasSideEffects(S.Context))
3457        SetFailed(FK_NonConstantArrayInit);
3458      else {
3459        AddArrayInitStep(DestType);
3460      }
3461    } else if (DestAT->getElementType()->isAnyCharacterType())
3462      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
3463    else
3464      SetFailed(FK_ArrayNeedsInitList);
3465
3466    return;
3467  }
3468
3469  // Determine whether we should consider writeback conversions for
3470  // Objective-C ARC.
3471  bool allowObjCWritebackConversion = S.getLangOptions().ObjCAutoRefCount &&
3472    Entity.getKind() == InitializedEntity::EK_Parameter;
3473
3474  // We're at the end of the line for C: it's either a write-back conversion
3475  // or it's a C assignment. There's no need to check anything else.
3476  if (!S.getLangOptions().CPlusPlus) {
3477    // If allowed, check whether this is an Objective-C writeback conversion.
3478    if (allowObjCWritebackConversion &&
3479        tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
3480      return;
3481    }
3482
3483    // Handle initialization in C
3484    AddCAssignmentStep(DestType);
3485    MaybeProduceObjCObject(S, *this, Entity);
3486    return;
3487  }
3488
3489  assert(S.getLangOptions().CPlusPlus);
3490
3491  //     - If the destination type is a (possibly cv-qualified) class type:
3492  if (DestType->isRecordType()) {
3493    //     - If the initialization is direct-initialization, or if it is
3494    //       copy-initialization where the cv-unqualified version of the
3495    //       source type is the same class as, or a derived class of, the
3496    //       class of the destination, constructors are considered. [...]
3497    if (Kind.getKind() == InitializationKind::IK_Direct ||
3498        (Kind.getKind() == InitializationKind::IK_Copy &&
3499         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
3500          S.IsDerivedFrom(SourceType, DestType))))
3501      TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
3502                                   Entity.getType(), *this);
3503    //     - Otherwise (i.e., for the remaining copy-initialization cases),
3504    //       user-defined conversion sequences that can convert from the source
3505    //       type to the destination type or (when a conversion function is
3506    //       used) to a derived class thereof are enumerated as described in
3507    //       13.3.1.4, and the best one is chosen through overload resolution
3508    //       (13.3).
3509    else
3510      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3511    return;
3512  }
3513
3514  if (NumArgs > 1) {
3515    SetFailed(FK_TooManyInitsForScalar);
3516    return;
3517  }
3518  assert(NumArgs == 1 && "Zero-argument case handled above");
3519
3520  //    - Otherwise, if the source type is a (possibly cv-qualified) class
3521  //      type, conversion functions are considered.
3522  if (!SourceType.isNull() && SourceType->isRecordType()) {
3523    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3524    MaybeProduceObjCObject(S, *this, Entity);
3525    return;
3526  }
3527
3528  //    - Otherwise, the initial value of the object being initialized is the
3529  //      (possibly converted) value of the initializer expression. Standard
3530  //      conversions (Clause 4) will be used, if necessary, to convert the
3531  //      initializer expression to the cv-unqualified version of the
3532  //      destination type; no user-defined conversions are considered.
3533
3534  ImplicitConversionSequence ICS
3535    = S.TryImplicitConversion(Initializer, Entity.getType(),
3536                              /*SuppressUserConversions*/true,
3537                              /*AllowExplicitConversions*/ false,
3538                              /*InOverloadResolution*/ false,
3539                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3540                              allowObjCWritebackConversion);
3541
3542  if (ICS.isStandard() &&
3543      ICS.Standard.Second == ICK_Writeback_Conversion) {
3544    // Objective-C ARC writeback conversion.
3545
3546    // We should copy unless we're passing to an argument explicitly
3547    // marked 'out'.
3548    bool ShouldCopy = true;
3549    if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
3550      ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
3551
3552    // If there was an lvalue adjustment, add it as a separate conversion.
3553    if (ICS.Standard.First == ICK_Array_To_Pointer ||
3554        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
3555      ImplicitConversionSequence LvalueICS;
3556      LvalueICS.setStandard();
3557      LvalueICS.Standard.setAsIdentityConversion();
3558      LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
3559      LvalueICS.Standard.First = ICS.Standard.First;
3560      AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
3561    }
3562
3563    AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
3564  } else if (ICS.isBad()) {
3565    DeclAccessPair dap;
3566    if (Initializer->getType() == Context.OverloadTy &&
3567          !S.ResolveAddressOfOverloadedFunction(Initializer
3568                      , DestType, false, dap))
3569      SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3570    else
3571      SetFailed(InitializationSequence::FK_ConversionFailed);
3572  } else {
3573    AddConversionSequenceStep(ICS, Entity.getType());
3574
3575    MaybeProduceObjCObject(S, *this, Entity);
3576  }
3577}
3578
3579InitializationSequence::~InitializationSequence() {
3580  for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
3581                                          StepEnd = Steps.end();
3582       Step != StepEnd; ++Step)
3583    Step->Destroy();
3584}
3585
3586//===----------------------------------------------------------------------===//
3587// Perform initialization
3588//===----------------------------------------------------------------------===//
3589static Sema::AssignmentAction
3590getAssignmentAction(const InitializedEntity &Entity) {
3591  switch(Entity.getKind()) {
3592  case InitializedEntity::EK_Variable:
3593  case InitializedEntity::EK_New:
3594  case InitializedEntity::EK_Exception:
3595  case InitializedEntity::EK_Base:
3596  case InitializedEntity::EK_Delegating:
3597    return Sema::AA_Initializing;
3598
3599  case InitializedEntity::EK_Parameter:
3600    if (Entity.getDecl() &&
3601        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
3602      return Sema::AA_Sending;
3603
3604    return Sema::AA_Passing;
3605
3606  case InitializedEntity::EK_Result:
3607    return Sema::AA_Returning;
3608
3609  case InitializedEntity::EK_Temporary:
3610    // FIXME: Can we tell apart casting vs. converting?
3611    return Sema::AA_Casting;
3612
3613  case InitializedEntity::EK_Member:
3614  case InitializedEntity::EK_ArrayElement:
3615  case InitializedEntity::EK_VectorElement:
3616  case InitializedEntity::EK_BlockElement:
3617    return Sema::AA_Initializing;
3618  }
3619
3620  return Sema::AA_Converting;
3621}
3622
3623/// \brief Whether we should binding a created object as a temporary when
3624/// initializing the given entity.
3625static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
3626  switch (Entity.getKind()) {
3627  case InitializedEntity::EK_ArrayElement:
3628  case InitializedEntity::EK_Member:
3629  case InitializedEntity::EK_Result:
3630  case InitializedEntity::EK_New:
3631  case InitializedEntity::EK_Variable:
3632  case InitializedEntity::EK_Base:
3633  case InitializedEntity::EK_Delegating:
3634  case InitializedEntity::EK_VectorElement:
3635  case InitializedEntity::EK_Exception:
3636  case InitializedEntity::EK_BlockElement:
3637    return false;
3638
3639  case InitializedEntity::EK_Parameter:
3640  case InitializedEntity::EK_Temporary:
3641    return true;
3642  }
3643
3644  llvm_unreachable("missed an InitializedEntity kind?");
3645}
3646
3647/// \brief Whether the given entity, when initialized with an object
3648/// created for that initialization, requires destruction.
3649static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
3650  switch (Entity.getKind()) {
3651    case InitializedEntity::EK_Member:
3652    case InitializedEntity::EK_Result:
3653    case InitializedEntity::EK_New:
3654    case InitializedEntity::EK_Base:
3655    case InitializedEntity::EK_Delegating:
3656    case InitializedEntity::EK_VectorElement:
3657    case InitializedEntity::EK_BlockElement:
3658      return false;
3659
3660    case InitializedEntity::EK_Variable:
3661    case InitializedEntity::EK_Parameter:
3662    case InitializedEntity::EK_Temporary:
3663    case InitializedEntity::EK_ArrayElement:
3664    case InitializedEntity::EK_Exception:
3665      return true;
3666  }
3667
3668  llvm_unreachable("missed an InitializedEntity kind?");
3669}
3670
3671/// \brief Make a (potentially elidable) temporary copy of the object
3672/// provided by the given initializer by calling the appropriate copy
3673/// constructor.
3674///
3675/// \param S The Sema object used for type-checking.
3676///
3677/// \param T The type of the temporary object, which must either be
3678/// the type of the initializer expression or a superclass thereof.
3679///
3680/// \param Enter The entity being initialized.
3681///
3682/// \param CurInit The initializer expression.
3683///
3684/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
3685/// is permitted in C++03 (but not C++0x) when binding a reference to
3686/// an rvalue.
3687///
3688/// \returns An expression that copies the initializer expression into
3689/// a temporary object, or an error expression if a copy could not be
3690/// created.
3691static ExprResult CopyObject(Sema &S,
3692                             QualType T,
3693                             const InitializedEntity &Entity,
3694                             ExprResult CurInit,
3695                             bool IsExtraneousCopy) {
3696  // Determine which class type we're copying to.
3697  Expr *CurInitExpr = (Expr *)CurInit.get();
3698  CXXRecordDecl *Class = 0;
3699  if (const RecordType *Record = T->getAs<RecordType>())
3700    Class = cast<CXXRecordDecl>(Record->getDecl());
3701  if (!Class)
3702    return move(CurInit);
3703
3704  // C++0x [class.copy]p32:
3705  //   When certain criteria are met, an implementation is allowed to
3706  //   omit the copy/move construction of a class object, even if the
3707  //   copy/move constructor and/or destructor for the object have
3708  //   side effects. [...]
3709  //     - when a temporary class object that has not been bound to a
3710  //       reference (12.2) would be copied/moved to a class object
3711  //       with the same cv-unqualified type, the copy/move operation
3712  //       can be omitted by constructing the temporary object
3713  //       directly into the target of the omitted copy/move
3714  //
3715  // Note that the other three bullets are handled elsewhere. Copy
3716  // elision for return statements and throw expressions are handled as part
3717  // of constructor initialization, while copy elision for exception handlers
3718  // is handled by the run-time.
3719  bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
3720  SourceLocation Loc;
3721  switch (Entity.getKind()) {
3722  case InitializedEntity::EK_Result:
3723    Loc = Entity.getReturnLoc();
3724    break;
3725
3726  case InitializedEntity::EK_Exception:
3727    Loc = Entity.getThrowLoc();
3728    break;
3729
3730  case InitializedEntity::EK_Variable:
3731    Loc = Entity.getDecl()->getLocation();
3732    break;
3733
3734  case InitializedEntity::EK_ArrayElement:
3735  case InitializedEntity::EK_Member:
3736  case InitializedEntity::EK_Parameter:
3737  case InitializedEntity::EK_Temporary:
3738  case InitializedEntity::EK_New:
3739  case InitializedEntity::EK_Base:
3740  case InitializedEntity::EK_Delegating:
3741  case InitializedEntity::EK_VectorElement:
3742  case InitializedEntity::EK_BlockElement:
3743    Loc = CurInitExpr->getLocStart();
3744    break;
3745  }
3746
3747  // Make sure that the type we are copying is complete.
3748  if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
3749    return move(CurInit);
3750
3751  // Perform overload resolution using the class's copy/move constructors.
3752  DeclContext::lookup_iterator Con, ConEnd;
3753  OverloadCandidateSet CandidateSet(Loc);
3754  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
3755       Con != ConEnd; ++Con) {
3756    // Only consider copy/move constructors and constructor templates. Per
3757    // C++0x [dcl.init]p16, second bullet to class types, this
3758    // initialization is direct-initialization.
3759    CXXConstructorDecl *Constructor = 0;
3760
3761    if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
3762      // Handle copy/moveconstructors, only.
3763      if (!Constructor || Constructor->isInvalidDecl() ||
3764          !Constructor->isCopyOrMoveConstructor() ||
3765          !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
3766        continue;
3767
3768      DeclAccessPair FoundDecl
3769        = DeclAccessPair::make(Constructor, Constructor->getAccess());
3770      S.AddOverloadCandidate(Constructor, FoundDecl,
3771                             &CurInitExpr, 1, CandidateSet);
3772      continue;
3773    }
3774
3775    // Handle constructor templates.
3776    FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
3777    if (ConstructorTmpl->isInvalidDecl())
3778      continue;
3779
3780    Constructor = cast<CXXConstructorDecl>(
3781                                         ConstructorTmpl->getTemplatedDecl());
3782    if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
3783      continue;
3784
3785    // FIXME: Do we need to limit this to copy-constructor-like
3786    // candidates?
3787    DeclAccessPair FoundDecl
3788      = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
3789    S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
3790                                   &CurInitExpr, 1, CandidateSet, true);
3791  }
3792
3793  OverloadCandidateSet::iterator Best;
3794  switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
3795  case OR_Success:
3796    break;
3797
3798  case OR_No_Viable_Function:
3799    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
3800           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
3801           : diag::err_temp_copy_no_viable)
3802      << (int)Entity.getKind() << CurInitExpr->getType()
3803      << CurInitExpr->getSourceRange();
3804    CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1);
3805    if (!IsExtraneousCopy || S.isSFINAEContext())
3806      return ExprError();
3807    return move(CurInit);
3808
3809  case OR_Ambiguous:
3810    S.Diag(Loc, diag::err_temp_copy_ambiguous)
3811      << (int)Entity.getKind() << CurInitExpr->getType()
3812      << CurInitExpr->getSourceRange();
3813    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1);
3814    return ExprError();
3815
3816  case OR_Deleted:
3817    S.Diag(Loc, diag::err_temp_copy_deleted)
3818      << (int)Entity.getKind() << CurInitExpr->getType()
3819      << CurInitExpr->getSourceRange();
3820    S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3821      << 1 << Best->Function->isDeleted();
3822    return ExprError();
3823  }
3824
3825  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3826  ASTOwningVector<Expr*> ConstructorArgs(S);
3827  CurInit.release(); // Ownership transferred into MultiExprArg, below.
3828
3829  S.CheckConstructorAccess(Loc, Constructor, Entity,
3830                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
3831
3832  if (IsExtraneousCopy) {
3833    // If this is a totally extraneous copy for C++03 reference
3834    // binding purposes, just return the original initialization
3835    // expression. We don't generate an (elided) copy operation here
3836    // because doing so would require us to pass down a flag to avoid
3837    // infinite recursion, where each step adds another extraneous,
3838    // elidable copy.
3839
3840    // Instantiate the default arguments of any extra parameters in
3841    // the selected copy constructor, as if we were going to create a
3842    // proper call to the copy constructor.
3843    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
3844      ParmVarDecl *Parm = Constructor->getParamDecl(I);
3845      if (S.RequireCompleteType(Loc, Parm->getType(),
3846                                S.PDiag(diag::err_call_incomplete_argument)))
3847        break;
3848
3849      // Build the default argument expression; we don't actually care
3850      // if this succeeds or not, because this routine will complain
3851      // if there was a problem.
3852      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
3853    }
3854
3855    return S.Owned(CurInitExpr);
3856  }
3857
3858  S.MarkDeclarationReferenced(Loc, Constructor);
3859
3860  // Determine the arguments required to actually perform the
3861  // constructor call (we might have derived-to-base conversions, or
3862  // the copy constructor may have default arguments).
3863  if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
3864                                Loc, ConstructorArgs))
3865    return ExprError();
3866
3867  // Actually perform the constructor call.
3868  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
3869                                    move_arg(ConstructorArgs),
3870                                    /*ZeroInit*/ false,
3871                                    CXXConstructExpr::CK_Complete,
3872                                    SourceRange());
3873
3874  // If we're supposed to bind temporaries, do so.
3875  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
3876    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3877  return move(CurInit);
3878}
3879
3880void InitializationSequence::PrintInitLocationNote(Sema &S,
3881                                              const InitializedEntity &Entity) {
3882  if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
3883    if (Entity.getDecl()->getLocation().isInvalid())
3884      return;
3885
3886    if (Entity.getDecl()->getDeclName())
3887      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
3888        << Entity.getDecl()->getDeclName();
3889    else
3890      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
3891  }
3892}
3893
3894static bool isReferenceBinding(const InitializationSequence::Step &s) {
3895  return s.Kind == InitializationSequence::SK_BindReference ||
3896         s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
3897}
3898
3899ExprResult
3900InitializationSequence::Perform(Sema &S,
3901                                const InitializedEntity &Entity,
3902                                const InitializationKind &Kind,
3903                                MultiExprArg Args,
3904                                QualType *ResultType) {
3905  if (Failed()) {
3906    unsigned NumArgs = Args.size();
3907    Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
3908    return ExprError();
3909  }
3910
3911  if (getKind() == DependentSequence) {
3912    // If the declaration is a non-dependent, incomplete array type
3913    // that has an initializer, then its type will be completed once
3914    // the initializer is instantiated.
3915    if (ResultType && !Entity.getType()->isDependentType() &&
3916        Args.size() == 1) {
3917      QualType DeclType = Entity.getType();
3918      if (const IncompleteArrayType *ArrayT
3919                           = S.Context.getAsIncompleteArrayType(DeclType)) {
3920        // FIXME: We don't currently have the ability to accurately
3921        // compute the length of an initializer list without
3922        // performing full type-checking of the initializer list
3923        // (since we have to determine where braces are implicitly
3924        // introduced and such).  So, we fall back to making the array
3925        // type a dependently-sized array type with no specified
3926        // bound.
3927        if (isa<InitListExpr>((Expr *)Args.get()[0])) {
3928          SourceRange Brackets;
3929
3930          // Scavange the location of the brackets from the entity, if we can.
3931          if (DeclaratorDecl *DD = Entity.getDecl()) {
3932            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
3933              TypeLoc TL = TInfo->getTypeLoc();
3934              if (IncompleteArrayTypeLoc *ArrayLoc
3935                                      = dyn_cast<IncompleteArrayTypeLoc>(&TL))
3936              Brackets = ArrayLoc->getBracketsRange();
3937            }
3938          }
3939
3940          *ResultType
3941            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
3942                                                   /*NumElts=*/0,
3943                                                   ArrayT->getSizeModifier(),
3944                                       ArrayT->getIndexTypeCVRQualifiers(),
3945                                                   Brackets);
3946        }
3947
3948      }
3949    }
3950    assert(Kind.getKind() == InitializationKind::IK_Copy ||
3951           Kind.isExplicitCast());
3952    return ExprResult(Args.release()[0]);
3953  }
3954
3955  // No steps means no initialization.
3956  if (Steps.empty())
3957    return S.Owned((Expr *)0);
3958
3959  QualType DestType = Entity.getType().getNonReferenceType();
3960  // FIXME: Ugly hack around the fact that Entity.getType() is not
3961  // the same as Entity.getDecl()->getType() in cases involving type merging,
3962  //  and we want latter when it makes sense.
3963  if (ResultType)
3964    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
3965                                     Entity.getType();
3966
3967  ExprResult CurInit = S.Owned((Expr *)0);
3968
3969  // For initialization steps that start with a single initializer,
3970  // grab the only argument out the Args and place it into the "current"
3971  // initializer.
3972  switch (Steps.front().Kind) {
3973  case SK_ResolveAddressOfOverloadedFunction:
3974  case SK_CastDerivedToBaseRValue:
3975  case SK_CastDerivedToBaseXValue:
3976  case SK_CastDerivedToBaseLValue:
3977  case SK_BindReference:
3978  case SK_BindReferenceToTemporary:
3979  case SK_ExtraneousCopyToTemporary:
3980  case SK_UserConversion:
3981  case SK_QualificationConversionLValue:
3982  case SK_QualificationConversionXValue:
3983  case SK_QualificationConversionRValue:
3984  case SK_ConversionSequence:
3985  case SK_ListInitialization:
3986  case SK_CAssignment:
3987  case SK_StringInit:
3988  case SK_ObjCObjectConversion:
3989  case SK_ArrayInit:
3990  case SK_PassByIndirectCopyRestore:
3991  case SK_PassByIndirectRestore:
3992  case SK_ProduceObjCObject: {
3993    assert(Args.size() == 1);
3994    CurInit = Args.get()[0];
3995    if (!CurInit.get()) return ExprError();
3996
3997    // Read from a property when initializing something with it.
3998    if (CurInit.get()->getObjectKind() == OK_ObjCProperty) {
3999      CurInit = S.ConvertPropertyForRValue(CurInit.take());
4000      if (CurInit.isInvalid())
4001        return ExprError();
4002    }
4003    break;
4004  }
4005
4006  case SK_ConstructorInitialization:
4007  case SK_ZeroInitialization:
4008    break;
4009  }
4010
4011  // Walk through the computed steps for the initialization sequence,
4012  // performing the specified conversions along the way.
4013  bool ConstructorInitRequiresZeroInit = false;
4014  for (step_iterator Step = step_begin(), StepEnd = step_end();
4015       Step != StepEnd; ++Step) {
4016    if (CurInit.isInvalid())
4017      return ExprError();
4018
4019    QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
4020
4021    switch (Step->Kind) {
4022    case SK_ResolveAddressOfOverloadedFunction:
4023      // Overload resolution determined which function invoke; update the
4024      // initializer to reflect that choice.
4025      S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
4026      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
4027      CurInit = S.FixOverloadedFunctionReference(move(CurInit),
4028                                                 Step->Function.FoundDecl,
4029                                                 Step->Function.Function);
4030      break;
4031
4032    case SK_CastDerivedToBaseRValue:
4033    case SK_CastDerivedToBaseXValue:
4034    case SK_CastDerivedToBaseLValue: {
4035      // We have a derived-to-base cast that produces either an rvalue or an
4036      // lvalue. Perform that cast.
4037
4038      CXXCastPath BasePath;
4039
4040      // Casts to inaccessible base classes are allowed with C-style casts.
4041      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
4042      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
4043                                         CurInit.get()->getLocStart(),
4044                                         CurInit.get()->getSourceRange(),
4045                                         &BasePath, IgnoreBaseAccess))
4046        return ExprError();
4047
4048      if (S.BasePathInvolvesVirtualBase(BasePath)) {
4049        QualType T = SourceType;
4050        if (const PointerType *Pointer = T->getAs<PointerType>())
4051          T = Pointer->getPointeeType();
4052        if (const RecordType *RecordTy = T->getAs<RecordType>())
4053          S.MarkVTableUsed(CurInit.get()->getLocStart(),
4054                           cast<CXXRecordDecl>(RecordTy->getDecl()));
4055      }
4056
4057      ExprValueKind VK =
4058          Step->Kind == SK_CastDerivedToBaseLValue ?
4059              VK_LValue :
4060              (Step->Kind == SK_CastDerivedToBaseXValue ?
4061                   VK_XValue :
4062                   VK_RValue);
4063      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
4064                                                 Step->Type,
4065                                                 CK_DerivedToBase,
4066                                                 CurInit.get(),
4067                                                 &BasePath, VK));
4068      break;
4069    }
4070
4071    case SK_BindReference:
4072      if (FieldDecl *BitField = CurInit.get()->getBitField()) {
4073        // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
4074        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
4075          << Entity.getType().isVolatileQualified()
4076          << BitField->getDeclName()
4077          << CurInit.get()->getSourceRange();
4078        S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
4079        return ExprError();
4080      }
4081
4082      if (CurInit.get()->refersToVectorElement()) {
4083        // References cannot bind to vector elements.
4084        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
4085          << Entity.getType().isVolatileQualified()
4086          << CurInit.get()->getSourceRange();
4087        PrintInitLocationNote(S, Entity);
4088        return ExprError();
4089      }
4090
4091      // Reference binding does not have any corresponding ASTs.
4092
4093      // Check exception specifications
4094      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4095        return ExprError();
4096
4097      break;
4098
4099    case SK_BindReferenceToTemporary:
4100      // Check exception specifications
4101      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4102        return ExprError();
4103
4104      // Materialize the temporary into memory.
4105      CurInit = new (S.Context) MaterializeTemporaryExpr(
4106                                         Entity.getType().getNonReferenceType(),
4107                                                         CurInit.get(),
4108                                     Entity.getType()->isLValueReferenceType());
4109
4110      // If we're binding to an Objective-C object that has lifetime, we
4111      // need cleanups.
4112      if (S.getLangOptions().ObjCAutoRefCount &&
4113          CurInit.get()->getType()->isObjCLifetimeType())
4114        S.ExprNeedsCleanups = true;
4115
4116      break;
4117
4118    case SK_ExtraneousCopyToTemporary:
4119      CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
4120                           /*IsExtraneousCopy=*/true);
4121      break;
4122
4123    case SK_UserConversion: {
4124      // We have a user-defined conversion that invokes either a constructor
4125      // or a conversion function.
4126      CastKind CastKind;
4127      bool IsCopy = false;
4128      FunctionDecl *Fn = Step->Function.Function;
4129      DeclAccessPair FoundFn = Step->Function.FoundDecl;
4130      bool CreatedObject = false;
4131      bool IsLvalue = false;
4132      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
4133        // Build a call to the selected constructor.
4134        ASTOwningVector<Expr*> ConstructorArgs(S);
4135        SourceLocation Loc = CurInit.get()->getLocStart();
4136        CurInit.release(); // Ownership transferred into MultiExprArg, below.
4137
4138        // Determine the arguments required to actually perform the constructor
4139        // call.
4140        Expr *Arg = CurInit.get();
4141        if (S.CompleteConstructorCall(Constructor,
4142                                      MultiExprArg(&Arg, 1),
4143                                      Loc, ConstructorArgs))
4144          return ExprError();
4145
4146        // Build the an expression that constructs a temporary.
4147        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
4148                                          move_arg(ConstructorArgs),
4149                                          /*ZeroInit*/ false,
4150                                          CXXConstructExpr::CK_Complete,
4151                                          SourceRange());
4152        if (CurInit.isInvalid())
4153          return ExprError();
4154
4155        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
4156                                 FoundFn.getAccess());
4157        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
4158
4159        CastKind = CK_ConstructorConversion;
4160        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
4161        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
4162            S.IsDerivedFrom(SourceType, Class))
4163          IsCopy = true;
4164
4165        CreatedObject = true;
4166      } else {
4167        // Build a call to the conversion function.
4168        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
4169        IsLvalue = Conversion->getResultType()->isLValueReferenceType();
4170        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
4171                                    FoundFn);
4172        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
4173
4174        // FIXME: Should we move this initialization into a separate
4175        // derived-to-base conversion? I believe the answer is "no", because
4176        // we don't want to turn off access control here for c-style casts.
4177        ExprResult CurInitExprRes =
4178          S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
4179                                                FoundFn, Conversion);
4180        if(CurInitExprRes.isInvalid())
4181          return ExprError();
4182        CurInit = move(CurInitExprRes);
4183
4184        // Build the actual call to the conversion function.
4185        CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion);
4186        if (CurInit.isInvalid() || !CurInit.get())
4187          return ExprError();
4188
4189        CastKind = CK_UserDefinedConversion;
4190
4191        CreatedObject = Conversion->getResultType()->isRecordType();
4192      }
4193
4194      bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
4195      if (RequiresCopy || shouldBindAsTemporary(Entity))
4196        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4197      else if (CreatedObject && shouldDestroyTemporary(Entity)) {
4198        QualType T = CurInit.get()->getType();
4199        if (const RecordType *Record = T->getAs<RecordType>()) {
4200          CXXDestructorDecl *Destructor
4201            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
4202          S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
4203                                  S.PDiag(diag::err_access_dtor_temp) << T);
4204          S.MarkDeclarationReferenced(CurInit.get()->getLocStart(), Destructor);
4205          S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
4206        }
4207      }
4208
4209      // FIXME: xvalues
4210      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
4211                                                 CurInit.get()->getType(),
4212                                                 CastKind, CurInit.get(), 0,
4213                                           IsLvalue ? VK_LValue : VK_RValue));
4214
4215      if (RequiresCopy)
4216        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
4217                             move(CurInit), /*IsExtraneousCopy=*/false);
4218
4219      break;
4220    }
4221
4222    case SK_QualificationConversionLValue:
4223    case SK_QualificationConversionXValue:
4224    case SK_QualificationConversionRValue: {
4225      // Perform a qualification conversion; these can never go wrong.
4226      ExprValueKind VK =
4227          Step->Kind == SK_QualificationConversionLValue ?
4228              VK_LValue :
4229              (Step->Kind == SK_QualificationConversionXValue ?
4230                   VK_XValue :
4231                   VK_RValue);
4232      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
4233      break;
4234    }
4235
4236    case SK_ConversionSequence: {
4237      Sema::CheckedConversionKind CCK
4238        = Kind.isCStyleCast()? Sema::CCK_CStyleCast
4239        : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
4240        : Kind.isExplicitCast()? Sema::CCK_OtherCast
4241        : Sema::CCK_ImplicitConversion;
4242      ExprResult CurInitExprRes =
4243        S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
4244                                    getAssignmentAction(Entity), CCK);
4245      if (CurInitExprRes.isInvalid())
4246        return ExprError();
4247      CurInit = move(CurInitExprRes);
4248      break;
4249    }
4250
4251    case SK_ListInitialization: {
4252      InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
4253      QualType Ty = Step->Type;
4254      if (S.CheckInitList(Entity, InitList, ResultType? *ResultType : Ty))
4255        return ExprError();
4256
4257      CurInit.release();
4258      CurInit = S.Owned(InitList);
4259      break;
4260    }
4261
4262    case SK_ConstructorInitialization: {
4263      unsigned NumArgs = Args.size();
4264      CXXConstructorDecl *Constructor
4265        = cast<CXXConstructorDecl>(Step->Function.Function);
4266
4267      // Build a call to the selected constructor.
4268      ASTOwningVector<Expr*> ConstructorArgs(S);
4269      SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
4270                             ? Kind.getEqualLoc()
4271                             : Kind.getLocation();
4272
4273      if (Kind.getKind() == InitializationKind::IK_Default) {
4274        // Force even a trivial, implicit default constructor to be
4275        // semantically checked. We do this explicitly because we don't build
4276        // the definition for completely trivial constructors.
4277        CXXRecordDecl *ClassDecl = Constructor->getParent();
4278        assert(ClassDecl && "No parent class for constructor.");
4279        if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
4280            ClassDecl->hasTrivialDefaultConstructor() &&
4281            !Constructor->isUsed(false))
4282          S.DefineImplicitDefaultConstructor(Loc, Constructor);
4283      }
4284
4285      // Determine the arguments required to actually perform the constructor
4286      // call.
4287      if (S.CompleteConstructorCall(Constructor, move(Args),
4288                                    Loc, ConstructorArgs))
4289        return ExprError();
4290
4291
4292      if (Entity.getKind() == InitializedEntity::EK_Temporary &&
4293          NumArgs != 1 && // FIXME: Hack to work around cast weirdness
4294          (Kind.getKind() == InitializationKind::IK_Direct ||
4295           Kind.getKind() == InitializationKind::IK_Value)) {
4296        // An explicitly-constructed temporary, e.g., X(1, 2).
4297        unsigned NumExprs = ConstructorArgs.size();
4298        Expr **Exprs = (Expr **)ConstructorArgs.take();
4299        S.MarkDeclarationReferenced(Loc, Constructor);
4300        S.DiagnoseUseOfDecl(Constructor, Loc);
4301
4302        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4303        if (!TSInfo)
4304          TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4305
4306        CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
4307                                                                 Constructor,
4308                                                                 TSInfo,
4309                                                                 Exprs,
4310                                                                 NumExprs,
4311                                                         Kind.getParenRange(),
4312                                             ConstructorInitRequiresZeroInit));
4313      } else {
4314        CXXConstructExpr::ConstructionKind ConstructKind =
4315          CXXConstructExpr::CK_Complete;
4316
4317        if (Entity.getKind() == InitializedEntity::EK_Base) {
4318          ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4319            CXXConstructExpr::CK_VirtualBase :
4320            CXXConstructExpr::CK_NonVirtualBase;
4321        } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
4322          ConstructKind = CXXConstructExpr::CK_Delegating;
4323        }
4324
4325        // Only get the parenthesis range if it is a direct construction.
4326        SourceRange parenRange =
4327            Kind.getKind() == InitializationKind::IK_Direct ?
4328            Kind.getParenRange() : SourceRange();
4329
4330        // If the entity allows NRVO, mark the construction as elidable
4331        // unconditionally.
4332        if (Entity.allowsNRVO())
4333          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4334                                            Constructor, /*Elidable=*/true,
4335                                            move_arg(ConstructorArgs),
4336                                            ConstructorInitRequiresZeroInit,
4337                                            ConstructKind,
4338                                            parenRange);
4339        else
4340          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4341                                            Constructor,
4342                                            move_arg(ConstructorArgs),
4343                                            ConstructorInitRequiresZeroInit,
4344                                            ConstructKind,
4345                                            parenRange);
4346      }
4347      if (CurInit.isInvalid())
4348        return ExprError();
4349
4350      // Only check access if all of that succeeded.
4351      S.CheckConstructorAccess(Loc, Constructor, Entity,
4352                               Step->Function.FoundDecl.getAccess());
4353      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Loc);
4354
4355      if (shouldBindAsTemporary(Entity))
4356        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4357
4358      break;
4359    }
4360
4361    case SK_ZeroInitialization: {
4362      step_iterator NextStep = Step;
4363      ++NextStep;
4364      if (NextStep != StepEnd &&
4365          NextStep->Kind == SK_ConstructorInitialization) {
4366        // The need for zero-initialization is recorded directly into
4367        // the call to the object's constructor within the next step.
4368        ConstructorInitRequiresZeroInit = true;
4369      } else if (Kind.getKind() == InitializationKind::IK_Value &&
4370                 S.getLangOptions().CPlusPlus &&
4371                 !Kind.isImplicitValueInit()) {
4372        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4373        if (!TSInfo)
4374          TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
4375                                                    Kind.getRange().getBegin());
4376
4377        CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
4378                              TSInfo->getType().getNonLValueExprType(S.Context),
4379                                                                 TSInfo,
4380                                                    Kind.getRange().getEnd()));
4381      } else {
4382        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
4383      }
4384      break;
4385    }
4386
4387    case SK_CAssignment: {
4388      QualType SourceType = CurInit.get()->getType();
4389      ExprResult Result = move(CurInit);
4390      Sema::AssignConvertType ConvTy =
4391        S.CheckSingleAssignmentConstraints(Step->Type, Result);
4392      if (Result.isInvalid())
4393        return ExprError();
4394      CurInit = move(Result);
4395
4396      // If this is a call, allow conversion to a transparent union.
4397      ExprResult CurInitExprRes = move(CurInit);
4398      if (ConvTy != Sema::Compatible &&
4399          Entity.getKind() == InitializedEntity::EK_Parameter &&
4400          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
4401            == Sema::Compatible)
4402        ConvTy = Sema::Compatible;
4403      if (CurInitExprRes.isInvalid())
4404        return ExprError();
4405      CurInit = move(CurInitExprRes);
4406
4407      bool Complained;
4408      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
4409                                     Step->Type, SourceType,
4410                                     CurInit.get(),
4411                                     getAssignmentAction(Entity),
4412                                     &Complained)) {
4413        PrintInitLocationNote(S, Entity);
4414        return ExprError();
4415      } else if (Complained)
4416        PrintInitLocationNote(S, Entity);
4417      break;
4418    }
4419
4420    case SK_StringInit: {
4421      QualType Ty = Step->Type;
4422      CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
4423                      S.Context.getAsArrayType(Ty), S);
4424      break;
4425    }
4426
4427    case SK_ObjCObjectConversion:
4428      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
4429                          CK_ObjCObjectLValueCast,
4430                          S.CastCategory(CurInit.get()));
4431      break;
4432
4433    case SK_ArrayInit:
4434      // Okay: we checked everything before creating this step. Note that
4435      // this is a GNU extension.
4436      S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
4437        << Step->Type << CurInit.get()->getType()
4438        << CurInit.get()->getSourceRange();
4439
4440      // If the destination type is an incomplete array type, update the
4441      // type accordingly.
4442      if (ResultType) {
4443        if (const IncompleteArrayType *IncompleteDest
4444                           = S.Context.getAsIncompleteArrayType(Step->Type)) {
4445          if (const ConstantArrayType *ConstantSource
4446                 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
4447            *ResultType = S.Context.getConstantArrayType(
4448                                             IncompleteDest->getElementType(),
4449                                             ConstantSource->getSize(),
4450                                             ArrayType::Normal, 0);
4451          }
4452        }
4453      }
4454      break;
4455
4456    case SK_PassByIndirectCopyRestore:
4457    case SK_PassByIndirectRestore:
4458      checkIndirectCopyRestoreSource(S, CurInit.get());
4459      CurInit = S.Owned(new (S.Context)
4460                        ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
4461                                Step->Kind == SK_PassByIndirectCopyRestore));
4462      break;
4463
4464    case SK_ProduceObjCObject:
4465      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
4466                                                 CK_ObjCProduceObject,
4467                                                 CurInit.take(), 0, VK_RValue));
4468      break;
4469    }
4470  }
4471
4472  // Diagnose non-fatal problems with the completed initialization.
4473  if (Entity.getKind() == InitializedEntity::EK_Member &&
4474      cast<FieldDecl>(Entity.getDecl())->isBitField())
4475    S.CheckBitFieldInitialization(Kind.getLocation(),
4476                                  cast<FieldDecl>(Entity.getDecl()),
4477                                  CurInit.get());
4478
4479  return move(CurInit);
4480}
4481
4482//===----------------------------------------------------------------------===//
4483// Diagnose initialization failures
4484//===----------------------------------------------------------------------===//
4485bool InitializationSequence::Diagnose(Sema &S,
4486                                      const InitializedEntity &Entity,
4487                                      const InitializationKind &Kind,
4488                                      Expr **Args, unsigned NumArgs) {
4489  if (!Failed())
4490    return false;
4491
4492  QualType DestType = Entity.getType();
4493  switch (Failure) {
4494  case FK_TooManyInitsForReference:
4495    // FIXME: Customize for the initialized entity?
4496    if (NumArgs == 0)
4497      S.Diag(Kind.getLocation(), diag::err_reference_without_init)
4498        << DestType.getNonReferenceType();
4499    else  // FIXME: diagnostic below could be better!
4500      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
4501        << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
4502    break;
4503
4504  case FK_ArrayNeedsInitList:
4505  case FK_ArrayNeedsInitListOrStringLiteral:
4506    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
4507      << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
4508    break;
4509
4510  case FK_ArrayTypeMismatch:
4511  case FK_NonConstantArrayInit:
4512    S.Diag(Kind.getLocation(),
4513           (Failure == FK_ArrayTypeMismatch
4514              ? diag::err_array_init_different_type
4515              : diag::err_array_init_non_constant_array))
4516      << DestType.getNonReferenceType()
4517      << Args[0]->getType()
4518      << Args[0]->getSourceRange();
4519    break;
4520
4521  case FK_AddressOfOverloadFailed: {
4522    DeclAccessPair Found;
4523    S.ResolveAddressOfOverloadedFunction(Args[0],
4524                                         DestType.getNonReferenceType(),
4525                                         true,
4526                                         Found);
4527    break;
4528  }
4529
4530  case FK_ReferenceInitOverloadFailed:
4531  case FK_UserConversionOverloadFailed:
4532    switch (FailedOverloadResult) {
4533    case OR_Ambiguous:
4534      if (Failure == FK_UserConversionOverloadFailed)
4535        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
4536          << Args[0]->getType() << DestType
4537          << Args[0]->getSourceRange();
4538      else
4539        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
4540          << DestType << Args[0]->getType()
4541          << Args[0]->getSourceRange();
4542
4543      FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args, NumArgs);
4544      break;
4545
4546    case OR_No_Viable_Function:
4547      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
4548        << Args[0]->getType() << DestType.getNonReferenceType()
4549        << Args[0]->getSourceRange();
4550      FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
4551      break;
4552
4553    case OR_Deleted: {
4554      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
4555        << Args[0]->getType() << DestType.getNonReferenceType()
4556        << Args[0]->getSourceRange();
4557      OverloadCandidateSet::iterator Best;
4558      OverloadingResult Ovl
4559        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
4560                                                true);
4561      if (Ovl == OR_Deleted) {
4562        S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4563          << 1 << Best->Function->isDeleted();
4564      } else {
4565        llvm_unreachable("Inconsistent overload resolution?");
4566      }
4567      break;
4568    }
4569
4570    case OR_Success:
4571      llvm_unreachable("Conversion did not fail!");
4572      break;
4573    }
4574    break;
4575
4576  case FK_NonConstLValueReferenceBindingToTemporary:
4577  case FK_NonConstLValueReferenceBindingToUnrelated:
4578    S.Diag(Kind.getLocation(),
4579           Failure == FK_NonConstLValueReferenceBindingToTemporary
4580             ? diag::err_lvalue_reference_bind_to_temporary
4581             : diag::err_lvalue_reference_bind_to_unrelated)
4582      << DestType.getNonReferenceType().isVolatileQualified()
4583      << DestType.getNonReferenceType()
4584      << Args[0]->getType()
4585      << Args[0]->getSourceRange();
4586    break;
4587
4588  case FK_RValueReferenceBindingToLValue:
4589    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
4590      << DestType.getNonReferenceType() << Args[0]->getType()
4591      << Args[0]->getSourceRange();
4592    break;
4593
4594  case FK_ReferenceInitDropsQualifiers:
4595    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
4596      << DestType.getNonReferenceType()
4597      << Args[0]->getType()
4598      << Args[0]->getSourceRange();
4599    break;
4600
4601  case FK_ReferenceInitFailed:
4602    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
4603      << DestType.getNonReferenceType()
4604      << Args[0]->isLValue()
4605      << Args[0]->getType()
4606      << Args[0]->getSourceRange();
4607    if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
4608        Args[0]->getType()->isObjCObjectPointerType())
4609      S.EmitRelatedResultTypeNote(Args[0]);
4610    break;
4611
4612  case FK_ConversionFailed: {
4613    QualType FromType = Args[0]->getType();
4614    S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
4615      << (int)Entity.getKind()
4616      << DestType
4617      << Args[0]->isLValue()
4618      << FromType
4619      << Args[0]->getSourceRange();
4620    if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
4621        Args[0]->getType()->isObjCObjectPointerType())
4622      S.EmitRelatedResultTypeNote(Args[0]);
4623    break;
4624  }
4625
4626  case FK_ConversionFromPropertyFailed:
4627    // No-op. This error has already been reported.
4628    break;
4629
4630  case FK_TooManyInitsForScalar: {
4631    SourceRange R;
4632
4633    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
4634      R = SourceRange(InitList->getInit(0)->getLocEnd(),
4635                      InitList->getLocEnd());
4636    else
4637      R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
4638
4639    R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
4640    if (Kind.isCStyleOrFunctionalCast())
4641      S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
4642        << R;
4643    else
4644      S.Diag(Kind.getLocation(), diag::err_excess_initializers)
4645        << /*scalar=*/2 << R;
4646    break;
4647  }
4648
4649  case FK_ReferenceBindingToInitList:
4650    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
4651      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
4652    break;
4653
4654  case FK_InitListBadDestinationType:
4655    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
4656      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
4657    break;
4658
4659  case FK_ConstructorOverloadFailed: {
4660    SourceRange ArgsRange;
4661    if (NumArgs)
4662      ArgsRange = SourceRange(Args[0]->getLocStart(),
4663                              Args[NumArgs - 1]->getLocEnd());
4664
4665    // FIXME: Using "DestType" for the entity we're printing is probably
4666    // bad.
4667    switch (FailedOverloadResult) {
4668      case OR_Ambiguous:
4669        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
4670          << DestType << ArgsRange;
4671        FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
4672                                          Args, NumArgs);
4673        break;
4674
4675      case OR_No_Viable_Function:
4676        if (Kind.getKind() == InitializationKind::IK_Default &&
4677            (Entity.getKind() == InitializedEntity::EK_Base ||
4678             Entity.getKind() == InitializedEntity::EK_Member) &&
4679            isa<CXXConstructorDecl>(S.CurContext)) {
4680          // This is implicit default initialization of a member or
4681          // base within a constructor. If no viable function was
4682          // found, notify the user that she needs to explicitly
4683          // initialize this base/member.
4684          CXXConstructorDecl *Constructor
4685            = cast<CXXConstructorDecl>(S.CurContext);
4686          if (Entity.getKind() == InitializedEntity::EK_Base) {
4687            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4688              << Constructor->isImplicit()
4689              << S.Context.getTypeDeclType(Constructor->getParent())
4690              << /*base=*/0
4691              << Entity.getType();
4692
4693            RecordDecl *BaseDecl
4694              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
4695                                                                  ->getDecl();
4696            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
4697              << S.Context.getTagDeclType(BaseDecl);
4698          } else {
4699            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4700              << Constructor->isImplicit()
4701              << S.Context.getTypeDeclType(Constructor->getParent())
4702              << /*member=*/1
4703              << Entity.getName();
4704            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
4705
4706            if (const RecordType *Record
4707                                 = Entity.getType()->getAs<RecordType>())
4708              S.Diag(Record->getDecl()->getLocation(),
4709                     diag::note_previous_decl)
4710                << S.Context.getTagDeclType(Record->getDecl());
4711          }
4712          break;
4713        }
4714
4715        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
4716          << DestType << ArgsRange;
4717        FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
4718        break;
4719
4720      case OR_Deleted: {
4721        S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
4722          << true << DestType << ArgsRange;
4723        OverloadCandidateSet::iterator Best;
4724        OverloadingResult Ovl
4725          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
4726        if (Ovl == OR_Deleted) {
4727          S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4728            << 1 << Best->Function->isDeleted();
4729        } else {
4730          llvm_unreachable("Inconsistent overload resolution?");
4731        }
4732        break;
4733      }
4734
4735      case OR_Success:
4736        llvm_unreachable("Conversion did not fail!");
4737        break;
4738    }
4739    break;
4740  }
4741
4742  case FK_DefaultInitOfConst:
4743    if (Entity.getKind() == InitializedEntity::EK_Member &&
4744        isa<CXXConstructorDecl>(S.CurContext)) {
4745      // This is implicit default-initialization of a const member in
4746      // a constructor. Complain that it needs to be explicitly
4747      // initialized.
4748      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
4749      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
4750        << Constructor->isImplicit()
4751        << S.Context.getTypeDeclType(Constructor->getParent())
4752        << /*const=*/1
4753        << Entity.getName();
4754      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
4755        << Entity.getName();
4756    } else {
4757      S.Diag(Kind.getLocation(), diag::err_default_init_const)
4758        << DestType << (bool)DestType->getAs<RecordType>();
4759    }
4760    break;
4761
4762    case FK_Incomplete:
4763      S.RequireCompleteType(Kind.getLocation(), DestType,
4764                            diag::err_init_incomplete_type);
4765      break;
4766  }
4767
4768  PrintInitLocationNote(S, Entity);
4769  return true;
4770}
4771
4772void InitializationSequence::dump(raw_ostream &OS) const {
4773  switch (SequenceKind) {
4774  case FailedSequence: {
4775    OS << "Failed sequence: ";
4776    switch (Failure) {
4777    case FK_TooManyInitsForReference:
4778      OS << "too many initializers for reference";
4779      break;
4780
4781    case FK_ArrayNeedsInitList:
4782      OS << "array requires initializer list";
4783      break;
4784
4785    case FK_ArrayNeedsInitListOrStringLiteral:
4786      OS << "array requires initializer list or string literal";
4787      break;
4788
4789    case FK_ArrayTypeMismatch:
4790      OS << "array type mismatch";
4791      break;
4792
4793    case FK_NonConstantArrayInit:
4794      OS << "non-constant array initializer";
4795      break;
4796
4797    case FK_AddressOfOverloadFailed:
4798      OS << "address of overloaded function failed";
4799      break;
4800
4801    case FK_ReferenceInitOverloadFailed:
4802      OS << "overload resolution for reference initialization failed";
4803      break;
4804
4805    case FK_NonConstLValueReferenceBindingToTemporary:
4806      OS << "non-const lvalue reference bound to temporary";
4807      break;
4808
4809    case FK_NonConstLValueReferenceBindingToUnrelated:
4810      OS << "non-const lvalue reference bound to unrelated type";
4811      break;
4812
4813    case FK_RValueReferenceBindingToLValue:
4814      OS << "rvalue reference bound to an lvalue";
4815      break;
4816
4817    case FK_ReferenceInitDropsQualifiers:
4818      OS << "reference initialization drops qualifiers";
4819      break;
4820
4821    case FK_ReferenceInitFailed:
4822      OS << "reference initialization failed";
4823      break;
4824
4825    case FK_ConversionFailed:
4826      OS << "conversion failed";
4827      break;
4828
4829    case FK_ConversionFromPropertyFailed:
4830      OS << "conversion from property failed";
4831      break;
4832
4833    case FK_TooManyInitsForScalar:
4834      OS << "too many initializers for scalar";
4835      break;
4836
4837    case FK_ReferenceBindingToInitList:
4838      OS << "referencing binding to initializer list";
4839      break;
4840
4841    case FK_InitListBadDestinationType:
4842      OS << "initializer list for non-aggregate, non-scalar type";
4843      break;
4844
4845    case FK_UserConversionOverloadFailed:
4846      OS << "overloading failed for user-defined conversion";
4847      break;
4848
4849    case FK_ConstructorOverloadFailed:
4850      OS << "constructor overloading failed";
4851      break;
4852
4853    case FK_DefaultInitOfConst:
4854      OS << "default initialization of a const variable";
4855      break;
4856
4857    case FK_Incomplete:
4858      OS << "initialization of incomplete type";
4859      break;
4860    }
4861    OS << '\n';
4862    return;
4863  }
4864
4865  case DependentSequence:
4866    OS << "Dependent sequence\n";
4867    return;
4868
4869  case NormalSequence:
4870    OS << "Normal sequence: ";
4871    break;
4872  }
4873
4874  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
4875    if (S != step_begin()) {
4876      OS << " -> ";
4877    }
4878
4879    switch (S->Kind) {
4880    case SK_ResolveAddressOfOverloadedFunction:
4881      OS << "resolve address of overloaded function";
4882      break;
4883
4884    case SK_CastDerivedToBaseRValue:
4885      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
4886      break;
4887
4888    case SK_CastDerivedToBaseXValue:
4889      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
4890      break;
4891
4892    case SK_CastDerivedToBaseLValue:
4893      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
4894      break;
4895
4896    case SK_BindReference:
4897      OS << "bind reference to lvalue";
4898      break;
4899
4900    case SK_BindReferenceToTemporary:
4901      OS << "bind reference to a temporary";
4902      break;
4903
4904    case SK_ExtraneousCopyToTemporary:
4905      OS << "extraneous C++03 copy to temporary";
4906      break;
4907
4908    case SK_UserConversion:
4909      OS << "user-defined conversion via " << S->Function.Function;
4910      break;
4911
4912    case SK_QualificationConversionRValue:
4913      OS << "qualification conversion (rvalue)";
4914
4915    case SK_QualificationConversionXValue:
4916      OS << "qualification conversion (xvalue)";
4917
4918    case SK_QualificationConversionLValue:
4919      OS << "qualification conversion (lvalue)";
4920      break;
4921
4922    case SK_ConversionSequence:
4923      OS << "implicit conversion sequence (";
4924      S->ICS->DebugPrint(); // FIXME: use OS
4925      OS << ")";
4926      break;
4927
4928    case SK_ListInitialization:
4929      OS << "list initialization";
4930      break;
4931
4932    case SK_ConstructorInitialization:
4933      OS << "constructor initialization";
4934      break;
4935
4936    case SK_ZeroInitialization:
4937      OS << "zero initialization";
4938      break;
4939
4940    case SK_CAssignment:
4941      OS << "C assignment";
4942      break;
4943
4944    case SK_StringInit:
4945      OS << "string initialization";
4946      break;
4947
4948    case SK_ObjCObjectConversion:
4949      OS << "Objective-C object conversion";
4950      break;
4951
4952    case SK_ArrayInit:
4953      OS << "array initialization";
4954      break;
4955
4956    case SK_PassByIndirectCopyRestore:
4957      OS << "pass by indirect copy and restore";
4958      break;
4959
4960    case SK_PassByIndirectRestore:
4961      OS << "pass by indirect restore";
4962      break;
4963
4964    case SK_ProduceObjCObject:
4965      OS << "Objective-C object retension";
4966      break;
4967    }
4968  }
4969}
4970
4971void InitializationSequence::dump() const {
4972  dump(llvm::errs());
4973}
4974
4975//===----------------------------------------------------------------------===//
4976// Initialization helper functions
4977//===----------------------------------------------------------------------===//
4978bool
4979Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
4980                                   ExprResult Init) {
4981  if (Init.isInvalid())
4982    return false;
4983
4984  Expr *InitE = Init.get();
4985  assert(InitE && "No initialization expression");
4986
4987  InitializationKind Kind = InitializationKind::CreateCopy(SourceLocation(),
4988                                                           SourceLocation());
4989  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
4990  return !Seq.Failed();
4991}
4992
4993ExprResult
4994Sema::PerformCopyInitialization(const InitializedEntity &Entity,
4995                                SourceLocation EqualLoc,
4996                                ExprResult Init) {
4997  if (Init.isInvalid())
4998    return ExprError();
4999
5000  Expr *InitE = Init.get();
5001  assert(InitE && "No initialization expression?");
5002
5003  if (EqualLoc.isInvalid())
5004    EqualLoc = InitE->getLocStart();
5005
5006  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
5007                                                           EqualLoc);
5008  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
5009  Init.release();
5010  return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
5011}
5012