SemaInit.cpp revision 7530c034c0c71a64c5a9173206d9742ae847af8b
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Designator.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include "clang/AST/TypeLoc.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/raw_ostream.h"
26#include <map>
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30// Sema Initialization Checking
31//===----------------------------------------------------------------------===//
32
33static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
34                          ASTContext &Context) {
35  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
36    return 0;
37
38  // See if this is a string literal or @encode.
39  Init = Init->IgnoreParens();
40
41  // Handle @encode, which is a narrow string.
42  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
43    return Init;
44
45  // Otherwise we can only handle string literals.
46  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
47  if (SL == 0) return 0;
48
49  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
50
51  switch (SL->getKind()) {
52  case StringLiteral::Ascii:
53  case StringLiteral::UTF8:
54    // char array can be initialized with a narrow string.
55    // Only allow char x[] = "foo";  not char x[] = L"foo";
56    return ElemTy->isCharType() ? Init : 0;
57  case StringLiteral::UTF16:
58    return ElemTy->isChar16Type() ? Init : 0;
59  case StringLiteral::UTF32:
60    return ElemTy->isChar32Type() ? Init : 0;
61  case StringLiteral::Wide:
62    // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
63    // correction from DR343): "An array with element type compatible with a
64    // qualified or unqualified version of wchar_t may be initialized by a wide
65    // string literal, optionally enclosed in braces."
66    if (Context.typesAreCompatible(Context.getWCharType(),
67                                   ElemTy.getUnqualifiedType()))
68      return Init;
69
70    return 0;
71  }
72
73  llvm_unreachable("missed a StringLiteral kind?");
74}
75
76static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
77  const ArrayType *arrayType = Context.getAsArrayType(declType);
78  if (!arrayType) return 0;
79
80  return IsStringInit(init, arrayType, Context);
81}
82
83static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
84                            Sema &S) {
85  // Get the length of the string as parsed.
86  uint64_t StrLength =
87    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
88
89
90  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
91    // C99 6.7.8p14. We have an array of character type with unknown size
92    // being initialized to a string literal.
93    llvm::APSInt ConstVal(32);
94    ConstVal = StrLength;
95    // Return a new array type (C99 6.7.8p22).
96    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
97                                           ConstVal,
98                                           ArrayType::Normal, 0);
99    return;
100  }
101
102  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
103
104  // We have an array of character type with known size.  However,
105  // the size may be smaller or larger than the string we are initializing.
106  // FIXME: Avoid truncation for 64-bit length strings.
107  if (S.getLangOptions().CPlusPlus) {
108    if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
109      // For Pascal strings it's OK to strip off the terminating null character,
110      // so the example below is valid:
111      //
112      // unsigned char a[2] = "\pa";
113      if (SL->isPascal())
114        StrLength--;
115    }
116
117    // [dcl.init.string]p2
118    if (StrLength > CAT->getSize().getZExtValue())
119      S.Diag(Str->getSourceRange().getBegin(),
120             diag::err_initializer_string_for_char_array_too_long)
121        << Str->getSourceRange();
122  } else {
123    // C99 6.7.8p14.
124    if (StrLength-1 > CAT->getSize().getZExtValue())
125      S.Diag(Str->getSourceRange().getBegin(),
126             diag::warn_initializer_string_for_char_array_too_long)
127        << Str->getSourceRange();
128  }
129
130  // Set the type to the actual size that we are initializing.  If we have
131  // something like:
132  //   char x[1] = "foo";
133  // then this will set the string literal's type to char[1].
134  Str->setType(DeclT);
135}
136
137//===----------------------------------------------------------------------===//
138// Semantic checking for initializer lists.
139//===----------------------------------------------------------------------===//
140
141/// @brief Semantic checking for initializer lists.
142///
143/// The InitListChecker class contains a set of routines that each
144/// handle the initialization of a certain kind of entity, e.g.,
145/// arrays, vectors, struct/union types, scalars, etc. The
146/// InitListChecker itself performs a recursive walk of the subobject
147/// structure of the type to be initialized, while stepping through
148/// the initializer list one element at a time. The IList and Index
149/// parameters to each of the Check* routines contain the active
150/// (syntactic) initializer list and the index into that initializer
151/// list that represents the current initializer. Each routine is
152/// responsible for moving that Index forward as it consumes elements.
153///
154/// Each Check* routine also has a StructuredList/StructuredIndex
155/// arguments, which contains the current "structured" (semantic)
156/// initializer list and the index into that initializer list where we
157/// are copying initializers as we map them over to the semantic
158/// list. Once we have completed our recursive walk of the subobject
159/// structure, we will have constructed a full semantic initializer
160/// list.
161///
162/// C99 designators cause changes in the initializer list traversal,
163/// because they make the initialization "jump" into a specific
164/// subobject and then continue the initialization from that
165/// point. CheckDesignatedInitializer() recursively steps into the
166/// designated subobject and manages backing out the recursion to
167/// initialize the subobjects after the one designated.
168namespace {
169class InitListChecker {
170  Sema &SemaRef;
171  bool hadError;
172  bool VerifyOnly; // no diagnostics, no structure building
173  bool AllowBraceElision;
174  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
175  InitListExpr *FullyStructuredList;
176
177  void CheckImplicitInitList(const InitializedEntity &Entity,
178                             InitListExpr *ParentIList, QualType T,
179                             unsigned &Index, InitListExpr *StructuredList,
180                             unsigned &StructuredIndex);
181  void CheckExplicitInitList(const InitializedEntity &Entity,
182                             InitListExpr *IList, QualType &T,
183                             unsigned &Index, InitListExpr *StructuredList,
184                             unsigned &StructuredIndex,
185                             bool TopLevelObject = false);
186  void CheckListElementTypes(const InitializedEntity &Entity,
187                             InitListExpr *IList, QualType &DeclType,
188                             bool SubobjectIsDesignatorContext,
189                             unsigned &Index,
190                             InitListExpr *StructuredList,
191                             unsigned &StructuredIndex,
192                             bool TopLevelObject = false);
193  void CheckSubElementType(const InitializedEntity &Entity,
194                           InitListExpr *IList, QualType ElemType,
195                           unsigned &Index,
196                           InitListExpr *StructuredList,
197                           unsigned &StructuredIndex);
198  void CheckComplexType(const InitializedEntity &Entity,
199                        InitListExpr *IList, QualType DeclType,
200                        unsigned &Index,
201                        InitListExpr *StructuredList,
202                        unsigned &StructuredIndex);
203  void CheckScalarType(const InitializedEntity &Entity,
204                       InitListExpr *IList, QualType DeclType,
205                       unsigned &Index,
206                       InitListExpr *StructuredList,
207                       unsigned &StructuredIndex);
208  void CheckReferenceType(const InitializedEntity &Entity,
209                          InitListExpr *IList, QualType DeclType,
210                          unsigned &Index,
211                          InitListExpr *StructuredList,
212                          unsigned &StructuredIndex);
213  void CheckVectorType(const InitializedEntity &Entity,
214                       InitListExpr *IList, QualType DeclType, unsigned &Index,
215                       InitListExpr *StructuredList,
216                       unsigned &StructuredIndex);
217  void CheckStructUnionTypes(const InitializedEntity &Entity,
218                             InitListExpr *IList, QualType DeclType,
219                             RecordDecl::field_iterator Field,
220                             bool SubobjectIsDesignatorContext, unsigned &Index,
221                             InitListExpr *StructuredList,
222                             unsigned &StructuredIndex,
223                             bool TopLevelObject = false);
224  void CheckArrayType(const InitializedEntity &Entity,
225                      InitListExpr *IList, QualType &DeclType,
226                      llvm::APSInt elementIndex,
227                      bool SubobjectIsDesignatorContext, unsigned &Index,
228                      InitListExpr *StructuredList,
229                      unsigned &StructuredIndex);
230  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
231                                  InitListExpr *IList, DesignatedInitExpr *DIE,
232                                  unsigned DesigIdx,
233                                  QualType &CurrentObjectType,
234                                  RecordDecl::field_iterator *NextField,
235                                  llvm::APSInt *NextElementIndex,
236                                  unsigned &Index,
237                                  InitListExpr *StructuredList,
238                                  unsigned &StructuredIndex,
239                                  bool FinishSubobjectInit,
240                                  bool TopLevelObject);
241  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
242                                           QualType CurrentObjectType,
243                                           InitListExpr *StructuredList,
244                                           unsigned StructuredIndex,
245                                           SourceRange InitRange);
246  void UpdateStructuredListElement(InitListExpr *StructuredList,
247                                   unsigned &StructuredIndex,
248                                   Expr *expr);
249  int numArrayElements(QualType DeclType);
250  int numStructUnionElements(QualType DeclType);
251
252  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
253                               const InitializedEntity &ParentEntity,
254                               InitListExpr *ILE, bool &RequiresSecondPass);
255  void FillInValueInitializations(const InitializedEntity &Entity,
256                                  InitListExpr *ILE, bool &RequiresSecondPass);
257  bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
258                              Expr *InitExpr, FieldDecl *Field,
259                              bool TopLevelObject);
260  void CheckValueInitializable(const InitializedEntity &Entity);
261
262public:
263  InitListChecker(Sema &S, const InitializedEntity &Entity,
264                  InitListExpr *IL, QualType &T, bool VerifyOnly,
265                  bool AllowBraceElision);
266  bool HadError() { return hadError; }
267
268  // @brief Retrieves the fully-structured initializer list used for
269  // semantic analysis and code generation.
270  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
271};
272} // end anonymous namespace
273
274void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
275  assert(VerifyOnly &&
276         "CheckValueInitializable is only inteded for verification mode.");
277
278  SourceLocation Loc;
279  InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
280                                                            true);
281  InitializationSequence InitSeq(SemaRef, Entity, Kind, 0, 0);
282  if (InitSeq.Failed())
283    hadError = true;
284}
285
286void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
287                                        const InitializedEntity &ParentEntity,
288                                              InitListExpr *ILE,
289                                              bool &RequiresSecondPass) {
290  SourceLocation Loc = ILE->getSourceRange().getBegin();
291  unsigned NumInits = ILE->getNumInits();
292  InitializedEntity MemberEntity
293    = InitializedEntity::InitializeMember(Field, &ParentEntity);
294  if (Init >= NumInits || !ILE->getInit(Init)) {
295    // FIXME: We probably don't need to handle references
296    // specially here, since value-initialization of references is
297    // handled in InitializationSequence.
298    if (Field->getType()->isReferenceType()) {
299      // C++ [dcl.init.aggr]p9:
300      //   If an incomplete or empty initializer-list leaves a
301      //   member of reference type uninitialized, the program is
302      //   ill-formed.
303      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
304        << Field->getType()
305        << ILE->getSyntacticForm()->getSourceRange();
306      SemaRef.Diag(Field->getLocation(),
307                   diag::note_uninit_reference_member);
308      hadError = true;
309      return;
310    }
311
312    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
313                                                              true);
314    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
315    if (!InitSeq) {
316      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
317      hadError = true;
318      return;
319    }
320
321    ExprResult MemberInit
322      = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
323    if (MemberInit.isInvalid()) {
324      hadError = true;
325      return;
326    }
327
328    if (hadError) {
329      // Do nothing
330    } else if (Init < NumInits) {
331      ILE->setInit(Init, MemberInit.takeAs<Expr>());
332    } else if (InitSeq.isConstructorInitialization()) {
333      // Value-initialization requires a constructor call, so
334      // extend the initializer list to include the constructor
335      // call and make a note that we'll need to take another pass
336      // through the initializer list.
337      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
338      RequiresSecondPass = true;
339    }
340  } else if (InitListExpr *InnerILE
341               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
342    FillInValueInitializations(MemberEntity, InnerILE,
343                               RequiresSecondPass);
344}
345
346/// Recursively replaces NULL values within the given initializer list
347/// with expressions that perform value-initialization of the
348/// appropriate type.
349void
350InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
351                                            InitListExpr *ILE,
352                                            bool &RequiresSecondPass) {
353  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
354         "Should not have void type");
355  SourceLocation Loc = ILE->getSourceRange().getBegin();
356  if (ILE->getSyntacticForm())
357    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
358
359  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
360    if (RType->getDecl()->isUnion() &&
361        ILE->getInitializedFieldInUnion())
362      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
363                              Entity, ILE, RequiresSecondPass);
364    else {
365      unsigned Init = 0;
366      for (RecordDecl::field_iterator
367             Field = RType->getDecl()->field_begin(),
368             FieldEnd = RType->getDecl()->field_end();
369           Field != FieldEnd; ++Field) {
370        if (Field->isUnnamedBitfield())
371          continue;
372
373        if (hadError)
374          return;
375
376        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
377        if (hadError)
378          return;
379
380        ++Init;
381
382        // Only look at the first initialization of a union.
383        if (RType->getDecl()->isUnion())
384          break;
385      }
386    }
387
388    return;
389  }
390
391  QualType ElementType;
392
393  InitializedEntity ElementEntity = Entity;
394  unsigned NumInits = ILE->getNumInits();
395  unsigned NumElements = NumInits;
396  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
397    ElementType = AType->getElementType();
398    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
399      NumElements = CAType->getSize().getZExtValue();
400    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
401                                                         0, Entity);
402  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
403    ElementType = VType->getElementType();
404    NumElements = VType->getNumElements();
405    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
406                                                         0, Entity);
407  } else
408    ElementType = ILE->getType();
409
410
411  for (unsigned Init = 0; Init != NumElements; ++Init) {
412    if (hadError)
413      return;
414
415    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
416        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
417      ElementEntity.setElementIndex(Init);
418
419    Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
420    if (!InitExpr && !ILE->hasArrayFiller()) {
421      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
422                                                                true);
423      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
424      if (!InitSeq) {
425        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
426        hadError = true;
427        return;
428      }
429
430      ExprResult ElementInit
431        = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
432      if (ElementInit.isInvalid()) {
433        hadError = true;
434        return;
435      }
436
437      if (hadError) {
438        // Do nothing
439      } else if (Init < NumInits) {
440        // For arrays, just set the expression used for value-initialization
441        // of the "holes" in the array.
442        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
443          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
444        else
445          ILE->setInit(Init, ElementInit.takeAs<Expr>());
446      } else {
447        // For arrays, just set the expression used for value-initialization
448        // of the rest of elements and exit.
449        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
450          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
451          return;
452        }
453
454        if (InitSeq.isConstructorInitialization()) {
455          // Value-initialization requires a constructor call, so
456          // extend the initializer list to include the constructor
457          // call and make a note that we'll need to take another pass
458          // through the initializer list.
459          ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
460          RequiresSecondPass = true;
461        }
462      }
463    } else if (InitListExpr *InnerILE
464                 = dyn_cast_or_null<InitListExpr>(InitExpr))
465      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
466  }
467}
468
469
470InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
471                                 InitListExpr *IL, QualType &T,
472                                 bool VerifyOnly, bool AllowBraceElision)
473  : SemaRef(S), VerifyOnly(VerifyOnly), AllowBraceElision(AllowBraceElision) {
474  hadError = false;
475
476  unsigned newIndex = 0;
477  unsigned newStructuredIndex = 0;
478  FullyStructuredList
479    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
480  CheckExplicitInitList(Entity, IL, T, newIndex,
481                        FullyStructuredList, newStructuredIndex,
482                        /*TopLevelObject=*/true);
483
484  if (!hadError && !VerifyOnly) {
485    bool RequiresSecondPass = false;
486    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
487    if (RequiresSecondPass && !hadError)
488      FillInValueInitializations(Entity, FullyStructuredList,
489                                 RequiresSecondPass);
490  }
491}
492
493int InitListChecker::numArrayElements(QualType DeclType) {
494  // FIXME: use a proper constant
495  int maxElements = 0x7FFFFFFF;
496  if (const ConstantArrayType *CAT =
497        SemaRef.Context.getAsConstantArrayType(DeclType)) {
498    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
499  }
500  return maxElements;
501}
502
503int InitListChecker::numStructUnionElements(QualType DeclType) {
504  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
505  int InitializableMembers = 0;
506  for (RecordDecl::field_iterator
507         Field = structDecl->field_begin(),
508         FieldEnd = structDecl->field_end();
509       Field != FieldEnd; ++Field) {
510    if (!Field->isUnnamedBitfield())
511      ++InitializableMembers;
512  }
513  if (structDecl->isUnion())
514    return std::min(InitializableMembers, 1);
515  return InitializableMembers - structDecl->hasFlexibleArrayMember();
516}
517
518void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
519                                            InitListExpr *ParentIList,
520                                            QualType T, unsigned &Index,
521                                            InitListExpr *StructuredList,
522                                            unsigned &StructuredIndex) {
523  int maxElements = 0;
524
525  if (T->isArrayType())
526    maxElements = numArrayElements(T);
527  else if (T->isRecordType())
528    maxElements = numStructUnionElements(T);
529  else if (T->isVectorType())
530    maxElements = T->getAs<VectorType>()->getNumElements();
531  else
532    llvm_unreachable("CheckImplicitInitList(): Illegal type");
533
534  if (maxElements == 0) {
535    if (!VerifyOnly)
536      SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
537                   diag::err_implicit_empty_initializer);
538    ++Index;
539    hadError = true;
540    return;
541  }
542
543  // Build a structured initializer list corresponding to this subobject.
544  InitListExpr *StructuredSubobjectInitList
545    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
546                                 StructuredIndex,
547          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
548                      ParentIList->getSourceRange().getEnd()));
549  unsigned StructuredSubobjectInitIndex = 0;
550
551  // Check the element types and build the structural subobject.
552  unsigned StartIndex = Index;
553  CheckListElementTypes(Entity, ParentIList, T,
554                        /*SubobjectIsDesignatorContext=*/false, Index,
555                        StructuredSubobjectInitList,
556                        StructuredSubobjectInitIndex);
557
558  if (VerifyOnly) {
559    if (!AllowBraceElision && (T->isArrayType() || T->isRecordType()))
560      hadError = true;
561  } else {
562    StructuredSubobjectInitList->setType(T);
563
564    unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
565    // Update the structured sub-object initializer so that it's ending
566    // range corresponds with the end of the last initializer it used.
567    if (EndIndex < ParentIList->getNumInits()) {
568      SourceLocation EndLoc
569        = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
570      StructuredSubobjectInitList->setRBraceLoc(EndLoc);
571    }
572
573    // Complain about missing braces.
574    if (T->isArrayType() || T->isRecordType()) {
575      SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
576                    AllowBraceElision ? diag::warn_missing_braces :
577                                        diag::err_missing_braces)
578        << StructuredSubobjectInitList->getSourceRange()
579        << FixItHint::CreateInsertion(
580              StructuredSubobjectInitList->getLocStart(), "{")
581        << FixItHint::CreateInsertion(
582              SemaRef.PP.getLocForEndOfToken(
583                                      StructuredSubobjectInitList->getLocEnd()),
584              "}");
585      if (!AllowBraceElision)
586        hadError = true;
587    }
588  }
589}
590
591void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
592                                            InitListExpr *IList, QualType &T,
593                                            unsigned &Index,
594                                            InitListExpr *StructuredList,
595                                            unsigned &StructuredIndex,
596                                            bool TopLevelObject) {
597  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
598  if (!VerifyOnly) {
599    SyntacticToSemantic[IList] = StructuredList;
600    StructuredList->setSyntacticForm(IList);
601  }
602  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
603                        Index, StructuredList, StructuredIndex, TopLevelObject);
604  if (!VerifyOnly) {
605    QualType ExprTy = T.getNonLValueExprType(SemaRef.Context);
606    IList->setType(ExprTy);
607    StructuredList->setType(ExprTy);
608  }
609  if (hadError)
610    return;
611
612  if (Index < IList->getNumInits()) {
613    // We have leftover initializers
614    if (VerifyOnly) {
615      if (SemaRef.getLangOptions().CPlusPlus ||
616          (SemaRef.getLangOptions().OpenCL &&
617           IList->getType()->isVectorType())) {
618        hadError = true;
619      }
620      return;
621    }
622
623    if (StructuredIndex == 1 &&
624        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
625      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
626      if (SemaRef.getLangOptions().CPlusPlus) {
627        DK = diag::err_excess_initializers_in_char_array_initializer;
628        hadError = true;
629      }
630      // Special-case
631      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
632        << IList->getInit(Index)->getSourceRange();
633    } else if (!T->isIncompleteType()) {
634      // Don't complain for incomplete types, since we'll get an error
635      // elsewhere
636      QualType CurrentObjectType = StructuredList->getType();
637      int initKind =
638        CurrentObjectType->isArrayType()? 0 :
639        CurrentObjectType->isVectorType()? 1 :
640        CurrentObjectType->isScalarType()? 2 :
641        CurrentObjectType->isUnionType()? 3 :
642        4;
643
644      unsigned DK = diag::warn_excess_initializers;
645      if (SemaRef.getLangOptions().CPlusPlus) {
646        DK = diag::err_excess_initializers;
647        hadError = true;
648      }
649      if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
650        DK = diag::err_excess_initializers;
651        hadError = true;
652      }
653
654      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
655        << initKind << IList->getInit(Index)->getSourceRange();
656    }
657  }
658
659  if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
660      !TopLevelObject)
661    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
662      << IList->getSourceRange()
663      << FixItHint::CreateRemoval(IList->getLocStart())
664      << FixItHint::CreateRemoval(IList->getLocEnd());
665}
666
667void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
668                                            InitListExpr *IList,
669                                            QualType &DeclType,
670                                            bool SubobjectIsDesignatorContext,
671                                            unsigned &Index,
672                                            InitListExpr *StructuredList,
673                                            unsigned &StructuredIndex,
674                                            bool TopLevelObject) {
675  if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
676    // Explicitly braced initializer for complex type can be real+imaginary
677    // parts.
678    CheckComplexType(Entity, IList, DeclType, Index,
679                     StructuredList, StructuredIndex);
680  } else if (DeclType->isScalarType()) {
681    CheckScalarType(Entity, IList, DeclType, Index,
682                    StructuredList, StructuredIndex);
683  } else if (DeclType->isVectorType()) {
684    CheckVectorType(Entity, IList, DeclType, Index,
685                    StructuredList, StructuredIndex);
686  } else if (DeclType->isAggregateType()) {
687    if (DeclType->isRecordType()) {
688      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
689      CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
690                            SubobjectIsDesignatorContext, Index,
691                            StructuredList, StructuredIndex,
692                            TopLevelObject);
693    } else if (DeclType->isArrayType()) {
694      llvm::APSInt Zero(
695                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
696                      false);
697      CheckArrayType(Entity, IList, DeclType, Zero,
698                     SubobjectIsDesignatorContext, Index,
699                     StructuredList, StructuredIndex);
700    } else
701      llvm_unreachable("Aggregate that isn't a structure or array?!");
702  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
703    // This type is invalid, issue a diagnostic.
704    ++Index;
705    if (!VerifyOnly)
706      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
707        << DeclType;
708    hadError = true;
709  } else if (DeclType->isRecordType()) {
710    // C++ [dcl.init]p14:
711    //   [...] If the class is an aggregate (8.5.1), and the initializer
712    //   is a brace-enclosed list, see 8.5.1.
713    //
714    // Note: 8.5.1 is handled below; here, we diagnose the case where
715    // we have an initializer list and a destination type that is not
716    // an aggregate.
717    // FIXME: In C++0x, this is yet another form of initialization.
718    if (!VerifyOnly)
719      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
720        << DeclType << IList->getSourceRange();
721    hadError = true;
722  } else if (DeclType->isReferenceType()) {
723    CheckReferenceType(Entity, IList, DeclType, Index,
724                       StructuredList, StructuredIndex);
725  } else if (DeclType->isObjCObjectType()) {
726    if (!VerifyOnly)
727      SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
728        << DeclType;
729    hadError = true;
730  } else {
731    if (!VerifyOnly)
732      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
733        << DeclType;
734    hadError = true;
735  }
736}
737
738void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
739                                          InitListExpr *IList,
740                                          QualType ElemType,
741                                          unsigned &Index,
742                                          InitListExpr *StructuredList,
743                                          unsigned &StructuredIndex) {
744  Expr *expr = IList->getInit(Index);
745  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
746    unsigned newIndex = 0;
747    unsigned newStructuredIndex = 0;
748    InitListExpr *newStructuredList
749      = getStructuredSubobjectInit(IList, Index, ElemType,
750                                   StructuredList, StructuredIndex,
751                                   SubInitList->getSourceRange());
752    CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
753                          newStructuredList, newStructuredIndex);
754    ++StructuredIndex;
755    ++Index;
756    return;
757  } else if (ElemType->isScalarType()) {
758    return CheckScalarType(Entity, IList, ElemType, Index,
759                           StructuredList, StructuredIndex);
760  } else if (ElemType->isReferenceType()) {
761    return CheckReferenceType(Entity, IList, ElemType, Index,
762                              StructuredList, StructuredIndex);
763  }
764
765  if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
766    // arrayType can be incomplete if we're initializing a flexible
767    // array member.  There's nothing we can do with the completed
768    // type here, though.
769
770    if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
771      if (!VerifyOnly) {
772        CheckStringInit(Str, ElemType, arrayType, SemaRef);
773        UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
774      }
775      ++Index;
776      return;
777    }
778
779    // Fall through for subaggregate initialization.
780
781  } else if (SemaRef.getLangOptions().CPlusPlus) {
782    // C++ [dcl.init.aggr]p12:
783    //   All implicit type conversions (clause 4) are considered when
784    //   initializing the aggregate member with an initializer from
785    //   an initializer-list. If the initializer can initialize a
786    //   member, the member is initialized. [...]
787
788    // FIXME: Better EqualLoc?
789    InitializationKind Kind =
790      InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
791    InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
792
793    if (Seq) {
794      if (!VerifyOnly) {
795        ExprResult Result =
796          Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
797        if (Result.isInvalid())
798          hadError = true;
799
800        UpdateStructuredListElement(StructuredList, StructuredIndex,
801                                    Result.takeAs<Expr>());
802      }
803      ++Index;
804      return;
805    }
806
807    // Fall through for subaggregate initialization
808  } else {
809    // C99 6.7.8p13:
810    //
811    //   The initializer for a structure or union object that has
812    //   automatic storage duration shall be either an initializer
813    //   list as described below, or a single expression that has
814    //   compatible structure or union type. In the latter case, the
815    //   initial value of the object, including unnamed members, is
816    //   that of the expression.
817    ExprResult ExprRes = SemaRef.Owned(expr);
818    if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
819        SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
820                                                 !VerifyOnly)
821          == Sema::Compatible) {
822      if (ExprRes.isInvalid())
823        hadError = true;
824      else {
825        ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
826	      if (ExprRes.isInvalid())
827	        hadError = true;
828      }
829      UpdateStructuredListElement(StructuredList, StructuredIndex,
830                                  ExprRes.takeAs<Expr>());
831      ++Index;
832      return;
833    }
834    ExprRes.release();
835    // Fall through for subaggregate initialization
836  }
837
838  // C++ [dcl.init.aggr]p12:
839  //
840  //   [...] Otherwise, if the member is itself a non-empty
841  //   subaggregate, brace elision is assumed and the initializer is
842  //   considered for the initialization of the first member of
843  //   the subaggregate.
844  if (!SemaRef.getLangOptions().OpenCL &&
845      (ElemType->isAggregateType() || ElemType->isVectorType())) {
846    CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
847                          StructuredIndex);
848    ++StructuredIndex;
849  } else {
850    if (!VerifyOnly) {
851      // We cannot initialize this element, so let
852      // PerformCopyInitialization produce the appropriate diagnostic.
853      SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
854                                        SemaRef.Owned(expr),
855                                        /*TopLevelOfInitList=*/true);
856    }
857    hadError = true;
858    ++Index;
859    ++StructuredIndex;
860  }
861}
862
863void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
864                                       InitListExpr *IList, QualType DeclType,
865                                       unsigned &Index,
866                                       InitListExpr *StructuredList,
867                                       unsigned &StructuredIndex) {
868  assert(Index == 0 && "Index in explicit init list must be zero");
869
870  // As an extension, clang supports complex initializers, which initialize
871  // a complex number component-wise.  When an explicit initializer list for
872  // a complex number contains two two initializers, this extension kicks in:
873  // it exepcts the initializer list to contain two elements convertible to
874  // the element type of the complex type. The first element initializes
875  // the real part, and the second element intitializes the imaginary part.
876
877  if (IList->getNumInits() != 2)
878    return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
879                           StructuredIndex);
880
881  // This is an extension in C.  (The builtin _Complex type does not exist
882  // in the C++ standard.)
883  if (!SemaRef.getLangOptions().CPlusPlus && !VerifyOnly)
884    SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
885      << IList->getSourceRange();
886
887  // Initialize the complex number.
888  QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
889  InitializedEntity ElementEntity =
890    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
891
892  for (unsigned i = 0; i < 2; ++i) {
893    ElementEntity.setElementIndex(Index);
894    CheckSubElementType(ElementEntity, IList, elementType, Index,
895                        StructuredList, StructuredIndex);
896  }
897}
898
899
900void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
901                                      InitListExpr *IList, QualType DeclType,
902                                      unsigned &Index,
903                                      InitListExpr *StructuredList,
904                                      unsigned &StructuredIndex) {
905  if (Index >= IList->getNumInits()) {
906    if (!VerifyOnly)
907      SemaRef.Diag(IList->getLocStart(),
908                   SemaRef.getLangOptions().CPlusPlus0x ?
909                     diag::warn_cxx98_compat_empty_scalar_initializer :
910                     diag::err_empty_scalar_initializer)
911        << IList->getSourceRange();
912    hadError = !SemaRef.getLangOptions().CPlusPlus0x;
913    ++Index;
914    ++StructuredIndex;
915    return;
916  }
917
918  Expr *expr = IList->getInit(Index);
919  if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
920    if (!VerifyOnly)
921      SemaRef.Diag(SubIList->getLocStart(),
922                   diag::warn_many_braces_around_scalar_init)
923        << SubIList->getSourceRange();
924
925    CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
926                    StructuredIndex);
927    return;
928  } else if (isa<DesignatedInitExpr>(expr)) {
929    if (!VerifyOnly)
930      SemaRef.Diag(expr->getSourceRange().getBegin(),
931                   diag::err_designator_for_scalar_init)
932        << DeclType << expr->getSourceRange();
933    hadError = true;
934    ++Index;
935    ++StructuredIndex;
936    return;
937  }
938
939  if (VerifyOnly) {
940    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
941      hadError = true;
942    ++Index;
943    return;
944  }
945
946  ExprResult Result =
947    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
948                                      SemaRef.Owned(expr),
949                                      /*TopLevelOfInitList=*/true);
950
951  Expr *ResultExpr = 0;
952
953  if (Result.isInvalid())
954    hadError = true; // types weren't compatible.
955  else {
956    ResultExpr = Result.takeAs<Expr>();
957
958    if (ResultExpr != expr) {
959      // The type was promoted, update initializer list.
960      IList->setInit(Index, ResultExpr);
961    }
962  }
963  if (hadError)
964    ++StructuredIndex;
965  else
966    UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
967  ++Index;
968}
969
970void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
971                                         InitListExpr *IList, QualType DeclType,
972                                         unsigned &Index,
973                                         InitListExpr *StructuredList,
974                                         unsigned &StructuredIndex) {
975  if (Index >= IList->getNumInits()) {
976    // FIXME: It would be wonderful if we could point at the actual member. In
977    // general, it would be useful to pass location information down the stack,
978    // so that we know the location (or decl) of the "current object" being
979    // initialized.
980    if (!VerifyOnly)
981      SemaRef.Diag(IList->getLocStart(),
982                    diag::err_init_reference_member_uninitialized)
983        << DeclType
984        << IList->getSourceRange();
985    hadError = true;
986    ++Index;
987    ++StructuredIndex;
988    return;
989  }
990
991  Expr *expr = IList->getInit(Index);
992  if (isa<InitListExpr>(expr) && !SemaRef.getLangOptions().CPlusPlus0x) {
993    if (!VerifyOnly)
994      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
995        << DeclType << IList->getSourceRange();
996    hadError = true;
997    ++Index;
998    ++StructuredIndex;
999    return;
1000  }
1001
1002  if (VerifyOnly) {
1003    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1004      hadError = true;
1005    ++Index;
1006    return;
1007  }
1008
1009  ExprResult Result =
1010    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1011                                      SemaRef.Owned(expr),
1012                                      /*TopLevelOfInitList=*/true);
1013
1014  if (Result.isInvalid())
1015    hadError = true;
1016
1017  expr = Result.takeAs<Expr>();
1018  IList->setInit(Index, expr);
1019
1020  if (hadError)
1021    ++StructuredIndex;
1022  else
1023    UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1024  ++Index;
1025}
1026
1027void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1028                                      InitListExpr *IList, QualType DeclType,
1029                                      unsigned &Index,
1030                                      InitListExpr *StructuredList,
1031                                      unsigned &StructuredIndex) {
1032  const VectorType *VT = DeclType->getAs<VectorType>();
1033  unsigned maxElements = VT->getNumElements();
1034  unsigned numEltsInit = 0;
1035  QualType elementType = VT->getElementType();
1036
1037  if (Index >= IList->getNumInits()) {
1038    // Make sure the element type can be value-initialized.
1039    if (VerifyOnly)
1040      CheckValueInitializable(
1041          InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1042    return;
1043  }
1044
1045  if (!SemaRef.getLangOptions().OpenCL) {
1046    // If the initializing element is a vector, try to copy-initialize
1047    // instead of breaking it apart (which is doomed to failure anyway).
1048    Expr *Init = IList->getInit(Index);
1049    if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1050      if (VerifyOnly) {
1051        if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1052          hadError = true;
1053        ++Index;
1054        return;
1055      }
1056
1057      ExprResult Result =
1058        SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1059                                          SemaRef.Owned(Init),
1060                                          /*TopLevelOfInitList=*/true);
1061
1062      Expr *ResultExpr = 0;
1063      if (Result.isInvalid())
1064        hadError = true; // types weren't compatible.
1065      else {
1066        ResultExpr = Result.takeAs<Expr>();
1067
1068        if (ResultExpr != Init) {
1069          // The type was promoted, update initializer list.
1070          IList->setInit(Index, ResultExpr);
1071        }
1072      }
1073      if (hadError)
1074        ++StructuredIndex;
1075      else
1076        UpdateStructuredListElement(StructuredList, StructuredIndex,
1077                                    ResultExpr);
1078      ++Index;
1079      return;
1080    }
1081
1082    InitializedEntity ElementEntity =
1083      InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1084
1085    for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1086      // Don't attempt to go past the end of the init list
1087      if (Index >= IList->getNumInits()) {
1088        if (VerifyOnly)
1089          CheckValueInitializable(ElementEntity);
1090        break;
1091      }
1092
1093      ElementEntity.setElementIndex(Index);
1094      CheckSubElementType(ElementEntity, IList, elementType, Index,
1095                          StructuredList, StructuredIndex);
1096    }
1097    return;
1098  }
1099
1100  InitializedEntity ElementEntity =
1101    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1102
1103  // OpenCL initializers allows vectors to be constructed from vectors.
1104  for (unsigned i = 0; i < maxElements; ++i) {
1105    // Don't attempt to go past the end of the init list
1106    if (Index >= IList->getNumInits())
1107      break;
1108
1109    ElementEntity.setElementIndex(Index);
1110
1111    QualType IType = IList->getInit(Index)->getType();
1112    if (!IType->isVectorType()) {
1113      CheckSubElementType(ElementEntity, IList, elementType, Index,
1114                          StructuredList, StructuredIndex);
1115      ++numEltsInit;
1116    } else {
1117      QualType VecType;
1118      const VectorType *IVT = IType->getAs<VectorType>();
1119      unsigned numIElts = IVT->getNumElements();
1120
1121      if (IType->isExtVectorType())
1122        VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1123      else
1124        VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1125                                                IVT->getVectorKind());
1126      CheckSubElementType(ElementEntity, IList, VecType, Index,
1127                          StructuredList, StructuredIndex);
1128      numEltsInit += numIElts;
1129    }
1130  }
1131
1132  // OpenCL requires all elements to be initialized.
1133  if (numEltsInit != maxElements) {
1134    if (!VerifyOnly)
1135      SemaRef.Diag(IList->getSourceRange().getBegin(),
1136                   diag::err_vector_incorrect_num_initializers)
1137        << (numEltsInit < maxElements) << maxElements << numEltsInit;
1138    hadError = true;
1139  }
1140}
1141
1142void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1143                                     InitListExpr *IList, QualType &DeclType,
1144                                     llvm::APSInt elementIndex,
1145                                     bool SubobjectIsDesignatorContext,
1146                                     unsigned &Index,
1147                                     InitListExpr *StructuredList,
1148                                     unsigned &StructuredIndex) {
1149  const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1150
1151  // Check for the special-case of initializing an array with a string.
1152  if (Index < IList->getNumInits()) {
1153    if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
1154                                 SemaRef.Context)) {
1155      // We place the string literal directly into the resulting
1156      // initializer list. This is the only place where the structure
1157      // of the structured initializer list doesn't match exactly,
1158      // because doing so would involve allocating one character
1159      // constant for each string.
1160      if (!VerifyOnly) {
1161        CheckStringInit(Str, DeclType, arrayType, SemaRef);
1162        UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
1163        StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1164      }
1165      ++Index;
1166      return;
1167    }
1168  }
1169  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1170    // Check for VLAs; in standard C it would be possible to check this
1171    // earlier, but I don't know where clang accepts VLAs (gcc accepts
1172    // them in all sorts of strange places).
1173    if (!VerifyOnly)
1174      SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1175                    diag::err_variable_object_no_init)
1176        << VAT->getSizeExpr()->getSourceRange();
1177    hadError = true;
1178    ++Index;
1179    ++StructuredIndex;
1180    return;
1181  }
1182
1183  // We might know the maximum number of elements in advance.
1184  llvm::APSInt maxElements(elementIndex.getBitWidth(),
1185                           elementIndex.isUnsigned());
1186  bool maxElementsKnown = false;
1187  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1188    maxElements = CAT->getSize();
1189    elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1190    elementIndex.setIsUnsigned(maxElements.isUnsigned());
1191    maxElementsKnown = true;
1192  }
1193
1194  QualType elementType = arrayType->getElementType();
1195  while (Index < IList->getNumInits()) {
1196    Expr *Init = IList->getInit(Index);
1197    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1198      // If we're not the subobject that matches up with the '{' for
1199      // the designator, we shouldn't be handling the
1200      // designator. Return immediately.
1201      if (!SubobjectIsDesignatorContext)
1202        return;
1203
1204      // Handle this designated initializer. elementIndex will be
1205      // updated to be the next array element we'll initialize.
1206      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1207                                     DeclType, 0, &elementIndex, Index,
1208                                     StructuredList, StructuredIndex, true,
1209                                     false)) {
1210        hadError = true;
1211        continue;
1212      }
1213
1214      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1215        maxElements = maxElements.extend(elementIndex.getBitWidth());
1216      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1217        elementIndex = elementIndex.extend(maxElements.getBitWidth());
1218      elementIndex.setIsUnsigned(maxElements.isUnsigned());
1219
1220      // If the array is of incomplete type, keep track of the number of
1221      // elements in the initializer.
1222      if (!maxElementsKnown && elementIndex > maxElements)
1223        maxElements = elementIndex;
1224
1225      continue;
1226    }
1227
1228    // If we know the maximum number of elements, and we've already
1229    // hit it, stop consuming elements in the initializer list.
1230    if (maxElementsKnown && elementIndex == maxElements)
1231      break;
1232
1233    InitializedEntity ElementEntity =
1234      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1235                                           Entity);
1236    // Check this element.
1237    CheckSubElementType(ElementEntity, IList, elementType, Index,
1238                        StructuredList, StructuredIndex);
1239    ++elementIndex;
1240
1241    // If the array is of incomplete type, keep track of the number of
1242    // elements in the initializer.
1243    if (!maxElementsKnown && elementIndex > maxElements)
1244      maxElements = elementIndex;
1245  }
1246  if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1247    // If this is an incomplete array type, the actual type needs to
1248    // be calculated here.
1249    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1250    if (maxElements == Zero) {
1251      // Sizing an array implicitly to zero is not allowed by ISO C,
1252      // but is supported by GNU.
1253      SemaRef.Diag(IList->getLocStart(),
1254                    diag::ext_typecheck_zero_array_size);
1255    }
1256
1257    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1258                                                     ArrayType::Normal, 0);
1259  }
1260  if (!hadError && VerifyOnly) {
1261    // Check if there are any members of the array that get value-initialized.
1262    // If so, check if doing that is possible.
1263    // FIXME: This needs to detect holes left by designated initializers too.
1264    if (maxElementsKnown && elementIndex < maxElements)
1265      CheckValueInitializable(InitializedEntity::InitializeElement(
1266                                                  SemaRef.Context, 0, Entity));
1267  }
1268}
1269
1270bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1271                                             Expr *InitExpr,
1272                                             FieldDecl *Field,
1273                                             bool TopLevelObject) {
1274  // Handle GNU flexible array initializers.
1275  unsigned FlexArrayDiag;
1276  if (isa<InitListExpr>(InitExpr) &&
1277      cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1278    // Empty flexible array init always allowed as an extension
1279    FlexArrayDiag = diag::ext_flexible_array_init;
1280  } else if (SemaRef.getLangOptions().CPlusPlus) {
1281    // Disallow flexible array init in C++; it is not required for gcc
1282    // compatibility, and it needs work to IRGen correctly in general.
1283    FlexArrayDiag = diag::err_flexible_array_init;
1284  } else if (!TopLevelObject) {
1285    // Disallow flexible array init on non-top-level object
1286    FlexArrayDiag = diag::err_flexible_array_init;
1287  } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1288    // Disallow flexible array init on anything which is not a variable.
1289    FlexArrayDiag = diag::err_flexible_array_init;
1290  } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1291    // Disallow flexible array init on local variables.
1292    FlexArrayDiag = diag::err_flexible_array_init;
1293  } else {
1294    // Allow other cases.
1295    FlexArrayDiag = diag::ext_flexible_array_init;
1296  }
1297
1298  if (!VerifyOnly) {
1299    SemaRef.Diag(InitExpr->getSourceRange().getBegin(),
1300                 FlexArrayDiag)
1301      << InitExpr->getSourceRange().getBegin();
1302    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1303      << Field;
1304  }
1305
1306  return FlexArrayDiag != diag::ext_flexible_array_init;
1307}
1308
1309void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1310                                            InitListExpr *IList,
1311                                            QualType DeclType,
1312                                            RecordDecl::field_iterator Field,
1313                                            bool SubobjectIsDesignatorContext,
1314                                            unsigned &Index,
1315                                            InitListExpr *StructuredList,
1316                                            unsigned &StructuredIndex,
1317                                            bool TopLevelObject) {
1318  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1319
1320  // If the record is invalid, some of it's members are invalid. To avoid
1321  // confusion, we forgo checking the intializer for the entire record.
1322  if (structDecl->isInvalidDecl()) {
1323    hadError = true;
1324    return;
1325  }
1326
1327  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1328    // Value-initialize the first named member of the union.
1329    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1330    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1331         Field != FieldEnd; ++Field) {
1332      if (Field->getDeclName()) {
1333        if (VerifyOnly)
1334          CheckValueInitializable(
1335              InitializedEntity::InitializeMember(*Field, &Entity));
1336        else
1337          StructuredList->setInitializedFieldInUnion(*Field);
1338        break;
1339      }
1340    }
1341    return;
1342  }
1343
1344  // If structDecl is a forward declaration, this loop won't do
1345  // anything except look at designated initializers; That's okay,
1346  // because an error should get printed out elsewhere. It might be
1347  // worthwhile to skip over the rest of the initializer, though.
1348  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1349  RecordDecl::field_iterator FieldEnd = RD->field_end();
1350  bool InitializedSomething = false;
1351  bool CheckForMissingFields = true;
1352  while (Index < IList->getNumInits()) {
1353    Expr *Init = IList->getInit(Index);
1354
1355    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1356      // If we're not the subobject that matches up with the '{' for
1357      // the designator, we shouldn't be handling the
1358      // designator. Return immediately.
1359      if (!SubobjectIsDesignatorContext)
1360        return;
1361
1362      // Handle this designated initializer. Field will be updated to
1363      // the next field that we'll be initializing.
1364      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1365                                     DeclType, &Field, 0, Index,
1366                                     StructuredList, StructuredIndex,
1367                                     true, TopLevelObject))
1368        hadError = true;
1369
1370      InitializedSomething = true;
1371
1372      // Disable check for missing fields when designators are used.
1373      // This matches gcc behaviour.
1374      CheckForMissingFields = false;
1375      continue;
1376    }
1377
1378    if (Field == FieldEnd) {
1379      // We've run out of fields. We're done.
1380      break;
1381    }
1382
1383    // We've already initialized a member of a union. We're done.
1384    if (InitializedSomething && DeclType->isUnionType())
1385      break;
1386
1387    // If we've hit the flexible array member at the end, we're done.
1388    if (Field->getType()->isIncompleteArrayType())
1389      break;
1390
1391    if (Field->isUnnamedBitfield()) {
1392      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1393      ++Field;
1394      continue;
1395    }
1396
1397    // Make sure we can use this declaration.
1398    bool InvalidUse;
1399    if (VerifyOnly)
1400      InvalidUse = !SemaRef.CanUseDecl(*Field);
1401    else
1402      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1403                                          IList->getInit(Index)->getLocStart());
1404    if (InvalidUse) {
1405      ++Index;
1406      ++Field;
1407      hadError = true;
1408      continue;
1409    }
1410
1411    InitializedEntity MemberEntity =
1412      InitializedEntity::InitializeMember(*Field, &Entity);
1413    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1414                        StructuredList, StructuredIndex);
1415    InitializedSomething = true;
1416
1417    if (DeclType->isUnionType() && !VerifyOnly) {
1418      // Initialize the first field within the union.
1419      StructuredList->setInitializedFieldInUnion(*Field);
1420    }
1421
1422    ++Field;
1423  }
1424
1425  // Emit warnings for missing struct field initializers.
1426  if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1427      Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1428      !DeclType->isUnionType()) {
1429    // It is possible we have one or more unnamed bitfields remaining.
1430    // Find first (if any) named field and emit warning.
1431    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1432         it != end; ++it) {
1433      if (!it->isUnnamedBitfield()) {
1434        SemaRef.Diag(IList->getSourceRange().getEnd(),
1435                     diag::warn_missing_field_initializers) << it->getName();
1436        break;
1437      }
1438    }
1439  }
1440
1441  // Check that any remaining fields can be value-initialized.
1442  if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1443      !Field->getType()->isIncompleteArrayType()) {
1444    // FIXME: Should check for holes left by designated initializers too.
1445    for (; Field != FieldEnd && !hadError; ++Field) {
1446      if (!Field->isUnnamedBitfield())
1447        CheckValueInitializable(
1448            InitializedEntity::InitializeMember(*Field, &Entity));
1449    }
1450  }
1451
1452  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1453      Index >= IList->getNumInits())
1454    return;
1455
1456  if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1457                             TopLevelObject)) {
1458    hadError = true;
1459    ++Index;
1460    return;
1461  }
1462
1463  InitializedEntity MemberEntity =
1464    InitializedEntity::InitializeMember(*Field, &Entity);
1465
1466  if (isa<InitListExpr>(IList->getInit(Index)))
1467    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1468                        StructuredList, StructuredIndex);
1469  else
1470    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1471                          StructuredList, StructuredIndex);
1472}
1473
1474/// \brief Expand a field designator that refers to a member of an
1475/// anonymous struct or union into a series of field designators that
1476/// refers to the field within the appropriate subobject.
1477///
1478static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1479                                           DesignatedInitExpr *DIE,
1480                                           unsigned DesigIdx,
1481                                           IndirectFieldDecl *IndirectField) {
1482  typedef DesignatedInitExpr::Designator Designator;
1483
1484  // Build the replacement designators.
1485  SmallVector<Designator, 4> Replacements;
1486  for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1487       PE = IndirectField->chain_end(); PI != PE; ++PI) {
1488    if (PI + 1 == PE)
1489      Replacements.push_back(Designator((IdentifierInfo *)0,
1490                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1491                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1492    else
1493      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1494                                        SourceLocation()));
1495    assert(isa<FieldDecl>(*PI));
1496    Replacements.back().setField(cast<FieldDecl>(*PI));
1497  }
1498
1499  // Expand the current designator into the set of replacement
1500  // designators, so we have a full subobject path down to where the
1501  // member of the anonymous struct/union is actually stored.
1502  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1503                        &Replacements[0] + Replacements.size());
1504}
1505
1506/// \brief Given an implicit anonymous field, search the IndirectField that
1507///  corresponds to FieldName.
1508static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1509                                                 IdentifierInfo *FieldName) {
1510  assert(AnonField->isAnonymousStructOrUnion());
1511  Decl *NextDecl = AnonField->getNextDeclInContext();
1512  while (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(NextDecl)) {
1513    if (FieldName && FieldName == IF->getAnonField()->getIdentifier())
1514      return IF;
1515    NextDecl = NextDecl->getNextDeclInContext();
1516  }
1517  return 0;
1518}
1519
1520static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1521                                                   DesignatedInitExpr *DIE) {
1522  unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1523  SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1524  for (unsigned I = 0; I < NumIndexExprs; ++I)
1525    IndexExprs[I] = DIE->getSubExpr(I + 1);
1526  return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1527                                    DIE->size(), IndexExprs.data(),
1528                                    NumIndexExprs, DIE->getEqualOrColonLoc(),
1529                                    DIE->usesGNUSyntax(), DIE->getInit());
1530}
1531
1532namespace {
1533
1534// Callback to only accept typo corrections that are for field members of
1535// the given struct or union.
1536class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1537 public:
1538  explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1539      : Record(RD) {}
1540
1541  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1542    FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1543    return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1544  }
1545
1546 private:
1547  RecordDecl *Record;
1548};
1549
1550}
1551
1552/// @brief Check the well-formedness of a C99 designated initializer.
1553///
1554/// Determines whether the designated initializer @p DIE, which
1555/// resides at the given @p Index within the initializer list @p
1556/// IList, is well-formed for a current object of type @p DeclType
1557/// (C99 6.7.8). The actual subobject that this designator refers to
1558/// within the current subobject is returned in either
1559/// @p NextField or @p NextElementIndex (whichever is appropriate).
1560///
1561/// @param IList  The initializer list in which this designated
1562/// initializer occurs.
1563///
1564/// @param DIE The designated initializer expression.
1565///
1566/// @param DesigIdx  The index of the current designator.
1567///
1568/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1569/// into which the designation in @p DIE should refer.
1570///
1571/// @param NextField  If non-NULL and the first designator in @p DIE is
1572/// a field, this will be set to the field declaration corresponding
1573/// to the field named by the designator.
1574///
1575/// @param NextElementIndex  If non-NULL and the first designator in @p
1576/// DIE is an array designator or GNU array-range designator, this
1577/// will be set to the last index initialized by this designator.
1578///
1579/// @param Index  Index into @p IList where the designated initializer
1580/// @p DIE occurs.
1581///
1582/// @param StructuredList  The initializer list expression that
1583/// describes all of the subobject initializers in the order they'll
1584/// actually be initialized.
1585///
1586/// @returns true if there was an error, false otherwise.
1587bool
1588InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1589                                            InitListExpr *IList,
1590                                            DesignatedInitExpr *DIE,
1591                                            unsigned DesigIdx,
1592                                            QualType &CurrentObjectType,
1593                                          RecordDecl::field_iterator *NextField,
1594                                            llvm::APSInt *NextElementIndex,
1595                                            unsigned &Index,
1596                                            InitListExpr *StructuredList,
1597                                            unsigned &StructuredIndex,
1598                                            bool FinishSubobjectInit,
1599                                            bool TopLevelObject) {
1600  if (DesigIdx == DIE->size()) {
1601    // Check the actual initialization for the designated object type.
1602    bool prevHadError = hadError;
1603
1604    // Temporarily remove the designator expression from the
1605    // initializer list that the child calls see, so that we don't try
1606    // to re-process the designator.
1607    unsigned OldIndex = Index;
1608    IList->setInit(OldIndex, DIE->getInit());
1609
1610    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1611                        StructuredList, StructuredIndex);
1612
1613    // Restore the designated initializer expression in the syntactic
1614    // form of the initializer list.
1615    if (IList->getInit(OldIndex) != DIE->getInit())
1616      DIE->setInit(IList->getInit(OldIndex));
1617    IList->setInit(OldIndex, DIE);
1618
1619    return hadError && !prevHadError;
1620  }
1621
1622  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1623  bool IsFirstDesignator = (DesigIdx == 0);
1624  if (!VerifyOnly) {
1625    assert((IsFirstDesignator || StructuredList) &&
1626           "Need a non-designated initializer list to start from");
1627
1628    // Determine the structural initializer list that corresponds to the
1629    // current subobject.
1630    StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1631      : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1632                                   StructuredList, StructuredIndex,
1633                                   SourceRange(D->getStartLocation(),
1634                                               DIE->getSourceRange().getEnd()));
1635    assert(StructuredList && "Expected a structured initializer list");
1636  }
1637
1638  if (D->isFieldDesignator()) {
1639    // C99 6.7.8p7:
1640    //
1641    //   If a designator has the form
1642    //
1643    //      . identifier
1644    //
1645    //   then the current object (defined below) shall have
1646    //   structure or union type and the identifier shall be the
1647    //   name of a member of that type.
1648    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1649    if (!RT) {
1650      SourceLocation Loc = D->getDotLoc();
1651      if (Loc.isInvalid())
1652        Loc = D->getFieldLoc();
1653      if (!VerifyOnly)
1654        SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1655          << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1656      ++Index;
1657      return true;
1658    }
1659
1660    // Note: we perform a linear search of the fields here, despite
1661    // the fact that we have a faster lookup method, because we always
1662    // need to compute the field's index.
1663    FieldDecl *KnownField = D->getField();
1664    IdentifierInfo *FieldName = D->getFieldName();
1665    unsigned FieldIndex = 0;
1666    RecordDecl::field_iterator
1667      Field = RT->getDecl()->field_begin(),
1668      FieldEnd = RT->getDecl()->field_end();
1669    for (; Field != FieldEnd; ++Field) {
1670      if (Field->isUnnamedBitfield())
1671        continue;
1672
1673      // If we find a field representing an anonymous field, look in the
1674      // IndirectFieldDecl that follow for the designated initializer.
1675      if (!KnownField && Field->isAnonymousStructOrUnion()) {
1676        if (IndirectFieldDecl *IF =
1677            FindIndirectFieldDesignator(*Field, FieldName)) {
1678          // In verify mode, don't modify the original.
1679          if (VerifyOnly)
1680            DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1681          ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1682          D = DIE->getDesignator(DesigIdx);
1683          break;
1684        }
1685      }
1686      if (KnownField && KnownField == *Field)
1687        break;
1688      if (FieldName && FieldName == Field->getIdentifier())
1689        break;
1690
1691      ++FieldIndex;
1692    }
1693
1694    if (Field == FieldEnd) {
1695      if (VerifyOnly) {
1696        ++Index;
1697        return true; // No typo correction when just trying this out.
1698      }
1699
1700      // There was no normal field in the struct with the designated
1701      // name. Perform another lookup for this name, which may find
1702      // something that we can't designate (e.g., a member function),
1703      // may find nothing, or may find a member of an anonymous
1704      // struct/union.
1705      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1706      FieldDecl *ReplacementField = 0;
1707      if (Lookup.first == Lookup.second) {
1708        // Name lookup didn't find anything. Determine whether this
1709        // was a typo for another field name.
1710        FieldInitializerValidatorCCC Validator(RT->getDecl());
1711        TypoCorrection Corrected = SemaRef.CorrectTypo(
1712            DeclarationNameInfo(FieldName, D->getFieldLoc()),
1713            Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, &Validator,
1714            RT->getDecl());
1715        if (Corrected) {
1716          std::string CorrectedStr(
1717              Corrected.getAsString(SemaRef.getLangOptions()));
1718          std::string CorrectedQuotedStr(
1719              Corrected.getQuoted(SemaRef.getLangOptions()));
1720          ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1721          SemaRef.Diag(D->getFieldLoc(),
1722                       diag::err_field_designator_unknown_suggest)
1723            << FieldName << CurrentObjectType << CorrectedQuotedStr
1724            << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1725          SemaRef.Diag(ReplacementField->getLocation(),
1726                       diag::note_previous_decl) << CorrectedQuotedStr;
1727          hadError = true;
1728        } else {
1729          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1730            << FieldName << CurrentObjectType;
1731          ++Index;
1732          return true;
1733        }
1734      }
1735
1736      if (!ReplacementField) {
1737        // Name lookup found something, but it wasn't a field.
1738        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1739          << FieldName;
1740        SemaRef.Diag((*Lookup.first)->getLocation(),
1741                      diag::note_field_designator_found);
1742        ++Index;
1743        return true;
1744      }
1745
1746      if (!KnownField) {
1747        // The replacement field comes from typo correction; find it
1748        // in the list of fields.
1749        FieldIndex = 0;
1750        Field = RT->getDecl()->field_begin();
1751        for (; Field != FieldEnd; ++Field) {
1752          if (Field->isUnnamedBitfield())
1753            continue;
1754
1755          if (ReplacementField == *Field ||
1756              Field->getIdentifier() == ReplacementField->getIdentifier())
1757            break;
1758
1759          ++FieldIndex;
1760        }
1761      }
1762    }
1763
1764    // All of the fields of a union are located at the same place in
1765    // the initializer list.
1766    if (RT->getDecl()->isUnion()) {
1767      FieldIndex = 0;
1768      if (!VerifyOnly)
1769        StructuredList->setInitializedFieldInUnion(*Field);
1770    }
1771
1772    // Make sure we can use this declaration.
1773    bool InvalidUse;
1774    if (VerifyOnly)
1775      InvalidUse = !SemaRef.CanUseDecl(*Field);
1776    else
1777      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1778    if (InvalidUse) {
1779      ++Index;
1780      return true;
1781    }
1782
1783    if (!VerifyOnly) {
1784      // Update the designator with the field declaration.
1785      D->setField(*Field);
1786
1787      // Make sure that our non-designated initializer list has space
1788      // for a subobject corresponding to this field.
1789      if (FieldIndex >= StructuredList->getNumInits())
1790        StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1791    }
1792
1793    // This designator names a flexible array member.
1794    if (Field->getType()->isIncompleteArrayType()) {
1795      bool Invalid = false;
1796      if ((DesigIdx + 1) != DIE->size()) {
1797        // We can't designate an object within the flexible array
1798        // member (because GCC doesn't allow it).
1799        if (!VerifyOnly) {
1800          DesignatedInitExpr::Designator *NextD
1801            = DIE->getDesignator(DesigIdx + 1);
1802          SemaRef.Diag(NextD->getStartLocation(),
1803                        diag::err_designator_into_flexible_array_member)
1804            << SourceRange(NextD->getStartLocation(),
1805                           DIE->getSourceRange().getEnd());
1806          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1807            << *Field;
1808        }
1809        Invalid = true;
1810      }
1811
1812      if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1813          !isa<StringLiteral>(DIE->getInit())) {
1814        // The initializer is not an initializer list.
1815        if (!VerifyOnly) {
1816          SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1817                        diag::err_flexible_array_init_needs_braces)
1818            << DIE->getInit()->getSourceRange();
1819          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1820            << *Field;
1821        }
1822        Invalid = true;
1823      }
1824
1825      // Check GNU flexible array initializer.
1826      if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1827                                             TopLevelObject))
1828        Invalid = true;
1829
1830      if (Invalid) {
1831        ++Index;
1832        return true;
1833      }
1834
1835      // Initialize the array.
1836      bool prevHadError = hadError;
1837      unsigned newStructuredIndex = FieldIndex;
1838      unsigned OldIndex = Index;
1839      IList->setInit(Index, DIE->getInit());
1840
1841      InitializedEntity MemberEntity =
1842        InitializedEntity::InitializeMember(*Field, &Entity);
1843      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1844                          StructuredList, newStructuredIndex);
1845
1846      IList->setInit(OldIndex, DIE);
1847      if (hadError && !prevHadError) {
1848        ++Field;
1849        ++FieldIndex;
1850        if (NextField)
1851          *NextField = Field;
1852        StructuredIndex = FieldIndex;
1853        return true;
1854      }
1855    } else {
1856      // Recurse to check later designated subobjects.
1857      QualType FieldType = (*Field)->getType();
1858      unsigned newStructuredIndex = FieldIndex;
1859
1860      InitializedEntity MemberEntity =
1861        InitializedEntity::InitializeMember(*Field, &Entity);
1862      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1863                                     FieldType, 0, 0, Index,
1864                                     StructuredList, newStructuredIndex,
1865                                     true, false))
1866        return true;
1867    }
1868
1869    // Find the position of the next field to be initialized in this
1870    // subobject.
1871    ++Field;
1872    ++FieldIndex;
1873
1874    // If this the first designator, our caller will continue checking
1875    // the rest of this struct/class/union subobject.
1876    if (IsFirstDesignator) {
1877      if (NextField)
1878        *NextField = Field;
1879      StructuredIndex = FieldIndex;
1880      return false;
1881    }
1882
1883    if (!FinishSubobjectInit)
1884      return false;
1885
1886    // We've already initialized something in the union; we're done.
1887    if (RT->getDecl()->isUnion())
1888      return hadError;
1889
1890    // Check the remaining fields within this class/struct/union subobject.
1891    bool prevHadError = hadError;
1892
1893    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1894                          StructuredList, FieldIndex);
1895    return hadError && !prevHadError;
1896  }
1897
1898  // C99 6.7.8p6:
1899  //
1900  //   If a designator has the form
1901  //
1902  //      [ constant-expression ]
1903  //
1904  //   then the current object (defined below) shall have array
1905  //   type and the expression shall be an integer constant
1906  //   expression. If the array is of unknown size, any
1907  //   nonnegative value is valid.
1908  //
1909  // Additionally, cope with the GNU extension that permits
1910  // designators of the form
1911  //
1912  //      [ constant-expression ... constant-expression ]
1913  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1914  if (!AT) {
1915    if (!VerifyOnly)
1916      SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1917        << CurrentObjectType;
1918    ++Index;
1919    return true;
1920  }
1921
1922  Expr *IndexExpr = 0;
1923  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1924  if (D->isArrayDesignator()) {
1925    IndexExpr = DIE->getArrayIndex(*D);
1926    DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
1927    DesignatedEndIndex = DesignatedStartIndex;
1928  } else {
1929    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1930
1931    DesignatedStartIndex =
1932      DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
1933    DesignatedEndIndex =
1934      DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
1935    IndexExpr = DIE->getArrayRangeEnd(*D);
1936
1937    // Codegen can't handle evaluating array range designators that have side
1938    // effects, because we replicate the AST value for each initialized element.
1939    // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
1940    // elements with something that has a side effect, so codegen can emit an
1941    // "error unsupported" error instead of miscompiling the app.
1942    if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
1943        DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
1944      FullyStructuredList->sawArrayRangeDesignator();
1945  }
1946
1947  if (isa<ConstantArrayType>(AT)) {
1948    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1949    DesignatedStartIndex
1950      = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1951    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1952    DesignatedEndIndex
1953      = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1954    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1955    if (DesignatedEndIndex >= MaxElements) {
1956      if (!VerifyOnly)
1957        SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1958                      diag::err_array_designator_too_large)
1959          << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1960          << IndexExpr->getSourceRange();
1961      ++Index;
1962      return true;
1963    }
1964  } else {
1965    // Make sure the bit-widths and signedness match.
1966    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1967      DesignatedEndIndex
1968        = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1969    else if (DesignatedStartIndex.getBitWidth() <
1970             DesignatedEndIndex.getBitWidth())
1971      DesignatedStartIndex
1972        = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1973    DesignatedStartIndex.setIsUnsigned(true);
1974    DesignatedEndIndex.setIsUnsigned(true);
1975  }
1976
1977  // Make sure that our non-designated initializer list has space
1978  // for a subobject corresponding to this array element.
1979  if (!VerifyOnly &&
1980      DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1981    StructuredList->resizeInits(SemaRef.Context,
1982                                DesignatedEndIndex.getZExtValue() + 1);
1983
1984  // Repeatedly perform subobject initializations in the range
1985  // [DesignatedStartIndex, DesignatedEndIndex].
1986
1987  // Move to the next designator
1988  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1989  unsigned OldIndex = Index;
1990
1991  InitializedEntity ElementEntity =
1992    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1993
1994  while (DesignatedStartIndex <= DesignatedEndIndex) {
1995    // Recurse to check later designated subobjects.
1996    QualType ElementType = AT->getElementType();
1997    Index = OldIndex;
1998
1999    ElementEntity.setElementIndex(ElementIndex);
2000    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2001                                   ElementType, 0, 0, Index,
2002                                   StructuredList, ElementIndex,
2003                                   (DesignatedStartIndex == DesignatedEndIndex),
2004                                   false))
2005      return true;
2006
2007    // Move to the next index in the array that we'll be initializing.
2008    ++DesignatedStartIndex;
2009    ElementIndex = DesignatedStartIndex.getZExtValue();
2010  }
2011
2012  // If this the first designator, our caller will continue checking
2013  // the rest of this array subobject.
2014  if (IsFirstDesignator) {
2015    if (NextElementIndex)
2016      *NextElementIndex = DesignatedStartIndex;
2017    StructuredIndex = ElementIndex;
2018    return false;
2019  }
2020
2021  if (!FinishSubobjectInit)
2022    return false;
2023
2024  // Check the remaining elements within this array subobject.
2025  bool prevHadError = hadError;
2026  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2027                 /*SubobjectIsDesignatorContext=*/false, Index,
2028                 StructuredList, ElementIndex);
2029  return hadError && !prevHadError;
2030}
2031
2032// Get the structured initializer list for a subobject of type
2033// @p CurrentObjectType.
2034InitListExpr *
2035InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2036                                            QualType CurrentObjectType,
2037                                            InitListExpr *StructuredList,
2038                                            unsigned StructuredIndex,
2039                                            SourceRange InitRange) {
2040  if (VerifyOnly)
2041    return 0; // No structured list in verification-only mode.
2042  Expr *ExistingInit = 0;
2043  if (!StructuredList)
2044    ExistingInit = SyntacticToSemantic[IList];
2045  else if (StructuredIndex < StructuredList->getNumInits())
2046    ExistingInit = StructuredList->getInit(StructuredIndex);
2047
2048  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2049    return Result;
2050
2051  if (ExistingInit) {
2052    // We are creating an initializer list that initializes the
2053    // subobjects of the current object, but there was already an
2054    // initialization that completely initialized the current
2055    // subobject, e.g., by a compound literal:
2056    //
2057    // struct X { int a, b; };
2058    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2059    //
2060    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2061    // designated initializer re-initializes the whole
2062    // subobject [0], overwriting previous initializers.
2063    SemaRef.Diag(InitRange.getBegin(),
2064                 diag::warn_subobject_initializer_overrides)
2065      << InitRange;
2066    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
2067                  diag::note_previous_initializer)
2068      << /*FIXME:has side effects=*/0
2069      << ExistingInit->getSourceRange();
2070  }
2071
2072  InitListExpr *Result
2073    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2074                                         InitRange.getBegin(), 0, 0,
2075                                         InitRange.getEnd());
2076
2077  Result->setType(CurrentObjectType.getNonLValueExprType(SemaRef.Context));
2078
2079  // Pre-allocate storage for the structured initializer list.
2080  unsigned NumElements = 0;
2081  unsigned NumInits = 0;
2082  bool GotNumInits = false;
2083  if (!StructuredList) {
2084    NumInits = IList->getNumInits();
2085    GotNumInits = true;
2086  } else if (Index < IList->getNumInits()) {
2087    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2088      NumInits = SubList->getNumInits();
2089      GotNumInits = true;
2090    }
2091  }
2092
2093  if (const ArrayType *AType
2094      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2095    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2096      NumElements = CAType->getSize().getZExtValue();
2097      // Simple heuristic so that we don't allocate a very large
2098      // initializer with many empty entries at the end.
2099      if (GotNumInits && NumElements > NumInits)
2100        NumElements = 0;
2101    }
2102  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2103    NumElements = VType->getNumElements();
2104  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2105    RecordDecl *RDecl = RType->getDecl();
2106    if (RDecl->isUnion())
2107      NumElements = 1;
2108    else
2109      NumElements = std::distance(RDecl->field_begin(),
2110                                  RDecl->field_end());
2111  }
2112
2113  Result->reserveInits(SemaRef.Context, NumElements);
2114
2115  // Link this new initializer list into the structured initializer
2116  // lists.
2117  if (StructuredList)
2118    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2119  else {
2120    Result->setSyntacticForm(IList);
2121    SyntacticToSemantic[IList] = Result;
2122  }
2123
2124  return Result;
2125}
2126
2127/// Update the initializer at index @p StructuredIndex within the
2128/// structured initializer list to the value @p expr.
2129void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2130                                                  unsigned &StructuredIndex,
2131                                                  Expr *expr) {
2132  // No structured initializer list to update
2133  if (!StructuredList)
2134    return;
2135
2136  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2137                                                  StructuredIndex, expr)) {
2138    // This initializer overwrites a previous initializer. Warn.
2139    SemaRef.Diag(expr->getSourceRange().getBegin(),
2140                  diag::warn_initializer_overrides)
2141      << expr->getSourceRange();
2142    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
2143                  diag::note_previous_initializer)
2144      << /*FIXME:has side effects=*/0
2145      << PrevInit->getSourceRange();
2146  }
2147
2148  ++StructuredIndex;
2149}
2150
2151/// Check that the given Index expression is a valid array designator
2152/// value. This is essentailly just a wrapper around
2153/// VerifyIntegerConstantExpression that also checks for negative values
2154/// and produces a reasonable diagnostic if there is a
2155/// failure. Returns true if there was an error, false otherwise.  If
2156/// everything went okay, Value will receive the value of the constant
2157/// expression.
2158static bool
2159CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2160  SourceLocation Loc = Index->getSourceRange().getBegin();
2161
2162  // Make sure this is an integer constant expression.
2163  if (S.VerifyIntegerConstantExpression(Index, &Value))
2164    return true;
2165
2166  if (Value.isSigned() && Value.isNegative())
2167    return S.Diag(Loc, diag::err_array_designator_negative)
2168      << Value.toString(10) << Index->getSourceRange();
2169
2170  Value.setIsUnsigned(true);
2171  return false;
2172}
2173
2174ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2175                                            SourceLocation Loc,
2176                                            bool GNUSyntax,
2177                                            ExprResult Init) {
2178  typedef DesignatedInitExpr::Designator ASTDesignator;
2179
2180  bool Invalid = false;
2181  SmallVector<ASTDesignator, 32> Designators;
2182  SmallVector<Expr *, 32> InitExpressions;
2183
2184  // Build designators and check array designator expressions.
2185  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2186    const Designator &D = Desig.getDesignator(Idx);
2187    switch (D.getKind()) {
2188    case Designator::FieldDesignator:
2189      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2190                                          D.getFieldLoc()));
2191      break;
2192
2193    case Designator::ArrayDesignator: {
2194      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2195      llvm::APSInt IndexValue;
2196      if (!Index->isTypeDependent() &&
2197          !Index->isValueDependent() &&
2198          CheckArrayDesignatorExpr(*this, Index, IndexValue))
2199        Invalid = true;
2200      else {
2201        Designators.push_back(ASTDesignator(InitExpressions.size(),
2202                                            D.getLBracketLoc(),
2203                                            D.getRBracketLoc()));
2204        InitExpressions.push_back(Index);
2205      }
2206      break;
2207    }
2208
2209    case Designator::ArrayRangeDesignator: {
2210      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2211      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2212      llvm::APSInt StartValue;
2213      llvm::APSInt EndValue;
2214      bool StartDependent = StartIndex->isTypeDependent() ||
2215                            StartIndex->isValueDependent();
2216      bool EndDependent = EndIndex->isTypeDependent() ||
2217                          EndIndex->isValueDependent();
2218      if ((!StartDependent &&
2219           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
2220          (!EndDependent &&
2221           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
2222        Invalid = true;
2223      else {
2224        // Make sure we're comparing values with the same bit width.
2225        if (StartDependent || EndDependent) {
2226          // Nothing to compute.
2227        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2228          EndValue = EndValue.extend(StartValue.getBitWidth());
2229        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2230          StartValue = StartValue.extend(EndValue.getBitWidth());
2231
2232        if (!StartDependent && !EndDependent && EndValue < StartValue) {
2233          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2234            << StartValue.toString(10) << EndValue.toString(10)
2235            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2236          Invalid = true;
2237        } else {
2238          Designators.push_back(ASTDesignator(InitExpressions.size(),
2239                                              D.getLBracketLoc(),
2240                                              D.getEllipsisLoc(),
2241                                              D.getRBracketLoc()));
2242          InitExpressions.push_back(StartIndex);
2243          InitExpressions.push_back(EndIndex);
2244        }
2245      }
2246      break;
2247    }
2248    }
2249  }
2250
2251  if (Invalid || Init.isInvalid())
2252    return ExprError();
2253
2254  // Clear out the expressions within the designation.
2255  Desig.ClearExprs(*this);
2256
2257  DesignatedInitExpr *DIE
2258    = DesignatedInitExpr::Create(Context,
2259                                 Designators.data(), Designators.size(),
2260                                 InitExpressions.data(), InitExpressions.size(),
2261                                 Loc, GNUSyntax, Init.takeAs<Expr>());
2262
2263  if (!getLangOptions().C99)
2264    Diag(DIE->getLocStart(), diag::ext_designated_init)
2265      << DIE->getSourceRange();
2266
2267  return Owned(DIE);
2268}
2269
2270//===----------------------------------------------------------------------===//
2271// Initialization entity
2272//===----------------------------------------------------------------------===//
2273
2274InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2275                                     const InitializedEntity &Parent)
2276  : Parent(&Parent), Index(Index)
2277{
2278  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2279    Kind = EK_ArrayElement;
2280    Type = AT->getElementType();
2281  } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2282    Kind = EK_VectorElement;
2283    Type = VT->getElementType();
2284  } else {
2285    const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2286    assert(CT && "Unexpected type");
2287    Kind = EK_ComplexElement;
2288    Type = CT->getElementType();
2289  }
2290}
2291
2292InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2293                                                    CXXBaseSpecifier *Base,
2294                                                    bool IsInheritedVirtualBase)
2295{
2296  InitializedEntity Result;
2297  Result.Kind = EK_Base;
2298  Result.Base = reinterpret_cast<uintptr_t>(Base);
2299  if (IsInheritedVirtualBase)
2300    Result.Base |= 0x01;
2301
2302  Result.Type = Base->getType();
2303  return Result;
2304}
2305
2306DeclarationName InitializedEntity::getName() const {
2307  switch (getKind()) {
2308  case EK_Parameter: {
2309    ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2310    return (D ? D->getDeclName() : DeclarationName());
2311  }
2312
2313  case EK_Variable:
2314  case EK_Member:
2315    return VariableOrMember->getDeclName();
2316
2317  case EK_Result:
2318  case EK_Exception:
2319  case EK_New:
2320  case EK_Temporary:
2321  case EK_Base:
2322  case EK_Delegating:
2323  case EK_ArrayElement:
2324  case EK_VectorElement:
2325  case EK_ComplexElement:
2326  case EK_BlockElement:
2327    return DeclarationName();
2328  }
2329
2330  llvm_unreachable("Invalid EntityKind!");
2331}
2332
2333DeclaratorDecl *InitializedEntity::getDecl() const {
2334  switch (getKind()) {
2335  case EK_Variable:
2336  case EK_Member:
2337    return VariableOrMember;
2338
2339  case EK_Parameter:
2340    return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2341
2342  case EK_Result:
2343  case EK_Exception:
2344  case EK_New:
2345  case EK_Temporary:
2346  case EK_Base:
2347  case EK_Delegating:
2348  case EK_ArrayElement:
2349  case EK_VectorElement:
2350  case EK_ComplexElement:
2351  case EK_BlockElement:
2352    return 0;
2353  }
2354
2355  llvm_unreachable("Invalid EntityKind!");
2356}
2357
2358bool InitializedEntity::allowsNRVO() const {
2359  switch (getKind()) {
2360  case EK_Result:
2361  case EK_Exception:
2362    return LocAndNRVO.NRVO;
2363
2364  case EK_Variable:
2365  case EK_Parameter:
2366  case EK_Member:
2367  case EK_New:
2368  case EK_Temporary:
2369  case EK_Base:
2370  case EK_Delegating:
2371  case EK_ArrayElement:
2372  case EK_VectorElement:
2373  case EK_ComplexElement:
2374  case EK_BlockElement:
2375    break;
2376  }
2377
2378  return false;
2379}
2380
2381//===----------------------------------------------------------------------===//
2382// Initialization sequence
2383//===----------------------------------------------------------------------===//
2384
2385void InitializationSequence::Step::Destroy() {
2386  switch (Kind) {
2387  case SK_ResolveAddressOfOverloadedFunction:
2388  case SK_CastDerivedToBaseRValue:
2389  case SK_CastDerivedToBaseXValue:
2390  case SK_CastDerivedToBaseLValue:
2391  case SK_BindReference:
2392  case SK_BindReferenceToTemporary:
2393  case SK_ExtraneousCopyToTemporary:
2394  case SK_UserConversion:
2395  case SK_QualificationConversionRValue:
2396  case SK_QualificationConversionXValue:
2397  case SK_QualificationConversionLValue:
2398  case SK_ListInitialization:
2399  case SK_ListConstructorCall:
2400  case SK_UnwrapInitList:
2401  case SK_RewrapInitList:
2402  case SK_ConstructorInitialization:
2403  case SK_ZeroInitialization:
2404  case SK_CAssignment:
2405  case SK_StringInit:
2406  case SK_ObjCObjectConversion:
2407  case SK_ArrayInit:
2408  case SK_PassByIndirectCopyRestore:
2409  case SK_PassByIndirectRestore:
2410  case SK_ProduceObjCObject:
2411    break;
2412
2413  case SK_ConversionSequence:
2414    delete ICS;
2415  }
2416}
2417
2418bool InitializationSequence::isDirectReferenceBinding() const {
2419  return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2420}
2421
2422bool InitializationSequence::isAmbiguous() const {
2423  if (!Failed())
2424    return false;
2425
2426  switch (getFailureKind()) {
2427  case FK_TooManyInitsForReference:
2428  case FK_ArrayNeedsInitList:
2429  case FK_ArrayNeedsInitListOrStringLiteral:
2430  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2431  case FK_NonConstLValueReferenceBindingToTemporary:
2432  case FK_NonConstLValueReferenceBindingToUnrelated:
2433  case FK_RValueReferenceBindingToLValue:
2434  case FK_ReferenceInitDropsQualifiers:
2435  case FK_ReferenceInitFailed:
2436  case FK_ConversionFailed:
2437  case FK_ConversionFromPropertyFailed:
2438  case FK_TooManyInitsForScalar:
2439  case FK_ReferenceBindingToInitList:
2440  case FK_InitListBadDestinationType:
2441  case FK_DefaultInitOfConst:
2442  case FK_Incomplete:
2443  case FK_ArrayTypeMismatch:
2444  case FK_NonConstantArrayInit:
2445  case FK_ListInitializationFailed:
2446  case FK_VariableLengthArrayHasInitializer:
2447  case FK_PlaceholderType:
2448    return false;
2449
2450  case FK_ReferenceInitOverloadFailed:
2451  case FK_UserConversionOverloadFailed:
2452  case FK_ConstructorOverloadFailed:
2453  case FK_ListConstructorOverloadFailed:
2454    return FailedOverloadResult == OR_Ambiguous;
2455  }
2456
2457  llvm_unreachable("Invalid EntityKind!");
2458}
2459
2460bool InitializationSequence::isConstructorInitialization() const {
2461  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2462}
2463
2464bool InitializationSequence::endsWithNarrowing(ASTContext &Ctx,
2465                                               const Expr *Initializer,
2466                                               bool *isInitializerConstant,
2467                                               APValue *ConstantValue) const {
2468  if (Steps.empty() || Initializer->isValueDependent())
2469    return false;
2470
2471  const Step &LastStep = Steps.back();
2472  if (LastStep.Kind != SK_ConversionSequence)
2473    return false;
2474
2475  const ImplicitConversionSequence &ICS = *LastStep.ICS;
2476  const StandardConversionSequence *SCS = NULL;
2477  switch (ICS.getKind()) {
2478  case ImplicitConversionSequence::StandardConversion:
2479    SCS = &ICS.Standard;
2480    break;
2481  case ImplicitConversionSequence::UserDefinedConversion:
2482    SCS = &ICS.UserDefined.After;
2483    break;
2484  case ImplicitConversionSequence::AmbiguousConversion:
2485  case ImplicitConversionSequence::EllipsisConversion:
2486  case ImplicitConversionSequence::BadConversion:
2487    return false;
2488  }
2489
2490  // Check if SCS represents a narrowing conversion, according to C++0x
2491  // [dcl.init.list]p7:
2492  //
2493  // A narrowing conversion is an implicit conversion ...
2494  ImplicitConversionKind PossibleNarrowing = SCS->Second;
2495  QualType FromType = SCS->getToType(0);
2496  QualType ToType = SCS->getToType(1);
2497  switch (PossibleNarrowing) {
2498  // * from a floating-point type to an integer type, or
2499  //
2500  // * from an integer type or unscoped enumeration type to a floating-point
2501  //   type, except where the source is a constant expression and the actual
2502  //   value after conversion will fit into the target type and will produce
2503  //   the original value when converted back to the original type, or
2504  case ICK_Floating_Integral:
2505    if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
2506      *isInitializerConstant = false;
2507      return true;
2508    } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
2509      llvm::APSInt IntConstantValue;
2510      if (Initializer &&
2511          Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
2512        // Convert the integer to the floating type.
2513        llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
2514        Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
2515                                llvm::APFloat::rmNearestTiesToEven);
2516        // And back.
2517        llvm::APSInt ConvertedValue = IntConstantValue;
2518        bool ignored;
2519        Result.convertToInteger(ConvertedValue,
2520                                llvm::APFloat::rmTowardZero, &ignored);
2521        // If the resulting value is different, this was a narrowing conversion.
2522        if (IntConstantValue != ConvertedValue) {
2523          *isInitializerConstant = true;
2524          *ConstantValue = APValue(IntConstantValue);
2525          return true;
2526        }
2527      } else {
2528        // Variables are always narrowings.
2529        *isInitializerConstant = false;
2530        return true;
2531      }
2532    }
2533    return false;
2534
2535  // * from long double to double or float, or from double to float, except
2536  //   where the source is a constant expression and the actual value after
2537  //   conversion is within the range of values that can be represented (even
2538  //   if it cannot be represented exactly), or
2539  case ICK_Floating_Conversion:
2540    if (1 == Ctx.getFloatingTypeOrder(FromType, ToType)) {
2541      // FromType is larger than ToType.
2542      Expr::EvalResult InitializerValue;
2543      // FIXME: Check whether Initializer is a constant expression according
2544      // to C++0x [expr.const], rather than just whether it can be folded.
2545      if (Initializer->EvaluateAsRValue(InitializerValue, Ctx) &&
2546          !InitializerValue.HasSideEffects && InitializerValue.Val.isFloat()) {
2547        // Constant! (Except for FIXME above.)
2548        llvm::APFloat FloatVal = InitializerValue.Val.getFloat();
2549        // Convert the source value into the target type.
2550        bool ignored;
2551        llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
2552          Ctx.getFloatTypeSemantics(ToType),
2553          llvm::APFloat::rmNearestTiesToEven, &ignored);
2554        // If there was no overflow, the source value is within the range of
2555        // values that can be represented.
2556        if (ConvertStatus & llvm::APFloat::opOverflow) {
2557          *isInitializerConstant = true;
2558          *ConstantValue = InitializerValue.Val;
2559          return true;
2560        }
2561      } else {
2562        *isInitializerConstant = false;
2563        return true;
2564      }
2565    }
2566    return false;
2567
2568  // * from an integer type or unscoped enumeration type to an integer type
2569  //   that cannot represent all the values of the original type, except where
2570  //   the source is a constant expression and the actual value after
2571  //   conversion will fit into the target type and will produce the original
2572  //   value when converted back to the original type.
2573  case ICK_Boolean_Conversion:  // Bools are integers too.
2574    if (!FromType->isIntegralOrUnscopedEnumerationType()) {
2575      // Boolean conversions can be from pointers and pointers to members
2576      // [conv.bool], and those aren't considered narrowing conversions.
2577      return false;
2578    }  // Otherwise, fall through to the integral case.
2579  case ICK_Integral_Conversion: {
2580    assert(FromType->isIntegralOrUnscopedEnumerationType());
2581    assert(ToType->isIntegralOrUnscopedEnumerationType());
2582    const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
2583    const unsigned FromWidth = Ctx.getIntWidth(FromType);
2584    const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
2585    const unsigned ToWidth = Ctx.getIntWidth(ToType);
2586
2587    if (FromWidth > ToWidth ||
2588        (FromWidth == ToWidth && FromSigned != ToSigned)) {
2589      // Not all values of FromType can be represented in ToType.
2590      llvm::APSInt InitializerValue;
2591      if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
2592        *isInitializerConstant = true;
2593        *ConstantValue = APValue(InitializerValue);
2594
2595        // Add a bit to the InitializerValue so we don't have to worry about
2596        // signed vs. unsigned comparisons.
2597        InitializerValue = InitializerValue.extend(
2598          InitializerValue.getBitWidth() + 1);
2599        // Convert the initializer to and from the target width and signed-ness.
2600        llvm::APSInt ConvertedValue = InitializerValue;
2601        ConvertedValue = ConvertedValue.trunc(ToWidth);
2602        ConvertedValue.setIsSigned(ToSigned);
2603        ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
2604        ConvertedValue.setIsSigned(InitializerValue.isSigned());
2605        // If the result is different, this was a narrowing conversion.
2606        return ConvertedValue != InitializerValue;
2607      } else {
2608        // Variables are always narrowings.
2609        *isInitializerConstant = false;
2610        return true;
2611      }
2612    }
2613    return false;
2614  }
2615
2616  default:
2617    // Other kinds of conversions are not narrowings.
2618    return false;
2619  }
2620}
2621
2622void
2623InitializationSequence
2624::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2625                                   DeclAccessPair Found,
2626                                   bool HadMultipleCandidates) {
2627  Step S;
2628  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2629  S.Type = Function->getType();
2630  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2631  S.Function.Function = Function;
2632  S.Function.FoundDecl = Found;
2633  Steps.push_back(S);
2634}
2635
2636void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2637                                                      ExprValueKind VK) {
2638  Step S;
2639  switch (VK) {
2640  case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2641  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2642  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2643  }
2644  S.Type = BaseType;
2645  Steps.push_back(S);
2646}
2647
2648void InitializationSequence::AddReferenceBindingStep(QualType T,
2649                                                     bool BindingTemporary) {
2650  Step S;
2651  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2652  S.Type = T;
2653  Steps.push_back(S);
2654}
2655
2656void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2657  Step S;
2658  S.Kind = SK_ExtraneousCopyToTemporary;
2659  S.Type = T;
2660  Steps.push_back(S);
2661}
2662
2663void
2664InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2665                                              DeclAccessPair FoundDecl,
2666                                              QualType T,
2667                                              bool HadMultipleCandidates) {
2668  Step S;
2669  S.Kind = SK_UserConversion;
2670  S.Type = T;
2671  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2672  S.Function.Function = Function;
2673  S.Function.FoundDecl = FoundDecl;
2674  Steps.push_back(S);
2675}
2676
2677void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2678                                                            ExprValueKind VK) {
2679  Step S;
2680  S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2681  switch (VK) {
2682  case VK_RValue:
2683    S.Kind = SK_QualificationConversionRValue;
2684    break;
2685  case VK_XValue:
2686    S.Kind = SK_QualificationConversionXValue;
2687    break;
2688  case VK_LValue:
2689    S.Kind = SK_QualificationConversionLValue;
2690    break;
2691  }
2692  S.Type = Ty;
2693  Steps.push_back(S);
2694}
2695
2696void InitializationSequence::AddConversionSequenceStep(
2697                                       const ImplicitConversionSequence &ICS,
2698                                                       QualType T) {
2699  Step S;
2700  S.Kind = SK_ConversionSequence;
2701  S.Type = T;
2702  S.ICS = new ImplicitConversionSequence(ICS);
2703  Steps.push_back(S);
2704}
2705
2706void InitializationSequence::AddListInitializationStep(QualType T) {
2707  Step S;
2708  S.Kind = SK_ListInitialization;
2709  S.Type = T;
2710  Steps.push_back(S);
2711}
2712
2713void
2714InitializationSequence
2715::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2716                                   AccessSpecifier Access,
2717                                   QualType T,
2718                                   bool HadMultipleCandidates,
2719                                   bool FromInitList) {
2720  Step S;
2721  S.Kind = FromInitList ? SK_ListConstructorCall : SK_ConstructorInitialization;
2722  S.Type = T;
2723  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2724  S.Function.Function = Constructor;
2725  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2726  Steps.push_back(S);
2727}
2728
2729void InitializationSequence::AddZeroInitializationStep(QualType T) {
2730  Step S;
2731  S.Kind = SK_ZeroInitialization;
2732  S.Type = T;
2733  Steps.push_back(S);
2734}
2735
2736void InitializationSequence::AddCAssignmentStep(QualType T) {
2737  Step S;
2738  S.Kind = SK_CAssignment;
2739  S.Type = T;
2740  Steps.push_back(S);
2741}
2742
2743void InitializationSequence::AddStringInitStep(QualType T) {
2744  Step S;
2745  S.Kind = SK_StringInit;
2746  S.Type = T;
2747  Steps.push_back(S);
2748}
2749
2750void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2751  Step S;
2752  S.Kind = SK_ObjCObjectConversion;
2753  S.Type = T;
2754  Steps.push_back(S);
2755}
2756
2757void InitializationSequence::AddArrayInitStep(QualType T) {
2758  Step S;
2759  S.Kind = SK_ArrayInit;
2760  S.Type = T;
2761  Steps.push_back(S);
2762}
2763
2764void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2765                                                              bool shouldCopy) {
2766  Step s;
2767  s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2768                       : SK_PassByIndirectRestore);
2769  s.Type = type;
2770  Steps.push_back(s);
2771}
2772
2773void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2774  Step S;
2775  S.Kind = SK_ProduceObjCObject;
2776  S.Type = T;
2777  Steps.push_back(S);
2778}
2779
2780void InitializationSequence::RewrapReferenceInitList(QualType T,
2781                                                     InitListExpr *Syntactic) {
2782  assert(Syntactic->getNumInits() == 1 &&
2783         "Can only rewrap trivial init lists.");
2784  Step S;
2785  S.Kind = SK_UnwrapInitList;
2786  S.Type = Syntactic->getInit(0)->getType();
2787  Steps.insert(Steps.begin(), S);
2788
2789  S.Kind = SK_RewrapInitList;
2790  S.Type = T;
2791  S.WrappingSyntacticList = Syntactic;
2792  Steps.push_back(S);
2793}
2794
2795void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2796                                                OverloadingResult Result) {
2797  setSequenceKind(FailedSequence);
2798  this->Failure = Failure;
2799  this->FailedOverloadResult = Result;
2800}
2801
2802//===----------------------------------------------------------------------===//
2803// Attempt initialization
2804//===----------------------------------------------------------------------===//
2805
2806static void MaybeProduceObjCObject(Sema &S,
2807                                   InitializationSequence &Sequence,
2808                                   const InitializedEntity &Entity) {
2809  if (!S.getLangOptions().ObjCAutoRefCount) return;
2810
2811  /// When initializing a parameter, produce the value if it's marked
2812  /// __attribute__((ns_consumed)).
2813  if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2814    if (!Entity.isParameterConsumed())
2815      return;
2816
2817    assert(Entity.getType()->isObjCRetainableType() &&
2818           "consuming an object of unretainable type?");
2819    Sequence.AddProduceObjCObjectStep(Entity.getType());
2820
2821  /// When initializing a return value, if the return type is a
2822  /// retainable type, then returns need to immediately retain the
2823  /// object.  If an autorelease is required, it will be done at the
2824  /// last instant.
2825  } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2826    if (!Entity.getType()->isObjCRetainableType())
2827      return;
2828
2829    Sequence.AddProduceObjCObjectStep(Entity.getType());
2830  }
2831}
2832
2833/// \brief When initializing from init list via constructor, deal with the
2834/// empty init list and std::initializer_list special cases.
2835///
2836/// \return True if this was a special case, false otherwise.
2837static bool TryListConstructionSpecialCases(Sema &S,
2838                                            Expr **Args, unsigned NumArgs,
2839                                            CXXRecordDecl *DestRecordDecl,
2840                                            QualType DestType,
2841                                            InitializationSequence &Sequence) {
2842  // C++0x [dcl.init.list]p3:
2843  //   List-initialization of an object of type T is defined as follows:
2844  //   - If the initializer list has no elements and T is a class type with
2845  //     a default constructor, the object is value-initialized.
2846  if (NumArgs == 0) {
2847    if (CXXConstructorDecl *DefaultConstructor =
2848            S.LookupDefaultConstructor(DestRecordDecl)) {
2849      if (DefaultConstructor->isDeleted() ||
2850          S.isFunctionConsideredUnavailable(DefaultConstructor)) {
2851        // Fake an overload resolution failure.
2852        OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2853        DeclAccessPair FoundDecl = DeclAccessPair::make(DefaultConstructor,
2854                                              DefaultConstructor->getAccess());
2855        if (FunctionTemplateDecl *ConstructorTmpl =
2856                dyn_cast<FunctionTemplateDecl>(DefaultConstructor))
2857          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2858                                         /*ExplicitArgs*/ 0,
2859                                         Args, NumArgs, CandidateSet,
2860                                         /*SuppressUserConversions*/ false);
2861        else
2862          S.AddOverloadCandidate(DefaultConstructor, FoundDecl,
2863                                 Args, NumArgs, CandidateSet,
2864                                 /*SuppressUserConversions*/ false);
2865        Sequence.SetOverloadFailure(
2866                       InitializationSequence::FK_ListConstructorOverloadFailed,
2867                       OR_Deleted);
2868      } else
2869        Sequence.AddConstructorInitializationStep(DefaultConstructor,
2870                                                DefaultConstructor->getAccess(),
2871                                                  DestType,
2872                                                  /*MultipleCandidates=*/false,
2873                                                  /*FromInitList=*/true);
2874      return true;
2875    }
2876  }
2877
2878  //   - Otherwise, if T is a specialization of std::initializer_list, [...]
2879  // FIXME: Implement.
2880
2881  // Not a special case.
2882  return false;
2883}
2884
2885/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2886/// enumerates the constructors of the initialized entity and performs overload
2887/// resolution to select the best.
2888/// If FromInitList is true, this is list-initialization of a non-aggregate
2889/// class type.
2890static void TryConstructorInitialization(Sema &S,
2891                                         const InitializedEntity &Entity,
2892                                         const InitializationKind &Kind,
2893                                         Expr **Args, unsigned NumArgs,
2894                                         QualType DestType,
2895                                         InitializationSequence &Sequence,
2896                                         bool FromInitList = false) {
2897  // Check constructor arguments for self reference.
2898  if (DeclaratorDecl *DD = Entity.getDecl())
2899    // Parameters arguments are occassionially constructed with itself,
2900    // for instance, in recursive functions.  Skip them.
2901    if (!isa<ParmVarDecl>(DD))
2902      for (unsigned i = 0; i < NumArgs; ++i)
2903        S.CheckSelfReference(DD, Args[i]);
2904
2905  // Build the candidate set directly in the initialization sequence
2906  // structure, so that it will persist if we fail.
2907  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2908  CandidateSet.clear();
2909
2910  // Determine whether we are allowed to call explicit constructors or
2911  // explicit conversion operators.
2912  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
2913                        Kind.getKind() == InitializationKind::IK_Value ||
2914                        Kind.getKind() == InitializationKind::IK_Default);
2915
2916  // The type we're constructing needs to be complete.
2917  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2918    Sequence.SetFailed(InitializationSequence::FK_Incomplete);
2919  }
2920
2921  const RecordType *DestRecordType = DestType->getAs<RecordType>();
2922  assert(DestRecordType && "Constructor initialization requires record type");
2923  CXXRecordDecl *DestRecordDecl
2924    = cast<CXXRecordDecl>(DestRecordType->getDecl());
2925
2926  if (FromInitList &&
2927      TryListConstructionSpecialCases(S, Args, NumArgs, DestRecordDecl,
2928                                      DestType, Sequence))
2929    return;
2930
2931  //   - Otherwise, if T is a class type, constructors are considered. The
2932  //     applicable constructors are enumerated, and the best one is chosen
2933  //     through overload resolution.
2934  DeclContext::lookup_iterator Con, ConEnd;
2935  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
2936       Con != ConEnd; ++Con) {
2937    NamedDecl *D = *Con;
2938    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2939    bool SuppressUserConversions = false;
2940
2941    // Find the constructor (which may be a template).
2942    CXXConstructorDecl *Constructor = 0;
2943    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2944    if (ConstructorTmpl)
2945      Constructor = cast<CXXConstructorDecl>(
2946                                           ConstructorTmpl->getTemplatedDecl());
2947    else {
2948      Constructor = cast<CXXConstructorDecl>(D);
2949
2950      // If we're performing copy initialization using a copy constructor, we
2951      // suppress user-defined conversions on the arguments.
2952      // FIXME: Move constructors?
2953      if (Kind.getKind() == InitializationKind::IK_Copy &&
2954          Constructor->isCopyConstructor())
2955        SuppressUserConversions = true;
2956    }
2957
2958    if (!Constructor->isInvalidDecl() &&
2959        (AllowExplicit || !Constructor->isExplicit())) {
2960      if (ConstructorTmpl)
2961        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2962                                       /*ExplicitArgs*/ 0,
2963                                       Args, NumArgs, CandidateSet,
2964                                       SuppressUserConversions);
2965      else
2966        S.AddOverloadCandidate(Constructor, FoundDecl,
2967                               Args, NumArgs, CandidateSet,
2968                               SuppressUserConversions);
2969    }
2970  }
2971
2972  SourceLocation DeclLoc = Kind.getLocation();
2973
2974  // Perform overload resolution. If it fails, return the failed result.
2975  OverloadCandidateSet::iterator Best;
2976  if (OverloadingResult Result
2977        = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
2978    Sequence.SetOverloadFailure(FromInitList ?
2979                      InitializationSequence::FK_ListConstructorOverloadFailed :
2980                      InitializationSequence::FK_ConstructorOverloadFailed,
2981                                Result);
2982    return;
2983  }
2984
2985  // C++0x [dcl.init]p6:
2986  //   If a program calls for the default initialization of an object
2987  //   of a const-qualified type T, T shall be a class type with a
2988  //   user-provided default constructor.
2989  if (Kind.getKind() == InitializationKind::IK_Default &&
2990      Entity.getType().isConstQualified() &&
2991      cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
2992    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2993    return;
2994  }
2995
2996  // Add the constructor initialization step. Any cv-qualification conversion is
2997  // subsumed by the initialization.
2998  bool HadMultipleCandidates = (CandidateSet.size() > 1);
2999  CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3000  Sequence.AddConstructorInitializationStep(CtorDecl,
3001                                            Best->FoundDecl.getAccess(),
3002                                            DestType, HadMultipleCandidates,
3003                                            FromInitList);
3004}
3005
3006static bool
3007ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3008                                             Expr *Initializer,
3009                                             QualType &SourceType,
3010                                             QualType &UnqualifiedSourceType,
3011                                             QualType UnqualifiedTargetType,
3012                                             InitializationSequence &Sequence) {
3013  if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3014        S.Context.OverloadTy) {
3015    DeclAccessPair Found;
3016    bool HadMultipleCandidates = false;
3017    if (FunctionDecl *Fn
3018        = S.ResolveAddressOfOverloadedFunction(Initializer,
3019                                               UnqualifiedTargetType,
3020                                               false, Found,
3021                                               &HadMultipleCandidates)) {
3022      Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3023                                                HadMultipleCandidates);
3024      SourceType = Fn->getType();
3025      UnqualifiedSourceType = SourceType.getUnqualifiedType();
3026    } else if (!UnqualifiedTargetType->isRecordType()) {
3027      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3028      return true;
3029    }
3030  }
3031  return false;
3032}
3033
3034static void TryReferenceInitializationCore(Sema &S,
3035                                           const InitializedEntity &Entity,
3036                                           const InitializationKind &Kind,
3037                                           Expr *Initializer,
3038                                           QualType cv1T1, QualType T1,
3039                                           Qualifiers T1Quals,
3040                                           QualType cv2T2, QualType T2,
3041                                           Qualifiers T2Quals,
3042                                           InitializationSequence &Sequence);
3043
3044static void TryListInitialization(Sema &S,
3045                                  const InitializedEntity &Entity,
3046                                  const InitializationKind &Kind,
3047                                  InitListExpr *InitList,
3048                                  InitializationSequence &Sequence);
3049
3050/// \brief Attempt list initialization of a reference.
3051static void TryReferenceListInitialization(Sema &S,
3052                                           const InitializedEntity &Entity,
3053                                           const InitializationKind &Kind,
3054                                           InitListExpr *InitList,
3055                                           InitializationSequence &Sequence)
3056{
3057  // First, catch C++03 where this isn't possible.
3058  if (!S.getLangOptions().CPlusPlus0x) {
3059    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3060    return;
3061  }
3062
3063  QualType DestType = Entity.getType();
3064  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3065  Qualifiers T1Quals;
3066  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3067
3068  // Reference initialization via an initializer list works thus:
3069  // If the initializer list consists of a single element that is
3070  // reference-related to the referenced type, bind directly to that element
3071  // (possibly creating temporaries).
3072  // Otherwise, initialize a temporary with the initializer list and
3073  // bind to that.
3074  if (InitList->getNumInits() == 1) {
3075    Expr *Initializer = InitList->getInit(0);
3076    QualType cv2T2 = Initializer->getType();
3077    Qualifiers T2Quals;
3078    QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3079
3080    // If this fails, creating a temporary wouldn't work either.
3081    if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3082                                                     T1, Sequence))
3083      return;
3084
3085    SourceLocation DeclLoc = Initializer->getLocStart();
3086    bool dummy1, dummy2, dummy3;
3087    Sema::ReferenceCompareResult RefRelationship
3088      = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3089                                       dummy2, dummy3);
3090    if (RefRelationship >= Sema::Ref_Related) {
3091      // Try to bind the reference here.
3092      TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3093                                     T1Quals, cv2T2, T2, T2Quals, Sequence);
3094      if (Sequence)
3095        Sequence.RewrapReferenceInitList(cv1T1, InitList);
3096      return;
3097    }
3098  }
3099
3100  // Not reference-related. Create a temporary and bind to that.
3101  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3102
3103  TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3104  if (Sequence) {
3105    if (DestType->isRValueReferenceType() ||
3106        (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3107      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3108    else
3109      Sequence.SetFailed(
3110          InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3111  }
3112}
3113
3114/// \brief Attempt list initialization (C++0x [dcl.init.list])
3115static void TryListInitialization(Sema &S,
3116                                  const InitializedEntity &Entity,
3117                                  const InitializationKind &Kind,
3118                                  InitListExpr *InitList,
3119                                  InitializationSequence &Sequence) {
3120  QualType DestType = Entity.getType();
3121
3122  // C++ doesn't allow scalar initialization with more than one argument.
3123  // But C99 complex numbers are scalars and it makes sense there.
3124  if (S.getLangOptions().CPlusPlus && DestType->isScalarType() &&
3125      !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3126    Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3127    return;
3128  }
3129  if (DestType->isReferenceType()) {
3130    TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3131    return;
3132  }
3133  if (DestType->isRecordType() && !DestType->isAggregateType()) {
3134    if (S.getLangOptions().CPlusPlus0x)
3135      TryConstructorInitialization(S, Entity, Kind, InitList->getInits(),
3136                                   InitList->getNumInits(), DestType, Sequence,
3137                                   /*FromInitList=*/true);
3138    else
3139      Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
3140    return;
3141  }
3142
3143  InitListChecker CheckInitList(S, Entity, InitList,
3144          DestType, /*VerifyOnly=*/true,
3145          Kind.getKind() != InitializationKind::IK_Direct ||
3146            !S.getLangOptions().CPlusPlus0x);
3147  if (CheckInitList.HadError()) {
3148    Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3149    return;
3150  }
3151
3152  // Add the list initialization step with the built init list.
3153  Sequence.AddListInitializationStep(DestType);
3154}
3155
3156/// \brief Try a reference initialization that involves calling a conversion
3157/// function.
3158static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3159                                             const InitializedEntity &Entity,
3160                                             const InitializationKind &Kind,
3161                                                          Expr *Initializer,
3162                                                          bool AllowRValues,
3163                                             InitializationSequence &Sequence) {
3164  QualType DestType = Entity.getType();
3165  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3166  QualType T1 = cv1T1.getUnqualifiedType();
3167  QualType cv2T2 = Initializer->getType();
3168  QualType T2 = cv2T2.getUnqualifiedType();
3169
3170  bool DerivedToBase;
3171  bool ObjCConversion;
3172  bool ObjCLifetimeConversion;
3173  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3174                                         T1, T2, DerivedToBase,
3175                                         ObjCConversion,
3176                                         ObjCLifetimeConversion) &&
3177         "Must have incompatible references when binding via conversion");
3178  (void)DerivedToBase;
3179  (void)ObjCConversion;
3180  (void)ObjCLifetimeConversion;
3181
3182  // Build the candidate set directly in the initialization sequence
3183  // structure, so that it will persist if we fail.
3184  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3185  CandidateSet.clear();
3186
3187  // Determine whether we are allowed to call explicit constructors or
3188  // explicit conversion operators.
3189  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
3190
3191  const RecordType *T1RecordType = 0;
3192  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3193      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3194    // The type we're converting to is a class type. Enumerate its constructors
3195    // to see if there is a suitable conversion.
3196    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3197
3198    DeclContext::lookup_iterator Con, ConEnd;
3199    for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
3200         Con != ConEnd; ++Con) {
3201      NamedDecl *D = *Con;
3202      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3203
3204      // Find the constructor (which may be a template).
3205      CXXConstructorDecl *Constructor = 0;
3206      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3207      if (ConstructorTmpl)
3208        Constructor = cast<CXXConstructorDecl>(
3209                                         ConstructorTmpl->getTemplatedDecl());
3210      else
3211        Constructor = cast<CXXConstructorDecl>(D);
3212
3213      if (!Constructor->isInvalidDecl() &&
3214          Constructor->isConvertingConstructor(AllowExplicit)) {
3215        if (ConstructorTmpl)
3216          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3217                                         /*ExplicitArgs*/ 0,
3218                                         &Initializer, 1, CandidateSet,
3219                                         /*SuppressUserConversions=*/true);
3220        else
3221          S.AddOverloadCandidate(Constructor, FoundDecl,
3222                                 &Initializer, 1, CandidateSet,
3223                                 /*SuppressUserConversions=*/true);
3224      }
3225    }
3226  }
3227  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3228    return OR_No_Viable_Function;
3229
3230  const RecordType *T2RecordType = 0;
3231  if ((T2RecordType = T2->getAs<RecordType>()) &&
3232      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3233    // The type we're converting from is a class type, enumerate its conversion
3234    // functions.
3235    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3236
3237    const UnresolvedSetImpl *Conversions
3238      = T2RecordDecl->getVisibleConversionFunctions();
3239    for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3240           E = Conversions->end(); I != E; ++I) {
3241      NamedDecl *D = *I;
3242      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3243      if (isa<UsingShadowDecl>(D))
3244        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3245
3246      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3247      CXXConversionDecl *Conv;
3248      if (ConvTemplate)
3249        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3250      else
3251        Conv = cast<CXXConversionDecl>(D);
3252
3253      // If the conversion function doesn't return a reference type,
3254      // it can't be considered for this conversion unless we're allowed to
3255      // consider rvalues.
3256      // FIXME: Do we need to make sure that we only consider conversion
3257      // candidates with reference-compatible results? That might be needed to
3258      // break recursion.
3259      if ((AllowExplicit || !Conv->isExplicit()) &&
3260          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3261        if (ConvTemplate)
3262          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3263                                           ActingDC, Initializer,
3264                                           DestType, CandidateSet);
3265        else
3266          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3267                                   Initializer, DestType, CandidateSet);
3268      }
3269    }
3270  }
3271  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3272    return OR_No_Viable_Function;
3273
3274  SourceLocation DeclLoc = Initializer->getLocStart();
3275
3276  // Perform overload resolution. If it fails, return the failed result.
3277  OverloadCandidateSet::iterator Best;
3278  if (OverloadingResult Result
3279        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3280    return Result;
3281
3282  FunctionDecl *Function = Best->Function;
3283
3284  // This is the overload that will actually be used for the initialization, so
3285  // mark it as used.
3286  S.MarkDeclarationReferenced(DeclLoc, Function);
3287
3288  // Compute the returned type of the conversion.
3289  if (isa<CXXConversionDecl>(Function))
3290    T2 = Function->getResultType();
3291  else
3292    T2 = cv1T1;
3293
3294  // Add the user-defined conversion step.
3295  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3296  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3297                                 T2.getNonLValueExprType(S.Context),
3298                                 HadMultipleCandidates);
3299
3300  // Determine whether we need to perform derived-to-base or
3301  // cv-qualification adjustments.
3302  ExprValueKind VK = VK_RValue;
3303  if (T2->isLValueReferenceType())
3304    VK = VK_LValue;
3305  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3306    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3307
3308  bool NewDerivedToBase = false;
3309  bool NewObjCConversion = false;
3310  bool NewObjCLifetimeConversion = false;
3311  Sema::ReferenceCompareResult NewRefRelationship
3312    = S.CompareReferenceRelationship(DeclLoc, T1,
3313                                     T2.getNonLValueExprType(S.Context),
3314                                     NewDerivedToBase, NewObjCConversion,
3315                                     NewObjCLifetimeConversion);
3316  if (NewRefRelationship == Sema::Ref_Incompatible) {
3317    // If the type we've converted to is not reference-related to the
3318    // type we're looking for, then there is another conversion step
3319    // we need to perform to produce a temporary of the right type
3320    // that we'll be binding to.
3321    ImplicitConversionSequence ICS;
3322    ICS.setStandard();
3323    ICS.Standard = Best->FinalConversion;
3324    T2 = ICS.Standard.getToType(2);
3325    Sequence.AddConversionSequenceStep(ICS, T2);
3326  } else if (NewDerivedToBase)
3327    Sequence.AddDerivedToBaseCastStep(
3328                                S.Context.getQualifiedType(T1,
3329                                  T2.getNonReferenceType().getQualifiers()),
3330                                      VK);
3331  else if (NewObjCConversion)
3332    Sequence.AddObjCObjectConversionStep(
3333                                S.Context.getQualifiedType(T1,
3334                                  T2.getNonReferenceType().getQualifiers()));
3335
3336  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3337    Sequence.AddQualificationConversionStep(cv1T1, VK);
3338
3339  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3340  return OR_Success;
3341}
3342
3343static void CheckCXX98CompatAccessibleCopy(Sema &S,
3344                                           const InitializedEntity &Entity,
3345                                           Expr *CurInitExpr);
3346
3347/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3348static void TryReferenceInitialization(Sema &S,
3349                                       const InitializedEntity &Entity,
3350                                       const InitializationKind &Kind,
3351                                       Expr *Initializer,
3352                                       InitializationSequence &Sequence) {
3353  QualType DestType = Entity.getType();
3354  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3355  Qualifiers T1Quals;
3356  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3357  QualType cv2T2 = Initializer->getType();
3358  Qualifiers T2Quals;
3359  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3360
3361  // If the initializer is the address of an overloaded function, try
3362  // to resolve the overloaded function. If all goes well, T2 is the
3363  // type of the resulting function.
3364  if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3365                                                   T1, Sequence))
3366    return;
3367
3368  // Delegate everything else to a subfunction.
3369  TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3370                                 T1Quals, cv2T2, T2, T2Quals, Sequence);
3371}
3372
3373/// \brief Reference initialization without resolving overloaded functions.
3374static void TryReferenceInitializationCore(Sema &S,
3375                                           const InitializedEntity &Entity,
3376                                           const InitializationKind &Kind,
3377                                           Expr *Initializer,
3378                                           QualType cv1T1, QualType T1,
3379                                           Qualifiers T1Quals,
3380                                           QualType cv2T2, QualType T2,
3381                                           Qualifiers T2Quals,
3382                                           InitializationSequence &Sequence) {
3383  QualType DestType = Entity.getType();
3384  SourceLocation DeclLoc = Initializer->getLocStart();
3385  // Compute some basic properties of the types and the initializer.
3386  bool isLValueRef = DestType->isLValueReferenceType();
3387  bool isRValueRef = !isLValueRef;
3388  bool DerivedToBase = false;
3389  bool ObjCConversion = false;
3390  bool ObjCLifetimeConversion = false;
3391  Expr::Classification InitCategory = Initializer->Classify(S.Context);
3392  Sema::ReferenceCompareResult RefRelationship
3393    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3394                                     ObjCConversion, ObjCLifetimeConversion);
3395
3396  // C++0x [dcl.init.ref]p5:
3397  //   A reference to type "cv1 T1" is initialized by an expression of type
3398  //   "cv2 T2" as follows:
3399  //
3400  //     - If the reference is an lvalue reference and the initializer
3401  //       expression
3402  // Note the analogous bullet points for rvlaue refs to functions. Because
3403  // there are no function rvalues in C++, rvalue refs to functions are treated
3404  // like lvalue refs.
3405  OverloadingResult ConvOvlResult = OR_Success;
3406  bool T1Function = T1->isFunctionType();
3407  if (isLValueRef || T1Function) {
3408    if (InitCategory.isLValue() &&
3409        (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3410         (Kind.isCStyleOrFunctionalCast() &&
3411          RefRelationship == Sema::Ref_Related))) {
3412      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3413      //     reference-compatible with "cv2 T2," or
3414      //
3415      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3416      // bit-field when we're determining whether the reference initialization
3417      // can occur. However, we do pay attention to whether it is a bit-field
3418      // to decide whether we're actually binding to a temporary created from
3419      // the bit-field.
3420      if (DerivedToBase)
3421        Sequence.AddDerivedToBaseCastStep(
3422                         S.Context.getQualifiedType(T1, T2Quals),
3423                         VK_LValue);
3424      else if (ObjCConversion)
3425        Sequence.AddObjCObjectConversionStep(
3426                                     S.Context.getQualifiedType(T1, T2Quals));
3427
3428      if (T1Quals != T2Quals)
3429        Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
3430      bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
3431        (Initializer->getBitField() || Initializer->refersToVectorElement());
3432      Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
3433      return;
3434    }
3435
3436    //     - has a class type (i.e., T2 is a class type), where T1 is not
3437    //       reference-related to T2, and can be implicitly converted to an
3438    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3439    //       with "cv3 T3" (this conversion is selected by enumerating the
3440    //       applicable conversion functions (13.3.1.6) and choosing the best
3441    //       one through overload resolution (13.3)),
3442    // If we have an rvalue ref to function type here, the rhs must be
3443    // an rvalue.
3444    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3445        (isLValueRef || InitCategory.isRValue())) {
3446      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3447                                                       Initializer,
3448                                                   /*AllowRValues=*/isRValueRef,
3449                                                       Sequence);
3450      if (ConvOvlResult == OR_Success)
3451        return;
3452      if (ConvOvlResult != OR_No_Viable_Function) {
3453        Sequence.SetOverloadFailure(
3454                      InitializationSequence::FK_ReferenceInitOverloadFailed,
3455                                    ConvOvlResult);
3456      }
3457    }
3458  }
3459
3460  //     - Otherwise, the reference shall be an lvalue reference to a
3461  //       non-volatile const type (i.e., cv1 shall be const), or the reference
3462  //       shall be an rvalue reference.
3463  if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3464    if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3465      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3466    else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3467      Sequence.SetOverloadFailure(
3468                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3469                                  ConvOvlResult);
3470    else
3471      Sequence.SetFailed(InitCategory.isLValue()
3472        ? (RefRelationship == Sema::Ref_Related
3473             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3474             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3475        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3476
3477    return;
3478  }
3479
3480  //    - If the initializer expression
3481  //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3482  //        "cv1 T1" is reference-compatible with "cv2 T2"
3483  // Note: functions are handled below.
3484  if (!T1Function &&
3485      (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3486       (Kind.isCStyleOrFunctionalCast() &&
3487        RefRelationship == Sema::Ref_Related)) &&
3488      (InitCategory.isXValue() ||
3489       (InitCategory.isPRValue() && T2->isRecordType()) ||
3490       (InitCategory.isPRValue() && T2->isArrayType()))) {
3491    ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3492    if (InitCategory.isPRValue() && T2->isRecordType()) {
3493      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3494      // compiler the freedom to perform a copy here or bind to the
3495      // object, while C++0x requires that we bind directly to the
3496      // object. Hence, we always bind to the object without making an
3497      // extra copy. However, in C++03 requires that we check for the
3498      // presence of a suitable copy constructor:
3499      //
3500      //   The constructor that would be used to make the copy shall
3501      //   be callable whether or not the copy is actually done.
3502      if (!S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt)
3503        Sequence.AddExtraneousCopyToTemporary(cv2T2);
3504      else if (S.getLangOptions().CPlusPlus0x)
3505        CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3506    }
3507
3508    if (DerivedToBase)
3509      Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3510                                        ValueKind);
3511    else if (ObjCConversion)
3512      Sequence.AddObjCObjectConversionStep(
3513                                       S.Context.getQualifiedType(T1, T2Quals));
3514
3515    if (T1Quals != T2Quals)
3516      Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
3517    Sequence.AddReferenceBindingStep(cv1T1,
3518                                 /*bindingTemporary=*/InitCategory.isPRValue());
3519    return;
3520  }
3521
3522  //       - has a class type (i.e., T2 is a class type), where T1 is not
3523  //         reference-related to T2, and can be implicitly converted to an
3524  //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3525  //         where "cv1 T1" is reference-compatible with "cv3 T3",
3526  if (T2->isRecordType()) {
3527    if (RefRelationship == Sema::Ref_Incompatible) {
3528      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3529                                                       Kind, Initializer,
3530                                                       /*AllowRValues=*/true,
3531                                                       Sequence);
3532      if (ConvOvlResult)
3533        Sequence.SetOverloadFailure(
3534                      InitializationSequence::FK_ReferenceInitOverloadFailed,
3535                                    ConvOvlResult);
3536
3537      return;
3538    }
3539
3540    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3541    return;
3542  }
3543
3544  //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3545  //        from the initializer expression using the rules for a non-reference
3546  //        copy initialization (8.5). The reference is then bound to the
3547  //        temporary. [...]
3548
3549  // Determine whether we are allowed to call explicit constructors or
3550  // explicit conversion operators.
3551  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
3552
3553  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3554
3555  ImplicitConversionSequence ICS
3556    = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3557                              /*SuppressUserConversions*/ false,
3558                              AllowExplicit,
3559                              /*FIXME:InOverloadResolution=*/false,
3560                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3561                              /*AllowObjCWritebackConversion=*/false);
3562
3563  if (ICS.isBad()) {
3564    // FIXME: Use the conversion function set stored in ICS to turn
3565    // this into an overloading ambiguity diagnostic. However, we need
3566    // to keep that set as an OverloadCandidateSet rather than as some
3567    // other kind of set.
3568    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3569      Sequence.SetOverloadFailure(
3570                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3571                                  ConvOvlResult);
3572    else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3573      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3574    else
3575      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3576    return;
3577  } else {
3578    Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3579  }
3580
3581  //        [...] If T1 is reference-related to T2, cv1 must be the
3582  //        same cv-qualification as, or greater cv-qualification
3583  //        than, cv2; otherwise, the program is ill-formed.
3584  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3585  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3586  if (RefRelationship == Sema::Ref_Related &&
3587      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3588    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3589    return;
3590  }
3591
3592  //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3593  //   reference, the initializer expression shall not be an lvalue.
3594  if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3595      InitCategory.isLValue()) {
3596    Sequence.SetFailed(
3597                    InitializationSequence::FK_RValueReferenceBindingToLValue);
3598    return;
3599  }
3600
3601  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3602  return;
3603}
3604
3605/// \brief Attempt character array initialization from a string literal
3606/// (C++ [dcl.init.string], C99 6.7.8).
3607static void TryStringLiteralInitialization(Sema &S,
3608                                           const InitializedEntity &Entity,
3609                                           const InitializationKind &Kind,
3610                                           Expr *Initializer,
3611                                       InitializationSequence &Sequence) {
3612  Sequence.AddStringInitStep(Entity.getType());
3613}
3614
3615/// \brief Attempt value initialization (C++ [dcl.init]p7).
3616static void TryValueInitialization(Sema &S,
3617                                   const InitializedEntity &Entity,
3618                                   const InitializationKind &Kind,
3619                                   InitializationSequence &Sequence) {
3620  // C++ [dcl.init]p5:
3621  //
3622  //   To value-initialize an object of type T means:
3623  QualType T = Entity.getType();
3624
3625  //     -- if T is an array type, then each element is value-initialized;
3626  while (const ArrayType *AT = S.Context.getAsArrayType(T))
3627    T = AT->getElementType();
3628
3629  if (const RecordType *RT = T->getAs<RecordType>()) {
3630    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3631      // -- if T is a class type (clause 9) with a user-declared
3632      //    constructor (12.1), then the default constructor for T is
3633      //    called (and the initialization is ill-formed if T has no
3634      //    accessible default constructor);
3635      //
3636      // FIXME: we really want to refer to a single subobject of the array,
3637      // but Entity doesn't have a way to capture that (yet).
3638      if (ClassDecl->hasUserDeclaredConstructor())
3639        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
3640
3641      // -- if T is a (possibly cv-qualified) non-union class type
3642      //    without a user-provided constructor, then the object is
3643      //    zero-initialized and, if T's implicitly-declared default
3644      //    constructor is non-trivial, that constructor is called.
3645      if ((ClassDecl->getTagKind() == TTK_Class ||
3646           ClassDecl->getTagKind() == TTK_Struct)) {
3647        Sequence.AddZeroInitializationStep(Entity.getType());
3648        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
3649      }
3650    }
3651  }
3652
3653  Sequence.AddZeroInitializationStep(Entity.getType());
3654}
3655
3656/// \brief Attempt default initialization (C++ [dcl.init]p6).
3657static void TryDefaultInitialization(Sema &S,
3658                                     const InitializedEntity &Entity,
3659                                     const InitializationKind &Kind,
3660                                     InitializationSequence &Sequence) {
3661  assert(Kind.getKind() == InitializationKind::IK_Default);
3662
3663  // C++ [dcl.init]p6:
3664  //   To default-initialize an object of type T means:
3665  //     - if T is an array type, each element is default-initialized;
3666  QualType DestType = S.Context.getBaseElementType(Entity.getType());
3667
3668  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3669  //       constructor for T is called (and the initialization is ill-formed if
3670  //       T has no accessible default constructor);
3671  if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
3672    TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
3673    return;
3674  }
3675
3676  //     - otherwise, no initialization is performed.
3677
3678  //   If a program calls for the default initialization of an object of
3679  //   a const-qualified type T, T shall be a class type with a user-provided
3680  //   default constructor.
3681  if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus) {
3682    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3683    return;
3684  }
3685
3686  // If the destination type has a lifetime property, zero-initialize it.
3687  if (DestType.getQualifiers().hasObjCLifetime()) {
3688    Sequence.AddZeroInitializationStep(Entity.getType());
3689    return;
3690  }
3691}
3692
3693/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3694/// which enumerates all conversion functions and performs overload resolution
3695/// to select the best.
3696static void TryUserDefinedConversion(Sema &S,
3697                                     const InitializedEntity &Entity,
3698                                     const InitializationKind &Kind,
3699                                     Expr *Initializer,
3700                                     InitializationSequence &Sequence) {
3701  QualType DestType = Entity.getType();
3702  assert(!DestType->isReferenceType() && "References are handled elsewhere");
3703  QualType SourceType = Initializer->getType();
3704  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3705         "Must have a class type to perform a user-defined conversion");
3706
3707  // Build the candidate set directly in the initialization sequence
3708  // structure, so that it will persist if we fail.
3709  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3710  CandidateSet.clear();
3711
3712  // Determine whether we are allowed to call explicit constructors or
3713  // explicit conversion operators.
3714  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
3715
3716  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
3717    // The type we're converting to is a class type. Enumerate its constructors
3718    // to see if there is a suitable conversion.
3719    CXXRecordDecl *DestRecordDecl
3720      = cast<CXXRecordDecl>(DestRecordType->getDecl());
3721
3722    // Try to complete the type we're converting to.
3723    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3724      DeclContext::lookup_iterator Con, ConEnd;
3725      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
3726           Con != ConEnd; ++Con) {
3727        NamedDecl *D = *Con;
3728        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3729
3730        // Find the constructor (which may be a template).
3731        CXXConstructorDecl *Constructor = 0;
3732        FunctionTemplateDecl *ConstructorTmpl
3733          = dyn_cast<FunctionTemplateDecl>(D);
3734        if (ConstructorTmpl)
3735          Constructor = cast<CXXConstructorDecl>(
3736                                           ConstructorTmpl->getTemplatedDecl());
3737        else
3738          Constructor = cast<CXXConstructorDecl>(D);
3739
3740        if (!Constructor->isInvalidDecl() &&
3741            Constructor->isConvertingConstructor(AllowExplicit)) {
3742          if (ConstructorTmpl)
3743            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3744                                           /*ExplicitArgs*/ 0,
3745                                           &Initializer, 1, CandidateSet,
3746                                           /*SuppressUserConversions=*/true);
3747          else
3748            S.AddOverloadCandidate(Constructor, FoundDecl,
3749                                   &Initializer, 1, CandidateSet,
3750                                   /*SuppressUserConversions=*/true);
3751        }
3752      }
3753    }
3754  }
3755
3756  SourceLocation DeclLoc = Initializer->getLocStart();
3757
3758  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3759    // The type we're converting from is a class type, enumerate its conversion
3760    // functions.
3761
3762    // We can only enumerate the conversion functions for a complete type; if
3763    // the type isn't complete, simply skip this step.
3764    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3765      CXXRecordDecl *SourceRecordDecl
3766        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3767
3768      const UnresolvedSetImpl *Conversions
3769        = SourceRecordDecl->getVisibleConversionFunctions();
3770      for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3771           E = Conversions->end();
3772           I != E; ++I) {
3773        NamedDecl *D = *I;
3774        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3775        if (isa<UsingShadowDecl>(D))
3776          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3777
3778        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3779        CXXConversionDecl *Conv;
3780        if (ConvTemplate)
3781          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3782        else
3783          Conv = cast<CXXConversionDecl>(D);
3784
3785        if (AllowExplicit || !Conv->isExplicit()) {
3786          if (ConvTemplate)
3787            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3788                                             ActingDC, Initializer, DestType,
3789                                             CandidateSet);
3790          else
3791            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3792                                     Initializer, DestType, CandidateSet);
3793        }
3794      }
3795    }
3796  }
3797
3798  // Perform overload resolution. If it fails, return the failed result.
3799  OverloadCandidateSet::iterator Best;
3800  if (OverloadingResult Result
3801        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3802    Sequence.SetOverloadFailure(
3803                        InitializationSequence::FK_UserConversionOverloadFailed,
3804                                Result);
3805    return;
3806  }
3807
3808  FunctionDecl *Function = Best->Function;
3809  S.MarkDeclarationReferenced(DeclLoc, Function);
3810  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3811
3812  if (isa<CXXConstructorDecl>(Function)) {
3813    // Add the user-defined conversion step. Any cv-qualification conversion is
3814    // subsumed by the initialization.
3815    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
3816                                   HadMultipleCandidates);
3817    return;
3818  }
3819
3820  // Add the user-defined conversion step that calls the conversion function.
3821  QualType ConvType = Function->getCallResultType();
3822  if (ConvType->getAs<RecordType>()) {
3823    // If we're converting to a class type, there may be an copy if
3824    // the resulting temporary object (possible to create an object of
3825    // a base class type). That copy is not a separate conversion, so
3826    // we just make a note of the actual destination type (possibly a
3827    // base class of the type returned by the conversion function) and
3828    // let the user-defined conversion step handle the conversion.
3829    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
3830                                   HadMultipleCandidates);
3831    return;
3832  }
3833
3834  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
3835                                 HadMultipleCandidates);
3836
3837  // If the conversion following the call to the conversion function
3838  // is interesting, add it as a separate step.
3839  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3840      Best->FinalConversion.Third) {
3841    ImplicitConversionSequence ICS;
3842    ICS.setStandard();
3843    ICS.Standard = Best->FinalConversion;
3844    Sequence.AddConversionSequenceStep(ICS, DestType);
3845  }
3846}
3847
3848/// The non-zero enum values here are indexes into diagnostic alternatives.
3849enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
3850
3851/// Determines whether this expression is an acceptable ICR source.
3852static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
3853                                         bool isAddressOf) {
3854  // Skip parens.
3855  e = e->IgnoreParens();
3856
3857  // Skip address-of nodes.
3858  if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
3859    if (op->getOpcode() == UO_AddrOf)
3860      return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true);
3861
3862  // Skip certain casts.
3863  } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
3864    switch (ce->getCastKind()) {
3865    case CK_Dependent:
3866    case CK_BitCast:
3867    case CK_LValueBitCast:
3868    case CK_NoOp:
3869      return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf);
3870
3871    case CK_ArrayToPointerDecay:
3872      return IIK_nonscalar;
3873
3874    case CK_NullToPointer:
3875      return IIK_okay;
3876
3877    default:
3878      break;
3879    }
3880
3881  // If we have a declaration reference, it had better be a local variable.
3882  } else if (isa<DeclRefExpr>(e) || isa<BlockDeclRefExpr>(e)) {
3883    if (!isAddressOf) return IIK_nonlocal;
3884
3885    VarDecl *var;
3886    if (isa<DeclRefExpr>(e)) {
3887      var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
3888      if (!var) return IIK_nonlocal;
3889    } else {
3890      var = cast<BlockDeclRefExpr>(e)->getDecl();
3891    }
3892
3893    return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
3894
3895  // If we have a conditional operator, check both sides.
3896  } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
3897    if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf))
3898      return iik;
3899
3900    return isInvalidICRSource(C, cond->getRHS(), isAddressOf);
3901
3902  // These are never scalar.
3903  } else if (isa<ArraySubscriptExpr>(e)) {
3904    return IIK_nonscalar;
3905
3906  // Otherwise, it needs to be a null pointer constant.
3907  } else {
3908    return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
3909            ? IIK_okay : IIK_nonlocal);
3910  }
3911
3912  return IIK_nonlocal;
3913}
3914
3915/// Check whether the given expression is a valid operand for an
3916/// indirect copy/restore.
3917static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
3918  assert(src->isRValue());
3919
3920  InvalidICRKind iik = isInvalidICRSource(S.Context, src, false);
3921  if (iik == IIK_okay) return;
3922
3923  S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
3924    << ((unsigned) iik - 1)  // shift index into diagnostic explanations
3925    << src->getSourceRange();
3926}
3927
3928/// \brief Determine whether we have compatible array types for the
3929/// purposes of GNU by-copy array initialization.
3930static bool hasCompatibleArrayTypes(ASTContext &Context,
3931                                    const ArrayType *Dest,
3932                                    const ArrayType *Source) {
3933  // If the source and destination array types are equivalent, we're
3934  // done.
3935  if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
3936    return true;
3937
3938  // Make sure that the element types are the same.
3939  if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
3940    return false;
3941
3942  // The only mismatch we allow is when the destination is an
3943  // incomplete array type and the source is a constant array type.
3944  return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
3945}
3946
3947static bool tryObjCWritebackConversion(Sema &S,
3948                                       InitializationSequence &Sequence,
3949                                       const InitializedEntity &Entity,
3950                                       Expr *Initializer) {
3951  bool ArrayDecay = false;
3952  QualType ArgType = Initializer->getType();
3953  QualType ArgPointee;
3954  if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
3955    ArrayDecay = true;
3956    ArgPointee = ArgArrayType->getElementType();
3957    ArgType = S.Context.getPointerType(ArgPointee);
3958  }
3959
3960  // Handle write-back conversion.
3961  QualType ConvertedArgType;
3962  if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
3963                                   ConvertedArgType))
3964    return false;
3965
3966  // We should copy unless we're passing to an argument explicitly
3967  // marked 'out'.
3968  bool ShouldCopy = true;
3969  if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
3970    ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
3971
3972  // Do we need an lvalue conversion?
3973  if (ArrayDecay || Initializer->isGLValue()) {
3974    ImplicitConversionSequence ICS;
3975    ICS.setStandard();
3976    ICS.Standard.setAsIdentityConversion();
3977
3978    QualType ResultType;
3979    if (ArrayDecay) {
3980      ICS.Standard.First = ICK_Array_To_Pointer;
3981      ResultType = S.Context.getPointerType(ArgPointee);
3982    } else {
3983      ICS.Standard.First = ICK_Lvalue_To_Rvalue;
3984      ResultType = Initializer->getType().getNonLValueExprType(S.Context);
3985    }
3986
3987    Sequence.AddConversionSequenceStep(ICS, ResultType);
3988  }
3989
3990  Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
3991  return true;
3992}
3993
3994InitializationSequence::InitializationSequence(Sema &S,
3995                                               const InitializedEntity &Entity,
3996                                               const InitializationKind &Kind,
3997                                               Expr **Args,
3998                                               unsigned NumArgs)
3999    : FailedCandidateSet(Kind.getLocation()) {
4000  ASTContext &Context = S.Context;
4001
4002  // C++0x [dcl.init]p16:
4003  //   The semantics of initializers are as follows. The destination type is
4004  //   the type of the object or reference being initialized and the source
4005  //   type is the type of the initializer expression. The source type is not
4006  //   defined when the initializer is a braced-init-list or when it is a
4007  //   parenthesized list of expressions.
4008  QualType DestType = Entity.getType();
4009
4010  if (DestType->isDependentType() ||
4011      Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
4012    SequenceKind = DependentSequence;
4013    return;
4014  }
4015
4016  // Almost everything is a normal sequence.
4017  setSequenceKind(NormalSequence);
4018
4019  for (unsigned I = 0; I != NumArgs; ++I)
4020    if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4021      // FIXME: should we be doing this here?
4022      ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4023      if (result.isInvalid()) {
4024        SetFailed(FK_PlaceholderType);
4025        return;
4026      }
4027      Args[I] = result.take();
4028    }
4029
4030
4031  QualType SourceType;
4032  Expr *Initializer = 0;
4033  if (NumArgs == 1) {
4034    Initializer = Args[0];
4035    if (!isa<InitListExpr>(Initializer))
4036      SourceType = Initializer->getType();
4037  }
4038
4039  //     - If the initializer is a braced-init-list, the object is
4040  //       list-initialized (8.5.4).
4041  if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4042    TryListInitialization(S, Entity, Kind, InitList, *this);
4043    return;
4044  }
4045
4046  //     - If the destination type is a reference type, see 8.5.3.
4047  if (DestType->isReferenceType()) {
4048    // C++0x [dcl.init.ref]p1:
4049    //   A variable declared to be a T& or T&&, that is, "reference to type T"
4050    //   (8.3.2), shall be initialized by an object, or function, of type T or
4051    //   by an object that can be converted into a T.
4052    // (Therefore, multiple arguments are not permitted.)
4053    if (NumArgs != 1)
4054      SetFailed(FK_TooManyInitsForReference);
4055    else
4056      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4057    return;
4058  }
4059
4060  //     - If the initializer is (), the object is value-initialized.
4061  if (Kind.getKind() == InitializationKind::IK_Value ||
4062      (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
4063    TryValueInitialization(S, Entity, Kind, *this);
4064    return;
4065  }
4066
4067  // Handle default initialization.
4068  if (Kind.getKind() == InitializationKind::IK_Default) {
4069    TryDefaultInitialization(S, Entity, Kind, *this);
4070    return;
4071  }
4072
4073  //     - If the destination type is an array of characters, an array of
4074  //       char16_t, an array of char32_t, or an array of wchar_t, and the
4075  //       initializer is a string literal, see 8.5.2.
4076  //     - Otherwise, if the destination type is an array, the program is
4077  //       ill-formed.
4078  if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4079    if (Initializer && isa<VariableArrayType>(DestAT)) {
4080      SetFailed(FK_VariableLengthArrayHasInitializer);
4081      return;
4082    }
4083
4084    if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
4085      TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4086      return;
4087    }
4088
4089    // Note: as an GNU C extension, we allow initialization of an
4090    // array from a compound literal that creates an array of the same
4091    // type, so long as the initializer has no side effects.
4092    if (!S.getLangOptions().CPlusPlus && Initializer &&
4093        isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4094        Initializer->getType()->isArrayType()) {
4095      const ArrayType *SourceAT
4096        = Context.getAsArrayType(Initializer->getType());
4097      if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4098        SetFailed(FK_ArrayTypeMismatch);
4099      else if (Initializer->HasSideEffects(S.Context))
4100        SetFailed(FK_NonConstantArrayInit);
4101      else {
4102        AddArrayInitStep(DestType);
4103      }
4104    } else if (DestAT->getElementType()->isAnyCharacterType())
4105      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4106    else
4107      SetFailed(FK_ArrayNeedsInitList);
4108
4109    return;
4110  }
4111
4112  // Determine whether we should consider writeback conversions for
4113  // Objective-C ARC.
4114  bool allowObjCWritebackConversion = S.getLangOptions().ObjCAutoRefCount &&
4115    Entity.getKind() == InitializedEntity::EK_Parameter;
4116
4117  // We're at the end of the line for C: it's either a write-back conversion
4118  // or it's a C assignment. There's no need to check anything else.
4119  if (!S.getLangOptions().CPlusPlus) {
4120    // If allowed, check whether this is an Objective-C writeback conversion.
4121    if (allowObjCWritebackConversion &&
4122        tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4123      return;
4124    }
4125
4126    // Handle initialization in C
4127    AddCAssignmentStep(DestType);
4128    MaybeProduceObjCObject(S, *this, Entity);
4129    return;
4130  }
4131
4132  assert(S.getLangOptions().CPlusPlus);
4133
4134  //     - If the destination type is a (possibly cv-qualified) class type:
4135  if (DestType->isRecordType()) {
4136    //     - If the initialization is direct-initialization, or if it is
4137    //       copy-initialization where the cv-unqualified version of the
4138    //       source type is the same class as, or a derived class of, the
4139    //       class of the destination, constructors are considered. [...]
4140    if (Kind.getKind() == InitializationKind::IK_Direct ||
4141        (Kind.getKind() == InitializationKind::IK_Copy &&
4142         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4143          S.IsDerivedFrom(SourceType, DestType))))
4144      TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
4145                                   Entity.getType(), *this);
4146    //     - Otherwise (i.e., for the remaining copy-initialization cases),
4147    //       user-defined conversion sequences that can convert from the source
4148    //       type to the destination type or (when a conversion function is
4149    //       used) to a derived class thereof are enumerated as described in
4150    //       13.3.1.4, and the best one is chosen through overload resolution
4151    //       (13.3).
4152    else
4153      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4154    return;
4155  }
4156
4157  if (NumArgs > 1) {
4158    SetFailed(FK_TooManyInitsForScalar);
4159    return;
4160  }
4161  assert(NumArgs == 1 && "Zero-argument case handled above");
4162
4163  //    - Otherwise, if the source type is a (possibly cv-qualified) class
4164  //      type, conversion functions are considered.
4165  if (!SourceType.isNull() && SourceType->isRecordType()) {
4166    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4167    MaybeProduceObjCObject(S, *this, Entity);
4168    return;
4169  }
4170
4171  //    - Otherwise, the initial value of the object being initialized is the
4172  //      (possibly converted) value of the initializer expression. Standard
4173  //      conversions (Clause 4) will be used, if necessary, to convert the
4174  //      initializer expression to the cv-unqualified version of the
4175  //      destination type; no user-defined conversions are considered.
4176
4177  ImplicitConversionSequence ICS
4178    = S.TryImplicitConversion(Initializer, Entity.getType(),
4179                              /*SuppressUserConversions*/true,
4180                              /*AllowExplicitConversions*/ false,
4181                              /*InOverloadResolution*/ false,
4182                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4183                              allowObjCWritebackConversion);
4184
4185  if (ICS.isStandard() &&
4186      ICS.Standard.Second == ICK_Writeback_Conversion) {
4187    // Objective-C ARC writeback conversion.
4188
4189    // We should copy unless we're passing to an argument explicitly
4190    // marked 'out'.
4191    bool ShouldCopy = true;
4192    if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4193      ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4194
4195    // If there was an lvalue adjustment, add it as a separate conversion.
4196    if (ICS.Standard.First == ICK_Array_To_Pointer ||
4197        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4198      ImplicitConversionSequence LvalueICS;
4199      LvalueICS.setStandard();
4200      LvalueICS.Standard.setAsIdentityConversion();
4201      LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4202      LvalueICS.Standard.First = ICS.Standard.First;
4203      AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4204    }
4205
4206    AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4207  } else if (ICS.isBad()) {
4208    DeclAccessPair dap;
4209    if (Initializer->getType() == Context.OverloadTy &&
4210          !S.ResolveAddressOfOverloadedFunction(Initializer
4211                      , DestType, false, dap))
4212      SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4213    else
4214      SetFailed(InitializationSequence::FK_ConversionFailed);
4215  } else {
4216    AddConversionSequenceStep(ICS, Entity.getType());
4217
4218    MaybeProduceObjCObject(S, *this, Entity);
4219  }
4220}
4221
4222InitializationSequence::~InitializationSequence() {
4223  for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4224                                          StepEnd = Steps.end();
4225       Step != StepEnd; ++Step)
4226    Step->Destroy();
4227}
4228
4229//===----------------------------------------------------------------------===//
4230// Perform initialization
4231//===----------------------------------------------------------------------===//
4232static Sema::AssignmentAction
4233getAssignmentAction(const InitializedEntity &Entity) {
4234  switch(Entity.getKind()) {
4235  case InitializedEntity::EK_Variable:
4236  case InitializedEntity::EK_New:
4237  case InitializedEntity::EK_Exception:
4238  case InitializedEntity::EK_Base:
4239  case InitializedEntity::EK_Delegating:
4240    return Sema::AA_Initializing;
4241
4242  case InitializedEntity::EK_Parameter:
4243    if (Entity.getDecl() &&
4244        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4245      return Sema::AA_Sending;
4246
4247    return Sema::AA_Passing;
4248
4249  case InitializedEntity::EK_Result:
4250    return Sema::AA_Returning;
4251
4252  case InitializedEntity::EK_Temporary:
4253    // FIXME: Can we tell apart casting vs. converting?
4254    return Sema::AA_Casting;
4255
4256  case InitializedEntity::EK_Member:
4257  case InitializedEntity::EK_ArrayElement:
4258  case InitializedEntity::EK_VectorElement:
4259  case InitializedEntity::EK_ComplexElement:
4260  case InitializedEntity::EK_BlockElement:
4261    return Sema::AA_Initializing;
4262  }
4263
4264  llvm_unreachable("Invalid EntityKind!");
4265}
4266
4267/// \brief Whether we should binding a created object as a temporary when
4268/// initializing the given entity.
4269static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4270  switch (Entity.getKind()) {
4271  case InitializedEntity::EK_ArrayElement:
4272  case InitializedEntity::EK_Member:
4273  case InitializedEntity::EK_Result:
4274  case InitializedEntity::EK_New:
4275  case InitializedEntity::EK_Variable:
4276  case InitializedEntity::EK_Base:
4277  case InitializedEntity::EK_Delegating:
4278  case InitializedEntity::EK_VectorElement:
4279  case InitializedEntity::EK_ComplexElement:
4280  case InitializedEntity::EK_Exception:
4281  case InitializedEntity::EK_BlockElement:
4282    return false;
4283
4284  case InitializedEntity::EK_Parameter:
4285  case InitializedEntity::EK_Temporary:
4286    return true;
4287  }
4288
4289  llvm_unreachable("missed an InitializedEntity kind?");
4290}
4291
4292/// \brief Whether the given entity, when initialized with an object
4293/// created for that initialization, requires destruction.
4294static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4295  switch (Entity.getKind()) {
4296    case InitializedEntity::EK_Member:
4297    case InitializedEntity::EK_Result:
4298    case InitializedEntity::EK_New:
4299    case InitializedEntity::EK_Base:
4300    case InitializedEntity::EK_Delegating:
4301    case InitializedEntity::EK_VectorElement:
4302    case InitializedEntity::EK_ComplexElement:
4303    case InitializedEntity::EK_BlockElement:
4304      return false;
4305
4306    case InitializedEntity::EK_Variable:
4307    case InitializedEntity::EK_Parameter:
4308    case InitializedEntity::EK_Temporary:
4309    case InitializedEntity::EK_ArrayElement:
4310    case InitializedEntity::EK_Exception:
4311      return true;
4312  }
4313
4314  llvm_unreachable("missed an InitializedEntity kind?");
4315}
4316
4317/// \brief Look for copy and move constructors and constructor templates, for
4318/// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4319static void LookupCopyAndMoveConstructors(Sema &S,
4320                                          OverloadCandidateSet &CandidateSet,
4321                                          CXXRecordDecl *Class,
4322                                          Expr *CurInitExpr) {
4323  DeclContext::lookup_iterator Con, ConEnd;
4324  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
4325       Con != ConEnd; ++Con) {
4326    CXXConstructorDecl *Constructor = 0;
4327
4328    if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
4329      // Handle copy/moveconstructors, only.
4330      if (!Constructor || Constructor->isInvalidDecl() ||
4331          !Constructor->isCopyOrMoveConstructor() ||
4332          !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4333        continue;
4334
4335      DeclAccessPair FoundDecl
4336        = DeclAccessPair::make(Constructor, Constructor->getAccess());
4337      S.AddOverloadCandidate(Constructor, FoundDecl,
4338                             &CurInitExpr, 1, CandidateSet);
4339      continue;
4340    }
4341
4342    // Handle constructor templates.
4343    FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
4344    if (ConstructorTmpl->isInvalidDecl())
4345      continue;
4346
4347    Constructor = cast<CXXConstructorDecl>(
4348                                         ConstructorTmpl->getTemplatedDecl());
4349    if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4350      continue;
4351
4352    // FIXME: Do we need to limit this to copy-constructor-like
4353    // candidates?
4354    DeclAccessPair FoundDecl
4355      = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4356    S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4357                                   &CurInitExpr, 1, CandidateSet, true);
4358  }
4359}
4360
4361/// \brief Get the location at which initialization diagnostics should appear.
4362static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4363                                           Expr *Initializer) {
4364  switch (Entity.getKind()) {
4365  case InitializedEntity::EK_Result:
4366    return Entity.getReturnLoc();
4367
4368  case InitializedEntity::EK_Exception:
4369    return Entity.getThrowLoc();
4370
4371  case InitializedEntity::EK_Variable:
4372    return Entity.getDecl()->getLocation();
4373
4374  case InitializedEntity::EK_ArrayElement:
4375  case InitializedEntity::EK_Member:
4376  case InitializedEntity::EK_Parameter:
4377  case InitializedEntity::EK_Temporary:
4378  case InitializedEntity::EK_New:
4379  case InitializedEntity::EK_Base:
4380  case InitializedEntity::EK_Delegating:
4381  case InitializedEntity::EK_VectorElement:
4382  case InitializedEntity::EK_ComplexElement:
4383  case InitializedEntity::EK_BlockElement:
4384    return Initializer->getLocStart();
4385  }
4386  llvm_unreachable("missed an InitializedEntity kind?");
4387}
4388
4389/// \brief Make a (potentially elidable) temporary copy of the object
4390/// provided by the given initializer by calling the appropriate copy
4391/// constructor.
4392///
4393/// \param S The Sema object used for type-checking.
4394///
4395/// \param T The type of the temporary object, which must either be
4396/// the type of the initializer expression or a superclass thereof.
4397///
4398/// \param Enter The entity being initialized.
4399///
4400/// \param CurInit The initializer expression.
4401///
4402/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4403/// is permitted in C++03 (but not C++0x) when binding a reference to
4404/// an rvalue.
4405///
4406/// \returns An expression that copies the initializer expression into
4407/// a temporary object, or an error expression if a copy could not be
4408/// created.
4409static ExprResult CopyObject(Sema &S,
4410                             QualType T,
4411                             const InitializedEntity &Entity,
4412                             ExprResult CurInit,
4413                             bool IsExtraneousCopy) {
4414  // Determine which class type we're copying to.
4415  Expr *CurInitExpr = (Expr *)CurInit.get();
4416  CXXRecordDecl *Class = 0;
4417  if (const RecordType *Record = T->getAs<RecordType>())
4418    Class = cast<CXXRecordDecl>(Record->getDecl());
4419  if (!Class)
4420    return move(CurInit);
4421
4422  // C++0x [class.copy]p32:
4423  //   When certain criteria are met, an implementation is allowed to
4424  //   omit the copy/move construction of a class object, even if the
4425  //   copy/move constructor and/or destructor for the object have
4426  //   side effects. [...]
4427  //     - when a temporary class object that has not been bound to a
4428  //       reference (12.2) would be copied/moved to a class object
4429  //       with the same cv-unqualified type, the copy/move operation
4430  //       can be omitted by constructing the temporary object
4431  //       directly into the target of the omitted copy/move
4432  //
4433  // Note that the other three bullets are handled elsewhere. Copy
4434  // elision for return statements and throw expressions are handled as part
4435  // of constructor initialization, while copy elision for exception handlers
4436  // is handled by the run-time.
4437  bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4438  SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4439
4440  // Make sure that the type we are copying is complete.
4441  if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
4442    return move(CurInit);
4443
4444  // Perform overload resolution using the class's copy/move constructors.
4445  // Only consider constructors and constructor templates. Per
4446  // C++0x [dcl.init]p16, second bullet to class types, this initialization
4447  // is direct-initialization.
4448  OverloadCandidateSet CandidateSet(Loc);
4449  LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4450
4451  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4452
4453  OverloadCandidateSet::iterator Best;
4454  switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4455  case OR_Success:
4456    break;
4457
4458  case OR_No_Viable_Function:
4459    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4460           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4461           : diag::err_temp_copy_no_viable)
4462      << (int)Entity.getKind() << CurInitExpr->getType()
4463      << CurInitExpr->getSourceRange();
4464    CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1);
4465    if (!IsExtraneousCopy || S.isSFINAEContext())
4466      return ExprError();
4467    return move(CurInit);
4468
4469  case OR_Ambiguous:
4470    S.Diag(Loc, diag::err_temp_copy_ambiguous)
4471      << (int)Entity.getKind() << CurInitExpr->getType()
4472      << CurInitExpr->getSourceRange();
4473    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1);
4474    return ExprError();
4475
4476  case OR_Deleted:
4477    S.Diag(Loc, diag::err_temp_copy_deleted)
4478      << (int)Entity.getKind() << CurInitExpr->getType()
4479      << CurInitExpr->getSourceRange();
4480    S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4481      << 1 << Best->Function->isDeleted();
4482    return ExprError();
4483  }
4484
4485  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4486  ASTOwningVector<Expr*> ConstructorArgs(S);
4487  CurInit.release(); // Ownership transferred into MultiExprArg, below.
4488
4489  S.CheckConstructorAccess(Loc, Constructor, Entity,
4490                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
4491
4492  if (IsExtraneousCopy) {
4493    // If this is a totally extraneous copy for C++03 reference
4494    // binding purposes, just return the original initialization
4495    // expression. We don't generate an (elided) copy operation here
4496    // because doing so would require us to pass down a flag to avoid
4497    // infinite recursion, where each step adds another extraneous,
4498    // elidable copy.
4499
4500    // Instantiate the default arguments of any extra parameters in
4501    // the selected copy constructor, as if we were going to create a
4502    // proper call to the copy constructor.
4503    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4504      ParmVarDecl *Parm = Constructor->getParamDecl(I);
4505      if (S.RequireCompleteType(Loc, Parm->getType(),
4506                                S.PDiag(diag::err_call_incomplete_argument)))
4507        break;
4508
4509      // Build the default argument expression; we don't actually care
4510      // if this succeeds or not, because this routine will complain
4511      // if there was a problem.
4512      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4513    }
4514
4515    return S.Owned(CurInitExpr);
4516  }
4517
4518  S.MarkDeclarationReferenced(Loc, Constructor);
4519
4520  // Determine the arguments required to actually perform the
4521  // constructor call (we might have derived-to-base conversions, or
4522  // the copy constructor may have default arguments).
4523  if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
4524                                Loc, ConstructorArgs))
4525    return ExprError();
4526
4527  // Actually perform the constructor call.
4528  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4529                                    move_arg(ConstructorArgs),
4530                                    HadMultipleCandidates,
4531                                    /*ZeroInit*/ false,
4532                                    CXXConstructExpr::CK_Complete,
4533                                    SourceRange());
4534
4535  // If we're supposed to bind temporaries, do so.
4536  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4537    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4538  return move(CurInit);
4539}
4540
4541/// \brief Check whether elidable copy construction for binding a reference to
4542/// a temporary would have succeeded if we were building in C++98 mode, for
4543/// -Wc++98-compat.
4544static void CheckCXX98CompatAccessibleCopy(Sema &S,
4545                                           const InitializedEntity &Entity,
4546                                           Expr *CurInitExpr) {
4547  assert(S.getLangOptions().CPlusPlus0x);
4548
4549  const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4550  if (!Record)
4551    return;
4552
4553  SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4554  if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4555        == DiagnosticsEngine::Ignored)
4556    return;
4557
4558  // Find constructors which would have been considered.
4559  OverloadCandidateSet CandidateSet(Loc);
4560  LookupCopyAndMoveConstructors(
4561      S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4562
4563  // Perform overload resolution.
4564  OverloadCandidateSet::iterator Best;
4565  OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4566
4567  PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4568    << OR << (int)Entity.getKind() << CurInitExpr->getType()
4569    << CurInitExpr->getSourceRange();
4570
4571  switch (OR) {
4572  case OR_Success:
4573    S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4574                             Best->FoundDecl.getAccess(), Diag);
4575    // FIXME: Check default arguments as far as that's possible.
4576    break;
4577
4578  case OR_No_Viable_Function:
4579    S.Diag(Loc, Diag);
4580    CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1);
4581    break;
4582
4583  case OR_Ambiguous:
4584    S.Diag(Loc, Diag);
4585    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1);
4586    break;
4587
4588  case OR_Deleted:
4589    S.Diag(Loc, Diag);
4590    S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4591      << 1 << Best->Function->isDeleted();
4592    break;
4593  }
4594}
4595
4596void InitializationSequence::PrintInitLocationNote(Sema &S,
4597                                              const InitializedEntity &Entity) {
4598  if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
4599    if (Entity.getDecl()->getLocation().isInvalid())
4600      return;
4601
4602    if (Entity.getDecl()->getDeclName())
4603      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
4604        << Entity.getDecl()->getDeclName();
4605    else
4606      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
4607  }
4608}
4609
4610static bool isReferenceBinding(const InitializationSequence::Step &s) {
4611  return s.Kind == InitializationSequence::SK_BindReference ||
4612         s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
4613}
4614
4615static ExprResult
4616PerformConstructorInitialization(Sema &S,
4617                                 const InitializedEntity &Entity,
4618                                 const InitializationKind &Kind,
4619                                 MultiExprArg Args,
4620                                 const InitializationSequence::Step& Step,
4621                                 bool &ConstructorInitRequiresZeroInit) {
4622  unsigned NumArgs = Args.size();
4623  CXXConstructorDecl *Constructor
4624    = cast<CXXConstructorDecl>(Step.Function.Function);
4625  bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
4626
4627  // Build a call to the selected constructor.
4628  ASTOwningVector<Expr*> ConstructorArgs(S);
4629  SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
4630                         ? Kind.getEqualLoc()
4631                         : Kind.getLocation();
4632
4633  if (Kind.getKind() == InitializationKind::IK_Default) {
4634    // Force even a trivial, implicit default constructor to be
4635    // semantically checked. We do this explicitly because we don't build
4636    // the definition for completely trivial constructors.
4637    CXXRecordDecl *ClassDecl = Constructor->getParent();
4638    assert(ClassDecl && "No parent class for constructor.");
4639    if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
4640        ClassDecl->hasTrivialDefaultConstructor() &&
4641        !Constructor->isUsed(false))
4642      S.DefineImplicitDefaultConstructor(Loc, Constructor);
4643  }
4644
4645  ExprResult CurInit = S.Owned((Expr *)0);
4646
4647  // Determine the arguments required to actually perform the constructor
4648  // call.
4649  if (S.CompleteConstructorCall(Constructor, move(Args),
4650                                Loc, ConstructorArgs))
4651    return ExprError();
4652
4653
4654  if (Entity.getKind() == InitializedEntity::EK_Temporary &&
4655      NumArgs != 1 && // FIXME: Hack to work around cast weirdness
4656      (Kind.getKind() == InitializationKind::IK_Direct ||
4657       Kind.getKind() == InitializationKind::IK_Value)) {
4658    // An explicitly-constructed temporary, e.g., X(1, 2).
4659    unsigned NumExprs = ConstructorArgs.size();
4660    Expr **Exprs = (Expr **)ConstructorArgs.take();
4661    S.MarkDeclarationReferenced(Loc, Constructor);
4662    S.DiagnoseUseOfDecl(Constructor, Loc);
4663
4664    TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4665    if (!TSInfo)
4666      TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4667
4668    CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
4669                                                             Constructor,
4670                                                             TSInfo,
4671                                                             Exprs,
4672                                                             NumExprs,
4673                                                     Kind.getParenRange(),
4674                                                     HadMultipleCandidates,
4675                                         ConstructorInitRequiresZeroInit));
4676  } else {
4677    CXXConstructExpr::ConstructionKind ConstructKind =
4678      CXXConstructExpr::CK_Complete;
4679
4680    if (Entity.getKind() == InitializedEntity::EK_Base) {
4681      ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4682        CXXConstructExpr::CK_VirtualBase :
4683        CXXConstructExpr::CK_NonVirtualBase;
4684    } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
4685      ConstructKind = CXXConstructExpr::CK_Delegating;
4686    }
4687
4688    // Only get the parenthesis range if it is a direct construction.
4689    SourceRange parenRange =
4690        Kind.getKind() == InitializationKind::IK_Direct ?
4691        Kind.getParenRange() : SourceRange();
4692
4693    // If the entity allows NRVO, mark the construction as elidable
4694    // unconditionally.
4695    if (Entity.allowsNRVO())
4696      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4697                                        Constructor, /*Elidable=*/true,
4698                                        move_arg(ConstructorArgs),
4699                                        HadMultipleCandidates,
4700                                        ConstructorInitRequiresZeroInit,
4701                                        ConstructKind,
4702                                        parenRange);
4703    else
4704      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4705                                        Constructor,
4706                                        move_arg(ConstructorArgs),
4707                                        HadMultipleCandidates,
4708                                        ConstructorInitRequiresZeroInit,
4709                                        ConstructKind,
4710                                        parenRange);
4711  }
4712  if (CurInit.isInvalid())
4713    return ExprError();
4714
4715  // Only check access if all of that succeeded.
4716  S.CheckConstructorAccess(Loc, Constructor, Entity,
4717                           Step.Function.FoundDecl.getAccess());
4718  S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc);
4719
4720  if (shouldBindAsTemporary(Entity))
4721    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4722
4723  return move(CurInit);
4724}
4725
4726ExprResult
4727InitializationSequence::Perform(Sema &S,
4728                                const InitializedEntity &Entity,
4729                                const InitializationKind &Kind,
4730                                MultiExprArg Args,
4731                                QualType *ResultType) {
4732  if (Failed()) {
4733    unsigned NumArgs = Args.size();
4734    Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
4735    return ExprError();
4736  }
4737
4738  if (getKind() == DependentSequence) {
4739    // If the declaration is a non-dependent, incomplete array type
4740    // that has an initializer, then its type will be completed once
4741    // the initializer is instantiated.
4742    if (ResultType && !Entity.getType()->isDependentType() &&
4743        Args.size() == 1) {
4744      QualType DeclType = Entity.getType();
4745      if (const IncompleteArrayType *ArrayT
4746                           = S.Context.getAsIncompleteArrayType(DeclType)) {
4747        // FIXME: We don't currently have the ability to accurately
4748        // compute the length of an initializer list without
4749        // performing full type-checking of the initializer list
4750        // (since we have to determine where braces are implicitly
4751        // introduced and such).  So, we fall back to making the array
4752        // type a dependently-sized array type with no specified
4753        // bound.
4754        if (isa<InitListExpr>((Expr *)Args.get()[0])) {
4755          SourceRange Brackets;
4756
4757          // Scavange the location of the brackets from the entity, if we can.
4758          if (DeclaratorDecl *DD = Entity.getDecl()) {
4759            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
4760              TypeLoc TL = TInfo->getTypeLoc();
4761              if (IncompleteArrayTypeLoc *ArrayLoc
4762                                      = dyn_cast<IncompleteArrayTypeLoc>(&TL))
4763              Brackets = ArrayLoc->getBracketsRange();
4764            }
4765          }
4766
4767          *ResultType
4768            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
4769                                                   /*NumElts=*/0,
4770                                                   ArrayT->getSizeModifier(),
4771                                       ArrayT->getIndexTypeCVRQualifiers(),
4772                                                   Brackets);
4773        }
4774
4775      }
4776    }
4777    assert(Kind.getKind() == InitializationKind::IK_Copy ||
4778           Kind.isExplicitCast());
4779    return ExprResult(Args.release()[0]);
4780  }
4781
4782  // No steps means no initialization.
4783  if (Steps.empty())
4784    return S.Owned((Expr *)0);
4785
4786  QualType DestType = Entity.getType().getNonReferenceType();
4787  // FIXME: Ugly hack around the fact that Entity.getType() is not
4788  // the same as Entity.getDecl()->getType() in cases involving type merging,
4789  //  and we want latter when it makes sense.
4790  if (ResultType)
4791    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
4792                                     Entity.getType();
4793
4794  ExprResult CurInit = S.Owned((Expr *)0);
4795
4796  // For initialization steps that start with a single initializer,
4797  // grab the only argument out the Args and place it into the "current"
4798  // initializer.
4799  switch (Steps.front().Kind) {
4800  case SK_ResolveAddressOfOverloadedFunction:
4801  case SK_CastDerivedToBaseRValue:
4802  case SK_CastDerivedToBaseXValue:
4803  case SK_CastDerivedToBaseLValue:
4804  case SK_BindReference:
4805  case SK_BindReferenceToTemporary:
4806  case SK_ExtraneousCopyToTemporary:
4807  case SK_UserConversion:
4808  case SK_QualificationConversionLValue:
4809  case SK_QualificationConversionXValue:
4810  case SK_QualificationConversionRValue:
4811  case SK_ConversionSequence:
4812  case SK_ListConstructorCall:
4813  case SK_ListInitialization:
4814  case SK_UnwrapInitList:
4815  case SK_RewrapInitList:
4816  case SK_CAssignment:
4817  case SK_StringInit:
4818  case SK_ObjCObjectConversion:
4819  case SK_ArrayInit:
4820  case SK_PassByIndirectCopyRestore:
4821  case SK_PassByIndirectRestore:
4822  case SK_ProduceObjCObject: {
4823    assert(Args.size() == 1);
4824    CurInit = Args.get()[0];
4825    if (!CurInit.get()) return ExprError();
4826    break;
4827  }
4828
4829  case SK_ConstructorInitialization:
4830  case SK_ZeroInitialization:
4831    break;
4832  }
4833
4834  // Walk through the computed steps for the initialization sequence,
4835  // performing the specified conversions along the way.
4836  bool ConstructorInitRequiresZeroInit = false;
4837  for (step_iterator Step = step_begin(), StepEnd = step_end();
4838       Step != StepEnd; ++Step) {
4839    if (CurInit.isInvalid())
4840      return ExprError();
4841
4842    QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
4843
4844    switch (Step->Kind) {
4845    case SK_ResolveAddressOfOverloadedFunction:
4846      // Overload resolution determined which function invoke; update the
4847      // initializer to reflect that choice.
4848      S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
4849      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
4850      CurInit = S.FixOverloadedFunctionReference(move(CurInit),
4851                                                 Step->Function.FoundDecl,
4852                                                 Step->Function.Function);
4853      break;
4854
4855    case SK_CastDerivedToBaseRValue:
4856    case SK_CastDerivedToBaseXValue:
4857    case SK_CastDerivedToBaseLValue: {
4858      // We have a derived-to-base cast that produces either an rvalue or an
4859      // lvalue. Perform that cast.
4860
4861      CXXCastPath BasePath;
4862
4863      // Casts to inaccessible base classes are allowed with C-style casts.
4864      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
4865      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
4866                                         CurInit.get()->getLocStart(),
4867                                         CurInit.get()->getSourceRange(),
4868                                         &BasePath, IgnoreBaseAccess))
4869        return ExprError();
4870
4871      if (S.BasePathInvolvesVirtualBase(BasePath)) {
4872        QualType T = SourceType;
4873        if (const PointerType *Pointer = T->getAs<PointerType>())
4874          T = Pointer->getPointeeType();
4875        if (const RecordType *RecordTy = T->getAs<RecordType>())
4876          S.MarkVTableUsed(CurInit.get()->getLocStart(),
4877                           cast<CXXRecordDecl>(RecordTy->getDecl()));
4878      }
4879
4880      ExprValueKind VK =
4881          Step->Kind == SK_CastDerivedToBaseLValue ?
4882              VK_LValue :
4883              (Step->Kind == SK_CastDerivedToBaseXValue ?
4884                   VK_XValue :
4885                   VK_RValue);
4886      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
4887                                                 Step->Type,
4888                                                 CK_DerivedToBase,
4889                                                 CurInit.get(),
4890                                                 &BasePath, VK));
4891      break;
4892    }
4893
4894    case SK_BindReference:
4895      if (FieldDecl *BitField = CurInit.get()->getBitField()) {
4896        // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
4897        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
4898          << Entity.getType().isVolatileQualified()
4899          << BitField->getDeclName()
4900          << CurInit.get()->getSourceRange();
4901        S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
4902        return ExprError();
4903      }
4904
4905      if (CurInit.get()->refersToVectorElement()) {
4906        // References cannot bind to vector elements.
4907        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
4908          << Entity.getType().isVolatileQualified()
4909          << CurInit.get()->getSourceRange();
4910        PrintInitLocationNote(S, Entity);
4911        return ExprError();
4912      }
4913
4914      // Reference binding does not have any corresponding ASTs.
4915
4916      // Check exception specifications
4917      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4918        return ExprError();
4919
4920      break;
4921
4922    case SK_BindReferenceToTemporary:
4923      // Check exception specifications
4924      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4925        return ExprError();
4926
4927      // Materialize the temporary into memory.
4928      CurInit = new (S.Context) MaterializeTemporaryExpr(
4929                                         Entity.getType().getNonReferenceType(),
4930                                                         CurInit.get(),
4931                                     Entity.getType()->isLValueReferenceType());
4932
4933      // If we're binding to an Objective-C object that has lifetime, we
4934      // need cleanups.
4935      if (S.getLangOptions().ObjCAutoRefCount &&
4936          CurInit.get()->getType()->isObjCLifetimeType())
4937        S.ExprNeedsCleanups = true;
4938
4939      break;
4940
4941    case SK_ExtraneousCopyToTemporary:
4942      CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
4943                           /*IsExtraneousCopy=*/true);
4944      break;
4945
4946    case SK_UserConversion: {
4947      // We have a user-defined conversion that invokes either a constructor
4948      // or a conversion function.
4949      CastKind CastKind;
4950      bool IsCopy = false;
4951      FunctionDecl *Fn = Step->Function.Function;
4952      DeclAccessPair FoundFn = Step->Function.FoundDecl;
4953      bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
4954      bool CreatedObject = false;
4955      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
4956        // Build a call to the selected constructor.
4957        ASTOwningVector<Expr*> ConstructorArgs(S);
4958        SourceLocation Loc = CurInit.get()->getLocStart();
4959        CurInit.release(); // Ownership transferred into MultiExprArg, below.
4960
4961        // Determine the arguments required to actually perform the constructor
4962        // call.
4963        Expr *Arg = CurInit.get();
4964        if (S.CompleteConstructorCall(Constructor,
4965                                      MultiExprArg(&Arg, 1),
4966                                      Loc, ConstructorArgs))
4967          return ExprError();
4968
4969        // Build the an expression that constructs a temporary.
4970        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
4971                                          move_arg(ConstructorArgs),
4972                                          HadMultipleCandidates,
4973                                          /*ZeroInit*/ false,
4974                                          CXXConstructExpr::CK_Complete,
4975                                          SourceRange());
4976        if (CurInit.isInvalid())
4977          return ExprError();
4978
4979        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
4980                                 FoundFn.getAccess());
4981        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
4982
4983        CastKind = CK_ConstructorConversion;
4984        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
4985        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
4986            S.IsDerivedFrom(SourceType, Class))
4987          IsCopy = true;
4988
4989        CreatedObject = true;
4990      } else {
4991        // Build a call to the conversion function.
4992        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
4993        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
4994                                    FoundFn);
4995        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
4996
4997        // FIXME: Should we move this initialization into a separate
4998        // derived-to-base conversion? I believe the answer is "no", because
4999        // we don't want to turn off access control here for c-style casts.
5000        ExprResult CurInitExprRes =
5001          S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5002                                                FoundFn, Conversion);
5003        if(CurInitExprRes.isInvalid())
5004          return ExprError();
5005        CurInit = move(CurInitExprRes);
5006
5007        // Build the actual call to the conversion function.
5008        CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5009                                           HadMultipleCandidates);
5010        if (CurInit.isInvalid() || !CurInit.get())
5011          return ExprError();
5012
5013        CastKind = CK_UserDefinedConversion;
5014
5015        CreatedObject = Conversion->getResultType()->isRecordType();
5016      }
5017
5018      bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5019      bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5020
5021      if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5022        QualType T = CurInit.get()->getType();
5023        if (const RecordType *Record = T->getAs<RecordType>()) {
5024          CXXDestructorDecl *Destructor
5025            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5026          S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5027                                  S.PDiag(diag::err_access_dtor_temp) << T);
5028          S.MarkDeclarationReferenced(CurInit.get()->getLocStart(), Destructor);
5029          S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
5030        }
5031      }
5032
5033      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5034                                                 CurInit.get()->getType(),
5035                                                 CastKind, CurInit.get(), 0,
5036                                                CurInit.get()->getValueKind()));
5037      if (MaybeBindToTemp)
5038        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5039      if (RequiresCopy)
5040        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5041                             move(CurInit), /*IsExtraneousCopy=*/false);
5042      break;
5043    }
5044
5045    case SK_QualificationConversionLValue:
5046    case SK_QualificationConversionXValue:
5047    case SK_QualificationConversionRValue: {
5048      // Perform a qualification conversion; these can never go wrong.
5049      ExprValueKind VK =
5050          Step->Kind == SK_QualificationConversionLValue ?
5051              VK_LValue :
5052              (Step->Kind == SK_QualificationConversionXValue ?
5053                   VK_XValue :
5054                   VK_RValue);
5055      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5056      break;
5057    }
5058
5059    case SK_ConversionSequence: {
5060      Sema::CheckedConversionKind CCK
5061        = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5062        : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5063        : Kind.isExplicitCast()? Sema::CCK_OtherCast
5064        : Sema::CCK_ImplicitConversion;
5065      ExprResult CurInitExprRes =
5066        S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5067                                    getAssignmentAction(Entity), CCK);
5068      if (CurInitExprRes.isInvalid())
5069        return ExprError();
5070      CurInit = move(CurInitExprRes);
5071      break;
5072    }
5073
5074    case SK_ListInitialization: {
5075      InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5076      // Hack: We must pass *ResultType if available in order to set the type
5077      // of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5078      // But in 'const X &x = {1, 2, 3};' we're supposed to initialize a
5079      // temporary, not a reference, so we should pass Ty.
5080      // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5081      // Since this step is never used for a reference directly, we explicitly
5082      // unwrap references here and rewrap them afterwards.
5083      // We also need to create a InitializeTemporary entity for this.
5084      QualType Ty = ResultType ? ResultType->getNonReferenceType() : Step->Type;
5085      bool IsTemporary = ResultType && (*ResultType)->isReferenceType();
5086      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5087      InitListChecker PerformInitList(S, IsTemporary ? TempEntity : Entity,
5088          InitList, Ty, /*VerifyOnly=*/false,
5089          Kind.getKind() != InitializationKind::IK_Direct ||
5090            !S.getLangOptions().CPlusPlus0x);
5091      if (PerformInitList.HadError())
5092        return ExprError();
5093
5094      if (ResultType) {
5095        if ((*ResultType)->isRValueReferenceType())
5096          Ty = S.Context.getRValueReferenceType(Ty);
5097        else if ((*ResultType)->isLValueReferenceType())
5098          Ty = S.Context.getLValueReferenceType(Ty,
5099            (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5100        *ResultType = Ty;
5101      }
5102
5103      InitListExpr *StructuredInitList =
5104          PerformInitList.getFullyStructuredList();
5105      CurInit.release();
5106      CurInit = S.Owned(StructuredInitList);
5107      break;
5108    }
5109
5110    case SK_ListConstructorCall: {
5111      InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5112      MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5113      CurInit = PerformConstructorInitialization(S, Entity, Kind,
5114                                                 move(Arg), *Step,
5115                                               ConstructorInitRequiresZeroInit);
5116      break;
5117    }
5118
5119    case SK_UnwrapInitList:
5120      CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5121      break;
5122
5123    case SK_RewrapInitList: {
5124      Expr *E = CurInit.take();
5125      InitListExpr *Syntactic = Step->WrappingSyntacticList;
5126      InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5127          Syntactic->getLBraceLoc(), &E, 1, Syntactic->getRBraceLoc());
5128      ILE->setSyntacticForm(Syntactic);
5129      ILE->setType(E->getType());
5130      ILE->setValueKind(E->getValueKind());
5131      CurInit = S.Owned(ILE);
5132      break;
5133    }
5134
5135    case SK_ConstructorInitialization:
5136      CurInit = PerformConstructorInitialization(S, Entity, Kind, move(Args),
5137                                                 *Step,
5138                                               ConstructorInitRequiresZeroInit);
5139      break;
5140
5141    case SK_ZeroInitialization: {
5142      step_iterator NextStep = Step;
5143      ++NextStep;
5144      if (NextStep != StepEnd &&
5145          NextStep->Kind == SK_ConstructorInitialization) {
5146        // The need for zero-initialization is recorded directly into
5147        // the call to the object's constructor within the next step.
5148        ConstructorInitRequiresZeroInit = true;
5149      } else if (Kind.getKind() == InitializationKind::IK_Value &&
5150                 S.getLangOptions().CPlusPlus &&
5151                 !Kind.isImplicitValueInit()) {
5152        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5153        if (!TSInfo)
5154          TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5155                                                    Kind.getRange().getBegin());
5156
5157        CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5158                              TSInfo->getType().getNonLValueExprType(S.Context),
5159                                                                 TSInfo,
5160                                                    Kind.getRange().getEnd()));
5161      } else {
5162        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5163      }
5164      break;
5165    }
5166
5167    case SK_CAssignment: {
5168      QualType SourceType = CurInit.get()->getType();
5169      ExprResult Result = move(CurInit);
5170      Sema::AssignConvertType ConvTy =
5171        S.CheckSingleAssignmentConstraints(Step->Type, Result);
5172      if (Result.isInvalid())
5173        return ExprError();
5174      CurInit = move(Result);
5175
5176      // If this is a call, allow conversion to a transparent union.
5177      ExprResult CurInitExprRes = move(CurInit);
5178      if (ConvTy != Sema::Compatible &&
5179          Entity.getKind() == InitializedEntity::EK_Parameter &&
5180          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
5181            == Sema::Compatible)
5182        ConvTy = Sema::Compatible;
5183      if (CurInitExprRes.isInvalid())
5184        return ExprError();
5185      CurInit = move(CurInitExprRes);
5186
5187      bool Complained;
5188      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
5189                                     Step->Type, SourceType,
5190                                     CurInit.get(),
5191                                     getAssignmentAction(Entity),
5192                                     &Complained)) {
5193        PrintInitLocationNote(S, Entity);
5194        return ExprError();
5195      } else if (Complained)
5196        PrintInitLocationNote(S, Entity);
5197      break;
5198    }
5199
5200    case SK_StringInit: {
5201      QualType Ty = Step->Type;
5202      CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
5203                      S.Context.getAsArrayType(Ty), S);
5204      break;
5205    }
5206
5207    case SK_ObjCObjectConversion:
5208      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5209                          CK_ObjCObjectLValueCast,
5210                          CurInit.get()->getValueKind());
5211      break;
5212
5213    case SK_ArrayInit:
5214      // Okay: we checked everything before creating this step. Note that
5215      // this is a GNU extension.
5216      S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
5217        << Step->Type << CurInit.get()->getType()
5218        << CurInit.get()->getSourceRange();
5219
5220      // If the destination type is an incomplete array type, update the
5221      // type accordingly.
5222      if (ResultType) {
5223        if (const IncompleteArrayType *IncompleteDest
5224                           = S.Context.getAsIncompleteArrayType(Step->Type)) {
5225          if (const ConstantArrayType *ConstantSource
5226                 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
5227            *ResultType = S.Context.getConstantArrayType(
5228                                             IncompleteDest->getElementType(),
5229                                             ConstantSource->getSize(),
5230                                             ArrayType::Normal, 0);
5231          }
5232        }
5233      }
5234      break;
5235
5236    case SK_PassByIndirectCopyRestore:
5237    case SK_PassByIndirectRestore:
5238      checkIndirectCopyRestoreSource(S, CurInit.get());
5239      CurInit = S.Owned(new (S.Context)
5240                        ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
5241                                Step->Kind == SK_PassByIndirectCopyRestore));
5242      break;
5243
5244    case SK_ProduceObjCObject:
5245      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5246                                                 CK_ARCProduceObject,
5247                                                 CurInit.take(), 0, VK_RValue));
5248      break;
5249    }
5250  }
5251
5252  // Diagnose non-fatal problems with the completed initialization.
5253  if (Entity.getKind() == InitializedEntity::EK_Member &&
5254      cast<FieldDecl>(Entity.getDecl())->isBitField())
5255    S.CheckBitFieldInitialization(Kind.getLocation(),
5256                                  cast<FieldDecl>(Entity.getDecl()),
5257                                  CurInit.get());
5258
5259  return move(CurInit);
5260}
5261
5262//===----------------------------------------------------------------------===//
5263// Diagnose initialization failures
5264//===----------------------------------------------------------------------===//
5265bool InitializationSequence::Diagnose(Sema &S,
5266                                      const InitializedEntity &Entity,
5267                                      const InitializationKind &Kind,
5268                                      Expr **Args, unsigned NumArgs) {
5269  if (!Failed())
5270    return false;
5271
5272  QualType DestType = Entity.getType();
5273  switch (Failure) {
5274  case FK_TooManyInitsForReference:
5275    // FIXME: Customize for the initialized entity?
5276    if (NumArgs == 0)
5277      S.Diag(Kind.getLocation(), diag::err_reference_without_init)
5278        << DestType.getNonReferenceType();
5279    else  // FIXME: diagnostic below could be better!
5280      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
5281        << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
5282    break;
5283
5284  case FK_ArrayNeedsInitList:
5285  case FK_ArrayNeedsInitListOrStringLiteral:
5286    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
5287      << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
5288    break;
5289
5290  case FK_ArrayTypeMismatch:
5291  case FK_NonConstantArrayInit:
5292    S.Diag(Kind.getLocation(),
5293           (Failure == FK_ArrayTypeMismatch
5294              ? diag::err_array_init_different_type
5295              : diag::err_array_init_non_constant_array))
5296      << DestType.getNonReferenceType()
5297      << Args[0]->getType()
5298      << Args[0]->getSourceRange();
5299    break;
5300
5301  case FK_VariableLengthArrayHasInitializer:
5302    S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
5303      << Args[0]->getSourceRange();
5304    break;
5305
5306  case FK_AddressOfOverloadFailed: {
5307    DeclAccessPair Found;
5308    S.ResolveAddressOfOverloadedFunction(Args[0],
5309                                         DestType.getNonReferenceType(),
5310                                         true,
5311                                         Found);
5312    break;
5313  }
5314
5315  case FK_ReferenceInitOverloadFailed:
5316  case FK_UserConversionOverloadFailed:
5317    switch (FailedOverloadResult) {
5318    case OR_Ambiguous:
5319      if (Failure == FK_UserConversionOverloadFailed)
5320        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
5321          << Args[0]->getType() << DestType
5322          << Args[0]->getSourceRange();
5323      else
5324        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
5325          << DestType << Args[0]->getType()
5326          << Args[0]->getSourceRange();
5327
5328      FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args, NumArgs);
5329      break;
5330
5331    case OR_No_Viable_Function:
5332      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
5333        << Args[0]->getType() << DestType.getNonReferenceType()
5334        << Args[0]->getSourceRange();
5335      FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
5336      break;
5337
5338    case OR_Deleted: {
5339      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
5340        << Args[0]->getType() << DestType.getNonReferenceType()
5341        << Args[0]->getSourceRange();
5342      OverloadCandidateSet::iterator Best;
5343      OverloadingResult Ovl
5344        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
5345                                                true);
5346      if (Ovl == OR_Deleted) {
5347        S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
5348          << 1 << Best->Function->isDeleted();
5349      } else {
5350        llvm_unreachable("Inconsistent overload resolution?");
5351      }
5352      break;
5353    }
5354
5355    case OR_Success:
5356      llvm_unreachable("Conversion did not fail!");
5357    }
5358    break;
5359
5360  case FK_NonConstLValueReferenceBindingToTemporary:
5361    if (isa<InitListExpr>(Args[0])) {
5362      S.Diag(Kind.getLocation(),
5363             diag::err_lvalue_reference_bind_to_initlist)
5364      << DestType.getNonReferenceType().isVolatileQualified()
5365      << DestType.getNonReferenceType()
5366      << Args[0]->getSourceRange();
5367      break;
5368    }
5369    // Intentional fallthrough
5370
5371  case FK_NonConstLValueReferenceBindingToUnrelated:
5372    S.Diag(Kind.getLocation(),
5373           Failure == FK_NonConstLValueReferenceBindingToTemporary
5374             ? diag::err_lvalue_reference_bind_to_temporary
5375             : diag::err_lvalue_reference_bind_to_unrelated)
5376      << DestType.getNonReferenceType().isVolatileQualified()
5377      << DestType.getNonReferenceType()
5378      << Args[0]->getType()
5379      << Args[0]->getSourceRange();
5380    break;
5381
5382  case FK_RValueReferenceBindingToLValue:
5383    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
5384      << DestType.getNonReferenceType() << Args[0]->getType()
5385      << Args[0]->getSourceRange();
5386    break;
5387
5388  case FK_ReferenceInitDropsQualifiers:
5389    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
5390      << DestType.getNonReferenceType()
5391      << Args[0]->getType()
5392      << Args[0]->getSourceRange();
5393    break;
5394
5395  case FK_ReferenceInitFailed:
5396    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
5397      << DestType.getNonReferenceType()
5398      << Args[0]->isLValue()
5399      << Args[0]->getType()
5400      << Args[0]->getSourceRange();
5401    if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5402        Args[0]->getType()->isObjCObjectPointerType())
5403      S.EmitRelatedResultTypeNote(Args[0]);
5404    break;
5405
5406  case FK_ConversionFailed: {
5407    QualType FromType = Args[0]->getType();
5408    PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
5409      << (int)Entity.getKind()
5410      << DestType
5411      << Args[0]->isLValue()
5412      << FromType
5413      << Args[0]->getSourceRange();
5414    S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
5415    S.Diag(Kind.getLocation(), PDiag);
5416    if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5417        Args[0]->getType()->isObjCObjectPointerType())
5418      S.EmitRelatedResultTypeNote(Args[0]);
5419    break;
5420  }
5421
5422  case FK_ConversionFromPropertyFailed:
5423    // No-op. This error has already been reported.
5424    break;
5425
5426  case FK_TooManyInitsForScalar: {
5427    SourceRange R;
5428
5429    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
5430      R = SourceRange(InitList->getInit(0)->getLocEnd(),
5431                      InitList->getLocEnd());
5432    else
5433      R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
5434
5435    R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
5436    if (Kind.isCStyleOrFunctionalCast())
5437      S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
5438        << R;
5439    else
5440      S.Diag(Kind.getLocation(), diag::err_excess_initializers)
5441        << /*scalar=*/2 << R;
5442    break;
5443  }
5444
5445  case FK_ReferenceBindingToInitList:
5446    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
5447      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
5448    break;
5449
5450  case FK_InitListBadDestinationType:
5451    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
5452      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
5453    break;
5454
5455  case FK_ListConstructorOverloadFailed:
5456  case FK_ConstructorOverloadFailed: {
5457    SourceRange ArgsRange;
5458    if (NumArgs)
5459      ArgsRange = SourceRange(Args[0]->getLocStart(),
5460                              Args[NumArgs - 1]->getLocEnd());
5461
5462    if (Failure == FK_ListConstructorOverloadFailed) {
5463      assert(NumArgs == 1 && "List construction from other than 1 argument.");
5464      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5465      Args = InitList->getInits();
5466      NumArgs = InitList->getNumInits();
5467    }
5468
5469    // FIXME: Using "DestType" for the entity we're printing is probably
5470    // bad.
5471    switch (FailedOverloadResult) {
5472      case OR_Ambiguous:
5473        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
5474          << DestType << ArgsRange;
5475        FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5476                                          Args, NumArgs);
5477        break;
5478
5479      case OR_No_Viable_Function:
5480        if (Kind.getKind() == InitializationKind::IK_Default &&
5481            (Entity.getKind() == InitializedEntity::EK_Base ||
5482             Entity.getKind() == InitializedEntity::EK_Member) &&
5483            isa<CXXConstructorDecl>(S.CurContext)) {
5484          // This is implicit default initialization of a member or
5485          // base within a constructor. If no viable function was
5486          // found, notify the user that she needs to explicitly
5487          // initialize this base/member.
5488          CXXConstructorDecl *Constructor
5489            = cast<CXXConstructorDecl>(S.CurContext);
5490          if (Entity.getKind() == InitializedEntity::EK_Base) {
5491            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5492              << Constructor->isImplicit()
5493              << S.Context.getTypeDeclType(Constructor->getParent())
5494              << /*base=*/0
5495              << Entity.getType();
5496
5497            RecordDecl *BaseDecl
5498              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
5499                                                                  ->getDecl();
5500            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
5501              << S.Context.getTagDeclType(BaseDecl);
5502          } else {
5503            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5504              << Constructor->isImplicit()
5505              << S.Context.getTypeDeclType(Constructor->getParent())
5506              << /*member=*/1
5507              << Entity.getName();
5508            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
5509
5510            if (const RecordType *Record
5511                                 = Entity.getType()->getAs<RecordType>())
5512              S.Diag(Record->getDecl()->getLocation(),
5513                     diag::note_previous_decl)
5514                << S.Context.getTagDeclType(Record->getDecl());
5515          }
5516          break;
5517        }
5518
5519        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
5520          << DestType << ArgsRange;
5521        FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
5522        break;
5523
5524      case OR_Deleted: {
5525        S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5526          << true << DestType << ArgsRange;
5527        OverloadCandidateSet::iterator Best;
5528        OverloadingResult Ovl
5529          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5530        if (Ovl == OR_Deleted) {
5531          S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
5532            << 1 << Best->Function->isDeleted();
5533        } else {
5534          llvm_unreachable("Inconsistent overload resolution?");
5535        }
5536        break;
5537      }
5538
5539      case OR_Success:
5540        llvm_unreachable("Conversion did not fail!");
5541    }
5542  }
5543
5544  case FK_DefaultInitOfConst:
5545    if (Entity.getKind() == InitializedEntity::EK_Member &&
5546        isa<CXXConstructorDecl>(S.CurContext)) {
5547      // This is implicit default-initialization of a const member in
5548      // a constructor. Complain that it needs to be explicitly
5549      // initialized.
5550      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
5551      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
5552        << Constructor->isImplicit()
5553        << S.Context.getTypeDeclType(Constructor->getParent())
5554        << /*const=*/1
5555        << Entity.getName();
5556      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
5557        << Entity.getName();
5558    } else {
5559      S.Diag(Kind.getLocation(), diag::err_default_init_const)
5560        << DestType << (bool)DestType->getAs<RecordType>();
5561    }
5562    break;
5563
5564  case FK_Incomplete:
5565    S.RequireCompleteType(Kind.getLocation(), DestType,
5566                          diag::err_init_incomplete_type);
5567    break;
5568
5569  case FK_ListInitializationFailed: {
5570    // Run the init list checker again to emit diagnostics.
5571    InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5572    QualType DestType = Entity.getType();
5573    InitListChecker DiagnoseInitList(S, Entity, InitList,
5574            DestType, /*VerifyOnly=*/false,
5575            Kind.getKind() != InitializationKind::IK_Direct ||
5576              !S.getLangOptions().CPlusPlus0x);
5577    assert(DiagnoseInitList.HadError() &&
5578           "Inconsistent init list check result.");
5579    break;
5580  }
5581
5582  case FK_PlaceholderType: {
5583    // FIXME: Already diagnosed!
5584    break;
5585  }
5586  }
5587
5588  PrintInitLocationNote(S, Entity);
5589  return true;
5590}
5591
5592void InitializationSequence::dump(raw_ostream &OS) const {
5593  switch (SequenceKind) {
5594  case FailedSequence: {
5595    OS << "Failed sequence: ";
5596    switch (Failure) {
5597    case FK_TooManyInitsForReference:
5598      OS << "too many initializers for reference";
5599      break;
5600
5601    case FK_ArrayNeedsInitList:
5602      OS << "array requires initializer list";
5603      break;
5604
5605    case FK_ArrayNeedsInitListOrStringLiteral:
5606      OS << "array requires initializer list or string literal";
5607      break;
5608
5609    case FK_ArrayTypeMismatch:
5610      OS << "array type mismatch";
5611      break;
5612
5613    case FK_NonConstantArrayInit:
5614      OS << "non-constant array initializer";
5615      break;
5616
5617    case FK_AddressOfOverloadFailed:
5618      OS << "address of overloaded function failed";
5619      break;
5620
5621    case FK_ReferenceInitOverloadFailed:
5622      OS << "overload resolution for reference initialization failed";
5623      break;
5624
5625    case FK_NonConstLValueReferenceBindingToTemporary:
5626      OS << "non-const lvalue reference bound to temporary";
5627      break;
5628
5629    case FK_NonConstLValueReferenceBindingToUnrelated:
5630      OS << "non-const lvalue reference bound to unrelated type";
5631      break;
5632
5633    case FK_RValueReferenceBindingToLValue:
5634      OS << "rvalue reference bound to an lvalue";
5635      break;
5636
5637    case FK_ReferenceInitDropsQualifiers:
5638      OS << "reference initialization drops qualifiers";
5639      break;
5640
5641    case FK_ReferenceInitFailed:
5642      OS << "reference initialization failed";
5643      break;
5644
5645    case FK_ConversionFailed:
5646      OS << "conversion failed";
5647      break;
5648
5649    case FK_ConversionFromPropertyFailed:
5650      OS << "conversion from property failed";
5651      break;
5652
5653    case FK_TooManyInitsForScalar:
5654      OS << "too many initializers for scalar";
5655      break;
5656
5657    case FK_ReferenceBindingToInitList:
5658      OS << "referencing binding to initializer list";
5659      break;
5660
5661    case FK_InitListBadDestinationType:
5662      OS << "initializer list for non-aggregate, non-scalar type";
5663      break;
5664
5665    case FK_UserConversionOverloadFailed:
5666      OS << "overloading failed for user-defined conversion";
5667      break;
5668
5669    case FK_ConstructorOverloadFailed:
5670      OS << "constructor overloading failed";
5671      break;
5672
5673    case FK_DefaultInitOfConst:
5674      OS << "default initialization of a const variable";
5675      break;
5676
5677    case FK_Incomplete:
5678      OS << "initialization of incomplete type";
5679      break;
5680
5681    case FK_ListInitializationFailed:
5682      OS << "list initialization checker failure";
5683      break;
5684
5685    case FK_VariableLengthArrayHasInitializer:
5686      OS << "variable length array has an initializer";
5687      break;
5688
5689    case FK_PlaceholderType:
5690      OS << "initializer expression isn't contextually valid";
5691      break;
5692
5693    case FK_ListConstructorOverloadFailed:
5694      OS << "list constructor overloading failed";
5695      break;
5696    }
5697    OS << '\n';
5698    return;
5699  }
5700
5701  case DependentSequence:
5702    OS << "Dependent sequence\n";
5703    return;
5704
5705  case NormalSequence:
5706    OS << "Normal sequence: ";
5707    break;
5708  }
5709
5710  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
5711    if (S != step_begin()) {
5712      OS << " -> ";
5713    }
5714
5715    switch (S->Kind) {
5716    case SK_ResolveAddressOfOverloadedFunction:
5717      OS << "resolve address of overloaded function";
5718      break;
5719
5720    case SK_CastDerivedToBaseRValue:
5721      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
5722      break;
5723
5724    case SK_CastDerivedToBaseXValue:
5725      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
5726      break;
5727
5728    case SK_CastDerivedToBaseLValue:
5729      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
5730      break;
5731
5732    case SK_BindReference:
5733      OS << "bind reference to lvalue";
5734      break;
5735
5736    case SK_BindReferenceToTemporary:
5737      OS << "bind reference to a temporary";
5738      break;
5739
5740    case SK_ExtraneousCopyToTemporary:
5741      OS << "extraneous C++03 copy to temporary";
5742      break;
5743
5744    case SK_UserConversion:
5745      OS << "user-defined conversion via " << *S->Function.Function;
5746      break;
5747
5748    case SK_QualificationConversionRValue:
5749      OS << "qualification conversion (rvalue)";
5750      break;
5751
5752    case SK_QualificationConversionXValue:
5753      OS << "qualification conversion (xvalue)";
5754      break;
5755
5756    case SK_QualificationConversionLValue:
5757      OS << "qualification conversion (lvalue)";
5758      break;
5759
5760    case SK_ConversionSequence:
5761      OS << "implicit conversion sequence (";
5762      S->ICS->DebugPrint(); // FIXME: use OS
5763      OS << ")";
5764      break;
5765
5766    case SK_ListInitialization:
5767      OS << "list aggregate initialization";
5768      break;
5769
5770    case SK_ListConstructorCall:
5771      OS << "list initialization via constructor";
5772      break;
5773
5774    case SK_UnwrapInitList:
5775      OS << "unwrap reference initializer list";
5776      break;
5777
5778    case SK_RewrapInitList:
5779      OS << "rewrap reference initializer list";
5780      break;
5781
5782    case SK_ConstructorInitialization:
5783      OS << "constructor initialization";
5784      break;
5785
5786    case SK_ZeroInitialization:
5787      OS << "zero initialization";
5788      break;
5789
5790    case SK_CAssignment:
5791      OS << "C assignment";
5792      break;
5793
5794    case SK_StringInit:
5795      OS << "string initialization";
5796      break;
5797
5798    case SK_ObjCObjectConversion:
5799      OS << "Objective-C object conversion";
5800      break;
5801
5802    case SK_ArrayInit:
5803      OS << "array initialization";
5804      break;
5805
5806    case SK_PassByIndirectCopyRestore:
5807      OS << "pass by indirect copy and restore";
5808      break;
5809
5810    case SK_PassByIndirectRestore:
5811      OS << "pass by indirect restore";
5812      break;
5813
5814    case SK_ProduceObjCObject:
5815      OS << "Objective-C object retension";
5816      break;
5817    }
5818  }
5819}
5820
5821void InitializationSequence::dump() const {
5822  dump(llvm::errs());
5823}
5824
5825static void DiagnoseNarrowingInInitList(
5826    Sema& S, QualType EntityType, const Expr *InitE,
5827    bool Constant, const APValue &ConstantValue) {
5828  if (Constant) {
5829    S.Diag(InitE->getLocStart(),
5830           S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt
5831           ? diag::err_init_list_constant_narrowing
5832           : diag::warn_init_list_constant_narrowing)
5833      << InitE->getSourceRange()
5834      << ConstantValue.getAsString(S.getASTContext(), EntityType)
5835      << EntityType.getLocalUnqualifiedType();
5836  } else
5837    S.Diag(InitE->getLocStart(),
5838           S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt
5839           ? diag::err_init_list_variable_narrowing
5840           : diag::warn_init_list_variable_narrowing)
5841      << InitE->getSourceRange()
5842      << InitE->getType().getLocalUnqualifiedType()
5843      << EntityType.getLocalUnqualifiedType();
5844
5845  llvm::SmallString<128> StaticCast;
5846  llvm::raw_svector_ostream OS(StaticCast);
5847  OS << "static_cast<";
5848  if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
5849    // It's important to use the typedef's name if there is one so that the
5850    // fixit doesn't break code using types like int64_t.
5851    //
5852    // FIXME: This will break if the typedef requires qualification.  But
5853    // getQualifiedNameAsString() includes non-machine-parsable components.
5854    OS << *TT->getDecl();
5855  } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
5856    OS << BT->getName(S.getLangOptions());
5857  else {
5858    // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
5859    // with a broken cast.
5860    return;
5861  }
5862  OS << ">(";
5863  S.Diag(InitE->getLocStart(), diag::note_init_list_narrowing_override)
5864    << InitE->getSourceRange()
5865    << FixItHint::CreateInsertion(InitE->getLocStart(), OS.str())
5866    << FixItHint::CreateInsertion(
5867      S.getPreprocessor().getLocForEndOfToken(InitE->getLocEnd()), ")");
5868}
5869
5870//===----------------------------------------------------------------------===//
5871// Initialization helper functions
5872//===----------------------------------------------------------------------===//
5873bool
5874Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
5875                                   ExprResult Init) {
5876  if (Init.isInvalid())
5877    return false;
5878
5879  Expr *InitE = Init.get();
5880  assert(InitE && "No initialization expression");
5881
5882  InitializationKind Kind = InitializationKind::CreateCopy(SourceLocation(),
5883                                                           SourceLocation());
5884  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
5885  return !Seq.Failed();
5886}
5887
5888ExprResult
5889Sema::PerformCopyInitialization(const InitializedEntity &Entity,
5890                                SourceLocation EqualLoc,
5891                                ExprResult Init,
5892                                bool TopLevelOfInitList) {
5893  if (Init.isInvalid())
5894    return ExprError();
5895
5896  Expr *InitE = Init.get();
5897  assert(InitE && "No initialization expression?");
5898
5899  if (EqualLoc.isInvalid())
5900    EqualLoc = InitE->getLocStart();
5901
5902  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
5903                                                           EqualLoc);
5904  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
5905  Init.release();
5906
5907  bool Constant = false;
5908  APValue Result;
5909  if (TopLevelOfInitList &&
5910      Seq.endsWithNarrowing(Context, InitE, &Constant, &Result)) {
5911    DiagnoseNarrowingInInitList(*this, Entity.getType(), InitE,
5912                                Constant, Result);
5913  }
5914  return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
5915}
5916