SemaInit.cpp revision 651f13cea278ec967336033dd032faef0e9fc2ec
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Initialization.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Sema/Designator.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/SemaInternal.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28#include <map>
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35/// \brief Check whether T is compatible with a wide character type (wchar_t,
36/// char16_t or char32_t).
37static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38  if (Context.typesAreCompatible(Context.getWideCharType(), T))
39    return true;
40  if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41    return Context.typesAreCompatible(Context.Char16Ty, T) ||
42           Context.typesAreCompatible(Context.Char32Ty, T);
43  }
44  return false;
45}
46
47enum StringInitFailureKind {
48  SIF_None,
49  SIF_NarrowStringIntoWideChar,
50  SIF_WideStringIntoChar,
51  SIF_IncompatWideStringIntoWideChar,
52  SIF_Other
53};
54
55/// \brief Check whether the array of type AT can be initialized by the Init
56/// expression by means of string initialization. Returns SIF_None if so,
57/// otherwise returns a StringInitFailureKind that describes why the
58/// initialization would not work.
59static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60                                          ASTContext &Context) {
61  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62    return SIF_Other;
63
64  // See if this is a string literal or @encode.
65  Init = Init->IgnoreParens();
66
67  // Handle @encode, which is a narrow string.
68  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69    return SIF_None;
70
71  // Otherwise we can only handle string literals.
72  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73  if (SL == 0)
74    return SIF_Other;
75
76  const QualType ElemTy =
77      Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78
79  switch (SL->getKind()) {
80  case StringLiteral::Ascii:
81  case StringLiteral::UTF8:
82    // char array can be initialized with a narrow string.
83    // Only allow char x[] = "foo";  not char x[] = L"foo";
84    if (ElemTy->isCharType())
85      return SIF_None;
86    if (IsWideCharCompatible(ElemTy, Context))
87      return SIF_NarrowStringIntoWideChar;
88    return SIF_Other;
89  // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90  // "An array with element type compatible with a qualified or unqualified
91  // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92  // string literal with the corresponding encoding prefix (L, u, or U,
93  // respectively), optionally enclosed in braces.
94  case StringLiteral::UTF16:
95    if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96      return SIF_None;
97    if (ElemTy->isCharType())
98      return SIF_WideStringIntoChar;
99    if (IsWideCharCompatible(ElemTy, Context))
100      return SIF_IncompatWideStringIntoWideChar;
101    return SIF_Other;
102  case StringLiteral::UTF32:
103    if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104      return SIF_None;
105    if (ElemTy->isCharType())
106      return SIF_WideStringIntoChar;
107    if (IsWideCharCompatible(ElemTy, Context))
108      return SIF_IncompatWideStringIntoWideChar;
109    return SIF_Other;
110  case StringLiteral::Wide:
111    if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112      return SIF_None;
113    if (ElemTy->isCharType())
114      return SIF_WideStringIntoChar;
115    if (IsWideCharCompatible(ElemTy, Context))
116      return SIF_IncompatWideStringIntoWideChar;
117    return SIF_Other;
118  }
119
120  llvm_unreachable("missed a StringLiteral kind?");
121}
122
123static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124                                          ASTContext &Context) {
125  const ArrayType *arrayType = Context.getAsArrayType(declType);
126  if (!arrayType)
127    return SIF_Other;
128  return IsStringInit(init, arrayType, Context);
129}
130
131/// Update the type of a string literal, including any surrounding parentheses,
132/// to match the type of the object which it is initializing.
133static void updateStringLiteralType(Expr *E, QualType Ty) {
134  while (true) {
135    E->setType(Ty);
136    if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137      break;
138    else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139      E = PE->getSubExpr();
140    else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141      E = UO->getSubExpr();
142    else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143      E = GSE->getResultExpr();
144    else
145      llvm_unreachable("unexpected expr in string literal init");
146  }
147}
148
149static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150                            Sema &S) {
151  // Get the length of the string as parsed.
152  uint64_t StrLength =
153    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
154
155
156  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157    // C99 6.7.8p14. We have an array of character type with unknown size
158    // being initialized to a string literal.
159    llvm::APInt ConstVal(32, StrLength);
160    // Return a new array type (C99 6.7.8p22).
161    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162                                           ConstVal,
163                                           ArrayType::Normal, 0);
164    updateStringLiteralType(Str, DeclT);
165    return;
166  }
167
168  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169
170  // We have an array of character type with known size.  However,
171  // the size may be smaller or larger than the string we are initializing.
172  // FIXME: Avoid truncation for 64-bit length strings.
173  if (S.getLangOpts().CPlusPlus) {
174    if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175      // For Pascal strings it's OK to strip off the terminating null character,
176      // so the example below is valid:
177      //
178      // unsigned char a[2] = "\pa";
179      if (SL->isPascal())
180        StrLength--;
181    }
182
183    // [dcl.init.string]p2
184    if (StrLength > CAT->getSize().getZExtValue())
185      S.Diag(Str->getLocStart(),
186             diag::err_initializer_string_for_char_array_too_long)
187        << Str->getSourceRange();
188  } else {
189    // C99 6.7.8p14.
190    if (StrLength-1 > CAT->getSize().getZExtValue())
191      S.Diag(Str->getLocStart(),
192             diag::warn_initializer_string_for_char_array_too_long)
193        << Str->getSourceRange();
194  }
195
196  // Set the type to the actual size that we are initializing.  If we have
197  // something like:
198  //   char x[1] = "foo";
199  // then this will set the string literal's type to char[1].
200  updateStringLiteralType(Str, DeclT);
201}
202
203//===----------------------------------------------------------------------===//
204// Semantic checking for initializer lists.
205//===----------------------------------------------------------------------===//
206
207/// @brief Semantic checking for initializer lists.
208///
209/// The InitListChecker class contains a set of routines that each
210/// handle the initialization of a certain kind of entity, e.g.,
211/// arrays, vectors, struct/union types, scalars, etc. The
212/// InitListChecker itself performs a recursive walk of the subobject
213/// structure of the type to be initialized, while stepping through
214/// the initializer list one element at a time. The IList and Index
215/// parameters to each of the Check* routines contain the active
216/// (syntactic) initializer list and the index into that initializer
217/// list that represents the current initializer. Each routine is
218/// responsible for moving that Index forward as it consumes elements.
219///
220/// Each Check* routine also has a StructuredList/StructuredIndex
221/// arguments, which contains the current "structured" (semantic)
222/// initializer list and the index into that initializer list where we
223/// are copying initializers as we map them over to the semantic
224/// list. Once we have completed our recursive walk of the subobject
225/// structure, we will have constructed a full semantic initializer
226/// list.
227///
228/// C99 designators cause changes in the initializer list traversal,
229/// because they make the initialization "jump" into a specific
230/// subobject and then continue the initialization from that
231/// point. CheckDesignatedInitializer() recursively steps into the
232/// designated subobject and manages backing out the recursion to
233/// initialize the subobjects after the one designated.
234namespace {
235class InitListChecker {
236  Sema &SemaRef;
237  bool hadError;
238  bool VerifyOnly; // no diagnostics, no structure building
239  llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
240  InitListExpr *FullyStructuredList;
241
242  void CheckImplicitInitList(const InitializedEntity &Entity,
243                             InitListExpr *ParentIList, QualType T,
244                             unsigned &Index, InitListExpr *StructuredList,
245                             unsigned &StructuredIndex);
246  void CheckExplicitInitList(const InitializedEntity &Entity,
247                             InitListExpr *IList, QualType &T,
248                             InitListExpr *StructuredList,
249                             bool TopLevelObject = false);
250  void CheckListElementTypes(const InitializedEntity &Entity,
251                             InitListExpr *IList, QualType &DeclType,
252                             bool SubobjectIsDesignatorContext,
253                             unsigned &Index,
254                             InitListExpr *StructuredList,
255                             unsigned &StructuredIndex,
256                             bool TopLevelObject = false);
257  void CheckSubElementType(const InitializedEntity &Entity,
258                           InitListExpr *IList, QualType ElemType,
259                           unsigned &Index,
260                           InitListExpr *StructuredList,
261                           unsigned &StructuredIndex);
262  void CheckComplexType(const InitializedEntity &Entity,
263                        InitListExpr *IList, QualType DeclType,
264                        unsigned &Index,
265                        InitListExpr *StructuredList,
266                        unsigned &StructuredIndex);
267  void CheckScalarType(const InitializedEntity &Entity,
268                       InitListExpr *IList, QualType DeclType,
269                       unsigned &Index,
270                       InitListExpr *StructuredList,
271                       unsigned &StructuredIndex);
272  void CheckReferenceType(const InitializedEntity &Entity,
273                          InitListExpr *IList, QualType DeclType,
274                          unsigned &Index,
275                          InitListExpr *StructuredList,
276                          unsigned &StructuredIndex);
277  void CheckVectorType(const InitializedEntity &Entity,
278                       InitListExpr *IList, QualType DeclType, unsigned &Index,
279                       InitListExpr *StructuredList,
280                       unsigned &StructuredIndex);
281  void CheckStructUnionTypes(const InitializedEntity &Entity,
282                             InitListExpr *IList, QualType DeclType,
283                             RecordDecl::field_iterator Field,
284                             bool SubobjectIsDesignatorContext, unsigned &Index,
285                             InitListExpr *StructuredList,
286                             unsigned &StructuredIndex,
287                             bool TopLevelObject = false);
288  void CheckArrayType(const InitializedEntity &Entity,
289                      InitListExpr *IList, QualType &DeclType,
290                      llvm::APSInt elementIndex,
291                      bool SubobjectIsDesignatorContext, unsigned &Index,
292                      InitListExpr *StructuredList,
293                      unsigned &StructuredIndex);
294  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
295                                  InitListExpr *IList, DesignatedInitExpr *DIE,
296                                  unsigned DesigIdx,
297                                  QualType &CurrentObjectType,
298                                  RecordDecl::field_iterator *NextField,
299                                  llvm::APSInt *NextElementIndex,
300                                  unsigned &Index,
301                                  InitListExpr *StructuredList,
302                                  unsigned &StructuredIndex,
303                                  bool FinishSubobjectInit,
304                                  bool TopLevelObject);
305  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
306                                           QualType CurrentObjectType,
307                                           InitListExpr *StructuredList,
308                                           unsigned StructuredIndex,
309                                           SourceRange InitRange);
310  void UpdateStructuredListElement(InitListExpr *StructuredList,
311                                   unsigned &StructuredIndex,
312                                   Expr *expr);
313  int numArrayElements(QualType DeclType);
314  int numStructUnionElements(QualType DeclType);
315
316  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
317                               const InitializedEntity &ParentEntity,
318                               InitListExpr *ILE, bool &RequiresSecondPass);
319  void FillInValueInitializations(const InitializedEntity &Entity,
320                                  InitListExpr *ILE, bool &RequiresSecondPass);
321  bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
322                              Expr *InitExpr, FieldDecl *Field,
323                              bool TopLevelObject);
324  void CheckValueInitializable(const InitializedEntity &Entity);
325
326public:
327  InitListChecker(Sema &S, const InitializedEntity &Entity,
328                  InitListExpr *IL, QualType &T, bool VerifyOnly);
329  bool HadError() { return hadError; }
330
331  // @brief Retrieves the fully-structured initializer list used for
332  // semantic analysis and code generation.
333  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
334};
335} // end anonymous namespace
336
337void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
338  assert(VerifyOnly &&
339         "CheckValueInitializable is only inteded for verification mode.");
340
341  SourceLocation Loc;
342  InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
343                                                            true);
344  InitializationSequence InitSeq(SemaRef, Entity, Kind, None);
345  if (InitSeq.Failed())
346    hadError = true;
347}
348
349void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
350                                        const InitializedEntity &ParentEntity,
351                                              InitListExpr *ILE,
352                                              bool &RequiresSecondPass) {
353  SourceLocation Loc = ILE->getLocStart();
354  unsigned NumInits = ILE->getNumInits();
355  InitializedEntity MemberEntity
356    = InitializedEntity::InitializeMember(Field, &ParentEntity);
357  if (Init >= NumInits || !ILE->getInit(Init)) {
358    // If there's no explicit initializer but we have a default initializer, use
359    // that. This only happens in C++1y, since classes with default
360    // initializers are not aggregates in C++11.
361    if (Field->hasInClassInitializer()) {
362      Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
363                                             ILE->getRBraceLoc(), Field);
364      if (Init < NumInits)
365        ILE->setInit(Init, DIE);
366      else {
367        ILE->updateInit(SemaRef.Context, Init, DIE);
368        RequiresSecondPass = true;
369      }
370      return;
371    }
372
373    // FIXME: We probably don't need to handle references
374    // specially here, since value-initialization of references is
375    // handled in InitializationSequence.
376    if (Field->getType()->isReferenceType()) {
377      // C++ [dcl.init.aggr]p9:
378      //   If an incomplete or empty initializer-list leaves a
379      //   member of reference type uninitialized, the program is
380      //   ill-formed.
381      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
382        << Field->getType()
383        << ILE->getSyntacticForm()->getSourceRange();
384      SemaRef.Diag(Field->getLocation(),
385                   diag::note_uninit_reference_member);
386      hadError = true;
387      return;
388    }
389
390    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
391                                                              true);
392    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, None);
393    if (!InitSeq) {
394      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, None);
395      hadError = true;
396      return;
397    }
398
399    ExprResult MemberInit
400      = InitSeq.Perform(SemaRef, MemberEntity, Kind, None);
401    if (MemberInit.isInvalid()) {
402      hadError = true;
403      return;
404    }
405
406    if (hadError) {
407      // Do nothing
408    } else if (Init < NumInits) {
409      ILE->setInit(Init, MemberInit.takeAs<Expr>());
410    } else if (InitSeq.isConstructorInitialization()) {
411      // Value-initialization requires a constructor call, so
412      // extend the initializer list to include the constructor
413      // call and make a note that we'll need to take another pass
414      // through the initializer list.
415      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
416      RequiresSecondPass = true;
417    }
418  } else if (InitListExpr *InnerILE
419               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
420    FillInValueInitializations(MemberEntity, InnerILE,
421                               RequiresSecondPass);
422}
423
424/// Recursively replaces NULL values within the given initializer list
425/// with expressions that perform value-initialization of the
426/// appropriate type.
427void
428InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
429                                            InitListExpr *ILE,
430                                            bool &RequiresSecondPass) {
431  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
432         "Should not have void type");
433  SourceLocation Loc = ILE->getLocStart();
434  if (ILE->getSyntacticForm())
435    Loc = ILE->getSyntacticForm()->getLocStart();
436
437  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
438    const RecordDecl *RDecl = RType->getDecl();
439    if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
440      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
441                              Entity, ILE, RequiresSecondPass);
442    else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
443             cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
444      for (auto *Field : RDecl->fields()) {
445        if (Field->hasInClassInitializer()) {
446          FillInValueInitForField(0, Field, Entity, ILE, RequiresSecondPass);
447          break;
448        }
449      }
450    } else {
451      unsigned Init = 0;
452      for (auto *Field : RDecl->fields()) {
453        if (Field->isUnnamedBitfield())
454          continue;
455
456        if (hadError)
457          return;
458
459        FillInValueInitForField(Init, Field, Entity, ILE, RequiresSecondPass);
460        if (hadError)
461          return;
462
463        ++Init;
464
465        // Only look at the first initialization of a union.
466        if (RDecl->isUnion())
467          break;
468      }
469    }
470
471    return;
472  }
473
474  QualType ElementType;
475
476  InitializedEntity ElementEntity = Entity;
477  unsigned NumInits = ILE->getNumInits();
478  unsigned NumElements = NumInits;
479  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
480    ElementType = AType->getElementType();
481    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
482      NumElements = CAType->getSize().getZExtValue();
483    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
484                                                         0, Entity);
485  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
486    ElementType = VType->getElementType();
487    NumElements = VType->getNumElements();
488    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
489                                                         0, Entity);
490  } else
491    ElementType = ILE->getType();
492
493
494  for (unsigned Init = 0; Init != NumElements; ++Init) {
495    if (hadError)
496      return;
497
498    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
499        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
500      ElementEntity.setElementIndex(Init);
501
502    Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
503    if (!InitExpr && !ILE->hasArrayFiller()) {
504      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
505                                                                true);
506      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, None);
507      if (!InitSeq) {
508        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, None);
509        hadError = true;
510        return;
511      }
512
513      ExprResult ElementInit
514        = InitSeq.Perform(SemaRef, ElementEntity, Kind, None);
515      if (ElementInit.isInvalid()) {
516        hadError = true;
517        return;
518      }
519
520      if (hadError) {
521        // Do nothing
522      } else if (Init < NumInits) {
523        // For arrays, just set the expression used for value-initialization
524        // of the "holes" in the array.
525        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
526          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
527        else
528          ILE->setInit(Init, ElementInit.takeAs<Expr>());
529      } else {
530        // For arrays, just set the expression used for value-initialization
531        // of the rest of elements and exit.
532        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
533          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
534          return;
535        }
536
537        if (InitSeq.isConstructorInitialization()) {
538          // Value-initialization requires a constructor call, so
539          // extend the initializer list to include the constructor
540          // call and make a note that we'll need to take another pass
541          // through the initializer list.
542          ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
543          RequiresSecondPass = true;
544        }
545      }
546    } else if (InitListExpr *InnerILE
547                 = dyn_cast_or_null<InitListExpr>(InitExpr))
548      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
549  }
550}
551
552
553InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
554                                 InitListExpr *IL, QualType &T,
555                                 bool VerifyOnly)
556  : SemaRef(S), VerifyOnly(VerifyOnly) {
557  hadError = false;
558
559  FullyStructuredList =
560      getStructuredSubobjectInit(IL, 0, T, 0, 0, IL->getSourceRange());
561  CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
562                        /*TopLevelObject=*/true);
563
564  if (!hadError && !VerifyOnly) {
565    bool RequiresSecondPass = false;
566    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
567    if (RequiresSecondPass && !hadError)
568      FillInValueInitializations(Entity, FullyStructuredList,
569                                 RequiresSecondPass);
570  }
571}
572
573int InitListChecker::numArrayElements(QualType DeclType) {
574  // FIXME: use a proper constant
575  int maxElements = 0x7FFFFFFF;
576  if (const ConstantArrayType *CAT =
577        SemaRef.Context.getAsConstantArrayType(DeclType)) {
578    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
579  }
580  return maxElements;
581}
582
583int InitListChecker::numStructUnionElements(QualType DeclType) {
584  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
585  int InitializableMembers = 0;
586  for (const auto *Field : structDecl->fields())
587    if (!Field->isUnnamedBitfield())
588      ++InitializableMembers;
589
590  if (structDecl->isUnion())
591    return std::min(InitializableMembers, 1);
592  return InitializableMembers - structDecl->hasFlexibleArrayMember();
593}
594
595/// Check whether the range of the initializer \p ParentIList from element
596/// \p Index onwards can be used to initialize an object of type \p T. Update
597/// \p Index to indicate how many elements of the list were consumed.
598///
599/// This also fills in \p StructuredList, from element \p StructuredIndex
600/// onwards, with the fully-braced, desugared form of the initialization.
601void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
602                                            InitListExpr *ParentIList,
603                                            QualType T, unsigned &Index,
604                                            InitListExpr *StructuredList,
605                                            unsigned &StructuredIndex) {
606  int maxElements = 0;
607
608  if (T->isArrayType())
609    maxElements = numArrayElements(T);
610  else if (T->isRecordType())
611    maxElements = numStructUnionElements(T);
612  else if (T->isVectorType())
613    maxElements = T->getAs<VectorType>()->getNumElements();
614  else
615    llvm_unreachable("CheckImplicitInitList(): Illegal type");
616
617  if (maxElements == 0) {
618    if (!VerifyOnly)
619      SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
620                   diag::err_implicit_empty_initializer);
621    ++Index;
622    hadError = true;
623    return;
624  }
625
626  // Build a structured initializer list corresponding to this subobject.
627  InitListExpr *StructuredSubobjectInitList
628    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
629                                 StructuredIndex,
630          SourceRange(ParentIList->getInit(Index)->getLocStart(),
631                      ParentIList->getSourceRange().getEnd()));
632  unsigned StructuredSubobjectInitIndex = 0;
633
634  // Check the element types and build the structural subobject.
635  unsigned StartIndex = Index;
636  CheckListElementTypes(Entity, ParentIList, T,
637                        /*SubobjectIsDesignatorContext=*/false, Index,
638                        StructuredSubobjectInitList,
639                        StructuredSubobjectInitIndex);
640
641  if (!VerifyOnly) {
642    StructuredSubobjectInitList->setType(T);
643
644    unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
645    // Update the structured sub-object initializer so that it's ending
646    // range corresponds with the end of the last initializer it used.
647    if (EndIndex < ParentIList->getNumInits()) {
648      SourceLocation EndLoc
649        = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
650      StructuredSubobjectInitList->setRBraceLoc(EndLoc);
651    }
652
653    // Complain about missing braces.
654    if (T->isArrayType() || T->isRecordType()) {
655      SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
656                   diag::warn_missing_braces)
657        << StructuredSubobjectInitList->getSourceRange()
658        << FixItHint::CreateInsertion(
659              StructuredSubobjectInitList->getLocStart(), "{")
660        << FixItHint::CreateInsertion(
661              SemaRef.PP.getLocForEndOfToken(
662                                      StructuredSubobjectInitList->getLocEnd()),
663              "}");
664    }
665  }
666}
667
668/// Check whether the initializer \p IList (that was written with explicit
669/// braces) can be used to initialize an object of type \p T.
670///
671/// This also fills in \p StructuredList with the fully-braced, desugared
672/// form of the initialization.
673void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
674                                            InitListExpr *IList, QualType &T,
675                                            InitListExpr *StructuredList,
676                                            bool TopLevelObject) {
677  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
678  if (!VerifyOnly) {
679    SyntacticToSemantic[IList] = StructuredList;
680    StructuredList->setSyntacticForm(IList);
681  }
682
683  unsigned Index = 0, StructuredIndex = 0;
684  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
685                        Index, StructuredList, StructuredIndex, TopLevelObject);
686  if (!VerifyOnly) {
687    QualType ExprTy = T;
688    if (!ExprTy->isArrayType())
689      ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
690    IList->setType(ExprTy);
691    StructuredList->setType(ExprTy);
692  }
693  if (hadError)
694    return;
695
696  if (Index < IList->getNumInits()) {
697    // We have leftover initializers
698    if (VerifyOnly) {
699      if (SemaRef.getLangOpts().CPlusPlus ||
700          (SemaRef.getLangOpts().OpenCL &&
701           IList->getType()->isVectorType())) {
702        hadError = true;
703      }
704      return;
705    }
706
707    if (StructuredIndex == 1 &&
708        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
709            SIF_None) {
710      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
711      if (SemaRef.getLangOpts().CPlusPlus) {
712        DK = diag::err_excess_initializers_in_char_array_initializer;
713        hadError = true;
714      }
715      // Special-case
716      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
717        << IList->getInit(Index)->getSourceRange();
718    } else if (!T->isIncompleteType()) {
719      // Don't complain for incomplete types, since we'll get an error
720      // elsewhere
721      QualType CurrentObjectType = StructuredList->getType();
722      int initKind =
723        CurrentObjectType->isArrayType()? 0 :
724        CurrentObjectType->isVectorType()? 1 :
725        CurrentObjectType->isScalarType()? 2 :
726        CurrentObjectType->isUnionType()? 3 :
727        4;
728
729      unsigned DK = diag::warn_excess_initializers;
730      if (SemaRef.getLangOpts().CPlusPlus) {
731        DK = diag::err_excess_initializers;
732        hadError = true;
733      }
734      if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
735        DK = diag::err_excess_initializers;
736        hadError = true;
737      }
738
739      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
740        << initKind << IList->getInit(Index)->getSourceRange();
741    }
742  }
743
744  if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
745      !TopLevelObject)
746    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
747      << IList->getSourceRange()
748      << FixItHint::CreateRemoval(IList->getLocStart())
749      << FixItHint::CreateRemoval(IList->getLocEnd());
750}
751
752void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
753                                            InitListExpr *IList,
754                                            QualType &DeclType,
755                                            bool SubobjectIsDesignatorContext,
756                                            unsigned &Index,
757                                            InitListExpr *StructuredList,
758                                            unsigned &StructuredIndex,
759                                            bool TopLevelObject) {
760  if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
761    // Explicitly braced initializer for complex type can be real+imaginary
762    // parts.
763    CheckComplexType(Entity, IList, DeclType, Index,
764                     StructuredList, StructuredIndex);
765  } else if (DeclType->isScalarType()) {
766    CheckScalarType(Entity, IList, DeclType, Index,
767                    StructuredList, StructuredIndex);
768  } else if (DeclType->isVectorType()) {
769    CheckVectorType(Entity, IList, DeclType, Index,
770                    StructuredList, StructuredIndex);
771  } else if (DeclType->isRecordType()) {
772    assert(DeclType->isAggregateType() &&
773           "non-aggregate records should be handed in CheckSubElementType");
774    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
775    CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
776                          SubobjectIsDesignatorContext, Index,
777                          StructuredList, StructuredIndex,
778                          TopLevelObject);
779  } else if (DeclType->isArrayType()) {
780    llvm::APSInt Zero(
781                    SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
782                    false);
783    CheckArrayType(Entity, IList, DeclType, Zero,
784                   SubobjectIsDesignatorContext, Index,
785                   StructuredList, StructuredIndex);
786  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
787    // This type is invalid, issue a diagnostic.
788    ++Index;
789    if (!VerifyOnly)
790      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
791        << DeclType;
792    hadError = true;
793  } else if (DeclType->isReferenceType()) {
794    CheckReferenceType(Entity, IList, DeclType, Index,
795                       StructuredList, StructuredIndex);
796  } else if (DeclType->isObjCObjectType()) {
797    if (!VerifyOnly)
798      SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
799        << DeclType;
800    hadError = true;
801  } else {
802    if (!VerifyOnly)
803      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
804        << DeclType;
805    hadError = true;
806  }
807}
808
809void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
810                                          InitListExpr *IList,
811                                          QualType ElemType,
812                                          unsigned &Index,
813                                          InitListExpr *StructuredList,
814                                          unsigned &StructuredIndex) {
815  Expr *expr = IList->getInit(Index);
816
817  if (ElemType->isReferenceType())
818    return CheckReferenceType(Entity, IList, ElemType, Index,
819                              StructuredList, StructuredIndex);
820
821  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
822    if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
823      InitListExpr *InnerStructuredList
824        = getStructuredSubobjectInit(IList, Index, ElemType,
825                                     StructuredList, StructuredIndex,
826                                     SubInitList->getSourceRange());
827      CheckExplicitInitList(Entity, SubInitList, ElemType,
828                            InnerStructuredList);
829      ++StructuredIndex;
830      ++Index;
831      return;
832    }
833    assert(SemaRef.getLangOpts().CPlusPlus &&
834           "non-aggregate records are only possible in C++");
835    // C++ initialization is handled later.
836  }
837
838  // FIXME: Need to handle atomic aggregate types with implicit init lists.
839  if (ElemType->isScalarType() || ElemType->isAtomicType())
840    return CheckScalarType(Entity, IList, ElemType, Index,
841                           StructuredList, StructuredIndex);
842
843  assert((ElemType->isRecordType() || ElemType->isVectorType() ||
844          ElemType->isArrayType()) && "Unexpected type");
845
846  if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
847    // arrayType can be incomplete if we're initializing a flexible
848    // array member.  There's nothing we can do with the completed
849    // type here, though.
850
851    if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
852      if (!VerifyOnly) {
853        CheckStringInit(expr, ElemType, arrayType, SemaRef);
854        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
855      }
856      ++Index;
857      return;
858    }
859
860    // Fall through for subaggregate initialization.
861
862  } else if (SemaRef.getLangOpts().CPlusPlus) {
863    // C++ [dcl.init.aggr]p12:
864    //   All implicit type conversions (clause 4) are considered when
865    //   initializing the aggregate member with an initializer from
866    //   an initializer-list. If the initializer can initialize a
867    //   member, the member is initialized. [...]
868
869    // FIXME: Better EqualLoc?
870    InitializationKind Kind =
871      InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
872    InitializationSequence Seq(SemaRef, Entity, Kind, expr);
873
874    if (Seq) {
875      if (!VerifyOnly) {
876        ExprResult Result =
877          Seq.Perform(SemaRef, Entity, Kind, expr);
878        if (Result.isInvalid())
879          hadError = true;
880
881        UpdateStructuredListElement(StructuredList, StructuredIndex,
882                                    Result.takeAs<Expr>());
883      }
884      ++Index;
885      return;
886    }
887
888    // Fall through for subaggregate initialization
889  } else {
890    // C99 6.7.8p13:
891    //
892    //   The initializer for a structure or union object that has
893    //   automatic storage duration shall be either an initializer
894    //   list as described below, or a single expression that has
895    //   compatible structure or union type. In the latter case, the
896    //   initial value of the object, including unnamed members, is
897    //   that of the expression.
898    ExprResult ExprRes = SemaRef.Owned(expr);
899    if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
900        SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
901                                                 !VerifyOnly)
902          != Sema::Incompatible) {
903      if (ExprRes.isInvalid())
904        hadError = true;
905      else {
906        ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
907          if (ExprRes.isInvalid())
908            hadError = true;
909      }
910      UpdateStructuredListElement(StructuredList, StructuredIndex,
911                                  ExprRes.takeAs<Expr>());
912      ++Index;
913      return;
914    }
915    ExprRes.release();
916    // Fall through for subaggregate initialization
917  }
918
919  // C++ [dcl.init.aggr]p12:
920  //
921  //   [...] Otherwise, if the member is itself a non-empty
922  //   subaggregate, brace elision is assumed and the initializer is
923  //   considered for the initialization of the first member of
924  //   the subaggregate.
925  if (!SemaRef.getLangOpts().OpenCL &&
926      (ElemType->isAggregateType() || ElemType->isVectorType())) {
927    CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
928                          StructuredIndex);
929    ++StructuredIndex;
930  } else {
931    if (!VerifyOnly) {
932      // We cannot initialize this element, so let
933      // PerformCopyInitialization produce the appropriate diagnostic.
934      SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
935                                        SemaRef.Owned(expr),
936                                        /*TopLevelOfInitList=*/true);
937    }
938    hadError = true;
939    ++Index;
940    ++StructuredIndex;
941  }
942}
943
944void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
945                                       InitListExpr *IList, QualType DeclType,
946                                       unsigned &Index,
947                                       InitListExpr *StructuredList,
948                                       unsigned &StructuredIndex) {
949  assert(Index == 0 && "Index in explicit init list must be zero");
950
951  // As an extension, clang supports complex initializers, which initialize
952  // a complex number component-wise.  When an explicit initializer list for
953  // a complex number contains two two initializers, this extension kicks in:
954  // it exepcts the initializer list to contain two elements convertible to
955  // the element type of the complex type. The first element initializes
956  // the real part, and the second element intitializes the imaginary part.
957
958  if (IList->getNumInits() != 2)
959    return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
960                           StructuredIndex);
961
962  // This is an extension in C.  (The builtin _Complex type does not exist
963  // in the C++ standard.)
964  if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
965    SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
966      << IList->getSourceRange();
967
968  // Initialize the complex number.
969  QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
970  InitializedEntity ElementEntity =
971    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
972
973  for (unsigned i = 0; i < 2; ++i) {
974    ElementEntity.setElementIndex(Index);
975    CheckSubElementType(ElementEntity, IList, elementType, Index,
976                        StructuredList, StructuredIndex);
977  }
978}
979
980
981void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
982                                      InitListExpr *IList, QualType DeclType,
983                                      unsigned &Index,
984                                      InitListExpr *StructuredList,
985                                      unsigned &StructuredIndex) {
986  if (Index >= IList->getNumInits()) {
987    if (!VerifyOnly)
988      SemaRef.Diag(IList->getLocStart(),
989                   SemaRef.getLangOpts().CPlusPlus11 ?
990                     diag::warn_cxx98_compat_empty_scalar_initializer :
991                     diag::err_empty_scalar_initializer)
992        << IList->getSourceRange();
993    hadError = !SemaRef.getLangOpts().CPlusPlus11;
994    ++Index;
995    ++StructuredIndex;
996    return;
997  }
998
999  Expr *expr = IList->getInit(Index);
1000  if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1001    // FIXME: This is invalid, and accepting it causes overload resolution
1002    // to pick the wrong overload in some corner cases.
1003    if (!VerifyOnly)
1004      SemaRef.Diag(SubIList->getLocStart(),
1005                   diag::ext_many_braces_around_scalar_init)
1006        << SubIList->getSourceRange();
1007
1008    CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1009                    StructuredIndex);
1010    return;
1011  } else if (isa<DesignatedInitExpr>(expr)) {
1012    if (!VerifyOnly)
1013      SemaRef.Diag(expr->getLocStart(),
1014                   diag::err_designator_for_scalar_init)
1015        << DeclType << expr->getSourceRange();
1016    hadError = true;
1017    ++Index;
1018    ++StructuredIndex;
1019    return;
1020  }
1021
1022  if (VerifyOnly) {
1023    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1024      hadError = true;
1025    ++Index;
1026    return;
1027  }
1028
1029  ExprResult Result =
1030    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1031                                      SemaRef.Owned(expr),
1032                                      /*TopLevelOfInitList=*/true);
1033
1034  Expr *ResultExpr = 0;
1035
1036  if (Result.isInvalid())
1037    hadError = true; // types weren't compatible.
1038  else {
1039    ResultExpr = Result.takeAs<Expr>();
1040
1041    if (ResultExpr != expr) {
1042      // The type was promoted, update initializer list.
1043      IList->setInit(Index, ResultExpr);
1044    }
1045  }
1046  if (hadError)
1047    ++StructuredIndex;
1048  else
1049    UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1050  ++Index;
1051}
1052
1053void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1054                                         InitListExpr *IList, QualType DeclType,
1055                                         unsigned &Index,
1056                                         InitListExpr *StructuredList,
1057                                         unsigned &StructuredIndex) {
1058  if (Index >= IList->getNumInits()) {
1059    // FIXME: It would be wonderful if we could point at the actual member. In
1060    // general, it would be useful to pass location information down the stack,
1061    // so that we know the location (or decl) of the "current object" being
1062    // initialized.
1063    if (!VerifyOnly)
1064      SemaRef.Diag(IList->getLocStart(),
1065                    diag::err_init_reference_member_uninitialized)
1066        << DeclType
1067        << IList->getSourceRange();
1068    hadError = true;
1069    ++Index;
1070    ++StructuredIndex;
1071    return;
1072  }
1073
1074  Expr *expr = IList->getInit(Index);
1075  if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1076    if (!VerifyOnly)
1077      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1078        << DeclType << IList->getSourceRange();
1079    hadError = true;
1080    ++Index;
1081    ++StructuredIndex;
1082    return;
1083  }
1084
1085  if (VerifyOnly) {
1086    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1087      hadError = true;
1088    ++Index;
1089    return;
1090  }
1091
1092  ExprResult Result =
1093    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1094                                      SemaRef.Owned(expr),
1095                                      /*TopLevelOfInitList=*/true);
1096
1097  if (Result.isInvalid())
1098    hadError = true;
1099
1100  expr = Result.takeAs<Expr>();
1101  IList->setInit(Index, expr);
1102
1103  if (hadError)
1104    ++StructuredIndex;
1105  else
1106    UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1107  ++Index;
1108}
1109
1110void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1111                                      InitListExpr *IList, QualType DeclType,
1112                                      unsigned &Index,
1113                                      InitListExpr *StructuredList,
1114                                      unsigned &StructuredIndex) {
1115  const VectorType *VT = DeclType->getAs<VectorType>();
1116  unsigned maxElements = VT->getNumElements();
1117  unsigned numEltsInit = 0;
1118  QualType elementType = VT->getElementType();
1119
1120  if (Index >= IList->getNumInits()) {
1121    // Make sure the element type can be value-initialized.
1122    if (VerifyOnly)
1123      CheckValueInitializable(
1124          InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1125    return;
1126  }
1127
1128  if (!SemaRef.getLangOpts().OpenCL) {
1129    // If the initializing element is a vector, try to copy-initialize
1130    // instead of breaking it apart (which is doomed to failure anyway).
1131    Expr *Init = IList->getInit(Index);
1132    if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1133      if (VerifyOnly) {
1134        if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1135          hadError = true;
1136        ++Index;
1137        return;
1138      }
1139
1140      ExprResult Result =
1141        SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1142                                          SemaRef.Owned(Init),
1143                                          /*TopLevelOfInitList=*/true);
1144
1145      Expr *ResultExpr = 0;
1146      if (Result.isInvalid())
1147        hadError = true; // types weren't compatible.
1148      else {
1149        ResultExpr = Result.takeAs<Expr>();
1150
1151        if (ResultExpr != Init) {
1152          // The type was promoted, update initializer list.
1153          IList->setInit(Index, ResultExpr);
1154        }
1155      }
1156      if (hadError)
1157        ++StructuredIndex;
1158      else
1159        UpdateStructuredListElement(StructuredList, StructuredIndex,
1160                                    ResultExpr);
1161      ++Index;
1162      return;
1163    }
1164
1165    InitializedEntity ElementEntity =
1166      InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1167
1168    for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1169      // Don't attempt to go past the end of the init list
1170      if (Index >= IList->getNumInits()) {
1171        if (VerifyOnly)
1172          CheckValueInitializable(ElementEntity);
1173        break;
1174      }
1175
1176      ElementEntity.setElementIndex(Index);
1177      CheckSubElementType(ElementEntity, IList, elementType, Index,
1178                          StructuredList, StructuredIndex);
1179    }
1180    return;
1181  }
1182
1183  InitializedEntity ElementEntity =
1184    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1185
1186  // OpenCL initializers allows vectors to be constructed from vectors.
1187  for (unsigned i = 0; i < maxElements; ++i) {
1188    // Don't attempt to go past the end of the init list
1189    if (Index >= IList->getNumInits())
1190      break;
1191
1192    ElementEntity.setElementIndex(Index);
1193
1194    QualType IType = IList->getInit(Index)->getType();
1195    if (!IType->isVectorType()) {
1196      CheckSubElementType(ElementEntity, IList, elementType, Index,
1197                          StructuredList, StructuredIndex);
1198      ++numEltsInit;
1199    } else {
1200      QualType VecType;
1201      const VectorType *IVT = IType->getAs<VectorType>();
1202      unsigned numIElts = IVT->getNumElements();
1203
1204      if (IType->isExtVectorType())
1205        VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1206      else
1207        VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1208                                                IVT->getVectorKind());
1209      CheckSubElementType(ElementEntity, IList, VecType, Index,
1210                          StructuredList, StructuredIndex);
1211      numEltsInit += numIElts;
1212    }
1213  }
1214
1215  // OpenCL requires all elements to be initialized.
1216  if (numEltsInit != maxElements) {
1217    if (!VerifyOnly)
1218      SemaRef.Diag(IList->getLocStart(),
1219                   diag::err_vector_incorrect_num_initializers)
1220        << (numEltsInit < maxElements) << maxElements << numEltsInit;
1221    hadError = true;
1222  }
1223}
1224
1225void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1226                                     InitListExpr *IList, QualType &DeclType,
1227                                     llvm::APSInt elementIndex,
1228                                     bool SubobjectIsDesignatorContext,
1229                                     unsigned &Index,
1230                                     InitListExpr *StructuredList,
1231                                     unsigned &StructuredIndex) {
1232  const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1233
1234  // Check for the special-case of initializing an array with a string.
1235  if (Index < IList->getNumInits()) {
1236    if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1237        SIF_None) {
1238      // We place the string literal directly into the resulting
1239      // initializer list. This is the only place where the structure
1240      // of the structured initializer list doesn't match exactly,
1241      // because doing so would involve allocating one character
1242      // constant for each string.
1243      if (!VerifyOnly) {
1244        CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1245        UpdateStructuredListElement(StructuredList, StructuredIndex,
1246                                    IList->getInit(Index));
1247        StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1248      }
1249      ++Index;
1250      return;
1251    }
1252  }
1253  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1254    // Check for VLAs; in standard C it would be possible to check this
1255    // earlier, but I don't know where clang accepts VLAs (gcc accepts
1256    // them in all sorts of strange places).
1257    if (!VerifyOnly)
1258      SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1259                    diag::err_variable_object_no_init)
1260        << VAT->getSizeExpr()->getSourceRange();
1261    hadError = true;
1262    ++Index;
1263    ++StructuredIndex;
1264    return;
1265  }
1266
1267  // We might know the maximum number of elements in advance.
1268  llvm::APSInt maxElements(elementIndex.getBitWidth(),
1269                           elementIndex.isUnsigned());
1270  bool maxElementsKnown = false;
1271  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1272    maxElements = CAT->getSize();
1273    elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1274    elementIndex.setIsUnsigned(maxElements.isUnsigned());
1275    maxElementsKnown = true;
1276  }
1277
1278  QualType elementType = arrayType->getElementType();
1279  while (Index < IList->getNumInits()) {
1280    Expr *Init = IList->getInit(Index);
1281    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1282      // If we're not the subobject that matches up with the '{' for
1283      // the designator, we shouldn't be handling the
1284      // designator. Return immediately.
1285      if (!SubobjectIsDesignatorContext)
1286        return;
1287
1288      // Handle this designated initializer. elementIndex will be
1289      // updated to be the next array element we'll initialize.
1290      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1291                                     DeclType, 0, &elementIndex, Index,
1292                                     StructuredList, StructuredIndex, true,
1293                                     false)) {
1294        hadError = true;
1295        continue;
1296      }
1297
1298      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1299        maxElements = maxElements.extend(elementIndex.getBitWidth());
1300      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1301        elementIndex = elementIndex.extend(maxElements.getBitWidth());
1302      elementIndex.setIsUnsigned(maxElements.isUnsigned());
1303
1304      // If the array is of incomplete type, keep track of the number of
1305      // elements in the initializer.
1306      if (!maxElementsKnown && elementIndex > maxElements)
1307        maxElements = elementIndex;
1308
1309      continue;
1310    }
1311
1312    // If we know the maximum number of elements, and we've already
1313    // hit it, stop consuming elements in the initializer list.
1314    if (maxElementsKnown && elementIndex == maxElements)
1315      break;
1316
1317    InitializedEntity ElementEntity =
1318      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1319                                           Entity);
1320    // Check this element.
1321    CheckSubElementType(ElementEntity, IList, elementType, Index,
1322                        StructuredList, StructuredIndex);
1323    ++elementIndex;
1324
1325    // If the array is of incomplete type, keep track of the number of
1326    // elements in the initializer.
1327    if (!maxElementsKnown && elementIndex > maxElements)
1328      maxElements = elementIndex;
1329  }
1330  if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1331    // If this is an incomplete array type, the actual type needs to
1332    // be calculated here.
1333    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1334    if (maxElements == Zero) {
1335      // Sizing an array implicitly to zero is not allowed by ISO C,
1336      // but is supported by GNU.
1337      SemaRef.Diag(IList->getLocStart(),
1338                    diag::ext_typecheck_zero_array_size);
1339    }
1340
1341    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1342                                                     ArrayType::Normal, 0);
1343  }
1344  if (!hadError && VerifyOnly) {
1345    // Check if there are any members of the array that get value-initialized.
1346    // If so, check if doing that is possible.
1347    // FIXME: This needs to detect holes left by designated initializers too.
1348    if (maxElementsKnown && elementIndex < maxElements)
1349      CheckValueInitializable(InitializedEntity::InitializeElement(
1350                                                  SemaRef.Context, 0, Entity));
1351  }
1352}
1353
1354bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1355                                             Expr *InitExpr,
1356                                             FieldDecl *Field,
1357                                             bool TopLevelObject) {
1358  // Handle GNU flexible array initializers.
1359  unsigned FlexArrayDiag;
1360  if (isa<InitListExpr>(InitExpr) &&
1361      cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1362    // Empty flexible array init always allowed as an extension
1363    FlexArrayDiag = diag::ext_flexible_array_init;
1364  } else if (SemaRef.getLangOpts().CPlusPlus) {
1365    // Disallow flexible array init in C++; it is not required for gcc
1366    // compatibility, and it needs work to IRGen correctly in general.
1367    FlexArrayDiag = diag::err_flexible_array_init;
1368  } else if (!TopLevelObject) {
1369    // Disallow flexible array init on non-top-level object
1370    FlexArrayDiag = diag::err_flexible_array_init;
1371  } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1372    // Disallow flexible array init on anything which is not a variable.
1373    FlexArrayDiag = diag::err_flexible_array_init;
1374  } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1375    // Disallow flexible array init on local variables.
1376    FlexArrayDiag = diag::err_flexible_array_init;
1377  } else {
1378    // Allow other cases.
1379    FlexArrayDiag = diag::ext_flexible_array_init;
1380  }
1381
1382  if (!VerifyOnly) {
1383    SemaRef.Diag(InitExpr->getLocStart(),
1384                 FlexArrayDiag)
1385      << InitExpr->getLocStart();
1386    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1387      << Field;
1388  }
1389
1390  return FlexArrayDiag != diag::ext_flexible_array_init;
1391}
1392
1393void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1394                                            InitListExpr *IList,
1395                                            QualType DeclType,
1396                                            RecordDecl::field_iterator Field,
1397                                            bool SubobjectIsDesignatorContext,
1398                                            unsigned &Index,
1399                                            InitListExpr *StructuredList,
1400                                            unsigned &StructuredIndex,
1401                                            bool TopLevelObject) {
1402  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1403
1404  // If the record is invalid, some of it's members are invalid. To avoid
1405  // confusion, we forgo checking the intializer for the entire record.
1406  if (structDecl->isInvalidDecl()) {
1407    // Assume it was supposed to consume a single initializer.
1408    ++Index;
1409    hadError = true;
1410    return;
1411  }
1412
1413  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1414    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1415
1416    // If there's a default initializer, use it.
1417    if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1418      if (VerifyOnly)
1419        return;
1420      for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1421           Field != FieldEnd; ++Field) {
1422        if (Field->hasInClassInitializer()) {
1423          StructuredList->setInitializedFieldInUnion(*Field);
1424          // FIXME: Actually build a CXXDefaultInitExpr?
1425          return;
1426        }
1427      }
1428    }
1429
1430    // Value-initialize the first named member of the union.
1431    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1432         Field != FieldEnd; ++Field) {
1433      if (Field->getDeclName()) {
1434        if (VerifyOnly)
1435          CheckValueInitializable(
1436              InitializedEntity::InitializeMember(*Field, &Entity));
1437        else
1438          StructuredList->setInitializedFieldInUnion(*Field);
1439        break;
1440      }
1441    }
1442    return;
1443  }
1444
1445  // If structDecl is a forward declaration, this loop won't do
1446  // anything except look at designated initializers; That's okay,
1447  // because an error should get printed out elsewhere. It might be
1448  // worthwhile to skip over the rest of the initializer, though.
1449  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1450  RecordDecl::field_iterator FieldEnd = RD->field_end();
1451  bool InitializedSomething = false;
1452  bool CheckForMissingFields = true;
1453  while (Index < IList->getNumInits()) {
1454    Expr *Init = IList->getInit(Index);
1455
1456    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1457      // If we're not the subobject that matches up with the '{' for
1458      // the designator, we shouldn't be handling the
1459      // designator. Return immediately.
1460      if (!SubobjectIsDesignatorContext)
1461        return;
1462
1463      // Handle this designated initializer. Field will be updated to
1464      // the next field that we'll be initializing.
1465      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1466                                     DeclType, &Field, 0, Index,
1467                                     StructuredList, StructuredIndex,
1468                                     true, TopLevelObject))
1469        hadError = true;
1470
1471      InitializedSomething = true;
1472
1473      // Disable check for missing fields when designators are used.
1474      // This matches gcc behaviour.
1475      CheckForMissingFields = false;
1476      continue;
1477    }
1478
1479    if (Field == FieldEnd) {
1480      // We've run out of fields. We're done.
1481      break;
1482    }
1483
1484    // We've already initialized a member of a union. We're done.
1485    if (InitializedSomething && DeclType->isUnionType())
1486      break;
1487
1488    // If we've hit the flexible array member at the end, we're done.
1489    if (Field->getType()->isIncompleteArrayType())
1490      break;
1491
1492    if (Field->isUnnamedBitfield()) {
1493      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1494      ++Field;
1495      continue;
1496    }
1497
1498    // Make sure we can use this declaration.
1499    bool InvalidUse;
1500    if (VerifyOnly)
1501      InvalidUse = !SemaRef.CanUseDecl(*Field);
1502    else
1503      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1504                                          IList->getInit(Index)->getLocStart());
1505    if (InvalidUse) {
1506      ++Index;
1507      ++Field;
1508      hadError = true;
1509      continue;
1510    }
1511
1512    InitializedEntity MemberEntity =
1513      InitializedEntity::InitializeMember(*Field, &Entity);
1514    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1515                        StructuredList, StructuredIndex);
1516    InitializedSomething = true;
1517
1518    if (DeclType->isUnionType() && !VerifyOnly) {
1519      // Initialize the first field within the union.
1520      StructuredList->setInitializedFieldInUnion(*Field);
1521    }
1522
1523    ++Field;
1524  }
1525
1526  // Emit warnings for missing struct field initializers.
1527  if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1528      Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1529      !DeclType->isUnionType()) {
1530    // It is possible we have one or more unnamed bitfields remaining.
1531    // Find first (if any) named field and emit warning.
1532    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1533         it != end; ++it) {
1534      if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1535        SemaRef.Diag(IList->getSourceRange().getEnd(),
1536                     diag::warn_missing_field_initializers) << *it;
1537        break;
1538      }
1539    }
1540  }
1541
1542  // Check that any remaining fields can be value-initialized.
1543  if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1544      !Field->getType()->isIncompleteArrayType()) {
1545    // FIXME: Should check for holes left by designated initializers too.
1546    for (; Field != FieldEnd && !hadError; ++Field) {
1547      if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1548        CheckValueInitializable(
1549            InitializedEntity::InitializeMember(*Field, &Entity));
1550    }
1551  }
1552
1553  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1554      Index >= IList->getNumInits())
1555    return;
1556
1557  if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1558                             TopLevelObject)) {
1559    hadError = true;
1560    ++Index;
1561    return;
1562  }
1563
1564  InitializedEntity MemberEntity =
1565    InitializedEntity::InitializeMember(*Field, &Entity);
1566
1567  if (isa<InitListExpr>(IList->getInit(Index)))
1568    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1569                        StructuredList, StructuredIndex);
1570  else
1571    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1572                          StructuredList, StructuredIndex);
1573}
1574
1575/// \brief Expand a field designator that refers to a member of an
1576/// anonymous struct or union into a series of field designators that
1577/// refers to the field within the appropriate subobject.
1578///
1579static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1580                                           DesignatedInitExpr *DIE,
1581                                           unsigned DesigIdx,
1582                                           IndirectFieldDecl *IndirectField) {
1583  typedef DesignatedInitExpr::Designator Designator;
1584
1585  // Build the replacement designators.
1586  SmallVector<Designator, 4> Replacements;
1587  for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1588       PE = IndirectField->chain_end(); PI != PE; ++PI) {
1589    if (PI + 1 == PE)
1590      Replacements.push_back(Designator((IdentifierInfo *)0,
1591                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1592                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1593    else
1594      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1595                                        SourceLocation()));
1596    assert(isa<FieldDecl>(*PI));
1597    Replacements.back().setField(cast<FieldDecl>(*PI));
1598  }
1599
1600  // Expand the current designator into the set of replacement
1601  // designators, so we have a full subobject path down to where the
1602  // member of the anonymous struct/union is actually stored.
1603  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1604                        &Replacements[0] + Replacements.size());
1605}
1606
1607/// \brief Given an implicit anonymous field, search the IndirectField that
1608///  corresponds to FieldName.
1609static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1610                                                 IdentifierInfo *FieldName) {
1611  if (!FieldName)
1612    return 0;
1613
1614  assert(AnonField->isAnonymousStructOrUnion());
1615  Decl *NextDecl = AnonField->getNextDeclInContext();
1616  while (IndirectFieldDecl *IF =
1617          dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1618    if (FieldName == IF->getAnonField()->getIdentifier())
1619      return IF;
1620    NextDecl = NextDecl->getNextDeclInContext();
1621  }
1622  return 0;
1623}
1624
1625static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1626                                                   DesignatedInitExpr *DIE) {
1627  unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1628  SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1629  for (unsigned I = 0; I < NumIndexExprs; ++I)
1630    IndexExprs[I] = DIE->getSubExpr(I + 1);
1631  return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1632                                    DIE->size(), IndexExprs,
1633                                    DIE->getEqualOrColonLoc(),
1634                                    DIE->usesGNUSyntax(), DIE->getInit());
1635}
1636
1637namespace {
1638
1639// Callback to only accept typo corrections that are for field members of
1640// the given struct or union.
1641class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1642 public:
1643  explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1644      : Record(RD) {}
1645
1646  bool ValidateCandidate(const TypoCorrection &candidate) override {
1647    FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1648    return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1649  }
1650
1651 private:
1652  RecordDecl *Record;
1653};
1654
1655}
1656
1657/// @brief Check the well-formedness of a C99 designated initializer.
1658///
1659/// Determines whether the designated initializer @p DIE, which
1660/// resides at the given @p Index within the initializer list @p
1661/// IList, is well-formed for a current object of type @p DeclType
1662/// (C99 6.7.8). The actual subobject that this designator refers to
1663/// within the current subobject is returned in either
1664/// @p NextField or @p NextElementIndex (whichever is appropriate).
1665///
1666/// @param IList  The initializer list in which this designated
1667/// initializer occurs.
1668///
1669/// @param DIE The designated initializer expression.
1670///
1671/// @param DesigIdx  The index of the current designator.
1672///
1673/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1674/// into which the designation in @p DIE should refer.
1675///
1676/// @param NextField  If non-NULL and the first designator in @p DIE is
1677/// a field, this will be set to the field declaration corresponding
1678/// to the field named by the designator.
1679///
1680/// @param NextElementIndex  If non-NULL and the first designator in @p
1681/// DIE is an array designator or GNU array-range designator, this
1682/// will be set to the last index initialized by this designator.
1683///
1684/// @param Index  Index into @p IList where the designated initializer
1685/// @p DIE occurs.
1686///
1687/// @param StructuredList  The initializer list expression that
1688/// describes all of the subobject initializers in the order they'll
1689/// actually be initialized.
1690///
1691/// @returns true if there was an error, false otherwise.
1692bool
1693InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1694                                            InitListExpr *IList,
1695                                            DesignatedInitExpr *DIE,
1696                                            unsigned DesigIdx,
1697                                            QualType &CurrentObjectType,
1698                                          RecordDecl::field_iterator *NextField,
1699                                            llvm::APSInt *NextElementIndex,
1700                                            unsigned &Index,
1701                                            InitListExpr *StructuredList,
1702                                            unsigned &StructuredIndex,
1703                                            bool FinishSubobjectInit,
1704                                            bool TopLevelObject) {
1705  if (DesigIdx == DIE->size()) {
1706    // Check the actual initialization for the designated object type.
1707    bool prevHadError = hadError;
1708
1709    // Temporarily remove the designator expression from the
1710    // initializer list that the child calls see, so that we don't try
1711    // to re-process the designator.
1712    unsigned OldIndex = Index;
1713    IList->setInit(OldIndex, DIE->getInit());
1714
1715    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1716                        StructuredList, StructuredIndex);
1717
1718    // Restore the designated initializer expression in the syntactic
1719    // form of the initializer list.
1720    if (IList->getInit(OldIndex) != DIE->getInit())
1721      DIE->setInit(IList->getInit(OldIndex));
1722    IList->setInit(OldIndex, DIE);
1723
1724    return hadError && !prevHadError;
1725  }
1726
1727  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1728  bool IsFirstDesignator = (DesigIdx == 0);
1729  if (!VerifyOnly) {
1730    assert((IsFirstDesignator || StructuredList) &&
1731           "Need a non-designated initializer list to start from");
1732
1733    // Determine the structural initializer list that corresponds to the
1734    // current subobject.
1735    StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1736      : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1737                                   StructuredList, StructuredIndex,
1738                                   SourceRange(D->getLocStart(),
1739                                               DIE->getLocEnd()));
1740    assert(StructuredList && "Expected a structured initializer list");
1741  }
1742
1743  if (D->isFieldDesignator()) {
1744    // C99 6.7.8p7:
1745    //
1746    //   If a designator has the form
1747    //
1748    //      . identifier
1749    //
1750    //   then the current object (defined below) shall have
1751    //   structure or union type and the identifier shall be the
1752    //   name of a member of that type.
1753    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1754    if (!RT) {
1755      SourceLocation Loc = D->getDotLoc();
1756      if (Loc.isInvalid())
1757        Loc = D->getFieldLoc();
1758      if (!VerifyOnly)
1759        SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1760          << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1761      ++Index;
1762      return true;
1763    }
1764
1765    // Note: we perform a linear search of the fields here, despite
1766    // the fact that we have a faster lookup method, because we always
1767    // need to compute the field's index.
1768    FieldDecl *KnownField = D->getField();
1769    IdentifierInfo *FieldName = D->getFieldName();
1770    unsigned FieldIndex = 0;
1771    RecordDecl::field_iterator
1772      Field = RT->getDecl()->field_begin(),
1773      FieldEnd = RT->getDecl()->field_end();
1774    for (; Field != FieldEnd; ++Field) {
1775      if (Field->isUnnamedBitfield())
1776        continue;
1777
1778      // If we find a field representing an anonymous field, look in the
1779      // IndirectFieldDecl that follow for the designated initializer.
1780      if (!KnownField && Field->isAnonymousStructOrUnion()) {
1781        if (IndirectFieldDecl *IF =
1782            FindIndirectFieldDesignator(*Field, FieldName)) {
1783          // In verify mode, don't modify the original.
1784          if (VerifyOnly)
1785            DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1786          ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1787          D = DIE->getDesignator(DesigIdx);
1788          break;
1789        }
1790      }
1791      if (KnownField && KnownField == *Field)
1792        break;
1793      if (FieldName && FieldName == Field->getIdentifier())
1794        break;
1795
1796      ++FieldIndex;
1797    }
1798
1799    if (Field == FieldEnd) {
1800      if (VerifyOnly) {
1801        ++Index;
1802        return true; // No typo correction when just trying this out.
1803      }
1804
1805      // There was no normal field in the struct with the designated
1806      // name. Perform another lookup for this name, which may find
1807      // something that we can't designate (e.g., a member function),
1808      // may find nothing, or may find a member of an anonymous
1809      // struct/union.
1810      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1811      FieldDecl *ReplacementField = 0;
1812      if (Lookup.empty()) {
1813        // Name lookup didn't find anything. Determine whether this
1814        // was a typo for another field name.
1815        FieldInitializerValidatorCCC Validator(RT->getDecl());
1816        if (TypoCorrection Corrected = SemaRef.CorrectTypo(
1817                DeclarationNameInfo(FieldName, D->getFieldLoc()),
1818                Sema::LookupMemberName, /*Scope=*/ 0, /*SS=*/ 0, Validator,
1819                RT->getDecl())) {
1820          SemaRef.diagnoseTypo(
1821              Corrected,
1822              SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
1823                  << FieldName << CurrentObjectType);
1824          ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1825          hadError = true;
1826        } else {
1827          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1828            << FieldName << CurrentObjectType;
1829          ++Index;
1830          return true;
1831        }
1832      }
1833
1834      if (!ReplacementField) {
1835        // Name lookup found something, but it wasn't a field.
1836        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1837          << FieldName;
1838        SemaRef.Diag(Lookup.front()->getLocation(),
1839                      diag::note_field_designator_found);
1840        ++Index;
1841        return true;
1842      }
1843
1844      if (!KnownField) {
1845        // The replacement field comes from typo correction; find it
1846        // in the list of fields.
1847        FieldIndex = 0;
1848        Field = RT->getDecl()->field_begin();
1849        for (; Field != FieldEnd; ++Field) {
1850          if (Field->isUnnamedBitfield())
1851            continue;
1852
1853          if (ReplacementField == *Field ||
1854              Field->getIdentifier() == ReplacementField->getIdentifier())
1855            break;
1856
1857          ++FieldIndex;
1858        }
1859      }
1860    }
1861
1862    // All of the fields of a union are located at the same place in
1863    // the initializer list.
1864    if (RT->getDecl()->isUnion()) {
1865      FieldIndex = 0;
1866      if (!VerifyOnly) {
1867        FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
1868        if (CurrentField && CurrentField != *Field) {
1869          assert(StructuredList->getNumInits() == 1
1870                 && "A union should never have more than one initializer!");
1871
1872          // we're about to throw away an initializer, emit warning
1873          SemaRef.Diag(D->getFieldLoc(),
1874                       diag::warn_initializer_overrides)
1875            << D->getSourceRange();
1876          Expr *ExistingInit = StructuredList->getInit(0);
1877          SemaRef.Diag(ExistingInit->getLocStart(),
1878                       diag::note_previous_initializer)
1879            << /*FIXME:has side effects=*/0
1880            << ExistingInit->getSourceRange();
1881
1882          // remove existing initializer
1883          StructuredList->resizeInits(SemaRef.Context, 0);
1884          StructuredList->setInitializedFieldInUnion(0);
1885        }
1886
1887        StructuredList->setInitializedFieldInUnion(*Field);
1888      }
1889    }
1890
1891    // Make sure we can use this declaration.
1892    bool InvalidUse;
1893    if (VerifyOnly)
1894      InvalidUse = !SemaRef.CanUseDecl(*Field);
1895    else
1896      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1897    if (InvalidUse) {
1898      ++Index;
1899      return true;
1900    }
1901
1902    if (!VerifyOnly) {
1903      // Update the designator with the field declaration.
1904      D->setField(*Field);
1905
1906      // Make sure that our non-designated initializer list has space
1907      // for a subobject corresponding to this field.
1908      if (FieldIndex >= StructuredList->getNumInits())
1909        StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1910    }
1911
1912    // This designator names a flexible array member.
1913    if (Field->getType()->isIncompleteArrayType()) {
1914      bool Invalid = false;
1915      if ((DesigIdx + 1) != DIE->size()) {
1916        // We can't designate an object within the flexible array
1917        // member (because GCC doesn't allow it).
1918        if (!VerifyOnly) {
1919          DesignatedInitExpr::Designator *NextD
1920            = DIE->getDesignator(DesigIdx + 1);
1921          SemaRef.Diag(NextD->getLocStart(),
1922                        diag::err_designator_into_flexible_array_member)
1923            << SourceRange(NextD->getLocStart(),
1924                           DIE->getLocEnd());
1925          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1926            << *Field;
1927        }
1928        Invalid = true;
1929      }
1930
1931      if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1932          !isa<StringLiteral>(DIE->getInit())) {
1933        // The initializer is not an initializer list.
1934        if (!VerifyOnly) {
1935          SemaRef.Diag(DIE->getInit()->getLocStart(),
1936                        diag::err_flexible_array_init_needs_braces)
1937            << DIE->getInit()->getSourceRange();
1938          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1939            << *Field;
1940        }
1941        Invalid = true;
1942      }
1943
1944      // Check GNU flexible array initializer.
1945      if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1946                                             TopLevelObject))
1947        Invalid = true;
1948
1949      if (Invalid) {
1950        ++Index;
1951        return true;
1952      }
1953
1954      // Initialize the array.
1955      bool prevHadError = hadError;
1956      unsigned newStructuredIndex = FieldIndex;
1957      unsigned OldIndex = Index;
1958      IList->setInit(Index, DIE->getInit());
1959
1960      InitializedEntity MemberEntity =
1961        InitializedEntity::InitializeMember(*Field, &Entity);
1962      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1963                          StructuredList, newStructuredIndex);
1964
1965      IList->setInit(OldIndex, DIE);
1966      if (hadError && !prevHadError) {
1967        ++Field;
1968        ++FieldIndex;
1969        if (NextField)
1970          *NextField = Field;
1971        StructuredIndex = FieldIndex;
1972        return true;
1973      }
1974    } else {
1975      // Recurse to check later designated subobjects.
1976      QualType FieldType = Field->getType();
1977      unsigned newStructuredIndex = FieldIndex;
1978
1979      InitializedEntity MemberEntity =
1980        InitializedEntity::InitializeMember(*Field, &Entity);
1981      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1982                                     FieldType, 0, 0, Index,
1983                                     StructuredList, newStructuredIndex,
1984                                     true, false))
1985        return true;
1986    }
1987
1988    // Find the position of the next field to be initialized in this
1989    // subobject.
1990    ++Field;
1991    ++FieldIndex;
1992
1993    // If this the first designator, our caller will continue checking
1994    // the rest of this struct/class/union subobject.
1995    if (IsFirstDesignator) {
1996      if (NextField)
1997        *NextField = Field;
1998      StructuredIndex = FieldIndex;
1999      return false;
2000    }
2001
2002    if (!FinishSubobjectInit)
2003      return false;
2004
2005    // We've already initialized something in the union; we're done.
2006    if (RT->getDecl()->isUnion())
2007      return hadError;
2008
2009    // Check the remaining fields within this class/struct/union subobject.
2010    bool prevHadError = hadError;
2011
2012    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
2013                          StructuredList, FieldIndex);
2014    return hadError && !prevHadError;
2015  }
2016
2017  // C99 6.7.8p6:
2018  //
2019  //   If a designator has the form
2020  //
2021  //      [ constant-expression ]
2022  //
2023  //   then the current object (defined below) shall have array
2024  //   type and the expression shall be an integer constant
2025  //   expression. If the array is of unknown size, any
2026  //   nonnegative value is valid.
2027  //
2028  // Additionally, cope with the GNU extension that permits
2029  // designators of the form
2030  //
2031  //      [ constant-expression ... constant-expression ]
2032  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2033  if (!AT) {
2034    if (!VerifyOnly)
2035      SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2036        << CurrentObjectType;
2037    ++Index;
2038    return true;
2039  }
2040
2041  Expr *IndexExpr = 0;
2042  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2043  if (D->isArrayDesignator()) {
2044    IndexExpr = DIE->getArrayIndex(*D);
2045    DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2046    DesignatedEndIndex = DesignatedStartIndex;
2047  } else {
2048    assert(D->isArrayRangeDesignator() && "Need array-range designator");
2049
2050    DesignatedStartIndex =
2051      DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2052    DesignatedEndIndex =
2053      DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2054    IndexExpr = DIE->getArrayRangeEnd(*D);
2055
2056    // Codegen can't handle evaluating array range designators that have side
2057    // effects, because we replicate the AST value for each initialized element.
2058    // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2059    // elements with something that has a side effect, so codegen can emit an
2060    // "error unsupported" error instead of miscompiling the app.
2061    if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2062        DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2063      FullyStructuredList->sawArrayRangeDesignator();
2064  }
2065
2066  if (isa<ConstantArrayType>(AT)) {
2067    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2068    DesignatedStartIndex
2069      = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2070    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2071    DesignatedEndIndex
2072      = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2073    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2074    if (DesignatedEndIndex >= MaxElements) {
2075      if (!VerifyOnly)
2076        SemaRef.Diag(IndexExpr->getLocStart(),
2077                      diag::err_array_designator_too_large)
2078          << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2079          << IndexExpr->getSourceRange();
2080      ++Index;
2081      return true;
2082    }
2083  } else {
2084    // Make sure the bit-widths and signedness match.
2085    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
2086      DesignatedEndIndex
2087        = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
2088    else if (DesignatedStartIndex.getBitWidth() <
2089             DesignatedEndIndex.getBitWidth())
2090      DesignatedStartIndex
2091        = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
2092    DesignatedStartIndex.setIsUnsigned(true);
2093    DesignatedEndIndex.setIsUnsigned(true);
2094  }
2095
2096  if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2097    // We're modifying a string literal init; we have to decompose the string
2098    // so we can modify the individual characters.
2099    ASTContext &Context = SemaRef.Context;
2100    Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2101
2102    // Compute the character type
2103    QualType CharTy = AT->getElementType();
2104
2105    // Compute the type of the integer literals.
2106    QualType PromotedCharTy = CharTy;
2107    if (CharTy->isPromotableIntegerType())
2108      PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2109    unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2110
2111    if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2112      // Get the length of the string.
2113      uint64_t StrLen = SL->getLength();
2114      if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2115        StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2116      StructuredList->resizeInits(Context, StrLen);
2117
2118      // Build a literal for each character in the string, and put them into
2119      // the init list.
2120      for (unsigned i = 0, e = StrLen; i != e; ++i) {
2121        llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2122        Expr *Init = new (Context) IntegerLiteral(
2123            Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2124        if (CharTy != PromotedCharTy)
2125          Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2126                                          Init, 0, VK_RValue);
2127        StructuredList->updateInit(Context, i, Init);
2128      }
2129    } else {
2130      ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2131      std::string Str;
2132      Context.getObjCEncodingForType(E->getEncodedType(), Str);
2133
2134      // Get the length of the string.
2135      uint64_t StrLen = Str.size();
2136      if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2137        StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2138      StructuredList->resizeInits(Context, StrLen);
2139
2140      // Build a literal for each character in the string, and put them into
2141      // the init list.
2142      for (unsigned i = 0, e = StrLen; i != e; ++i) {
2143        llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2144        Expr *Init = new (Context) IntegerLiteral(
2145            Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2146        if (CharTy != PromotedCharTy)
2147          Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2148                                          Init, 0, VK_RValue);
2149        StructuredList->updateInit(Context, i, Init);
2150      }
2151    }
2152  }
2153
2154  // Make sure that our non-designated initializer list has space
2155  // for a subobject corresponding to this array element.
2156  if (!VerifyOnly &&
2157      DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2158    StructuredList->resizeInits(SemaRef.Context,
2159                                DesignatedEndIndex.getZExtValue() + 1);
2160
2161  // Repeatedly perform subobject initializations in the range
2162  // [DesignatedStartIndex, DesignatedEndIndex].
2163
2164  // Move to the next designator
2165  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2166  unsigned OldIndex = Index;
2167
2168  InitializedEntity ElementEntity =
2169    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2170
2171  while (DesignatedStartIndex <= DesignatedEndIndex) {
2172    // Recurse to check later designated subobjects.
2173    QualType ElementType = AT->getElementType();
2174    Index = OldIndex;
2175
2176    ElementEntity.setElementIndex(ElementIndex);
2177    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2178                                   ElementType, 0, 0, Index,
2179                                   StructuredList, ElementIndex,
2180                                   (DesignatedStartIndex == DesignatedEndIndex),
2181                                   false))
2182      return true;
2183
2184    // Move to the next index in the array that we'll be initializing.
2185    ++DesignatedStartIndex;
2186    ElementIndex = DesignatedStartIndex.getZExtValue();
2187  }
2188
2189  // If this the first designator, our caller will continue checking
2190  // the rest of this array subobject.
2191  if (IsFirstDesignator) {
2192    if (NextElementIndex)
2193      *NextElementIndex = DesignatedStartIndex;
2194    StructuredIndex = ElementIndex;
2195    return false;
2196  }
2197
2198  if (!FinishSubobjectInit)
2199    return false;
2200
2201  // Check the remaining elements within this array subobject.
2202  bool prevHadError = hadError;
2203  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2204                 /*SubobjectIsDesignatorContext=*/false, Index,
2205                 StructuredList, ElementIndex);
2206  return hadError && !prevHadError;
2207}
2208
2209// Get the structured initializer list for a subobject of type
2210// @p CurrentObjectType.
2211InitListExpr *
2212InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2213                                            QualType CurrentObjectType,
2214                                            InitListExpr *StructuredList,
2215                                            unsigned StructuredIndex,
2216                                            SourceRange InitRange) {
2217  if (VerifyOnly)
2218    return 0; // No structured list in verification-only mode.
2219  Expr *ExistingInit = 0;
2220  if (!StructuredList)
2221    ExistingInit = SyntacticToSemantic.lookup(IList);
2222  else if (StructuredIndex < StructuredList->getNumInits())
2223    ExistingInit = StructuredList->getInit(StructuredIndex);
2224
2225  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2226    return Result;
2227
2228  if (ExistingInit) {
2229    // We are creating an initializer list that initializes the
2230    // subobjects of the current object, but there was already an
2231    // initialization that completely initialized the current
2232    // subobject, e.g., by a compound literal:
2233    //
2234    // struct X { int a, b; };
2235    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2236    //
2237    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2238    // designated initializer re-initializes the whole
2239    // subobject [0], overwriting previous initializers.
2240    SemaRef.Diag(InitRange.getBegin(),
2241                 diag::warn_subobject_initializer_overrides)
2242      << InitRange;
2243    SemaRef.Diag(ExistingInit->getLocStart(),
2244                  diag::note_previous_initializer)
2245      << /*FIXME:has side effects=*/0
2246      << ExistingInit->getSourceRange();
2247  }
2248
2249  InitListExpr *Result
2250    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2251                                         InitRange.getBegin(), None,
2252                                         InitRange.getEnd());
2253
2254  QualType ResultType = CurrentObjectType;
2255  if (!ResultType->isArrayType())
2256    ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2257  Result->setType(ResultType);
2258
2259  // Pre-allocate storage for the structured initializer list.
2260  unsigned NumElements = 0;
2261  unsigned NumInits = 0;
2262  bool GotNumInits = false;
2263  if (!StructuredList) {
2264    NumInits = IList->getNumInits();
2265    GotNumInits = true;
2266  } else if (Index < IList->getNumInits()) {
2267    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2268      NumInits = SubList->getNumInits();
2269      GotNumInits = true;
2270    }
2271  }
2272
2273  if (const ArrayType *AType
2274      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2275    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2276      NumElements = CAType->getSize().getZExtValue();
2277      // Simple heuristic so that we don't allocate a very large
2278      // initializer with many empty entries at the end.
2279      if (GotNumInits && NumElements > NumInits)
2280        NumElements = 0;
2281    }
2282  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2283    NumElements = VType->getNumElements();
2284  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2285    RecordDecl *RDecl = RType->getDecl();
2286    if (RDecl->isUnion())
2287      NumElements = 1;
2288    else
2289      NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2290  }
2291
2292  Result->reserveInits(SemaRef.Context, NumElements);
2293
2294  // Link this new initializer list into the structured initializer
2295  // lists.
2296  if (StructuredList)
2297    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2298  else {
2299    Result->setSyntacticForm(IList);
2300    SyntacticToSemantic[IList] = Result;
2301  }
2302
2303  return Result;
2304}
2305
2306/// Update the initializer at index @p StructuredIndex within the
2307/// structured initializer list to the value @p expr.
2308void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2309                                                  unsigned &StructuredIndex,
2310                                                  Expr *expr) {
2311  // No structured initializer list to update
2312  if (!StructuredList)
2313    return;
2314
2315  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2316                                                  StructuredIndex, expr)) {
2317    // This initializer overwrites a previous initializer. Warn.
2318    SemaRef.Diag(expr->getLocStart(),
2319                  diag::warn_initializer_overrides)
2320      << expr->getSourceRange();
2321    SemaRef.Diag(PrevInit->getLocStart(),
2322                  diag::note_previous_initializer)
2323      << /*FIXME:has side effects=*/0
2324      << PrevInit->getSourceRange();
2325  }
2326
2327  ++StructuredIndex;
2328}
2329
2330/// Check that the given Index expression is a valid array designator
2331/// value. This is essentially just a wrapper around
2332/// VerifyIntegerConstantExpression that also checks for negative values
2333/// and produces a reasonable diagnostic if there is a
2334/// failure. Returns the index expression, possibly with an implicit cast
2335/// added, on success.  If everything went okay, Value will receive the
2336/// value of the constant expression.
2337static ExprResult
2338CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2339  SourceLocation Loc = Index->getLocStart();
2340
2341  // Make sure this is an integer constant expression.
2342  ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2343  if (Result.isInvalid())
2344    return Result;
2345
2346  if (Value.isSigned() && Value.isNegative())
2347    return S.Diag(Loc, diag::err_array_designator_negative)
2348      << Value.toString(10) << Index->getSourceRange();
2349
2350  Value.setIsUnsigned(true);
2351  return Result;
2352}
2353
2354ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2355                                            SourceLocation Loc,
2356                                            bool GNUSyntax,
2357                                            ExprResult Init) {
2358  typedef DesignatedInitExpr::Designator ASTDesignator;
2359
2360  bool Invalid = false;
2361  SmallVector<ASTDesignator, 32> Designators;
2362  SmallVector<Expr *, 32> InitExpressions;
2363
2364  // Build designators and check array designator expressions.
2365  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2366    const Designator &D = Desig.getDesignator(Idx);
2367    switch (D.getKind()) {
2368    case Designator::FieldDesignator:
2369      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2370                                          D.getFieldLoc()));
2371      break;
2372
2373    case Designator::ArrayDesignator: {
2374      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2375      llvm::APSInt IndexValue;
2376      if (!Index->isTypeDependent() && !Index->isValueDependent())
2377        Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2378      if (!Index)
2379        Invalid = true;
2380      else {
2381        Designators.push_back(ASTDesignator(InitExpressions.size(),
2382                                            D.getLBracketLoc(),
2383                                            D.getRBracketLoc()));
2384        InitExpressions.push_back(Index);
2385      }
2386      break;
2387    }
2388
2389    case Designator::ArrayRangeDesignator: {
2390      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2391      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2392      llvm::APSInt StartValue;
2393      llvm::APSInt EndValue;
2394      bool StartDependent = StartIndex->isTypeDependent() ||
2395                            StartIndex->isValueDependent();
2396      bool EndDependent = EndIndex->isTypeDependent() ||
2397                          EndIndex->isValueDependent();
2398      if (!StartDependent)
2399        StartIndex =
2400            CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2401      if (!EndDependent)
2402        EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2403
2404      if (!StartIndex || !EndIndex)
2405        Invalid = true;
2406      else {
2407        // Make sure we're comparing values with the same bit width.
2408        if (StartDependent || EndDependent) {
2409          // Nothing to compute.
2410        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2411          EndValue = EndValue.extend(StartValue.getBitWidth());
2412        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2413          StartValue = StartValue.extend(EndValue.getBitWidth());
2414
2415        if (!StartDependent && !EndDependent && EndValue < StartValue) {
2416          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2417            << StartValue.toString(10) << EndValue.toString(10)
2418            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2419          Invalid = true;
2420        } else {
2421          Designators.push_back(ASTDesignator(InitExpressions.size(),
2422                                              D.getLBracketLoc(),
2423                                              D.getEllipsisLoc(),
2424                                              D.getRBracketLoc()));
2425          InitExpressions.push_back(StartIndex);
2426          InitExpressions.push_back(EndIndex);
2427        }
2428      }
2429      break;
2430    }
2431    }
2432  }
2433
2434  if (Invalid || Init.isInvalid())
2435    return ExprError();
2436
2437  // Clear out the expressions within the designation.
2438  Desig.ClearExprs(*this);
2439
2440  DesignatedInitExpr *DIE
2441    = DesignatedInitExpr::Create(Context,
2442                                 Designators.data(), Designators.size(),
2443                                 InitExpressions, Loc, GNUSyntax,
2444                                 Init.takeAs<Expr>());
2445
2446  if (!getLangOpts().C99)
2447    Diag(DIE->getLocStart(), diag::ext_designated_init)
2448      << DIE->getSourceRange();
2449
2450  return Owned(DIE);
2451}
2452
2453//===----------------------------------------------------------------------===//
2454// Initialization entity
2455//===----------------------------------------------------------------------===//
2456
2457InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2458                                     const InitializedEntity &Parent)
2459  : Parent(&Parent), Index(Index)
2460{
2461  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2462    Kind = EK_ArrayElement;
2463    Type = AT->getElementType();
2464  } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2465    Kind = EK_VectorElement;
2466    Type = VT->getElementType();
2467  } else {
2468    const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2469    assert(CT && "Unexpected type");
2470    Kind = EK_ComplexElement;
2471    Type = CT->getElementType();
2472  }
2473}
2474
2475InitializedEntity
2476InitializedEntity::InitializeBase(ASTContext &Context,
2477                                  const CXXBaseSpecifier *Base,
2478                                  bool IsInheritedVirtualBase) {
2479  InitializedEntity Result;
2480  Result.Kind = EK_Base;
2481  Result.Parent = 0;
2482  Result.Base = reinterpret_cast<uintptr_t>(Base);
2483  if (IsInheritedVirtualBase)
2484    Result.Base |= 0x01;
2485
2486  Result.Type = Base->getType();
2487  return Result;
2488}
2489
2490DeclarationName InitializedEntity::getName() const {
2491  switch (getKind()) {
2492  case EK_Parameter:
2493  case EK_Parameter_CF_Audited: {
2494    ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2495    return (D ? D->getDeclName() : DeclarationName());
2496  }
2497
2498  case EK_Variable:
2499  case EK_Member:
2500    return VariableOrMember->getDeclName();
2501
2502  case EK_LambdaCapture:
2503    return DeclarationName(Capture.VarID);
2504
2505  case EK_Result:
2506  case EK_Exception:
2507  case EK_New:
2508  case EK_Temporary:
2509  case EK_Base:
2510  case EK_Delegating:
2511  case EK_ArrayElement:
2512  case EK_VectorElement:
2513  case EK_ComplexElement:
2514  case EK_BlockElement:
2515  case EK_CompoundLiteralInit:
2516  case EK_RelatedResult:
2517    return DeclarationName();
2518  }
2519
2520  llvm_unreachable("Invalid EntityKind!");
2521}
2522
2523DeclaratorDecl *InitializedEntity::getDecl() const {
2524  switch (getKind()) {
2525  case EK_Variable:
2526  case EK_Member:
2527    return VariableOrMember;
2528
2529  case EK_Parameter:
2530  case EK_Parameter_CF_Audited:
2531    return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2532
2533  case EK_Result:
2534  case EK_Exception:
2535  case EK_New:
2536  case EK_Temporary:
2537  case EK_Base:
2538  case EK_Delegating:
2539  case EK_ArrayElement:
2540  case EK_VectorElement:
2541  case EK_ComplexElement:
2542  case EK_BlockElement:
2543  case EK_LambdaCapture:
2544  case EK_CompoundLiteralInit:
2545  case EK_RelatedResult:
2546    return 0;
2547  }
2548
2549  llvm_unreachable("Invalid EntityKind!");
2550}
2551
2552bool InitializedEntity::allowsNRVO() const {
2553  switch (getKind()) {
2554  case EK_Result:
2555  case EK_Exception:
2556    return LocAndNRVO.NRVO;
2557
2558  case EK_Variable:
2559  case EK_Parameter:
2560  case EK_Parameter_CF_Audited:
2561  case EK_Member:
2562  case EK_New:
2563  case EK_Temporary:
2564  case EK_CompoundLiteralInit:
2565  case EK_Base:
2566  case EK_Delegating:
2567  case EK_ArrayElement:
2568  case EK_VectorElement:
2569  case EK_ComplexElement:
2570  case EK_BlockElement:
2571  case EK_LambdaCapture:
2572  case EK_RelatedResult:
2573    break;
2574  }
2575
2576  return false;
2577}
2578
2579unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
2580  assert(getParent() != this);
2581  unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
2582  for (unsigned I = 0; I != Depth; ++I)
2583    OS << "`-";
2584
2585  switch (getKind()) {
2586  case EK_Variable: OS << "Variable"; break;
2587  case EK_Parameter: OS << "Parameter"; break;
2588  case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
2589    break;
2590  case EK_Result: OS << "Result"; break;
2591  case EK_Exception: OS << "Exception"; break;
2592  case EK_Member: OS << "Member"; break;
2593  case EK_New: OS << "New"; break;
2594  case EK_Temporary: OS << "Temporary"; break;
2595  case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
2596  case EK_RelatedResult: OS << "RelatedResult"; break;
2597  case EK_Base: OS << "Base"; break;
2598  case EK_Delegating: OS << "Delegating"; break;
2599  case EK_ArrayElement: OS << "ArrayElement " << Index; break;
2600  case EK_VectorElement: OS << "VectorElement " << Index; break;
2601  case EK_ComplexElement: OS << "ComplexElement " << Index; break;
2602  case EK_BlockElement: OS << "Block"; break;
2603  case EK_LambdaCapture:
2604    OS << "LambdaCapture ";
2605    OS << DeclarationName(Capture.VarID);
2606    break;
2607  }
2608
2609  if (Decl *D = getDecl()) {
2610    OS << " ";
2611    cast<NamedDecl>(D)->printQualifiedName(OS);
2612  }
2613
2614  OS << " '" << getType().getAsString() << "'\n";
2615
2616  return Depth + 1;
2617}
2618
2619void InitializedEntity::dump() const {
2620  dumpImpl(llvm::errs());
2621}
2622
2623//===----------------------------------------------------------------------===//
2624// Initialization sequence
2625//===----------------------------------------------------------------------===//
2626
2627void InitializationSequence::Step::Destroy() {
2628  switch (Kind) {
2629  case SK_ResolveAddressOfOverloadedFunction:
2630  case SK_CastDerivedToBaseRValue:
2631  case SK_CastDerivedToBaseXValue:
2632  case SK_CastDerivedToBaseLValue:
2633  case SK_BindReference:
2634  case SK_BindReferenceToTemporary:
2635  case SK_ExtraneousCopyToTemporary:
2636  case SK_UserConversion:
2637  case SK_QualificationConversionRValue:
2638  case SK_QualificationConversionXValue:
2639  case SK_QualificationConversionLValue:
2640  case SK_LValueToRValue:
2641  case SK_ListInitialization:
2642  case SK_ListConstructorCall:
2643  case SK_UnwrapInitList:
2644  case SK_RewrapInitList:
2645  case SK_ConstructorInitialization:
2646  case SK_ZeroInitialization:
2647  case SK_CAssignment:
2648  case SK_StringInit:
2649  case SK_ObjCObjectConversion:
2650  case SK_ArrayInit:
2651  case SK_ParenthesizedArrayInit:
2652  case SK_PassByIndirectCopyRestore:
2653  case SK_PassByIndirectRestore:
2654  case SK_ProduceObjCObject:
2655  case SK_StdInitializerList:
2656  case SK_OCLSamplerInit:
2657  case SK_OCLZeroEvent:
2658    break;
2659
2660  case SK_ConversionSequence:
2661  case SK_ConversionSequenceNoNarrowing:
2662    delete ICS;
2663  }
2664}
2665
2666bool InitializationSequence::isDirectReferenceBinding() const {
2667  return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2668}
2669
2670bool InitializationSequence::isAmbiguous() const {
2671  if (!Failed())
2672    return false;
2673
2674  switch (getFailureKind()) {
2675  case FK_TooManyInitsForReference:
2676  case FK_ArrayNeedsInitList:
2677  case FK_ArrayNeedsInitListOrStringLiteral:
2678  case FK_ArrayNeedsInitListOrWideStringLiteral:
2679  case FK_NarrowStringIntoWideCharArray:
2680  case FK_WideStringIntoCharArray:
2681  case FK_IncompatWideStringIntoWideChar:
2682  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2683  case FK_NonConstLValueReferenceBindingToTemporary:
2684  case FK_NonConstLValueReferenceBindingToUnrelated:
2685  case FK_RValueReferenceBindingToLValue:
2686  case FK_ReferenceInitDropsQualifiers:
2687  case FK_ReferenceInitFailed:
2688  case FK_ConversionFailed:
2689  case FK_ConversionFromPropertyFailed:
2690  case FK_TooManyInitsForScalar:
2691  case FK_ReferenceBindingToInitList:
2692  case FK_InitListBadDestinationType:
2693  case FK_DefaultInitOfConst:
2694  case FK_Incomplete:
2695  case FK_ArrayTypeMismatch:
2696  case FK_NonConstantArrayInit:
2697  case FK_ListInitializationFailed:
2698  case FK_VariableLengthArrayHasInitializer:
2699  case FK_PlaceholderType:
2700  case FK_ExplicitConstructor:
2701    return false;
2702
2703  case FK_ReferenceInitOverloadFailed:
2704  case FK_UserConversionOverloadFailed:
2705  case FK_ConstructorOverloadFailed:
2706  case FK_ListConstructorOverloadFailed:
2707    return FailedOverloadResult == OR_Ambiguous;
2708  }
2709
2710  llvm_unreachable("Invalid EntityKind!");
2711}
2712
2713bool InitializationSequence::isConstructorInitialization() const {
2714  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2715}
2716
2717void
2718InitializationSequence
2719::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2720                                   DeclAccessPair Found,
2721                                   bool HadMultipleCandidates) {
2722  Step S;
2723  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2724  S.Type = Function->getType();
2725  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2726  S.Function.Function = Function;
2727  S.Function.FoundDecl = Found;
2728  Steps.push_back(S);
2729}
2730
2731void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2732                                                      ExprValueKind VK) {
2733  Step S;
2734  switch (VK) {
2735  case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2736  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2737  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2738  }
2739  S.Type = BaseType;
2740  Steps.push_back(S);
2741}
2742
2743void InitializationSequence::AddReferenceBindingStep(QualType T,
2744                                                     bool BindingTemporary) {
2745  Step S;
2746  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2747  S.Type = T;
2748  Steps.push_back(S);
2749}
2750
2751void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2752  Step S;
2753  S.Kind = SK_ExtraneousCopyToTemporary;
2754  S.Type = T;
2755  Steps.push_back(S);
2756}
2757
2758void
2759InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2760                                              DeclAccessPair FoundDecl,
2761                                              QualType T,
2762                                              bool HadMultipleCandidates) {
2763  Step S;
2764  S.Kind = SK_UserConversion;
2765  S.Type = T;
2766  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2767  S.Function.Function = Function;
2768  S.Function.FoundDecl = FoundDecl;
2769  Steps.push_back(S);
2770}
2771
2772void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2773                                                            ExprValueKind VK) {
2774  Step S;
2775  S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2776  switch (VK) {
2777  case VK_RValue:
2778    S.Kind = SK_QualificationConversionRValue;
2779    break;
2780  case VK_XValue:
2781    S.Kind = SK_QualificationConversionXValue;
2782    break;
2783  case VK_LValue:
2784    S.Kind = SK_QualificationConversionLValue;
2785    break;
2786  }
2787  S.Type = Ty;
2788  Steps.push_back(S);
2789}
2790
2791void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
2792  assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
2793
2794  Step S;
2795  S.Kind = SK_LValueToRValue;
2796  S.Type = Ty;
2797  Steps.push_back(S);
2798}
2799
2800void InitializationSequence::AddConversionSequenceStep(
2801    const ImplicitConversionSequence &ICS, QualType T,
2802    bool TopLevelOfInitList) {
2803  Step S;
2804  S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
2805                              : SK_ConversionSequence;
2806  S.Type = T;
2807  S.ICS = new ImplicitConversionSequence(ICS);
2808  Steps.push_back(S);
2809}
2810
2811void InitializationSequence::AddListInitializationStep(QualType T) {
2812  Step S;
2813  S.Kind = SK_ListInitialization;
2814  S.Type = T;
2815  Steps.push_back(S);
2816}
2817
2818void
2819InitializationSequence
2820::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2821                                   AccessSpecifier Access,
2822                                   QualType T,
2823                                   bool HadMultipleCandidates,
2824                                   bool FromInitList, bool AsInitList) {
2825  Step S;
2826  S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2827                                       : SK_ConstructorInitialization;
2828  S.Type = T;
2829  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2830  S.Function.Function = Constructor;
2831  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2832  Steps.push_back(S);
2833}
2834
2835void InitializationSequence::AddZeroInitializationStep(QualType T) {
2836  Step S;
2837  S.Kind = SK_ZeroInitialization;
2838  S.Type = T;
2839  Steps.push_back(S);
2840}
2841
2842void InitializationSequence::AddCAssignmentStep(QualType T) {
2843  Step S;
2844  S.Kind = SK_CAssignment;
2845  S.Type = T;
2846  Steps.push_back(S);
2847}
2848
2849void InitializationSequence::AddStringInitStep(QualType T) {
2850  Step S;
2851  S.Kind = SK_StringInit;
2852  S.Type = T;
2853  Steps.push_back(S);
2854}
2855
2856void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2857  Step S;
2858  S.Kind = SK_ObjCObjectConversion;
2859  S.Type = T;
2860  Steps.push_back(S);
2861}
2862
2863void InitializationSequence::AddArrayInitStep(QualType T) {
2864  Step S;
2865  S.Kind = SK_ArrayInit;
2866  S.Type = T;
2867  Steps.push_back(S);
2868}
2869
2870void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2871  Step S;
2872  S.Kind = SK_ParenthesizedArrayInit;
2873  S.Type = T;
2874  Steps.push_back(S);
2875}
2876
2877void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2878                                                              bool shouldCopy) {
2879  Step s;
2880  s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2881                       : SK_PassByIndirectRestore);
2882  s.Type = type;
2883  Steps.push_back(s);
2884}
2885
2886void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2887  Step S;
2888  S.Kind = SK_ProduceObjCObject;
2889  S.Type = T;
2890  Steps.push_back(S);
2891}
2892
2893void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2894  Step S;
2895  S.Kind = SK_StdInitializerList;
2896  S.Type = T;
2897  Steps.push_back(S);
2898}
2899
2900void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
2901  Step S;
2902  S.Kind = SK_OCLSamplerInit;
2903  S.Type = T;
2904  Steps.push_back(S);
2905}
2906
2907void InitializationSequence::AddOCLZeroEventStep(QualType T) {
2908  Step S;
2909  S.Kind = SK_OCLZeroEvent;
2910  S.Type = T;
2911  Steps.push_back(S);
2912}
2913
2914void InitializationSequence::RewrapReferenceInitList(QualType T,
2915                                                     InitListExpr *Syntactic) {
2916  assert(Syntactic->getNumInits() == 1 &&
2917         "Can only rewrap trivial init lists.");
2918  Step S;
2919  S.Kind = SK_UnwrapInitList;
2920  S.Type = Syntactic->getInit(0)->getType();
2921  Steps.insert(Steps.begin(), S);
2922
2923  S.Kind = SK_RewrapInitList;
2924  S.Type = T;
2925  S.WrappingSyntacticList = Syntactic;
2926  Steps.push_back(S);
2927}
2928
2929void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2930                                                OverloadingResult Result) {
2931  setSequenceKind(FailedSequence);
2932  this->Failure = Failure;
2933  this->FailedOverloadResult = Result;
2934}
2935
2936//===----------------------------------------------------------------------===//
2937// Attempt initialization
2938//===----------------------------------------------------------------------===//
2939
2940static void MaybeProduceObjCObject(Sema &S,
2941                                   InitializationSequence &Sequence,
2942                                   const InitializedEntity &Entity) {
2943  if (!S.getLangOpts().ObjCAutoRefCount) return;
2944
2945  /// When initializing a parameter, produce the value if it's marked
2946  /// __attribute__((ns_consumed)).
2947  if (Entity.isParameterKind()) {
2948    if (!Entity.isParameterConsumed())
2949      return;
2950
2951    assert(Entity.getType()->isObjCRetainableType() &&
2952           "consuming an object of unretainable type?");
2953    Sequence.AddProduceObjCObjectStep(Entity.getType());
2954
2955  /// When initializing a return value, if the return type is a
2956  /// retainable type, then returns need to immediately retain the
2957  /// object.  If an autorelease is required, it will be done at the
2958  /// last instant.
2959  } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2960    if (!Entity.getType()->isObjCRetainableType())
2961      return;
2962
2963    Sequence.AddProduceObjCObjectStep(Entity.getType());
2964  }
2965}
2966
2967static void TryListInitialization(Sema &S,
2968                                  const InitializedEntity &Entity,
2969                                  const InitializationKind &Kind,
2970                                  InitListExpr *InitList,
2971                                  InitializationSequence &Sequence);
2972
2973/// \brief When initializing from init list via constructor, handle
2974/// initialization of an object of type std::initializer_list<T>.
2975///
2976/// \return true if we have handled initialization of an object of type
2977/// std::initializer_list<T>, false otherwise.
2978static bool TryInitializerListConstruction(Sema &S,
2979                                           InitListExpr *List,
2980                                           QualType DestType,
2981                                           InitializationSequence &Sequence) {
2982  QualType E;
2983  if (!S.isStdInitializerList(DestType, &E))
2984    return false;
2985
2986  if (S.RequireCompleteType(List->getExprLoc(), E, 0)) {
2987    Sequence.setIncompleteTypeFailure(E);
2988    return true;
2989  }
2990
2991  // Try initializing a temporary array from the init list.
2992  QualType ArrayType = S.Context.getConstantArrayType(
2993      E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2994                                 List->getNumInits()),
2995      clang::ArrayType::Normal, 0);
2996  InitializedEntity HiddenArray =
2997      InitializedEntity::InitializeTemporary(ArrayType);
2998  InitializationKind Kind =
2999      InitializationKind::CreateDirectList(List->getExprLoc());
3000  TryListInitialization(S, HiddenArray, Kind, List, Sequence);
3001  if (Sequence)
3002    Sequence.AddStdInitializerListConstructionStep(DestType);
3003  return true;
3004}
3005
3006static OverloadingResult
3007ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3008                           MultiExprArg Args,
3009                           OverloadCandidateSet &CandidateSet,
3010                           ArrayRef<NamedDecl *> Ctors,
3011                           OverloadCandidateSet::iterator &Best,
3012                           bool CopyInitializing, bool AllowExplicit,
3013                           bool OnlyListConstructors, bool InitListSyntax) {
3014  CandidateSet.clear();
3015
3016  for (ArrayRef<NamedDecl *>::iterator
3017         Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) {
3018    NamedDecl *D = *Con;
3019    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3020    bool SuppressUserConversions = false;
3021
3022    // Find the constructor (which may be a template).
3023    CXXConstructorDecl *Constructor = 0;
3024    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3025    if (ConstructorTmpl)
3026      Constructor = cast<CXXConstructorDecl>(
3027                                           ConstructorTmpl->getTemplatedDecl());
3028    else {
3029      Constructor = cast<CXXConstructorDecl>(D);
3030
3031      // C++11 [over.best.ics]p4:
3032      //   However, when considering the argument of a constructor or
3033      //   user-defined conversion function that is a candidate:
3034      //    -- by 13.3.1.3 when invoked for the copying/moving of a temporary
3035      //       in the second step of a class copy-initialization,
3036      //    -- by 13.3.1.7 when passing the initializer list as a single
3037      //       argument or when the initializer list has exactly one elementand
3038      //       a conversion to some class X or reference to (possibly
3039      //       cv-qualified) X is considered for the first parameter of a
3040      //       constructor of X, or
3041      //    -- by 13.3.1.4, 13.3.1.5, or 13.3.1.6 in all cases,
3042      //   only standard conversion sequences and ellipsis conversion sequences
3043      //   are considered.
3044      if ((CopyInitializing || (InitListSyntax && Args.size() == 1)) &&
3045          Constructor->isCopyOrMoveConstructor())
3046        SuppressUserConversions = true;
3047    }
3048
3049    if (!Constructor->isInvalidDecl() &&
3050        (AllowExplicit || !Constructor->isExplicit()) &&
3051        (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
3052      if (ConstructorTmpl)
3053        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3054                                       /*ExplicitArgs*/ 0, Args,
3055                                       CandidateSet, SuppressUserConversions);
3056      else {
3057        // C++ [over.match.copy]p1:
3058        //   - When initializing a temporary to be bound to the first parameter
3059        //     of a constructor that takes a reference to possibly cv-qualified
3060        //     T as its first argument, called with a single argument in the
3061        //     context of direct-initialization, explicit conversion functions
3062        //     are also considered.
3063        bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3064                                 Args.size() == 1 &&
3065                                 Constructor->isCopyOrMoveConstructor();
3066        S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
3067                               SuppressUserConversions,
3068                               /*PartialOverloading=*/false,
3069                               /*AllowExplicit=*/AllowExplicitConv);
3070      }
3071    }
3072  }
3073
3074  // Perform overload resolution and return the result.
3075  return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3076}
3077
3078/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3079/// enumerates the constructors of the initialized entity and performs overload
3080/// resolution to select the best.
3081/// If InitListSyntax is true, this is list-initialization of a non-aggregate
3082/// class type.
3083static void TryConstructorInitialization(Sema &S,
3084                                         const InitializedEntity &Entity,
3085                                         const InitializationKind &Kind,
3086                                         MultiExprArg Args, QualType DestType,
3087                                         InitializationSequence &Sequence,
3088                                         bool InitListSyntax = false) {
3089  assert((!InitListSyntax || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3090         "InitListSyntax must come with a single initializer list argument.");
3091
3092  // The type we're constructing needs to be complete.
3093  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3094    Sequence.setIncompleteTypeFailure(DestType);
3095    return;
3096  }
3097
3098  const RecordType *DestRecordType = DestType->getAs<RecordType>();
3099  assert(DestRecordType && "Constructor initialization requires record type");
3100  CXXRecordDecl *DestRecordDecl
3101    = cast<CXXRecordDecl>(DestRecordType->getDecl());
3102
3103  // Build the candidate set directly in the initialization sequence
3104  // structure, so that it will persist if we fail.
3105  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3106
3107  // Determine whether we are allowed to call explicit constructors or
3108  // explicit conversion operators.
3109  bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
3110  bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3111
3112  //   - Otherwise, if T is a class type, constructors are considered. The
3113  //     applicable constructors are enumerated, and the best one is chosen
3114  //     through overload resolution.
3115  DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
3116  // The container holding the constructors can under certain conditions
3117  // be changed while iterating (e.g. because of deserialization).
3118  // To be safe we copy the lookup results to a new container.
3119  SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3120
3121  OverloadingResult Result = OR_No_Viable_Function;
3122  OverloadCandidateSet::iterator Best;
3123  bool AsInitializerList = false;
3124
3125  // C++11 [over.match.list]p1:
3126  //   When objects of non-aggregate type T are list-initialized, overload
3127  //   resolution selects the constructor in two phases:
3128  //   - Initially, the candidate functions are the initializer-list
3129  //     constructors of the class T and the argument list consists of the
3130  //     initializer list as a single argument.
3131  if (InitListSyntax) {
3132    InitListExpr *ILE = cast<InitListExpr>(Args[0]);
3133    AsInitializerList = true;
3134
3135    // If the initializer list has no elements and T has a default constructor,
3136    // the first phase is omitted.
3137    if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
3138      Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3139                                          CandidateSet, Ctors, Best,
3140                                          CopyInitialization, AllowExplicit,
3141                                          /*OnlyListConstructor=*/true,
3142                                          InitListSyntax);
3143
3144    // Time to unwrap the init list.
3145    Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
3146  }
3147
3148  // C++11 [over.match.list]p1:
3149  //   - If no viable initializer-list constructor is found, overload resolution
3150  //     is performed again, where the candidate functions are all the
3151  //     constructors of the class T and the argument list consists of the
3152  //     elements of the initializer list.
3153  if (Result == OR_No_Viable_Function) {
3154    AsInitializerList = false;
3155    Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3156                                        CandidateSet, Ctors, Best,
3157                                        CopyInitialization, AllowExplicit,
3158                                        /*OnlyListConstructors=*/false,
3159                                        InitListSyntax);
3160  }
3161  if (Result) {
3162    Sequence.SetOverloadFailure(InitListSyntax ?
3163                      InitializationSequence::FK_ListConstructorOverloadFailed :
3164                      InitializationSequence::FK_ConstructorOverloadFailed,
3165                                Result);
3166    return;
3167  }
3168
3169  // C++11 [dcl.init]p6:
3170  //   If a program calls for the default initialization of an object
3171  //   of a const-qualified type T, T shall be a class type with a
3172  //   user-provided default constructor.
3173  if (Kind.getKind() == InitializationKind::IK_Default &&
3174      Entity.getType().isConstQualified() &&
3175      !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
3176    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3177    return;
3178  }
3179
3180  // C++11 [over.match.list]p1:
3181  //   In copy-list-initialization, if an explicit constructor is chosen, the
3182  //   initializer is ill-formed.
3183  CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3184  if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3185    Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3186    return;
3187  }
3188
3189  // Add the constructor initialization step. Any cv-qualification conversion is
3190  // subsumed by the initialization.
3191  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3192  Sequence.AddConstructorInitializationStep(CtorDecl,
3193                                            Best->FoundDecl.getAccess(),
3194                                            DestType, HadMultipleCandidates,
3195                                            InitListSyntax, AsInitializerList);
3196}
3197
3198static bool
3199ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3200                                             Expr *Initializer,
3201                                             QualType &SourceType,
3202                                             QualType &UnqualifiedSourceType,
3203                                             QualType UnqualifiedTargetType,
3204                                             InitializationSequence &Sequence) {
3205  if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3206        S.Context.OverloadTy) {
3207    DeclAccessPair Found;
3208    bool HadMultipleCandidates = false;
3209    if (FunctionDecl *Fn
3210        = S.ResolveAddressOfOverloadedFunction(Initializer,
3211                                               UnqualifiedTargetType,
3212                                               false, Found,
3213                                               &HadMultipleCandidates)) {
3214      Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3215                                                HadMultipleCandidates);
3216      SourceType = Fn->getType();
3217      UnqualifiedSourceType = SourceType.getUnqualifiedType();
3218    } else if (!UnqualifiedTargetType->isRecordType()) {
3219      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3220      return true;
3221    }
3222  }
3223  return false;
3224}
3225
3226static void TryReferenceInitializationCore(Sema &S,
3227                                           const InitializedEntity &Entity,
3228                                           const InitializationKind &Kind,
3229                                           Expr *Initializer,
3230                                           QualType cv1T1, QualType T1,
3231                                           Qualifiers T1Quals,
3232                                           QualType cv2T2, QualType T2,
3233                                           Qualifiers T2Quals,
3234                                           InitializationSequence &Sequence);
3235
3236static void TryValueInitialization(Sema &S,
3237                                   const InitializedEntity &Entity,
3238                                   const InitializationKind &Kind,
3239                                   InitializationSequence &Sequence,
3240                                   InitListExpr *InitList = 0);
3241
3242/// \brief Attempt list initialization of a reference.
3243static void TryReferenceListInitialization(Sema &S,
3244                                           const InitializedEntity &Entity,
3245                                           const InitializationKind &Kind,
3246                                           InitListExpr *InitList,
3247                                           InitializationSequence &Sequence) {
3248  // First, catch C++03 where this isn't possible.
3249  if (!S.getLangOpts().CPlusPlus11) {
3250    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3251    return;
3252  }
3253
3254  QualType DestType = Entity.getType();
3255  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3256  Qualifiers T1Quals;
3257  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3258
3259  // Reference initialization via an initializer list works thus:
3260  // If the initializer list consists of a single element that is
3261  // reference-related to the referenced type, bind directly to that element
3262  // (possibly creating temporaries).
3263  // Otherwise, initialize a temporary with the initializer list and
3264  // bind to that.
3265  if (InitList->getNumInits() == 1) {
3266    Expr *Initializer = InitList->getInit(0);
3267    QualType cv2T2 = Initializer->getType();
3268    Qualifiers T2Quals;
3269    QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3270
3271    // If this fails, creating a temporary wouldn't work either.
3272    if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3273                                                     T1, Sequence))
3274      return;
3275
3276    SourceLocation DeclLoc = Initializer->getLocStart();
3277    bool dummy1, dummy2, dummy3;
3278    Sema::ReferenceCompareResult RefRelationship
3279      = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3280                                       dummy2, dummy3);
3281    if (RefRelationship >= Sema::Ref_Related) {
3282      // Try to bind the reference here.
3283      TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3284                                     T1Quals, cv2T2, T2, T2Quals, Sequence);
3285      if (Sequence)
3286        Sequence.RewrapReferenceInitList(cv1T1, InitList);
3287      return;
3288    }
3289
3290    // Update the initializer if we've resolved an overloaded function.
3291    if (Sequence.step_begin() != Sequence.step_end())
3292      Sequence.RewrapReferenceInitList(cv1T1, InitList);
3293  }
3294
3295  // Not reference-related. Create a temporary and bind to that.
3296  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3297
3298  TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3299  if (Sequence) {
3300    if (DestType->isRValueReferenceType() ||
3301        (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3302      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3303    else
3304      Sequence.SetFailed(
3305          InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3306  }
3307}
3308
3309/// \brief Attempt list initialization (C++0x [dcl.init.list])
3310static void TryListInitialization(Sema &S,
3311                                  const InitializedEntity &Entity,
3312                                  const InitializationKind &Kind,
3313                                  InitListExpr *InitList,
3314                                  InitializationSequence &Sequence) {
3315  QualType DestType = Entity.getType();
3316
3317  // C++ doesn't allow scalar initialization with more than one argument.
3318  // But C99 complex numbers are scalars and it makes sense there.
3319  if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3320      !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3321    Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3322    return;
3323  }
3324  if (DestType->isReferenceType()) {
3325    TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3326    return;
3327  }
3328  if (DestType->isRecordType()) {
3329    if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3330      Sequence.setIncompleteTypeFailure(DestType);
3331      return;
3332    }
3333
3334    // C++11 [dcl.init.list]p3:
3335    //   - If T is an aggregate, aggregate initialization is performed.
3336    if (!DestType->isAggregateType()) {
3337      if (S.getLangOpts().CPlusPlus11) {
3338        //   - Otherwise, if the initializer list has no elements and T is a
3339        //     class type with a default constructor, the object is
3340        //     value-initialized.
3341        if (InitList->getNumInits() == 0) {
3342          CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3343          if (RD->hasDefaultConstructor()) {
3344            TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3345            return;
3346          }
3347        }
3348
3349        //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3350        //     an initializer_list object constructed [...]
3351        if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3352          return;
3353
3354        //   - Otherwise, if T is a class type, constructors are considered.
3355        Expr *InitListAsExpr = InitList;
3356        TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3357                                     Sequence, /*InitListSyntax*/true);
3358      } else
3359        Sequence.SetFailed(
3360            InitializationSequence::FK_InitListBadDestinationType);
3361      return;
3362    }
3363  }
3364  if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
3365      InitList->getNumInits() == 1 &&
3366      InitList->getInit(0)->getType()->isRecordType()) {
3367    //   - Otherwise, if the initializer list has a single element of type E
3368    //     [...references are handled above...], the object or reference is
3369    //     initialized from that element; if a narrowing conversion is required
3370    //     to convert the element to T, the program is ill-formed.
3371    //
3372    // Per core-24034, this is direct-initialization if we were performing
3373    // direct-list-initialization and copy-initialization otherwise.
3374    // We can't use InitListChecker for this, because it always performs
3375    // copy-initialization. This only matters if we might use an 'explicit'
3376    // conversion operator, so we only need to handle the cases where the source
3377    // is of record type.
3378    InitializationKind SubKind =
3379        Kind.getKind() == InitializationKind::IK_DirectList
3380            ? InitializationKind::CreateDirect(Kind.getLocation(),
3381                                               InitList->getLBraceLoc(),
3382                                               InitList->getRBraceLoc())
3383            : Kind;
3384    Expr *SubInit[1] = { InitList->getInit(0) };
3385    Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3386                            /*TopLevelOfInitList*/true);
3387    if (Sequence)
3388      Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3389    return;
3390  }
3391
3392  InitListChecker CheckInitList(S, Entity, InitList,
3393          DestType, /*VerifyOnly=*/true);
3394  if (CheckInitList.HadError()) {
3395    Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3396    return;
3397  }
3398
3399  // Add the list initialization step with the built init list.
3400  Sequence.AddListInitializationStep(DestType);
3401}
3402
3403/// \brief Try a reference initialization that involves calling a conversion
3404/// function.
3405static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3406                                             const InitializedEntity &Entity,
3407                                             const InitializationKind &Kind,
3408                                             Expr *Initializer,
3409                                             bool AllowRValues,
3410                                             InitializationSequence &Sequence) {
3411  QualType DestType = Entity.getType();
3412  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3413  QualType T1 = cv1T1.getUnqualifiedType();
3414  QualType cv2T2 = Initializer->getType();
3415  QualType T2 = cv2T2.getUnqualifiedType();
3416
3417  bool DerivedToBase;
3418  bool ObjCConversion;
3419  bool ObjCLifetimeConversion;
3420  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3421                                         T1, T2, DerivedToBase,
3422                                         ObjCConversion,
3423                                         ObjCLifetimeConversion) &&
3424         "Must have incompatible references when binding via conversion");
3425  (void)DerivedToBase;
3426  (void)ObjCConversion;
3427  (void)ObjCLifetimeConversion;
3428
3429  // Build the candidate set directly in the initialization sequence
3430  // structure, so that it will persist if we fail.
3431  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3432  CandidateSet.clear();
3433
3434  // Determine whether we are allowed to call explicit constructors or
3435  // explicit conversion operators.
3436  bool AllowExplicit = Kind.AllowExplicit();
3437  bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
3438
3439  const RecordType *T1RecordType = 0;
3440  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3441      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3442    // The type we're converting to is a class type. Enumerate its constructors
3443    // to see if there is a suitable conversion.
3444    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3445
3446    DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl);
3447    // The container holding the constructors can under certain conditions
3448    // be changed while iterating (e.g. because of deserialization).
3449    // To be safe we copy the lookup results to a new container.
3450    SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3451    for (SmallVectorImpl<NamedDecl *>::iterator
3452           CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
3453      NamedDecl *D = *CI;
3454      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3455
3456      // Find the constructor (which may be a template).
3457      CXXConstructorDecl *Constructor = 0;
3458      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3459      if (ConstructorTmpl)
3460        Constructor = cast<CXXConstructorDecl>(
3461                                         ConstructorTmpl->getTemplatedDecl());
3462      else
3463        Constructor = cast<CXXConstructorDecl>(D);
3464
3465      if (!Constructor->isInvalidDecl() &&
3466          Constructor->isConvertingConstructor(AllowExplicit)) {
3467        if (ConstructorTmpl)
3468          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3469                                         /*ExplicitArgs*/ 0,
3470                                         Initializer, CandidateSet,
3471                                         /*SuppressUserConversions=*/true);
3472        else
3473          S.AddOverloadCandidate(Constructor, FoundDecl,
3474                                 Initializer, CandidateSet,
3475                                 /*SuppressUserConversions=*/true);
3476      }
3477    }
3478  }
3479  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3480    return OR_No_Viable_Function;
3481
3482  const RecordType *T2RecordType = 0;
3483  if ((T2RecordType = T2->getAs<RecordType>()) &&
3484      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3485    // The type we're converting from is a class type, enumerate its conversion
3486    // functions.
3487    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3488
3489    std::pair<CXXRecordDecl::conversion_iterator,
3490              CXXRecordDecl::conversion_iterator>
3491      Conversions = T2RecordDecl->getVisibleConversionFunctions();
3492    for (CXXRecordDecl::conversion_iterator
3493           I = Conversions.first, E = Conversions.second; I != E; ++I) {
3494      NamedDecl *D = *I;
3495      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3496      if (isa<UsingShadowDecl>(D))
3497        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3498
3499      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3500      CXXConversionDecl *Conv;
3501      if (ConvTemplate)
3502        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3503      else
3504        Conv = cast<CXXConversionDecl>(D);
3505
3506      // If the conversion function doesn't return a reference type,
3507      // it can't be considered for this conversion unless we're allowed to
3508      // consider rvalues.
3509      // FIXME: Do we need to make sure that we only consider conversion
3510      // candidates with reference-compatible results? That might be needed to
3511      // break recursion.
3512      if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3513          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3514        if (ConvTemplate)
3515          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3516                                           ActingDC, Initializer,
3517                                           DestType, CandidateSet,
3518                                           /*AllowObjCConversionOnExplicit=*/
3519                                             false);
3520        else
3521          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3522                                   Initializer, DestType, CandidateSet,
3523                                   /*AllowObjCConversionOnExplicit=*/false);
3524      }
3525    }
3526  }
3527  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3528    return OR_No_Viable_Function;
3529
3530  SourceLocation DeclLoc = Initializer->getLocStart();
3531
3532  // Perform overload resolution. If it fails, return the failed result.
3533  OverloadCandidateSet::iterator Best;
3534  if (OverloadingResult Result
3535        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3536    return Result;
3537
3538  FunctionDecl *Function = Best->Function;
3539  // This is the overload that will be used for this initialization step if we
3540  // use this initialization. Mark it as referenced.
3541  Function->setReferenced();
3542
3543  // Compute the returned type of the conversion.
3544  if (isa<CXXConversionDecl>(Function))
3545    T2 = Function->getReturnType();
3546  else
3547    T2 = cv1T1;
3548
3549  // Add the user-defined conversion step.
3550  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3551  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3552                                 T2.getNonLValueExprType(S.Context),
3553                                 HadMultipleCandidates);
3554
3555  // Determine whether we need to perform derived-to-base or
3556  // cv-qualification adjustments.
3557  ExprValueKind VK = VK_RValue;
3558  if (T2->isLValueReferenceType())
3559    VK = VK_LValue;
3560  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3561    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3562
3563  bool NewDerivedToBase = false;
3564  bool NewObjCConversion = false;
3565  bool NewObjCLifetimeConversion = false;
3566  Sema::ReferenceCompareResult NewRefRelationship
3567    = S.CompareReferenceRelationship(DeclLoc, T1,
3568                                     T2.getNonLValueExprType(S.Context),
3569                                     NewDerivedToBase, NewObjCConversion,
3570                                     NewObjCLifetimeConversion);
3571  if (NewRefRelationship == Sema::Ref_Incompatible) {
3572    // If the type we've converted to is not reference-related to the
3573    // type we're looking for, then there is another conversion step
3574    // we need to perform to produce a temporary of the right type
3575    // that we'll be binding to.
3576    ImplicitConversionSequence ICS;
3577    ICS.setStandard();
3578    ICS.Standard = Best->FinalConversion;
3579    T2 = ICS.Standard.getToType(2);
3580    Sequence.AddConversionSequenceStep(ICS, T2);
3581  } else if (NewDerivedToBase)
3582    Sequence.AddDerivedToBaseCastStep(
3583                                S.Context.getQualifiedType(T1,
3584                                  T2.getNonReferenceType().getQualifiers()),
3585                                      VK);
3586  else if (NewObjCConversion)
3587    Sequence.AddObjCObjectConversionStep(
3588                                S.Context.getQualifiedType(T1,
3589                                  T2.getNonReferenceType().getQualifiers()));
3590
3591  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3592    Sequence.AddQualificationConversionStep(cv1T1, VK);
3593
3594  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3595  return OR_Success;
3596}
3597
3598static void CheckCXX98CompatAccessibleCopy(Sema &S,
3599                                           const InitializedEntity &Entity,
3600                                           Expr *CurInitExpr);
3601
3602/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3603static void TryReferenceInitialization(Sema &S,
3604                                       const InitializedEntity &Entity,
3605                                       const InitializationKind &Kind,
3606                                       Expr *Initializer,
3607                                       InitializationSequence &Sequence) {
3608  QualType DestType = Entity.getType();
3609  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3610  Qualifiers T1Quals;
3611  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3612  QualType cv2T2 = Initializer->getType();
3613  Qualifiers T2Quals;
3614  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3615
3616  // If the initializer is the address of an overloaded function, try
3617  // to resolve the overloaded function. If all goes well, T2 is the
3618  // type of the resulting function.
3619  if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3620                                                   T1, Sequence))
3621    return;
3622
3623  // Delegate everything else to a subfunction.
3624  TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3625                                 T1Quals, cv2T2, T2, T2Quals, Sequence);
3626}
3627
3628/// Converts the target of reference initialization so that it has the
3629/// appropriate qualifiers and value kind.
3630///
3631/// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
3632/// \code
3633///   int x;
3634///   const int &r = x;
3635/// \endcode
3636///
3637/// In this case the reference is binding to a bitfield lvalue, which isn't
3638/// valid. Perform a load to create a lifetime-extended temporary instead.
3639/// \code
3640///   const int &r = someStruct.bitfield;
3641/// \endcode
3642static ExprValueKind
3643convertQualifiersAndValueKindIfNecessary(Sema &S,
3644                                         InitializationSequence &Sequence,
3645                                         Expr *Initializer,
3646                                         QualType cv1T1,
3647                                         Qualifiers T1Quals,
3648                                         Qualifiers T2Quals,
3649                                         bool IsLValueRef) {
3650  bool IsNonAddressableType = Initializer->refersToBitField() ||
3651                              Initializer->refersToVectorElement();
3652
3653  if (IsNonAddressableType) {
3654    // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
3655    // lvalue reference to a non-volatile const type, or the reference shall be
3656    // an rvalue reference.
3657    //
3658    // If not, we can't make a temporary and bind to that. Give up and allow the
3659    // error to be diagnosed later.
3660    if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
3661      assert(Initializer->isGLValue());
3662      return Initializer->getValueKind();
3663    }
3664
3665    // Force a load so we can materialize a temporary.
3666    Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
3667    return VK_RValue;
3668  }
3669
3670  if (T1Quals != T2Quals) {
3671    Sequence.AddQualificationConversionStep(cv1T1,
3672                                            Initializer->getValueKind());
3673  }
3674
3675  return Initializer->getValueKind();
3676}
3677
3678
3679/// \brief Reference initialization without resolving overloaded functions.
3680static void TryReferenceInitializationCore(Sema &S,
3681                                           const InitializedEntity &Entity,
3682                                           const InitializationKind &Kind,
3683                                           Expr *Initializer,
3684                                           QualType cv1T1, QualType T1,
3685                                           Qualifiers T1Quals,
3686                                           QualType cv2T2, QualType T2,
3687                                           Qualifiers T2Quals,
3688                                           InitializationSequence &Sequence) {
3689  QualType DestType = Entity.getType();
3690  SourceLocation DeclLoc = Initializer->getLocStart();
3691  // Compute some basic properties of the types and the initializer.
3692  bool isLValueRef = DestType->isLValueReferenceType();
3693  bool isRValueRef = !isLValueRef;
3694  bool DerivedToBase = false;
3695  bool ObjCConversion = false;
3696  bool ObjCLifetimeConversion = false;
3697  Expr::Classification InitCategory = Initializer->Classify(S.Context);
3698  Sema::ReferenceCompareResult RefRelationship
3699    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3700                                     ObjCConversion, ObjCLifetimeConversion);
3701
3702  // C++0x [dcl.init.ref]p5:
3703  //   A reference to type "cv1 T1" is initialized by an expression of type
3704  //   "cv2 T2" as follows:
3705  //
3706  //     - If the reference is an lvalue reference and the initializer
3707  //       expression
3708  // Note the analogous bullet points for rvalue refs to functions. Because
3709  // there are no function rvalues in C++, rvalue refs to functions are treated
3710  // like lvalue refs.
3711  OverloadingResult ConvOvlResult = OR_Success;
3712  bool T1Function = T1->isFunctionType();
3713  if (isLValueRef || T1Function) {
3714    if (InitCategory.isLValue() &&
3715        (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3716         (Kind.isCStyleOrFunctionalCast() &&
3717          RefRelationship == Sema::Ref_Related))) {
3718      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3719      //     reference-compatible with "cv2 T2," or
3720      //
3721      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3722      // bit-field when we're determining whether the reference initialization
3723      // can occur. However, we do pay attention to whether it is a bit-field
3724      // to decide whether we're actually binding to a temporary created from
3725      // the bit-field.
3726      if (DerivedToBase)
3727        Sequence.AddDerivedToBaseCastStep(
3728                         S.Context.getQualifiedType(T1, T2Quals),
3729                         VK_LValue);
3730      else if (ObjCConversion)
3731        Sequence.AddObjCObjectConversionStep(
3732                                     S.Context.getQualifiedType(T1, T2Quals));
3733
3734      ExprValueKind ValueKind =
3735        convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
3736                                                 cv1T1, T1Quals, T2Quals,
3737                                                 isLValueRef);
3738      Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3739      return;
3740    }
3741
3742    //     - has a class type (i.e., T2 is a class type), where T1 is not
3743    //       reference-related to T2, and can be implicitly converted to an
3744    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3745    //       with "cv3 T3" (this conversion is selected by enumerating the
3746    //       applicable conversion functions (13.3.1.6) and choosing the best
3747    //       one through overload resolution (13.3)),
3748    // If we have an rvalue ref to function type here, the rhs must be
3749    // an rvalue. DR1287 removed the "implicitly" here.
3750    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3751        (isLValueRef || InitCategory.isRValue())) {
3752      ConvOvlResult = TryRefInitWithConversionFunction(
3753          S, Entity, Kind, Initializer, /*AllowRValues*/isRValueRef, Sequence);
3754      if (ConvOvlResult == OR_Success)
3755        return;
3756      if (ConvOvlResult != OR_No_Viable_Function)
3757        Sequence.SetOverloadFailure(
3758            InitializationSequence::FK_ReferenceInitOverloadFailed,
3759            ConvOvlResult);
3760    }
3761  }
3762
3763  //     - Otherwise, the reference shall be an lvalue reference to a
3764  //       non-volatile const type (i.e., cv1 shall be const), or the reference
3765  //       shall be an rvalue reference.
3766  if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3767    if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3768      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3769    else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3770      Sequence.SetOverloadFailure(
3771                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3772                                  ConvOvlResult);
3773    else
3774      Sequence.SetFailed(InitCategory.isLValue()
3775        ? (RefRelationship == Sema::Ref_Related
3776             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3777             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3778        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3779
3780    return;
3781  }
3782
3783  //    - If the initializer expression
3784  //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3785  //        "cv1 T1" is reference-compatible with "cv2 T2"
3786  // Note: functions are handled below.
3787  if (!T1Function &&
3788      (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3789       (Kind.isCStyleOrFunctionalCast() &&
3790        RefRelationship == Sema::Ref_Related)) &&
3791      (InitCategory.isXValue() ||
3792       (InitCategory.isPRValue() && T2->isRecordType()) ||
3793       (InitCategory.isPRValue() && T2->isArrayType()))) {
3794    ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3795    if (InitCategory.isPRValue() && T2->isRecordType()) {
3796      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3797      // compiler the freedom to perform a copy here or bind to the
3798      // object, while C++0x requires that we bind directly to the
3799      // object. Hence, we always bind to the object without making an
3800      // extra copy. However, in C++03 requires that we check for the
3801      // presence of a suitable copy constructor:
3802      //
3803      //   The constructor that would be used to make the copy shall
3804      //   be callable whether or not the copy is actually done.
3805      if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
3806        Sequence.AddExtraneousCopyToTemporary(cv2T2);
3807      else if (S.getLangOpts().CPlusPlus11)
3808        CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3809    }
3810
3811    if (DerivedToBase)
3812      Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3813                                        ValueKind);
3814    else if (ObjCConversion)
3815      Sequence.AddObjCObjectConversionStep(
3816                                       S.Context.getQualifiedType(T1, T2Quals));
3817
3818    ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
3819                                                         Initializer, cv1T1,
3820                                                         T1Quals, T2Quals,
3821                                                         isLValueRef);
3822
3823    Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3824    return;
3825  }
3826
3827  //       - has a class type (i.e., T2 is a class type), where T1 is not
3828  //         reference-related to T2, and can be implicitly converted to an
3829  //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3830  //         where "cv1 T1" is reference-compatible with "cv3 T3",
3831  //
3832  // DR1287 removes the "implicitly" here.
3833  if (T2->isRecordType()) {
3834    if (RefRelationship == Sema::Ref_Incompatible) {
3835      ConvOvlResult = TryRefInitWithConversionFunction(
3836          S, Entity, Kind, Initializer, /*AllowRValues*/true, Sequence);
3837      if (ConvOvlResult)
3838        Sequence.SetOverloadFailure(
3839            InitializationSequence::FK_ReferenceInitOverloadFailed,
3840            ConvOvlResult);
3841
3842      return;
3843    }
3844
3845    if ((RefRelationship == Sema::Ref_Compatible ||
3846         RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
3847        isRValueRef && InitCategory.isLValue()) {
3848      Sequence.SetFailed(
3849        InitializationSequence::FK_RValueReferenceBindingToLValue);
3850      return;
3851    }
3852
3853    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3854    return;
3855  }
3856
3857  //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3858  //        from the initializer expression using the rules for a non-reference
3859  //        copy-initialization (8.5). The reference is then bound to the
3860  //        temporary. [...]
3861
3862  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3863
3864  // FIXME: Why do we use an implicit conversion here rather than trying
3865  // copy-initialization?
3866  ImplicitConversionSequence ICS
3867    = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3868                              /*SuppressUserConversions=*/false,
3869                              /*AllowExplicit=*/false,
3870                              /*FIXME:InOverloadResolution=*/false,
3871                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3872                              /*AllowObjCWritebackConversion=*/false);
3873
3874  if (ICS.isBad()) {
3875    // FIXME: Use the conversion function set stored in ICS to turn
3876    // this into an overloading ambiguity diagnostic. However, we need
3877    // to keep that set as an OverloadCandidateSet rather than as some
3878    // other kind of set.
3879    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3880      Sequence.SetOverloadFailure(
3881                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3882                                  ConvOvlResult);
3883    else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3884      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3885    else
3886      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3887    return;
3888  } else {
3889    Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3890  }
3891
3892  //        [...] If T1 is reference-related to T2, cv1 must be the
3893  //        same cv-qualification as, or greater cv-qualification
3894  //        than, cv2; otherwise, the program is ill-formed.
3895  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3896  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3897  if (RefRelationship == Sema::Ref_Related &&
3898      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3899    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3900    return;
3901  }
3902
3903  //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3904  //   reference, the initializer expression shall not be an lvalue.
3905  if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3906      InitCategory.isLValue()) {
3907    Sequence.SetFailed(
3908                    InitializationSequence::FK_RValueReferenceBindingToLValue);
3909    return;
3910  }
3911
3912  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3913  return;
3914}
3915
3916/// \brief Attempt character array initialization from a string literal
3917/// (C++ [dcl.init.string], C99 6.7.8).
3918static void TryStringLiteralInitialization(Sema &S,
3919                                           const InitializedEntity &Entity,
3920                                           const InitializationKind &Kind,
3921                                           Expr *Initializer,
3922                                       InitializationSequence &Sequence) {
3923  Sequence.AddStringInitStep(Entity.getType());
3924}
3925
3926/// \brief Attempt value initialization (C++ [dcl.init]p7).
3927static void TryValueInitialization(Sema &S,
3928                                   const InitializedEntity &Entity,
3929                                   const InitializationKind &Kind,
3930                                   InitializationSequence &Sequence,
3931                                   InitListExpr *InitList) {
3932  assert((!InitList || InitList->getNumInits() == 0) &&
3933         "Shouldn't use value-init for non-empty init lists");
3934
3935  // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3936  //
3937  //   To value-initialize an object of type T means:
3938  QualType T = Entity.getType();
3939
3940  //     -- if T is an array type, then each element is value-initialized;
3941  T = S.Context.getBaseElementType(T);
3942
3943  if (const RecordType *RT = T->getAs<RecordType>()) {
3944    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3945      bool NeedZeroInitialization = true;
3946      if (!S.getLangOpts().CPlusPlus11) {
3947        // C++98:
3948        // -- if T is a class type (clause 9) with a user-declared constructor
3949        //    (12.1), then the default constructor for T is called (and the
3950        //    initialization is ill-formed if T has no accessible default
3951        //    constructor);
3952        if (ClassDecl->hasUserDeclaredConstructor())
3953          NeedZeroInitialization = false;
3954      } else {
3955        // C++11:
3956        // -- if T is a class type (clause 9) with either no default constructor
3957        //    (12.1 [class.ctor]) or a default constructor that is user-provided
3958        //    or deleted, then the object is default-initialized;
3959        CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3960        if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3961          NeedZeroInitialization = false;
3962      }
3963
3964      // -- if T is a (possibly cv-qualified) non-union class type without a
3965      //    user-provided or deleted default constructor, then the object is
3966      //    zero-initialized and, if T has a non-trivial default constructor,
3967      //    default-initialized;
3968      // The 'non-union' here was removed by DR1502. The 'non-trivial default
3969      // constructor' part was removed by DR1507.
3970      if (NeedZeroInitialization)
3971        Sequence.AddZeroInitializationStep(Entity.getType());
3972
3973      // C++03:
3974      // -- if T is a non-union class type without a user-declared constructor,
3975      //    then every non-static data member and base class component of T is
3976      //    value-initialized;
3977      // [...] A program that calls for [...] value-initialization of an
3978      // entity of reference type is ill-formed.
3979      //
3980      // C++11 doesn't need this handling, because value-initialization does not
3981      // occur recursively there, and the implicit default constructor is
3982      // defined as deleted in the problematic cases.
3983      if (!S.getLangOpts().CPlusPlus11 &&
3984          ClassDecl->hasUninitializedReferenceMember()) {
3985        Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
3986        return;
3987      }
3988
3989      // If this is list-value-initialization, pass the empty init list on when
3990      // building the constructor call. This affects the semantics of a few
3991      // things (such as whether an explicit default constructor can be called).
3992      Expr *InitListAsExpr = InitList;
3993      MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
3994      bool InitListSyntax = InitList;
3995
3996      return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
3997                                          InitListSyntax);
3998    }
3999  }
4000
4001  Sequence.AddZeroInitializationStep(Entity.getType());
4002}
4003
4004/// \brief Attempt default initialization (C++ [dcl.init]p6).
4005static void TryDefaultInitialization(Sema &S,
4006                                     const InitializedEntity &Entity,
4007                                     const InitializationKind &Kind,
4008                                     InitializationSequence &Sequence) {
4009  assert(Kind.getKind() == InitializationKind::IK_Default);
4010
4011  // C++ [dcl.init]p6:
4012  //   To default-initialize an object of type T means:
4013  //     - if T is an array type, each element is default-initialized;
4014  QualType DestType = S.Context.getBaseElementType(Entity.getType());
4015
4016  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
4017  //       constructor for T is called (and the initialization is ill-formed if
4018  //       T has no accessible default constructor);
4019  if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4020    TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
4021    return;
4022  }
4023
4024  //     - otherwise, no initialization is performed.
4025
4026  //   If a program calls for the default initialization of an object of
4027  //   a const-qualified type T, T shall be a class type with a user-provided
4028  //   default constructor.
4029  if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4030    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4031    return;
4032  }
4033
4034  // If the destination type has a lifetime property, zero-initialize it.
4035  if (DestType.getQualifiers().hasObjCLifetime()) {
4036    Sequence.AddZeroInitializationStep(Entity.getType());
4037    return;
4038  }
4039}
4040
4041/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
4042/// which enumerates all conversion functions and performs overload resolution
4043/// to select the best.
4044static void TryUserDefinedConversion(Sema &S,
4045                                     const InitializedEntity &Entity,
4046                                     const InitializationKind &Kind,
4047                                     Expr *Initializer,
4048                                     InitializationSequence &Sequence,
4049                                     bool TopLevelOfInitList) {
4050  QualType DestType = Entity.getType();
4051  assert(!DestType->isReferenceType() && "References are handled elsewhere");
4052  QualType SourceType = Initializer->getType();
4053  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4054         "Must have a class type to perform a user-defined conversion");
4055
4056  // Build the candidate set directly in the initialization sequence
4057  // structure, so that it will persist if we fail.
4058  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4059  CandidateSet.clear();
4060
4061  // Determine whether we are allowed to call explicit constructors or
4062  // explicit conversion operators.
4063  bool AllowExplicit = Kind.AllowExplicit();
4064
4065  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4066    // The type we're converting to is a class type. Enumerate its constructors
4067    // to see if there is a suitable conversion.
4068    CXXRecordDecl *DestRecordDecl
4069      = cast<CXXRecordDecl>(DestRecordType->getDecl());
4070
4071    // Try to complete the type we're converting to.
4072    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
4073      DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
4074      // The container holding the constructors can under certain conditions
4075      // be changed while iterating. To be safe we copy the lookup results
4076      // to a new container.
4077      SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
4078      for (SmallVectorImpl<NamedDecl *>::iterator
4079             Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
4080           Con != ConEnd; ++Con) {
4081        NamedDecl *D = *Con;
4082        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
4083
4084        // Find the constructor (which may be a template).
4085        CXXConstructorDecl *Constructor = 0;
4086        FunctionTemplateDecl *ConstructorTmpl
4087          = dyn_cast<FunctionTemplateDecl>(D);
4088        if (ConstructorTmpl)
4089          Constructor = cast<CXXConstructorDecl>(
4090                                           ConstructorTmpl->getTemplatedDecl());
4091        else
4092          Constructor = cast<CXXConstructorDecl>(D);
4093
4094        if (!Constructor->isInvalidDecl() &&
4095            Constructor->isConvertingConstructor(AllowExplicit)) {
4096          if (ConstructorTmpl)
4097            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4098                                           /*ExplicitArgs*/ 0,
4099                                           Initializer, CandidateSet,
4100                                           /*SuppressUserConversions=*/true);
4101          else
4102            S.AddOverloadCandidate(Constructor, FoundDecl,
4103                                   Initializer, CandidateSet,
4104                                   /*SuppressUserConversions=*/true);
4105        }
4106      }
4107    }
4108  }
4109
4110  SourceLocation DeclLoc = Initializer->getLocStart();
4111
4112  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4113    // The type we're converting from is a class type, enumerate its conversion
4114    // functions.
4115
4116    // We can only enumerate the conversion functions for a complete type; if
4117    // the type isn't complete, simply skip this step.
4118    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
4119      CXXRecordDecl *SourceRecordDecl
4120        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4121
4122      std::pair<CXXRecordDecl::conversion_iterator,
4123                CXXRecordDecl::conversion_iterator>
4124        Conversions = SourceRecordDecl->getVisibleConversionFunctions();
4125      for (CXXRecordDecl::conversion_iterator
4126             I = Conversions.first, E = Conversions.second; I != E; ++I) {
4127        NamedDecl *D = *I;
4128        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4129        if (isa<UsingShadowDecl>(D))
4130          D = cast<UsingShadowDecl>(D)->getTargetDecl();
4131
4132        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4133        CXXConversionDecl *Conv;
4134        if (ConvTemplate)
4135          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4136        else
4137          Conv = cast<CXXConversionDecl>(D);
4138
4139        if (AllowExplicit || !Conv->isExplicit()) {
4140          if (ConvTemplate)
4141            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4142                                             ActingDC, Initializer, DestType,
4143                                             CandidateSet, AllowExplicit);
4144          else
4145            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4146                                     Initializer, DestType, CandidateSet,
4147                                     AllowExplicit);
4148        }
4149      }
4150    }
4151  }
4152
4153  // Perform overload resolution. If it fails, return the failed result.
4154  OverloadCandidateSet::iterator Best;
4155  if (OverloadingResult Result
4156        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4157    Sequence.SetOverloadFailure(
4158                        InitializationSequence::FK_UserConversionOverloadFailed,
4159                                Result);
4160    return;
4161  }
4162
4163  FunctionDecl *Function = Best->Function;
4164  Function->setReferenced();
4165  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4166
4167  if (isa<CXXConstructorDecl>(Function)) {
4168    // Add the user-defined conversion step. Any cv-qualification conversion is
4169    // subsumed by the initialization. Per DR5, the created temporary is of the
4170    // cv-unqualified type of the destination.
4171    Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4172                                   DestType.getUnqualifiedType(),
4173                                   HadMultipleCandidates);
4174    return;
4175  }
4176
4177  // Add the user-defined conversion step that calls the conversion function.
4178  QualType ConvType = Function->getCallResultType();
4179  if (ConvType->getAs<RecordType>()) {
4180    // If we're converting to a class type, there may be an copy of
4181    // the resulting temporary object (possible to create an object of
4182    // a base class type). That copy is not a separate conversion, so
4183    // we just make a note of the actual destination type (possibly a
4184    // base class of the type returned by the conversion function) and
4185    // let the user-defined conversion step handle the conversion.
4186    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
4187                                   HadMultipleCandidates);
4188    return;
4189  }
4190
4191  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4192                                 HadMultipleCandidates);
4193
4194  // If the conversion following the call to the conversion function
4195  // is interesting, add it as a separate step.
4196  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4197      Best->FinalConversion.Third) {
4198    ImplicitConversionSequence ICS;
4199    ICS.setStandard();
4200    ICS.Standard = Best->FinalConversion;
4201    Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4202  }
4203}
4204
4205/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4206/// a function with a pointer return type contains a 'return false;' statement.
4207/// In C++11, 'false' is not a null pointer, so this breaks the build of any
4208/// code using that header.
4209///
4210/// Work around this by treating 'return false;' as zero-initializing the result
4211/// if it's used in a pointer-returning function in a system header.
4212static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4213                                              const InitializedEntity &Entity,
4214                                              const Expr *Init) {
4215  return S.getLangOpts().CPlusPlus11 &&
4216         Entity.getKind() == InitializedEntity::EK_Result &&
4217         Entity.getType()->isPointerType() &&
4218         isa<CXXBoolLiteralExpr>(Init) &&
4219         !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4220         S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4221}
4222
4223/// The non-zero enum values here are indexes into diagnostic alternatives.
4224enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4225
4226/// Determines whether this expression is an acceptable ICR source.
4227static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4228                                         bool isAddressOf, bool &isWeakAccess) {
4229  // Skip parens.
4230  e = e->IgnoreParens();
4231
4232  // Skip address-of nodes.
4233  if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4234    if (op->getOpcode() == UO_AddrOf)
4235      return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4236                                isWeakAccess);
4237
4238  // Skip certain casts.
4239  } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4240    switch (ce->getCastKind()) {
4241    case CK_Dependent:
4242    case CK_BitCast:
4243    case CK_LValueBitCast:
4244    case CK_NoOp:
4245      return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4246
4247    case CK_ArrayToPointerDecay:
4248      return IIK_nonscalar;
4249
4250    case CK_NullToPointer:
4251      return IIK_okay;
4252
4253    default:
4254      break;
4255    }
4256
4257  // If we have a declaration reference, it had better be a local variable.
4258  } else if (isa<DeclRefExpr>(e)) {
4259    // set isWeakAccess to true, to mean that there will be an implicit
4260    // load which requires a cleanup.
4261    if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4262      isWeakAccess = true;
4263
4264    if (!isAddressOf) return IIK_nonlocal;
4265
4266    VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4267    if (!var) return IIK_nonlocal;
4268
4269    return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4270
4271  // If we have a conditional operator, check both sides.
4272  } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4273    if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4274                                                isWeakAccess))
4275      return iik;
4276
4277    return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4278
4279  // These are never scalar.
4280  } else if (isa<ArraySubscriptExpr>(e)) {
4281    return IIK_nonscalar;
4282
4283  // Otherwise, it needs to be a null pointer constant.
4284  } else {
4285    return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4286            ? IIK_okay : IIK_nonlocal);
4287  }
4288
4289  return IIK_nonlocal;
4290}
4291
4292/// Check whether the given expression is a valid operand for an
4293/// indirect copy/restore.
4294static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4295  assert(src->isRValue());
4296  bool isWeakAccess = false;
4297  InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4298  // If isWeakAccess to true, there will be an implicit
4299  // load which requires a cleanup.
4300  if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4301    S.ExprNeedsCleanups = true;
4302
4303  if (iik == IIK_okay) return;
4304
4305  S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4306    << ((unsigned) iik - 1)  // shift index into diagnostic explanations
4307    << src->getSourceRange();
4308}
4309
4310/// \brief Determine whether we have compatible array types for the
4311/// purposes of GNU by-copy array initialization.
4312static bool hasCompatibleArrayTypes(ASTContext &Context,
4313                                    const ArrayType *Dest,
4314                                    const ArrayType *Source) {
4315  // If the source and destination array types are equivalent, we're
4316  // done.
4317  if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4318    return true;
4319
4320  // Make sure that the element types are the same.
4321  if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4322    return false;
4323
4324  // The only mismatch we allow is when the destination is an
4325  // incomplete array type and the source is a constant array type.
4326  return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4327}
4328
4329static bool tryObjCWritebackConversion(Sema &S,
4330                                       InitializationSequence &Sequence,
4331                                       const InitializedEntity &Entity,
4332                                       Expr *Initializer) {
4333  bool ArrayDecay = false;
4334  QualType ArgType = Initializer->getType();
4335  QualType ArgPointee;
4336  if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4337    ArrayDecay = true;
4338    ArgPointee = ArgArrayType->getElementType();
4339    ArgType = S.Context.getPointerType(ArgPointee);
4340  }
4341
4342  // Handle write-back conversion.
4343  QualType ConvertedArgType;
4344  if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4345                                   ConvertedArgType))
4346    return false;
4347
4348  // We should copy unless we're passing to an argument explicitly
4349  // marked 'out'.
4350  bool ShouldCopy = true;
4351  if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4352    ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4353
4354  // Do we need an lvalue conversion?
4355  if (ArrayDecay || Initializer->isGLValue()) {
4356    ImplicitConversionSequence ICS;
4357    ICS.setStandard();
4358    ICS.Standard.setAsIdentityConversion();
4359
4360    QualType ResultType;
4361    if (ArrayDecay) {
4362      ICS.Standard.First = ICK_Array_To_Pointer;
4363      ResultType = S.Context.getPointerType(ArgPointee);
4364    } else {
4365      ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4366      ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4367    }
4368
4369    Sequence.AddConversionSequenceStep(ICS, ResultType);
4370  }
4371
4372  Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4373  return true;
4374}
4375
4376static bool TryOCLSamplerInitialization(Sema &S,
4377                                        InitializationSequence &Sequence,
4378                                        QualType DestType,
4379                                        Expr *Initializer) {
4380  if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4381    !Initializer->isIntegerConstantExpr(S.getASTContext()))
4382    return false;
4383
4384  Sequence.AddOCLSamplerInitStep(DestType);
4385  return true;
4386}
4387
4388//
4389// OpenCL 1.2 spec, s6.12.10
4390//
4391// The event argument can also be used to associate the
4392// async_work_group_copy with a previous async copy allowing
4393// an event to be shared by multiple async copies; otherwise
4394// event should be zero.
4395//
4396static bool TryOCLZeroEventInitialization(Sema &S,
4397                                          InitializationSequence &Sequence,
4398                                          QualType DestType,
4399                                          Expr *Initializer) {
4400  if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4401      !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4402      (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4403    return false;
4404
4405  Sequence.AddOCLZeroEventStep(DestType);
4406  return true;
4407}
4408
4409InitializationSequence::InitializationSequence(Sema &S,
4410                                               const InitializedEntity &Entity,
4411                                               const InitializationKind &Kind,
4412                                               MultiExprArg Args,
4413                                               bool TopLevelOfInitList)
4414    : FailedCandidateSet(Kind.getLocation()) {
4415  InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList);
4416}
4417
4418void InitializationSequence::InitializeFrom(Sema &S,
4419                                            const InitializedEntity &Entity,
4420                                            const InitializationKind &Kind,
4421                                            MultiExprArg Args,
4422                                            bool TopLevelOfInitList) {
4423  ASTContext &Context = S.Context;
4424
4425  // Eliminate non-overload placeholder types in the arguments.  We
4426  // need to do this before checking whether types are dependent
4427  // because lowering a pseudo-object expression might well give us
4428  // something of dependent type.
4429  for (unsigned I = 0, E = Args.size(); I != E; ++I)
4430    if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4431      // FIXME: should we be doing this here?
4432      ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4433      if (result.isInvalid()) {
4434        SetFailed(FK_PlaceholderType);
4435        return;
4436      }
4437      Args[I] = result.take();
4438    }
4439
4440  // C++0x [dcl.init]p16:
4441  //   The semantics of initializers are as follows. The destination type is
4442  //   the type of the object or reference being initialized and the source
4443  //   type is the type of the initializer expression. The source type is not
4444  //   defined when the initializer is a braced-init-list or when it is a
4445  //   parenthesized list of expressions.
4446  QualType DestType = Entity.getType();
4447
4448  if (DestType->isDependentType() ||
4449      Expr::hasAnyTypeDependentArguments(Args)) {
4450    SequenceKind = DependentSequence;
4451    return;
4452  }
4453
4454  // Almost everything is a normal sequence.
4455  setSequenceKind(NormalSequence);
4456
4457  QualType SourceType;
4458  Expr *Initializer = 0;
4459  if (Args.size() == 1) {
4460    Initializer = Args[0];
4461    if (S.getLangOpts().ObjC1) {
4462      if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(),
4463                                              DestType, Initializer->getType(),
4464                                              Initializer) ||
4465          S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
4466        Args[0] = Initializer;
4467
4468    }
4469    if (!isa<InitListExpr>(Initializer))
4470      SourceType = Initializer->getType();
4471  }
4472
4473  //     - If the initializer is a (non-parenthesized) braced-init-list, the
4474  //       object is list-initialized (8.5.4).
4475  if (Kind.getKind() != InitializationKind::IK_Direct) {
4476    if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4477      TryListInitialization(S, Entity, Kind, InitList, *this);
4478      return;
4479    }
4480  }
4481
4482  //     - If the destination type is a reference type, see 8.5.3.
4483  if (DestType->isReferenceType()) {
4484    // C++0x [dcl.init.ref]p1:
4485    //   A variable declared to be a T& or T&&, that is, "reference to type T"
4486    //   (8.3.2), shall be initialized by an object, or function, of type T or
4487    //   by an object that can be converted into a T.
4488    // (Therefore, multiple arguments are not permitted.)
4489    if (Args.size() != 1)
4490      SetFailed(FK_TooManyInitsForReference);
4491    else
4492      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4493    return;
4494  }
4495
4496  //     - If the initializer is (), the object is value-initialized.
4497  if (Kind.getKind() == InitializationKind::IK_Value ||
4498      (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
4499    TryValueInitialization(S, Entity, Kind, *this);
4500    return;
4501  }
4502
4503  // Handle default initialization.
4504  if (Kind.getKind() == InitializationKind::IK_Default) {
4505    TryDefaultInitialization(S, Entity, Kind, *this);
4506    return;
4507  }
4508
4509  //     - If the destination type is an array of characters, an array of
4510  //       char16_t, an array of char32_t, or an array of wchar_t, and the
4511  //       initializer is a string literal, see 8.5.2.
4512  //     - Otherwise, if the destination type is an array, the program is
4513  //       ill-formed.
4514  if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4515    if (Initializer && isa<VariableArrayType>(DestAT)) {
4516      SetFailed(FK_VariableLengthArrayHasInitializer);
4517      return;
4518    }
4519
4520    if (Initializer) {
4521      switch (IsStringInit(Initializer, DestAT, Context)) {
4522      case SIF_None:
4523        TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4524        return;
4525      case SIF_NarrowStringIntoWideChar:
4526        SetFailed(FK_NarrowStringIntoWideCharArray);
4527        return;
4528      case SIF_WideStringIntoChar:
4529        SetFailed(FK_WideStringIntoCharArray);
4530        return;
4531      case SIF_IncompatWideStringIntoWideChar:
4532        SetFailed(FK_IncompatWideStringIntoWideChar);
4533        return;
4534      case SIF_Other:
4535        break;
4536      }
4537    }
4538
4539    // Note: as an GNU C extension, we allow initialization of an
4540    // array from a compound literal that creates an array of the same
4541    // type, so long as the initializer has no side effects.
4542    if (!S.getLangOpts().CPlusPlus && Initializer &&
4543        isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4544        Initializer->getType()->isArrayType()) {
4545      const ArrayType *SourceAT
4546        = Context.getAsArrayType(Initializer->getType());
4547      if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4548        SetFailed(FK_ArrayTypeMismatch);
4549      else if (Initializer->HasSideEffects(S.Context))
4550        SetFailed(FK_NonConstantArrayInit);
4551      else {
4552        AddArrayInitStep(DestType);
4553      }
4554    }
4555    // Note: as a GNU C++ extension, we allow list-initialization of a
4556    // class member of array type from a parenthesized initializer list.
4557    else if (S.getLangOpts().CPlusPlus &&
4558             Entity.getKind() == InitializedEntity::EK_Member &&
4559             Initializer && isa<InitListExpr>(Initializer)) {
4560      TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4561                            *this);
4562      AddParenthesizedArrayInitStep(DestType);
4563    } else if (DestAT->getElementType()->isCharType())
4564      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4565    else if (IsWideCharCompatible(DestAT->getElementType(), Context))
4566      SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
4567    else
4568      SetFailed(FK_ArrayNeedsInitList);
4569
4570    return;
4571  }
4572
4573  // Determine whether we should consider writeback conversions for
4574  // Objective-C ARC.
4575  bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4576         Entity.isParameterKind();
4577
4578  // We're at the end of the line for C: it's either a write-back conversion
4579  // or it's a C assignment. There's no need to check anything else.
4580  if (!S.getLangOpts().CPlusPlus) {
4581    // If allowed, check whether this is an Objective-C writeback conversion.
4582    if (allowObjCWritebackConversion &&
4583        tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4584      return;
4585    }
4586
4587    if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4588      return;
4589
4590    if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4591      return;
4592
4593    // Handle initialization in C
4594    AddCAssignmentStep(DestType);
4595    MaybeProduceObjCObject(S, *this, Entity);
4596    return;
4597  }
4598
4599  assert(S.getLangOpts().CPlusPlus);
4600
4601  //     - If the destination type is a (possibly cv-qualified) class type:
4602  if (DestType->isRecordType()) {
4603    //     - If the initialization is direct-initialization, or if it is
4604    //       copy-initialization where the cv-unqualified version of the
4605    //       source type is the same class as, or a derived class of, the
4606    //       class of the destination, constructors are considered. [...]
4607    if (Kind.getKind() == InitializationKind::IK_Direct ||
4608        (Kind.getKind() == InitializationKind::IK_Copy &&
4609         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4610          S.IsDerivedFrom(SourceType, DestType))))
4611      TryConstructorInitialization(S, Entity, Kind, Args,
4612                                   Entity.getType(), *this);
4613    //     - Otherwise (i.e., for the remaining copy-initialization cases),
4614    //       user-defined conversion sequences that can convert from the source
4615    //       type to the destination type or (when a conversion function is
4616    //       used) to a derived class thereof are enumerated as described in
4617    //       13.3.1.4, and the best one is chosen through overload resolution
4618    //       (13.3).
4619    else
4620      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this,
4621                               TopLevelOfInitList);
4622    return;
4623  }
4624
4625  if (Args.size() > 1) {
4626    SetFailed(FK_TooManyInitsForScalar);
4627    return;
4628  }
4629  assert(Args.size() == 1 && "Zero-argument case handled above");
4630
4631  //    - Otherwise, if the source type is a (possibly cv-qualified) class
4632  //      type, conversion functions are considered.
4633  if (!SourceType.isNull() && SourceType->isRecordType()) {
4634    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this,
4635                             TopLevelOfInitList);
4636    MaybeProduceObjCObject(S, *this, Entity);
4637    return;
4638  }
4639
4640  //    - Otherwise, the initial value of the object being initialized is the
4641  //      (possibly converted) value of the initializer expression. Standard
4642  //      conversions (Clause 4) will be used, if necessary, to convert the
4643  //      initializer expression to the cv-unqualified version of the
4644  //      destination type; no user-defined conversions are considered.
4645
4646  ImplicitConversionSequence ICS
4647    = S.TryImplicitConversion(Initializer, Entity.getType(),
4648                              /*SuppressUserConversions*/true,
4649                              /*AllowExplicitConversions*/ false,
4650                              /*InOverloadResolution*/ false,
4651                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4652                              allowObjCWritebackConversion);
4653
4654  if (ICS.isStandard() &&
4655      ICS.Standard.Second == ICK_Writeback_Conversion) {
4656    // Objective-C ARC writeback conversion.
4657
4658    // We should copy unless we're passing to an argument explicitly
4659    // marked 'out'.
4660    bool ShouldCopy = true;
4661    if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4662      ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4663
4664    // If there was an lvalue adjustment, add it as a separate conversion.
4665    if (ICS.Standard.First == ICK_Array_To_Pointer ||
4666        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4667      ImplicitConversionSequence LvalueICS;
4668      LvalueICS.setStandard();
4669      LvalueICS.Standard.setAsIdentityConversion();
4670      LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4671      LvalueICS.Standard.First = ICS.Standard.First;
4672      AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4673    }
4674
4675    AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4676  } else if (ICS.isBad()) {
4677    DeclAccessPair dap;
4678    if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
4679      AddZeroInitializationStep(Entity.getType());
4680    } else if (Initializer->getType() == Context.OverloadTy &&
4681               !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
4682                                                     false, dap))
4683      SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4684    else
4685      SetFailed(InitializationSequence::FK_ConversionFailed);
4686  } else {
4687    AddConversionSequenceStep(ICS, Entity.getType(), TopLevelOfInitList);
4688
4689    MaybeProduceObjCObject(S, *this, Entity);
4690  }
4691}
4692
4693InitializationSequence::~InitializationSequence() {
4694  for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4695                                          StepEnd = Steps.end();
4696       Step != StepEnd; ++Step)
4697    Step->Destroy();
4698}
4699
4700//===----------------------------------------------------------------------===//
4701// Perform initialization
4702//===----------------------------------------------------------------------===//
4703static Sema::AssignmentAction
4704getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
4705  switch(Entity.getKind()) {
4706  case InitializedEntity::EK_Variable:
4707  case InitializedEntity::EK_New:
4708  case InitializedEntity::EK_Exception:
4709  case InitializedEntity::EK_Base:
4710  case InitializedEntity::EK_Delegating:
4711    return Sema::AA_Initializing;
4712
4713  case InitializedEntity::EK_Parameter:
4714    if (Entity.getDecl() &&
4715        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4716      return Sema::AA_Sending;
4717
4718    return Sema::AA_Passing;
4719
4720  case InitializedEntity::EK_Parameter_CF_Audited:
4721    if (Entity.getDecl() &&
4722      isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4723      return Sema::AA_Sending;
4724
4725    return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
4726
4727  case InitializedEntity::EK_Result:
4728    return Sema::AA_Returning;
4729
4730  case InitializedEntity::EK_Temporary:
4731  case InitializedEntity::EK_RelatedResult:
4732    // FIXME: Can we tell apart casting vs. converting?
4733    return Sema::AA_Casting;
4734
4735  case InitializedEntity::EK_Member:
4736  case InitializedEntity::EK_ArrayElement:
4737  case InitializedEntity::EK_VectorElement:
4738  case InitializedEntity::EK_ComplexElement:
4739  case InitializedEntity::EK_BlockElement:
4740  case InitializedEntity::EK_LambdaCapture:
4741  case InitializedEntity::EK_CompoundLiteralInit:
4742    return Sema::AA_Initializing;
4743  }
4744
4745  llvm_unreachable("Invalid EntityKind!");
4746}
4747
4748/// \brief Whether we should bind a created object as a temporary when
4749/// initializing the given entity.
4750static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4751  switch (Entity.getKind()) {
4752  case InitializedEntity::EK_ArrayElement:
4753  case InitializedEntity::EK_Member:
4754  case InitializedEntity::EK_Result:
4755  case InitializedEntity::EK_New:
4756  case InitializedEntity::EK_Variable:
4757  case InitializedEntity::EK_Base:
4758  case InitializedEntity::EK_Delegating:
4759  case InitializedEntity::EK_VectorElement:
4760  case InitializedEntity::EK_ComplexElement:
4761  case InitializedEntity::EK_Exception:
4762  case InitializedEntity::EK_BlockElement:
4763  case InitializedEntity::EK_LambdaCapture:
4764  case InitializedEntity::EK_CompoundLiteralInit:
4765    return false;
4766
4767  case InitializedEntity::EK_Parameter:
4768  case InitializedEntity::EK_Parameter_CF_Audited:
4769  case InitializedEntity::EK_Temporary:
4770  case InitializedEntity::EK_RelatedResult:
4771    return true;
4772  }
4773
4774  llvm_unreachable("missed an InitializedEntity kind?");
4775}
4776
4777/// \brief Whether the given entity, when initialized with an object
4778/// created for that initialization, requires destruction.
4779static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4780  switch (Entity.getKind()) {
4781    case InitializedEntity::EK_Result:
4782    case InitializedEntity::EK_New:
4783    case InitializedEntity::EK_Base:
4784    case InitializedEntity::EK_Delegating:
4785    case InitializedEntity::EK_VectorElement:
4786    case InitializedEntity::EK_ComplexElement:
4787    case InitializedEntity::EK_BlockElement:
4788    case InitializedEntity::EK_LambdaCapture:
4789      return false;
4790
4791    case InitializedEntity::EK_Member:
4792    case InitializedEntity::EK_Variable:
4793    case InitializedEntity::EK_Parameter:
4794    case InitializedEntity::EK_Parameter_CF_Audited:
4795    case InitializedEntity::EK_Temporary:
4796    case InitializedEntity::EK_ArrayElement:
4797    case InitializedEntity::EK_Exception:
4798    case InitializedEntity::EK_CompoundLiteralInit:
4799    case InitializedEntity::EK_RelatedResult:
4800      return true;
4801  }
4802
4803  llvm_unreachable("missed an InitializedEntity kind?");
4804}
4805
4806/// \brief Look for copy and move constructors and constructor templates, for
4807/// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4808static void LookupCopyAndMoveConstructors(Sema &S,
4809                                          OverloadCandidateSet &CandidateSet,
4810                                          CXXRecordDecl *Class,
4811                                          Expr *CurInitExpr) {
4812  DeclContext::lookup_result R = S.LookupConstructors(Class);
4813  // The container holding the constructors can under certain conditions
4814  // be changed while iterating (e.g. because of deserialization).
4815  // To be safe we copy the lookup results to a new container.
4816  SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
4817  for (SmallVectorImpl<NamedDecl *>::iterator
4818         CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
4819    NamedDecl *D = *CI;
4820    CXXConstructorDecl *Constructor = 0;
4821
4822    if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
4823      // Handle copy/moveconstructors, only.
4824      if (!Constructor || Constructor->isInvalidDecl() ||
4825          !Constructor->isCopyOrMoveConstructor() ||
4826          !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4827        continue;
4828
4829      DeclAccessPair FoundDecl
4830        = DeclAccessPair::make(Constructor, Constructor->getAccess());
4831      S.AddOverloadCandidate(Constructor, FoundDecl,
4832                             CurInitExpr, CandidateSet);
4833      continue;
4834    }
4835
4836    // Handle constructor templates.
4837    FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
4838    if (ConstructorTmpl->isInvalidDecl())
4839      continue;
4840
4841    Constructor = cast<CXXConstructorDecl>(
4842                                         ConstructorTmpl->getTemplatedDecl());
4843    if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4844      continue;
4845
4846    // FIXME: Do we need to limit this to copy-constructor-like
4847    // candidates?
4848    DeclAccessPair FoundDecl
4849      = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4850    S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4851                                   CurInitExpr, CandidateSet, true);
4852  }
4853}
4854
4855/// \brief Get the location at which initialization diagnostics should appear.
4856static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4857                                           Expr *Initializer) {
4858  switch (Entity.getKind()) {
4859  case InitializedEntity::EK_Result:
4860    return Entity.getReturnLoc();
4861
4862  case InitializedEntity::EK_Exception:
4863    return Entity.getThrowLoc();
4864
4865  case InitializedEntity::EK_Variable:
4866    return Entity.getDecl()->getLocation();
4867
4868  case InitializedEntity::EK_LambdaCapture:
4869    return Entity.getCaptureLoc();
4870
4871  case InitializedEntity::EK_ArrayElement:
4872  case InitializedEntity::EK_Member:
4873  case InitializedEntity::EK_Parameter:
4874  case InitializedEntity::EK_Parameter_CF_Audited:
4875  case InitializedEntity::EK_Temporary:
4876  case InitializedEntity::EK_New:
4877  case InitializedEntity::EK_Base:
4878  case InitializedEntity::EK_Delegating:
4879  case InitializedEntity::EK_VectorElement:
4880  case InitializedEntity::EK_ComplexElement:
4881  case InitializedEntity::EK_BlockElement:
4882  case InitializedEntity::EK_CompoundLiteralInit:
4883  case InitializedEntity::EK_RelatedResult:
4884    return Initializer->getLocStart();
4885  }
4886  llvm_unreachable("missed an InitializedEntity kind?");
4887}
4888
4889/// \brief Make a (potentially elidable) temporary copy of the object
4890/// provided by the given initializer by calling the appropriate copy
4891/// constructor.
4892///
4893/// \param S The Sema object used for type-checking.
4894///
4895/// \param T The type of the temporary object, which must either be
4896/// the type of the initializer expression or a superclass thereof.
4897///
4898/// \param Entity The entity being initialized.
4899///
4900/// \param CurInit The initializer expression.
4901///
4902/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4903/// is permitted in C++03 (but not C++0x) when binding a reference to
4904/// an rvalue.
4905///
4906/// \returns An expression that copies the initializer expression into
4907/// a temporary object, or an error expression if a copy could not be
4908/// created.
4909static ExprResult CopyObject(Sema &S,
4910                             QualType T,
4911                             const InitializedEntity &Entity,
4912                             ExprResult CurInit,
4913                             bool IsExtraneousCopy) {
4914  // Determine which class type we're copying to.
4915  Expr *CurInitExpr = (Expr *)CurInit.get();
4916  CXXRecordDecl *Class = 0;
4917  if (const RecordType *Record = T->getAs<RecordType>())
4918    Class = cast<CXXRecordDecl>(Record->getDecl());
4919  if (!Class)
4920    return CurInit;
4921
4922  // C++0x [class.copy]p32:
4923  //   When certain criteria are met, an implementation is allowed to
4924  //   omit the copy/move construction of a class object, even if the
4925  //   copy/move constructor and/or destructor for the object have
4926  //   side effects. [...]
4927  //     - when a temporary class object that has not been bound to a
4928  //       reference (12.2) would be copied/moved to a class object
4929  //       with the same cv-unqualified type, the copy/move operation
4930  //       can be omitted by constructing the temporary object
4931  //       directly into the target of the omitted copy/move
4932  //
4933  // Note that the other three bullets are handled elsewhere. Copy
4934  // elision for return statements and throw expressions are handled as part
4935  // of constructor initialization, while copy elision for exception handlers
4936  // is handled by the run-time.
4937  bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4938  SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4939
4940  // Make sure that the type we are copying is complete.
4941  if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
4942    return CurInit;
4943
4944  // Perform overload resolution using the class's copy/move constructors.
4945  // Only consider constructors and constructor templates. Per
4946  // C++0x [dcl.init]p16, second bullet to class types, this initialization
4947  // is direct-initialization.
4948  OverloadCandidateSet CandidateSet(Loc);
4949  LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4950
4951  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4952
4953  OverloadCandidateSet::iterator Best;
4954  switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4955  case OR_Success:
4956    break;
4957
4958  case OR_No_Viable_Function:
4959    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4960           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4961           : diag::err_temp_copy_no_viable)
4962      << (int)Entity.getKind() << CurInitExpr->getType()
4963      << CurInitExpr->getSourceRange();
4964    CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4965    if (!IsExtraneousCopy || S.isSFINAEContext())
4966      return ExprError();
4967    return CurInit;
4968
4969  case OR_Ambiguous:
4970    S.Diag(Loc, diag::err_temp_copy_ambiguous)
4971      << (int)Entity.getKind() << CurInitExpr->getType()
4972      << CurInitExpr->getSourceRange();
4973    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4974    return ExprError();
4975
4976  case OR_Deleted:
4977    S.Diag(Loc, diag::err_temp_copy_deleted)
4978      << (int)Entity.getKind() << CurInitExpr->getType()
4979      << CurInitExpr->getSourceRange();
4980    S.NoteDeletedFunction(Best->Function);
4981    return ExprError();
4982  }
4983
4984  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4985  SmallVector<Expr*, 8> ConstructorArgs;
4986  CurInit.release(); // Ownership transferred into MultiExprArg, below.
4987
4988  S.CheckConstructorAccess(Loc, Constructor, Entity,
4989                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
4990
4991  if (IsExtraneousCopy) {
4992    // If this is a totally extraneous copy for C++03 reference
4993    // binding purposes, just return the original initialization
4994    // expression. We don't generate an (elided) copy operation here
4995    // because doing so would require us to pass down a flag to avoid
4996    // infinite recursion, where each step adds another extraneous,
4997    // elidable copy.
4998
4999    // Instantiate the default arguments of any extra parameters in
5000    // the selected copy constructor, as if we were going to create a
5001    // proper call to the copy constructor.
5002    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5003      ParmVarDecl *Parm = Constructor->getParamDecl(I);
5004      if (S.RequireCompleteType(Loc, Parm->getType(),
5005                                diag::err_call_incomplete_argument))
5006        break;
5007
5008      // Build the default argument expression; we don't actually care
5009      // if this succeeds or not, because this routine will complain
5010      // if there was a problem.
5011      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5012    }
5013
5014    return S.Owned(CurInitExpr);
5015  }
5016
5017  // Determine the arguments required to actually perform the
5018  // constructor call (we might have derived-to-base conversions, or
5019  // the copy constructor may have default arguments).
5020  if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5021    return ExprError();
5022
5023  // Actually perform the constructor call.
5024  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
5025                                    ConstructorArgs,
5026                                    HadMultipleCandidates,
5027                                    /*ListInit*/ false,
5028                                    /*ZeroInit*/ false,
5029                                    CXXConstructExpr::CK_Complete,
5030                                    SourceRange());
5031
5032  // If we're supposed to bind temporaries, do so.
5033  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
5034    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5035  return CurInit;
5036}
5037
5038/// \brief Check whether elidable copy construction for binding a reference to
5039/// a temporary would have succeeded if we were building in C++98 mode, for
5040/// -Wc++98-compat.
5041static void CheckCXX98CompatAccessibleCopy(Sema &S,
5042                                           const InitializedEntity &Entity,
5043                                           Expr *CurInitExpr) {
5044  assert(S.getLangOpts().CPlusPlus11);
5045
5046  const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
5047  if (!Record)
5048    return;
5049
5050  SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
5051  if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
5052        == DiagnosticsEngine::Ignored)
5053    return;
5054
5055  // Find constructors which would have been considered.
5056  OverloadCandidateSet CandidateSet(Loc);
5057  LookupCopyAndMoveConstructors(
5058      S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
5059
5060  // Perform overload resolution.
5061  OverloadCandidateSet::iterator Best;
5062  OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
5063
5064  PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
5065    << OR << (int)Entity.getKind() << CurInitExpr->getType()
5066    << CurInitExpr->getSourceRange();
5067
5068  switch (OR) {
5069  case OR_Success:
5070    S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
5071                             Entity, Best->FoundDecl.getAccess(), Diag);
5072    // FIXME: Check default arguments as far as that's possible.
5073    break;
5074
5075  case OR_No_Viable_Function:
5076    S.Diag(Loc, Diag);
5077    CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5078    break;
5079
5080  case OR_Ambiguous:
5081    S.Diag(Loc, Diag);
5082    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5083    break;
5084
5085  case OR_Deleted:
5086    S.Diag(Loc, Diag);
5087    S.NoteDeletedFunction(Best->Function);
5088    break;
5089  }
5090}
5091
5092void InitializationSequence::PrintInitLocationNote(Sema &S,
5093                                              const InitializedEntity &Entity) {
5094  if (Entity.isParameterKind() && Entity.getDecl()) {
5095    if (Entity.getDecl()->getLocation().isInvalid())
5096      return;
5097
5098    if (Entity.getDecl()->getDeclName())
5099      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5100        << Entity.getDecl()->getDeclName();
5101    else
5102      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5103  }
5104  else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5105           Entity.getMethodDecl())
5106    S.Diag(Entity.getMethodDecl()->getLocation(),
5107           diag::note_method_return_type_change)
5108      << Entity.getMethodDecl()->getDeclName();
5109}
5110
5111static bool isReferenceBinding(const InitializationSequence::Step &s) {
5112  return s.Kind == InitializationSequence::SK_BindReference ||
5113         s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
5114}
5115
5116/// Returns true if the parameters describe a constructor initialization of
5117/// an explicit temporary object, e.g. "Point(x, y)".
5118static bool isExplicitTemporary(const InitializedEntity &Entity,
5119                                const InitializationKind &Kind,
5120                                unsigned NumArgs) {
5121  switch (Entity.getKind()) {
5122  case InitializedEntity::EK_Temporary:
5123  case InitializedEntity::EK_CompoundLiteralInit:
5124  case InitializedEntity::EK_RelatedResult:
5125    break;
5126  default:
5127    return false;
5128  }
5129
5130  switch (Kind.getKind()) {
5131  case InitializationKind::IK_DirectList:
5132    return true;
5133  // FIXME: Hack to work around cast weirdness.
5134  case InitializationKind::IK_Direct:
5135  case InitializationKind::IK_Value:
5136    return NumArgs != 1;
5137  default:
5138    return false;
5139  }
5140}
5141
5142static ExprResult
5143PerformConstructorInitialization(Sema &S,
5144                                 const InitializedEntity &Entity,
5145                                 const InitializationKind &Kind,
5146                                 MultiExprArg Args,
5147                                 const InitializationSequence::Step& Step,
5148                                 bool &ConstructorInitRequiresZeroInit,
5149                                 bool IsListInitialization,
5150                                 SourceLocation LBraceLoc,
5151                                 SourceLocation RBraceLoc) {
5152  unsigned NumArgs = Args.size();
5153  CXXConstructorDecl *Constructor
5154    = cast<CXXConstructorDecl>(Step.Function.Function);
5155  bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5156
5157  // Build a call to the selected constructor.
5158  SmallVector<Expr*, 8> ConstructorArgs;
5159  SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5160                         ? Kind.getEqualLoc()
5161                         : Kind.getLocation();
5162
5163  if (Kind.getKind() == InitializationKind::IK_Default) {
5164    // Force even a trivial, implicit default constructor to be
5165    // semantically checked. We do this explicitly because we don't build
5166    // the definition for completely trivial constructors.
5167    assert(Constructor->getParent() && "No parent class for constructor.");
5168    if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5169        Constructor->isTrivial() && !Constructor->isUsed(false))
5170      S.DefineImplicitDefaultConstructor(Loc, Constructor);
5171  }
5172
5173  ExprResult CurInit = S.Owned((Expr *)0);
5174
5175  // C++ [over.match.copy]p1:
5176  //   - When initializing a temporary to be bound to the first parameter
5177  //     of a constructor that takes a reference to possibly cv-qualified
5178  //     T as its first argument, called with a single argument in the
5179  //     context of direct-initialization, explicit conversion functions
5180  //     are also considered.
5181  bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
5182                           Args.size() == 1 &&
5183                           Constructor->isCopyOrMoveConstructor();
5184
5185  // Determine the arguments required to actually perform the constructor
5186  // call.
5187  if (S.CompleteConstructorCall(Constructor, Args,
5188                                Loc, ConstructorArgs,
5189                                AllowExplicitConv,
5190                                IsListInitialization))
5191    return ExprError();
5192
5193
5194  if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5195    // An explicitly-constructed temporary, e.g., X(1, 2).
5196    S.MarkFunctionReferenced(Loc, Constructor);
5197    if (S.DiagnoseUseOfDecl(Constructor, Loc))
5198      return ExprError();
5199
5200    TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5201    if (!TSInfo)
5202      TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5203    SourceRange ParenOrBraceRange =
5204      (Kind.getKind() == InitializationKind::IK_DirectList)
5205      ? SourceRange(LBraceLoc, RBraceLoc)
5206      : Kind.getParenRange();
5207
5208    CurInit = S.Owned(
5209      new (S.Context) CXXTemporaryObjectExpr(S.Context, Constructor,
5210                                             TSInfo, ConstructorArgs,
5211                                             ParenOrBraceRange,
5212                                             HadMultipleCandidates,
5213                                             IsListInitialization,
5214                                             ConstructorInitRequiresZeroInit));
5215  } else {
5216    CXXConstructExpr::ConstructionKind ConstructKind =
5217      CXXConstructExpr::CK_Complete;
5218
5219    if (Entity.getKind() == InitializedEntity::EK_Base) {
5220      ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5221        CXXConstructExpr::CK_VirtualBase :
5222        CXXConstructExpr::CK_NonVirtualBase;
5223    } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5224      ConstructKind = CXXConstructExpr::CK_Delegating;
5225    }
5226
5227    // Only get the parenthesis or brace range if it is a list initialization or
5228    // direct construction.
5229    SourceRange ParenOrBraceRange;
5230    if (IsListInitialization)
5231      ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
5232    else if (Kind.getKind() == InitializationKind::IK_Direct)
5233      ParenOrBraceRange = Kind.getParenRange();
5234
5235    // If the entity allows NRVO, mark the construction as elidable
5236    // unconditionally.
5237    if (Entity.allowsNRVO())
5238      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5239                                        Constructor, /*Elidable=*/true,
5240                                        ConstructorArgs,
5241                                        HadMultipleCandidates,
5242                                        IsListInitialization,
5243                                        ConstructorInitRequiresZeroInit,
5244                                        ConstructKind,
5245                                        ParenOrBraceRange);
5246    else
5247      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5248                                        Constructor,
5249                                        ConstructorArgs,
5250                                        HadMultipleCandidates,
5251                                        IsListInitialization,
5252                                        ConstructorInitRequiresZeroInit,
5253                                        ConstructKind,
5254                                        ParenOrBraceRange);
5255  }
5256  if (CurInit.isInvalid())
5257    return ExprError();
5258
5259  // Only check access if all of that succeeded.
5260  S.CheckConstructorAccess(Loc, Constructor, Entity,
5261                           Step.Function.FoundDecl.getAccess());
5262  if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5263    return ExprError();
5264
5265  if (shouldBindAsTemporary(Entity))
5266    CurInit = S.MaybeBindToTemporary(CurInit.take());
5267
5268  return CurInit;
5269}
5270
5271/// Determine whether the specified InitializedEntity definitely has a lifetime
5272/// longer than the current full-expression. Conservatively returns false if
5273/// it's unclear.
5274static bool
5275InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5276  const InitializedEntity *Top = &Entity;
5277  while (Top->getParent())
5278    Top = Top->getParent();
5279
5280  switch (Top->getKind()) {
5281  case InitializedEntity::EK_Variable:
5282  case InitializedEntity::EK_Result:
5283  case InitializedEntity::EK_Exception:
5284  case InitializedEntity::EK_Member:
5285  case InitializedEntity::EK_New:
5286  case InitializedEntity::EK_Base:
5287  case InitializedEntity::EK_Delegating:
5288    return true;
5289
5290  case InitializedEntity::EK_ArrayElement:
5291  case InitializedEntity::EK_VectorElement:
5292  case InitializedEntity::EK_BlockElement:
5293  case InitializedEntity::EK_ComplexElement:
5294    // Could not determine what the full initialization is. Assume it might not
5295    // outlive the full-expression.
5296    return false;
5297
5298  case InitializedEntity::EK_Parameter:
5299  case InitializedEntity::EK_Parameter_CF_Audited:
5300  case InitializedEntity::EK_Temporary:
5301  case InitializedEntity::EK_LambdaCapture:
5302  case InitializedEntity::EK_CompoundLiteralInit:
5303  case InitializedEntity::EK_RelatedResult:
5304    // The entity being initialized might not outlive the full-expression.
5305    return false;
5306  }
5307
5308  llvm_unreachable("unknown entity kind");
5309}
5310
5311/// Determine the declaration which an initialized entity ultimately refers to,
5312/// for the purpose of lifetime-extending a temporary bound to a reference in
5313/// the initialization of \p Entity.
5314static const ValueDecl *
5315getDeclForTemporaryLifetimeExtension(const InitializedEntity &Entity,
5316                                     const ValueDecl *FallbackDecl = 0) {
5317  // C++11 [class.temporary]p5:
5318  switch (Entity.getKind()) {
5319  case InitializedEntity::EK_Variable:
5320    //   The temporary [...] persists for the lifetime of the reference
5321    return Entity.getDecl();
5322
5323  case InitializedEntity::EK_Member:
5324    // For subobjects, we look at the complete object.
5325    if (Entity.getParent())
5326      return getDeclForTemporaryLifetimeExtension(*Entity.getParent(),
5327                                                  Entity.getDecl());
5328
5329    //   except:
5330    //   -- A temporary bound to a reference member in a constructor's
5331    //      ctor-initializer persists until the constructor exits.
5332    return Entity.getDecl();
5333
5334  case InitializedEntity::EK_Parameter:
5335  case InitializedEntity::EK_Parameter_CF_Audited:
5336    //   -- A temporary bound to a reference parameter in a function call
5337    //      persists until the completion of the full-expression containing
5338    //      the call.
5339  case InitializedEntity::EK_Result:
5340    //   -- The lifetime of a temporary bound to the returned value in a
5341    //      function return statement is not extended; the temporary is
5342    //      destroyed at the end of the full-expression in the return statement.
5343  case InitializedEntity::EK_New:
5344    //   -- A temporary bound to a reference in a new-initializer persists
5345    //      until the completion of the full-expression containing the
5346    //      new-initializer.
5347    return 0;
5348
5349  case InitializedEntity::EK_Temporary:
5350  case InitializedEntity::EK_CompoundLiteralInit:
5351  case InitializedEntity::EK_RelatedResult:
5352    // We don't yet know the storage duration of the surrounding temporary.
5353    // Assume it's got full-expression duration for now, it will patch up our
5354    // storage duration if that's not correct.
5355    return 0;
5356
5357  case InitializedEntity::EK_ArrayElement:
5358    // For subobjects, we look at the complete object.
5359    return getDeclForTemporaryLifetimeExtension(*Entity.getParent(),
5360                                                FallbackDecl);
5361
5362  case InitializedEntity::EK_Base:
5363  case InitializedEntity::EK_Delegating:
5364    // We can reach this case for aggregate initialization in a constructor:
5365    //   struct A { int &&r; };
5366    //   struct B : A { B() : A{0} {} };
5367    // In this case, use the innermost field decl as the context.
5368    return FallbackDecl;
5369
5370  case InitializedEntity::EK_BlockElement:
5371  case InitializedEntity::EK_LambdaCapture:
5372  case InitializedEntity::EK_Exception:
5373  case InitializedEntity::EK_VectorElement:
5374  case InitializedEntity::EK_ComplexElement:
5375    return 0;
5376  }
5377  llvm_unreachable("unknown entity kind");
5378}
5379
5380static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD);
5381
5382/// Update a glvalue expression that is used as the initializer of a reference
5383/// to note that its lifetime is extended.
5384/// \return \c true if any temporary had its lifetime extended.
5385static bool performReferenceExtension(Expr *Init, const ValueDecl *ExtendingD) {
5386  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5387    if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
5388      // This is just redundant braces around an initializer. Step over it.
5389      Init = ILE->getInit(0);
5390    }
5391  }
5392
5393  // Walk past any constructs which we can lifetime-extend across.
5394  Expr *Old;
5395  do {
5396    Old = Init;
5397
5398    // Step over any subobject adjustments; we may have a materialized
5399    // temporary inside them.
5400    SmallVector<const Expr *, 2> CommaLHSs;
5401    SmallVector<SubobjectAdjustment, 2> Adjustments;
5402    Init = const_cast<Expr *>(
5403        Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5404
5405    // Per current approach for DR1376, look through casts to reference type
5406    // when performing lifetime extension.
5407    if (CastExpr *CE = dyn_cast<CastExpr>(Init))
5408      if (CE->getSubExpr()->isGLValue())
5409        Init = CE->getSubExpr();
5410
5411    // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue.
5412    // It's unclear if binding a reference to that xvalue extends the array
5413    // temporary.
5414  } while (Init != Old);
5415
5416  if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
5417    // Update the storage duration of the materialized temporary.
5418    // FIXME: Rebuild the expression instead of mutating it.
5419    ME->setExtendingDecl(ExtendingD);
5420    performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingD);
5421    return true;
5422  }
5423
5424  return false;
5425}
5426
5427/// Update a prvalue expression that is going to be materialized as a
5428/// lifetime-extended temporary.
5429static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD) {
5430  // Dig out the expression which constructs the extended temporary.
5431  SmallVector<const Expr *, 2> CommaLHSs;
5432  SmallVector<SubobjectAdjustment, 2> Adjustments;
5433  Init = const_cast<Expr *>(
5434      Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5435
5436  if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
5437    Init = BTE->getSubExpr();
5438
5439  if (CXXStdInitializerListExpr *ILE =
5440          dyn_cast<CXXStdInitializerListExpr>(Init)) {
5441    performReferenceExtension(ILE->getSubExpr(), ExtendingD);
5442    return;
5443  }
5444
5445  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5446    if (ILE->getType()->isArrayType()) {
5447      for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
5448        performLifetimeExtension(ILE->getInit(I), ExtendingD);
5449      return;
5450    }
5451
5452    if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
5453      assert(RD->isAggregate() && "aggregate init on non-aggregate");
5454
5455      // If we lifetime-extend a braced initializer which is initializing an
5456      // aggregate, and that aggregate contains reference members which are
5457      // bound to temporaries, those temporaries are also lifetime-extended.
5458      if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
5459          ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
5460        performReferenceExtension(ILE->getInit(0), ExtendingD);
5461      else {
5462        unsigned Index = 0;
5463        for (const auto *I : RD->fields()) {
5464          if (Index >= ILE->getNumInits())
5465            break;
5466          if (I->isUnnamedBitfield())
5467            continue;
5468          Expr *SubInit = ILE->getInit(Index);
5469          if (I->getType()->isReferenceType())
5470            performReferenceExtension(SubInit, ExtendingD);
5471          else if (isa<InitListExpr>(SubInit) ||
5472                   isa<CXXStdInitializerListExpr>(SubInit))
5473            // This may be either aggregate-initialization of a member or
5474            // initialization of a std::initializer_list object. Either way,
5475            // we should recursively lifetime-extend that initializer.
5476            performLifetimeExtension(SubInit, ExtendingD);
5477          ++Index;
5478        }
5479      }
5480    }
5481  }
5482}
5483
5484static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
5485                                    const Expr *Init, bool IsInitializerList,
5486                                    const ValueDecl *ExtendingDecl) {
5487  // Warn if a field lifetime-extends a temporary.
5488  if (isa<FieldDecl>(ExtendingDecl)) {
5489    if (IsInitializerList) {
5490      S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
5491        << /*at end of constructor*/true;
5492      return;
5493    }
5494
5495    bool IsSubobjectMember = false;
5496    for (const InitializedEntity *Ent = Entity.getParent(); Ent;
5497         Ent = Ent->getParent()) {
5498      if (Ent->getKind() != InitializedEntity::EK_Base) {
5499        IsSubobjectMember = true;
5500        break;
5501      }
5502    }
5503    S.Diag(Init->getExprLoc(),
5504           diag::warn_bind_ref_member_to_temporary)
5505      << ExtendingDecl << Init->getSourceRange()
5506      << IsSubobjectMember << IsInitializerList;
5507    if (IsSubobjectMember)
5508      S.Diag(ExtendingDecl->getLocation(),
5509             diag::note_ref_subobject_of_member_declared_here);
5510    else
5511      S.Diag(ExtendingDecl->getLocation(),
5512             diag::note_ref_or_ptr_member_declared_here)
5513        << /*is pointer*/false;
5514  }
5515}
5516
5517static void DiagnoseNarrowingInInitList(Sema &S,
5518                                        const ImplicitConversionSequence &ICS,
5519                                        QualType PreNarrowingType,
5520                                        QualType EntityType,
5521                                        const Expr *PostInit);
5522
5523ExprResult
5524InitializationSequence::Perform(Sema &S,
5525                                const InitializedEntity &Entity,
5526                                const InitializationKind &Kind,
5527                                MultiExprArg Args,
5528                                QualType *ResultType) {
5529  if (Failed()) {
5530    Diagnose(S, Entity, Kind, Args);
5531    return ExprError();
5532  }
5533
5534  if (getKind() == DependentSequence) {
5535    // If the declaration is a non-dependent, incomplete array type
5536    // that has an initializer, then its type will be completed once
5537    // the initializer is instantiated.
5538    if (ResultType && !Entity.getType()->isDependentType() &&
5539        Args.size() == 1) {
5540      QualType DeclType = Entity.getType();
5541      if (const IncompleteArrayType *ArrayT
5542                           = S.Context.getAsIncompleteArrayType(DeclType)) {
5543        // FIXME: We don't currently have the ability to accurately
5544        // compute the length of an initializer list without
5545        // performing full type-checking of the initializer list
5546        // (since we have to determine where braces are implicitly
5547        // introduced and such).  So, we fall back to making the array
5548        // type a dependently-sized array type with no specified
5549        // bound.
5550        if (isa<InitListExpr>((Expr *)Args[0])) {
5551          SourceRange Brackets;
5552
5553          // Scavange the location of the brackets from the entity, if we can.
5554          if (DeclaratorDecl *DD = Entity.getDecl()) {
5555            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
5556              TypeLoc TL = TInfo->getTypeLoc();
5557              if (IncompleteArrayTypeLoc ArrayLoc =
5558                      TL.getAs<IncompleteArrayTypeLoc>())
5559                Brackets = ArrayLoc.getBracketsRange();
5560            }
5561          }
5562
5563          *ResultType
5564            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
5565                                                   /*NumElts=*/0,
5566                                                   ArrayT->getSizeModifier(),
5567                                       ArrayT->getIndexTypeCVRQualifiers(),
5568                                                   Brackets);
5569        }
5570
5571      }
5572    }
5573    if (Kind.getKind() == InitializationKind::IK_Direct &&
5574        !Kind.isExplicitCast()) {
5575      // Rebuild the ParenListExpr.
5576      SourceRange ParenRange = Kind.getParenRange();
5577      return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
5578                                  Args);
5579    }
5580    assert(Kind.getKind() == InitializationKind::IK_Copy ||
5581           Kind.isExplicitCast() ||
5582           Kind.getKind() == InitializationKind::IK_DirectList);
5583    return ExprResult(Args[0]);
5584  }
5585
5586  // No steps means no initialization.
5587  if (Steps.empty())
5588    return S.Owned((Expr *)0);
5589
5590  if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
5591      Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
5592      !Entity.isParameterKind()) {
5593    // Produce a C++98 compatibility warning if we are initializing a reference
5594    // from an initializer list. For parameters, we produce a better warning
5595    // elsewhere.
5596    Expr *Init = Args[0];
5597    S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
5598      << Init->getSourceRange();
5599  }
5600
5601  // Diagnose cases where we initialize a pointer to an array temporary, and the
5602  // pointer obviously outlives the temporary.
5603  if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
5604      Entity.getType()->isPointerType() &&
5605      InitializedEntityOutlivesFullExpression(Entity)) {
5606    Expr *Init = Args[0];
5607    Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
5608    if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
5609      S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
5610        << Init->getSourceRange();
5611  }
5612
5613  QualType DestType = Entity.getType().getNonReferenceType();
5614  // FIXME: Ugly hack around the fact that Entity.getType() is not
5615  // the same as Entity.getDecl()->getType() in cases involving type merging,
5616  //  and we want latter when it makes sense.
5617  if (ResultType)
5618    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
5619                                     Entity.getType();
5620
5621  ExprResult CurInit = S.Owned((Expr *)0);
5622
5623  // For initialization steps that start with a single initializer,
5624  // grab the only argument out the Args and place it into the "current"
5625  // initializer.
5626  switch (Steps.front().Kind) {
5627  case SK_ResolveAddressOfOverloadedFunction:
5628  case SK_CastDerivedToBaseRValue:
5629  case SK_CastDerivedToBaseXValue:
5630  case SK_CastDerivedToBaseLValue:
5631  case SK_BindReference:
5632  case SK_BindReferenceToTemporary:
5633  case SK_ExtraneousCopyToTemporary:
5634  case SK_UserConversion:
5635  case SK_QualificationConversionLValue:
5636  case SK_QualificationConversionXValue:
5637  case SK_QualificationConversionRValue:
5638  case SK_LValueToRValue:
5639  case SK_ConversionSequence:
5640  case SK_ConversionSequenceNoNarrowing:
5641  case SK_ListInitialization:
5642  case SK_UnwrapInitList:
5643  case SK_RewrapInitList:
5644  case SK_CAssignment:
5645  case SK_StringInit:
5646  case SK_ObjCObjectConversion:
5647  case SK_ArrayInit:
5648  case SK_ParenthesizedArrayInit:
5649  case SK_PassByIndirectCopyRestore:
5650  case SK_PassByIndirectRestore:
5651  case SK_ProduceObjCObject:
5652  case SK_StdInitializerList:
5653  case SK_OCLSamplerInit:
5654  case SK_OCLZeroEvent: {
5655    assert(Args.size() == 1);
5656    CurInit = Args[0];
5657    if (!CurInit.get()) return ExprError();
5658    break;
5659  }
5660
5661  case SK_ConstructorInitialization:
5662  case SK_ListConstructorCall:
5663  case SK_ZeroInitialization:
5664    break;
5665  }
5666
5667  // Walk through the computed steps for the initialization sequence,
5668  // performing the specified conversions along the way.
5669  bool ConstructorInitRequiresZeroInit = false;
5670  for (step_iterator Step = step_begin(), StepEnd = step_end();
5671       Step != StepEnd; ++Step) {
5672    if (CurInit.isInvalid())
5673      return ExprError();
5674
5675    QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
5676
5677    switch (Step->Kind) {
5678    case SK_ResolveAddressOfOverloadedFunction:
5679      // Overload resolution determined which function invoke; update the
5680      // initializer to reflect that choice.
5681      S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
5682      if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
5683        return ExprError();
5684      CurInit = S.FixOverloadedFunctionReference(CurInit,
5685                                                 Step->Function.FoundDecl,
5686                                                 Step->Function.Function);
5687      break;
5688
5689    case SK_CastDerivedToBaseRValue:
5690    case SK_CastDerivedToBaseXValue:
5691    case SK_CastDerivedToBaseLValue: {
5692      // We have a derived-to-base cast that produces either an rvalue or an
5693      // lvalue. Perform that cast.
5694
5695      CXXCastPath BasePath;
5696
5697      // Casts to inaccessible base classes are allowed with C-style casts.
5698      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
5699      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
5700                                         CurInit.get()->getLocStart(),
5701                                         CurInit.get()->getSourceRange(),
5702                                         &BasePath, IgnoreBaseAccess))
5703        return ExprError();
5704
5705      if (S.BasePathInvolvesVirtualBase(BasePath)) {
5706        QualType T = SourceType;
5707        if (const PointerType *Pointer = T->getAs<PointerType>())
5708          T = Pointer->getPointeeType();
5709        if (const RecordType *RecordTy = T->getAs<RecordType>())
5710          S.MarkVTableUsed(CurInit.get()->getLocStart(),
5711                           cast<CXXRecordDecl>(RecordTy->getDecl()));
5712      }
5713
5714      ExprValueKind VK =
5715          Step->Kind == SK_CastDerivedToBaseLValue ?
5716              VK_LValue :
5717              (Step->Kind == SK_CastDerivedToBaseXValue ?
5718                   VK_XValue :
5719                   VK_RValue);
5720      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5721                                                 Step->Type,
5722                                                 CK_DerivedToBase,
5723                                                 CurInit.get(),
5724                                                 &BasePath, VK));
5725      break;
5726    }
5727
5728    case SK_BindReference:
5729      // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
5730      if (CurInit.get()->refersToBitField()) {
5731        // We don't necessarily have an unambiguous source bit-field.
5732        FieldDecl *BitField = CurInit.get()->getSourceBitField();
5733        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
5734          << Entity.getType().isVolatileQualified()
5735          << (BitField ? BitField->getDeclName() : DeclarationName())
5736          << (BitField != NULL)
5737          << CurInit.get()->getSourceRange();
5738        if (BitField)
5739          S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
5740
5741        return ExprError();
5742      }
5743
5744      if (CurInit.get()->refersToVectorElement()) {
5745        // References cannot bind to vector elements.
5746        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
5747          << Entity.getType().isVolatileQualified()
5748          << CurInit.get()->getSourceRange();
5749        PrintInitLocationNote(S, Entity);
5750        return ExprError();
5751      }
5752
5753      // Reference binding does not have any corresponding ASTs.
5754
5755      // Check exception specifications
5756      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5757        return ExprError();
5758
5759      // Even though we didn't materialize a temporary, the binding may still
5760      // extend the lifetime of a temporary. This happens if we bind a reference
5761      // to the result of a cast to reference type.
5762      if (const ValueDecl *ExtendingDecl =
5763              getDeclForTemporaryLifetimeExtension(Entity)) {
5764        if (performReferenceExtension(CurInit.get(), ExtendingDecl))
5765          warnOnLifetimeExtension(S, Entity, CurInit.get(), false,
5766                                  ExtendingDecl);
5767      }
5768
5769      break;
5770
5771    case SK_BindReferenceToTemporary: {
5772      // Make sure the "temporary" is actually an rvalue.
5773      assert(CurInit.get()->isRValue() && "not a temporary");
5774
5775      // Check exception specifications
5776      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5777        return ExprError();
5778
5779      // Maybe lifetime-extend the temporary's subobjects to match the
5780      // entity's lifetime.
5781      const ValueDecl *ExtendingDecl =
5782          getDeclForTemporaryLifetimeExtension(Entity);
5783      if (ExtendingDecl) {
5784        performLifetimeExtension(CurInit.get(), ExtendingDecl);
5785        warnOnLifetimeExtension(S, Entity, CurInit.get(), false, ExtendingDecl);
5786      }
5787
5788      // Materialize the temporary into memory.
5789      MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr(
5790          Entity.getType().getNonReferenceType(), CurInit.get(),
5791          Entity.getType()->isLValueReferenceType(), ExtendingDecl);
5792
5793      // If we're binding to an Objective-C object that has lifetime, we
5794      // need cleanups. Likewise if we're extending this temporary to automatic
5795      // storage duration -- we need to register its cleanup during the
5796      // full-expression's cleanups.
5797      if ((S.getLangOpts().ObjCAutoRefCount &&
5798           MTE->getType()->isObjCLifetimeType()) ||
5799          (MTE->getStorageDuration() == SD_Automatic &&
5800           MTE->getType().isDestructedType()))
5801        S.ExprNeedsCleanups = true;
5802
5803      CurInit = S.Owned(MTE);
5804      break;
5805    }
5806
5807    case SK_ExtraneousCopyToTemporary:
5808      CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5809                           /*IsExtraneousCopy=*/true);
5810      break;
5811
5812    case SK_UserConversion: {
5813      // We have a user-defined conversion that invokes either a constructor
5814      // or a conversion function.
5815      CastKind CastKind;
5816      bool IsCopy = false;
5817      FunctionDecl *Fn = Step->Function.Function;
5818      DeclAccessPair FoundFn = Step->Function.FoundDecl;
5819      bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5820      bool CreatedObject = false;
5821      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5822        // Build a call to the selected constructor.
5823        SmallVector<Expr*, 8> ConstructorArgs;
5824        SourceLocation Loc = CurInit.get()->getLocStart();
5825        CurInit.release(); // Ownership transferred into MultiExprArg, below.
5826
5827        // Determine the arguments required to actually perform the constructor
5828        // call.
5829        Expr *Arg = CurInit.get();
5830        if (S.CompleteConstructorCall(Constructor,
5831                                      MultiExprArg(&Arg, 1),
5832                                      Loc, ConstructorArgs))
5833          return ExprError();
5834
5835        // Build an expression that constructs a temporary.
5836        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5837                                          ConstructorArgs,
5838                                          HadMultipleCandidates,
5839                                          /*ListInit*/ false,
5840                                          /*ZeroInit*/ false,
5841                                          CXXConstructExpr::CK_Complete,
5842                                          SourceRange());
5843        if (CurInit.isInvalid())
5844          return ExprError();
5845
5846        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5847                                 FoundFn.getAccess());
5848        if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5849          return ExprError();
5850
5851        CastKind = CK_ConstructorConversion;
5852        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5853        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5854            S.IsDerivedFrom(SourceType, Class))
5855          IsCopy = true;
5856
5857        CreatedObject = true;
5858      } else {
5859        // Build a call to the conversion function.
5860        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5861        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5862                                    FoundFn);
5863        if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5864          return ExprError();
5865
5866        // FIXME: Should we move this initialization into a separate
5867        // derived-to-base conversion? I believe the answer is "no", because
5868        // we don't want to turn off access control here for c-style casts.
5869        ExprResult CurInitExprRes =
5870          S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5871                                                FoundFn, Conversion);
5872        if(CurInitExprRes.isInvalid())
5873          return ExprError();
5874        CurInit = CurInitExprRes;
5875
5876        // Build the actual call to the conversion function.
5877        CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5878                                           HadMultipleCandidates);
5879        if (CurInit.isInvalid() || !CurInit.get())
5880          return ExprError();
5881
5882        CastKind = CK_UserDefinedConversion;
5883
5884        CreatedObject = Conversion->getReturnType()->isRecordType();
5885      }
5886
5887      bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5888      bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5889
5890      if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5891        QualType T = CurInit.get()->getType();
5892        if (const RecordType *Record = T->getAs<RecordType>()) {
5893          CXXDestructorDecl *Destructor
5894            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5895          S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5896                                  S.PDiag(diag::err_access_dtor_temp) << T);
5897          S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5898          if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
5899            return ExprError();
5900        }
5901      }
5902
5903      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5904                                                 CurInit.get()->getType(),
5905                                                 CastKind, CurInit.get(), 0,
5906                                                CurInit.get()->getValueKind()));
5907      if (MaybeBindToTemp)
5908        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5909      if (RequiresCopy)
5910        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5911                             CurInit, /*IsExtraneousCopy=*/false);
5912      break;
5913    }
5914
5915    case SK_QualificationConversionLValue:
5916    case SK_QualificationConversionXValue:
5917    case SK_QualificationConversionRValue: {
5918      // Perform a qualification conversion; these can never go wrong.
5919      ExprValueKind VK =
5920          Step->Kind == SK_QualificationConversionLValue ?
5921              VK_LValue :
5922              (Step->Kind == SK_QualificationConversionXValue ?
5923                   VK_XValue :
5924                   VK_RValue);
5925      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5926      break;
5927    }
5928
5929    case SK_LValueToRValue: {
5930      assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
5931      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5932                                                 CK_LValueToRValue,
5933                                                 CurInit.take(),
5934                                                 /*BasePath=*/0,
5935                                                 VK_RValue));
5936      break;
5937    }
5938
5939    case SK_ConversionSequence:
5940    case SK_ConversionSequenceNoNarrowing: {
5941      Sema::CheckedConversionKind CCK
5942        = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5943        : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5944        : Kind.isExplicitCast()? Sema::CCK_OtherCast
5945        : Sema::CCK_ImplicitConversion;
5946      ExprResult CurInitExprRes =
5947        S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5948                                    getAssignmentAction(Entity), CCK);
5949      if (CurInitExprRes.isInvalid())
5950        return ExprError();
5951      CurInit = CurInitExprRes;
5952
5953      if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
5954          S.getLangOpts().CPlusPlus && !CurInit.get()->isValueDependent())
5955        DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
5956                                    CurInit.get());
5957      break;
5958    }
5959
5960    case SK_ListInitialization: {
5961      InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5962      // If we're not initializing the top-level entity, we need to create an
5963      // InitializeTemporary entity for our target type.
5964      QualType Ty = Step->Type;
5965      bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
5966      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5967      InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
5968      InitListChecker PerformInitList(S, InitEntity,
5969          InitList, Ty, /*VerifyOnly=*/false);
5970      if (PerformInitList.HadError())
5971        return ExprError();
5972
5973      // Hack: We must update *ResultType if available in order to set the
5974      // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5975      // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5976      if (ResultType &&
5977          ResultType->getNonReferenceType()->isIncompleteArrayType()) {
5978        if ((*ResultType)->isRValueReferenceType())
5979          Ty = S.Context.getRValueReferenceType(Ty);
5980        else if ((*ResultType)->isLValueReferenceType())
5981          Ty = S.Context.getLValueReferenceType(Ty,
5982            (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5983        *ResultType = Ty;
5984      }
5985
5986      InitListExpr *StructuredInitList =
5987          PerformInitList.getFullyStructuredList();
5988      CurInit.release();
5989      CurInit = shouldBindAsTemporary(InitEntity)
5990          ? S.MaybeBindToTemporary(StructuredInitList)
5991          : S.Owned(StructuredInitList);
5992      break;
5993    }
5994
5995    case SK_ListConstructorCall: {
5996      // When an initializer list is passed for a parameter of type "reference
5997      // to object", we don't get an EK_Temporary entity, but instead an
5998      // EK_Parameter entity with reference type.
5999      // FIXME: This is a hack. What we really should do is create a user
6000      // conversion step for this case, but this makes it considerably more
6001      // complicated. For now, this will do.
6002      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6003                                        Entity.getType().getNonReferenceType());
6004      bool UseTemporary = Entity.getType()->isReferenceType();
6005      assert(Args.size() == 1 && "expected a single argument for list init");
6006      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6007      S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
6008        << InitList->getSourceRange();
6009      MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
6010      CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
6011                                                                   Entity,
6012                                                 Kind, Arg, *Step,
6013                                               ConstructorInitRequiresZeroInit,
6014                                               /*IsListInitialization*/ true,
6015                                               InitList->getLBraceLoc(),
6016                                               InitList->getRBraceLoc());
6017      break;
6018    }
6019
6020    case SK_UnwrapInitList:
6021      CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
6022      break;
6023
6024    case SK_RewrapInitList: {
6025      Expr *E = CurInit.take();
6026      InitListExpr *Syntactic = Step->WrappingSyntacticList;
6027      InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
6028          Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
6029      ILE->setSyntacticForm(Syntactic);
6030      ILE->setType(E->getType());
6031      ILE->setValueKind(E->getValueKind());
6032      CurInit = S.Owned(ILE);
6033      break;
6034    }
6035
6036    case SK_ConstructorInitialization: {
6037      // When an initializer list is passed for a parameter of type "reference
6038      // to object", we don't get an EK_Temporary entity, but instead an
6039      // EK_Parameter entity with reference type.
6040      // FIXME: This is a hack. What we really should do is create a user
6041      // conversion step for this case, but this makes it considerably more
6042      // complicated. For now, this will do.
6043      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6044                                        Entity.getType().getNonReferenceType());
6045      bool UseTemporary = Entity.getType()->isReferenceType();
6046      CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
6047                                                                 : Entity,
6048                                                 Kind, Args, *Step,
6049                                               ConstructorInitRequiresZeroInit,
6050                                               /*IsListInitialization*/ false,
6051                                               /*LBraceLoc*/ SourceLocation(),
6052                                               /*RBraceLoc*/ SourceLocation());
6053      break;
6054    }
6055
6056    case SK_ZeroInitialization: {
6057      step_iterator NextStep = Step;
6058      ++NextStep;
6059      if (NextStep != StepEnd &&
6060          (NextStep->Kind == SK_ConstructorInitialization ||
6061           NextStep->Kind == SK_ListConstructorCall)) {
6062        // The need for zero-initialization is recorded directly into
6063        // the call to the object's constructor within the next step.
6064        ConstructorInitRequiresZeroInit = true;
6065      } else if (Kind.getKind() == InitializationKind::IK_Value &&
6066                 S.getLangOpts().CPlusPlus &&
6067                 !Kind.isImplicitValueInit()) {
6068        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6069        if (!TSInfo)
6070          TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
6071                                                    Kind.getRange().getBegin());
6072
6073        CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
6074                              TSInfo->getType().getNonLValueExprType(S.Context),
6075                                                                 TSInfo,
6076                                                    Kind.getRange().getEnd()));
6077      } else {
6078        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
6079      }
6080      break;
6081    }
6082
6083    case SK_CAssignment: {
6084      QualType SourceType = CurInit.get()->getType();
6085      ExprResult Result = CurInit;
6086      Sema::AssignConvertType ConvTy =
6087        S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
6088            Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
6089      if (Result.isInvalid())
6090        return ExprError();
6091      CurInit = Result;
6092
6093      // If this is a call, allow conversion to a transparent union.
6094      ExprResult CurInitExprRes = CurInit;
6095      if (ConvTy != Sema::Compatible &&
6096          Entity.isParameterKind() &&
6097          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
6098            == Sema::Compatible)
6099        ConvTy = Sema::Compatible;
6100      if (CurInitExprRes.isInvalid())
6101        return ExprError();
6102      CurInit = CurInitExprRes;
6103
6104      bool Complained;
6105      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
6106                                     Step->Type, SourceType,
6107                                     CurInit.get(),
6108                                     getAssignmentAction(Entity, true),
6109                                     &Complained)) {
6110        PrintInitLocationNote(S, Entity);
6111        return ExprError();
6112      } else if (Complained)
6113        PrintInitLocationNote(S, Entity);
6114      break;
6115    }
6116
6117    case SK_StringInit: {
6118      QualType Ty = Step->Type;
6119      CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
6120                      S.Context.getAsArrayType(Ty), S);
6121      break;
6122    }
6123
6124    case SK_ObjCObjectConversion:
6125      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
6126                          CK_ObjCObjectLValueCast,
6127                          CurInit.get()->getValueKind());
6128      break;
6129
6130    case SK_ArrayInit:
6131      // Okay: we checked everything before creating this step. Note that
6132      // this is a GNU extension.
6133      S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
6134        << Step->Type << CurInit.get()->getType()
6135        << CurInit.get()->getSourceRange();
6136
6137      // If the destination type is an incomplete array type, update the
6138      // type accordingly.
6139      if (ResultType) {
6140        if (const IncompleteArrayType *IncompleteDest
6141                           = S.Context.getAsIncompleteArrayType(Step->Type)) {
6142          if (const ConstantArrayType *ConstantSource
6143                 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
6144            *ResultType = S.Context.getConstantArrayType(
6145                                             IncompleteDest->getElementType(),
6146                                             ConstantSource->getSize(),
6147                                             ArrayType::Normal, 0);
6148          }
6149        }
6150      }
6151      break;
6152
6153    case SK_ParenthesizedArrayInit:
6154      // Okay: we checked everything before creating this step. Note that
6155      // this is a GNU extension.
6156      S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
6157        << CurInit.get()->getSourceRange();
6158      break;
6159
6160    case SK_PassByIndirectCopyRestore:
6161    case SK_PassByIndirectRestore:
6162      checkIndirectCopyRestoreSource(S, CurInit.get());
6163      CurInit = S.Owned(new (S.Context)
6164                        ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
6165                                Step->Kind == SK_PassByIndirectCopyRestore));
6166      break;
6167
6168    case SK_ProduceObjCObject:
6169      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
6170                                                 CK_ARCProduceObject,
6171                                                 CurInit.take(), 0, VK_RValue));
6172      break;
6173
6174    case SK_StdInitializerList: {
6175      S.Diag(CurInit.get()->getExprLoc(),
6176             diag::warn_cxx98_compat_initializer_list_init)
6177        << CurInit.get()->getSourceRange();
6178
6179      // Maybe lifetime-extend the array temporary's subobjects to match the
6180      // entity's lifetime.
6181      const ValueDecl *ExtendingDecl =
6182          getDeclForTemporaryLifetimeExtension(Entity);
6183      if (ExtendingDecl) {
6184        performLifetimeExtension(CurInit.get(), ExtendingDecl);
6185        warnOnLifetimeExtension(S, Entity, CurInit.get(), true, ExtendingDecl);
6186      }
6187
6188      // Materialize the temporary into memory.
6189      MaterializeTemporaryExpr *MTE = new (S.Context)
6190          MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(),
6191                                   /*lvalue reference*/ false, ExtendingDecl);
6192
6193      // Wrap it in a construction of a std::initializer_list<T>.
6194      CurInit = S.Owned(
6195          new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE));
6196
6197      // Bind the result, in case the library has given initializer_list a
6198      // non-trivial destructor.
6199      if (shouldBindAsTemporary(Entity))
6200        CurInit = S.MaybeBindToTemporary(CurInit.take());
6201      break;
6202    }
6203
6204    case SK_OCLSamplerInit: {
6205      assert(Step->Type->isSamplerT() &&
6206             "Sampler initialization on non-sampler type.");
6207
6208      QualType SourceType = CurInit.get()->getType();
6209
6210      if (Entity.isParameterKind()) {
6211        if (!SourceType->isSamplerT())
6212          S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
6213            << SourceType;
6214      } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
6215        llvm_unreachable("Invalid EntityKind!");
6216      }
6217
6218      break;
6219    }
6220    case SK_OCLZeroEvent: {
6221      assert(Step->Type->isEventT() &&
6222             "Event initialization on non-event type.");
6223
6224      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
6225                                    CK_ZeroToOCLEvent,
6226                                    CurInit.get()->getValueKind());
6227      break;
6228    }
6229    }
6230  }
6231
6232  // Diagnose non-fatal problems with the completed initialization.
6233  if (Entity.getKind() == InitializedEntity::EK_Member &&
6234      cast<FieldDecl>(Entity.getDecl())->isBitField())
6235    S.CheckBitFieldInitialization(Kind.getLocation(),
6236                                  cast<FieldDecl>(Entity.getDecl()),
6237                                  CurInit.get());
6238
6239  return CurInit;
6240}
6241
6242/// Somewhere within T there is an uninitialized reference subobject.
6243/// Dig it out and diagnose it.
6244static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
6245                                           QualType T) {
6246  if (T->isReferenceType()) {
6247    S.Diag(Loc, diag::err_reference_without_init)
6248      << T.getNonReferenceType();
6249    return true;
6250  }
6251
6252  CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6253  if (!RD || !RD->hasUninitializedReferenceMember())
6254    return false;
6255
6256  for (const auto *FI : RD->fields()) {
6257    if (FI->isUnnamedBitfield())
6258      continue;
6259
6260    if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
6261      S.Diag(Loc, diag::note_value_initialization_here) << RD;
6262      return true;
6263    }
6264  }
6265
6266  for (const auto &BI : RD->bases()) {
6267    if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) {
6268      S.Diag(Loc, diag::note_value_initialization_here) << RD;
6269      return true;
6270    }
6271  }
6272
6273  return false;
6274}
6275
6276
6277//===----------------------------------------------------------------------===//
6278// Diagnose initialization failures
6279//===----------------------------------------------------------------------===//
6280
6281/// Emit notes associated with an initialization that failed due to a
6282/// "simple" conversion failure.
6283static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
6284                                   Expr *op) {
6285  QualType destType = entity.getType();
6286  if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
6287      op->getType()->isObjCObjectPointerType()) {
6288
6289    // Emit a possible note about the conversion failing because the
6290    // operand is a message send with a related result type.
6291    S.EmitRelatedResultTypeNote(op);
6292
6293    // Emit a possible note about a return failing because we're
6294    // expecting a related result type.
6295    if (entity.getKind() == InitializedEntity::EK_Result)
6296      S.EmitRelatedResultTypeNoteForReturn(destType);
6297  }
6298}
6299
6300static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
6301                             InitListExpr *InitList) {
6302  QualType DestType = Entity.getType();
6303
6304  QualType E;
6305  if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
6306    QualType ArrayType = S.Context.getConstantArrayType(
6307        E.withConst(),
6308        llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
6309                    InitList->getNumInits()),
6310        clang::ArrayType::Normal, 0);
6311    InitializedEntity HiddenArray =
6312        InitializedEntity::InitializeTemporary(ArrayType);
6313    return diagnoseListInit(S, HiddenArray, InitList);
6314  }
6315
6316  InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
6317                                   /*VerifyOnly=*/false);
6318  assert(DiagnoseInitList.HadError() &&
6319         "Inconsistent init list check result.");
6320}
6321
6322bool InitializationSequence::Diagnose(Sema &S,
6323                                      const InitializedEntity &Entity,
6324                                      const InitializationKind &Kind,
6325                                      ArrayRef<Expr *> Args) {
6326  if (!Failed())
6327    return false;
6328
6329  QualType DestType = Entity.getType();
6330  switch (Failure) {
6331  case FK_TooManyInitsForReference:
6332    // FIXME: Customize for the initialized entity?
6333    if (Args.empty()) {
6334      // Dig out the reference subobject which is uninitialized and diagnose it.
6335      // If this is value-initialization, this could be nested some way within
6336      // the target type.
6337      assert(Kind.getKind() == InitializationKind::IK_Value ||
6338             DestType->isReferenceType());
6339      bool Diagnosed =
6340        DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
6341      assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
6342      (void)Diagnosed;
6343    } else  // FIXME: diagnostic below could be better!
6344      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
6345        << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
6346    break;
6347
6348  case FK_ArrayNeedsInitList:
6349    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
6350    break;
6351  case FK_ArrayNeedsInitListOrStringLiteral:
6352    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
6353    break;
6354  case FK_ArrayNeedsInitListOrWideStringLiteral:
6355    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
6356    break;
6357  case FK_NarrowStringIntoWideCharArray:
6358    S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
6359    break;
6360  case FK_WideStringIntoCharArray:
6361    S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
6362    break;
6363  case FK_IncompatWideStringIntoWideChar:
6364    S.Diag(Kind.getLocation(),
6365           diag::err_array_init_incompat_wide_string_into_wchar);
6366    break;
6367  case FK_ArrayTypeMismatch:
6368  case FK_NonConstantArrayInit:
6369    S.Diag(Kind.getLocation(),
6370           (Failure == FK_ArrayTypeMismatch
6371              ? diag::err_array_init_different_type
6372              : diag::err_array_init_non_constant_array))
6373      << DestType.getNonReferenceType()
6374      << Args[0]->getType()
6375      << Args[0]->getSourceRange();
6376    break;
6377
6378  case FK_VariableLengthArrayHasInitializer:
6379    S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
6380      << Args[0]->getSourceRange();
6381    break;
6382
6383  case FK_AddressOfOverloadFailed: {
6384    DeclAccessPair Found;
6385    S.ResolveAddressOfOverloadedFunction(Args[0],
6386                                         DestType.getNonReferenceType(),
6387                                         true,
6388                                         Found);
6389    break;
6390  }
6391
6392  case FK_ReferenceInitOverloadFailed:
6393  case FK_UserConversionOverloadFailed:
6394    switch (FailedOverloadResult) {
6395    case OR_Ambiguous:
6396      if (Failure == FK_UserConversionOverloadFailed)
6397        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
6398          << Args[0]->getType() << DestType
6399          << Args[0]->getSourceRange();
6400      else
6401        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
6402          << DestType << Args[0]->getType()
6403          << Args[0]->getSourceRange();
6404
6405      FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6406      break;
6407
6408    case OR_No_Viable_Function:
6409      if (!S.RequireCompleteType(Kind.getLocation(),
6410                                 DestType.getNonReferenceType(),
6411                          diag::err_typecheck_nonviable_condition_incomplete,
6412                               Args[0]->getType(), Args[0]->getSourceRange()))
6413        S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
6414          << Args[0]->getType() << Args[0]->getSourceRange()
6415          << DestType.getNonReferenceType();
6416
6417      FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6418      break;
6419
6420    case OR_Deleted: {
6421      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
6422        << Args[0]->getType() << DestType.getNonReferenceType()
6423        << Args[0]->getSourceRange();
6424      OverloadCandidateSet::iterator Best;
6425      OverloadingResult Ovl
6426        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
6427                                                true);
6428      if (Ovl == OR_Deleted) {
6429        S.NoteDeletedFunction(Best->Function);
6430      } else {
6431        llvm_unreachable("Inconsistent overload resolution?");
6432      }
6433      break;
6434    }
6435
6436    case OR_Success:
6437      llvm_unreachable("Conversion did not fail!");
6438    }
6439    break;
6440
6441  case FK_NonConstLValueReferenceBindingToTemporary:
6442    if (isa<InitListExpr>(Args[0])) {
6443      S.Diag(Kind.getLocation(),
6444             diag::err_lvalue_reference_bind_to_initlist)
6445      << DestType.getNonReferenceType().isVolatileQualified()
6446      << DestType.getNonReferenceType()
6447      << Args[0]->getSourceRange();
6448      break;
6449    }
6450    // Intentional fallthrough
6451
6452  case FK_NonConstLValueReferenceBindingToUnrelated:
6453    S.Diag(Kind.getLocation(),
6454           Failure == FK_NonConstLValueReferenceBindingToTemporary
6455             ? diag::err_lvalue_reference_bind_to_temporary
6456             : diag::err_lvalue_reference_bind_to_unrelated)
6457      << DestType.getNonReferenceType().isVolatileQualified()
6458      << DestType.getNonReferenceType()
6459      << Args[0]->getType()
6460      << Args[0]->getSourceRange();
6461    break;
6462
6463  case FK_RValueReferenceBindingToLValue:
6464    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
6465      << DestType.getNonReferenceType() << Args[0]->getType()
6466      << Args[0]->getSourceRange();
6467    break;
6468
6469  case FK_ReferenceInitDropsQualifiers:
6470    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
6471      << DestType.getNonReferenceType()
6472      << Args[0]->getType()
6473      << Args[0]->getSourceRange();
6474    break;
6475
6476  case FK_ReferenceInitFailed:
6477    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
6478      << DestType.getNonReferenceType()
6479      << Args[0]->isLValue()
6480      << Args[0]->getType()
6481      << Args[0]->getSourceRange();
6482    emitBadConversionNotes(S, Entity, Args[0]);
6483    break;
6484
6485  case FK_ConversionFailed: {
6486    QualType FromType = Args[0]->getType();
6487    PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
6488      << (int)Entity.getKind()
6489      << DestType
6490      << Args[0]->isLValue()
6491      << FromType
6492      << Args[0]->getSourceRange();
6493    S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
6494    S.Diag(Kind.getLocation(), PDiag);
6495    emitBadConversionNotes(S, Entity, Args[0]);
6496    break;
6497  }
6498
6499  case FK_ConversionFromPropertyFailed:
6500    // No-op. This error has already been reported.
6501    break;
6502
6503  case FK_TooManyInitsForScalar: {
6504    SourceRange R;
6505
6506    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
6507      R = SourceRange(InitList->getInit(0)->getLocEnd(),
6508                      InitList->getLocEnd());
6509    else
6510      R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
6511
6512    R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
6513    if (Kind.isCStyleOrFunctionalCast())
6514      S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
6515        << R;
6516    else
6517      S.Diag(Kind.getLocation(), diag::err_excess_initializers)
6518        << /*scalar=*/2 << R;
6519    break;
6520  }
6521
6522  case FK_ReferenceBindingToInitList:
6523    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
6524      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
6525    break;
6526
6527  case FK_InitListBadDestinationType:
6528    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
6529      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
6530    break;
6531
6532  case FK_ListConstructorOverloadFailed:
6533  case FK_ConstructorOverloadFailed: {
6534    SourceRange ArgsRange;
6535    if (Args.size())
6536      ArgsRange = SourceRange(Args.front()->getLocStart(),
6537                              Args.back()->getLocEnd());
6538
6539    if (Failure == FK_ListConstructorOverloadFailed) {
6540      assert(Args.size() == 1 && "List construction from other than 1 argument.");
6541      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6542      Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
6543    }
6544
6545    // FIXME: Using "DestType" for the entity we're printing is probably
6546    // bad.
6547    switch (FailedOverloadResult) {
6548      case OR_Ambiguous:
6549        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
6550          << DestType << ArgsRange;
6551        FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6552        break;
6553
6554      case OR_No_Viable_Function:
6555        if (Kind.getKind() == InitializationKind::IK_Default &&
6556            (Entity.getKind() == InitializedEntity::EK_Base ||
6557             Entity.getKind() == InitializedEntity::EK_Member) &&
6558            isa<CXXConstructorDecl>(S.CurContext)) {
6559          // This is implicit default initialization of a member or
6560          // base within a constructor. If no viable function was
6561          // found, notify the user that she needs to explicitly
6562          // initialize this base/member.
6563          CXXConstructorDecl *Constructor
6564            = cast<CXXConstructorDecl>(S.CurContext);
6565          if (Entity.getKind() == InitializedEntity::EK_Base) {
6566            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6567              << (Constructor->getInheritedConstructor() ? 2 :
6568                  Constructor->isImplicit() ? 1 : 0)
6569              << S.Context.getTypeDeclType(Constructor->getParent())
6570              << /*base=*/0
6571              << Entity.getType();
6572
6573            RecordDecl *BaseDecl
6574              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
6575                                                                  ->getDecl();
6576            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
6577              << S.Context.getTagDeclType(BaseDecl);
6578          } else {
6579            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6580              << (Constructor->getInheritedConstructor() ? 2 :
6581                  Constructor->isImplicit() ? 1 : 0)
6582              << S.Context.getTypeDeclType(Constructor->getParent())
6583              << /*member=*/1
6584              << Entity.getName();
6585            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
6586
6587            if (const RecordType *Record
6588                                 = Entity.getType()->getAs<RecordType>())
6589              S.Diag(Record->getDecl()->getLocation(),
6590                     diag::note_previous_decl)
6591                << S.Context.getTagDeclType(Record->getDecl());
6592          }
6593          break;
6594        }
6595
6596        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
6597          << DestType << ArgsRange;
6598        FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6599        break;
6600
6601      case OR_Deleted: {
6602        OverloadCandidateSet::iterator Best;
6603        OverloadingResult Ovl
6604          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6605        if (Ovl != OR_Deleted) {
6606          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6607            << true << DestType << ArgsRange;
6608          llvm_unreachable("Inconsistent overload resolution?");
6609          break;
6610        }
6611
6612        // If this is a defaulted or implicitly-declared function, then
6613        // it was implicitly deleted. Make it clear that the deletion was
6614        // implicit.
6615        if (S.isImplicitlyDeleted(Best->Function))
6616          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
6617            << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
6618            << DestType << ArgsRange;
6619        else
6620          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6621            << true << DestType << ArgsRange;
6622
6623        S.NoteDeletedFunction(Best->Function);
6624        break;
6625      }
6626
6627      case OR_Success:
6628        llvm_unreachable("Conversion did not fail!");
6629    }
6630  }
6631  break;
6632
6633  case FK_DefaultInitOfConst:
6634    if (Entity.getKind() == InitializedEntity::EK_Member &&
6635        isa<CXXConstructorDecl>(S.CurContext)) {
6636      // This is implicit default-initialization of a const member in
6637      // a constructor. Complain that it needs to be explicitly
6638      // initialized.
6639      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
6640      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
6641        << (Constructor->getInheritedConstructor() ? 2 :
6642            Constructor->isImplicit() ? 1 : 0)
6643        << S.Context.getTypeDeclType(Constructor->getParent())
6644        << /*const=*/1
6645        << Entity.getName();
6646      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
6647        << Entity.getName();
6648    } else {
6649      S.Diag(Kind.getLocation(), diag::err_default_init_const)
6650        << DestType << (bool)DestType->getAs<RecordType>();
6651    }
6652    break;
6653
6654  case FK_Incomplete:
6655    S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
6656                          diag::err_init_incomplete_type);
6657    break;
6658
6659  case FK_ListInitializationFailed: {
6660    // Run the init list checker again to emit diagnostics.
6661    InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6662    diagnoseListInit(S, Entity, InitList);
6663    break;
6664  }
6665
6666  case FK_PlaceholderType: {
6667    // FIXME: Already diagnosed!
6668    break;
6669  }
6670
6671  case FK_ExplicitConstructor: {
6672    S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
6673      << Args[0]->getSourceRange();
6674    OverloadCandidateSet::iterator Best;
6675    OverloadingResult Ovl
6676      = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6677    (void)Ovl;
6678    assert(Ovl == OR_Success && "Inconsistent overload resolution");
6679    CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
6680    S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
6681    break;
6682  }
6683  }
6684
6685  PrintInitLocationNote(S, Entity);
6686  return true;
6687}
6688
6689void InitializationSequence::dump(raw_ostream &OS) const {
6690  switch (SequenceKind) {
6691  case FailedSequence: {
6692    OS << "Failed sequence: ";
6693    switch (Failure) {
6694    case FK_TooManyInitsForReference:
6695      OS << "too many initializers for reference";
6696      break;
6697
6698    case FK_ArrayNeedsInitList:
6699      OS << "array requires initializer list";
6700      break;
6701
6702    case FK_ArrayNeedsInitListOrStringLiteral:
6703      OS << "array requires initializer list or string literal";
6704      break;
6705
6706    case FK_ArrayNeedsInitListOrWideStringLiteral:
6707      OS << "array requires initializer list or wide string literal";
6708      break;
6709
6710    case FK_NarrowStringIntoWideCharArray:
6711      OS << "narrow string into wide char array";
6712      break;
6713
6714    case FK_WideStringIntoCharArray:
6715      OS << "wide string into char array";
6716      break;
6717
6718    case FK_IncompatWideStringIntoWideChar:
6719      OS << "incompatible wide string into wide char array";
6720      break;
6721
6722    case FK_ArrayTypeMismatch:
6723      OS << "array type mismatch";
6724      break;
6725
6726    case FK_NonConstantArrayInit:
6727      OS << "non-constant array initializer";
6728      break;
6729
6730    case FK_AddressOfOverloadFailed:
6731      OS << "address of overloaded function failed";
6732      break;
6733
6734    case FK_ReferenceInitOverloadFailed:
6735      OS << "overload resolution for reference initialization failed";
6736      break;
6737
6738    case FK_NonConstLValueReferenceBindingToTemporary:
6739      OS << "non-const lvalue reference bound to temporary";
6740      break;
6741
6742    case FK_NonConstLValueReferenceBindingToUnrelated:
6743      OS << "non-const lvalue reference bound to unrelated type";
6744      break;
6745
6746    case FK_RValueReferenceBindingToLValue:
6747      OS << "rvalue reference bound to an lvalue";
6748      break;
6749
6750    case FK_ReferenceInitDropsQualifiers:
6751      OS << "reference initialization drops qualifiers";
6752      break;
6753
6754    case FK_ReferenceInitFailed:
6755      OS << "reference initialization failed";
6756      break;
6757
6758    case FK_ConversionFailed:
6759      OS << "conversion failed";
6760      break;
6761
6762    case FK_ConversionFromPropertyFailed:
6763      OS << "conversion from property failed";
6764      break;
6765
6766    case FK_TooManyInitsForScalar:
6767      OS << "too many initializers for scalar";
6768      break;
6769
6770    case FK_ReferenceBindingToInitList:
6771      OS << "referencing binding to initializer list";
6772      break;
6773
6774    case FK_InitListBadDestinationType:
6775      OS << "initializer list for non-aggregate, non-scalar type";
6776      break;
6777
6778    case FK_UserConversionOverloadFailed:
6779      OS << "overloading failed for user-defined conversion";
6780      break;
6781
6782    case FK_ConstructorOverloadFailed:
6783      OS << "constructor overloading failed";
6784      break;
6785
6786    case FK_DefaultInitOfConst:
6787      OS << "default initialization of a const variable";
6788      break;
6789
6790    case FK_Incomplete:
6791      OS << "initialization of incomplete type";
6792      break;
6793
6794    case FK_ListInitializationFailed:
6795      OS << "list initialization checker failure";
6796      break;
6797
6798    case FK_VariableLengthArrayHasInitializer:
6799      OS << "variable length array has an initializer";
6800      break;
6801
6802    case FK_PlaceholderType:
6803      OS << "initializer expression isn't contextually valid";
6804      break;
6805
6806    case FK_ListConstructorOverloadFailed:
6807      OS << "list constructor overloading failed";
6808      break;
6809
6810    case FK_ExplicitConstructor:
6811      OS << "list copy initialization chose explicit constructor";
6812      break;
6813    }
6814    OS << '\n';
6815    return;
6816  }
6817
6818  case DependentSequence:
6819    OS << "Dependent sequence\n";
6820    return;
6821
6822  case NormalSequence:
6823    OS << "Normal sequence: ";
6824    break;
6825  }
6826
6827  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
6828    if (S != step_begin()) {
6829      OS << " -> ";
6830    }
6831
6832    switch (S->Kind) {
6833    case SK_ResolveAddressOfOverloadedFunction:
6834      OS << "resolve address of overloaded function";
6835      break;
6836
6837    case SK_CastDerivedToBaseRValue:
6838      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
6839      break;
6840
6841    case SK_CastDerivedToBaseXValue:
6842      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
6843      break;
6844
6845    case SK_CastDerivedToBaseLValue:
6846      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
6847      break;
6848
6849    case SK_BindReference:
6850      OS << "bind reference to lvalue";
6851      break;
6852
6853    case SK_BindReferenceToTemporary:
6854      OS << "bind reference to a temporary";
6855      break;
6856
6857    case SK_ExtraneousCopyToTemporary:
6858      OS << "extraneous C++03 copy to temporary";
6859      break;
6860
6861    case SK_UserConversion:
6862      OS << "user-defined conversion via " << *S->Function.Function;
6863      break;
6864
6865    case SK_QualificationConversionRValue:
6866      OS << "qualification conversion (rvalue)";
6867      break;
6868
6869    case SK_QualificationConversionXValue:
6870      OS << "qualification conversion (xvalue)";
6871      break;
6872
6873    case SK_QualificationConversionLValue:
6874      OS << "qualification conversion (lvalue)";
6875      break;
6876
6877    case SK_LValueToRValue:
6878      OS << "load (lvalue to rvalue)";
6879      break;
6880
6881    case SK_ConversionSequence:
6882      OS << "implicit conversion sequence (";
6883      S->ICS->dump(); // FIXME: use OS
6884      OS << ")";
6885      break;
6886
6887    case SK_ConversionSequenceNoNarrowing:
6888      OS << "implicit conversion sequence with narrowing prohibited (";
6889      S->ICS->dump(); // FIXME: use OS
6890      OS << ")";
6891      break;
6892
6893    case SK_ListInitialization:
6894      OS << "list aggregate initialization";
6895      break;
6896
6897    case SK_ListConstructorCall:
6898      OS << "list initialization via constructor";
6899      break;
6900
6901    case SK_UnwrapInitList:
6902      OS << "unwrap reference initializer list";
6903      break;
6904
6905    case SK_RewrapInitList:
6906      OS << "rewrap reference initializer list";
6907      break;
6908
6909    case SK_ConstructorInitialization:
6910      OS << "constructor initialization";
6911      break;
6912
6913    case SK_ZeroInitialization:
6914      OS << "zero initialization";
6915      break;
6916
6917    case SK_CAssignment:
6918      OS << "C assignment";
6919      break;
6920
6921    case SK_StringInit:
6922      OS << "string initialization";
6923      break;
6924
6925    case SK_ObjCObjectConversion:
6926      OS << "Objective-C object conversion";
6927      break;
6928
6929    case SK_ArrayInit:
6930      OS << "array initialization";
6931      break;
6932
6933    case SK_ParenthesizedArrayInit:
6934      OS << "parenthesized array initialization";
6935      break;
6936
6937    case SK_PassByIndirectCopyRestore:
6938      OS << "pass by indirect copy and restore";
6939      break;
6940
6941    case SK_PassByIndirectRestore:
6942      OS << "pass by indirect restore";
6943      break;
6944
6945    case SK_ProduceObjCObject:
6946      OS << "Objective-C object retension";
6947      break;
6948
6949    case SK_StdInitializerList:
6950      OS << "std::initializer_list from initializer list";
6951      break;
6952
6953    case SK_OCLSamplerInit:
6954      OS << "OpenCL sampler_t from integer constant";
6955      break;
6956
6957    case SK_OCLZeroEvent:
6958      OS << "OpenCL event_t from zero";
6959      break;
6960    }
6961
6962    OS << " [" << S->Type.getAsString() << ']';
6963  }
6964
6965  OS << '\n';
6966}
6967
6968void InitializationSequence::dump() const {
6969  dump(llvm::errs());
6970}
6971
6972static void DiagnoseNarrowingInInitList(Sema &S,
6973                                        const ImplicitConversionSequence &ICS,
6974                                        QualType PreNarrowingType,
6975                                        QualType EntityType,
6976                                        const Expr *PostInit) {
6977  const StandardConversionSequence *SCS = 0;
6978  switch (ICS.getKind()) {
6979  case ImplicitConversionSequence::StandardConversion:
6980    SCS = &ICS.Standard;
6981    break;
6982  case ImplicitConversionSequence::UserDefinedConversion:
6983    SCS = &ICS.UserDefined.After;
6984    break;
6985  case ImplicitConversionSequence::AmbiguousConversion:
6986  case ImplicitConversionSequence::EllipsisConversion:
6987  case ImplicitConversionSequence::BadConversion:
6988    return;
6989  }
6990
6991  // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6992  APValue ConstantValue;
6993  QualType ConstantType;
6994  switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6995                                ConstantType)) {
6996  case NK_Not_Narrowing:
6997    // No narrowing occurred.
6998    return;
6999
7000  case NK_Type_Narrowing:
7001    // This was a floating-to-integer conversion, which is always considered a
7002    // narrowing conversion even if the value is a constant and can be
7003    // represented exactly as an integer.
7004    S.Diag(PostInit->getLocStart(),
7005           (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7006               ? diag::warn_init_list_type_narrowing
7007               : diag::ext_init_list_type_narrowing)
7008      << PostInit->getSourceRange()
7009      << PreNarrowingType.getLocalUnqualifiedType()
7010      << EntityType.getLocalUnqualifiedType();
7011    break;
7012
7013  case NK_Constant_Narrowing:
7014    // A constant value was narrowed.
7015    S.Diag(PostInit->getLocStart(),
7016           (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7017               ? diag::warn_init_list_constant_narrowing
7018               : diag::ext_init_list_constant_narrowing)
7019      << PostInit->getSourceRange()
7020      << ConstantValue.getAsString(S.getASTContext(), ConstantType)
7021      << EntityType.getLocalUnqualifiedType();
7022    break;
7023
7024  case NK_Variable_Narrowing:
7025    // A variable's value may have been narrowed.
7026    S.Diag(PostInit->getLocStart(),
7027           (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7028               ? diag::warn_init_list_variable_narrowing
7029               : diag::ext_init_list_variable_narrowing)
7030      << PostInit->getSourceRange()
7031      << PreNarrowingType.getLocalUnqualifiedType()
7032      << EntityType.getLocalUnqualifiedType();
7033    break;
7034  }
7035
7036  SmallString<128> StaticCast;
7037  llvm::raw_svector_ostream OS(StaticCast);
7038  OS << "static_cast<";
7039  if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
7040    // It's important to use the typedef's name if there is one so that the
7041    // fixit doesn't break code using types like int64_t.
7042    //
7043    // FIXME: This will break if the typedef requires qualification.  But
7044    // getQualifiedNameAsString() includes non-machine-parsable components.
7045    OS << *TT->getDecl();
7046  } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
7047    OS << BT->getName(S.getLangOpts());
7048  else {
7049    // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
7050    // with a broken cast.
7051    return;
7052  }
7053  OS << ">(";
7054  S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
7055    << PostInit->getSourceRange()
7056    << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
7057    << FixItHint::CreateInsertion(
7058      S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
7059}
7060
7061//===----------------------------------------------------------------------===//
7062// Initialization helper functions
7063//===----------------------------------------------------------------------===//
7064bool
7065Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
7066                                   ExprResult Init) {
7067  if (Init.isInvalid())
7068    return false;
7069
7070  Expr *InitE = Init.get();
7071  assert(InitE && "No initialization expression");
7072
7073  InitializationKind Kind
7074    = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
7075  InitializationSequence Seq(*this, Entity, Kind, InitE);
7076  return !Seq.Failed();
7077}
7078
7079ExprResult
7080Sema::PerformCopyInitialization(const InitializedEntity &Entity,
7081                                SourceLocation EqualLoc,
7082                                ExprResult Init,
7083                                bool TopLevelOfInitList,
7084                                bool AllowExplicit) {
7085  if (Init.isInvalid())
7086    return ExprError();
7087
7088  Expr *InitE = Init.get();
7089  assert(InitE && "No initialization expression?");
7090
7091  if (EqualLoc.isInvalid())
7092    EqualLoc = InitE->getLocStart();
7093
7094  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
7095                                                           EqualLoc,
7096                                                           AllowExplicit);
7097  InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
7098  Init.release();
7099
7100  ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
7101
7102  return Result;
7103}
7104