SemaInit.cpp revision 65e7a9e0597fdd68caa23d49991f3891e724e5c6
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/Sema/Designator.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/SemaInternal.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/TypeLoc.h"
26#include "llvm/Support/ErrorHandling.h"
27#include <map>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Sema Initialization Checking
32//===----------------------------------------------------------------------===//
33
34static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
35  const ArrayType *AT = Context.getAsArrayType(DeclType);
36  if (!AT) return 0;
37
38  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
39    return 0;
40
41  // See if this is a string literal or @encode.
42  Init = Init->IgnoreParens();
43
44  // Handle @encode, which is a narrow string.
45  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
46    return Init;
47
48  // Otherwise we can only handle string literals.
49  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
50  if (SL == 0) return 0;
51
52  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
53  // char array can be initialized with a narrow string.
54  // Only allow char x[] = "foo";  not char x[] = L"foo";
55  if (!SL->isWide())
56    return ElemTy->isCharType() ? Init : 0;
57
58  // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
59  // correction from DR343): "An array with element type compatible with a
60  // qualified or unqualified version of wchar_t may be initialized by a wide
61  // string literal, optionally enclosed in braces."
62  if (Context.typesAreCompatible(Context.getWCharType(),
63                                 ElemTy.getUnqualifiedType()))
64    return Init;
65
66  return 0;
67}
68
69static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
70  // Get the length of the string as parsed.
71  uint64_t StrLength =
72    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
73
74
75  const ArrayType *AT = S.Context.getAsArrayType(DeclT);
76  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
77    // C99 6.7.8p14. We have an array of character type with unknown size
78    // being initialized to a string literal.
79    llvm::APSInt ConstVal(32);
80    ConstVal = StrLength;
81    // Return a new array type (C99 6.7.8p22).
82    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
83                                           ConstVal,
84                                           ArrayType::Normal, 0);
85    return;
86  }
87
88  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
89
90  // C99 6.7.8p14. We have an array of character type with known size.  However,
91  // the size may be smaller or larger than the string we are initializing.
92  // FIXME: Avoid truncation for 64-bit length strings.
93  if (StrLength-1 > CAT->getSize().getZExtValue())
94    S.Diag(Str->getSourceRange().getBegin(),
95           diag::warn_initializer_string_for_char_array_too_long)
96      << Str->getSourceRange();
97
98  // Set the type to the actual size that we are initializing.  If we have
99  // something like:
100  //   char x[1] = "foo";
101  // then this will set the string literal's type to char[1].
102  Str->setType(DeclT);
103}
104
105//===----------------------------------------------------------------------===//
106// Semantic checking for initializer lists.
107//===----------------------------------------------------------------------===//
108
109/// @brief Semantic checking for initializer lists.
110///
111/// The InitListChecker class contains a set of routines that each
112/// handle the initialization of a certain kind of entity, e.g.,
113/// arrays, vectors, struct/union types, scalars, etc. The
114/// InitListChecker itself performs a recursive walk of the subobject
115/// structure of the type to be initialized, while stepping through
116/// the initializer list one element at a time. The IList and Index
117/// parameters to each of the Check* routines contain the active
118/// (syntactic) initializer list and the index into that initializer
119/// list that represents the current initializer. Each routine is
120/// responsible for moving that Index forward as it consumes elements.
121///
122/// Each Check* routine also has a StructuredList/StructuredIndex
123/// arguments, which contains the current "structured" (semantic)
124/// initializer list and the index into that initializer list where we
125/// are copying initializers as we map them over to the semantic
126/// list. Once we have completed our recursive walk of the subobject
127/// structure, we will have constructed a full semantic initializer
128/// list.
129///
130/// C99 designators cause changes in the initializer list traversal,
131/// because they make the initialization "jump" into a specific
132/// subobject and then continue the initialization from that
133/// point. CheckDesignatedInitializer() recursively steps into the
134/// designated subobject and manages backing out the recursion to
135/// initialize the subobjects after the one designated.
136namespace {
137class InitListChecker {
138  Sema &SemaRef;
139  bool hadError;
140  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
141  InitListExpr *FullyStructuredList;
142
143  void CheckImplicitInitList(const InitializedEntity &Entity,
144                             InitListExpr *ParentIList, QualType T,
145                             unsigned &Index, InitListExpr *StructuredList,
146                             unsigned &StructuredIndex,
147                             bool TopLevelObject = false);
148  void CheckExplicitInitList(const InitializedEntity &Entity,
149                             InitListExpr *IList, QualType &T,
150                             unsigned &Index, InitListExpr *StructuredList,
151                             unsigned &StructuredIndex,
152                             bool TopLevelObject = false);
153  void CheckListElementTypes(const InitializedEntity &Entity,
154                             InitListExpr *IList, QualType &DeclType,
155                             bool SubobjectIsDesignatorContext,
156                             unsigned &Index,
157                             InitListExpr *StructuredList,
158                             unsigned &StructuredIndex,
159                             bool TopLevelObject = false);
160  void CheckSubElementType(const InitializedEntity &Entity,
161                           InitListExpr *IList, QualType ElemType,
162                           unsigned &Index,
163                           InitListExpr *StructuredList,
164                           unsigned &StructuredIndex);
165  void CheckScalarType(const InitializedEntity &Entity,
166                       InitListExpr *IList, QualType DeclType,
167                       unsigned &Index,
168                       InitListExpr *StructuredList,
169                       unsigned &StructuredIndex);
170  void CheckReferenceType(const InitializedEntity &Entity,
171                          InitListExpr *IList, QualType DeclType,
172                          unsigned &Index,
173                          InitListExpr *StructuredList,
174                          unsigned &StructuredIndex);
175  void CheckVectorType(const InitializedEntity &Entity,
176                       InitListExpr *IList, QualType DeclType, unsigned &Index,
177                       InitListExpr *StructuredList,
178                       unsigned &StructuredIndex);
179  void CheckStructUnionTypes(const InitializedEntity &Entity,
180                             InitListExpr *IList, QualType DeclType,
181                             RecordDecl::field_iterator Field,
182                             bool SubobjectIsDesignatorContext, unsigned &Index,
183                             InitListExpr *StructuredList,
184                             unsigned &StructuredIndex,
185                             bool TopLevelObject = false);
186  void CheckArrayType(const InitializedEntity &Entity,
187                      InitListExpr *IList, QualType &DeclType,
188                      llvm::APSInt elementIndex,
189                      bool SubobjectIsDesignatorContext, unsigned &Index,
190                      InitListExpr *StructuredList,
191                      unsigned &StructuredIndex);
192  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
193                                  InitListExpr *IList, DesignatedInitExpr *DIE,
194                                  unsigned DesigIdx,
195                                  QualType &CurrentObjectType,
196                                  RecordDecl::field_iterator *NextField,
197                                  llvm::APSInt *NextElementIndex,
198                                  unsigned &Index,
199                                  InitListExpr *StructuredList,
200                                  unsigned &StructuredIndex,
201                                  bool FinishSubobjectInit,
202                                  bool TopLevelObject);
203  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
204                                           QualType CurrentObjectType,
205                                           InitListExpr *StructuredList,
206                                           unsigned StructuredIndex,
207                                           SourceRange InitRange);
208  void UpdateStructuredListElement(InitListExpr *StructuredList,
209                                   unsigned &StructuredIndex,
210                                   Expr *expr);
211  int numArrayElements(QualType DeclType);
212  int numStructUnionElements(QualType DeclType);
213
214  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
215                               const InitializedEntity &ParentEntity,
216                               InitListExpr *ILE, bool &RequiresSecondPass);
217  void FillInValueInitializations(const InitializedEntity &Entity,
218                                  InitListExpr *ILE, bool &RequiresSecondPass);
219public:
220  InitListChecker(Sema &S, const InitializedEntity &Entity,
221                  InitListExpr *IL, QualType &T);
222  bool HadError() { return hadError; }
223
224  // @brief Retrieves the fully-structured initializer list used for
225  // semantic analysis and code generation.
226  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
227};
228} // end anonymous namespace
229
230void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
231                                        const InitializedEntity &ParentEntity,
232                                              InitListExpr *ILE,
233                                              bool &RequiresSecondPass) {
234  SourceLocation Loc = ILE->getSourceRange().getBegin();
235  unsigned NumInits = ILE->getNumInits();
236  InitializedEntity MemberEntity
237    = InitializedEntity::InitializeMember(Field, &ParentEntity);
238  if (Init >= NumInits || !ILE->getInit(Init)) {
239    // FIXME: We probably don't need to handle references
240    // specially here, since value-initialization of references is
241    // handled in InitializationSequence.
242    if (Field->getType()->isReferenceType()) {
243      // C++ [dcl.init.aggr]p9:
244      //   If an incomplete or empty initializer-list leaves a
245      //   member of reference type uninitialized, the program is
246      //   ill-formed.
247      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
248        << Field->getType()
249        << ILE->getSyntacticForm()->getSourceRange();
250      SemaRef.Diag(Field->getLocation(),
251                   diag::note_uninit_reference_member);
252      hadError = true;
253      return;
254    }
255
256    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
257                                                              true);
258    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
259    if (!InitSeq) {
260      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
261      hadError = true;
262      return;
263    }
264
265    ExprResult MemberInit
266      = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
267    if (MemberInit.isInvalid()) {
268      hadError = true;
269      return;
270    }
271
272    if (hadError) {
273      // Do nothing
274    } else if (Init < NumInits) {
275      ILE->setInit(Init, MemberInit.takeAs<Expr>());
276    } else if (InitSeq.getKind()
277                 == InitializationSequence::ConstructorInitialization) {
278      // Value-initialization requires a constructor call, so
279      // extend the initializer list to include the constructor
280      // call and make a note that we'll need to take another pass
281      // through the initializer list.
282      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
283      RequiresSecondPass = true;
284    }
285  } else if (InitListExpr *InnerILE
286               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
287    FillInValueInitializations(MemberEntity, InnerILE,
288                               RequiresSecondPass);
289}
290
291/// Recursively replaces NULL values within the given initializer list
292/// with expressions that perform value-initialization of the
293/// appropriate type.
294void
295InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
296                                            InitListExpr *ILE,
297                                            bool &RequiresSecondPass) {
298  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
299         "Should not have void type");
300  SourceLocation Loc = ILE->getSourceRange().getBegin();
301  if (ILE->getSyntacticForm())
302    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
303
304  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
305    if (RType->getDecl()->isUnion() &&
306        ILE->getInitializedFieldInUnion())
307      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
308                              Entity, ILE, RequiresSecondPass);
309    else {
310      unsigned Init = 0;
311      for (RecordDecl::field_iterator
312             Field = RType->getDecl()->field_begin(),
313             FieldEnd = RType->getDecl()->field_end();
314           Field != FieldEnd; ++Field) {
315        if (Field->isUnnamedBitfield())
316          continue;
317
318        if (hadError)
319          return;
320
321        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
322        if (hadError)
323          return;
324
325        ++Init;
326
327        // Only look at the first initialization of a union.
328        if (RType->getDecl()->isUnion())
329          break;
330      }
331    }
332
333    return;
334  }
335
336  QualType ElementType;
337
338  InitializedEntity ElementEntity = Entity;
339  unsigned NumInits = ILE->getNumInits();
340  unsigned NumElements = NumInits;
341  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
342    ElementType = AType->getElementType();
343    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
344      NumElements = CAType->getSize().getZExtValue();
345    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
346                                                         0, Entity);
347  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
348    ElementType = VType->getElementType();
349    NumElements = VType->getNumElements();
350    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
351                                                         0, Entity);
352  } else
353    ElementType = ILE->getType();
354
355
356  for (unsigned Init = 0; Init != NumElements; ++Init) {
357    if (hadError)
358      return;
359
360    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
361        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
362      ElementEntity.setElementIndex(Init);
363
364    if (Init >= NumInits || !ILE->getInit(Init)) {
365      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
366                                                                true);
367      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
368      if (!InitSeq) {
369        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
370        hadError = true;
371        return;
372      }
373
374      ExprResult ElementInit
375        = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
376      if (ElementInit.isInvalid()) {
377        hadError = true;
378        return;
379      }
380
381      if (hadError) {
382        // Do nothing
383      } else if (Init < NumInits) {
384        ILE->setInit(Init, ElementInit.takeAs<Expr>());
385      } else if (InitSeq.getKind()
386                   == InitializationSequence::ConstructorInitialization) {
387        // Value-initialization requires a constructor call, so
388        // extend the initializer list to include the constructor
389        // call and make a note that we'll need to take another pass
390        // through the initializer list.
391        ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
392        RequiresSecondPass = true;
393      }
394    } else if (InitListExpr *InnerILE
395                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
396      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
397  }
398}
399
400
401InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
402                                 InitListExpr *IL, QualType &T)
403  : SemaRef(S) {
404  hadError = false;
405
406  unsigned newIndex = 0;
407  unsigned newStructuredIndex = 0;
408  FullyStructuredList
409    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
410  CheckExplicitInitList(Entity, IL, T, newIndex,
411                        FullyStructuredList, newStructuredIndex,
412                        /*TopLevelObject=*/true);
413
414  if (!hadError) {
415    bool RequiresSecondPass = false;
416    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
417    if (RequiresSecondPass && !hadError)
418      FillInValueInitializations(Entity, FullyStructuredList,
419                                 RequiresSecondPass);
420  }
421}
422
423int InitListChecker::numArrayElements(QualType DeclType) {
424  // FIXME: use a proper constant
425  int maxElements = 0x7FFFFFFF;
426  if (const ConstantArrayType *CAT =
427        SemaRef.Context.getAsConstantArrayType(DeclType)) {
428    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
429  }
430  return maxElements;
431}
432
433int InitListChecker::numStructUnionElements(QualType DeclType) {
434  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
435  int InitializableMembers = 0;
436  for (RecordDecl::field_iterator
437         Field = structDecl->field_begin(),
438         FieldEnd = structDecl->field_end();
439       Field != FieldEnd; ++Field) {
440    if ((*Field)->getIdentifier() || !(*Field)->isBitField())
441      ++InitializableMembers;
442  }
443  if (structDecl->isUnion())
444    return std::min(InitializableMembers, 1);
445  return InitializableMembers - structDecl->hasFlexibleArrayMember();
446}
447
448void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
449                                            InitListExpr *ParentIList,
450                                            QualType T, unsigned &Index,
451                                            InitListExpr *StructuredList,
452                                            unsigned &StructuredIndex,
453                                            bool TopLevelObject) {
454  int maxElements = 0;
455
456  if (T->isArrayType())
457    maxElements = numArrayElements(T);
458  else if (T->isRecordType())
459    maxElements = numStructUnionElements(T);
460  else if (T->isVectorType())
461    maxElements = T->getAs<VectorType>()->getNumElements();
462  else
463    assert(0 && "CheckImplicitInitList(): Illegal type");
464
465  if (maxElements == 0) {
466    SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
467                  diag::err_implicit_empty_initializer);
468    ++Index;
469    hadError = true;
470    return;
471  }
472
473  // Build a structured initializer list corresponding to this subobject.
474  InitListExpr *StructuredSubobjectInitList
475    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
476                                 StructuredIndex,
477          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
478                      ParentIList->getSourceRange().getEnd()));
479  unsigned StructuredSubobjectInitIndex = 0;
480
481  // Check the element types and build the structural subobject.
482  unsigned StartIndex = Index;
483  CheckListElementTypes(Entity, ParentIList, T,
484                        /*SubobjectIsDesignatorContext=*/false, Index,
485                        StructuredSubobjectInitList,
486                        StructuredSubobjectInitIndex,
487                        TopLevelObject);
488  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
489  StructuredSubobjectInitList->setType(T);
490
491  // Update the structured sub-object initializer so that it's ending
492  // range corresponds with the end of the last initializer it used.
493  if (EndIndex < ParentIList->getNumInits()) {
494    SourceLocation EndLoc
495      = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
496    StructuredSubobjectInitList->setRBraceLoc(EndLoc);
497  }
498
499  // Warn about missing braces.
500  if (T->isArrayType() || T->isRecordType()) {
501    SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
502                 diag::warn_missing_braces)
503    << StructuredSubobjectInitList->getSourceRange()
504    << FixItHint::CreateInsertion(StructuredSubobjectInitList->getLocStart(),
505                                  "{")
506    << FixItHint::CreateInsertion(SemaRef.PP.getLocForEndOfToken(
507                                      StructuredSubobjectInitList->getLocEnd()),
508                                  "}");
509  }
510}
511
512void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
513                                            InitListExpr *IList, QualType &T,
514                                            unsigned &Index,
515                                            InitListExpr *StructuredList,
516                                            unsigned &StructuredIndex,
517                                            bool TopLevelObject) {
518  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
519  SyntacticToSemantic[IList] = StructuredList;
520  StructuredList->setSyntacticForm(IList);
521  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
522                        Index, StructuredList, StructuredIndex, TopLevelObject);
523  QualType ExprTy = T.getNonLValueExprType(SemaRef.Context);
524  IList->setType(ExprTy);
525  StructuredList->setType(ExprTy);
526  if (hadError)
527    return;
528
529  if (Index < IList->getNumInits()) {
530    // We have leftover initializers
531    if (StructuredIndex == 1 &&
532        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
533      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
534      if (SemaRef.getLangOptions().CPlusPlus) {
535        DK = diag::err_excess_initializers_in_char_array_initializer;
536        hadError = true;
537      }
538      // Special-case
539      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
540        << IList->getInit(Index)->getSourceRange();
541    } else if (!T->isIncompleteType()) {
542      // Don't complain for incomplete types, since we'll get an error
543      // elsewhere
544      QualType CurrentObjectType = StructuredList->getType();
545      int initKind =
546        CurrentObjectType->isArrayType()? 0 :
547        CurrentObjectType->isVectorType()? 1 :
548        CurrentObjectType->isScalarType()? 2 :
549        CurrentObjectType->isUnionType()? 3 :
550        4;
551
552      unsigned DK = diag::warn_excess_initializers;
553      if (SemaRef.getLangOptions().CPlusPlus) {
554        DK = diag::err_excess_initializers;
555        hadError = true;
556      }
557      if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
558        DK = diag::err_excess_initializers;
559        hadError = true;
560      }
561
562      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
563        << initKind << IList->getInit(Index)->getSourceRange();
564    }
565  }
566
567  if (T->isScalarType() && !TopLevelObject)
568    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
569      << IList->getSourceRange()
570      << FixItHint::CreateRemoval(IList->getLocStart())
571      << FixItHint::CreateRemoval(IList->getLocEnd());
572}
573
574void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
575                                            InitListExpr *IList,
576                                            QualType &DeclType,
577                                            bool SubobjectIsDesignatorContext,
578                                            unsigned &Index,
579                                            InitListExpr *StructuredList,
580                                            unsigned &StructuredIndex,
581                                            bool TopLevelObject) {
582  if (DeclType->isScalarType()) {
583    CheckScalarType(Entity, IList, DeclType, Index,
584                    StructuredList, StructuredIndex);
585  } else if (DeclType->isVectorType()) {
586    CheckVectorType(Entity, IList, DeclType, Index,
587                    StructuredList, StructuredIndex);
588  } else if (DeclType->isAggregateType()) {
589    if (DeclType->isRecordType()) {
590      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
591      CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
592                            SubobjectIsDesignatorContext, Index,
593                            StructuredList, StructuredIndex,
594                            TopLevelObject);
595    } else if (DeclType->isArrayType()) {
596      llvm::APSInt Zero(
597                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
598                      false);
599      CheckArrayType(Entity, IList, DeclType, Zero,
600                     SubobjectIsDesignatorContext, Index,
601                     StructuredList, StructuredIndex);
602    } else
603      assert(0 && "Aggregate that isn't a structure or array?!");
604  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
605    // This type is invalid, issue a diagnostic.
606    ++Index;
607    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
608      << DeclType;
609    hadError = true;
610  } else if (DeclType->isRecordType()) {
611    // C++ [dcl.init]p14:
612    //   [...] If the class is an aggregate (8.5.1), and the initializer
613    //   is a brace-enclosed list, see 8.5.1.
614    //
615    // Note: 8.5.1 is handled below; here, we diagnose the case where
616    // we have an initializer list and a destination type that is not
617    // an aggregate.
618    // FIXME: In C++0x, this is yet another form of initialization.
619    SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
620      << DeclType << IList->getSourceRange();
621    hadError = true;
622  } else if (DeclType->isReferenceType()) {
623    CheckReferenceType(Entity, IList, DeclType, Index,
624                       StructuredList, StructuredIndex);
625  } else if (DeclType->isObjCObjectType()) {
626    SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
627      << DeclType;
628    hadError = true;
629  } else {
630    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
631      << DeclType;
632    hadError = true;
633  }
634}
635
636void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
637                                          InitListExpr *IList,
638                                          QualType ElemType,
639                                          unsigned &Index,
640                                          InitListExpr *StructuredList,
641                                          unsigned &StructuredIndex) {
642  Expr *expr = IList->getInit(Index);
643  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
644    unsigned newIndex = 0;
645    unsigned newStructuredIndex = 0;
646    InitListExpr *newStructuredList
647      = getStructuredSubobjectInit(IList, Index, ElemType,
648                                   StructuredList, StructuredIndex,
649                                   SubInitList->getSourceRange());
650    CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
651                          newStructuredList, newStructuredIndex);
652    ++StructuredIndex;
653    ++Index;
654  } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
655    CheckStringInit(Str, ElemType, SemaRef);
656    UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
657    ++Index;
658  } else if (ElemType->isScalarType()) {
659    CheckScalarType(Entity, IList, ElemType, Index,
660                    StructuredList, StructuredIndex);
661  } else if (ElemType->isReferenceType()) {
662    CheckReferenceType(Entity, IList, ElemType, Index,
663                       StructuredList, StructuredIndex);
664  } else {
665    if (SemaRef.getLangOptions().CPlusPlus) {
666      // C++ [dcl.init.aggr]p12:
667      //   All implicit type conversions (clause 4) are considered when
668      //   initializing the aggregate member with an ini- tializer from
669      //   an initializer-list. If the initializer can initialize a
670      //   member, the member is initialized. [...]
671
672      // FIXME: Better EqualLoc?
673      InitializationKind Kind =
674        InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
675      InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
676
677      if (Seq) {
678        ExprResult Result =
679          Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
680        if (Result.isInvalid())
681          hadError = true;
682
683        UpdateStructuredListElement(StructuredList, StructuredIndex,
684                                    Result.takeAs<Expr>());
685        ++Index;
686        return;
687      }
688
689      // Fall through for subaggregate initialization
690    } else {
691      // C99 6.7.8p13:
692      //
693      //   The initializer for a structure or union object that has
694      //   automatic storage duration shall be either an initializer
695      //   list as described below, or a single expression that has
696      //   compatible structure or union type. In the latter case, the
697      //   initial value of the object, including unnamed members, is
698      //   that of the expression.
699      if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
700          SemaRef.CheckSingleAssignmentConstraints(ElemType, expr)
701              == Sema::Compatible) {
702        SemaRef.DefaultFunctionArrayLvalueConversion(expr);
703        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
704        ++Index;
705        return;
706      }
707
708      // Fall through for subaggregate initialization
709    }
710
711    // C++ [dcl.init.aggr]p12:
712    //
713    //   [...] Otherwise, if the member is itself a non-empty
714    //   subaggregate, brace elision is assumed and the initializer is
715    //   considered for the initialization of the first member of
716    //   the subaggregate.
717    if (ElemType->isAggregateType() || ElemType->isVectorType()) {
718      CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
719                            StructuredIndex);
720      ++StructuredIndex;
721    } else {
722      // We cannot initialize this element, so let
723      // PerformCopyInitialization produce the appropriate diagnostic.
724      SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
725                                        SemaRef.Owned(expr));
726      hadError = true;
727      ++Index;
728      ++StructuredIndex;
729    }
730  }
731}
732
733void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
734                                      InitListExpr *IList, QualType DeclType,
735                                      unsigned &Index,
736                                      InitListExpr *StructuredList,
737                                      unsigned &StructuredIndex) {
738  if (Index >= IList->getNumInits()) {
739    SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
740      << IList->getSourceRange();
741    hadError = true;
742    ++Index;
743    ++StructuredIndex;
744    return;
745  }
746
747  Expr *expr = IList->getInit(Index);
748  if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
749    SemaRef.Diag(SubIList->getLocStart(),
750                 diag::warn_many_braces_around_scalar_init)
751      << SubIList->getSourceRange();
752
753    CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
754                    StructuredIndex);
755    return;
756  } else if (isa<DesignatedInitExpr>(expr)) {
757    SemaRef.Diag(expr->getSourceRange().getBegin(),
758                 diag::err_designator_for_scalar_init)
759      << DeclType << expr->getSourceRange();
760    hadError = true;
761    ++Index;
762    ++StructuredIndex;
763    return;
764  }
765
766  ExprResult Result =
767    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
768                                      SemaRef.Owned(expr));
769
770  Expr *ResultExpr = 0;
771
772  if (Result.isInvalid())
773    hadError = true; // types weren't compatible.
774  else {
775    ResultExpr = Result.takeAs<Expr>();
776
777    if (ResultExpr != expr) {
778      // The type was promoted, update initializer list.
779      IList->setInit(Index, ResultExpr);
780    }
781  }
782  if (hadError)
783    ++StructuredIndex;
784  else
785    UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
786  ++Index;
787}
788
789void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
790                                         InitListExpr *IList, QualType DeclType,
791                                         unsigned &Index,
792                                         InitListExpr *StructuredList,
793                                         unsigned &StructuredIndex) {
794  if (Index < IList->getNumInits()) {
795    Expr *expr = IList->getInit(Index);
796    if (isa<InitListExpr>(expr)) {
797      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
798        << DeclType << IList->getSourceRange();
799      hadError = true;
800      ++Index;
801      ++StructuredIndex;
802      return;
803    }
804
805    ExprResult Result =
806      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
807                                        SemaRef.Owned(expr));
808
809    if (Result.isInvalid())
810      hadError = true;
811
812    expr = Result.takeAs<Expr>();
813    IList->setInit(Index, expr);
814
815    if (hadError)
816      ++StructuredIndex;
817    else
818      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
819    ++Index;
820  } else {
821    // FIXME: It would be wonderful if we could point at the actual member. In
822    // general, it would be useful to pass location information down the stack,
823    // so that we know the location (or decl) of the "current object" being
824    // initialized.
825    SemaRef.Diag(IList->getLocStart(),
826                  diag::err_init_reference_member_uninitialized)
827      << DeclType
828      << IList->getSourceRange();
829    hadError = true;
830    ++Index;
831    ++StructuredIndex;
832    return;
833  }
834}
835
836void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
837                                      InitListExpr *IList, QualType DeclType,
838                                      unsigned &Index,
839                                      InitListExpr *StructuredList,
840                                      unsigned &StructuredIndex) {
841  if (Index >= IList->getNumInits())
842    return;
843
844  const VectorType *VT = DeclType->getAs<VectorType>();
845  unsigned maxElements = VT->getNumElements();
846  unsigned numEltsInit = 0;
847  QualType elementType = VT->getElementType();
848
849  if (!SemaRef.getLangOptions().OpenCL) {
850    // If the initializing element is a vector, try to copy-initialize
851    // instead of breaking it apart (which is doomed to failure anyway).
852    Expr *Init = IList->getInit(Index);
853    if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
854      ExprResult Result =
855        SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
856                                          SemaRef.Owned(Init));
857
858      Expr *ResultExpr = 0;
859      if (Result.isInvalid())
860        hadError = true; // types weren't compatible.
861      else {
862        ResultExpr = Result.takeAs<Expr>();
863
864        if (ResultExpr != Init) {
865          // The type was promoted, update initializer list.
866          IList->setInit(Index, ResultExpr);
867        }
868      }
869      if (hadError)
870        ++StructuredIndex;
871      else
872        UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
873      ++Index;
874      return;
875    }
876
877    InitializedEntity ElementEntity =
878      InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
879
880    for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
881      // Don't attempt to go past the end of the init list
882      if (Index >= IList->getNumInits())
883        break;
884
885      ElementEntity.setElementIndex(Index);
886      CheckSubElementType(ElementEntity, IList, elementType, Index,
887                          StructuredList, StructuredIndex);
888    }
889    return;
890  }
891
892  InitializedEntity ElementEntity =
893    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
894
895  // OpenCL initializers allows vectors to be constructed from vectors.
896  for (unsigned i = 0; i < maxElements; ++i) {
897    // Don't attempt to go past the end of the init list
898    if (Index >= IList->getNumInits())
899      break;
900
901    ElementEntity.setElementIndex(Index);
902
903    QualType IType = IList->getInit(Index)->getType();
904    if (!IType->isVectorType()) {
905      CheckSubElementType(ElementEntity, IList, elementType, Index,
906                          StructuredList, StructuredIndex);
907      ++numEltsInit;
908    } else {
909      QualType VecType;
910      const VectorType *IVT = IType->getAs<VectorType>();
911      unsigned numIElts = IVT->getNumElements();
912
913      if (IType->isExtVectorType())
914        VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
915      else
916        VecType = SemaRef.Context.getVectorType(elementType, numIElts,
917                                                IVT->getVectorKind());
918      CheckSubElementType(ElementEntity, IList, VecType, Index,
919                          StructuredList, StructuredIndex);
920      numEltsInit += numIElts;
921    }
922  }
923
924  // OpenCL requires all elements to be initialized.
925  if (numEltsInit != maxElements)
926    if (SemaRef.getLangOptions().OpenCL)
927      SemaRef.Diag(IList->getSourceRange().getBegin(),
928                   diag::err_vector_incorrect_num_initializers)
929        << (numEltsInit < maxElements) << maxElements << numEltsInit;
930}
931
932void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
933                                     InitListExpr *IList, QualType &DeclType,
934                                     llvm::APSInt elementIndex,
935                                     bool SubobjectIsDesignatorContext,
936                                     unsigned &Index,
937                                     InitListExpr *StructuredList,
938                                     unsigned &StructuredIndex) {
939  // Check for the special-case of initializing an array with a string.
940  if (Index < IList->getNumInits()) {
941    if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
942                                 SemaRef.Context)) {
943      CheckStringInit(Str, DeclType, SemaRef);
944      // We place the string literal directly into the resulting
945      // initializer list. This is the only place where the structure
946      // of the structured initializer list doesn't match exactly,
947      // because doing so would involve allocating one character
948      // constant for each string.
949      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
950      StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
951      ++Index;
952      return;
953    }
954  }
955  if (const VariableArrayType *VAT =
956        SemaRef.Context.getAsVariableArrayType(DeclType)) {
957    // Check for VLAs; in standard C it would be possible to check this
958    // earlier, but I don't know where clang accepts VLAs (gcc accepts
959    // them in all sorts of strange places).
960    SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
961                  diag::err_variable_object_no_init)
962      << VAT->getSizeExpr()->getSourceRange();
963    hadError = true;
964    ++Index;
965    ++StructuredIndex;
966    return;
967  }
968
969  // We might know the maximum number of elements in advance.
970  llvm::APSInt maxElements(elementIndex.getBitWidth(),
971                           elementIndex.isUnsigned());
972  bool maxElementsKnown = false;
973  if (const ConstantArrayType *CAT =
974        SemaRef.Context.getAsConstantArrayType(DeclType)) {
975    maxElements = CAT->getSize();
976    elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
977    elementIndex.setIsUnsigned(maxElements.isUnsigned());
978    maxElementsKnown = true;
979  }
980
981  QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
982                             ->getElementType();
983  while (Index < IList->getNumInits()) {
984    Expr *Init = IList->getInit(Index);
985    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
986      // If we're not the subobject that matches up with the '{' for
987      // the designator, we shouldn't be handling the
988      // designator. Return immediately.
989      if (!SubobjectIsDesignatorContext)
990        return;
991
992      // Handle this designated initializer. elementIndex will be
993      // updated to be the next array element we'll initialize.
994      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
995                                     DeclType, 0, &elementIndex, Index,
996                                     StructuredList, StructuredIndex, true,
997                                     false)) {
998        hadError = true;
999        continue;
1000      }
1001
1002      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1003        maxElements = maxElements.extend(elementIndex.getBitWidth());
1004      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1005        elementIndex = elementIndex.extend(maxElements.getBitWidth());
1006      elementIndex.setIsUnsigned(maxElements.isUnsigned());
1007
1008      // If the array is of incomplete type, keep track of the number of
1009      // elements in the initializer.
1010      if (!maxElementsKnown && elementIndex > maxElements)
1011        maxElements = elementIndex;
1012
1013      continue;
1014    }
1015
1016    // If we know the maximum number of elements, and we've already
1017    // hit it, stop consuming elements in the initializer list.
1018    if (maxElementsKnown && elementIndex == maxElements)
1019      break;
1020
1021    InitializedEntity ElementEntity =
1022      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1023                                           Entity);
1024    // Check this element.
1025    CheckSubElementType(ElementEntity, IList, elementType, Index,
1026                        StructuredList, StructuredIndex);
1027    ++elementIndex;
1028
1029    // If the array is of incomplete type, keep track of the number of
1030    // elements in the initializer.
1031    if (!maxElementsKnown && elementIndex > maxElements)
1032      maxElements = elementIndex;
1033  }
1034  if (!hadError && DeclType->isIncompleteArrayType()) {
1035    // If this is an incomplete array type, the actual type needs to
1036    // be calculated here.
1037    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1038    if (maxElements == Zero) {
1039      // Sizing an array implicitly to zero is not allowed by ISO C,
1040      // but is supported by GNU.
1041      SemaRef.Diag(IList->getLocStart(),
1042                    diag::ext_typecheck_zero_array_size);
1043    }
1044
1045    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1046                                                     ArrayType::Normal, 0);
1047  }
1048}
1049
1050void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1051                                            InitListExpr *IList,
1052                                            QualType DeclType,
1053                                            RecordDecl::field_iterator Field,
1054                                            bool SubobjectIsDesignatorContext,
1055                                            unsigned &Index,
1056                                            InitListExpr *StructuredList,
1057                                            unsigned &StructuredIndex,
1058                                            bool TopLevelObject) {
1059  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1060
1061  // If the record is invalid, some of it's members are invalid. To avoid
1062  // confusion, we forgo checking the intializer for the entire record.
1063  if (structDecl->isInvalidDecl()) {
1064    hadError = true;
1065    return;
1066  }
1067
1068  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1069    // Value-initialize the first named member of the union.
1070    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1071    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1072         Field != FieldEnd; ++Field) {
1073      if (Field->getDeclName()) {
1074        StructuredList->setInitializedFieldInUnion(*Field);
1075        break;
1076      }
1077    }
1078    return;
1079  }
1080
1081  // If structDecl is a forward declaration, this loop won't do
1082  // anything except look at designated initializers; That's okay,
1083  // because an error should get printed out elsewhere. It might be
1084  // worthwhile to skip over the rest of the initializer, though.
1085  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1086  RecordDecl::field_iterator FieldEnd = RD->field_end();
1087  bool InitializedSomething = false;
1088  bool CheckForMissingFields = true;
1089  while (Index < IList->getNumInits()) {
1090    Expr *Init = IList->getInit(Index);
1091
1092    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1093      // If we're not the subobject that matches up with the '{' for
1094      // the designator, we shouldn't be handling the
1095      // designator. Return immediately.
1096      if (!SubobjectIsDesignatorContext)
1097        return;
1098
1099      // Handle this designated initializer. Field will be updated to
1100      // the next field that we'll be initializing.
1101      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1102                                     DeclType, &Field, 0, Index,
1103                                     StructuredList, StructuredIndex,
1104                                     true, TopLevelObject))
1105        hadError = true;
1106
1107      InitializedSomething = true;
1108
1109      // Disable check for missing fields when designators are used.
1110      // This matches gcc behaviour.
1111      CheckForMissingFields = false;
1112      continue;
1113    }
1114
1115    if (Field == FieldEnd) {
1116      // We've run out of fields. We're done.
1117      break;
1118    }
1119
1120    // We've already initialized a member of a union. We're done.
1121    if (InitializedSomething && DeclType->isUnionType())
1122      break;
1123
1124    // If we've hit the flexible array member at the end, we're done.
1125    if (Field->getType()->isIncompleteArrayType())
1126      break;
1127
1128    if (Field->isUnnamedBitfield()) {
1129      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1130      ++Field;
1131      continue;
1132    }
1133
1134    InitializedEntity MemberEntity =
1135      InitializedEntity::InitializeMember(*Field, &Entity);
1136    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1137                        StructuredList, StructuredIndex);
1138    InitializedSomething = true;
1139
1140    if (DeclType->isUnionType()) {
1141      // Initialize the first field within the union.
1142      StructuredList->setInitializedFieldInUnion(*Field);
1143    }
1144
1145    ++Field;
1146  }
1147
1148  // Emit warnings for missing struct field initializers.
1149  if (InitializedSomething && CheckForMissingFields && Field != FieldEnd &&
1150      !Field->getType()->isIncompleteArrayType() && !DeclType->isUnionType()) {
1151    // It is possible we have one or more unnamed bitfields remaining.
1152    // Find first (if any) named field and emit warning.
1153    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1154         it != end; ++it) {
1155      if (!it->isUnnamedBitfield()) {
1156        SemaRef.Diag(IList->getSourceRange().getEnd(),
1157                     diag::warn_missing_field_initializers) << it->getName();
1158        break;
1159      }
1160    }
1161  }
1162
1163  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1164      Index >= IList->getNumInits())
1165    return;
1166
1167  // Handle GNU flexible array initializers.
1168  if (!TopLevelObject &&
1169      (!isa<InitListExpr>(IList->getInit(Index)) ||
1170       cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1171    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1172                  diag::err_flexible_array_init_nonempty)
1173      << IList->getInit(Index)->getSourceRange().getBegin();
1174    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1175      << *Field;
1176    hadError = true;
1177    ++Index;
1178    return;
1179  } else {
1180    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1181                 diag::ext_flexible_array_init)
1182      << IList->getInit(Index)->getSourceRange().getBegin();
1183    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1184      << *Field;
1185  }
1186
1187  InitializedEntity MemberEntity =
1188    InitializedEntity::InitializeMember(*Field, &Entity);
1189
1190  if (isa<InitListExpr>(IList->getInit(Index)))
1191    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1192                        StructuredList, StructuredIndex);
1193  else
1194    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1195                          StructuredList, StructuredIndex);
1196}
1197
1198/// \brief Expand a field designator that refers to a member of an
1199/// anonymous struct or union into a series of field designators that
1200/// refers to the field within the appropriate subobject.
1201///
1202static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1203                                           DesignatedInitExpr *DIE,
1204                                           unsigned DesigIdx,
1205                                           IndirectFieldDecl *IndirectField) {
1206  typedef DesignatedInitExpr::Designator Designator;
1207
1208  // Build the replacement designators.
1209  llvm::SmallVector<Designator, 4> Replacements;
1210  for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1211       PE = IndirectField->chain_end(); PI != PE; ++PI) {
1212    if (PI + 1 == PE)
1213      Replacements.push_back(Designator((IdentifierInfo *)0,
1214                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1215                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1216    else
1217      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1218                                        SourceLocation()));
1219    assert(isa<FieldDecl>(*PI));
1220    Replacements.back().setField(cast<FieldDecl>(*PI));
1221  }
1222
1223  // Expand the current designator into the set of replacement
1224  // designators, so we have a full subobject path down to where the
1225  // member of the anonymous struct/union is actually stored.
1226  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1227                        &Replacements[0] + Replacements.size());
1228}
1229
1230/// \brief Given an implicit anonymous field, search the IndirectField that
1231///  corresponds to FieldName.
1232static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1233                                                 IdentifierInfo *FieldName) {
1234  assert(AnonField->isAnonymousStructOrUnion());
1235  Decl *NextDecl = AnonField->getNextDeclInContext();
1236  while (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(NextDecl)) {
1237    if (FieldName && FieldName == IF->getAnonField()->getIdentifier())
1238      return IF;
1239    NextDecl = NextDecl->getNextDeclInContext();
1240  }
1241  return 0;
1242}
1243
1244/// @brief Check the well-formedness of a C99 designated initializer.
1245///
1246/// Determines whether the designated initializer @p DIE, which
1247/// resides at the given @p Index within the initializer list @p
1248/// IList, is well-formed for a current object of type @p DeclType
1249/// (C99 6.7.8). The actual subobject that this designator refers to
1250/// within the current subobject is returned in either
1251/// @p NextField or @p NextElementIndex (whichever is appropriate).
1252///
1253/// @param IList  The initializer list in which this designated
1254/// initializer occurs.
1255///
1256/// @param DIE The designated initializer expression.
1257///
1258/// @param DesigIdx  The index of the current designator.
1259///
1260/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1261/// into which the designation in @p DIE should refer.
1262///
1263/// @param NextField  If non-NULL and the first designator in @p DIE is
1264/// a field, this will be set to the field declaration corresponding
1265/// to the field named by the designator.
1266///
1267/// @param NextElementIndex  If non-NULL and the first designator in @p
1268/// DIE is an array designator or GNU array-range designator, this
1269/// will be set to the last index initialized by this designator.
1270///
1271/// @param Index  Index into @p IList where the designated initializer
1272/// @p DIE occurs.
1273///
1274/// @param StructuredList  The initializer list expression that
1275/// describes all of the subobject initializers in the order they'll
1276/// actually be initialized.
1277///
1278/// @returns true if there was an error, false otherwise.
1279bool
1280InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1281                                            InitListExpr *IList,
1282                                      DesignatedInitExpr *DIE,
1283                                      unsigned DesigIdx,
1284                                      QualType &CurrentObjectType,
1285                                      RecordDecl::field_iterator *NextField,
1286                                      llvm::APSInt *NextElementIndex,
1287                                      unsigned &Index,
1288                                      InitListExpr *StructuredList,
1289                                      unsigned &StructuredIndex,
1290                                            bool FinishSubobjectInit,
1291                                            bool TopLevelObject) {
1292  if (DesigIdx == DIE->size()) {
1293    // Check the actual initialization for the designated object type.
1294    bool prevHadError = hadError;
1295
1296    // Temporarily remove the designator expression from the
1297    // initializer list that the child calls see, so that we don't try
1298    // to re-process the designator.
1299    unsigned OldIndex = Index;
1300    IList->setInit(OldIndex, DIE->getInit());
1301
1302    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1303                        StructuredList, StructuredIndex);
1304
1305    // Restore the designated initializer expression in the syntactic
1306    // form of the initializer list.
1307    if (IList->getInit(OldIndex) != DIE->getInit())
1308      DIE->setInit(IList->getInit(OldIndex));
1309    IList->setInit(OldIndex, DIE);
1310
1311    return hadError && !prevHadError;
1312  }
1313
1314  bool IsFirstDesignator = (DesigIdx == 0);
1315  assert((IsFirstDesignator || StructuredList) &&
1316         "Need a non-designated initializer list to start from");
1317
1318  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1319  // Determine the structural initializer list that corresponds to the
1320  // current subobject.
1321  StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1322    : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1323                                 StructuredList, StructuredIndex,
1324                                 SourceRange(D->getStartLocation(),
1325                                             DIE->getSourceRange().getEnd()));
1326  assert(StructuredList && "Expected a structured initializer list");
1327
1328  if (D->isFieldDesignator()) {
1329    // C99 6.7.8p7:
1330    //
1331    //   If a designator has the form
1332    //
1333    //      . identifier
1334    //
1335    //   then the current object (defined below) shall have
1336    //   structure or union type and the identifier shall be the
1337    //   name of a member of that type.
1338    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1339    if (!RT) {
1340      SourceLocation Loc = D->getDotLoc();
1341      if (Loc.isInvalid())
1342        Loc = D->getFieldLoc();
1343      SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1344        << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1345      ++Index;
1346      return true;
1347    }
1348
1349    // Note: we perform a linear search of the fields here, despite
1350    // the fact that we have a faster lookup method, because we always
1351    // need to compute the field's index.
1352    FieldDecl *KnownField = D->getField();
1353    IdentifierInfo *FieldName = D->getFieldName();
1354    unsigned FieldIndex = 0;
1355    RecordDecl::field_iterator
1356      Field = RT->getDecl()->field_begin(),
1357      FieldEnd = RT->getDecl()->field_end();
1358    for (; Field != FieldEnd; ++Field) {
1359      if (Field->isUnnamedBitfield())
1360        continue;
1361
1362      // If we find a field representing an anonymous field, look in the
1363      // IndirectFieldDecl that follow for the designated initializer.
1364      if (!KnownField && Field->isAnonymousStructOrUnion()) {
1365        if (IndirectFieldDecl *IF =
1366            FindIndirectFieldDesignator(*Field, FieldName)) {
1367          ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1368          D = DIE->getDesignator(DesigIdx);
1369          break;
1370        }
1371      }
1372      if (KnownField && KnownField == *Field)
1373        break;
1374      if (FieldName && FieldName == Field->getIdentifier())
1375        break;
1376
1377      ++FieldIndex;
1378    }
1379
1380    if (Field == FieldEnd) {
1381      // There was no normal field in the struct with the designated
1382      // name. Perform another lookup for this name, which may find
1383      // something that we can't designate (e.g., a member function),
1384      // may find nothing, or may find a member of an anonymous
1385      // struct/union.
1386      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1387      FieldDecl *ReplacementField = 0;
1388      if (Lookup.first == Lookup.second) {
1389        // Name lookup didn't find anything. Determine whether this
1390        // was a typo for another field name.
1391        LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
1392                       Sema::LookupMemberName);
1393        if (SemaRef.CorrectTypo(R, /*Scope=*/0, /*SS=*/0, RT->getDecl(), false,
1394                                Sema::CTC_NoKeywords) &&
1395            (ReplacementField = R.getAsSingle<FieldDecl>()) &&
1396            ReplacementField->getDeclContext()->getRedeclContext()
1397                                                      ->Equals(RT->getDecl())) {
1398          SemaRef.Diag(D->getFieldLoc(),
1399                       diag::err_field_designator_unknown_suggest)
1400            << FieldName << CurrentObjectType << R.getLookupName()
1401            << FixItHint::CreateReplacement(D->getFieldLoc(),
1402                                            R.getLookupName().getAsString());
1403          SemaRef.Diag(ReplacementField->getLocation(),
1404                       diag::note_previous_decl)
1405            << ReplacementField->getDeclName();
1406        } else {
1407          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1408            << FieldName << CurrentObjectType;
1409          ++Index;
1410          return true;
1411        }
1412      }
1413
1414      if (!ReplacementField) {
1415        // Name lookup found something, but it wasn't a field.
1416        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1417          << FieldName;
1418        SemaRef.Diag((*Lookup.first)->getLocation(),
1419                      diag::note_field_designator_found);
1420        ++Index;
1421        return true;
1422      }
1423
1424      if (!KnownField) {
1425        // The replacement field comes from typo correction; find it
1426        // in the list of fields.
1427        FieldIndex = 0;
1428        Field = RT->getDecl()->field_begin();
1429        for (; Field != FieldEnd; ++Field) {
1430          if (Field->isUnnamedBitfield())
1431            continue;
1432
1433          if (ReplacementField == *Field ||
1434              Field->getIdentifier() == ReplacementField->getIdentifier())
1435            break;
1436
1437          ++FieldIndex;
1438        }
1439      }
1440    }
1441
1442    // All of the fields of a union are located at the same place in
1443    // the initializer list.
1444    if (RT->getDecl()->isUnion()) {
1445      FieldIndex = 0;
1446      StructuredList->setInitializedFieldInUnion(*Field);
1447    }
1448
1449    // Update the designator with the field declaration.
1450    D->setField(*Field);
1451
1452    // Make sure that our non-designated initializer list has space
1453    // for a subobject corresponding to this field.
1454    if (FieldIndex >= StructuredList->getNumInits())
1455      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1456
1457    // This designator names a flexible array member.
1458    if (Field->getType()->isIncompleteArrayType()) {
1459      bool Invalid = false;
1460      if ((DesigIdx + 1) != DIE->size()) {
1461        // We can't designate an object within the flexible array
1462        // member (because GCC doesn't allow it).
1463        DesignatedInitExpr::Designator *NextD
1464          = DIE->getDesignator(DesigIdx + 1);
1465        SemaRef.Diag(NextD->getStartLocation(),
1466                      diag::err_designator_into_flexible_array_member)
1467          << SourceRange(NextD->getStartLocation(),
1468                         DIE->getSourceRange().getEnd());
1469        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1470          << *Field;
1471        Invalid = true;
1472      }
1473
1474      if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1475          !isa<StringLiteral>(DIE->getInit())) {
1476        // The initializer is not an initializer list.
1477        SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1478                      diag::err_flexible_array_init_needs_braces)
1479          << DIE->getInit()->getSourceRange();
1480        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1481          << *Field;
1482        Invalid = true;
1483      }
1484
1485      // Handle GNU flexible array initializers.
1486      if (!Invalid && !TopLevelObject &&
1487          cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1488        SemaRef.Diag(DIE->getSourceRange().getBegin(),
1489                      diag::err_flexible_array_init_nonempty)
1490          << DIE->getSourceRange().getBegin();
1491        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1492          << *Field;
1493        Invalid = true;
1494      }
1495
1496      if (Invalid) {
1497        ++Index;
1498        return true;
1499      }
1500
1501      // Initialize the array.
1502      bool prevHadError = hadError;
1503      unsigned newStructuredIndex = FieldIndex;
1504      unsigned OldIndex = Index;
1505      IList->setInit(Index, DIE->getInit());
1506
1507      InitializedEntity MemberEntity =
1508        InitializedEntity::InitializeMember(*Field, &Entity);
1509      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1510                          StructuredList, newStructuredIndex);
1511
1512      IList->setInit(OldIndex, DIE);
1513      if (hadError && !prevHadError) {
1514        ++Field;
1515        ++FieldIndex;
1516        if (NextField)
1517          *NextField = Field;
1518        StructuredIndex = FieldIndex;
1519        return true;
1520      }
1521    } else {
1522      // Recurse to check later designated subobjects.
1523      QualType FieldType = (*Field)->getType();
1524      unsigned newStructuredIndex = FieldIndex;
1525
1526      InitializedEntity MemberEntity =
1527        InitializedEntity::InitializeMember(*Field, &Entity);
1528      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1529                                     FieldType, 0, 0, Index,
1530                                     StructuredList, newStructuredIndex,
1531                                     true, false))
1532        return true;
1533    }
1534
1535    // Find the position of the next field to be initialized in this
1536    // subobject.
1537    ++Field;
1538    ++FieldIndex;
1539
1540    // If this the first designator, our caller will continue checking
1541    // the rest of this struct/class/union subobject.
1542    if (IsFirstDesignator) {
1543      if (NextField)
1544        *NextField = Field;
1545      StructuredIndex = FieldIndex;
1546      return false;
1547    }
1548
1549    if (!FinishSubobjectInit)
1550      return false;
1551
1552    // We've already initialized something in the union; we're done.
1553    if (RT->getDecl()->isUnion())
1554      return hadError;
1555
1556    // Check the remaining fields within this class/struct/union subobject.
1557    bool prevHadError = hadError;
1558
1559    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1560                          StructuredList, FieldIndex);
1561    return hadError && !prevHadError;
1562  }
1563
1564  // C99 6.7.8p6:
1565  //
1566  //   If a designator has the form
1567  //
1568  //      [ constant-expression ]
1569  //
1570  //   then the current object (defined below) shall have array
1571  //   type and the expression shall be an integer constant
1572  //   expression. If the array is of unknown size, any
1573  //   nonnegative value is valid.
1574  //
1575  // Additionally, cope with the GNU extension that permits
1576  // designators of the form
1577  //
1578  //      [ constant-expression ... constant-expression ]
1579  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1580  if (!AT) {
1581    SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1582      << CurrentObjectType;
1583    ++Index;
1584    return true;
1585  }
1586
1587  Expr *IndexExpr = 0;
1588  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1589  if (D->isArrayDesignator()) {
1590    IndexExpr = DIE->getArrayIndex(*D);
1591    DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1592    DesignatedEndIndex = DesignatedStartIndex;
1593  } else {
1594    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1595
1596
1597    DesignatedStartIndex =
1598      DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1599    DesignatedEndIndex =
1600      DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1601    IndexExpr = DIE->getArrayRangeEnd(*D);
1602
1603    if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
1604      FullyStructuredList->sawArrayRangeDesignator();
1605  }
1606
1607  if (isa<ConstantArrayType>(AT)) {
1608    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1609    DesignatedStartIndex
1610      = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1611    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1612    DesignatedEndIndex
1613      = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1614    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1615    if (DesignatedEndIndex >= MaxElements) {
1616      SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1617                    diag::err_array_designator_too_large)
1618        << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1619        << IndexExpr->getSourceRange();
1620      ++Index;
1621      return true;
1622    }
1623  } else {
1624    // Make sure the bit-widths and signedness match.
1625    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1626      DesignatedEndIndex
1627        = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1628    else if (DesignatedStartIndex.getBitWidth() <
1629             DesignatedEndIndex.getBitWidth())
1630      DesignatedStartIndex
1631        = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1632    DesignatedStartIndex.setIsUnsigned(true);
1633    DesignatedEndIndex.setIsUnsigned(true);
1634  }
1635
1636  // Make sure that our non-designated initializer list has space
1637  // for a subobject corresponding to this array element.
1638  if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1639    StructuredList->resizeInits(SemaRef.Context,
1640                                DesignatedEndIndex.getZExtValue() + 1);
1641
1642  // Repeatedly perform subobject initializations in the range
1643  // [DesignatedStartIndex, DesignatedEndIndex].
1644
1645  // Move to the next designator
1646  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1647  unsigned OldIndex = Index;
1648
1649  InitializedEntity ElementEntity =
1650    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1651
1652  while (DesignatedStartIndex <= DesignatedEndIndex) {
1653    // Recurse to check later designated subobjects.
1654    QualType ElementType = AT->getElementType();
1655    Index = OldIndex;
1656
1657    ElementEntity.setElementIndex(ElementIndex);
1658    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
1659                                   ElementType, 0, 0, Index,
1660                                   StructuredList, ElementIndex,
1661                                   (DesignatedStartIndex == DesignatedEndIndex),
1662                                   false))
1663      return true;
1664
1665    // Move to the next index in the array that we'll be initializing.
1666    ++DesignatedStartIndex;
1667    ElementIndex = DesignatedStartIndex.getZExtValue();
1668  }
1669
1670  // If this the first designator, our caller will continue checking
1671  // the rest of this array subobject.
1672  if (IsFirstDesignator) {
1673    if (NextElementIndex)
1674      *NextElementIndex = DesignatedStartIndex;
1675    StructuredIndex = ElementIndex;
1676    return false;
1677  }
1678
1679  if (!FinishSubobjectInit)
1680    return false;
1681
1682  // Check the remaining elements within this array subobject.
1683  bool prevHadError = hadError;
1684  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
1685                 /*SubobjectIsDesignatorContext=*/false, Index,
1686                 StructuredList, ElementIndex);
1687  return hadError && !prevHadError;
1688}
1689
1690// Get the structured initializer list for a subobject of type
1691// @p CurrentObjectType.
1692InitListExpr *
1693InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1694                                            QualType CurrentObjectType,
1695                                            InitListExpr *StructuredList,
1696                                            unsigned StructuredIndex,
1697                                            SourceRange InitRange) {
1698  Expr *ExistingInit = 0;
1699  if (!StructuredList)
1700    ExistingInit = SyntacticToSemantic[IList];
1701  else if (StructuredIndex < StructuredList->getNumInits())
1702    ExistingInit = StructuredList->getInit(StructuredIndex);
1703
1704  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1705    return Result;
1706
1707  if (ExistingInit) {
1708    // We are creating an initializer list that initializes the
1709    // subobjects of the current object, but there was already an
1710    // initialization that completely initialized the current
1711    // subobject, e.g., by a compound literal:
1712    //
1713    // struct X { int a, b; };
1714    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1715    //
1716    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1717    // designated initializer re-initializes the whole
1718    // subobject [0], overwriting previous initializers.
1719    SemaRef.Diag(InitRange.getBegin(),
1720                 diag::warn_subobject_initializer_overrides)
1721      << InitRange;
1722    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1723                  diag::note_previous_initializer)
1724      << /*FIXME:has side effects=*/0
1725      << ExistingInit->getSourceRange();
1726  }
1727
1728  InitListExpr *Result
1729    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
1730                                         InitRange.getBegin(), 0, 0,
1731                                         InitRange.getEnd());
1732
1733  Result->setType(CurrentObjectType.getNonLValueExprType(SemaRef.Context));
1734
1735  // Pre-allocate storage for the structured initializer list.
1736  unsigned NumElements = 0;
1737  unsigned NumInits = 0;
1738  if (!StructuredList)
1739    NumInits = IList->getNumInits();
1740  else if (Index < IList->getNumInits()) {
1741    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1742      NumInits = SubList->getNumInits();
1743  }
1744
1745  if (const ArrayType *AType
1746      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1747    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1748      NumElements = CAType->getSize().getZExtValue();
1749      // Simple heuristic so that we don't allocate a very large
1750      // initializer with many empty entries at the end.
1751      if (NumInits && NumElements > NumInits)
1752        NumElements = 0;
1753    }
1754  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
1755    NumElements = VType->getNumElements();
1756  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
1757    RecordDecl *RDecl = RType->getDecl();
1758    if (RDecl->isUnion())
1759      NumElements = 1;
1760    else
1761      NumElements = std::distance(RDecl->field_begin(),
1762                                  RDecl->field_end());
1763  }
1764
1765  if (NumElements < NumInits)
1766    NumElements = IList->getNumInits();
1767
1768  Result->reserveInits(SemaRef.Context, NumElements);
1769
1770  // Link this new initializer list into the structured initializer
1771  // lists.
1772  if (StructuredList)
1773    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
1774  else {
1775    Result->setSyntacticForm(IList);
1776    SyntacticToSemantic[IList] = Result;
1777  }
1778
1779  return Result;
1780}
1781
1782/// Update the initializer at index @p StructuredIndex within the
1783/// structured initializer list to the value @p expr.
1784void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1785                                                  unsigned &StructuredIndex,
1786                                                  Expr *expr) {
1787  // No structured initializer list to update
1788  if (!StructuredList)
1789    return;
1790
1791  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
1792                                                  StructuredIndex, expr)) {
1793    // This initializer overwrites a previous initializer. Warn.
1794    SemaRef.Diag(expr->getSourceRange().getBegin(),
1795                  diag::warn_initializer_overrides)
1796      << expr->getSourceRange();
1797    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1798                  diag::note_previous_initializer)
1799      << /*FIXME:has side effects=*/0
1800      << PrevInit->getSourceRange();
1801  }
1802
1803  ++StructuredIndex;
1804}
1805
1806/// Check that the given Index expression is a valid array designator
1807/// value. This is essentailly just a wrapper around
1808/// VerifyIntegerConstantExpression that also checks for negative values
1809/// and produces a reasonable diagnostic if there is a
1810/// failure. Returns true if there was an error, false otherwise.  If
1811/// everything went okay, Value will receive the value of the constant
1812/// expression.
1813static bool
1814CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1815  SourceLocation Loc = Index->getSourceRange().getBegin();
1816
1817  // Make sure this is an integer constant expression.
1818  if (S.VerifyIntegerConstantExpression(Index, &Value))
1819    return true;
1820
1821  if (Value.isSigned() && Value.isNegative())
1822    return S.Diag(Loc, diag::err_array_designator_negative)
1823      << Value.toString(10) << Index->getSourceRange();
1824
1825  Value.setIsUnsigned(true);
1826  return false;
1827}
1828
1829ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1830                                            SourceLocation Loc,
1831                                            bool GNUSyntax,
1832                                            ExprResult Init) {
1833  typedef DesignatedInitExpr::Designator ASTDesignator;
1834
1835  bool Invalid = false;
1836  llvm::SmallVector<ASTDesignator, 32> Designators;
1837  llvm::SmallVector<Expr *, 32> InitExpressions;
1838
1839  // Build designators and check array designator expressions.
1840  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1841    const Designator &D = Desig.getDesignator(Idx);
1842    switch (D.getKind()) {
1843    case Designator::FieldDesignator:
1844      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1845                                          D.getFieldLoc()));
1846      break;
1847
1848    case Designator::ArrayDesignator: {
1849      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1850      llvm::APSInt IndexValue;
1851      if (!Index->isTypeDependent() &&
1852          !Index->isValueDependent() &&
1853          CheckArrayDesignatorExpr(*this, Index, IndexValue))
1854        Invalid = true;
1855      else {
1856        Designators.push_back(ASTDesignator(InitExpressions.size(),
1857                                            D.getLBracketLoc(),
1858                                            D.getRBracketLoc()));
1859        InitExpressions.push_back(Index);
1860      }
1861      break;
1862    }
1863
1864    case Designator::ArrayRangeDesignator: {
1865      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1866      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1867      llvm::APSInt StartValue;
1868      llvm::APSInt EndValue;
1869      bool StartDependent = StartIndex->isTypeDependent() ||
1870                            StartIndex->isValueDependent();
1871      bool EndDependent = EndIndex->isTypeDependent() ||
1872                          EndIndex->isValueDependent();
1873      if ((!StartDependent &&
1874           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1875          (!EndDependent &&
1876           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1877        Invalid = true;
1878      else {
1879        // Make sure we're comparing values with the same bit width.
1880        if (StartDependent || EndDependent) {
1881          // Nothing to compute.
1882        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1883          EndValue = EndValue.extend(StartValue.getBitWidth());
1884        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1885          StartValue = StartValue.extend(EndValue.getBitWidth());
1886
1887        if (!StartDependent && !EndDependent && EndValue < StartValue) {
1888          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1889            << StartValue.toString(10) << EndValue.toString(10)
1890            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1891          Invalid = true;
1892        } else {
1893          Designators.push_back(ASTDesignator(InitExpressions.size(),
1894                                              D.getLBracketLoc(),
1895                                              D.getEllipsisLoc(),
1896                                              D.getRBracketLoc()));
1897          InitExpressions.push_back(StartIndex);
1898          InitExpressions.push_back(EndIndex);
1899        }
1900      }
1901      break;
1902    }
1903    }
1904  }
1905
1906  if (Invalid || Init.isInvalid())
1907    return ExprError();
1908
1909  // Clear out the expressions within the designation.
1910  Desig.ClearExprs(*this);
1911
1912  DesignatedInitExpr *DIE
1913    = DesignatedInitExpr::Create(Context,
1914                                 Designators.data(), Designators.size(),
1915                                 InitExpressions.data(), InitExpressions.size(),
1916                                 Loc, GNUSyntax, Init.takeAs<Expr>());
1917
1918  if (getLangOptions().CPlusPlus)
1919    Diag(DIE->getLocStart(), diag::ext_designated_init)
1920      << DIE->getSourceRange();
1921
1922  return Owned(DIE);
1923}
1924
1925bool Sema::CheckInitList(const InitializedEntity &Entity,
1926                         InitListExpr *&InitList, QualType &DeclType) {
1927  InitListChecker CheckInitList(*this, Entity, InitList, DeclType);
1928  if (!CheckInitList.HadError())
1929    InitList = CheckInitList.getFullyStructuredList();
1930
1931  return CheckInitList.HadError();
1932}
1933
1934//===----------------------------------------------------------------------===//
1935// Initialization entity
1936//===----------------------------------------------------------------------===//
1937
1938InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
1939                                     const InitializedEntity &Parent)
1940  : Parent(&Parent), Index(Index)
1941{
1942  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
1943    Kind = EK_ArrayElement;
1944    Type = AT->getElementType();
1945  } else {
1946    Kind = EK_VectorElement;
1947    Type = Parent.getType()->getAs<VectorType>()->getElementType();
1948  }
1949}
1950
1951InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
1952                                                    CXXBaseSpecifier *Base,
1953                                                    bool IsInheritedVirtualBase)
1954{
1955  InitializedEntity Result;
1956  Result.Kind = EK_Base;
1957  Result.Base = reinterpret_cast<uintptr_t>(Base);
1958  if (IsInheritedVirtualBase)
1959    Result.Base |= 0x01;
1960
1961  Result.Type = Base->getType();
1962  return Result;
1963}
1964
1965DeclarationName InitializedEntity::getName() const {
1966  switch (getKind()) {
1967  case EK_Parameter:
1968    if (!VariableOrMember)
1969      return DeclarationName();
1970    // Fall through
1971
1972  case EK_Variable:
1973  case EK_Member:
1974    return VariableOrMember->getDeclName();
1975
1976  case EK_Result:
1977  case EK_Exception:
1978  case EK_New:
1979  case EK_Temporary:
1980  case EK_Base:
1981  case EK_ArrayElement:
1982  case EK_VectorElement:
1983  case EK_BlockElement:
1984    return DeclarationName();
1985  }
1986
1987  // Silence GCC warning
1988  return DeclarationName();
1989}
1990
1991DeclaratorDecl *InitializedEntity::getDecl() const {
1992  switch (getKind()) {
1993  case EK_Variable:
1994  case EK_Parameter:
1995  case EK_Member:
1996    return VariableOrMember;
1997
1998  case EK_Result:
1999  case EK_Exception:
2000  case EK_New:
2001  case EK_Temporary:
2002  case EK_Base:
2003  case EK_ArrayElement:
2004  case EK_VectorElement:
2005  case EK_BlockElement:
2006    return 0;
2007  }
2008
2009  // Silence GCC warning
2010  return 0;
2011}
2012
2013bool InitializedEntity::allowsNRVO() const {
2014  switch (getKind()) {
2015  case EK_Result:
2016  case EK_Exception:
2017    return LocAndNRVO.NRVO;
2018
2019  case EK_Variable:
2020  case EK_Parameter:
2021  case EK_Member:
2022  case EK_New:
2023  case EK_Temporary:
2024  case EK_Base:
2025  case EK_ArrayElement:
2026  case EK_VectorElement:
2027  case EK_BlockElement:
2028    break;
2029  }
2030
2031  return false;
2032}
2033
2034//===----------------------------------------------------------------------===//
2035// Initialization sequence
2036//===----------------------------------------------------------------------===//
2037
2038void InitializationSequence::Step::Destroy() {
2039  switch (Kind) {
2040  case SK_ResolveAddressOfOverloadedFunction:
2041  case SK_CastDerivedToBaseRValue:
2042  case SK_CastDerivedToBaseXValue:
2043  case SK_CastDerivedToBaseLValue:
2044  case SK_BindReference:
2045  case SK_BindReferenceToTemporary:
2046  case SK_ExtraneousCopyToTemporary:
2047  case SK_UserConversion:
2048  case SK_QualificationConversionRValue:
2049  case SK_QualificationConversionXValue:
2050  case SK_QualificationConversionLValue:
2051  case SK_ListInitialization:
2052  case SK_ConstructorInitialization:
2053  case SK_ZeroInitialization:
2054  case SK_CAssignment:
2055  case SK_StringInit:
2056  case SK_ObjCObjectConversion:
2057    break;
2058
2059  case SK_ConversionSequence:
2060    delete ICS;
2061  }
2062}
2063
2064bool InitializationSequence::isDirectReferenceBinding() const {
2065  return getKind() == ReferenceBinding && Steps.back().Kind == SK_BindReference;
2066}
2067
2068bool InitializationSequence::isAmbiguous() const {
2069  if (getKind() != FailedSequence)
2070    return false;
2071
2072  switch (getFailureKind()) {
2073  case FK_TooManyInitsForReference:
2074  case FK_ArrayNeedsInitList:
2075  case FK_ArrayNeedsInitListOrStringLiteral:
2076  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2077  case FK_NonConstLValueReferenceBindingToTemporary:
2078  case FK_NonConstLValueReferenceBindingToUnrelated:
2079  case FK_RValueReferenceBindingToLValue:
2080  case FK_ReferenceInitDropsQualifiers:
2081  case FK_ReferenceInitFailed:
2082  case FK_ConversionFailed:
2083  case FK_TooManyInitsForScalar:
2084  case FK_ReferenceBindingToInitList:
2085  case FK_InitListBadDestinationType:
2086  case FK_DefaultInitOfConst:
2087  case FK_Incomplete:
2088    return false;
2089
2090  case FK_ReferenceInitOverloadFailed:
2091  case FK_UserConversionOverloadFailed:
2092  case FK_ConstructorOverloadFailed:
2093    return FailedOverloadResult == OR_Ambiguous;
2094  }
2095
2096  return false;
2097}
2098
2099bool InitializationSequence::isConstructorInitialization() const {
2100  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2101}
2102
2103void InitializationSequence::AddAddressOverloadResolutionStep(
2104                                                      FunctionDecl *Function,
2105                                                      DeclAccessPair Found) {
2106  Step S;
2107  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2108  S.Type = Function->getType();
2109  S.Function.Function = Function;
2110  S.Function.FoundDecl = Found;
2111  Steps.push_back(S);
2112}
2113
2114void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2115                                                      ExprValueKind VK) {
2116  Step S;
2117  switch (VK) {
2118  case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2119  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2120  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2121  default: llvm_unreachable("No such category");
2122  }
2123  S.Type = BaseType;
2124  Steps.push_back(S);
2125}
2126
2127void InitializationSequence::AddReferenceBindingStep(QualType T,
2128                                                     bool BindingTemporary) {
2129  Step S;
2130  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2131  S.Type = T;
2132  Steps.push_back(S);
2133}
2134
2135void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2136  Step S;
2137  S.Kind = SK_ExtraneousCopyToTemporary;
2138  S.Type = T;
2139  Steps.push_back(S);
2140}
2141
2142void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2143                                                   DeclAccessPair FoundDecl,
2144                                                   QualType T) {
2145  Step S;
2146  S.Kind = SK_UserConversion;
2147  S.Type = T;
2148  S.Function.Function = Function;
2149  S.Function.FoundDecl = FoundDecl;
2150  Steps.push_back(S);
2151}
2152
2153void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2154                                                            ExprValueKind VK) {
2155  Step S;
2156  S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2157  switch (VK) {
2158  case VK_RValue:
2159    S.Kind = SK_QualificationConversionRValue;
2160    break;
2161  case VK_XValue:
2162    S.Kind = SK_QualificationConversionXValue;
2163    break;
2164  case VK_LValue:
2165    S.Kind = SK_QualificationConversionLValue;
2166    break;
2167  }
2168  S.Type = Ty;
2169  Steps.push_back(S);
2170}
2171
2172void InitializationSequence::AddConversionSequenceStep(
2173                                       const ImplicitConversionSequence &ICS,
2174                                                       QualType T) {
2175  Step S;
2176  S.Kind = SK_ConversionSequence;
2177  S.Type = T;
2178  S.ICS = new ImplicitConversionSequence(ICS);
2179  Steps.push_back(S);
2180}
2181
2182void InitializationSequence::AddListInitializationStep(QualType T) {
2183  Step S;
2184  S.Kind = SK_ListInitialization;
2185  S.Type = T;
2186  Steps.push_back(S);
2187}
2188
2189void
2190InitializationSequence::AddConstructorInitializationStep(
2191                                              CXXConstructorDecl *Constructor,
2192                                                       AccessSpecifier Access,
2193                                                         QualType T) {
2194  Step S;
2195  S.Kind = SK_ConstructorInitialization;
2196  S.Type = T;
2197  S.Function.Function = Constructor;
2198  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2199  Steps.push_back(S);
2200}
2201
2202void InitializationSequence::AddZeroInitializationStep(QualType T) {
2203  Step S;
2204  S.Kind = SK_ZeroInitialization;
2205  S.Type = T;
2206  Steps.push_back(S);
2207}
2208
2209void InitializationSequence::AddCAssignmentStep(QualType T) {
2210  Step S;
2211  S.Kind = SK_CAssignment;
2212  S.Type = T;
2213  Steps.push_back(S);
2214}
2215
2216void InitializationSequence::AddStringInitStep(QualType T) {
2217  Step S;
2218  S.Kind = SK_StringInit;
2219  S.Type = T;
2220  Steps.push_back(S);
2221}
2222
2223void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2224  Step S;
2225  S.Kind = SK_ObjCObjectConversion;
2226  S.Type = T;
2227  Steps.push_back(S);
2228}
2229
2230void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2231                                                OverloadingResult Result) {
2232  SequenceKind = FailedSequence;
2233  this->Failure = Failure;
2234  this->FailedOverloadResult = Result;
2235}
2236
2237//===----------------------------------------------------------------------===//
2238// Attempt initialization
2239//===----------------------------------------------------------------------===//
2240
2241/// \brief Attempt list initialization (C++0x [dcl.init.list])
2242static void TryListInitialization(Sema &S,
2243                                  const InitializedEntity &Entity,
2244                                  const InitializationKind &Kind,
2245                                  InitListExpr *InitList,
2246                                  InitializationSequence &Sequence) {
2247  // FIXME: We only perform rudimentary checking of list
2248  // initializations at this point, then assume that any list
2249  // initialization of an array, aggregate, or scalar will be
2250  // well-formed. When we actually "perform" list initialization, we'll
2251  // do all of the necessary checking.  C++0x initializer lists will
2252  // force us to perform more checking here.
2253  Sequence.setSequenceKind(InitializationSequence::ListInitialization);
2254
2255  QualType DestType = Entity.getType();
2256
2257  // C++ [dcl.init]p13:
2258  //   If T is a scalar type, then a declaration of the form
2259  //
2260  //     T x = { a };
2261  //
2262  //   is equivalent to
2263  //
2264  //     T x = a;
2265  if (DestType->isScalarType()) {
2266    if (InitList->getNumInits() > 1 && S.getLangOptions().CPlusPlus) {
2267      Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
2268      return;
2269    }
2270
2271    // Assume scalar initialization from a single value works.
2272  } else if (DestType->isAggregateType()) {
2273    // Assume aggregate initialization works.
2274  } else if (DestType->isVectorType()) {
2275    // Assume vector initialization works.
2276  } else if (DestType->isReferenceType()) {
2277    // FIXME: C++0x defines behavior for this.
2278    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2279    return;
2280  } else if (DestType->isRecordType()) {
2281    // FIXME: C++0x defines behavior for this
2282    Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
2283  }
2284
2285  // Add a general "list initialization" step.
2286  Sequence.AddListInitializationStep(DestType);
2287}
2288
2289/// \brief Try a reference initialization that involves calling a conversion
2290/// function.
2291static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
2292                                             const InitializedEntity &Entity,
2293                                             const InitializationKind &Kind,
2294                                                          Expr *Initializer,
2295                                                          bool AllowRValues,
2296                                             InitializationSequence &Sequence) {
2297  QualType DestType = Entity.getType();
2298  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2299  QualType T1 = cv1T1.getUnqualifiedType();
2300  QualType cv2T2 = Initializer->getType();
2301  QualType T2 = cv2T2.getUnqualifiedType();
2302
2303  bool DerivedToBase;
2304  bool ObjCConversion;
2305  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
2306                                         T1, T2, DerivedToBase,
2307                                         ObjCConversion) &&
2308         "Must have incompatible references when binding via conversion");
2309  (void)DerivedToBase;
2310  (void)ObjCConversion;
2311
2312  // Build the candidate set directly in the initialization sequence
2313  // structure, so that it will persist if we fail.
2314  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2315  CandidateSet.clear();
2316
2317  // Determine whether we are allowed to call explicit constructors or
2318  // explicit conversion operators.
2319  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2320
2321  const RecordType *T1RecordType = 0;
2322  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
2323      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
2324    // The type we're converting to is a class type. Enumerate its constructors
2325    // to see if there is a suitable conversion.
2326    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
2327
2328    DeclContext::lookup_iterator Con, ConEnd;
2329    for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
2330         Con != ConEnd; ++Con) {
2331      NamedDecl *D = *Con;
2332      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2333
2334      // Find the constructor (which may be a template).
2335      CXXConstructorDecl *Constructor = 0;
2336      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2337      if (ConstructorTmpl)
2338        Constructor = cast<CXXConstructorDecl>(
2339                                         ConstructorTmpl->getTemplatedDecl());
2340      else
2341        Constructor = cast<CXXConstructorDecl>(D);
2342
2343      if (!Constructor->isInvalidDecl() &&
2344          Constructor->isConvertingConstructor(AllowExplicit)) {
2345        if (ConstructorTmpl)
2346          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2347                                         /*ExplicitArgs*/ 0,
2348                                         &Initializer, 1, CandidateSet,
2349                                         /*SuppressUserConversions=*/true);
2350        else
2351          S.AddOverloadCandidate(Constructor, FoundDecl,
2352                                 &Initializer, 1, CandidateSet,
2353                                 /*SuppressUserConversions=*/true);
2354      }
2355    }
2356  }
2357  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
2358    return OR_No_Viable_Function;
2359
2360  const RecordType *T2RecordType = 0;
2361  if ((T2RecordType = T2->getAs<RecordType>()) &&
2362      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
2363    // The type we're converting from is a class type, enumerate its conversion
2364    // functions.
2365    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
2366
2367    const UnresolvedSetImpl *Conversions
2368      = T2RecordDecl->getVisibleConversionFunctions();
2369    for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2370           E = Conversions->end(); I != E; ++I) {
2371      NamedDecl *D = *I;
2372      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2373      if (isa<UsingShadowDecl>(D))
2374        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2375
2376      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2377      CXXConversionDecl *Conv;
2378      if (ConvTemplate)
2379        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2380      else
2381        Conv = cast<CXXConversionDecl>(D);
2382
2383      // If the conversion function doesn't return a reference type,
2384      // it can't be considered for this conversion unless we're allowed to
2385      // consider rvalues.
2386      // FIXME: Do we need to make sure that we only consider conversion
2387      // candidates with reference-compatible results? That might be needed to
2388      // break recursion.
2389      if ((AllowExplicit || !Conv->isExplicit()) &&
2390          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
2391        if (ConvTemplate)
2392          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2393                                           ActingDC, Initializer,
2394                                           DestType, CandidateSet);
2395        else
2396          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2397                                   Initializer, DestType, CandidateSet);
2398      }
2399    }
2400  }
2401  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
2402    return OR_No_Viable_Function;
2403
2404  SourceLocation DeclLoc = Initializer->getLocStart();
2405
2406  // Perform overload resolution. If it fails, return the failed result.
2407  OverloadCandidateSet::iterator Best;
2408  if (OverloadingResult Result
2409        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
2410    return Result;
2411
2412  FunctionDecl *Function = Best->Function;
2413
2414  // Compute the returned type of the conversion.
2415  if (isa<CXXConversionDecl>(Function))
2416    T2 = Function->getResultType();
2417  else
2418    T2 = cv1T1;
2419
2420  // Add the user-defined conversion step.
2421  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
2422                                 T2.getNonLValueExprType(S.Context));
2423
2424  // Determine whether we need to perform derived-to-base or
2425  // cv-qualification adjustments.
2426  ExprValueKind VK = VK_RValue;
2427  if (T2->isLValueReferenceType())
2428    VK = VK_LValue;
2429  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
2430    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
2431
2432  bool NewDerivedToBase = false;
2433  bool NewObjCConversion = false;
2434  Sema::ReferenceCompareResult NewRefRelationship
2435    = S.CompareReferenceRelationship(DeclLoc, T1,
2436                                     T2.getNonLValueExprType(S.Context),
2437                                     NewDerivedToBase, NewObjCConversion);
2438  if (NewRefRelationship == Sema::Ref_Incompatible) {
2439    // If the type we've converted to is not reference-related to the
2440    // type we're looking for, then there is another conversion step
2441    // we need to perform to produce a temporary of the right type
2442    // that we'll be binding to.
2443    ImplicitConversionSequence ICS;
2444    ICS.setStandard();
2445    ICS.Standard = Best->FinalConversion;
2446    T2 = ICS.Standard.getToType(2);
2447    Sequence.AddConversionSequenceStep(ICS, T2);
2448  } else if (NewDerivedToBase)
2449    Sequence.AddDerivedToBaseCastStep(
2450                                S.Context.getQualifiedType(T1,
2451                                  T2.getNonReferenceType().getQualifiers()),
2452                                      VK);
2453  else if (NewObjCConversion)
2454    Sequence.AddObjCObjectConversionStep(
2455                                S.Context.getQualifiedType(T1,
2456                                  T2.getNonReferenceType().getQualifiers()));
2457
2458  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
2459    Sequence.AddQualificationConversionStep(cv1T1, VK);
2460
2461  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
2462  return OR_Success;
2463}
2464
2465/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
2466static void TryReferenceInitialization(Sema &S,
2467                                       const InitializedEntity &Entity,
2468                                       const InitializationKind &Kind,
2469                                       Expr *Initializer,
2470                                       InitializationSequence &Sequence) {
2471  Sequence.setSequenceKind(InitializationSequence::ReferenceBinding);
2472
2473  QualType DestType = Entity.getType();
2474  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2475  Qualifiers T1Quals;
2476  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2477  QualType cv2T2 = Initializer->getType();
2478  Qualifiers T2Quals;
2479  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
2480  SourceLocation DeclLoc = Initializer->getLocStart();
2481
2482  // If the initializer is the address of an overloaded function, try
2483  // to resolve the overloaded function. If all goes well, T2 is the
2484  // type of the resulting function.
2485  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2486    DeclAccessPair Found;
2487    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
2488                                                                T1,
2489                                                                false,
2490                                                                Found)) {
2491      Sequence.AddAddressOverloadResolutionStep(Fn, Found);
2492      cv2T2 = Fn->getType();
2493      T2 = cv2T2.getUnqualifiedType();
2494    } else if (!T1->isRecordType()) {
2495      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2496      return;
2497    }
2498  }
2499
2500  // Compute some basic properties of the types and the initializer.
2501  bool isLValueRef = DestType->isLValueReferenceType();
2502  bool isRValueRef = !isLValueRef;
2503  bool DerivedToBase = false;
2504  bool ObjCConversion = false;
2505  Expr::Classification InitCategory = Initializer->Classify(S.Context);
2506  Sema::ReferenceCompareResult RefRelationship
2507    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
2508                                     ObjCConversion);
2509
2510  // C++0x [dcl.init.ref]p5:
2511  //   A reference to type "cv1 T1" is initialized by an expression of type
2512  //   "cv2 T2" as follows:
2513  //
2514  //     - If the reference is an lvalue reference and the initializer
2515  //       expression
2516  // Note the analogous bullet points for rvlaue refs to functions. Because
2517  // there are no function rvalues in C++, rvalue refs to functions are treated
2518  // like lvalue refs.
2519  OverloadingResult ConvOvlResult = OR_Success;
2520  bool T1Function = T1->isFunctionType();
2521  if (isLValueRef || T1Function) {
2522    if (InitCategory.isLValue() &&
2523        (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
2524         (Kind.isCStyleOrFunctionalCast() &&
2525          RefRelationship == Sema::Ref_Related))) {
2526      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
2527      //     reference-compatible with "cv2 T2," or
2528      //
2529      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
2530      // bit-field when we're determining whether the reference initialization
2531      // can occur. However, we do pay attention to whether it is a bit-field
2532      // to decide whether we're actually binding to a temporary created from
2533      // the bit-field.
2534      if (DerivedToBase)
2535        Sequence.AddDerivedToBaseCastStep(
2536                         S.Context.getQualifiedType(T1, T2Quals),
2537                         VK_LValue);
2538      else if (ObjCConversion)
2539        Sequence.AddObjCObjectConversionStep(
2540                                     S.Context.getQualifiedType(T1, T2Quals));
2541
2542      if (T1Quals != T2Quals)
2543        Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
2544      bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
2545        (Initializer->getBitField() || Initializer->refersToVectorElement());
2546      Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
2547      return;
2548    }
2549
2550    //     - has a class type (i.e., T2 is a class type), where T1 is not
2551    //       reference-related to T2, and can be implicitly converted to an
2552    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
2553    //       with "cv3 T3" (this conversion is selected by enumerating the
2554    //       applicable conversion functions (13.3.1.6) and choosing the best
2555    //       one through overload resolution (13.3)),
2556    // If we have an rvalue ref to function type here, the rhs must be
2557    // an rvalue.
2558    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
2559        (isLValueRef || InitCategory.isRValue())) {
2560      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
2561                                                       Initializer,
2562                                                   /*AllowRValues=*/isRValueRef,
2563                                                       Sequence);
2564      if (ConvOvlResult == OR_Success)
2565        return;
2566      if (ConvOvlResult != OR_No_Viable_Function) {
2567        Sequence.SetOverloadFailure(
2568                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2569                                    ConvOvlResult);
2570      }
2571    }
2572  }
2573
2574  //     - Otherwise, the reference shall be an lvalue reference to a
2575  //       non-volatile const type (i.e., cv1 shall be const), or the reference
2576  //       shall be an rvalue reference.
2577  if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
2578    if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
2579      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2580    else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2581      Sequence.SetOverloadFailure(
2582                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2583                                  ConvOvlResult);
2584    else
2585      Sequence.SetFailed(InitCategory.isLValue()
2586        ? (RefRelationship == Sema::Ref_Related
2587             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
2588             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
2589        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
2590
2591    return;
2592  }
2593
2594  //    - If the initializer expression
2595  //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
2596  //        "cv1 T1" is reference-compatible with "cv2 T2"
2597  // Note: functions are handled below.
2598  if (!T1Function &&
2599      (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
2600       (Kind.isCStyleOrFunctionalCast() &&
2601        RefRelationship == Sema::Ref_Related)) &&
2602      (InitCategory.isXValue() ||
2603       (InitCategory.isPRValue() && T2->isRecordType()) ||
2604       (InitCategory.isPRValue() && T2->isArrayType()))) {
2605    ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
2606    if (InitCategory.isPRValue() && T2->isRecordType()) {
2607      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
2608      // compiler the freedom to perform a copy here or bind to the
2609      // object, while C++0x requires that we bind directly to the
2610      // object. Hence, we always bind to the object without making an
2611      // extra copy. However, in C++03 requires that we check for the
2612      // presence of a suitable copy constructor:
2613      //
2614      //   The constructor that would be used to make the copy shall
2615      //   be callable whether or not the copy is actually done.
2616      if (!S.getLangOptions().CPlusPlus0x && !S.getLangOptions().Microsoft)
2617        Sequence.AddExtraneousCopyToTemporary(cv2T2);
2618    }
2619
2620    if (DerivedToBase)
2621      Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
2622                                        ValueKind);
2623    else if (ObjCConversion)
2624      Sequence.AddObjCObjectConversionStep(
2625                                       S.Context.getQualifiedType(T1, T2Quals));
2626
2627    if (T1Quals != T2Quals)
2628      Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
2629    Sequence.AddReferenceBindingStep(cv1T1,
2630         /*bindingTemporary=*/(InitCategory.isPRValue() && !T2->isArrayType()));
2631    return;
2632  }
2633
2634  //       - has a class type (i.e., T2 is a class type), where T1 is not
2635  //         reference-related to T2, and can be implicitly converted to an
2636  //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
2637  //         where "cv1 T1" is reference-compatible with "cv3 T3",
2638  if (T2->isRecordType()) {
2639    if (RefRelationship == Sema::Ref_Incompatible) {
2640      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
2641                                                       Kind, Initializer,
2642                                                       /*AllowRValues=*/true,
2643                                                       Sequence);
2644      if (ConvOvlResult)
2645        Sequence.SetOverloadFailure(
2646                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2647                                    ConvOvlResult);
2648
2649      return;
2650    }
2651
2652    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2653    return;
2654  }
2655
2656  //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
2657  //        from the initializer expression using the rules for a non-reference
2658  //        copy initialization (8.5). The reference is then bound to the
2659  //        temporary. [...]
2660
2661  // Determine whether we are allowed to call explicit constructors or
2662  // explicit conversion operators.
2663  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
2664
2665  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
2666
2667  if (S.TryImplicitConversion(Sequence, TempEntity, Initializer,
2668                              /*SuppressUserConversions*/ false,
2669                              AllowExplicit,
2670                              /*FIXME:InOverloadResolution=*/false,
2671                              /*CStyle=*/Kind.isCStyleOrFunctionalCast())) {
2672    // FIXME: Use the conversion function set stored in ICS to turn
2673    // this into an overloading ambiguity diagnostic. However, we need
2674    // to keep that set as an OverloadCandidateSet rather than as some
2675    // other kind of set.
2676    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2677      Sequence.SetOverloadFailure(
2678                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2679                                  ConvOvlResult);
2680    else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
2681      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2682    else
2683      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
2684    return;
2685  }
2686
2687  //        [...] If T1 is reference-related to T2, cv1 must be the
2688  //        same cv-qualification as, or greater cv-qualification
2689  //        than, cv2; otherwise, the program is ill-formed.
2690  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
2691  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
2692  if (RefRelationship == Sema::Ref_Related &&
2693      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
2694    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2695    return;
2696  }
2697
2698  //   [...] If T1 is reference-related to T2 and the reference is an rvalue
2699  //   reference, the initializer expression shall not be an lvalue.
2700  if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
2701      InitCategory.isLValue()) {
2702    Sequence.SetFailed(
2703                    InitializationSequence::FK_RValueReferenceBindingToLValue);
2704    return;
2705  }
2706
2707  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2708  return;
2709}
2710
2711/// \brief Attempt character array initialization from a string literal
2712/// (C++ [dcl.init.string], C99 6.7.8).
2713static void TryStringLiteralInitialization(Sema &S,
2714                                           const InitializedEntity &Entity,
2715                                           const InitializationKind &Kind,
2716                                           Expr *Initializer,
2717                                       InitializationSequence &Sequence) {
2718  Sequence.setSequenceKind(InitializationSequence::StringInit);
2719  Sequence.AddStringInitStep(Entity.getType());
2720}
2721
2722/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2723/// enumerates the constructors of the initialized entity and performs overload
2724/// resolution to select the best.
2725static void TryConstructorInitialization(Sema &S,
2726                                         const InitializedEntity &Entity,
2727                                         const InitializationKind &Kind,
2728                                         Expr **Args, unsigned NumArgs,
2729                                         QualType DestType,
2730                                         InitializationSequence &Sequence) {
2731  Sequence.setSequenceKind(InitializationSequence::ConstructorInitialization);
2732
2733  // Build the candidate set directly in the initialization sequence
2734  // structure, so that it will persist if we fail.
2735  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2736  CandidateSet.clear();
2737
2738  // Determine whether we are allowed to call explicit constructors or
2739  // explicit conversion operators.
2740  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
2741                        Kind.getKind() == InitializationKind::IK_Value ||
2742                        Kind.getKind() == InitializationKind::IK_Default);
2743
2744  // The type we're constructing needs to be complete.
2745  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2746    Sequence.SetFailed(InitializationSequence::FK_Incomplete);
2747    return;
2748  }
2749
2750  // The type we're converting to is a class type. Enumerate its constructors
2751  // to see if one is suitable.
2752  const RecordType *DestRecordType = DestType->getAs<RecordType>();
2753  assert(DestRecordType && "Constructor initialization requires record type");
2754  CXXRecordDecl *DestRecordDecl
2755    = cast<CXXRecordDecl>(DestRecordType->getDecl());
2756
2757  DeclContext::lookup_iterator Con, ConEnd;
2758  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
2759       Con != ConEnd; ++Con) {
2760    NamedDecl *D = *Con;
2761    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2762    bool SuppressUserConversions = false;
2763
2764    // Find the constructor (which may be a template).
2765    CXXConstructorDecl *Constructor = 0;
2766    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2767    if (ConstructorTmpl)
2768      Constructor = cast<CXXConstructorDecl>(
2769                                           ConstructorTmpl->getTemplatedDecl());
2770    else {
2771      Constructor = cast<CXXConstructorDecl>(D);
2772
2773      // If we're performing copy initialization using a copy constructor, we
2774      // suppress user-defined conversions on the arguments.
2775      // FIXME: Move constructors?
2776      if (Kind.getKind() == InitializationKind::IK_Copy &&
2777          Constructor->isCopyConstructor())
2778        SuppressUserConversions = true;
2779    }
2780
2781    if (!Constructor->isInvalidDecl() &&
2782        (AllowExplicit || !Constructor->isExplicit())) {
2783      if (ConstructorTmpl)
2784        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2785                                       /*ExplicitArgs*/ 0,
2786                                       Args, NumArgs, CandidateSet,
2787                                       SuppressUserConversions);
2788      else
2789        S.AddOverloadCandidate(Constructor, FoundDecl,
2790                               Args, NumArgs, CandidateSet,
2791                               SuppressUserConversions);
2792    }
2793  }
2794
2795  SourceLocation DeclLoc = Kind.getLocation();
2796
2797  // Perform overload resolution. If it fails, return the failed result.
2798  OverloadCandidateSet::iterator Best;
2799  if (OverloadingResult Result
2800        = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
2801    Sequence.SetOverloadFailure(
2802                          InitializationSequence::FK_ConstructorOverloadFailed,
2803                                Result);
2804    return;
2805  }
2806
2807  // C++0x [dcl.init]p6:
2808  //   If a program calls for the default initialization of an object
2809  //   of a const-qualified type T, T shall be a class type with a
2810  //   user-provided default constructor.
2811  if (Kind.getKind() == InitializationKind::IK_Default &&
2812      Entity.getType().isConstQualified() &&
2813      cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
2814    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2815    return;
2816  }
2817
2818  // Add the constructor initialization step. Any cv-qualification conversion is
2819  // subsumed by the initialization.
2820  Sequence.AddConstructorInitializationStep(
2821                                      cast<CXXConstructorDecl>(Best->Function),
2822                                      Best->FoundDecl.getAccess(),
2823                                      DestType);
2824}
2825
2826/// \brief Attempt value initialization (C++ [dcl.init]p7).
2827static void TryValueInitialization(Sema &S,
2828                                   const InitializedEntity &Entity,
2829                                   const InitializationKind &Kind,
2830                                   InitializationSequence &Sequence) {
2831  // C++ [dcl.init]p5:
2832  //
2833  //   To value-initialize an object of type T means:
2834  QualType T = Entity.getType();
2835
2836  //     -- if T is an array type, then each element is value-initialized;
2837  while (const ArrayType *AT = S.Context.getAsArrayType(T))
2838    T = AT->getElementType();
2839
2840  if (const RecordType *RT = T->getAs<RecordType>()) {
2841    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2842      // -- if T is a class type (clause 9) with a user-declared
2843      //    constructor (12.1), then the default constructor for T is
2844      //    called (and the initialization is ill-formed if T has no
2845      //    accessible default constructor);
2846      //
2847      // FIXME: we really want to refer to a single subobject of the array,
2848      // but Entity doesn't have a way to capture that (yet).
2849      if (ClassDecl->hasUserDeclaredConstructor())
2850        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2851
2852      // -- if T is a (possibly cv-qualified) non-union class type
2853      //    without a user-provided constructor, then the object is
2854      //    zero-initialized and, if T's implicitly-declared default
2855      //    constructor is non-trivial, that constructor is called.
2856      if ((ClassDecl->getTagKind() == TTK_Class ||
2857           ClassDecl->getTagKind() == TTK_Struct)) {
2858        Sequence.AddZeroInitializationStep(Entity.getType());
2859        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2860      }
2861    }
2862  }
2863
2864  Sequence.AddZeroInitializationStep(Entity.getType());
2865  Sequence.setSequenceKind(InitializationSequence::ZeroInitialization);
2866}
2867
2868/// \brief Attempt default initialization (C++ [dcl.init]p6).
2869static void TryDefaultInitialization(Sema &S,
2870                                     const InitializedEntity &Entity,
2871                                     const InitializationKind &Kind,
2872                                     InitializationSequence &Sequence) {
2873  assert(Kind.getKind() == InitializationKind::IK_Default);
2874
2875  // C++ [dcl.init]p6:
2876  //   To default-initialize an object of type T means:
2877  //     - if T is an array type, each element is default-initialized;
2878  QualType DestType = Entity.getType();
2879  while (const ArrayType *Array = S.Context.getAsArrayType(DestType))
2880    DestType = Array->getElementType();
2881
2882  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
2883  //       constructor for T is called (and the initialization is ill-formed if
2884  //       T has no accessible default constructor);
2885  if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
2886    TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
2887    return;
2888  }
2889
2890  //     - otherwise, no initialization is performed.
2891  Sequence.setSequenceKind(InitializationSequence::NoInitialization);
2892
2893  //   If a program calls for the default initialization of an object of
2894  //   a const-qualified type T, T shall be a class type with a user-provided
2895  //   default constructor.
2896  if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus)
2897    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2898}
2899
2900/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
2901/// which enumerates all conversion functions and performs overload resolution
2902/// to select the best.
2903static void TryUserDefinedConversion(Sema &S,
2904                                     const InitializedEntity &Entity,
2905                                     const InitializationKind &Kind,
2906                                     Expr *Initializer,
2907                                     InitializationSequence &Sequence) {
2908  Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
2909
2910  QualType DestType = Entity.getType();
2911  assert(!DestType->isReferenceType() && "References are handled elsewhere");
2912  QualType SourceType = Initializer->getType();
2913  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
2914         "Must have a class type to perform a user-defined conversion");
2915
2916  // Build the candidate set directly in the initialization sequence
2917  // structure, so that it will persist if we fail.
2918  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2919  CandidateSet.clear();
2920
2921  // Determine whether we are allowed to call explicit constructors or
2922  // explicit conversion operators.
2923  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2924
2925  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
2926    // The type we're converting to is a class type. Enumerate its constructors
2927    // to see if there is a suitable conversion.
2928    CXXRecordDecl *DestRecordDecl
2929      = cast<CXXRecordDecl>(DestRecordType->getDecl());
2930
2931    // Try to complete the type we're converting to.
2932    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2933      DeclContext::lookup_iterator Con, ConEnd;
2934      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
2935           Con != ConEnd; ++Con) {
2936        NamedDecl *D = *Con;
2937        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2938
2939        // Find the constructor (which may be a template).
2940        CXXConstructorDecl *Constructor = 0;
2941        FunctionTemplateDecl *ConstructorTmpl
2942          = dyn_cast<FunctionTemplateDecl>(D);
2943        if (ConstructorTmpl)
2944          Constructor = cast<CXXConstructorDecl>(
2945                                           ConstructorTmpl->getTemplatedDecl());
2946        else
2947          Constructor = cast<CXXConstructorDecl>(D);
2948
2949        if (!Constructor->isInvalidDecl() &&
2950            Constructor->isConvertingConstructor(AllowExplicit)) {
2951          if (ConstructorTmpl)
2952            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2953                                           /*ExplicitArgs*/ 0,
2954                                           &Initializer, 1, CandidateSet,
2955                                           /*SuppressUserConversions=*/true);
2956          else
2957            S.AddOverloadCandidate(Constructor, FoundDecl,
2958                                   &Initializer, 1, CandidateSet,
2959                                   /*SuppressUserConversions=*/true);
2960        }
2961      }
2962    }
2963  }
2964
2965  SourceLocation DeclLoc = Initializer->getLocStart();
2966
2967  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
2968    // The type we're converting from is a class type, enumerate its conversion
2969    // functions.
2970
2971    // We can only enumerate the conversion functions for a complete type; if
2972    // the type isn't complete, simply skip this step.
2973    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
2974      CXXRecordDecl *SourceRecordDecl
2975        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
2976
2977      const UnresolvedSetImpl *Conversions
2978        = SourceRecordDecl->getVisibleConversionFunctions();
2979      for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2980           E = Conversions->end();
2981           I != E; ++I) {
2982        NamedDecl *D = *I;
2983        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2984        if (isa<UsingShadowDecl>(D))
2985          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2986
2987        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2988        CXXConversionDecl *Conv;
2989        if (ConvTemplate)
2990          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2991        else
2992          Conv = cast<CXXConversionDecl>(D);
2993
2994        if (AllowExplicit || !Conv->isExplicit()) {
2995          if (ConvTemplate)
2996            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2997                                             ActingDC, Initializer, DestType,
2998                                             CandidateSet);
2999          else
3000            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3001                                     Initializer, DestType, CandidateSet);
3002        }
3003      }
3004    }
3005  }
3006
3007  // Perform overload resolution. If it fails, return the failed result.
3008  OverloadCandidateSet::iterator Best;
3009  if (OverloadingResult Result
3010        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3011    Sequence.SetOverloadFailure(
3012                        InitializationSequence::FK_UserConversionOverloadFailed,
3013                                Result);
3014    return;
3015  }
3016
3017  FunctionDecl *Function = Best->Function;
3018
3019  if (isa<CXXConstructorDecl>(Function)) {
3020    // Add the user-defined conversion step. Any cv-qualification conversion is
3021    // subsumed by the initialization.
3022    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3023    return;
3024  }
3025
3026  // Add the user-defined conversion step that calls the conversion function.
3027  QualType ConvType = Function->getCallResultType();
3028  if (ConvType->getAs<RecordType>()) {
3029    // If we're converting to a class type, there may be an copy if
3030    // the resulting temporary object (possible to create an object of
3031    // a base class type). That copy is not a separate conversion, so
3032    // we just make a note of the actual destination type (possibly a
3033    // base class of the type returned by the conversion function) and
3034    // let the user-defined conversion step handle the conversion.
3035    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3036    return;
3037  }
3038
3039  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType);
3040
3041  // If the conversion following the call to the conversion function
3042  // is interesting, add it as a separate step.
3043  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3044      Best->FinalConversion.Third) {
3045    ImplicitConversionSequence ICS;
3046    ICS.setStandard();
3047    ICS.Standard = Best->FinalConversion;
3048    Sequence.AddConversionSequenceStep(ICS, DestType);
3049  }
3050}
3051
3052InitializationSequence::InitializationSequence(Sema &S,
3053                                               const InitializedEntity &Entity,
3054                                               const InitializationKind &Kind,
3055                                               Expr **Args,
3056                                               unsigned NumArgs)
3057    : FailedCandidateSet(Kind.getLocation()) {
3058  ASTContext &Context = S.Context;
3059
3060  // C++0x [dcl.init]p16:
3061  //   The semantics of initializers are as follows. The destination type is
3062  //   the type of the object or reference being initialized and the source
3063  //   type is the type of the initializer expression. The source type is not
3064  //   defined when the initializer is a braced-init-list or when it is a
3065  //   parenthesized list of expressions.
3066  QualType DestType = Entity.getType();
3067
3068  if (DestType->isDependentType() ||
3069      Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
3070    SequenceKind = DependentSequence;
3071    return;
3072  }
3073
3074  for (unsigned I = 0; I != NumArgs; ++I)
3075    if (Args[I]->getObjectKind() == OK_ObjCProperty)
3076      S.ConvertPropertyForRValue(Args[I]);
3077
3078  QualType SourceType;
3079  Expr *Initializer = 0;
3080  if (NumArgs == 1) {
3081    Initializer = Args[0];
3082    if (!isa<InitListExpr>(Initializer))
3083      SourceType = Initializer->getType();
3084  }
3085
3086  //     - If the initializer is a braced-init-list, the object is
3087  //       list-initialized (8.5.4).
3088  if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
3089    TryListInitialization(S, Entity, Kind, InitList, *this);
3090    return;
3091  }
3092
3093  //     - If the destination type is a reference type, see 8.5.3.
3094  if (DestType->isReferenceType()) {
3095    // C++0x [dcl.init.ref]p1:
3096    //   A variable declared to be a T& or T&&, that is, "reference to type T"
3097    //   (8.3.2), shall be initialized by an object, or function, of type T or
3098    //   by an object that can be converted into a T.
3099    // (Therefore, multiple arguments are not permitted.)
3100    if (NumArgs != 1)
3101      SetFailed(FK_TooManyInitsForReference);
3102    else
3103      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
3104    return;
3105  }
3106
3107  //     - If the destination type is an array of characters, an array of
3108  //       char16_t, an array of char32_t, or an array of wchar_t, and the
3109  //       initializer is a string literal, see 8.5.2.
3110  if (Initializer && IsStringInit(Initializer, DestType, Context)) {
3111    TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
3112    return;
3113  }
3114
3115  //     - If the initializer is (), the object is value-initialized.
3116  if (Kind.getKind() == InitializationKind::IK_Value ||
3117      (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
3118    TryValueInitialization(S, Entity, Kind, *this);
3119    return;
3120  }
3121
3122  // Handle default initialization.
3123  if (Kind.getKind() == InitializationKind::IK_Default) {
3124    TryDefaultInitialization(S, Entity, Kind, *this);
3125    return;
3126  }
3127
3128  //     - Otherwise, if the destination type is an array, the program is
3129  //       ill-formed.
3130  if (const ArrayType *AT = Context.getAsArrayType(DestType)) {
3131    if (AT->getElementType()->isAnyCharacterType())
3132      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
3133    else
3134      SetFailed(FK_ArrayNeedsInitList);
3135
3136    return;
3137  }
3138
3139  // Handle initialization in C
3140  if (!S.getLangOptions().CPlusPlus) {
3141    setSequenceKind(CAssignment);
3142    AddCAssignmentStep(DestType);
3143    return;
3144  }
3145
3146  //     - If the destination type is a (possibly cv-qualified) class type:
3147  if (DestType->isRecordType()) {
3148    //     - If the initialization is direct-initialization, or if it is
3149    //       copy-initialization where the cv-unqualified version of the
3150    //       source type is the same class as, or a derived class of, the
3151    //       class of the destination, constructors are considered. [...]
3152    if (Kind.getKind() == InitializationKind::IK_Direct ||
3153        (Kind.getKind() == InitializationKind::IK_Copy &&
3154         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
3155          S.IsDerivedFrom(SourceType, DestType))))
3156      TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
3157                                   Entity.getType(), *this);
3158    //     - Otherwise (i.e., for the remaining copy-initialization cases),
3159    //       user-defined conversion sequences that can convert from the source
3160    //       type to the destination type or (when a conversion function is
3161    //       used) to a derived class thereof are enumerated as described in
3162    //       13.3.1.4, and the best one is chosen through overload resolution
3163    //       (13.3).
3164    else
3165      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3166    return;
3167  }
3168
3169  if (NumArgs > 1) {
3170    SetFailed(FK_TooManyInitsForScalar);
3171    return;
3172  }
3173  assert(NumArgs == 1 && "Zero-argument case handled above");
3174
3175  //    - Otherwise, if the source type is a (possibly cv-qualified) class
3176  //      type, conversion functions are considered.
3177  if (!SourceType.isNull() && SourceType->isRecordType()) {
3178    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3179    return;
3180  }
3181
3182  //    - Otherwise, the initial value of the object being initialized is the
3183  //      (possibly converted) value of the initializer expression. Standard
3184  //      conversions (Clause 4) will be used, if necessary, to convert the
3185  //      initializer expression to the cv-unqualified version of the
3186  //      destination type; no user-defined conversions are considered.
3187  if (S.TryImplicitConversion(*this, Entity, Initializer,
3188                              /*SuppressUserConversions*/ true,
3189                              /*AllowExplicitConversions*/ false,
3190                              /*InOverloadResolution*/ false,
3191                              /*CStyle=*/Kind.isCStyleOrFunctionalCast()))
3192  {
3193    if (Initializer->getType() == Context.OverloadTy)
3194      SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3195    else
3196      SetFailed(InitializationSequence::FK_ConversionFailed);
3197  }
3198  else
3199    setSequenceKind(StandardConversion);
3200}
3201
3202InitializationSequence::~InitializationSequence() {
3203  for (llvm::SmallVectorImpl<Step>::iterator Step = Steps.begin(),
3204                                          StepEnd = Steps.end();
3205       Step != StepEnd; ++Step)
3206    Step->Destroy();
3207}
3208
3209//===----------------------------------------------------------------------===//
3210// Perform initialization
3211//===----------------------------------------------------------------------===//
3212static Sema::AssignmentAction
3213getAssignmentAction(const InitializedEntity &Entity) {
3214  switch(Entity.getKind()) {
3215  case InitializedEntity::EK_Variable:
3216  case InitializedEntity::EK_New:
3217  case InitializedEntity::EK_Exception:
3218  case InitializedEntity::EK_Base:
3219    return Sema::AA_Initializing;
3220
3221  case InitializedEntity::EK_Parameter:
3222    if (Entity.getDecl() &&
3223        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
3224      return Sema::AA_Sending;
3225
3226    return Sema::AA_Passing;
3227
3228  case InitializedEntity::EK_Result:
3229    return Sema::AA_Returning;
3230
3231  case InitializedEntity::EK_Temporary:
3232    // FIXME: Can we tell apart casting vs. converting?
3233    return Sema::AA_Casting;
3234
3235  case InitializedEntity::EK_Member:
3236  case InitializedEntity::EK_ArrayElement:
3237  case InitializedEntity::EK_VectorElement:
3238  case InitializedEntity::EK_BlockElement:
3239    return Sema::AA_Initializing;
3240  }
3241
3242  return Sema::AA_Converting;
3243}
3244
3245/// \brief Whether we should binding a created object as a temporary when
3246/// initializing the given entity.
3247static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
3248  switch (Entity.getKind()) {
3249  case InitializedEntity::EK_ArrayElement:
3250  case InitializedEntity::EK_Member:
3251  case InitializedEntity::EK_Result:
3252  case InitializedEntity::EK_New:
3253  case InitializedEntity::EK_Variable:
3254  case InitializedEntity::EK_Base:
3255  case InitializedEntity::EK_VectorElement:
3256  case InitializedEntity::EK_Exception:
3257  case InitializedEntity::EK_BlockElement:
3258    return false;
3259
3260  case InitializedEntity::EK_Parameter:
3261  case InitializedEntity::EK_Temporary:
3262    return true;
3263  }
3264
3265  llvm_unreachable("missed an InitializedEntity kind?");
3266}
3267
3268/// \brief Whether the given entity, when initialized with an object
3269/// created for that initialization, requires destruction.
3270static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
3271  switch (Entity.getKind()) {
3272    case InitializedEntity::EK_Member:
3273    case InitializedEntity::EK_Result:
3274    case InitializedEntity::EK_New:
3275    case InitializedEntity::EK_Base:
3276    case InitializedEntity::EK_VectorElement:
3277    case InitializedEntity::EK_BlockElement:
3278      return false;
3279
3280    case InitializedEntity::EK_Variable:
3281    case InitializedEntity::EK_Parameter:
3282    case InitializedEntity::EK_Temporary:
3283    case InitializedEntity::EK_ArrayElement:
3284    case InitializedEntity::EK_Exception:
3285      return true;
3286  }
3287
3288  llvm_unreachable("missed an InitializedEntity kind?");
3289}
3290
3291/// \brief Make a (potentially elidable) temporary copy of the object
3292/// provided by the given initializer by calling the appropriate copy
3293/// constructor.
3294///
3295/// \param S The Sema object used for type-checking.
3296///
3297/// \param T The type of the temporary object, which must either be
3298/// the type of the initializer expression or a superclass thereof.
3299///
3300/// \param Enter The entity being initialized.
3301///
3302/// \param CurInit The initializer expression.
3303///
3304/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
3305/// is permitted in C++03 (but not C++0x) when binding a reference to
3306/// an rvalue.
3307///
3308/// \returns An expression that copies the initializer expression into
3309/// a temporary object, or an error expression if a copy could not be
3310/// created.
3311static ExprResult CopyObject(Sema &S,
3312                             QualType T,
3313                             const InitializedEntity &Entity,
3314                             ExprResult CurInit,
3315                             bool IsExtraneousCopy) {
3316  // Determine which class type we're copying to.
3317  Expr *CurInitExpr = (Expr *)CurInit.get();
3318  CXXRecordDecl *Class = 0;
3319  if (const RecordType *Record = T->getAs<RecordType>())
3320    Class = cast<CXXRecordDecl>(Record->getDecl());
3321  if (!Class)
3322    return move(CurInit);
3323
3324  // C++0x [class.copy]p32:
3325  //   When certain criteria are met, an implementation is allowed to
3326  //   omit the copy/move construction of a class object, even if the
3327  //   copy/move constructor and/or destructor for the object have
3328  //   side effects. [...]
3329  //     - when a temporary class object that has not been bound to a
3330  //       reference (12.2) would be copied/moved to a class object
3331  //       with the same cv-unqualified type, the copy/move operation
3332  //       can be omitted by constructing the temporary object
3333  //       directly into the target of the omitted copy/move
3334  //
3335  // Note that the other three bullets are handled elsewhere. Copy
3336  // elision for return statements and throw expressions are handled as part
3337  // of constructor initialization, while copy elision for exception handlers
3338  // is handled by the run-time.
3339  bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
3340  SourceLocation Loc;
3341  switch (Entity.getKind()) {
3342  case InitializedEntity::EK_Result:
3343    Loc = Entity.getReturnLoc();
3344    break;
3345
3346  case InitializedEntity::EK_Exception:
3347    Loc = Entity.getThrowLoc();
3348    break;
3349
3350  case InitializedEntity::EK_Variable:
3351    Loc = Entity.getDecl()->getLocation();
3352    break;
3353
3354  case InitializedEntity::EK_ArrayElement:
3355  case InitializedEntity::EK_Member:
3356  case InitializedEntity::EK_Parameter:
3357  case InitializedEntity::EK_Temporary:
3358  case InitializedEntity::EK_New:
3359  case InitializedEntity::EK_Base:
3360  case InitializedEntity::EK_VectorElement:
3361  case InitializedEntity::EK_BlockElement:
3362    Loc = CurInitExpr->getLocStart();
3363    break;
3364  }
3365
3366  // Make sure that the type we are copying is complete.
3367  if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
3368    return move(CurInit);
3369
3370  // Perform overload resolution using the class's copy/move constructors.
3371  DeclContext::lookup_iterator Con, ConEnd;
3372  OverloadCandidateSet CandidateSet(Loc);
3373  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
3374       Con != ConEnd; ++Con) {
3375    // Only consider copy/move constructors and constructor templates. Per
3376    // C++0x [dcl.init]p16, second bullet to class types, this
3377    // initialization is direct-initialization.
3378    CXXConstructorDecl *Constructor = 0;
3379
3380    if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
3381      // Handle copy/moveconstructors, only.
3382      if (!Constructor || Constructor->isInvalidDecl() ||
3383          !Constructor->isCopyOrMoveConstructor() ||
3384          !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
3385        continue;
3386
3387      DeclAccessPair FoundDecl
3388        = DeclAccessPair::make(Constructor, Constructor->getAccess());
3389      S.AddOverloadCandidate(Constructor, FoundDecl,
3390                             &CurInitExpr, 1, CandidateSet);
3391      continue;
3392    }
3393
3394    // Handle constructor templates.
3395    FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
3396    if (ConstructorTmpl->isInvalidDecl())
3397      continue;
3398
3399    Constructor = cast<CXXConstructorDecl>(
3400                                         ConstructorTmpl->getTemplatedDecl());
3401    if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
3402      continue;
3403
3404    // FIXME: Do we need to limit this to copy-constructor-like
3405    // candidates?
3406    DeclAccessPair FoundDecl
3407      = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
3408    S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
3409                                   &CurInitExpr, 1, CandidateSet, true);
3410  }
3411
3412  OverloadCandidateSet::iterator Best;
3413  switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
3414  case OR_Success:
3415    break;
3416
3417  case OR_No_Viable_Function:
3418    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
3419           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
3420           : diag::err_temp_copy_no_viable)
3421      << (int)Entity.getKind() << CurInitExpr->getType()
3422      << CurInitExpr->getSourceRange();
3423    CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1);
3424    if (!IsExtraneousCopy || S.isSFINAEContext())
3425      return ExprError();
3426    return move(CurInit);
3427
3428  case OR_Ambiguous:
3429    S.Diag(Loc, diag::err_temp_copy_ambiguous)
3430      << (int)Entity.getKind() << CurInitExpr->getType()
3431      << CurInitExpr->getSourceRange();
3432    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1);
3433    return ExprError();
3434
3435  case OR_Deleted:
3436    S.Diag(Loc, diag::err_temp_copy_deleted)
3437      << (int)Entity.getKind() << CurInitExpr->getType()
3438      << CurInitExpr->getSourceRange();
3439    S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3440      << Best->Function->isDeleted();
3441    return ExprError();
3442  }
3443
3444  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3445  ASTOwningVector<Expr*> ConstructorArgs(S);
3446  CurInit.release(); // Ownership transferred into MultiExprArg, below.
3447
3448  S.CheckConstructorAccess(Loc, Constructor, Entity,
3449                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
3450
3451  if (IsExtraneousCopy) {
3452    // If this is a totally extraneous copy for C++03 reference
3453    // binding purposes, just return the original initialization
3454    // expression. We don't generate an (elided) copy operation here
3455    // because doing so would require us to pass down a flag to avoid
3456    // infinite recursion, where each step adds another extraneous,
3457    // elidable copy.
3458
3459    // Instantiate the default arguments of any extra parameters in
3460    // the selected copy constructor, as if we were going to create a
3461    // proper call to the copy constructor.
3462    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
3463      ParmVarDecl *Parm = Constructor->getParamDecl(I);
3464      if (S.RequireCompleteType(Loc, Parm->getType(),
3465                                S.PDiag(diag::err_call_incomplete_argument)))
3466        break;
3467
3468      // Build the default argument expression; we don't actually care
3469      // if this succeeds or not, because this routine will complain
3470      // if there was a problem.
3471      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
3472    }
3473
3474    return S.Owned(CurInitExpr);
3475  }
3476
3477  // Determine the arguments required to actually perform the
3478  // constructor call (we might have derived-to-base conversions, or
3479  // the copy constructor may have default arguments).
3480  if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
3481                                Loc, ConstructorArgs))
3482    return ExprError();
3483
3484  // Actually perform the constructor call.
3485  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
3486                                    move_arg(ConstructorArgs),
3487                                    /*ZeroInit*/ false,
3488                                    CXXConstructExpr::CK_Complete,
3489                                    SourceRange());
3490
3491  // If we're supposed to bind temporaries, do so.
3492  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
3493    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3494  return move(CurInit);
3495}
3496
3497void InitializationSequence::PrintInitLocationNote(Sema &S,
3498                                              const InitializedEntity &Entity) {
3499  if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
3500    if (Entity.getDecl()->getLocation().isInvalid())
3501      return;
3502
3503    if (Entity.getDecl()->getDeclName())
3504      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
3505        << Entity.getDecl()->getDeclName();
3506    else
3507      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
3508  }
3509}
3510
3511ExprResult
3512InitializationSequence::Perform(Sema &S,
3513                                const InitializedEntity &Entity,
3514                                const InitializationKind &Kind,
3515                                MultiExprArg Args,
3516                                QualType *ResultType) {
3517  if (SequenceKind == FailedSequence) {
3518    unsigned NumArgs = Args.size();
3519    Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
3520    return ExprError();
3521  }
3522
3523  if (SequenceKind == DependentSequence) {
3524    // If the declaration is a non-dependent, incomplete array type
3525    // that has an initializer, then its type will be completed once
3526    // the initializer is instantiated.
3527    if (ResultType && !Entity.getType()->isDependentType() &&
3528        Args.size() == 1) {
3529      QualType DeclType = Entity.getType();
3530      if (const IncompleteArrayType *ArrayT
3531                           = S.Context.getAsIncompleteArrayType(DeclType)) {
3532        // FIXME: We don't currently have the ability to accurately
3533        // compute the length of an initializer list without
3534        // performing full type-checking of the initializer list
3535        // (since we have to determine where braces are implicitly
3536        // introduced and such).  So, we fall back to making the array
3537        // type a dependently-sized array type with no specified
3538        // bound.
3539        if (isa<InitListExpr>((Expr *)Args.get()[0])) {
3540          SourceRange Brackets;
3541
3542          // Scavange the location of the brackets from the entity, if we can.
3543          if (DeclaratorDecl *DD = Entity.getDecl()) {
3544            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
3545              TypeLoc TL = TInfo->getTypeLoc();
3546              if (IncompleteArrayTypeLoc *ArrayLoc
3547                                      = dyn_cast<IncompleteArrayTypeLoc>(&TL))
3548              Brackets = ArrayLoc->getBracketsRange();
3549            }
3550          }
3551
3552          *ResultType
3553            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
3554                                                   /*NumElts=*/0,
3555                                                   ArrayT->getSizeModifier(),
3556                                       ArrayT->getIndexTypeCVRQualifiers(),
3557                                                   Brackets);
3558        }
3559
3560      }
3561    }
3562
3563    if (Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast())
3564      return ExprResult(Args.release()[0]);
3565
3566    if (Args.size() == 0)
3567      return S.Owned((Expr *)0);
3568
3569    unsigned NumArgs = Args.size();
3570    return S.Owned(new (S.Context) ParenListExpr(S.Context,
3571                                                 SourceLocation(),
3572                                                 (Expr **)Args.release(),
3573                                                 NumArgs,
3574                                                 SourceLocation()));
3575  }
3576
3577  if (SequenceKind == NoInitialization)
3578    return S.Owned((Expr *)0);
3579
3580  QualType DestType = Entity.getType().getNonReferenceType();
3581  // FIXME: Ugly hack around the fact that Entity.getType() is not
3582  // the same as Entity.getDecl()->getType() in cases involving type merging,
3583  //  and we want latter when it makes sense.
3584  if (ResultType)
3585    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
3586                                     Entity.getType();
3587
3588  ExprResult CurInit = S.Owned((Expr *)0);
3589
3590  assert(!Steps.empty() && "Cannot have an empty initialization sequence");
3591
3592  // For initialization steps that start with a single initializer,
3593  // grab the only argument out the Args and place it into the "current"
3594  // initializer.
3595  switch (Steps.front().Kind) {
3596  case SK_ResolveAddressOfOverloadedFunction:
3597  case SK_CastDerivedToBaseRValue:
3598  case SK_CastDerivedToBaseXValue:
3599  case SK_CastDerivedToBaseLValue:
3600  case SK_BindReference:
3601  case SK_BindReferenceToTemporary:
3602  case SK_ExtraneousCopyToTemporary:
3603  case SK_UserConversion:
3604  case SK_QualificationConversionLValue:
3605  case SK_QualificationConversionXValue:
3606  case SK_QualificationConversionRValue:
3607  case SK_ConversionSequence:
3608  case SK_ListInitialization:
3609  case SK_CAssignment:
3610  case SK_StringInit:
3611  case SK_ObjCObjectConversion: {
3612    assert(Args.size() == 1);
3613    Expr *CurInitExpr = Args.get()[0];
3614    if (!CurInitExpr) return ExprError();
3615
3616    // Read from a property when initializing something with it.
3617    if (CurInitExpr->getObjectKind() == OK_ObjCProperty)
3618      S.ConvertPropertyForRValue(CurInitExpr);
3619
3620    CurInit = ExprResult(CurInitExpr);
3621    break;
3622  }
3623
3624  case SK_ConstructorInitialization:
3625  case SK_ZeroInitialization:
3626    break;
3627  }
3628
3629  // Walk through the computed steps for the initialization sequence,
3630  // performing the specified conversions along the way.
3631  bool ConstructorInitRequiresZeroInit = false;
3632  for (step_iterator Step = step_begin(), StepEnd = step_end();
3633       Step != StepEnd; ++Step) {
3634    if (CurInit.isInvalid())
3635      return ExprError();
3636
3637    Expr *CurInitExpr = CurInit.get();
3638    QualType SourceType = CurInitExpr? CurInitExpr->getType() : QualType();
3639
3640    switch (Step->Kind) {
3641    case SK_ResolveAddressOfOverloadedFunction:
3642      // Overload resolution determined which function invoke; update the
3643      // initializer to reflect that choice.
3644      S.CheckAddressOfMemberAccess(CurInitExpr, Step->Function.FoundDecl);
3645      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
3646      CurInit = S.FixOverloadedFunctionReference(move(CurInit),
3647                                                 Step->Function.FoundDecl,
3648                                                 Step->Function.Function);
3649      break;
3650
3651    case SK_CastDerivedToBaseRValue:
3652    case SK_CastDerivedToBaseXValue:
3653    case SK_CastDerivedToBaseLValue: {
3654      // We have a derived-to-base cast that produces either an rvalue or an
3655      // lvalue. Perform that cast.
3656
3657      CXXCastPath BasePath;
3658
3659      // Casts to inaccessible base classes are allowed with C-style casts.
3660      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3661      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
3662                                         CurInitExpr->getLocStart(),
3663                                         CurInitExpr->getSourceRange(),
3664                                         &BasePath, IgnoreBaseAccess))
3665        return ExprError();
3666
3667      if (S.BasePathInvolvesVirtualBase(BasePath)) {
3668        QualType T = SourceType;
3669        if (const PointerType *Pointer = T->getAs<PointerType>())
3670          T = Pointer->getPointeeType();
3671        if (const RecordType *RecordTy = T->getAs<RecordType>())
3672          S.MarkVTableUsed(CurInitExpr->getLocStart(),
3673                           cast<CXXRecordDecl>(RecordTy->getDecl()));
3674      }
3675
3676      ExprValueKind VK =
3677          Step->Kind == SK_CastDerivedToBaseLValue ?
3678              VK_LValue :
3679              (Step->Kind == SK_CastDerivedToBaseXValue ?
3680                   VK_XValue :
3681                   VK_RValue);
3682      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
3683                                                 Step->Type,
3684                                                 CK_DerivedToBase,
3685                                                 CurInit.get(),
3686                                                 &BasePath, VK));
3687      break;
3688    }
3689
3690    case SK_BindReference:
3691      if (FieldDecl *BitField = CurInitExpr->getBitField()) {
3692        // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
3693        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
3694          << Entity.getType().isVolatileQualified()
3695          << BitField->getDeclName()
3696          << CurInitExpr->getSourceRange();
3697        S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
3698        return ExprError();
3699      }
3700
3701      if (CurInitExpr->refersToVectorElement()) {
3702        // References cannot bind to vector elements.
3703        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
3704          << Entity.getType().isVolatileQualified()
3705          << CurInitExpr->getSourceRange();
3706        PrintInitLocationNote(S, Entity);
3707        return ExprError();
3708      }
3709
3710      // Reference binding does not have any corresponding ASTs.
3711
3712      // Check exception specifications
3713      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3714        return ExprError();
3715
3716      break;
3717
3718    case SK_BindReferenceToTemporary:
3719      // Reference binding does not have any corresponding ASTs.
3720
3721      // Check exception specifications
3722      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3723        return ExprError();
3724
3725      break;
3726
3727    case SK_ExtraneousCopyToTemporary:
3728      CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
3729                           /*IsExtraneousCopy=*/true);
3730      break;
3731
3732    case SK_UserConversion: {
3733      // We have a user-defined conversion that invokes either a constructor
3734      // or a conversion function.
3735      CastKind CastKind;
3736      bool IsCopy = false;
3737      FunctionDecl *Fn = Step->Function.Function;
3738      DeclAccessPair FoundFn = Step->Function.FoundDecl;
3739      bool CreatedObject = false;
3740      bool IsLvalue = false;
3741      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
3742        // Build a call to the selected constructor.
3743        ASTOwningVector<Expr*> ConstructorArgs(S);
3744        SourceLocation Loc = CurInitExpr->getLocStart();
3745        CurInit.release(); // Ownership transferred into MultiExprArg, below.
3746
3747        // Determine the arguments required to actually perform the constructor
3748        // call.
3749        if (S.CompleteConstructorCall(Constructor,
3750                                      MultiExprArg(&CurInitExpr, 1),
3751                                      Loc, ConstructorArgs))
3752          return ExprError();
3753
3754        // Build the an expression that constructs a temporary.
3755        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
3756                                          move_arg(ConstructorArgs),
3757                                          /*ZeroInit*/ false,
3758                                          CXXConstructExpr::CK_Complete,
3759                                          SourceRange());
3760        if (CurInit.isInvalid())
3761          return ExprError();
3762
3763        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
3764                                 FoundFn.getAccess());
3765        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
3766
3767        CastKind = CK_ConstructorConversion;
3768        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
3769        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
3770            S.IsDerivedFrom(SourceType, Class))
3771          IsCopy = true;
3772
3773        CreatedObject = true;
3774      } else {
3775        // Build a call to the conversion function.
3776        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
3777        IsLvalue = Conversion->getResultType()->isLValueReferenceType();
3778        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInitExpr, 0,
3779                                    FoundFn);
3780        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
3781
3782        // FIXME: Should we move this initialization into a separate
3783        // derived-to-base conversion? I believe the answer is "no", because
3784        // we don't want to turn off access control here for c-style casts.
3785        if (S.PerformObjectArgumentInitialization(CurInitExpr, /*Qualifier=*/0,
3786                                                  FoundFn, Conversion))
3787          return ExprError();
3788
3789        // Do a little dance to make sure that CurInit has the proper
3790        // pointer.
3791        CurInit.release();
3792
3793        // Build the actual call to the conversion function.
3794        CurInit = S.BuildCXXMemberCallExpr(CurInitExpr, FoundFn, Conversion);
3795        if (CurInit.isInvalid() || !CurInit.get())
3796          return ExprError();
3797
3798        CastKind = CK_UserDefinedConversion;
3799
3800        CreatedObject = Conversion->getResultType()->isRecordType();
3801      }
3802
3803      bool RequiresCopy = !IsCopy &&
3804        getKind() != InitializationSequence::ReferenceBinding;
3805      if (RequiresCopy || shouldBindAsTemporary(Entity))
3806        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3807      else if (CreatedObject && shouldDestroyTemporary(Entity)) {
3808        CurInitExpr = static_cast<Expr *>(CurInit.get());
3809        QualType T = CurInitExpr->getType();
3810        if (const RecordType *Record = T->getAs<RecordType>()) {
3811          CXXDestructorDecl *Destructor
3812            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
3813          S.CheckDestructorAccess(CurInitExpr->getLocStart(), Destructor,
3814                                  S.PDiag(diag::err_access_dtor_temp) << T);
3815          S.MarkDeclarationReferenced(CurInitExpr->getLocStart(), Destructor);
3816          S.DiagnoseUseOfDecl(Destructor, CurInitExpr->getLocStart());
3817        }
3818      }
3819
3820      CurInitExpr = CurInit.takeAs<Expr>();
3821      // FIXME: xvalues
3822      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
3823                                                 CurInitExpr->getType(),
3824                                                 CastKind, CurInitExpr, 0,
3825                                           IsLvalue ? VK_LValue : VK_RValue));
3826
3827      if (RequiresCopy)
3828        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
3829                             move(CurInit), /*IsExtraneousCopy=*/false);
3830
3831      break;
3832    }
3833
3834    case SK_QualificationConversionLValue:
3835    case SK_QualificationConversionXValue:
3836    case SK_QualificationConversionRValue: {
3837      // Perform a qualification conversion; these can never go wrong.
3838      ExprValueKind VK =
3839          Step->Kind == SK_QualificationConversionLValue ?
3840              VK_LValue :
3841              (Step->Kind == SK_QualificationConversionXValue ?
3842                   VK_XValue :
3843                   VK_RValue);
3844      S.ImpCastExprToType(CurInitExpr, Step->Type, CK_NoOp, VK);
3845      CurInit.release();
3846      CurInit = S.Owned(CurInitExpr);
3847      break;
3848    }
3849
3850    case SK_ConversionSequence: {
3851      if (S.PerformImplicitConversion(CurInitExpr, Step->Type, *Step->ICS,
3852                                      getAssignmentAction(Entity),
3853                                      Kind.isCStyleOrFunctionalCast()))
3854        return ExprError();
3855
3856      CurInit.release();
3857      CurInit = S.Owned(CurInitExpr);
3858      break;
3859    }
3860
3861    case SK_ListInitialization: {
3862      InitListExpr *InitList = cast<InitListExpr>(CurInitExpr);
3863      QualType Ty = Step->Type;
3864      if (S.CheckInitList(Entity, InitList, ResultType? *ResultType : Ty))
3865        return ExprError();
3866
3867      CurInit.release();
3868      CurInit = S.Owned(InitList);
3869      break;
3870    }
3871
3872    case SK_ConstructorInitialization: {
3873      unsigned NumArgs = Args.size();
3874      CXXConstructorDecl *Constructor
3875        = cast<CXXConstructorDecl>(Step->Function.Function);
3876
3877      // Build a call to the selected constructor.
3878      ASTOwningVector<Expr*> ConstructorArgs(S);
3879      SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
3880                             ? Kind.getEqualLoc()
3881                             : Kind.getLocation();
3882
3883      if (Kind.getKind() == InitializationKind::IK_Default) {
3884        // Force even a trivial, implicit default constructor to be
3885        // semantically checked. We do this explicitly because we don't build
3886        // the definition for completely trivial constructors.
3887        CXXRecordDecl *ClassDecl = Constructor->getParent();
3888        assert(ClassDecl && "No parent class for constructor.");
3889        if (Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3890            ClassDecl->hasTrivialConstructor() && !Constructor->isUsed(false))
3891          S.DefineImplicitDefaultConstructor(Loc, Constructor);
3892      }
3893
3894      // Determine the arguments required to actually perform the constructor
3895      // call.
3896      if (S.CompleteConstructorCall(Constructor, move(Args),
3897                                    Loc, ConstructorArgs))
3898        return ExprError();
3899
3900
3901      if (Entity.getKind() == InitializedEntity::EK_Temporary &&
3902          NumArgs != 1 && // FIXME: Hack to work around cast weirdness
3903          (Kind.getKind() == InitializationKind::IK_Direct ||
3904           Kind.getKind() == InitializationKind::IK_Value)) {
3905        // An explicitly-constructed temporary, e.g., X(1, 2).
3906        unsigned NumExprs = ConstructorArgs.size();
3907        Expr **Exprs = (Expr **)ConstructorArgs.take();
3908        S.MarkDeclarationReferenced(Loc, Constructor);
3909        S.DiagnoseUseOfDecl(Constructor, Loc);
3910
3911        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
3912        if (!TSInfo)
3913          TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
3914
3915        CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
3916                                                                 Constructor,
3917                                                                 TSInfo,
3918                                                                 Exprs,
3919                                                                 NumExprs,
3920                                                         Kind.getParenRange(),
3921                                             ConstructorInitRequiresZeroInit));
3922      } else {
3923        CXXConstructExpr::ConstructionKind ConstructKind =
3924          CXXConstructExpr::CK_Complete;
3925
3926        if (Entity.getKind() == InitializedEntity::EK_Base) {
3927          ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
3928            CXXConstructExpr::CK_VirtualBase :
3929            CXXConstructExpr::CK_NonVirtualBase;
3930        }
3931
3932        // Only get the parenthesis range if it is a direct construction.
3933        SourceRange parenRange =
3934            Kind.getKind() == InitializationKind::IK_Direct ?
3935            Kind.getParenRange() : SourceRange();
3936
3937        // If the entity allows NRVO, mark the construction as elidable
3938        // unconditionally.
3939        if (Entity.allowsNRVO())
3940          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3941                                            Constructor, /*Elidable=*/true,
3942                                            move_arg(ConstructorArgs),
3943                                            ConstructorInitRequiresZeroInit,
3944                                            ConstructKind,
3945                                            parenRange);
3946        else
3947          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3948                                            Constructor,
3949                                            move_arg(ConstructorArgs),
3950                                            ConstructorInitRequiresZeroInit,
3951                                            ConstructKind,
3952                                            parenRange);
3953      }
3954      if (CurInit.isInvalid())
3955        return ExprError();
3956
3957      // Only check access if all of that succeeded.
3958      S.CheckConstructorAccess(Loc, Constructor, Entity,
3959                               Step->Function.FoundDecl.getAccess());
3960      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Loc);
3961
3962      if (shouldBindAsTemporary(Entity))
3963        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3964
3965      break;
3966    }
3967
3968    case SK_ZeroInitialization: {
3969      step_iterator NextStep = Step;
3970      ++NextStep;
3971      if (NextStep != StepEnd &&
3972          NextStep->Kind == SK_ConstructorInitialization) {
3973        // The need for zero-initialization is recorded directly into
3974        // the call to the object's constructor within the next step.
3975        ConstructorInitRequiresZeroInit = true;
3976      } else if (Kind.getKind() == InitializationKind::IK_Value &&
3977                 S.getLangOptions().CPlusPlus &&
3978                 !Kind.isImplicitValueInit()) {
3979        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
3980        if (!TSInfo)
3981          TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
3982                                                    Kind.getRange().getBegin());
3983
3984        CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
3985                              TSInfo->getType().getNonLValueExprType(S.Context),
3986                                                                 TSInfo,
3987                                                    Kind.getRange().getEnd()));
3988      } else {
3989        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
3990      }
3991      break;
3992    }
3993
3994    case SK_CAssignment: {
3995      QualType SourceType = CurInitExpr->getType();
3996      Sema::AssignConvertType ConvTy =
3997        S.CheckSingleAssignmentConstraints(Step->Type, CurInitExpr);
3998
3999      // If this is a call, allow conversion to a transparent union.
4000      if (ConvTy != Sema::Compatible &&
4001          Entity.getKind() == InitializedEntity::EK_Parameter &&
4002          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExpr)
4003            == Sema::Compatible)
4004        ConvTy = Sema::Compatible;
4005
4006      bool Complained;
4007      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
4008                                     Step->Type, SourceType,
4009                                     CurInitExpr,
4010                                     getAssignmentAction(Entity),
4011                                     &Complained)) {
4012        PrintInitLocationNote(S, Entity);
4013        return ExprError();
4014      } else if (Complained)
4015        PrintInitLocationNote(S, Entity);
4016
4017      CurInit.release();
4018      CurInit = S.Owned(CurInitExpr);
4019      break;
4020    }
4021
4022    case SK_StringInit: {
4023      QualType Ty = Step->Type;
4024      CheckStringInit(CurInitExpr, ResultType ? *ResultType : Ty, S);
4025      break;
4026    }
4027
4028    case SK_ObjCObjectConversion:
4029      S.ImpCastExprToType(CurInitExpr, Step->Type,
4030                          CK_ObjCObjectLValueCast,
4031                          S.CastCategory(CurInitExpr));
4032      CurInit.release();
4033      CurInit = S.Owned(CurInitExpr);
4034      break;
4035    }
4036  }
4037
4038  // Diagnose non-fatal problems with the completed initialization.
4039  if (Entity.getKind() == InitializedEntity::EK_Member &&
4040      cast<FieldDecl>(Entity.getDecl())->isBitField())
4041    S.CheckBitFieldInitialization(Kind.getLocation(),
4042                                  cast<FieldDecl>(Entity.getDecl()),
4043                                  CurInit.get());
4044
4045  return move(CurInit);
4046}
4047
4048//===----------------------------------------------------------------------===//
4049// Diagnose initialization failures
4050//===----------------------------------------------------------------------===//
4051bool InitializationSequence::Diagnose(Sema &S,
4052                                      const InitializedEntity &Entity,
4053                                      const InitializationKind &Kind,
4054                                      Expr **Args, unsigned NumArgs) {
4055  if (SequenceKind != FailedSequence)
4056    return false;
4057
4058  QualType DestType = Entity.getType();
4059  switch (Failure) {
4060  case FK_TooManyInitsForReference:
4061    // FIXME: Customize for the initialized entity?
4062    if (NumArgs == 0)
4063      S.Diag(Kind.getLocation(), diag::err_reference_without_init)
4064        << DestType.getNonReferenceType();
4065    else  // FIXME: diagnostic below could be better!
4066      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
4067        << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
4068    break;
4069
4070  case FK_ArrayNeedsInitList:
4071  case FK_ArrayNeedsInitListOrStringLiteral:
4072    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
4073      << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
4074    break;
4075
4076  case FK_AddressOfOverloadFailed: {
4077    DeclAccessPair Found;
4078    S.ResolveAddressOfOverloadedFunction(Args[0],
4079                                         DestType.getNonReferenceType(),
4080                                         true,
4081                                         Found);
4082    break;
4083  }
4084
4085  case FK_ReferenceInitOverloadFailed:
4086  case FK_UserConversionOverloadFailed:
4087    switch (FailedOverloadResult) {
4088    case OR_Ambiguous:
4089      if (Failure == FK_UserConversionOverloadFailed)
4090        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
4091          << Args[0]->getType() << DestType
4092          << Args[0]->getSourceRange();
4093      else
4094        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
4095          << DestType << Args[0]->getType()
4096          << Args[0]->getSourceRange();
4097
4098      FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args, NumArgs);
4099      break;
4100
4101    case OR_No_Viable_Function:
4102      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
4103        << Args[0]->getType() << DestType.getNonReferenceType()
4104        << Args[0]->getSourceRange();
4105      FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
4106      break;
4107
4108    case OR_Deleted: {
4109      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
4110        << Args[0]->getType() << DestType.getNonReferenceType()
4111        << Args[0]->getSourceRange();
4112      OverloadCandidateSet::iterator Best;
4113      OverloadingResult Ovl
4114        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
4115                                                true);
4116      if (Ovl == OR_Deleted) {
4117        S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4118          << Best->Function->isDeleted();
4119      } else {
4120        llvm_unreachable("Inconsistent overload resolution?");
4121      }
4122      break;
4123    }
4124
4125    case OR_Success:
4126      llvm_unreachable("Conversion did not fail!");
4127      break;
4128    }
4129    break;
4130
4131  case FK_NonConstLValueReferenceBindingToTemporary:
4132  case FK_NonConstLValueReferenceBindingToUnrelated:
4133    S.Diag(Kind.getLocation(),
4134           Failure == FK_NonConstLValueReferenceBindingToTemporary
4135             ? diag::err_lvalue_reference_bind_to_temporary
4136             : diag::err_lvalue_reference_bind_to_unrelated)
4137      << DestType.getNonReferenceType().isVolatileQualified()
4138      << DestType.getNonReferenceType()
4139      << Args[0]->getType()
4140      << Args[0]->getSourceRange();
4141    break;
4142
4143  case FK_RValueReferenceBindingToLValue:
4144    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
4145      << DestType.getNonReferenceType() << Args[0]->getType()
4146      << Args[0]->getSourceRange();
4147    break;
4148
4149  case FK_ReferenceInitDropsQualifiers:
4150    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
4151      << DestType.getNonReferenceType()
4152      << Args[0]->getType()
4153      << Args[0]->getSourceRange();
4154    break;
4155
4156  case FK_ReferenceInitFailed:
4157    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
4158      << DestType.getNonReferenceType()
4159      << Args[0]->isLValue()
4160      << Args[0]->getType()
4161      << Args[0]->getSourceRange();
4162    break;
4163
4164  case FK_ConversionFailed:
4165    S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
4166      << (int)Entity.getKind()
4167      << DestType
4168      << Args[0]->isLValue()
4169      << Args[0]->getType()
4170      << Args[0]->getSourceRange();
4171    break;
4172
4173  case FK_TooManyInitsForScalar: {
4174    SourceRange R;
4175
4176    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
4177      R = SourceRange(InitList->getInit(0)->getLocEnd(),
4178                      InitList->getLocEnd());
4179    else
4180      R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
4181
4182    R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
4183    if (Kind.isCStyleOrFunctionalCast())
4184      S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
4185        << R;
4186    else
4187      S.Diag(Kind.getLocation(), diag::err_excess_initializers)
4188        << /*scalar=*/2 << R;
4189    break;
4190  }
4191
4192  case FK_ReferenceBindingToInitList:
4193    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
4194      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
4195    break;
4196
4197  case FK_InitListBadDestinationType:
4198    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
4199      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
4200    break;
4201
4202  case FK_ConstructorOverloadFailed: {
4203    SourceRange ArgsRange;
4204    if (NumArgs)
4205      ArgsRange = SourceRange(Args[0]->getLocStart(),
4206                              Args[NumArgs - 1]->getLocEnd());
4207
4208    // FIXME: Using "DestType" for the entity we're printing is probably
4209    // bad.
4210    switch (FailedOverloadResult) {
4211      case OR_Ambiguous:
4212        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
4213          << DestType << ArgsRange;
4214        FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
4215                                          Args, NumArgs);
4216        break;
4217
4218      case OR_No_Viable_Function:
4219        if (Kind.getKind() == InitializationKind::IK_Default &&
4220            (Entity.getKind() == InitializedEntity::EK_Base ||
4221             Entity.getKind() == InitializedEntity::EK_Member) &&
4222            isa<CXXConstructorDecl>(S.CurContext)) {
4223          // This is implicit default initialization of a member or
4224          // base within a constructor. If no viable function was
4225          // found, notify the user that she needs to explicitly
4226          // initialize this base/member.
4227          CXXConstructorDecl *Constructor
4228            = cast<CXXConstructorDecl>(S.CurContext);
4229          if (Entity.getKind() == InitializedEntity::EK_Base) {
4230            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4231              << Constructor->isImplicit()
4232              << S.Context.getTypeDeclType(Constructor->getParent())
4233              << /*base=*/0
4234              << Entity.getType();
4235
4236            RecordDecl *BaseDecl
4237              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
4238                                                                  ->getDecl();
4239            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
4240              << S.Context.getTagDeclType(BaseDecl);
4241          } else {
4242            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4243              << Constructor->isImplicit()
4244              << S.Context.getTypeDeclType(Constructor->getParent())
4245              << /*member=*/1
4246              << Entity.getName();
4247            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
4248
4249            if (const RecordType *Record
4250                                 = Entity.getType()->getAs<RecordType>())
4251              S.Diag(Record->getDecl()->getLocation(),
4252                     diag::note_previous_decl)
4253                << S.Context.getTagDeclType(Record->getDecl());
4254          }
4255          break;
4256        }
4257
4258        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
4259          << DestType << ArgsRange;
4260        FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
4261        break;
4262
4263      case OR_Deleted: {
4264        S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
4265          << true << DestType << ArgsRange;
4266        OverloadCandidateSet::iterator Best;
4267        OverloadingResult Ovl
4268          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
4269        if (Ovl == OR_Deleted) {
4270          S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4271            << Best->Function->isDeleted();
4272        } else {
4273          llvm_unreachable("Inconsistent overload resolution?");
4274        }
4275        break;
4276      }
4277
4278      case OR_Success:
4279        llvm_unreachable("Conversion did not fail!");
4280        break;
4281    }
4282    break;
4283  }
4284
4285  case FK_DefaultInitOfConst:
4286    if (Entity.getKind() == InitializedEntity::EK_Member &&
4287        isa<CXXConstructorDecl>(S.CurContext)) {
4288      // This is implicit default-initialization of a const member in
4289      // a constructor. Complain that it needs to be explicitly
4290      // initialized.
4291      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
4292      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
4293        << Constructor->isImplicit()
4294        << S.Context.getTypeDeclType(Constructor->getParent())
4295        << /*const=*/1
4296        << Entity.getName();
4297      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
4298        << Entity.getName();
4299    } else {
4300      S.Diag(Kind.getLocation(), diag::err_default_init_const)
4301        << DestType << (bool)DestType->getAs<RecordType>();
4302    }
4303    break;
4304
4305    case FK_Incomplete:
4306      S.RequireCompleteType(Kind.getLocation(), DestType,
4307                            diag::err_init_incomplete_type);
4308      break;
4309  }
4310
4311  PrintInitLocationNote(S, Entity);
4312  return true;
4313}
4314
4315void InitializationSequence::dump(llvm::raw_ostream &OS) const {
4316  switch (SequenceKind) {
4317  case FailedSequence: {
4318    OS << "Failed sequence: ";
4319    switch (Failure) {
4320    case FK_TooManyInitsForReference:
4321      OS << "too many initializers for reference";
4322      break;
4323
4324    case FK_ArrayNeedsInitList:
4325      OS << "array requires initializer list";
4326      break;
4327
4328    case FK_ArrayNeedsInitListOrStringLiteral:
4329      OS << "array requires initializer list or string literal";
4330      break;
4331
4332    case FK_AddressOfOverloadFailed:
4333      OS << "address of overloaded function failed";
4334      break;
4335
4336    case FK_ReferenceInitOverloadFailed:
4337      OS << "overload resolution for reference initialization failed";
4338      break;
4339
4340    case FK_NonConstLValueReferenceBindingToTemporary:
4341      OS << "non-const lvalue reference bound to temporary";
4342      break;
4343
4344    case FK_NonConstLValueReferenceBindingToUnrelated:
4345      OS << "non-const lvalue reference bound to unrelated type";
4346      break;
4347
4348    case FK_RValueReferenceBindingToLValue:
4349      OS << "rvalue reference bound to an lvalue";
4350      break;
4351
4352    case FK_ReferenceInitDropsQualifiers:
4353      OS << "reference initialization drops qualifiers";
4354      break;
4355
4356    case FK_ReferenceInitFailed:
4357      OS << "reference initialization failed";
4358      break;
4359
4360    case FK_ConversionFailed:
4361      OS << "conversion failed";
4362      break;
4363
4364    case FK_TooManyInitsForScalar:
4365      OS << "too many initializers for scalar";
4366      break;
4367
4368    case FK_ReferenceBindingToInitList:
4369      OS << "referencing binding to initializer list";
4370      break;
4371
4372    case FK_InitListBadDestinationType:
4373      OS << "initializer list for non-aggregate, non-scalar type";
4374      break;
4375
4376    case FK_UserConversionOverloadFailed:
4377      OS << "overloading failed for user-defined conversion";
4378      break;
4379
4380    case FK_ConstructorOverloadFailed:
4381      OS << "constructor overloading failed";
4382      break;
4383
4384    case FK_DefaultInitOfConst:
4385      OS << "default initialization of a const variable";
4386      break;
4387
4388    case FK_Incomplete:
4389      OS << "initialization of incomplete type";
4390      break;
4391    }
4392    OS << '\n';
4393    return;
4394  }
4395
4396  case DependentSequence:
4397    OS << "Dependent sequence: ";
4398    return;
4399
4400  case UserDefinedConversion:
4401    OS << "User-defined conversion sequence: ";
4402    break;
4403
4404  case ConstructorInitialization:
4405    OS << "Constructor initialization sequence: ";
4406    break;
4407
4408  case ReferenceBinding:
4409    OS << "Reference binding: ";
4410    break;
4411
4412  case ListInitialization:
4413    OS << "List initialization: ";
4414    break;
4415
4416  case ZeroInitialization:
4417    OS << "Zero initialization\n";
4418    return;
4419
4420  case NoInitialization:
4421    OS << "No initialization\n";
4422    return;
4423
4424  case StandardConversion:
4425    OS << "Standard conversion: ";
4426    break;
4427
4428  case CAssignment:
4429    OS << "C assignment: ";
4430    break;
4431
4432  case StringInit:
4433    OS << "String initialization: ";
4434    break;
4435  }
4436
4437  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
4438    if (S != step_begin()) {
4439      OS << " -> ";
4440    }
4441
4442    switch (S->Kind) {
4443    case SK_ResolveAddressOfOverloadedFunction:
4444      OS << "resolve address of overloaded function";
4445      break;
4446
4447    case SK_CastDerivedToBaseRValue:
4448      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
4449      break;
4450
4451    case SK_CastDerivedToBaseXValue:
4452      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
4453      break;
4454
4455    case SK_CastDerivedToBaseLValue:
4456      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
4457      break;
4458
4459    case SK_BindReference:
4460      OS << "bind reference to lvalue";
4461      break;
4462
4463    case SK_BindReferenceToTemporary:
4464      OS << "bind reference to a temporary";
4465      break;
4466
4467    case SK_ExtraneousCopyToTemporary:
4468      OS << "extraneous C++03 copy to temporary";
4469      break;
4470
4471    case SK_UserConversion:
4472      OS << "user-defined conversion via " << S->Function.Function;
4473      break;
4474
4475    case SK_QualificationConversionRValue:
4476      OS << "qualification conversion (rvalue)";
4477
4478    case SK_QualificationConversionXValue:
4479      OS << "qualification conversion (xvalue)";
4480
4481    case SK_QualificationConversionLValue:
4482      OS << "qualification conversion (lvalue)";
4483      break;
4484
4485    case SK_ConversionSequence:
4486      OS << "implicit conversion sequence (";
4487      S->ICS->DebugPrint(); // FIXME: use OS
4488      OS << ")";
4489      break;
4490
4491    case SK_ListInitialization:
4492      OS << "list initialization";
4493      break;
4494
4495    case SK_ConstructorInitialization:
4496      OS << "constructor initialization";
4497      break;
4498
4499    case SK_ZeroInitialization:
4500      OS << "zero initialization";
4501      break;
4502
4503    case SK_CAssignment:
4504      OS << "C assignment";
4505      break;
4506
4507    case SK_StringInit:
4508      OS << "string initialization";
4509      break;
4510
4511    case SK_ObjCObjectConversion:
4512      OS << "Objective-C object conversion";
4513      break;
4514    }
4515  }
4516}
4517
4518void InitializationSequence::dump() const {
4519  dump(llvm::errs());
4520}
4521
4522//===----------------------------------------------------------------------===//
4523// Initialization helper functions
4524//===----------------------------------------------------------------------===//
4525ExprResult
4526Sema::PerformCopyInitialization(const InitializedEntity &Entity,
4527                                SourceLocation EqualLoc,
4528                                ExprResult Init) {
4529  if (Init.isInvalid())
4530    return ExprError();
4531
4532  Expr *InitE = Init.get();
4533  assert(InitE && "No initialization expression?");
4534
4535  if (EqualLoc.isInvalid())
4536    EqualLoc = InitE->getLocStart();
4537
4538  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
4539                                                           EqualLoc);
4540  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
4541  Init.release();
4542  return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
4543}
4544