SemaInit.cpp revision 763ab674a26aa3bb941afa45a6a43039fc8b1322
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Designator.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include "clang/AST/TypeLoc.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/raw_ostream.h"
26#include <map>
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30// Sema Initialization Checking
31//===----------------------------------------------------------------------===//
32
33static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
34                          ASTContext &Context) {
35  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
36    return 0;
37
38  // See if this is a string literal or @encode.
39  Init = Init->IgnoreParens();
40
41  // Handle @encode, which is a narrow string.
42  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
43    return Init;
44
45  // Otherwise we can only handle string literals.
46  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
47  if (SL == 0) return 0;
48
49  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
50
51  switch (SL->getKind()) {
52  case StringLiteral::Ascii:
53  case StringLiteral::UTF8:
54    // char array can be initialized with a narrow string.
55    // Only allow char x[] = "foo";  not char x[] = L"foo";
56    return ElemTy->isCharType() ? Init : 0;
57  case StringLiteral::UTF16:
58    return ElemTy->isChar16Type() ? Init : 0;
59  case StringLiteral::UTF32:
60    return ElemTy->isChar32Type() ? Init : 0;
61  case StringLiteral::Wide:
62    // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
63    // correction from DR343): "An array with element type compatible with a
64    // qualified or unqualified version of wchar_t may be initialized by a wide
65    // string literal, optionally enclosed in braces."
66    if (Context.typesAreCompatible(Context.getWCharType(),
67                                   ElemTy.getUnqualifiedType()))
68      return Init;
69
70    return 0;
71  }
72
73  llvm_unreachable("missed a StringLiteral kind?");
74}
75
76static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
77  const ArrayType *arrayType = Context.getAsArrayType(declType);
78  if (!arrayType) return 0;
79
80  return IsStringInit(init, arrayType, Context);
81}
82
83static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
84                            Sema &S) {
85  // Get the length of the string as parsed.
86  uint64_t StrLength =
87    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
88
89
90  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
91    // C99 6.7.8p14. We have an array of character type with unknown size
92    // being initialized to a string literal.
93    llvm::APSInt ConstVal(32);
94    ConstVal = StrLength;
95    // Return a new array type (C99 6.7.8p22).
96    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
97                                           ConstVal,
98                                           ArrayType::Normal, 0);
99    return;
100  }
101
102  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
103
104  // We have an array of character type with known size.  However,
105  // the size may be smaller or larger than the string we are initializing.
106  // FIXME: Avoid truncation for 64-bit length strings.
107  if (S.getLangOptions().CPlusPlus) {
108    if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
109      // For Pascal strings it's OK to strip off the terminating null character,
110      // so the example below is valid:
111      //
112      // unsigned char a[2] = "\pa";
113      if (SL->isPascal())
114        StrLength--;
115    }
116
117    // [dcl.init.string]p2
118    if (StrLength > CAT->getSize().getZExtValue())
119      S.Diag(Str->getSourceRange().getBegin(),
120             diag::err_initializer_string_for_char_array_too_long)
121        << Str->getSourceRange();
122  } else {
123    // C99 6.7.8p14.
124    if (StrLength-1 > CAT->getSize().getZExtValue())
125      S.Diag(Str->getSourceRange().getBegin(),
126             diag::warn_initializer_string_for_char_array_too_long)
127        << Str->getSourceRange();
128  }
129
130  // Set the type to the actual size that we are initializing.  If we have
131  // something like:
132  //   char x[1] = "foo";
133  // then this will set the string literal's type to char[1].
134  Str->setType(DeclT);
135}
136
137//===----------------------------------------------------------------------===//
138// Semantic checking for initializer lists.
139//===----------------------------------------------------------------------===//
140
141/// @brief Semantic checking for initializer lists.
142///
143/// The InitListChecker class contains a set of routines that each
144/// handle the initialization of a certain kind of entity, e.g.,
145/// arrays, vectors, struct/union types, scalars, etc. The
146/// InitListChecker itself performs a recursive walk of the subobject
147/// structure of the type to be initialized, while stepping through
148/// the initializer list one element at a time. The IList and Index
149/// parameters to each of the Check* routines contain the active
150/// (syntactic) initializer list and the index into that initializer
151/// list that represents the current initializer. Each routine is
152/// responsible for moving that Index forward as it consumes elements.
153///
154/// Each Check* routine also has a StructuredList/StructuredIndex
155/// arguments, which contains the current "structured" (semantic)
156/// initializer list and the index into that initializer list where we
157/// are copying initializers as we map them over to the semantic
158/// list. Once we have completed our recursive walk of the subobject
159/// structure, we will have constructed a full semantic initializer
160/// list.
161///
162/// C99 designators cause changes in the initializer list traversal,
163/// because they make the initialization "jump" into a specific
164/// subobject and then continue the initialization from that
165/// point. CheckDesignatedInitializer() recursively steps into the
166/// designated subobject and manages backing out the recursion to
167/// initialize the subobjects after the one designated.
168namespace {
169class InitListChecker {
170  Sema &SemaRef;
171  bool hadError;
172  bool VerifyOnly; // no diagnostics, no structure building
173  bool AllowBraceElision;
174  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
175  InitListExpr *FullyStructuredList;
176
177  void CheckImplicitInitList(const InitializedEntity &Entity,
178                             InitListExpr *ParentIList, QualType T,
179                             unsigned &Index, InitListExpr *StructuredList,
180                             unsigned &StructuredIndex);
181  void CheckExplicitInitList(const InitializedEntity &Entity,
182                             InitListExpr *IList, QualType &T,
183                             unsigned &Index, InitListExpr *StructuredList,
184                             unsigned &StructuredIndex,
185                             bool TopLevelObject = false);
186  void CheckListElementTypes(const InitializedEntity &Entity,
187                             InitListExpr *IList, QualType &DeclType,
188                             bool SubobjectIsDesignatorContext,
189                             unsigned &Index,
190                             InitListExpr *StructuredList,
191                             unsigned &StructuredIndex,
192                             bool TopLevelObject = false);
193  void CheckSubElementType(const InitializedEntity &Entity,
194                           InitListExpr *IList, QualType ElemType,
195                           unsigned &Index,
196                           InitListExpr *StructuredList,
197                           unsigned &StructuredIndex);
198  void CheckComplexType(const InitializedEntity &Entity,
199                        InitListExpr *IList, QualType DeclType,
200                        unsigned &Index,
201                        InitListExpr *StructuredList,
202                        unsigned &StructuredIndex);
203  void CheckScalarType(const InitializedEntity &Entity,
204                       InitListExpr *IList, QualType DeclType,
205                       unsigned &Index,
206                       InitListExpr *StructuredList,
207                       unsigned &StructuredIndex);
208  void CheckReferenceType(const InitializedEntity &Entity,
209                          InitListExpr *IList, QualType DeclType,
210                          unsigned &Index,
211                          InitListExpr *StructuredList,
212                          unsigned &StructuredIndex);
213  void CheckVectorType(const InitializedEntity &Entity,
214                       InitListExpr *IList, QualType DeclType, unsigned &Index,
215                       InitListExpr *StructuredList,
216                       unsigned &StructuredIndex);
217  void CheckStructUnionTypes(const InitializedEntity &Entity,
218                             InitListExpr *IList, QualType DeclType,
219                             RecordDecl::field_iterator Field,
220                             bool SubobjectIsDesignatorContext, unsigned &Index,
221                             InitListExpr *StructuredList,
222                             unsigned &StructuredIndex,
223                             bool TopLevelObject = false);
224  void CheckArrayType(const InitializedEntity &Entity,
225                      InitListExpr *IList, QualType &DeclType,
226                      llvm::APSInt elementIndex,
227                      bool SubobjectIsDesignatorContext, unsigned &Index,
228                      InitListExpr *StructuredList,
229                      unsigned &StructuredIndex);
230  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
231                                  InitListExpr *IList, DesignatedInitExpr *DIE,
232                                  unsigned DesigIdx,
233                                  QualType &CurrentObjectType,
234                                  RecordDecl::field_iterator *NextField,
235                                  llvm::APSInt *NextElementIndex,
236                                  unsigned &Index,
237                                  InitListExpr *StructuredList,
238                                  unsigned &StructuredIndex,
239                                  bool FinishSubobjectInit,
240                                  bool TopLevelObject);
241  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
242                                           QualType CurrentObjectType,
243                                           InitListExpr *StructuredList,
244                                           unsigned StructuredIndex,
245                                           SourceRange InitRange);
246  void UpdateStructuredListElement(InitListExpr *StructuredList,
247                                   unsigned &StructuredIndex,
248                                   Expr *expr);
249  int numArrayElements(QualType DeclType);
250  int numStructUnionElements(QualType DeclType);
251
252  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
253                               const InitializedEntity &ParentEntity,
254                               InitListExpr *ILE, bool &RequiresSecondPass);
255  void FillInValueInitializations(const InitializedEntity &Entity,
256                                  InitListExpr *ILE, bool &RequiresSecondPass);
257  bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
258                              Expr *InitExpr, FieldDecl *Field,
259                              bool TopLevelObject);
260  void CheckValueInitializable(const InitializedEntity &Entity);
261
262public:
263  InitListChecker(Sema &S, const InitializedEntity &Entity,
264                  InitListExpr *IL, QualType &T, bool VerifyOnly,
265                  bool AllowBraceElision);
266  bool HadError() { return hadError; }
267
268  // @brief Retrieves the fully-structured initializer list used for
269  // semantic analysis and code generation.
270  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
271};
272} // end anonymous namespace
273
274void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
275  assert(VerifyOnly &&
276         "CheckValueInitializable is only inteded for verification mode.");
277
278  SourceLocation Loc;
279  InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
280                                                            true);
281  InitializationSequence InitSeq(SemaRef, Entity, Kind, 0, 0);
282  if (InitSeq.Failed())
283    hadError = true;
284}
285
286void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
287                                        const InitializedEntity &ParentEntity,
288                                              InitListExpr *ILE,
289                                              bool &RequiresSecondPass) {
290  SourceLocation Loc = ILE->getSourceRange().getBegin();
291  unsigned NumInits = ILE->getNumInits();
292  InitializedEntity MemberEntity
293    = InitializedEntity::InitializeMember(Field, &ParentEntity);
294  if (Init >= NumInits || !ILE->getInit(Init)) {
295    // FIXME: We probably don't need to handle references
296    // specially here, since value-initialization of references is
297    // handled in InitializationSequence.
298    if (Field->getType()->isReferenceType()) {
299      // C++ [dcl.init.aggr]p9:
300      //   If an incomplete or empty initializer-list leaves a
301      //   member of reference type uninitialized, the program is
302      //   ill-formed.
303      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
304        << Field->getType()
305        << ILE->getSyntacticForm()->getSourceRange();
306      SemaRef.Diag(Field->getLocation(),
307                   diag::note_uninit_reference_member);
308      hadError = true;
309      return;
310    }
311
312    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
313                                                              true);
314    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
315    if (!InitSeq) {
316      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
317      hadError = true;
318      return;
319    }
320
321    ExprResult MemberInit
322      = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
323    if (MemberInit.isInvalid()) {
324      hadError = true;
325      return;
326    }
327
328    if (hadError) {
329      // Do nothing
330    } else if (Init < NumInits) {
331      ILE->setInit(Init, MemberInit.takeAs<Expr>());
332    } else if (InitSeq.isConstructorInitialization()) {
333      // Value-initialization requires a constructor call, so
334      // extend the initializer list to include the constructor
335      // call and make a note that we'll need to take another pass
336      // through the initializer list.
337      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
338      RequiresSecondPass = true;
339    }
340  } else if (InitListExpr *InnerILE
341               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
342    FillInValueInitializations(MemberEntity, InnerILE,
343                               RequiresSecondPass);
344}
345
346/// Recursively replaces NULL values within the given initializer list
347/// with expressions that perform value-initialization of the
348/// appropriate type.
349void
350InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
351                                            InitListExpr *ILE,
352                                            bool &RequiresSecondPass) {
353  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
354         "Should not have void type");
355  SourceLocation Loc = ILE->getSourceRange().getBegin();
356  if (ILE->getSyntacticForm())
357    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
358
359  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
360    if (RType->getDecl()->isUnion() &&
361        ILE->getInitializedFieldInUnion())
362      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
363                              Entity, ILE, RequiresSecondPass);
364    else {
365      unsigned Init = 0;
366      for (RecordDecl::field_iterator
367             Field = RType->getDecl()->field_begin(),
368             FieldEnd = RType->getDecl()->field_end();
369           Field != FieldEnd; ++Field) {
370        if (Field->isUnnamedBitfield())
371          continue;
372
373        if (hadError)
374          return;
375
376        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
377        if (hadError)
378          return;
379
380        ++Init;
381
382        // Only look at the first initialization of a union.
383        if (RType->getDecl()->isUnion())
384          break;
385      }
386    }
387
388    return;
389  }
390
391  QualType ElementType;
392
393  InitializedEntity ElementEntity = Entity;
394  unsigned NumInits = ILE->getNumInits();
395  unsigned NumElements = NumInits;
396  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
397    ElementType = AType->getElementType();
398    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
399      NumElements = CAType->getSize().getZExtValue();
400    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
401                                                         0, Entity);
402  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
403    ElementType = VType->getElementType();
404    NumElements = VType->getNumElements();
405    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
406                                                         0, Entity);
407  } else
408    ElementType = ILE->getType();
409
410
411  for (unsigned Init = 0; Init != NumElements; ++Init) {
412    if (hadError)
413      return;
414
415    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
416        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
417      ElementEntity.setElementIndex(Init);
418
419    if (Init >= NumInits || !ILE->getInit(Init)) {
420      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
421                                                                true);
422      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
423      if (!InitSeq) {
424        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
425        hadError = true;
426        return;
427      }
428
429      ExprResult ElementInit
430        = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
431      if (ElementInit.isInvalid()) {
432        hadError = true;
433        return;
434      }
435
436      if (hadError) {
437        // Do nothing
438      } else if (Init < NumInits) {
439        // For arrays, just set the expression used for value-initialization
440        // of the "holes" in the array.
441        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
442          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
443        else
444          ILE->setInit(Init, ElementInit.takeAs<Expr>());
445      } else {
446        // For arrays, just set the expression used for value-initialization
447        // of the rest of elements and exit.
448        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
449          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
450          return;
451        }
452
453        if (InitSeq.isConstructorInitialization()) {
454          // Value-initialization requires a constructor call, so
455          // extend the initializer list to include the constructor
456          // call and make a note that we'll need to take another pass
457          // through the initializer list.
458          ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
459          RequiresSecondPass = true;
460        }
461      }
462    } else if (InitListExpr *InnerILE
463                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
464      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
465  }
466}
467
468
469InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
470                                 InitListExpr *IL, QualType &T,
471                                 bool VerifyOnly, bool AllowBraceElision)
472  : SemaRef(S), VerifyOnly(VerifyOnly), AllowBraceElision(AllowBraceElision) {
473  hadError = false;
474
475  unsigned newIndex = 0;
476  unsigned newStructuredIndex = 0;
477  FullyStructuredList
478    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
479  CheckExplicitInitList(Entity, IL, T, newIndex,
480                        FullyStructuredList, newStructuredIndex,
481                        /*TopLevelObject=*/true);
482
483  if (!hadError && !VerifyOnly) {
484    bool RequiresSecondPass = false;
485    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
486    if (RequiresSecondPass && !hadError)
487      FillInValueInitializations(Entity, FullyStructuredList,
488                                 RequiresSecondPass);
489  }
490}
491
492int InitListChecker::numArrayElements(QualType DeclType) {
493  // FIXME: use a proper constant
494  int maxElements = 0x7FFFFFFF;
495  if (const ConstantArrayType *CAT =
496        SemaRef.Context.getAsConstantArrayType(DeclType)) {
497    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
498  }
499  return maxElements;
500}
501
502int InitListChecker::numStructUnionElements(QualType DeclType) {
503  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
504  int InitializableMembers = 0;
505  for (RecordDecl::field_iterator
506         Field = structDecl->field_begin(),
507         FieldEnd = structDecl->field_end();
508       Field != FieldEnd; ++Field) {
509    if (!Field->isUnnamedBitfield())
510      ++InitializableMembers;
511  }
512  if (structDecl->isUnion())
513    return std::min(InitializableMembers, 1);
514  return InitializableMembers - structDecl->hasFlexibleArrayMember();
515}
516
517void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
518                                            InitListExpr *ParentIList,
519                                            QualType T, unsigned &Index,
520                                            InitListExpr *StructuredList,
521                                            unsigned &StructuredIndex) {
522  int maxElements = 0;
523
524  if (T->isArrayType())
525    maxElements = numArrayElements(T);
526  else if (T->isRecordType())
527    maxElements = numStructUnionElements(T);
528  else if (T->isVectorType())
529    maxElements = T->getAs<VectorType>()->getNumElements();
530  else
531    llvm_unreachable("CheckImplicitInitList(): Illegal type");
532
533  if (maxElements == 0) {
534    if (!VerifyOnly)
535      SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
536                   diag::err_implicit_empty_initializer);
537    ++Index;
538    hadError = true;
539    return;
540  }
541
542  // Build a structured initializer list corresponding to this subobject.
543  InitListExpr *StructuredSubobjectInitList
544    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
545                                 StructuredIndex,
546          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
547                      ParentIList->getSourceRange().getEnd()));
548  unsigned StructuredSubobjectInitIndex = 0;
549
550  // Check the element types and build the structural subobject.
551  unsigned StartIndex = Index;
552  CheckListElementTypes(Entity, ParentIList, T,
553                        /*SubobjectIsDesignatorContext=*/false, Index,
554                        StructuredSubobjectInitList,
555                        StructuredSubobjectInitIndex);
556
557  if (VerifyOnly) {
558    if (!AllowBraceElision && (T->isArrayType() || T->isRecordType()))
559      hadError = true;
560  } else {
561    StructuredSubobjectInitList->setType(T);
562
563    unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
564    // Update the structured sub-object initializer so that it's ending
565    // range corresponds with the end of the last initializer it used.
566    if (EndIndex < ParentIList->getNumInits()) {
567      SourceLocation EndLoc
568        = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
569      StructuredSubobjectInitList->setRBraceLoc(EndLoc);
570    }
571
572    // Complain about missing braces.
573    if (T->isArrayType() || T->isRecordType()) {
574      SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
575                    AllowBraceElision ? diag::warn_missing_braces :
576                                        diag::err_missing_braces)
577        << StructuredSubobjectInitList->getSourceRange()
578        << FixItHint::CreateInsertion(
579              StructuredSubobjectInitList->getLocStart(), "{")
580        << FixItHint::CreateInsertion(
581              SemaRef.PP.getLocForEndOfToken(
582                                      StructuredSubobjectInitList->getLocEnd()),
583              "}");
584      if (!AllowBraceElision)
585        hadError = true;
586    }
587  }
588}
589
590void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
591                                            InitListExpr *IList, QualType &T,
592                                            unsigned &Index,
593                                            InitListExpr *StructuredList,
594                                            unsigned &StructuredIndex,
595                                            bool TopLevelObject) {
596  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
597  if (!VerifyOnly) {
598    SyntacticToSemantic[IList] = StructuredList;
599    StructuredList->setSyntacticForm(IList);
600  }
601  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
602                        Index, StructuredList, StructuredIndex, TopLevelObject);
603  if (!VerifyOnly) {
604    QualType ExprTy = T.getNonLValueExprType(SemaRef.Context);
605    IList->setType(ExprTy);
606    StructuredList->setType(ExprTy);
607  }
608  if (hadError)
609    return;
610
611  if (Index < IList->getNumInits()) {
612    // We have leftover initializers
613    if (VerifyOnly) {
614      if (SemaRef.getLangOptions().CPlusPlus ||
615          (SemaRef.getLangOptions().OpenCL &&
616           IList->getType()->isVectorType())) {
617        hadError = true;
618      }
619      return;
620    }
621
622    if (StructuredIndex == 1 &&
623        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
624      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
625      if (SemaRef.getLangOptions().CPlusPlus) {
626        DK = diag::err_excess_initializers_in_char_array_initializer;
627        hadError = true;
628      }
629      // Special-case
630      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
631        << IList->getInit(Index)->getSourceRange();
632    } else if (!T->isIncompleteType()) {
633      // Don't complain for incomplete types, since we'll get an error
634      // elsewhere
635      QualType CurrentObjectType = StructuredList->getType();
636      int initKind =
637        CurrentObjectType->isArrayType()? 0 :
638        CurrentObjectType->isVectorType()? 1 :
639        CurrentObjectType->isScalarType()? 2 :
640        CurrentObjectType->isUnionType()? 3 :
641        4;
642
643      unsigned DK = diag::warn_excess_initializers;
644      if (SemaRef.getLangOptions().CPlusPlus) {
645        DK = diag::err_excess_initializers;
646        hadError = true;
647      }
648      if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
649        DK = diag::err_excess_initializers;
650        hadError = true;
651      }
652
653      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
654        << initKind << IList->getInit(Index)->getSourceRange();
655    }
656  }
657
658  if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
659      !TopLevelObject)
660    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
661      << IList->getSourceRange()
662      << FixItHint::CreateRemoval(IList->getLocStart())
663      << FixItHint::CreateRemoval(IList->getLocEnd());
664}
665
666void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
667                                            InitListExpr *IList,
668                                            QualType &DeclType,
669                                            bool SubobjectIsDesignatorContext,
670                                            unsigned &Index,
671                                            InitListExpr *StructuredList,
672                                            unsigned &StructuredIndex,
673                                            bool TopLevelObject) {
674  if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
675    // Explicitly braced initializer for complex type can be real+imaginary
676    // parts.
677    CheckComplexType(Entity, IList, DeclType, Index,
678                     StructuredList, StructuredIndex);
679  } else if (DeclType->isScalarType()) {
680    CheckScalarType(Entity, IList, DeclType, Index,
681                    StructuredList, StructuredIndex);
682  } else if (DeclType->isVectorType()) {
683    CheckVectorType(Entity, IList, DeclType, Index,
684                    StructuredList, StructuredIndex);
685  } else if (DeclType->isAggregateType()) {
686    if (DeclType->isRecordType()) {
687      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
688      CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
689                            SubobjectIsDesignatorContext, Index,
690                            StructuredList, StructuredIndex,
691                            TopLevelObject);
692    } else if (DeclType->isArrayType()) {
693      llvm::APSInt Zero(
694                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
695                      false);
696      CheckArrayType(Entity, IList, DeclType, Zero,
697                     SubobjectIsDesignatorContext, Index,
698                     StructuredList, StructuredIndex);
699    } else
700      llvm_unreachable("Aggregate that isn't a structure or array?!");
701  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
702    // This type is invalid, issue a diagnostic.
703    ++Index;
704    if (!VerifyOnly)
705      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
706        << DeclType;
707    hadError = true;
708  } else if (DeclType->isRecordType()) {
709    // C++ [dcl.init]p14:
710    //   [...] If the class is an aggregate (8.5.1), and the initializer
711    //   is a brace-enclosed list, see 8.5.1.
712    //
713    // Note: 8.5.1 is handled below; here, we diagnose the case where
714    // we have an initializer list and a destination type that is not
715    // an aggregate.
716    // FIXME: In C++0x, this is yet another form of initialization.
717    if (!VerifyOnly)
718      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
719        << DeclType << IList->getSourceRange();
720    hadError = true;
721  } else if (DeclType->isReferenceType()) {
722    CheckReferenceType(Entity, IList, DeclType, Index,
723                       StructuredList, StructuredIndex);
724  } else if (DeclType->isObjCObjectType()) {
725    if (!VerifyOnly)
726      SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
727        << DeclType;
728    hadError = true;
729  } else {
730    if (!VerifyOnly)
731      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
732        << DeclType;
733    hadError = true;
734  }
735}
736
737void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
738                                          InitListExpr *IList,
739                                          QualType ElemType,
740                                          unsigned &Index,
741                                          InitListExpr *StructuredList,
742                                          unsigned &StructuredIndex) {
743  Expr *expr = IList->getInit(Index);
744  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
745    unsigned newIndex = 0;
746    unsigned newStructuredIndex = 0;
747    InitListExpr *newStructuredList
748      = getStructuredSubobjectInit(IList, Index, ElemType,
749                                   StructuredList, StructuredIndex,
750                                   SubInitList->getSourceRange());
751    CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
752                          newStructuredList, newStructuredIndex);
753    ++StructuredIndex;
754    ++Index;
755    return;
756  } else if (ElemType->isScalarType()) {
757    return CheckScalarType(Entity, IList, ElemType, Index,
758                           StructuredList, StructuredIndex);
759  } else if (ElemType->isReferenceType()) {
760    return CheckReferenceType(Entity, IList, ElemType, Index,
761                              StructuredList, StructuredIndex);
762  }
763
764  if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
765    // arrayType can be incomplete if we're initializing a flexible
766    // array member.  There's nothing we can do with the completed
767    // type here, though.
768
769    if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
770      if (!VerifyOnly) {
771        CheckStringInit(Str, ElemType, arrayType, SemaRef);
772        UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
773      }
774      ++Index;
775      return;
776    }
777
778    // Fall through for subaggregate initialization.
779
780  } else if (SemaRef.getLangOptions().CPlusPlus) {
781    // C++ [dcl.init.aggr]p12:
782    //   All implicit type conversions (clause 4) are considered when
783    //   initializing the aggregate member with an initializer from
784    //   an initializer-list. If the initializer can initialize a
785    //   member, the member is initialized. [...]
786
787    // FIXME: Better EqualLoc?
788    InitializationKind Kind =
789      InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
790    InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
791
792    if (Seq) {
793      if (!VerifyOnly) {
794        ExprResult Result =
795          Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
796        if (Result.isInvalid())
797          hadError = true;
798
799        UpdateStructuredListElement(StructuredList, StructuredIndex,
800                                    Result.takeAs<Expr>());
801      }
802      ++Index;
803      return;
804    }
805
806    // Fall through for subaggregate initialization
807  } else {
808    // C99 6.7.8p13:
809    //
810    //   The initializer for a structure or union object that has
811    //   automatic storage duration shall be either an initializer
812    //   list as described below, or a single expression that has
813    //   compatible structure or union type. In the latter case, the
814    //   initial value of the object, including unnamed members, is
815    //   that of the expression.
816    ExprResult ExprRes = SemaRef.Owned(expr);
817    if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
818        SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
819                                                 !VerifyOnly)
820          == Sema::Compatible) {
821      if (ExprRes.isInvalid())
822        hadError = true;
823      else {
824        ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
825	      if (ExprRes.isInvalid())
826	        hadError = true;
827      }
828      UpdateStructuredListElement(StructuredList, StructuredIndex,
829                                  ExprRes.takeAs<Expr>());
830      ++Index;
831      return;
832    }
833    ExprRes.release();
834    // Fall through for subaggregate initialization
835  }
836
837  // C++ [dcl.init.aggr]p12:
838  //
839  //   [...] Otherwise, if the member is itself a non-empty
840  //   subaggregate, brace elision is assumed and the initializer is
841  //   considered for the initialization of the first member of
842  //   the subaggregate.
843  if (!SemaRef.getLangOptions().OpenCL &&
844      (ElemType->isAggregateType() || ElemType->isVectorType())) {
845    CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
846                          StructuredIndex);
847    ++StructuredIndex;
848  } else {
849    if (!VerifyOnly) {
850      // We cannot initialize this element, so let
851      // PerformCopyInitialization produce the appropriate diagnostic.
852      SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
853                                        SemaRef.Owned(expr),
854                                        /*TopLevelOfInitList=*/true);
855    }
856    hadError = true;
857    ++Index;
858    ++StructuredIndex;
859  }
860}
861
862void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
863                                       InitListExpr *IList, QualType DeclType,
864                                       unsigned &Index,
865                                       InitListExpr *StructuredList,
866                                       unsigned &StructuredIndex) {
867  assert(Index == 0 && "Index in explicit init list must be zero");
868
869  // As an extension, clang supports complex initializers, which initialize
870  // a complex number component-wise.  When an explicit initializer list for
871  // a complex number contains two two initializers, this extension kicks in:
872  // it exepcts the initializer list to contain two elements convertible to
873  // the element type of the complex type. The first element initializes
874  // the real part, and the second element intitializes the imaginary part.
875
876  if (IList->getNumInits() != 2)
877    return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
878                           StructuredIndex);
879
880  // This is an extension in C.  (The builtin _Complex type does not exist
881  // in the C++ standard.)
882  if (!SemaRef.getLangOptions().CPlusPlus && !VerifyOnly)
883    SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
884      << IList->getSourceRange();
885
886  // Initialize the complex number.
887  QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
888  InitializedEntity ElementEntity =
889    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
890
891  for (unsigned i = 0; i < 2; ++i) {
892    ElementEntity.setElementIndex(Index);
893    CheckSubElementType(ElementEntity, IList, elementType, Index,
894                        StructuredList, StructuredIndex);
895  }
896}
897
898
899void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
900                                      InitListExpr *IList, QualType DeclType,
901                                      unsigned &Index,
902                                      InitListExpr *StructuredList,
903                                      unsigned &StructuredIndex) {
904  if (Index >= IList->getNumInits()) {
905    if (!VerifyOnly)
906      SemaRef.Diag(IList->getLocStart(),
907                   SemaRef.getLangOptions().CPlusPlus0x ?
908                     diag::warn_cxx98_compat_empty_scalar_initializer :
909                     diag::err_empty_scalar_initializer)
910        << IList->getSourceRange();
911    hadError = !SemaRef.getLangOptions().CPlusPlus0x;
912    ++Index;
913    ++StructuredIndex;
914    return;
915  }
916
917  Expr *expr = IList->getInit(Index);
918  if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
919    if (!VerifyOnly)
920      SemaRef.Diag(SubIList->getLocStart(),
921                   diag::warn_many_braces_around_scalar_init)
922        << SubIList->getSourceRange();
923
924    CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
925                    StructuredIndex);
926    return;
927  } else if (isa<DesignatedInitExpr>(expr)) {
928    if (!VerifyOnly)
929      SemaRef.Diag(expr->getSourceRange().getBegin(),
930                   diag::err_designator_for_scalar_init)
931        << DeclType << expr->getSourceRange();
932    hadError = true;
933    ++Index;
934    ++StructuredIndex;
935    return;
936  }
937
938  if (VerifyOnly) {
939    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
940      hadError = true;
941    ++Index;
942    return;
943  }
944
945  ExprResult Result =
946    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
947                                      SemaRef.Owned(expr),
948                                      /*TopLevelOfInitList=*/true);
949
950  Expr *ResultExpr = 0;
951
952  if (Result.isInvalid())
953    hadError = true; // types weren't compatible.
954  else {
955    ResultExpr = Result.takeAs<Expr>();
956
957    if (ResultExpr != expr) {
958      // The type was promoted, update initializer list.
959      IList->setInit(Index, ResultExpr);
960    }
961  }
962  if (hadError)
963    ++StructuredIndex;
964  else
965    UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
966  ++Index;
967}
968
969void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
970                                         InitListExpr *IList, QualType DeclType,
971                                         unsigned &Index,
972                                         InitListExpr *StructuredList,
973                                         unsigned &StructuredIndex) {
974  if (Index >= IList->getNumInits()) {
975    // FIXME: It would be wonderful if we could point at the actual member. In
976    // general, it would be useful to pass location information down the stack,
977    // so that we know the location (or decl) of the "current object" being
978    // initialized.
979    if (!VerifyOnly)
980      SemaRef.Diag(IList->getLocStart(),
981                    diag::err_init_reference_member_uninitialized)
982        << DeclType
983        << IList->getSourceRange();
984    hadError = true;
985    ++Index;
986    ++StructuredIndex;
987    return;
988  }
989
990  Expr *expr = IList->getInit(Index);
991  if (isa<InitListExpr>(expr)) {
992    // FIXME: Allowed in C++11.
993    if (!VerifyOnly)
994      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
995        << DeclType << IList->getSourceRange();
996    hadError = true;
997    ++Index;
998    ++StructuredIndex;
999    return;
1000  }
1001
1002  if (VerifyOnly) {
1003    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1004      hadError = true;
1005    ++Index;
1006    return;
1007  }
1008
1009  ExprResult Result =
1010    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1011                                      SemaRef.Owned(expr),
1012                                      /*TopLevelOfInitList=*/true);
1013
1014  if (Result.isInvalid())
1015    hadError = true;
1016
1017  expr = Result.takeAs<Expr>();
1018  IList->setInit(Index, expr);
1019
1020  if (hadError)
1021    ++StructuredIndex;
1022  else
1023    UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1024  ++Index;
1025}
1026
1027void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1028                                      InitListExpr *IList, QualType DeclType,
1029                                      unsigned &Index,
1030                                      InitListExpr *StructuredList,
1031                                      unsigned &StructuredIndex) {
1032  const VectorType *VT = DeclType->getAs<VectorType>();
1033  unsigned maxElements = VT->getNumElements();
1034  unsigned numEltsInit = 0;
1035  QualType elementType = VT->getElementType();
1036
1037  if (Index >= IList->getNumInits()) {
1038    // Make sure the element type can be value-initialized.
1039    if (VerifyOnly)
1040      CheckValueInitializable(
1041          InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1042    return;
1043  }
1044
1045  if (!SemaRef.getLangOptions().OpenCL) {
1046    // If the initializing element is a vector, try to copy-initialize
1047    // instead of breaking it apart (which is doomed to failure anyway).
1048    Expr *Init = IList->getInit(Index);
1049    if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1050      if (VerifyOnly) {
1051        if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1052          hadError = true;
1053        ++Index;
1054        return;
1055      }
1056
1057      ExprResult Result =
1058        SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1059                                          SemaRef.Owned(Init),
1060                                          /*TopLevelOfInitList=*/true);
1061
1062      Expr *ResultExpr = 0;
1063      if (Result.isInvalid())
1064        hadError = true; // types weren't compatible.
1065      else {
1066        ResultExpr = Result.takeAs<Expr>();
1067
1068        if (ResultExpr != Init) {
1069          // The type was promoted, update initializer list.
1070          IList->setInit(Index, ResultExpr);
1071        }
1072      }
1073      if (hadError)
1074        ++StructuredIndex;
1075      else
1076        UpdateStructuredListElement(StructuredList, StructuredIndex,
1077                                    ResultExpr);
1078      ++Index;
1079      return;
1080    }
1081
1082    InitializedEntity ElementEntity =
1083      InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1084
1085    for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1086      // Don't attempt to go past the end of the init list
1087      if (Index >= IList->getNumInits()) {
1088        if (VerifyOnly)
1089          CheckValueInitializable(ElementEntity);
1090        break;
1091      }
1092
1093      ElementEntity.setElementIndex(Index);
1094      CheckSubElementType(ElementEntity, IList, elementType, Index,
1095                          StructuredList, StructuredIndex);
1096    }
1097    return;
1098  }
1099
1100  InitializedEntity ElementEntity =
1101    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1102
1103  // OpenCL initializers allows vectors to be constructed from vectors.
1104  for (unsigned i = 0; i < maxElements; ++i) {
1105    // Don't attempt to go past the end of the init list
1106    if (Index >= IList->getNumInits())
1107      break;
1108
1109    ElementEntity.setElementIndex(Index);
1110
1111    QualType IType = IList->getInit(Index)->getType();
1112    if (!IType->isVectorType()) {
1113      CheckSubElementType(ElementEntity, IList, elementType, Index,
1114                          StructuredList, StructuredIndex);
1115      ++numEltsInit;
1116    } else {
1117      QualType VecType;
1118      const VectorType *IVT = IType->getAs<VectorType>();
1119      unsigned numIElts = IVT->getNumElements();
1120
1121      if (IType->isExtVectorType())
1122        VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1123      else
1124        VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1125                                                IVT->getVectorKind());
1126      CheckSubElementType(ElementEntity, IList, VecType, Index,
1127                          StructuredList, StructuredIndex);
1128      numEltsInit += numIElts;
1129    }
1130  }
1131
1132  // OpenCL requires all elements to be initialized.
1133  if (numEltsInit != maxElements) {
1134    if (!VerifyOnly)
1135      SemaRef.Diag(IList->getSourceRange().getBegin(),
1136                   diag::err_vector_incorrect_num_initializers)
1137        << (numEltsInit < maxElements) << maxElements << numEltsInit;
1138    hadError = true;
1139  }
1140}
1141
1142void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1143                                     InitListExpr *IList, QualType &DeclType,
1144                                     llvm::APSInt elementIndex,
1145                                     bool SubobjectIsDesignatorContext,
1146                                     unsigned &Index,
1147                                     InitListExpr *StructuredList,
1148                                     unsigned &StructuredIndex) {
1149  const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1150
1151  // Check for the special-case of initializing an array with a string.
1152  if (Index < IList->getNumInits()) {
1153    if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
1154                                 SemaRef.Context)) {
1155      // We place the string literal directly into the resulting
1156      // initializer list. This is the only place where the structure
1157      // of the structured initializer list doesn't match exactly,
1158      // because doing so would involve allocating one character
1159      // constant for each string.
1160      if (!VerifyOnly) {
1161        CheckStringInit(Str, DeclType, arrayType, SemaRef);
1162        UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
1163        StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1164      }
1165      ++Index;
1166      return;
1167    }
1168  }
1169  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1170    // Check for VLAs; in standard C it would be possible to check this
1171    // earlier, but I don't know where clang accepts VLAs (gcc accepts
1172    // them in all sorts of strange places).
1173    if (!VerifyOnly)
1174      SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1175                    diag::err_variable_object_no_init)
1176        << VAT->getSizeExpr()->getSourceRange();
1177    hadError = true;
1178    ++Index;
1179    ++StructuredIndex;
1180    return;
1181  }
1182
1183  // We might know the maximum number of elements in advance.
1184  llvm::APSInt maxElements(elementIndex.getBitWidth(),
1185                           elementIndex.isUnsigned());
1186  bool maxElementsKnown = false;
1187  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1188    maxElements = CAT->getSize();
1189    elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1190    elementIndex.setIsUnsigned(maxElements.isUnsigned());
1191    maxElementsKnown = true;
1192  }
1193
1194  QualType elementType = arrayType->getElementType();
1195  while (Index < IList->getNumInits()) {
1196    Expr *Init = IList->getInit(Index);
1197    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1198      // If we're not the subobject that matches up with the '{' for
1199      // the designator, we shouldn't be handling the
1200      // designator. Return immediately.
1201      if (!SubobjectIsDesignatorContext)
1202        return;
1203
1204      // Handle this designated initializer. elementIndex will be
1205      // updated to be the next array element we'll initialize.
1206      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1207                                     DeclType, 0, &elementIndex, Index,
1208                                     StructuredList, StructuredIndex, true,
1209                                     false)) {
1210        hadError = true;
1211        continue;
1212      }
1213
1214      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1215        maxElements = maxElements.extend(elementIndex.getBitWidth());
1216      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1217        elementIndex = elementIndex.extend(maxElements.getBitWidth());
1218      elementIndex.setIsUnsigned(maxElements.isUnsigned());
1219
1220      // If the array is of incomplete type, keep track of the number of
1221      // elements in the initializer.
1222      if (!maxElementsKnown && elementIndex > maxElements)
1223        maxElements = elementIndex;
1224
1225      continue;
1226    }
1227
1228    // If we know the maximum number of elements, and we've already
1229    // hit it, stop consuming elements in the initializer list.
1230    if (maxElementsKnown && elementIndex == maxElements)
1231      break;
1232
1233    InitializedEntity ElementEntity =
1234      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1235                                           Entity);
1236    // Check this element.
1237    CheckSubElementType(ElementEntity, IList, elementType, Index,
1238                        StructuredList, StructuredIndex);
1239    ++elementIndex;
1240
1241    // If the array is of incomplete type, keep track of the number of
1242    // elements in the initializer.
1243    if (!maxElementsKnown && elementIndex > maxElements)
1244      maxElements = elementIndex;
1245  }
1246  if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1247    // If this is an incomplete array type, the actual type needs to
1248    // be calculated here.
1249    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1250    if (maxElements == Zero) {
1251      // Sizing an array implicitly to zero is not allowed by ISO C,
1252      // but is supported by GNU.
1253      SemaRef.Diag(IList->getLocStart(),
1254                    diag::ext_typecheck_zero_array_size);
1255    }
1256
1257    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1258                                                     ArrayType::Normal, 0);
1259  }
1260  if (!hadError && VerifyOnly) {
1261    // Check if there are any members of the array that get value-initialized.
1262    // If so, check if doing that is possible.
1263    // FIXME: This needs to detect holes left by designated initializers too.
1264    if (maxElementsKnown && elementIndex < maxElements)
1265      CheckValueInitializable(InitializedEntity::InitializeElement(
1266                                                  SemaRef.Context, 0, Entity));
1267  }
1268}
1269
1270bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1271                                             Expr *InitExpr,
1272                                             FieldDecl *Field,
1273                                             bool TopLevelObject) {
1274  // Handle GNU flexible array initializers.
1275  unsigned FlexArrayDiag;
1276  if (isa<InitListExpr>(InitExpr) &&
1277      cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1278    // Empty flexible array init always allowed as an extension
1279    FlexArrayDiag = diag::ext_flexible_array_init;
1280  } else if (SemaRef.getLangOptions().CPlusPlus) {
1281    // Disallow flexible array init in C++; it is not required for gcc
1282    // compatibility, and it needs work to IRGen correctly in general.
1283    FlexArrayDiag = diag::err_flexible_array_init;
1284  } else if (!TopLevelObject) {
1285    // Disallow flexible array init on non-top-level object
1286    FlexArrayDiag = diag::err_flexible_array_init;
1287  } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1288    // Disallow flexible array init on anything which is not a variable.
1289    FlexArrayDiag = diag::err_flexible_array_init;
1290  } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1291    // Disallow flexible array init on local variables.
1292    FlexArrayDiag = diag::err_flexible_array_init;
1293  } else {
1294    // Allow other cases.
1295    FlexArrayDiag = diag::ext_flexible_array_init;
1296  }
1297
1298  if (!VerifyOnly) {
1299    SemaRef.Diag(InitExpr->getSourceRange().getBegin(),
1300                 FlexArrayDiag)
1301      << InitExpr->getSourceRange().getBegin();
1302    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1303      << Field;
1304  }
1305
1306  return FlexArrayDiag != diag::ext_flexible_array_init;
1307}
1308
1309void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1310                                            InitListExpr *IList,
1311                                            QualType DeclType,
1312                                            RecordDecl::field_iterator Field,
1313                                            bool SubobjectIsDesignatorContext,
1314                                            unsigned &Index,
1315                                            InitListExpr *StructuredList,
1316                                            unsigned &StructuredIndex,
1317                                            bool TopLevelObject) {
1318  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1319
1320  // If the record is invalid, some of it's members are invalid. To avoid
1321  // confusion, we forgo checking the intializer for the entire record.
1322  if (structDecl->isInvalidDecl()) {
1323    hadError = true;
1324    return;
1325  }
1326
1327  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1328    // Value-initialize the first named member of the union.
1329    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1330    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1331         Field != FieldEnd; ++Field) {
1332      if (Field->getDeclName()) {
1333        if (VerifyOnly)
1334          CheckValueInitializable(
1335              InitializedEntity::InitializeMember(*Field, &Entity));
1336        else
1337          StructuredList->setInitializedFieldInUnion(*Field);
1338        break;
1339      }
1340    }
1341    return;
1342  }
1343
1344  // If structDecl is a forward declaration, this loop won't do
1345  // anything except look at designated initializers; That's okay,
1346  // because an error should get printed out elsewhere. It might be
1347  // worthwhile to skip over the rest of the initializer, though.
1348  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1349  RecordDecl::field_iterator FieldEnd = RD->field_end();
1350  bool InitializedSomething = false;
1351  bool CheckForMissingFields = true;
1352  while (Index < IList->getNumInits()) {
1353    Expr *Init = IList->getInit(Index);
1354
1355    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1356      // If we're not the subobject that matches up with the '{' for
1357      // the designator, we shouldn't be handling the
1358      // designator. Return immediately.
1359      if (!SubobjectIsDesignatorContext)
1360        return;
1361
1362      // Handle this designated initializer. Field will be updated to
1363      // the next field that we'll be initializing.
1364      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1365                                     DeclType, &Field, 0, Index,
1366                                     StructuredList, StructuredIndex,
1367                                     true, TopLevelObject))
1368        hadError = true;
1369
1370      InitializedSomething = true;
1371
1372      // Disable check for missing fields when designators are used.
1373      // This matches gcc behaviour.
1374      CheckForMissingFields = false;
1375      continue;
1376    }
1377
1378    if (Field == FieldEnd) {
1379      // We've run out of fields. We're done.
1380      break;
1381    }
1382
1383    // We've already initialized a member of a union. We're done.
1384    if (InitializedSomething && DeclType->isUnionType())
1385      break;
1386
1387    // If we've hit the flexible array member at the end, we're done.
1388    if (Field->getType()->isIncompleteArrayType())
1389      break;
1390
1391    if (Field->isUnnamedBitfield()) {
1392      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1393      ++Field;
1394      continue;
1395    }
1396
1397    // Make sure we can use this declaration.
1398    bool InvalidUse;
1399    if (VerifyOnly)
1400      InvalidUse = !SemaRef.CanUseDecl(*Field);
1401    else
1402      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1403                                          IList->getInit(Index)->getLocStart());
1404    if (InvalidUse) {
1405      ++Index;
1406      ++Field;
1407      hadError = true;
1408      continue;
1409    }
1410
1411    InitializedEntity MemberEntity =
1412      InitializedEntity::InitializeMember(*Field, &Entity);
1413    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1414                        StructuredList, StructuredIndex);
1415    InitializedSomething = true;
1416
1417    if (DeclType->isUnionType() && !VerifyOnly) {
1418      // Initialize the first field within the union.
1419      StructuredList->setInitializedFieldInUnion(*Field);
1420    }
1421
1422    ++Field;
1423  }
1424
1425  // Emit warnings for missing struct field initializers.
1426  if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1427      Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1428      !DeclType->isUnionType()) {
1429    // It is possible we have one or more unnamed bitfields remaining.
1430    // Find first (if any) named field and emit warning.
1431    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1432         it != end; ++it) {
1433      if (!it->isUnnamedBitfield()) {
1434        SemaRef.Diag(IList->getSourceRange().getEnd(),
1435                     diag::warn_missing_field_initializers) << it->getName();
1436        break;
1437      }
1438    }
1439  }
1440
1441  // Check that any remaining fields can be value-initialized.
1442  if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1443      !Field->getType()->isIncompleteArrayType()) {
1444    // FIXME: Should check for holes left by designated initializers too.
1445    for (; Field != FieldEnd && !hadError; ++Field) {
1446      if (!Field->isUnnamedBitfield())
1447        CheckValueInitializable(
1448            InitializedEntity::InitializeMember(*Field, &Entity));
1449    }
1450  }
1451
1452  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1453      Index >= IList->getNumInits())
1454    return;
1455
1456  if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1457                             TopLevelObject)) {
1458    hadError = true;
1459    ++Index;
1460    return;
1461  }
1462
1463  InitializedEntity MemberEntity =
1464    InitializedEntity::InitializeMember(*Field, &Entity);
1465
1466  if (isa<InitListExpr>(IList->getInit(Index)))
1467    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1468                        StructuredList, StructuredIndex);
1469  else
1470    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1471                          StructuredList, StructuredIndex);
1472}
1473
1474/// \brief Expand a field designator that refers to a member of an
1475/// anonymous struct or union into a series of field designators that
1476/// refers to the field within the appropriate subobject.
1477///
1478static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1479                                           DesignatedInitExpr *DIE,
1480                                           unsigned DesigIdx,
1481                                           IndirectFieldDecl *IndirectField) {
1482  typedef DesignatedInitExpr::Designator Designator;
1483
1484  // Build the replacement designators.
1485  SmallVector<Designator, 4> Replacements;
1486  for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1487       PE = IndirectField->chain_end(); PI != PE; ++PI) {
1488    if (PI + 1 == PE)
1489      Replacements.push_back(Designator((IdentifierInfo *)0,
1490                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1491                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1492    else
1493      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1494                                        SourceLocation()));
1495    assert(isa<FieldDecl>(*PI));
1496    Replacements.back().setField(cast<FieldDecl>(*PI));
1497  }
1498
1499  // Expand the current designator into the set of replacement
1500  // designators, so we have a full subobject path down to where the
1501  // member of the anonymous struct/union is actually stored.
1502  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1503                        &Replacements[0] + Replacements.size());
1504}
1505
1506/// \brief Given an implicit anonymous field, search the IndirectField that
1507///  corresponds to FieldName.
1508static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1509                                                 IdentifierInfo *FieldName) {
1510  assert(AnonField->isAnonymousStructOrUnion());
1511  Decl *NextDecl = AnonField->getNextDeclInContext();
1512  while (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(NextDecl)) {
1513    if (FieldName && FieldName == IF->getAnonField()->getIdentifier())
1514      return IF;
1515    NextDecl = NextDecl->getNextDeclInContext();
1516  }
1517  return 0;
1518}
1519
1520static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1521                                                   DesignatedInitExpr *DIE) {
1522  unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1523  SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1524  for (unsigned I = 0; I < NumIndexExprs; ++I)
1525    IndexExprs[I] = DIE->getSubExpr(I + 1);
1526  return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1527                                    DIE->size(), IndexExprs.data(),
1528                                    NumIndexExprs, DIE->getEqualOrColonLoc(),
1529                                    DIE->usesGNUSyntax(), DIE->getInit());
1530}
1531
1532/// @brief Check the well-formedness of a C99 designated initializer.
1533///
1534/// Determines whether the designated initializer @p DIE, which
1535/// resides at the given @p Index within the initializer list @p
1536/// IList, is well-formed for a current object of type @p DeclType
1537/// (C99 6.7.8). The actual subobject that this designator refers to
1538/// within the current subobject is returned in either
1539/// @p NextField or @p NextElementIndex (whichever is appropriate).
1540///
1541/// @param IList  The initializer list in which this designated
1542/// initializer occurs.
1543///
1544/// @param DIE The designated initializer expression.
1545///
1546/// @param DesigIdx  The index of the current designator.
1547///
1548/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1549/// into which the designation in @p DIE should refer.
1550///
1551/// @param NextField  If non-NULL and the first designator in @p DIE is
1552/// a field, this will be set to the field declaration corresponding
1553/// to the field named by the designator.
1554///
1555/// @param NextElementIndex  If non-NULL and the first designator in @p
1556/// DIE is an array designator or GNU array-range designator, this
1557/// will be set to the last index initialized by this designator.
1558///
1559/// @param Index  Index into @p IList where the designated initializer
1560/// @p DIE occurs.
1561///
1562/// @param StructuredList  The initializer list expression that
1563/// describes all of the subobject initializers in the order they'll
1564/// actually be initialized.
1565///
1566/// @returns true if there was an error, false otherwise.
1567bool
1568InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1569                                            InitListExpr *IList,
1570                                            DesignatedInitExpr *DIE,
1571                                            unsigned DesigIdx,
1572                                            QualType &CurrentObjectType,
1573                                          RecordDecl::field_iterator *NextField,
1574                                            llvm::APSInt *NextElementIndex,
1575                                            unsigned &Index,
1576                                            InitListExpr *StructuredList,
1577                                            unsigned &StructuredIndex,
1578                                            bool FinishSubobjectInit,
1579                                            bool TopLevelObject) {
1580  if (DesigIdx == DIE->size()) {
1581    // Check the actual initialization for the designated object type.
1582    bool prevHadError = hadError;
1583
1584    // Temporarily remove the designator expression from the
1585    // initializer list that the child calls see, so that we don't try
1586    // to re-process the designator.
1587    unsigned OldIndex = Index;
1588    IList->setInit(OldIndex, DIE->getInit());
1589
1590    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1591                        StructuredList, StructuredIndex);
1592
1593    // Restore the designated initializer expression in the syntactic
1594    // form of the initializer list.
1595    if (IList->getInit(OldIndex) != DIE->getInit())
1596      DIE->setInit(IList->getInit(OldIndex));
1597    IList->setInit(OldIndex, DIE);
1598
1599    return hadError && !prevHadError;
1600  }
1601
1602  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1603  bool IsFirstDesignator = (DesigIdx == 0);
1604  if (!VerifyOnly) {
1605    assert((IsFirstDesignator || StructuredList) &&
1606           "Need a non-designated initializer list to start from");
1607
1608    // Determine the structural initializer list that corresponds to the
1609    // current subobject.
1610    StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1611      : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1612                                   StructuredList, StructuredIndex,
1613                                   SourceRange(D->getStartLocation(),
1614                                               DIE->getSourceRange().getEnd()));
1615    assert(StructuredList && "Expected a structured initializer list");
1616  }
1617
1618  if (D->isFieldDesignator()) {
1619    // C99 6.7.8p7:
1620    //
1621    //   If a designator has the form
1622    //
1623    //      . identifier
1624    //
1625    //   then the current object (defined below) shall have
1626    //   structure or union type and the identifier shall be the
1627    //   name of a member of that type.
1628    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1629    if (!RT) {
1630      SourceLocation Loc = D->getDotLoc();
1631      if (Loc.isInvalid())
1632        Loc = D->getFieldLoc();
1633      if (!VerifyOnly)
1634        SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1635          << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1636      ++Index;
1637      return true;
1638    }
1639
1640    // Note: we perform a linear search of the fields here, despite
1641    // the fact that we have a faster lookup method, because we always
1642    // need to compute the field's index.
1643    FieldDecl *KnownField = D->getField();
1644    IdentifierInfo *FieldName = D->getFieldName();
1645    unsigned FieldIndex = 0;
1646    RecordDecl::field_iterator
1647      Field = RT->getDecl()->field_begin(),
1648      FieldEnd = RT->getDecl()->field_end();
1649    for (; Field != FieldEnd; ++Field) {
1650      if (Field->isUnnamedBitfield())
1651        continue;
1652
1653      // If we find a field representing an anonymous field, look in the
1654      // IndirectFieldDecl that follow for the designated initializer.
1655      if (!KnownField && Field->isAnonymousStructOrUnion()) {
1656        if (IndirectFieldDecl *IF =
1657            FindIndirectFieldDesignator(*Field, FieldName)) {
1658          // In verify mode, don't modify the original.
1659          if (VerifyOnly)
1660            DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1661          ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1662          D = DIE->getDesignator(DesigIdx);
1663          break;
1664        }
1665      }
1666      if (KnownField && KnownField == *Field)
1667        break;
1668      if (FieldName && FieldName == Field->getIdentifier())
1669        break;
1670
1671      ++FieldIndex;
1672    }
1673
1674    if (Field == FieldEnd) {
1675      if (VerifyOnly) {
1676        ++Index;
1677        return true; // No typo correction when just trying this out.
1678      }
1679
1680      // There was no normal field in the struct with the designated
1681      // name. Perform another lookup for this name, which may find
1682      // something that we can't designate (e.g., a member function),
1683      // may find nothing, or may find a member of an anonymous
1684      // struct/union.
1685      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1686      FieldDecl *ReplacementField = 0;
1687      if (Lookup.first == Lookup.second) {
1688        // Name lookup didn't find anything. Determine whether this
1689        // was a typo for another field name.
1690        LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
1691                       Sema::LookupMemberName);
1692        TypoCorrection Corrected = SemaRef.CorrectTypo(
1693            DeclarationNameInfo(FieldName, D->getFieldLoc()),
1694            Sema::LookupMemberName, /*Scope=*/NULL, /*SS=*/NULL,
1695            RT->getDecl(), false, Sema::CTC_NoKeywords);
1696        if ((ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>()) &&
1697            ReplacementField->getDeclContext()->getRedeclContext()
1698                                                      ->Equals(RT->getDecl())) {
1699          std::string CorrectedStr(
1700              Corrected.getAsString(SemaRef.getLangOptions()));
1701          std::string CorrectedQuotedStr(
1702              Corrected.getQuoted(SemaRef.getLangOptions()));
1703          SemaRef.Diag(D->getFieldLoc(),
1704                       diag::err_field_designator_unknown_suggest)
1705            << FieldName << CurrentObjectType << CorrectedQuotedStr
1706            << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1707          SemaRef.Diag(ReplacementField->getLocation(),
1708                       diag::note_previous_decl) << CorrectedQuotedStr;
1709          hadError = true;
1710        } else {
1711          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1712            << FieldName << CurrentObjectType;
1713          ++Index;
1714          return true;
1715        }
1716      }
1717
1718      if (!ReplacementField) {
1719        // Name lookup found something, but it wasn't a field.
1720        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1721          << FieldName;
1722        SemaRef.Diag((*Lookup.first)->getLocation(),
1723                      diag::note_field_designator_found);
1724        ++Index;
1725        return true;
1726      }
1727
1728      if (!KnownField) {
1729        // The replacement field comes from typo correction; find it
1730        // in the list of fields.
1731        FieldIndex = 0;
1732        Field = RT->getDecl()->field_begin();
1733        for (; Field != FieldEnd; ++Field) {
1734          if (Field->isUnnamedBitfield())
1735            continue;
1736
1737          if (ReplacementField == *Field ||
1738              Field->getIdentifier() == ReplacementField->getIdentifier())
1739            break;
1740
1741          ++FieldIndex;
1742        }
1743      }
1744    }
1745
1746    // All of the fields of a union are located at the same place in
1747    // the initializer list.
1748    if (RT->getDecl()->isUnion()) {
1749      FieldIndex = 0;
1750      if (!VerifyOnly)
1751        StructuredList->setInitializedFieldInUnion(*Field);
1752    }
1753
1754    // Make sure we can use this declaration.
1755    bool InvalidUse;
1756    if (VerifyOnly)
1757      InvalidUse = !SemaRef.CanUseDecl(*Field);
1758    else
1759      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1760    if (InvalidUse) {
1761      ++Index;
1762      return true;
1763    }
1764
1765    if (!VerifyOnly) {
1766      // Update the designator with the field declaration.
1767      D->setField(*Field);
1768
1769      // Make sure that our non-designated initializer list has space
1770      // for a subobject corresponding to this field.
1771      if (FieldIndex >= StructuredList->getNumInits())
1772        StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1773    }
1774
1775    // This designator names a flexible array member.
1776    if (Field->getType()->isIncompleteArrayType()) {
1777      bool Invalid = false;
1778      if ((DesigIdx + 1) != DIE->size()) {
1779        // We can't designate an object within the flexible array
1780        // member (because GCC doesn't allow it).
1781        if (!VerifyOnly) {
1782          DesignatedInitExpr::Designator *NextD
1783            = DIE->getDesignator(DesigIdx + 1);
1784          SemaRef.Diag(NextD->getStartLocation(),
1785                        diag::err_designator_into_flexible_array_member)
1786            << SourceRange(NextD->getStartLocation(),
1787                           DIE->getSourceRange().getEnd());
1788          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1789            << *Field;
1790        }
1791        Invalid = true;
1792      }
1793
1794      if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1795          !isa<StringLiteral>(DIE->getInit())) {
1796        // The initializer is not an initializer list.
1797        if (!VerifyOnly) {
1798          SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1799                        diag::err_flexible_array_init_needs_braces)
1800            << DIE->getInit()->getSourceRange();
1801          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1802            << *Field;
1803        }
1804        Invalid = true;
1805      }
1806
1807      // Check GNU flexible array initializer.
1808      if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1809                                             TopLevelObject))
1810        Invalid = true;
1811
1812      if (Invalid) {
1813        ++Index;
1814        return true;
1815      }
1816
1817      // Initialize the array.
1818      bool prevHadError = hadError;
1819      unsigned newStructuredIndex = FieldIndex;
1820      unsigned OldIndex = Index;
1821      IList->setInit(Index, DIE->getInit());
1822
1823      InitializedEntity MemberEntity =
1824        InitializedEntity::InitializeMember(*Field, &Entity);
1825      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1826                          StructuredList, newStructuredIndex);
1827
1828      IList->setInit(OldIndex, DIE);
1829      if (hadError && !prevHadError) {
1830        ++Field;
1831        ++FieldIndex;
1832        if (NextField)
1833          *NextField = Field;
1834        StructuredIndex = FieldIndex;
1835        return true;
1836      }
1837    } else {
1838      // Recurse to check later designated subobjects.
1839      QualType FieldType = (*Field)->getType();
1840      unsigned newStructuredIndex = FieldIndex;
1841
1842      InitializedEntity MemberEntity =
1843        InitializedEntity::InitializeMember(*Field, &Entity);
1844      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1845                                     FieldType, 0, 0, Index,
1846                                     StructuredList, newStructuredIndex,
1847                                     true, false))
1848        return true;
1849    }
1850
1851    // Find the position of the next field to be initialized in this
1852    // subobject.
1853    ++Field;
1854    ++FieldIndex;
1855
1856    // If this the first designator, our caller will continue checking
1857    // the rest of this struct/class/union subobject.
1858    if (IsFirstDesignator) {
1859      if (NextField)
1860        *NextField = Field;
1861      StructuredIndex = FieldIndex;
1862      return false;
1863    }
1864
1865    if (!FinishSubobjectInit)
1866      return false;
1867
1868    // We've already initialized something in the union; we're done.
1869    if (RT->getDecl()->isUnion())
1870      return hadError;
1871
1872    // Check the remaining fields within this class/struct/union subobject.
1873    bool prevHadError = hadError;
1874
1875    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1876                          StructuredList, FieldIndex);
1877    return hadError && !prevHadError;
1878  }
1879
1880  // C99 6.7.8p6:
1881  //
1882  //   If a designator has the form
1883  //
1884  //      [ constant-expression ]
1885  //
1886  //   then the current object (defined below) shall have array
1887  //   type and the expression shall be an integer constant
1888  //   expression. If the array is of unknown size, any
1889  //   nonnegative value is valid.
1890  //
1891  // Additionally, cope with the GNU extension that permits
1892  // designators of the form
1893  //
1894  //      [ constant-expression ... constant-expression ]
1895  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1896  if (!AT) {
1897    if (!VerifyOnly)
1898      SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1899        << CurrentObjectType;
1900    ++Index;
1901    return true;
1902  }
1903
1904  Expr *IndexExpr = 0;
1905  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1906  if (D->isArrayDesignator()) {
1907    IndexExpr = DIE->getArrayIndex(*D);
1908    DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
1909    DesignatedEndIndex = DesignatedStartIndex;
1910  } else {
1911    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1912
1913    DesignatedStartIndex =
1914      DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
1915    DesignatedEndIndex =
1916      DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
1917    IndexExpr = DIE->getArrayRangeEnd(*D);
1918
1919    // Codegen can't handle evaluating array range designators that have side
1920    // effects, because we replicate the AST value for each initialized element.
1921    // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
1922    // elements with something that has a side effect, so codegen can emit an
1923    // "error unsupported" error instead of miscompiling the app.
1924    if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
1925        DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
1926      FullyStructuredList->sawArrayRangeDesignator();
1927  }
1928
1929  if (isa<ConstantArrayType>(AT)) {
1930    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1931    DesignatedStartIndex
1932      = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1933    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1934    DesignatedEndIndex
1935      = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1936    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1937    if (DesignatedEndIndex >= MaxElements) {
1938      if (!VerifyOnly)
1939        SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1940                      diag::err_array_designator_too_large)
1941          << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1942          << IndexExpr->getSourceRange();
1943      ++Index;
1944      return true;
1945    }
1946  } else {
1947    // Make sure the bit-widths and signedness match.
1948    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1949      DesignatedEndIndex
1950        = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1951    else if (DesignatedStartIndex.getBitWidth() <
1952             DesignatedEndIndex.getBitWidth())
1953      DesignatedStartIndex
1954        = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1955    DesignatedStartIndex.setIsUnsigned(true);
1956    DesignatedEndIndex.setIsUnsigned(true);
1957  }
1958
1959  // Make sure that our non-designated initializer list has space
1960  // for a subobject corresponding to this array element.
1961  if (!VerifyOnly &&
1962      DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1963    StructuredList->resizeInits(SemaRef.Context,
1964                                DesignatedEndIndex.getZExtValue() + 1);
1965
1966  // Repeatedly perform subobject initializations in the range
1967  // [DesignatedStartIndex, DesignatedEndIndex].
1968
1969  // Move to the next designator
1970  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1971  unsigned OldIndex = Index;
1972
1973  InitializedEntity ElementEntity =
1974    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1975
1976  while (DesignatedStartIndex <= DesignatedEndIndex) {
1977    // Recurse to check later designated subobjects.
1978    QualType ElementType = AT->getElementType();
1979    Index = OldIndex;
1980
1981    ElementEntity.setElementIndex(ElementIndex);
1982    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
1983                                   ElementType, 0, 0, Index,
1984                                   StructuredList, ElementIndex,
1985                                   (DesignatedStartIndex == DesignatedEndIndex),
1986                                   false))
1987      return true;
1988
1989    // Move to the next index in the array that we'll be initializing.
1990    ++DesignatedStartIndex;
1991    ElementIndex = DesignatedStartIndex.getZExtValue();
1992  }
1993
1994  // If this the first designator, our caller will continue checking
1995  // the rest of this array subobject.
1996  if (IsFirstDesignator) {
1997    if (NextElementIndex)
1998      *NextElementIndex = DesignatedStartIndex;
1999    StructuredIndex = ElementIndex;
2000    return false;
2001  }
2002
2003  if (!FinishSubobjectInit)
2004    return false;
2005
2006  // Check the remaining elements within this array subobject.
2007  bool prevHadError = hadError;
2008  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2009                 /*SubobjectIsDesignatorContext=*/false, Index,
2010                 StructuredList, ElementIndex);
2011  return hadError && !prevHadError;
2012}
2013
2014// Get the structured initializer list for a subobject of type
2015// @p CurrentObjectType.
2016InitListExpr *
2017InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2018                                            QualType CurrentObjectType,
2019                                            InitListExpr *StructuredList,
2020                                            unsigned StructuredIndex,
2021                                            SourceRange InitRange) {
2022  if (VerifyOnly)
2023    return 0; // No structured list in verification-only mode.
2024  Expr *ExistingInit = 0;
2025  if (!StructuredList)
2026    ExistingInit = SyntacticToSemantic[IList];
2027  else if (StructuredIndex < StructuredList->getNumInits())
2028    ExistingInit = StructuredList->getInit(StructuredIndex);
2029
2030  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2031    return Result;
2032
2033  if (ExistingInit) {
2034    // We are creating an initializer list that initializes the
2035    // subobjects of the current object, but there was already an
2036    // initialization that completely initialized the current
2037    // subobject, e.g., by a compound literal:
2038    //
2039    // struct X { int a, b; };
2040    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2041    //
2042    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2043    // designated initializer re-initializes the whole
2044    // subobject [0], overwriting previous initializers.
2045    SemaRef.Diag(InitRange.getBegin(),
2046                 diag::warn_subobject_initializer_overrides)
2047      << InitRange;
2048    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
2049                  diag::note_previous_initializer)
2050      << /*FIXME:has side effects=*/0
2051      << ExistingInit->getSourceRange();
2052  }
2053
2054  InitListExpr *Result
2055    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2056                                         InitRange.getBegin(), 0, 0,
2057                                         InitRange.getEnd());
2058
2059  Result->setType(CurrentObjectType.getNonLValueExprType(SemaRef.Context));
2060
2061  // Pre-allocate storage for the structured initializer list.
2062  unsigned NumElements = 0;
2063  unsigned NumInits = 0;
2064  bool GotNumInits = false;
2065  if (!StructuredList) {
2066    NumInits = IList->getNumInits();
2067    GotNumInits = true;
2068  } else if (Index < IList->getNumInits()) {
2069    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2070      NumInits = SubList->getNumInits();
2071      GotNumInits = true;
2072    }
2073  }
2074
2075  if (const ArrayType *AType
2076      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2077    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2078      NumElements = CAType->getSize().getZExtValue();
2079      // Simple heuristic so that we don't allocate a very large
2080      // initializer with many empty entries at the end.
2081      if (GotNumInits && NumElements > NumInits)
2082        NumElements = 0;
2083    }
2084  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2085    NumElements = VType->getNumElements();
2086  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2087    RecordDecl *RDecl = RType->getDecl();
2088    if (RDecl->isUnion())
2089      NumElements = 1;
2090    else
2091      NumElements = std::distance(RDecl->field_begin(),
2092                                  RDecl->field_end());
2093  }
2094
2095  Result->reserveInits(SemaRef.Context, NumElements);
2096
2097  // Link this new initializer list into the structured initializer
2098  // lists.
2099  if (StructuredList)
2100    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2101  else {
2102    Result->setSyntacticForm(IList);
2103    SyntacticToSemantic[IList] = Result;
2104  }
2105
2106  return Result;
2107}
2108
2109/// Update the initializer at index @p StructuredIndex within the
2110/// structured initializer list to the value @p expr.
2111void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2112                                                  unsigned &StructuredIndex,
2113                                                  Expr *expr) {
2114  // No structured initializer list to update
2115  if (!StructuredList)
2116    return;
2117
2118  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2119                                                  StructuredIndex, expr)) {
2120    // This initializer overwrites a previous initializer. Warn.
2121    SemaRef.Diag(expr->getSourceRange().getBegin(),
2122                  diag::warn_initializer_overrides)
2123      << expr->getSourceRange();
2124    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
2125                  diag::note_previous_initializer)
2126      << /*FIXME:has side effects=*/0
2127      << PrevInit->getSourceRange();
2128  }
2129
2130  ++StructuredIndex;
2131}
2132
2133/// Check that the given Index expression is a valid array designator
2134/// value. This is essentailly just a wrapper around
2135/// VerifyIntegerConstantExpression that also checks for negative values
2136/// and produces a reasonable diagnostic if there is a
2137/// failure. Returns true if there was an error, false otherwise.  If
2138/// everything went okay, Value will receive the value of the constant
2139/// expression.
2140static bool
2141CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2142  SourceLocation Loc = Index->getSourceRange().getBegin();
2143
2144  // Make sure this is an integer constant expression.
2145  if (S.VerifyIntegerConstantExpression(Index, &Value))
2146    return true;
2147
2148  if (Value.isSigned() && Value.isNegative())
2149    return S.Diag(Loc, diag::err_array_designator_negative)
2150      << Value.toString(10) << Index->getSourceRange();
2151
2152  Value.setIsUnsigned(true);
2153  return false;
2154}
2155
2156ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2157                                            SourceLocation Loc,
2158                                            bool GNUSyntax,
2159                                            ExprResult Init) {
2160  typedef DesignatedInitExpr::Designator ASTDesignator;
2161
2162  bool Invalid = false;
2163  SmallVector<ASTDesignator, 32> Designators;
2164  SmallVector<Expr *, 32> InitExpressions;
2165
2166  // Build designators and check array designator expressions.
2167  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2168    const Designator &D = Desig.getDesignator(Idx);
2169    switch (D.getKind()) {
2170    case Designator::FieldDesignator:
2171      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2172                                          D.getFieldLoc()));
2173      break;
2174
2175    case Designator::ArrayDesignator: {
2176      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2177      llvm::APSInt IndexValue;
2178      if (!Index->isTypeDependent() &&
2179          !Index->isValueDependent() &&
2180          CheckArrayDesignatorExpr(*this, Index, IndexValue))
2181        Invalid = true;
2182      else {
2183        Designators.push_back(ASTDesignator(InitExpressions.size(),
2184                                            D.getLBracketLoc(),
2185                                            D.getRBracketLoc()));
2186        InitExpressions.push_back(Index);
2187      }
2188      break;
2189    }
2190
2191    case Designator::ArrayRangeDesignator: {
2192      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2193      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2194      llvm::APSInt StartValue;
2195      llvm::APSInt EndValue;
2196      bool StartDependent = StartIndex->isTypeDependent() ||
2197                            StartIndex->isValueDependent();
2198      bool EndDependent = EndIndex->isTypeDependent() ||
2199                          EndIndex->isValueDependent();
2200      if ((!StartDependent &&
2201           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
2202          (!EndDependent &&
2203           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
2204        Invalid = true;
2205      else {
2206        // Make sure we're comparing values with the same bit width.
2207        if (StartDependent || EndDependent) {
2208          // Nothing to compute.
2209        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2210          EndValue = EndValue.extend(StartValue.getBitWidth());
2211        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2212          StartValue = StartValue.extend(EndValue.getBitWidth());
2213
2214        if (!StartDependent && !EndDependent && EndValue < StartValue) {
2215          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2216            << StartValue.toString(10) << EndValue.toString(10)
2217            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2218          Invalid = true;
2219        } else {
2220          Designators.push_back(ASTDesignator(InitExpressions.size(),
2221                                              D.getLBracketLoc(),
2222                                              D.getEllipsisLoc(),
2223                                              D.getRBracketLoc()));
2224          InitExpressions.push_back(StartIndex);
2225          InitExpressions.push_back(EndIndex);
2226        }
2227      }
2228      break;
2229    }
2230    }
2231  }
2232
2233  if (Invalid || Init.isInvalid())
2234    return ExprError();
2235
2236  // Clear out the expressions within the designation.
2237  Desig.ClearExprs(*this);
2238
2239  DesignatedInitExpr *DIE
2240    = DesignatedInitExpr::Create(Context,
2241                                 Designators.data(), Designators.size(),
2242                                 InitExpressions.data(), InitExpressions.size(),
2243                                 Loc, GNUSyntax, Init.takeAs<Expr>());
2244
2245  if (getLangOptions().CPlusPlus)
2246    Diag(DIE->getLocStart(), diag::ext_designated_init_cxx)
2247      << DIE->getSourceRange();
2248  else if (!getLangOptions().C99)
2249    Diag(DIE->getLocStart(), diag::ext_designated_init)
2250      << DIE->getSourceRange();
2251
2252  return Owned(DIE);
2253}
2254
2255//===----------------------------------------------------------------------===//
2256// Initialization entity
2257//===----------------------------------------------------------------------===//
2258
2259InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2260                                     const InitializedEntity &Parent)
2261  : Parent(&Parent), Index(Index)
2262{
2263  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2264    Kind = EK_ArrayElement;
2265    Type = AT->getElementType();
2266  } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2267    Kind = EK_VectorElement;
2268    Type = VT->getElementType();
2269  } else {
2270    const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2271    assert(CT && "Unexpected type");
2272    Kind = EK_ComplexElement;
2273    Type = CT->getElementType();
2274  }
2275}
2276
2277InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2278                                                    CXXBaseSpecifier *Base,
2279                                                    bool IsInheritedVirtualBase)
2280{
2281  InitializedEntity Result;
2282  Result.Kind = EK_Base;
2283  Result.Base = reinterpret_cast<uintptr_t>(Base);
2284  if (IsInheritedVirtualBase)
2285    Result.Base |= 0x01;
2286
2287  Result.Type = Base->getType();
2288  return Result;
2289}
2290
2291DeclarationName InitializedEntity::getName() const {
2292  switch (getKind()) {
2293  case EK_Parameter: {
2294    ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2295    return (D ? D->getDeclName() : DeclarationName());
2296  }
2297
2298  case EK_Variable:
2299  case EK_Member:
2300    return VariableOrMember->getDeclName();
2301
2302  case EK_Result:
2303  case EK_Exception:
2304  case EK_New:
2305  case EK_Temporary:
2306  case EK_Base:
2307  case EK_Delegating:
2308  case EK_ArrayElement:
2309  case EK_VectorElement:
2310  case EK_ComplexElement:
2311  case EK_BlockElement:
2312    return DeclarationName();
2313  }
2314
2315  // Silence GCC warning
2316  return DeclarationName();
2317}
2318
2319DeclaratorDecl *InitializedEntity::getDecl() const {
2320  switch (getKind()) {
2321  case EK_Variable:
2322  case EK_Member:
2323    return VariableOrMember;
2324
2325  case EK_Parameter:
2326    return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2327
2328  case EK_Result:
2329  case EK_Exception:
2330  case EK_New:
2331  case EK_Temporary:
2332  case EK_Base:
2333  case EK_Delegating:
2334  case EK_ArrayElement:
2335  case EK_VectorElement:
2336  case EK_ComplexElement:
2337  case EK_BlockElement:
2338    return 0;
2339  }
2340
2341  // Silence GCC warning
2342  return 0;
2343}
2344
2345bool InitializedEntity::allowsNRVO() const {
2346  switch (getKind()) {
2347  case EK_Result:
2348  case EK_Exception:
2349    return LocAndNRVO.NRVO;
2350
2351  case EK_Variable:
2352  case EK_Parameter:
2353  case EK_Member:
2354  case EK_New:
2355  case EK_Temporary:
2356  case EK_Base:
2357  case EK_Delegating:
2358  case EK_ArrayElement:
2359  case EK_VectorElement:
2360  case EK_ComplexElement:
2361  case EK_BlockElement:
2362    break;
2363  }
2364
2365  return false;
2366}
2367
2368//===----------------------------------------------------------------------===//
2369// Initialization sequence
2370//===----------------------------------------------------------------------===//
2371
2372void InitializationSequence::Step::Destroy() {
2373  switch (Kind) {
2374  case SK_ResolveAddressOfOverloadedFunction:
2375  case SK_CastDerivedToBaseRValue:
2376  case SK_CastDerivedToBaseXValue:
2377  case SK_CastDerivedToBaseLValue:
2378  case SK_BindReference:
2379  case SK_BindReferenceToTemporary:
2380  case SK_ExtraneousCopyToTemporary:
2381  case SK_UserConversion:
2382  case SK_QualificationConversionRValue:
2383  case SK_QualificationConversionXValue:
2384  case SK_QualificationConversionLValue:
2385  case SK_ListInitialization:
2386  case SK_ListConstructorCall:
2387  case SK_ConstructorInitialization:
2388  case SK_ZeroInitialization:
2389  case SK_CAssignment:
2390  case SK_StringInit:
2391  case SK_ObjCObjectConversion:
2392  case SK_ArrayInit:
2393  case SK_PassByIndirectCopyRestore:
2394  case SK_PassByIndirectRestore:
2395  case SK_ProduceObjCObject:
2396    break;
2397
2398  case SK_ConversionSequence:
2399    delete ICS;
2400  }
2401}
2402
2403bool InitializationSequence::isDirectReferenceBinding() const {
2404  return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2405}
2406
2407bool InitializationSequence::isAmbiguous() const {
2408  if (!Failed())
2409    return false;
2410
2411  switch (getFailureKind()) {
2412  case FK_TooManyInitsForReference:
2413  case FK_ArrayNeedsInitList:
2414  case FK_ArrayNeedsInitListOrStringLiteral:
2415  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2416  case FK_NonConstLValueReferenceBindingToTemporary:
2417  case FK_NonConstLValueReferenceBindingToUnrelated:
2418  case FK_RValueReferenceBindingToLValue:
2419  case FK_ReferenceInitDropsQualifiers:
2420  case FK_ReferenceInitFailed:
2421  case FK_ConversionFailed:
2422  case FK_ConversionFromPropertyFailed:
2423  case FK_TooManyInitsForScalar:
2424  case FK_ReferenceBindingToInitList:
2425  case FK_InitListBadDestinationType:
2426  case FK_DefaultInitOfConst:
2427  case FK_Incomplete:
2428  case FK_ArrayTypeMismatch:
2429  case FK_NonConstantArrayInit:
2430  case FK_ListInitializationFailed:
2431  case FK_PlaceholderType:
2432    return false;
2433
2434  case FK_ReferenceInitOverloadFailed:
2435  case FK_UserConversionOverloadFailed:
2436  case FK_ConstructorOverloadFailed:
2437    return FailedOverloadResult == OR_Ambiguous;
2438  }
2439
2440  return false;
2441}
2442
2443bool InitializationSequence::isConstructorInitialization() const {
2444  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2445}
2446
2447bool InitializationSequence::endsWithNarrowing(ASTContext &Ctx,
2448                                               const Expr *Initializer,
2449                                               bool *isInitializerConstant,
2450                                               APValue *ConstantValue) const {
2451  if (Steps.empty() || Initializer->isValueDependent())
2452    return false;
2453
2454  const Step &LastStep = Steps.back();
2455  if (LastStep.Kind != SK_ConversionSequence)
2456    return false;
2457
2458  const ImplicitConversionSequence &ICS = *LastStep.ICS;
2459  const StandardConversionSequence *SCS = NULL;
2460  switch (ICS.getKind()) {
2461  case ImplicitConversionSequence::StandardConversion:
2462    SCS = &ICS.Standard;
2463    break;
2464  case ImplicitConversionSequence::UserDefinedConversion:
2465    SCS = &ICS.UserDefined.After;
2466    break;
2467  case ImplicitConversionSequence::AmbiguousConversion:
2468  case ImplicitConversionSequence::EllipsisConversion:
2469  case ImplicitConversionSequence::BadConversion:
2470    return false;
2471  }
2472
2473  // Check if SCS represents a narrowing conversion, according to C++0x
2474  // [dcl.init.list]p7:
2475  //
2476  // A narrowing conversion is an implicit conversion ...
2477  ImplicitConversionKind PossibleNarrowing = SCS->Second;
2478  QualType FromType = SCS->getToType(0);
2479  QualType ToType = SCS->getToType(1);
2480  switch (PossibleNarrowing) {
2481  // * from a floating-point type to an integer type, or
2482  //
2483  // * from an integer type or unscoped enumeration type to a floating-point
2484  //   type, except where the source is a constant expression and the actual
2485  //   value after conversion will fit into the target type and will produce
2486  //   the original value when converted back to the original type, or
2487  case ICK_Floating_Integral:
2488    if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
2489      *isInitializerConstant = false;
2490      return true;
2491    } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
2492      llvm::APSInt IntConstantValue;
2493      if (Initializer &&
2494          Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
2495        // Convert the integer to the floating type.
2496        llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
2497        Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
2498                                llvm::APFloat::rmNearestTiesToEven);
2499        // And back.
2500        llvm::APSInt ConvertedValue = IntConstantValue;
2501        bool ignored;
2502        Result.convertToInteger(ConvertedValue,
2503                                llvm::APFloat::rmTowardZero, &ignored);
2504        // If the resulting value is different, this was a narrowing conversion.
2505        if (IntConstantValue != ConvertedValue) {
2506          *isInitializerConstant = true;
2507          *ConstantValue = APValue(IntConstantValue);
2508          return true;
2509        }
2510      } else {
2511        // Variables are always narrowings.
2512        *isInitializerConstant = false;
2513        return true;
2514      }
2515    }
2516    return false;
2517
2518  // * from long double to double or float, or from double to float, except
2519  //   where the source is a constant expression and the actual value after
2520  //   conversion is within the range of values that can be represented (even
2521  //   if it cannot be represented exactly), or
2522  case ICK_Floating_Conversion:
2523    if (1 == Ctx.getFloatingTypeOrder(FromType, ToType)) {
2524      // FromType is larger than ToType.
2525      Expr::EvalResult InitializerValue;
2526      // FIXME: Check whether Initializer is a constant expression according
2527      // to C++0x [expr.const], rather than just whether it can be folded.
2528      if (Initializer->Evaluate(InitializerValue, Ctx) &&
2529          !InitializerValue.HasSideEffects && InitializerValue.Val.isFloat()) {
2530        // Constant! (Except for FIXME above.)
2531        llvm::APFloat FloatVal = InitializerValue.Val.getFloat();
2532        // Convert the source value into the target type.
2533        bool ignored;
2534        llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
2535          Ctx.getFloatTypeSemantics(ToType),
2536          llvm::APFloat::rmNearestTiesToEven, &ignored);
2537        // If there was no overflow, the source value is within the range of
2538        // values that can be represented.
2539        if (ConvertStatus & llvm::APFloat::opOverflow) {
2540          *isInitializerConstant = true;
2541          *ConstantValue = InitializerValue.Val;
2542          return true;
2543        }
2544      } else {
2545        *isInitializerConstant = false;
2546        return true;
2547      }
2548    }
2549    return false;
2550
2551  // * from an integer type or unscoped enumeration type to an integer type
2552  //   that cannot represent all the values of the original type, except where
2553  //   the source is a constant expression and the actual value after
2554  //   conversion will fit into the target type and will produce the original
2555  //   value when converted back to the original type.
2556  case ICK_Boolean_Conversion:  // Bools are integers too.
2557    if (!FromType->isIntegralOrUnscopedEnumerationType()) {
2558      // Boolean conversions can be from pointers and pointers to members
2559      // [conv.bool], and those aren't considered narrowing conversions.
2560      return false;
2561    }  // Otherwise, fall through to the integral case.
2562  case ICK_Integral_Conversion: {
2563    assert(FromType->isIntegralOrUnscopedEnumerationType());
2564    assert(ToType->isIntegralOrUnscopedEnumerationType());
2565    const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
2566    const unsigned FromWidth = Ctx.getIntWidth(FromType);
2567    const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
2568    const unsigned ToWidth = Ctx.getIntWidth(ToType);
2569
2570    if (FromWidth > ToWidth ||
2571        (FromWidth == ToWidth && FromSigned != ToSigned)) {
2572      // Not all values of FromType can be represented in ToType.
2573      llvm::APSInt InitializerValue;
2574      if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
2575        *isInitializerConstant = true;
2576        *ConstantValue = APValue(InitializerValue);
2577
2578        // Add a bit to the InitializerValue so we don't have to worry about
2579        // signed vs. unsigned comparisons.
2580        InitializerValue = InitializerValue.extend(
2581          InitializerValue.getBitWidth() + 1);
2582        // Convert the initializer to and from the target width and signed-ness.
2583        llvm::APSInt ConvertedValue = InitializerValue;
2584        ConvertedValue = ConvertedValue.trunc(ToWidth);
2585        ConvertedValue.setIsSigned(ToSigned);
2586        ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
2587        ConvertedValue.setIsSigned(InitializerValue.isSigned());
2588        // If the result is different, this was a narrowing conversion.
2589        return ConvertedValue != InitializerValue;
2590      } else {
2591        // Variables are always narrowings.
2592        *isInitializerConstant = false;
2593        return true;
2594      }
2595    }
2596    return false;
2597  }
2598
2599  default:
2600    // Other kinds of conversions are not narrowings.
2601    return false;
2602  }
2603}
2604
2605void InitializationSequence::AddAddressOverloadResolutionStep(
2606                                                      FunctionDecl *Function,
2607                                                      DeclAccessPair Found) {
2608  Step S;
2609  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2610  S.Type = Function->getType();
2611  S.Function.HadMultipleCandidates = false;
2612  S.Function.Function = Function;
2613  S.Function.FoundDecl = Found;
2614  Steps.push_back(S);
2615}
2616
2617void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2618                                                      ExprValueKind VK) {
2619  Step S;
2620  switch (VK) {
2621  case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2622  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2623  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2624  default: llvm_unreachable("No such category");
2625  }
2626  S.Type = BaseType;
2627  Steps.push_back(S);
2628}
2629
2630void InitializationSequence::AddReferenceBindingStep(QualType T,
2631                                                     bool BindingTemporary) {
2632  Step S;
2633  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2634  S.Type = T;
2635  Steps.push_back(S);
2636}
2637
2638void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2639  Step S;
2640  S.Kind = SK_ExtraneousCopyToTemporary;
2641  S.Type = T;
2642  Steps.push_back(S);
2643}
2644
2645void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2646                                                   DeclAccessPair FoundDecl,
2647                                                   QualType T) {
2648  Step S;
2649  S.Kind = SK_UserConversion;
2650  S.Type = T;
2651  S.Function.HadMultipleCandidates = false;
2652  S.Function.Function = Function;
2653  S.Function.FoundDecl = FoundDecl;
2654  Steps.push_back(S);
2655}
2656
2657void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2658                                                            ExprValueKind VK) {
2659  Step S;
2660  S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2661  switch (VK) {
2662  case VK_RValue:
2663    S.Kind = SK_QualificationConversionRValue;
2664    break;
2665  case VK_XValue:
2666    S.Kind = SK_QualificationConversionXValue;
2667    break;
2668  case VK_LValue:
2669    S.Kind = SK_QualificationConversionLValue;
2670    break;
2671  }
2672  S.Type = Ty;
2673  Steps.push_back(S);
2674}
2675
2676void InitializationSequence::AddConversionSequenceStep(
2677                                       const ImplicitConversionSequence &ICS,
2678                                                       QualType T) {
2679  Step S;
2680  S.Kind = SK_ConversionSequence;
2681  S.Type = T;
2682  S.ICS = new ImplicitConversionSequence(ICS);
2683  Steps.push_back(S);
2684}
2685
2686void InitializationSequence::AddListInitializationStep(QualType T) {
2687  Step S;
2688  S.Kind = SK_ListInitialization;
2689  S.Type = T;
2690  Steps.push_back(S);
2691}
2692
2693void
2694InitializationSequence::AddConstructorInitializationStep(
2695                                              CXXConstructorDecl *Constructor,
2696                                                       AccessSpecifier Access,
2697                                                         QualType T) {
2698  Step S;
2699  S.Kind = SK_ConstructorInitialization;
2700  S.Type = T;
2701  S.Function.HadMultipleCandidates = false;
2702  S.Function.Function = Constructor;
2703  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2704  Steps.push_back(S);
2705}
2706
2707void InitializationSequence::AddZeroInitializationStep(QualType T) {
2708  Step S;
2709  S.Kind = SK_ZeroInitialization;
2710  S.Type = T;
2711  Steps.push_back(S);
2712}
2713
2714void InitializationSequence::AddCAssignmentStep(QualType T) {
2715  Step S;
2716  S.Kind = SK_CAssignment;
2717  S.Type = T;
2718  Steps.push_back(S);
2719}
2720
2721void InitializationSequence::AddStringInitStep(QualType T) {
2722  Step S;
2723  S.Kind = SK_StringInit;
2724  S.Type = T;
2725  Steps.push_back(S);
2726}
2727
2728void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2729  Step S;
2730  S.Kind = SK_ObjCObjectConversion;
2731  S.Type = T;
2732  Steps.push_back(S);
2733}
2734
2735void InitializationSequence::AddArrayInitStep(QualType T) {
2736  Step S;
2737  S.Kind = SK_ArrayInit;
2738  S.Type = T;
2739  Steps.push_back(S);
2740}
2741
2742void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2743                                                              bool shouldCopy) {
2744  Step s;
2745  s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2746                       : SK_PassByIndirectRestore);
2747  s.Type = type;
2748  Steps.push_back(s);
2749}
2750
2751void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2752  Step S;
2753  S.Kind = SK_ProduceObjCObject;
2754  S.Type = T;
2755  Steps.push_back(S);
2756}
2757
2758void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2759                                                OverloadingResult Result) {
2760  setSequenceKind(FailedSequence);
2761  this->Failure = Failure;
2762  this->FailedOverloadResult = Result;
2763}
2764
2765//===----------------------------------------------------------------------===//
2766// Attempt initialization
2767//===----------------------------------------------------------------------===//
2768
2769static void MaybeProduceObjCObject(Sema &S,
2770                                   InitializationSequence &Sequence,
2771                                   const InitializedEntity &Entity) {
2772  if (!S.getLangOptions().ObjCAutoRefCount) return;
2773
2774  /// When initializing a parameter, produce the value if it's marked
2775  /// __attribute__((ns_consumed)).
2776  if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2777    if (!Entity.isParameterConsumed())
2778      return;
2779
2780    assert(Entity.getType()->isObjCRetainableType() &&
2781           "consuming an object of unretainable type?");
2782    Sequence.AddProduceObjCObjectStep(Entity.getType());
2783
2784  /// When initializing a return value, if the return type is a
2785  /// retainable type, then returns need to immediately retain the
2786  /// object.  If an autorelease is required, it will be done at the
2787  /// last instant.
2788  } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2789    if (!Entity.getType()->isObjCRetainableType())
2790      return;
2791
2792    Sequence.AddProduceObjCObjectStep(Entity.getType());
2793  }
2794}
2795
2796/// \brief Attempt list initialization (C++0x [dcl.init.list])
2797static void TryListInitialization(Sema &S,
2798                                  const InitializedEntity &Entity,
2799                                  const InitializationKind &Kind,
2800                                  InitListExpr *InitList,
2801                                  InitializationSequence &Sequence) {
2802  QualType DestType = Entity.getType();
2803
2804  // C++ doesn't allow scalar initialization with more than one argument.
2805  // But C99 complex numbers are scalars and it makes sense there.
2806  if (S.getLangOptions().CPlusPlus && DestType->isScalarType() &&
2807      !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
2808    Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
2809    return;
2810  }
2811  // FIXME: C++0x defines behavior for these two cases.
2812  if (DestType->isReferenceType()) {
2813    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2814    return;
2815  }
2816  if (DestType->isRecordType() && !DestType->isAggregateType()) {
2817    Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
2818    return;
2819  }
2820
2821  InitListChecker CheckInitList(S, Entity, InitList,
2822          DestType, /*VerifyOnly=*/true,
2823          Kind.getKind() != InitializationKind::IK_Direct ||
2824            !S.getLangOptions().CPlusPlus0x);
2825  if (CheckInitList.HadError()) {
2826    Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
2827    return;
2828  }
2829
2830  // Add the list initialization step with the built init list.
2831  Sequence.AddListInitializationStep(DestType);
2832}
2833
2834/// \brief Try a reference initialization that involves calling a conversion
2835/// function.
2836static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
2837                                             const InitializedEntity &Entity,
2838                                             const InitializationKind &Kind,
2839                                                          Expr *Initializer,
2840                                                          bool AllowRValues,
2841                                             InitializationSequence &Sequence) {
2842  QualType DestType = Entity.getType();
2843  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2844  QualType T1 = cv1T1.getUnqualifiedType();
2845  QualType cv2T2 = Initializer->getType();
2846  QualType T2 = cv2T2.getUnqualifiedType();
2847
2848  bool DerivedToBase;
2849  bool ObjCConversion;
2850  bool ObjCLifetimeConversion;
2851  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
2852                                         T1, T2, DerivedToBase,
2853                                         ObjCConversion,
2854                                         ObjCLifetimeConversion) &&
2855         "Must have incompatible references when binding via conversion");
2856  (void)DerivedToBase;
2857  (void)ObjCConversion;
2858  (void)ObjCLifetimeConversion;
2859
2860  // Build the candidate set directly in the initialization sequence
2861  // structure, so that it will persist if we fail.
2862  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2863  CandidateSet.clear();
2864
2865  // Determine whether we are allowed to call explicit constructors or
2866  // explicit conversion operators.
2867  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2868
2869  const RecordType *T1RecordType = 0;
2870  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
2871      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
2872    // The type we're converting to is a class type. Enumerate its constructors
2873    // to see if there is a suitable conversion.
2874    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
2875
2876    DeclContext::lookup_iterator Con, ConEnd;
2877    for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
2878         Con != ConEnd; ++Con) {
2879      NamedDecl *D = *Con;
2880      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2881
2882      // Find the constructor (which may be a template).
2883      CXXConstructorDecl *Constructor = 0;
2884      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2885      if (ConstructorTmpl)
2886        Constructor = cast<CXXConstructorDecl>(
2887                                         ConstructorTmpl->getTemplatedDecl());
2888      else
2889        Constructor = cast<CXXConstructorDecl>(D);
2890
2891      if (!Constructor->isInvalidDecl() &&
2892          Constructor->isConvertingConstructor(AllowExplicit)) {
2893        if (ConstructorTmpl)
2894          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2895                                         /*ExplicitArgs*/ 0,
2896                                         &Initializer, 1, CandidateSet,
2897                                         /*SuppressUserConversions=*/true);
2898        else
2899          S.AddOverloadCandidate(Constructor, FoundDecl,
2900                                 &Initializer, 1, CandidateSet,
2901                                 /*SuppressUserConversions=*/true);
2902      }
2903    }
2904  }
2905  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
2906    return OR_No_Viable_Function;
2907
2908  const RecordType *T2RecordType = 0;
2909  if ((T2RecordType = T2->getAs<RecordType>()) &&
2910      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
2911    // The type we're converting from is a class type, enumerate its conversion
2912    // functions.
2913    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
2914
2915    const UnresolvedSetImpl *Conversions
2916      = T2RecordDecl->getVisibleConversionFunctions();
2917    for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2918           E = Conversions->end(); I != E; ++I) {
2919      NamedDecl *D = *I;
2920      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2921      if (isa<UsingShadowDecl>(D))
2922        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2923
2924      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2925      CXXConversionDecl *Conv;
2926      if (ConvTemplate)
2927        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2928      else
2929        Conv = cast<CXXConversionDecl>(D);
2930
2931      // If the conversion function doesn't return a reference type,
2932      // it can't be considered for this conversion unless we're allowed to
2933      // consider rvalues.
2934      // FIXME: Do we need to make sure that we only consider conversion
2935      // candidates with reference-compatible results? That might be needed to
2936      // break recursion.
2937      if ((AllowExplicit || !Conv->isExplicit()) &&
2938          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
2939        if (ConvTemplate)
2940          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2941                                           ActingDC, Initializer,
2942                                           DestType, CandidateSet);
2943        else
2944          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2945                                   Initializer, DestType, CandidateSet);
2946      }
2947    }
2948  }
2949  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
2950    return OR_No_Viable_Function;
2951
2952  SourceLocation DeclLoc = Initializer->getLocStart();
2953
2954  // Perform overload resolution. If it fails, return the failed result.
2955  OverloadCandidateSet::iterator Best;
2956  if (OverloadingResult Result
2957        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
2958    return Result;
2959
2960  FunctionDecl *Function = Best->Function;
2961
2962  // This is the overload that will actually be used for the initialization, so
2963  // mark it as used.
2964  S.MarkDeclarationReferenced(DeclLoc, Function);
2965
2966  // Compute the returned type of the conversion.
2967  if (isa<CXXConversionDecl>(Function))
2968    T2 = Function->getResultType();
2969  else
2970    T2 = cv1T1;
2971
2972  // Add the user-defined conversion step.
2973  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
2974                                 T2.getNonLValueExprType(S.Context));
2975
2976  // Determine whether we need to perform derived-to-base or
2977  // cv-qualification adjustments.
2978  ExprValueKind VK = VK_RValue;
2979  if (T2->isLValueReferenceType())
2980    VK = VK_LValue;
2981  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
2982    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
2983
2984  bool NewDerivedToBase = false;
2985  bool NewObjCConversion = false;
2986  bool NewObjCLifetimeConversion = false;
2987  Sema::ReferenceCompareResult NewRefRelationship
2988    = S.CompareReferenceRelationship(DeclLoc, T1,
2989                                     T2.getNonLValueExprType(S.Context),
2990                                     NewDerivedToBase, NewObjCConversion,
2991                                     NewObjCLifetimeConversion);
2992  if (NewRefRelationship == Sema::Ref_Incompatible) {
2993    // If the type we've converted to is not reference-related to the
2994    // type we're looking for, then there is another conversion step
2995    // we need to perform to produce a temporary of the right type
2996    // that we'll be binding to.
2997    ImplicitConversionSequence ICS;
2998    ICS.setStandard();
2999    ICS.Standard = Best->FinalConversion;
3000    T2 = ICS.Standard.getToType(2);
3001    Sequence.AddConversionSequenceStep(ICS, T2);
3002  } else if (NewDerivedToBase)
3003    Sequence.AddDerivedToBaseCastStep(
3004                                S.Context.getQualifiedType(T1,
3005                                  T2.getNonReferenceType().getQualifiers()),
3006                                      VK);
3007  else if (NewObjCConversion)
3008    Sequence.AddObjCObjectConversionStep(
3009                                S.Context.getQualifiedType(T1,
3010                                  T2.getNonReferenceType().getQualifiers()));
3011
3012  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3013    Sequence.AddQualificationConversionStep(cv1T1, VK);
3014
3015  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3016  return OR_Success;
3017}
3018
3019static void CheckCXX98CompatAccessibleCopy(Sema &S,
3020                                           const InitializedEntity &Entity,
3021                                           Expr *CurInitExpr);
3022
3023/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3024static void TryReferenceInitialization(Sema &S,
3025                                       const InitializedEntity &Entity,
3026                                       const InitializationKind &Kind,
3027                                       Expr *Initializer,
3028                                       InitializationSequence &Sequence) {
3029  QualType DestType = Entity.getType();
3030  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3031  Qualifiers T1Quals;
3032  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3033  QualType cv2T2 = Initializer->getType();
3034  Qualifiers T2Quals;
3035  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3036  SourceLocation DeclLoc = Initializer->getLocStart();
3037
3038  // If the initializer is the address of an overloaded function, try
3039  // to resolve the overloaded function. If all goes well, T2 is the
3040  // type of the resulting function.
3041  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
3042    DeclAccessPair Found;
3043    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
3044                                                                T1,
3045                                                                false,
3046                                                                Found)) {
3047      Sequence.AddAddressOverloadResolutionStep(Fn, Found);
3048      cv2T2 = Fn->getType();
3049      T2 = cv2T2.getUnqualifiedType();
3050    } else if (!T1->isRecordType()) {
3051      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3052      return;
3053    }
3054  }
3055
3056  // Compute some basic properties of the types and the initializer.
3057  bool isLValueRef = DestType->isLValueReferenceType();
3058  bool isRValueRef = !isLValueRef;
3059  bool DerivedToBase = false;
3060  bool ObjCConversion = false;
3061  bool ObjCLifetimeConversion = false;
3062  Expr::Classification InitCategory = Initializer->Classify(S.Context);
3063  Sema::ReferenceCompareResult RefRelationship
3064    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3065                                     ObjCConversion, ObjCLifetimeConversion);
3066
3067  // C++0x [dcl.init.ref]p5:
3068  //   A reference to type "cv1 T1" is initialized by an expression of type
3069  //   "cv2 T2" as follows:
3070  //
3071  //     - If the reference is an lvalue reference and the initializer
3072  //       expression
3073  // Note the analogous bullet points for rvlaue refs to functions. Because
3074  // there are no function rvalues in C++, rvalue refs to functions are treated
3075  // like lvalue refs.
3076  OverloadingResult ConvOvlResult = OR_Success;
3077  bool T1Function = T1->isFunctionType();
3078  if (isLValueRef || T1Function) {
3079    if (InitCategory.isLValue() &&
3080        (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3081         (Kind.isCStyleOrFunctionalCast() &&
3082          RefRelationship == Sema::Ref_Related))) {
3083      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3084      //     reference-compatible with "cv2 T2," or
3085      //
3086      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3087      // bit-field when we're determining whether the reference initialization
3088      // can occur. However, we do pay attention to whether it is a bit-field
3089      // to decide whether we're actually binding to a temporary created from
3090      // the bit-field.
3091      if (DerivedToBase)
3092        Sequence.AddDerivedToBaseCastStep(
3093                         S.Context.getQualifiedType(T1, T2Quals),
3094                         VK_LValue);
3095      else if (ObjCConversion)
3096        Sequence.AddObjCObjectConversionStep(
3097                                     S.Context.getQualifiedType(T1, T2Quals));
3098
3099      if (T1Quals != T2Quals)
3100        Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
3101      bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
3102        (Initializer->getBitField() || Initializer->refersToVectorElement());
3103      Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
3104      return;
3105    }
3106
3107    //     - has a class type (i.e., T2 is a class type), where T1 is not
3108    //       reference-related to T2, and can be implicitly converted to an
3109    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3110    //       with "cv3 T3" (this conversion is selected by enumerating the
3111    //       applicable conversion functions (13.3.1.6) and choosing the best
3112    //       one through overload resolution (13.3)),
3113    // If we have an rvalue ref to function type here, the rhs must be
3114    // an rvalue.
3115    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3116        (isLValueRef || InitCategory.isRValue())) {
3117      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3118                                                       Initializer,
3119                                                   /*AllowRValues=*/isRValueRef,
3120                                                       Sequence);
3121      if (ConvOvlResult == OR_Success)
3122        return;
3123      if (ConvOvlResult != OR_No_Viable_Function) {
3124        Sequence.SetOverloadFailure(
3125                      InitializationSequence::FK_ReferenceInitOverloadFailed,
3126                                    ConvOvlResult);
3127      }
3128    }
3129  }
3130
3131  //     - Otherwise, the reference shall be an lvalue reference to a
3132  //       non-volatile const type (i.e., cv1 shall be const), or the reference
3133  //       shall be an rvalue reference.
3134  if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3135    if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3136      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3137    else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3138      Sequence.SetOverloadFailure(
3139                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3140                                  ConvOvlResult);
3141    else
3142      Sequence.SetFailed(InitCategory.isLValue()
3143        ? (RefRelationship == Sema::Ref_Related
3144             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3145             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3146        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3147
3148    return;
3149  }
3150
3151  //    - If the initializer expression
3152  //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3153  //        "cv1 T1" is reference-compatible with "cv2 T2"
3154  // Note: functions are handled below.
3155  if (!T1Function &&
3156      (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3157       (Kind.isCStyleOrFunctionalCast() &&
3158        RefRelationship == Sema::Ref_Related)) &&
3159      (InitCategory.isXValue() ||
3160       (InitCategory.isPRValue() && T2->isRecordType()) ||
3161       (InitCategory.isPRValue() && T2->isArrayType()))) {
3162    ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3163    if (InitCategory.isPRValue() && T2->isRecordType()) {
3164      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3165      // compiler the freedom to perform a copy here or bind to the
3166      // object, while C++0x requires that we bind directly to the
3167      // object. Hence, we always bind to the object without making an
3168      // extra copy. However, in C++03 requires that we check for the
3169      // presence of a suitable copy constructor:
3170      //
3171      //   The constructor that would be used to make the copy shall
3172      //   be callable whether or not the copy is actually done.
3173      if (!S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt)
3174        Sequence.AddExtraneousCopyToTemporary(cv2T2);
3175      else if (S.getLangOptions().CPlusPlus0x)
3176        CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3177    }
3178
3179    if (DerivedToBase)
3180      Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3181                                        ValueKind);
3182    else if (ObjCConversion)
3183      Sequence.AddObjCObjectConversionStep(
3184                                       S.Context.getQualifiedType(T1, T2Quals));
3185
3186    if (T1Quals != T2Quals)
3187      Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
3188    Sequence.AddReferenceBindingStep(cv1T1,
3189         /*bindingTemporary=*/(InitCategory.isPRValue() && !T2->isArrayType()));
3190    return;
3191  }
3192
3193  //       - has a class type (i.e., T2 is a class type), where T1 is not
3194  //         reference-related to T2, and can be implicitly converted to an
3195  //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3196  //         where "cv1 T1" is reference-compatible with "cv3 T3",
3197  if (T2->isRecordType()) {
3198    if (RefRelationship == Sema::Ref_Incompatible) {
3199      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3200                                                       Kind, Initializer,
3201                                                       /*AllowRValues=*/true,
3202                                                       Sequence);
3203      if (ConvOvlResult)
3204        Sequence.SetOverloadFailure(
3205                      InitializationSequence::FK_ReferenceInitOverloadFailed,
3206                                    ConvOvlResult);
3207
3208      return;
3209    }
3210
3211    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3212    return;
3213  }
3214
3215  //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3216  //        from the initializer expression using the rules for a non-reference
3217  //        copy initialization (8.5). The reference is then bound to the
3218  //        temporary. [...]
3219
3220  // Determine whether we are allowed to call explicit constructors or
3221  // explicit conversion operators.
3222  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
3223
3224  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3225
3226  ImplicitConversionSequence ICS
3227    = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3228                              /*SuppressUserConversions*/ false,
3229                              AllowExplicit,
3230                              /*FIXME:InOverloadResolution=*/false,
3231                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3232                              /*AllowObjCWritebackConversion=*/false);
3233
3234  if (ICS.isBad()) {
3235    // FIXME: Use the conversion function set stored in ICS to turn
3236    // this into an overloading ambiguity diagnostic. However, we need
3237    // to keep that set as an OverloadCandidateSet rather than as some
3238    // other kind of set.
3239    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3240      Sequence.SetOverloadFailure(
3241                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3242                                  ConvOvlResult);
3243    else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3244      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3245    else
3246      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3247    return;
3248  } else {
3249    Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3250  }
3251
3252  //        [...] If T1 is reference-related to T2, cv1 must be the
3253  //        same cv-qualification as, or greater cv-qualification
3254  //        than, cv2; otherwise, the program is ill-formed.
3255  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3256  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3257  if (RefRelationship == Sema::Ref_Related &&
3258      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3259    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3260    return;
3261  }
3262
3263  //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3264  //   reference, the initializer expression shall not be an lvalue.
3265  if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3266      InitCategory.isLValue()) {
3267    Sequence.SetFailed(
3268                    InitializationSequence::FK_RValueReferenceBindingToLValue);
3269    return;
3270  }
3271
3272  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3273  return;
3274}
3275
3276/// \brief Attempt character array initialization from a string literal
3277/// (C++ [dcl.init.string], C99 6.7.8).
3278static void TryStringLiteralInitialization(Sema &S,
3279                                           const InitializedEntity &Entity,
3280                                           const InitializationKind &Kind,
3281                                           Expr *Initializer,
3282                                       InitializationSequence &Sequence) {
3283  Sequence.AddStringInitStep(Entity.getType());
3284}
3285
3286/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3287/// enumerates the constructors of the initialized entity and performs overload
3288/// resolution to select the best.
3289static void TryConstructorInitialization(Sema &S,
3290                                         const InitializedEntity &Entity,
3291                                         const InitializationKind &Kind,
3292                                         Expr **Args, unsigned NumArgs,
3293                                         QualType DestType,
3294                                         InitializationSequence &Sequence) {
3295  // Check constructor arguments for self reference.
3296  if (DeclaratorDecl *DD = Entity.getDecl())
3297    // Parameters arguments are occassionially constructed with itself,
3298    // for instance, in recursive functions.  Skip them.
3299    if (!isa<ParmVarDecl>(DD))
3300      for (unsigned i = 0; i < NumArgs; ++i)
3301        S.CheckSelfReference(DD, Args[i]);
3302
3303  // Build the candidate set directly in the initialization sequence
3304  // structure, so that it will persist if we fail.
3305  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3306  CandidateSet.clear();
3307
3308  // Determine whether we are allowed to call explicit constructors or
3309  // explicit conversion operators.
3310  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
3311                        Kind.getKind() == InitializationKind::IK_Value ||
3312                        Kind.getKind() == InitializationKind::IK_Default);
3313
3314  // The type we're constructing needs to be complete.
3315  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3316    Sequence.SetFailed(InitializationSequence::FK_Incomplete);
3317    return;
3318  }
3319
3320  // The type we're converting to is a class type. Enumerate its constructors
3321  // to see if one is suitable.
3322  const RecordType *DestRecordType = DestType->getAs<RecordType>();
3323  assert(DestRecordType && "Constructor initialization requires record type");
3324  CXXRecordDecl *DestRecordDecl
3325    = cast<CXXRecordDecl>(DestRecordType->getDecl());
3326
3327  DeclContext::lookup_iterator Con, ConEnd;
3328  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
3329       Con != ConEnd; ++Con) {
3330    NamedDecl *D = *Con;
3331    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3332    bool SuppressUserConversions = false;
3333
3334    // Find the constructor (which may be a template).
3335    CXXConstructorDecl *Constructor = 0;
3336    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3337    if (ConstructorTmpl)
3338      Constructor = cast<CXXConstructorDecl>(
3339                                           ConstructorTmpl->getTemplatedDecl());
3340    else {
3341      Constructor = cast<CXXConstructorDecl>(D);
3342
3343      // If we're performing copy initialization using a copy constructor, we
3344      // suppress user-defined conversions on the arguments.
3345      // FIXME: Move constructors?
3346      if (Kind.getKind() == InitializationKind::IK_Copy &&
3347          Constructor->isCopyConstructor())
3348        SuppressUserConversions = true;
3349    }
3350
3351    if (!Constructor->isInvalidDecl() &&
3352        (AllowExplicit || !Constructor->isExplicit())) {
3353      if (ConstructorTmpl)
3354        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3355                                       /*ExplicitArgs*/ 0,
3356                                       Args, NumArgs, CandidateSet,
3357                                       SuppressUserConversions);
3358      else
3359        S.AddOverloadCandidate(Constructor, FoundDecl,
3360                               Args, NumArgs, CandidateSet,
3361                               SuppressUserConversions);
3362    }
3363  }
3364
3365  SourceLocation DeclLoc = Kind.getLocation();
3366
3367  // Perform overload resolution. If it fails, return the failed result.
3368  OverloadCandidateSet::iterator Best;
3369  if (OverloadingResult Result
3370        = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
3371    Sequence.SetOverloadFailure(
3372                          InitializationSequence::FK_ConstructorOverloadFailed,
3373                                Result);
3374    return;
3375  }
3376
3377  // C++0x [dcl.init]p6:
3378  //   If a program calls for the default initialization of an object
3379  //   of a const-qualified type T, T shall be a class type with a
3380  //   user-provided default constructor.
3381  if (Kind.getKind() == InitializationKind::IK_Default &&
3382      Entity.getType().isConstQualified() &&
3383      cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
3384    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3385    return;
3386  }
3387
3388  // Add the constructor initialization step. Any cv-qualification conversion is
3389  // subsumed by the initialization.
3390  Sequence.AddConstructorInitializationStep(
3391                                      cast<CXXConstructorDecl>(Best->Function),
3392                                      Best->FoundDecl.getAccess(),
3393                                      DestType);
3394}
3395
3396/// \brief Attempt value initialization (C++ [dcl.init]p7).
3397static void TryValueInitialization(Sema &S,
3398                                   const InitializedEntity &Entity,
3399                                   const InitializationKind &Kind,
3400                                   InitializationSequence &Sequence) {
3401  // C++ [dcl.init]p5:
3402  //
3403  //   To value-initialize an object of type T means:
3404  QualType T = Entity.getType();
3405
3406  //     -- if T is an array type, then each element is value-initialized;
3407  while (const ArrayType *AT = S.Context.getAsArrayType(T))
3408    T = AT->getElementType();
3409
3410  if (const RecordType *RT = T->getAs<RecordType>()) {
3411    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3412      // -- if T is a class type (clause 9) with a user-declared
3413      //    constructor (12.1), then the default constructor for T is
3414      //    called (and the initialization is ill-formed if T has no
3415      //    accessible default constructor);
3416      //
3417      // FIXME: we really want to refer to a single subobject of the array,
3418      // but Entity doesn't have a way to capture that (yet).
3419      if (ClassDecl->hasUserDeclaredConstructor())
3420        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
3421
3422      // -- if T is a (possibly cv-qualified) non-union class type
3423      //    without a user-provided constructor, then the object is
3424      //    zero-initialized and, if T's implicitly-declared default
3425      //    constructor is non-trivial, that constructor is called.
3426      if ((ClassDecl->getTagKind() == TTK_Class ||
3427           ClassDecl->getTagKind() == TTK_Struct)) {
3428        Sequence.AddZeroInitializationStep(Entity.getType());
3429        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
3430      }
3431    }
3432  }
3433
3434  Sequence.AddZeroInitializationStep(Entity.getType());
3435}
3436
3437/// \brief Attempt default initialization (C++ [dcl.init]p6).
3438static void TryDefaultInitialization(Sema &S,
3439                                     const InitializedEntity &Entity,
3440                                     const InitializationKind &Kind,
3441                                     InitializationSequence &Sequence) {
3442  assert(Kind.getKind() == InitializationKind::IK_Default);
3443
3444  // C++ [dcl.init]p6:
3445  //   To default-initialize an object of type T means:
3446  //     - if T is an array type, each element is default-initialized;
3447  QualType DestType = S.Context.getBaseElementType(Entity.getType());
3448
3449  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3450  //       constructor for T is called (and the initialization is ill-formed if
3451  //       T has no accessible default constructor);
3452  if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
3453    TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
3454    return;
3455  }
3456
3457  //     - otherwise, no initialization is performed.
3458
3459  //   If a program calls for the default initialization of an object of
3460  //   a const-qualified type T, T shall be a class type with a user-provided
3461  //   default constructor.
3462  if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus) {
3463    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3464    return;
3465  }
3466
3467  // If the destination type has a lifetime property, zero-initialize it.
3468  if (DestType.getQualifiers().hasObjCLifetime()) {
3469    Sequence.AddZeroInitializationStep(Entity.getType());
3470    return;
3471  }
3472}
3473
3474/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3475/// which enumerates all conversion functions and performs overload resolution
3476/// to select the best.
3477static void TryUserDefinedConversion(Sema &S,
3478                                     const InitializedEntity &Entity,
3479                                     const InitializationKind &Kind,
3480                                     Expr *Initializer,
3481                                     InitializationSequence &Sequence) {
3482  QualType DestType = Entity.getType();
3483  assert(!DestType->isReferenceType() && "References are handled elsewhere");
3484  QualType SourceType = Initializer->getType();
3485  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3486         "Must have a class type to perform a user-defined conversion");
3487
3488  // Build the candidate set directly in the initialization sequence
3489  // structure, so that it will persist if we fail.
3490  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3491  CandidateSet.clear();
3492
3493  // Determine whether we are allowed to call explicit constructors or
3494  // explicit conversion operators.
3495  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
3496
3497  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
3498    // The type we're converting to is a class type. Enumerate its constructors
3499    // to see if there is a suitable conversion.
3500    CXXRecordDecl *DestRecordDecl
3501      = cast<CXXRecordDecl>(DestRecordType->getDecl());
3502
3503    // Try to complete the type we're converting to.
3504    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3505      DeclContext::lookup_iterator Con, ConEnd;
3506      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
3507           Con != ConEnd; ++Con) {
3508        NamedDecl *D = *Con;
3509        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3510
3511        // Find the constructor (which may be a template).
3512        CXXConstructorDecl *Constructor = 0;
3513        FunctionTemplateDecl *ConstructorTmpl
3514          = dyn_cast<FunctionTemplateDecl>(D);
3515        if (ConstructorTmpl)
3516          Constructor = cast<CXXConstructorDecl>(
3517                                           ConstructorTmpl->getTemplatedDecl());
3518        else
3519          Constructor = cast<CXXConstructorDecl>(D);
3520
3521        if (!Constructor->isInvalidDecl() &&
3522            Constructor->isConvertingConstructor(AllowExplicit)) {
3523          if (ConstructorTmpl)
3524            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3525                                           /*ExplicitArgs*/ 0,
3526                                           &Initializer, 1, CandidateSet,
3527                                           /*SuppressUserConversions=*/true);
3528          else
3529            S.AddOverloadCandidate(Constructor, FoundDecl,
3530                                   &Initializer, 1, CandidateSet,
3531                                   /*SuppressUserConversions=*/true);
3532        }
3533      }
3534    }
3535  }
3536
3537  SourceLocation DeclLoc = Initializer->getLocStart();
3538
3539  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3540    // The type we're converting from is a class type, enumerate its conversion
3541    // functions.
3542
3543    // We can only enumerate the conversion functions for a complete type; if
3544    // the type isn't complete, simply skip this step.
3545    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3546      CXXRecordDecl *SourceRecordDecl
3547        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3548
3549      const UnresolvedSetImpl *Conversions
3550        = SourceRecordDecl->getVisibleConversionFunctions();
3551      for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3552           E = Conversions->end();
3553           I != E; ++I) {
3554        NamedDecl *D = *I;
3555        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3556        if (isa<UsingShadowDecl>(D))
3557          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3558
3559        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3560        CXXConversionDecl *Conv;
3561        if (ConvTemplate)
3562          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3563        else
3564          Conv = cast<CXXConversionDecl>(D);
3565
3566        if (AllowExplicit || !Conv->isExplicit()) {
3567          if (ConvTemplate)
3568            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3569                                             ActingDC, Initializer, DestType,
3570                                             CandidateSet);
3571          else
3572            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3573                                     Initializer, DestType, CandidateSet);
3574        }
3575      }
3576    }
3577  }
3578
3579  // Perform overload resolution. If it fails, return the failed result.
3580  OverloadCandidateSet::iterator Best;
3581  if (OverloadingResult Result
3582        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3583    Sequence.SetOverloadFailure(
3584                        InitializationSequence::FK_UserConversionOverloadFailed,
3585                                Result);
3586    return;
3587  }
3588
3589  FunctionDecl *Function = Best->Function;
3590  S.MarkDeclarationReferenced(DeclLoc, Function);
3591
3592  if (isa<CXXConstructorDecl>(Function)) {
3593    // Add the user-defined conversion step. Any cv-qualification conversion is
3594    // subsumed by the initialization.
3595    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3596    return;
3597  }
3598
3599  // Add the user-defined conversion step that calls the conversion function.
3600  QualType ConvType = Function->getCallResultType();
3601  if (ConvType->getAs<RecordType>()) {
3602    // If we're converting to a class type, there may be an copy if
3603    // the resulting temporary object (possible to create an object of
3604    // a base class type). That copy is not a separate conversion, so
3605    // we just make a note of the actual destination type (possibly a
3606    // base class of the type returned by the conversion function) and
3607    // let the user-defined conversion step handle the conversion.
3608    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3609    return;
3610  }
3611
3612  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType);
3613
3614  // If the conversion following the call to the conversion function
3615  // is interesting, add it as a separate step.
3616  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3617      Best->FinalConversion.Third) {
3618    ImplicitConversionSequence ICS;
3619    ICS.setStandard();
3620    ICS.Standard = Best->FinalConversion;
3621    Sequence.AddConversionSequenceStep(ICS, DestType);
3622  }
3623}
3624
3625/// The non-zero enum values here are indexes into diagnostic alternatives.
3626enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
3627
3628/// Determines whether this expression is an acceptable ICR source.
3629static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
3630                                         bool isAddressOf) {
3631  // Skip parens.
3632  e = e->IgnoreParens();
3633
3634  // Skip address-of nodes.
3635  if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
3636    if (op->getOpcode() == UO_AddrOf)
3637      return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true);
3638
3639  // Skip certain casts.
3640  } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
3641    switch (ce->getCastKind()) {
3642    case CK_Dependent:
3643    case CK_BitCast:
3644    case CK_LValueBitCast:
3645    case CK_NoOp:
3646      return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf);
3647
3648    case CK_ArrayToPointerDecay:
3649      return IIK_nonscalar;
3650
3651    case CK_NullToPointer:
3652      return IIK_okay;
3653
3654    default:
3655      break;
3656    }
3657
3658  // If we have a declaration reference, it had better be a local variable.
3659  } else if (isa<DeclRefExpr>(e) || isa<BlockDeclRefExpr>(e)) {
3660    if (!isAddressOf) return IIK_nonlocal;
3661
3662    VarDecl *var;
3663    if (isa<DeclRefExpr>(e)) {
3664      var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
3665      if (!var) return IIK_nonlocal;
3666    } else {
3667      var = cast<BlockDeclRefExpr>(e)->getDecl();
3668    }
3669
3670    return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
3671
3672  // If we have a conditional operator, check both sides.
3673  } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
3674    if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf))
3675      return iik;
3676
3677    return isInvalidICRSource(C, cond->getRHS(), isAddressOf);
3678
3679  // These are never scalar.
3680  } else if (isa<ArraySubscriptExpr>(e)) {
3681    return IIK_nonscalar;
3682
3683  // Otherwise, it needs to be a null pointer constant.
3684  } else {
3685    return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
3686            ? IIK_okay : IIK_nonlocal);
3687  }
3688
3689  return IIK_nonlocal;
3690}
3691
3692/// Check whether the given expression is a valid operand for an
3693/// indirect copy/restore.
3694static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
3695  assert(src->isRValue());
3696
3697  InvalidICRKind iik = isInvalidICRSource(S.Context, src, false);
3698  if (iik == IIK_okay) return;
3699
3700  S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
3701    << ((unsigned) iik - 1)  // shift index into diagnostic explanations
3702    << src->getSourceRange();
3703}
3704
3705/// \brief Determine whether we have compatible array types for the
3706/// purposes of GNU by-copy array initialization.
3707static bool hasCompatibleArrayTypes(ASTContext &Context,
3708                                    const ArrayType *Dest,
3709                                    const ArrayType *Source) {
3710  // If the source and destination array types are equivalent, we're
3711  // done.
3712  if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
3713    return true;
3714
3715  // Make sure that the element types are the same.
3716  if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
3717    return false;
3718
3719  // The only mismatch we allow is when the destination is an
3720  // incomplete array type and the source is a constant array type.
3721  return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
3722}
3723
3724static bool tryObjCWritebackConversion(Sema &S,
3725                                       InitializationSequence &Sequence,
3726                                       const InitializedEntity &Entity,
3727                                       Expr *Initializer) {
3728  bool ArrayDecay = false;
3729  QualType ArgType = Initializer->getType();
3730  QualType ArgPointee;
3731  if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
3732    ArrayDecay = true;
3733    ArgPointee = ArgArrayType->getElementType();
3734    ArgType = S.Context.getPointerType(ArgPointee);
3735  }
3736
3737  // Handle write-back conversion.
3738  QualType ConvertedArgType;
3739  if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
3740                                   ConvertedArgType))
3741    return false;
3742
3743  // We should copy unless we're passing to an argument explicitly
3744  // marked 'out'.
3745  bool ShouldCopy = true;
3746  if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
3747    ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
3748
3749  // Do we need an lvalue conversion?
3750  if (ArrayDecay || Initializer->isGLValue()) {
3751    ImplicitConversionSequence ICS;
3752    ICS.setStandard();
3753    ICS.Standard.setAsIdentityConversion();
3754
3755    QualType ResultType;
3756    if (ArrayDecay) {
3757      ICS.Standard.First = ICK_Array_To_Pointer;
3758      ResultType = S.Context.getPointerType(ArgPointee);
3759    } else {
3760      ICS.Standard.First = ICK_Lvalue_To_Rvalue;
3761      ResultType = Initializer->getType().getNonLValueExprType(S.Context);
3762    }
3763
3764    Sequence.AddConversionSequenceStep(ICS, ResultType);
3765  }
3766
3767  Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
3768  return true;
3769}
3770
3771InitializationSequence::InitializationSequence(Sema &S,
3772                                               const InitializedEntity &Entity,
3773                                               const InitializationKind &Kind,
3774                                               Expr **Args,
3775                                               unsigned NumArgs)
3776    : FailedCandidateSet(Kind.getLocation()) {
3777  ASTContext &Context = S.Context;
3778
3779  // C++0x [dcl.init]p16:
3780  //   The semantics of initializers are as follows. The destination type is
3781  //   the type of the object or reference being initialized and the source
3782  //   type is the type of the initializer expression. The source type is not
3783  //   defined when the initializer is a braced-init-list or when it is a
3784  //   parenthesized list of expressions.
3785  QualType DestType = Entity.getType();
3786
3787  if (DestType->isDependentType() ||
3788      Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
3789    SequenceKind = DependentSequence;
3790    return;
3791  }
3792
3793  // Almost everything is a normal sequence.
3794  setSequenceKind(NormalSequence);
3795
3796  for (unsigned I = 0; I != NumArgs; ++I)
3797    if (Args[I]->getObjectKind() == OK_ObjCProperty) {
3798      ExprResult Result = S.ConvertPropertyForRValue(Args[I]);
3799      if (Result.isInvalid()) {
3800        SetFailed(FK_ConversionFromPropertyFailed);
3801        return;
3802      }
3803      Args[I] = Result.take();
3804    } else if (const BuiltinType *PlaceholderTy
3805                 = Args[I]->getType()->getAsPlaceholderType()) {
3806      // FIXME: should we be doing this here?
3807      if (PlaceholderTy->getKind() != BuiltinType::Overload) {
3808        ExprResult result = S.CheckPlaceholderExpr(Args[I]);
3809        if (result.isInvalid()) {
3810          SetFailed(FK_PlaceholderType);
3811          return;
3812        }
3813        Args[I] = result.take();
3814      }
3815    }
3816
3817
3818  QualType SourceType;
3819  Expr *Initializer = 0;
3820  if (NumArgs == 1) {
3821    Initializer = Args[0];
3822    if (!isa<InitListExpr>(Initializer))
3823      SourceType = Initializer->getType();
3824  }
3825
3826  //     - If the initializer is a braced-init-list, the object is
3827  //       list-initialized (8.5.4).
3828  if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
3829    TryListInitialization(S, Entity, Kind, InitList, *this);
3830    return;
3831  }
3832
3833  //     - If the destination type is a reference type, see 8.5.3.
3834  if (DestType->isReferenceType()) {
3835    // C++0x [dcl.init.ref]p1:
3836    //   A variable declared to be a T& or T&&, that is, "reference to type T"
3837    //   (8.3.2), shall be initialized by an object, or function, of type T or
3838    //   by an object that can be converted into a T.
3839    // (Therefore, multiple arguments are not permitted.)
3840    if (NumArgs != 1)
3841      SetFailed(FK_TooManyInitsForReference);
3842    else
3843      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
3844    return;
3845  }
3846
3847  //     - If the initializer is (), the object is value-initialized.
3848  if (Kind.getKind() == InitializationKind::IK_Value ||
3849      (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
3850    TryValueInitialization(S, Entity, Kind, *this);
3851    return;
3852  }
3853
3854  // Handle default initialization.
3855  if (Kind.getKind() == InitializationKind::IK_Default) {
3856    TryDefaultInitialization(S, Entity, Kind, *this);
3857    return;
3858  }
3859
3860  //     - If the destination type is an array of characters, an array of
3861  //       char16_t, an array of char32_t, or an array of wchar_t, and the
3862  //       initializer is a string literal, see 8.5.2.
3863  //     - Otherwise, if the destination type is an array, the program is
3864  //       ill-formed.
3865  if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
3866    if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
3867      TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
3868      return;
3869    }
3870
3871    // Note: as an GNU C extension, we allow initialization of an
3872    // array from a compound literal that creates an array of the same
3873    // type, so long as the initializer has no side effects.
3874    if (!S.getLangOptions().CPlusPlus && Initializer &&
3875        isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
3876        Initializer->getType()->isArrayType()) {
3877      const ArrayType *SourceAT
3878        = Context.getAsArrayType(Initializer->getType());
3879      if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
3880        SetFailed(FK_ArrayTypeMismatch);
3881      else if (Initializer->HasSideEffects(S.Context))
3882        SetFailed(FK_NonConstantArrayInit);
3883      else {
3884        AddArrayInitStep(DestType);
3885      }
3886    } else if (DestAT->getElementType()->isAnyCharacterType())
3887      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
3888    else
3889      SetFailed(FK_ArrayNeedsInitList);
3890
3891    return;
3892  }
3893
3894  // Determine whether we should consider writeback conversions for
3895  // Objective-C ARC.
3896  bool allowObjCWritebackConversion = S.getLangOptions().ObjCAutoRefCount &&
3897    Entity.getKind() == InitializedEntity::EK_Parameter;
3898
3899  // We're at the end of the line for C: it's either a write-back conversion
3900  // or it's a C assignment. There's no need to check anything else.
3901  if (!S.getLangOptions().CPlusPlus) {
3902    // If allowed, check whether this is an Objective-C writeback conversion.
3903    if (allowObjCWritebackConversion &&
3904        tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
3905      return;
3906    }
3907
3908    // Handle initialization in C
3909    AddCAssignmentStep(DestType);
3910    MaybeProduceObjCObject(S, *this, Entity);
3911    return;
3912  }
3913
3914  assert(S.getLangOptions().CPlusPlus);
3915
3916  //     - If the destination type is a (possibly cv-qualified) class type:
3917  if (DestType->isRecordType()) {
3918    //     - If the initialization is direct-initialization, or if it is
3919    //       copy-initialization where the cv-unqualified version of the
3920    //       source type is the same class as, or a derived class of, the
3921    //       class of the destination, constructors are considered. [...]
3922    if (Kind.getKind() == InitializationKind::IK_Direct ||
3923        (Kind.getKind() == InitializationKind::IK_Copy &&
3924         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
3925          S.IsDerivedFrom(SourceType, DestType))))
3926      TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
3927                                   Entity.getType(), *this);
3928    //     - Otherwise (i.e., for the remaining copy-initialization cases),
3929    //       user-defined conversion sequences that can convert from the source
3930    //       type to the destination type or (when a conversion function is
3931    //       used) to a derived class thereof are enumerated as described in
3932    //       13.3.1.4, and the best one is chosen through overload resolution
3933    //       (13.3).
3934    else
3935      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3936    return;
3937  }
3938
3939  if (NumArgs > 1) {
3940    SetFailed(FK_TooManyInitsForScalar);
3941    return;
3942  }
3943  assert(NumArgs == 1 && "Zero-argument case handled above");
3944
3945  //    - Otherwise, if the source type is a (possibly cv-qualified) class
3946  //      type, conversion functions are considered.
3947  if (!SourceType.isNull() && SourceType->isRecordType()) {
3948    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3949    MaybeProduceObjCObject(S, *this, Entity);
3950    return;
3951  }
3952
3953  //    - Otherwise, the initial value of the object being initialized is the
3954  //      (possibly converted) value of the initializer expression. Standard
3955  //      conversions (Clause 4) will be used, if necessary, to convert the
3956  //      initializer expression to the cv-unqualified version of the
3957  //      destination type; no user-defined conversions are considered.
3958
3959  ImplicitConversionSequence ICS
3960    = S.TryImplicitConversion(Initializer, Entity.getType(),
3961                              /*SuppressUserConversions*/true,
3962                              /*AllowExplicitConversions*/ false,
3963                              /*InOverloadResolution*/ false,
3964                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3965                              allowObjCWritebackConversion);
3966
3967  if (ICS.isStandard() &&
3968      ICS.Standard.Second == ICK_Writeback_Conversion) {
3969    // Objective-C ARC writeback conversion.
3970
3971    // We should copy unless we're passing to an argument explicitly
3972    // marked 'out'.
3973    bool ShouldCopy = true;
3974    if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
3975      ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
3976
3977    // If there was an lvalue adjustment, add it as a separate conversion.
3978    if (ICS.Standard.First == ICK_Array_To_Pointer ||
3979        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
3980      ImplicitConversionSequence LvalueICS;
3981      LvalueICS.setStandard();
3982      LvalueICS.Standard.setAsIdentityConversion();
3983      LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
3984      LvalueICS.Standard.First = ICS.Standard.First;
3985      AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
3986    }
3987
3988    AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
3989  } else if (ICS.isBad()) {
3990    DeclAccessPair dap;
3991    if (Initializer->getType() == Context.OverloadTy &&
3992          !S.ResolveAddressOfOverloadedFunction(Initializer
3993                      , DestType, false, dap))
3994      SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3995    else
3996      SetFailed(InitializationSequence::FK_ConversionFailed);
3997  } else {
3998    AddConversionSequenceStep(ICS, Entity.getType());
3999
4000    MaybeProduceObjCObject(S, *this, Entity);
4001  }
4002}
4003
4004InitializationSequence::~InitializationSequence() {
4005  for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4006                                          StepEnd = Steps.end();
4007       Step != StepEnd; ++Step)
4008    Step->Destroy();
4009}
4010
4011//===----------------------------------------------------------------------===//
4012// Perform initialization
4013//===----------------------------------------------------------------------===//
4014static Sema::AssignmentAction
4015getAssignmentAction(const InitializedEntity &Entity) {
4016  switch(Entity.getKind()) {
4017  case InitializedEntity::EK_Variable:
4018  case InitializedEntity::EK_New:
4019  case InitializedEntity::EK_Exception:
4020  case InitializedEntity::EK_Base:
4021  case InitializedEntity::EK_Delegating:
4022    return Sema::AA_Initializing;
4023
4024  case InitializedEntity::EK_Parameter:
4025    if (Entity.getDecl() &&
4026        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4027      return Sema::AA_Sending;
4028
4029    return Sema::AA_Passing;
4030
4031  case InitializedEntity::EK_Result:
4032    return Sema::AA_Returning;
4033
4034  case InitializedEntity::EK_Temporary:
4035    // FIXME: Can we tell apart casting vs. converting?
4036    return Sema::AA_Casting;
4037
4038  case InitializedEntity::EK_Member:
4039  case InitializedEntity::EK_ArrayElement:
4040  case InitializedEntity::EK_VectorElement:
4041  case InitializedEntity::EK_ComplexElement:
4042  case InitializedEntity::EK_BlockElement:
4043    return Sema::AA_Initializing;
4044  }
4045
4046  return Sema::AA_Converting;
4047}
4048
4049/// \brief Whether we should binding a created object as a temporary when
4050/// initializing the given entity.
4051static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4052  switch (Entity.getKind()) {
4053  case InitializedEntity::EK_ArrayElement:
4054  case InitializedEntity::EK_Member:
4055  case InitializedEntity::EK_Result:
4056  case InitializedEntity::EK_New:
4057  case InitializedEntity::EK_Variable:
4058  case InitializedEntity::EK_Base:
4059  case InitializedEntity::EK_Delegating:
4060  case InitializedEntity::EK_VectorElement:
4061  case InitializedEntity::EK_ComplexElement:
4062  case InitializedEntity::EK_Exception:
4063  case InitializedEntity::EK_BlockElement:
4064    return false;
4065
4066  case InitializedEntity::EK_Parameter:
4067  case InitializedEntity::EK_Temporary:
4068    return true;
4069  }
4070
4071  llvm_unreachable("missed an InitializedEntity kind?");
4072}
4073
4074/// \brief Whether the given entity, when initialized with an object
4075/// created for that initialization, requires destruction.
4076static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4077  switch (Entity.getKind()) {
4078    case InitializedEntity::EK_Member:
4079    case InitializedEntity::EK_Result:
4080    case InitializedEntity::EK_New:
4081    case InitializedEntity::EK_Base:
4082    case InitializedEntity::EK_Delegating:
4083    case InitializedEntity::EK_VectorElement:
4084    case InitializedEntity::EK_ComplexElement:
4085    case InitializedEntity::EK_BlockElement:
4086      return false;
4087
4088    case InitializedEntity::EK_Variable:
4089    case InitializedEntity::EK_Parameter:
4090    case InitializedEntity::EK_Temporary:
4091    case InitializedEntity::EK_ArrayElement:
4092    case InitializedEntity::EK_Exception:
4093      return true;
4094  }
4095
4096  llvm_unreachable("missed an InitializedEntity kind?");
4097}
4098
4099/// \brief Look for copy and move constructors and constructor templates, for
4100/// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4101static void LookupCopyAndMoveConstructors(Sema &S,
4102                                          OverloadCandidateSet &CandidateSet,
4103                                          CXXRecordDecl *Class,
4104                                          Expr *CurInitExpr) {
4105  DeclContext::lookup_iterator Con, ConEnd;
4106  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
4107       Con != ConEnd; ++Con) {
4108    CXXConstructorDecl *Constructor = 0;
4109
4110    if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
4111      // Handle copy/moveconstructors, only.
4112      if (!Constructor || Constructor->isInvalidDecl() ||
4113          !Constructor->isCopyOrMoveConstructor() ||
4114          !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4115        continue;
4116
4117      DeclAccessPair FoundDecl
4118        = DeclAccessPair::make(Constructor, Constructor->getAccess());
4119      S.AddOverloadCandidate(Constructor, FoundDecl,
4120                             &CurInitExpr, 1, CandidateSet);
4121      continue;
4122    }
4123
4124    // Handle constructor templates.
4125    FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
4126    if (ConstructorTmpl->isInvalidDecl())
4127      continue;
4128
4129    Constructor = cast<CXXConstructorDecl>(
4130                                         ConstructorTmpl->getTemplatedDecl());
4131    if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4132      continue;
4133
4134    // FIXME: Do we need to limit this to copy-constructor-like
4135    // candidates?
4136    DeclAccessPair FoundDecl
4137      = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4138    S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4139                                   &CurInitExpr, 1, CandidateSet, true);
4140  }
4141}
4142
4143/// \brief Get the location at which initialization diagnostics should appear.
4144static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4145                                           Expr *Initializer) {
4146  switch (Entity.getKind()) {
4147  case InitializedEntity::EK_Result:
4148    return Entity.getReturnLoc();
4149
4150  case InitializedEntity::EK_Exception:
4151    return Entity.getThrowLoc();
4152
4153  case InitializedEntity::EK_Variable:
4154    return Entity.getDecl()->getLocation();
4155
4156  case InitializedEntity::EK_ArrayElement:
4157  case InitializedEntity::EK_Member:
4158  case InitializedEntity::EK_Parameter:
4159  case InitializedEntity::EK_Temporary:
4160  case InitializedEntity::EK_New:
4161  case InitializedEntity::EK_Base:
4162  case InitializedEntity::EK_Delegating:
4163  case InitializedEntity::EK_VectorElement:
4164  case InitializedEntity::EK_ComplexElement:
4165  case InitializedEntity::EK_BlockElement:
4166    return Initializer->getLocStart();
4167  }
4168  llvm_unreachable("missed an InitializedEntity kind?");
4169}
4170
4171/// \brief Make a (potentially elidable) temporary copy of the object
4172/// provided by the given initializer by calling the appropriate copy
4173/// constructor.
4174///
4175/// \param S The Sema object used for type-checking.
4176///
4177/// \param T The type of the temporary object, which must either be
4178/// the type of the initializer expression or a superclass thereof.
4179///
4180/// \param Enter The entity being initialized.
4181///
4182/// \param CurInit The initializer expression.
4183///
4184/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4185/// is permitted in C++03 (but not C++0x) when binding a reference to
4186/// an rvalue.
4187///
4188/// \returns An expression that copies the initializer expression into
4189/// a temporary object, or an error expression if a copy could not be
4190/// created.
4191static ExprResult CopyObject(Sema &S,
4192                             QualType T,
4193                             const InitializedEntity &Entity,
4194                             ExprResult CurInit,
4195                             bool IsExtraneousCopy) {
4196  // Determine which class type we're copying to.
4197  Expr *CurInitExpr = (Expr *)CurInit.get();
4198  CXXRecordDecl *Class = 0;
4199  if (const RecordType *Record = T->getAs<RecordType>())
4200    Class = cast<CXXRecordDecl>(Record->getDecl());
4201  if (!Class)
4202    return move(CurInit);
4203
4204  // C++0x [class.copy]p32:
4205  //   When certain criteria are met, an implementation is allowed to
4206  //   omit the copy/move construction of a class object, even if the
4207  //   copy/move constructor and/or destructor for the object have
4208  //   side effects. [...]
4209  //     - when a temporary class object that has not been bound to a
4210  //       reference (12.2) would be copied/moved to a class object
4211  //       with the same cv-unqualified type, the copy/move operation
4212  //       can be omitted by constructing the temporary object
4213  //       directly into the target of the omitted copy/move
4214  //
4215  // Note that the other three bullets are handled elsewhere. Copy
4216  // elision for return statements and throw expressions are handled as part
4217  // of constructor initialization, while copy elision for exception handlers
4218  // is handled by the run-time.
4219  bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4220  SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4221
4222  // Make sure that the type we are copying is complete.
4223  if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
4224    return move(CurInit);
4225
4226  // Perform overload resolution using the class's copy/move constructors.
4227  // Only consider constructors and constructor templates. Per
4228  // C++0x [dcl.init]p16, second bullet to class types, this initialization
4229  // is direct-initialization.
4230  OverloadCandidateSet CandidateSet(Loc);
4231  LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4232
4233  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4234
4235  OverloadCandidateSet::iterator Best;
4236  switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4237  case OR_Success:
4238    break;
4239
4240  case OR_No_Viable_Function:
4241    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4242           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4243           : diag::err_temp_copy_no_viable)
4244      << (int)Entity.getKind() << CurInitExpr->getType()
4245      << CurInitExpr->getSourceRange();
4246    CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1);
4247    if (!IsExtraneousCopy || S.isSFINAEContext())
4248      return ExprError();
4249    return move(CurInit);
4250
4251  case OR_Ambiguous:
4252    S.Diag(Loc, diag::err_temp_copy_ambiguous)
4253      << (int)Entity.getKind() << CurInitExpr->getType()
4254      << CurInitExpr->getSourceRange();
4255    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1);
4256    return ExprError();
4257
4258  case OR_Deleted:
4259    S.Diag(Loc, diag::err_temp_copy_deleted)
4260      << (int)Entity.getKind() << CurInitExpr->getType()
4261      << CurInitExpr->getSourceRange();
4262    S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4263      << 1 << Best->Function->isDeleted();
4264    return ExprError();
4265  }
4266
4267  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4268  ASTOwningVector<Expr*> ConstructorArgs(S);
4269  CurInit.release(); // Ownership transferred into MultiExprArg, below.
4270
4271  S.CheckConstructorAccess(Loc, Constructor, Entity,
4272                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
4273
4274  if (IsExtraneousCopy) {
4275    // If this is a totally extraneous copy for C++03 reference
4276    // binding purposes, just return the original initialization
4277    // expression. We don't generate an (elided) copy operation here
4278    // because doing so would require us to pass down a flag to avoid
4279    // infinite recursion, where each step adds another extraneous,
4280    // elidable copy.
4281
4282    // Instantiate the default arguments of any extra parameters in
4283    // the selected copy constructor, as if we were going to create a
4284    // proper call to the copy constructor.
4285    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4286      ParmVarDecl *Parm = Constructor->getParamDecl(I);
4287      if (S.RequireCompleteType(Loc, Parm->getType(),
4288                                S.PDiag(diag::err_call_incomplete_argument)))
4289        break;
4290
4291      // Build the default argument expression; we don't actually care
4292      // if this succeeds or not, because this routine will complain
4293      // if there was a problem.
4294      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4295    }
4296
4297    return S.Owned(CurInitExpr);
4298  }
4299
4300  S.MarkDeclarationReferenced(Loc, Constructor);
4301
4302  // Determine the arguments required to actually perform the
4303  // constructor call (we might have derived-to-base conversions, or
4304  // the copy constructor may have default arguments).
4305  if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
4306                                Loc, ConstructorArgs))
4307    return ExprError();
4308
4309  // Actually perform the constructor call.
4310  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4311                                    move_arg(ConstructorArgs),
4312                                    HadMultipleCandidates,
4313                                    /*ZeroInit*/ false,
4314                                    CXXConstructExpr::CK_Complete,
4315                                    SourceRange());
4316
4317  // If we're supposed to bind temporaries, do so.
4318  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4319    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4320  return move(CurInit);
4321}
4322
4323/// \brief Check whether elidable copy construction for binding a reference to
4324/// a temporary would have succeeded if we were building in C++98 mode, for
4325/// -Wc++98-compat.
4326static void CheckCXX98CompatAccessibleCopy(Sema &S,
4327                                           const InitializedEntity &Entity,
4328                                           Expr *CurInitExpr) {
4329  assert(S.getLangOptions().CPlusPlus0x);
4330
4331  const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4332  if (!Record)
4333    return;
4334
4335  SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4336  if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4337        == DiagnosticsEngine::Ignored)
4338    return;
4339
4340  // Find constructors which would have been considered.
4341  OverloadCandidateSet CandidateSet(Loc);
4342  LookupCopyAndMoveConstructors(
4343      S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4344
4345  // Perform overload resolution.
4346  OverloadCandidateSet::iterator Best;
4347  OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4348
4349  PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4350    << OR << (int)Entity.getKind() << CurInitExpr->getType()
4351    << CurInitExpr->getSourceRange();
4352
4353  switch (OR) {
4354  case OR_Success:
4355    S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4356                             Best->FoundDecl.getAccess(), Diag);
4357    // FIXME: Check default arguments as far as that's possible.
4358    break;
4359
4360  case OR_No_Viable_Function:
4361    S.Diag(Loc, Diag);
4362    CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1);
4363    break;
4364
4365  case OR_Ambiguous:
4366    S.Diag(Loc, Diag);
4367    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1);
4368    break;
4369
4370  case OR_Deleted:
4371    S.Diag(Loc, Diag);
4372    S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4373      << 1 << Best->Function->isDeleted();
4374    break;
4375  }
4376}
4377
4378void InitializationSequence::PrintInitLocationNote(Sema &S,
4379                                              const InitializedEntity &Entity) {
4380  if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
4381    if (Entity.getDecl()->getLocation().isInvalid())
4382      return;
4383
4384    if (Entity.getDecl()->getDeclName())
4385      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
4386        << Entity.getDecl()->getDeclName();
4387    else
4388      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
4389  }
4390}
4391
4392static bool isReferenceBinding(const InitializationSequence::Step &s) {
4393  return s.Kind == InitializationSequence::SK_BindReference ||
4394         s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
4395}
4396
4397ExprResult
4398InitializationSequence::Perform(Sema &S,
4399                                const InitializedEntity &Entity,
4400                                const InitializationKind &Kind,
4401                                MultiExprArg Args,
4402                                QualType *ResultType) {
4403  if (Failed()) {
4404    unsigned NumArgs = Args.size();
4405    Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
4406    return ExprError();
4407  }
4408
4409  if (getKind() == DependentSequence) {
4410    // If the declaration is a non-dependent, incomplete array type
4411    // that has an initializer, then its type will be completed once
4412    // the initializer is instantiated.
4413    if (ResultType && !Entity.getType()->isDependentType() &&
4414        Args.size() == 1) {
4415      QualType DeclType = Entity.getType();
4416      if (const IncompleteArrayType *ArrayT
4417                           = S.Context.getAsIncompleteArrayType(DeclType)) {
4418        // FIXME: We don't currently have the ability to accurately
4419        // compute the length of an initializer list without
4420        // performing full type-checking of the initializer list
4421        // (since we have to determine where braces are implicitly
4422        // introduced and such).  So, we fall back to making the array
4423        // type a dependently-sized array type with no specified
4424        // bound.
4425        if (isa<InitListExpr>((Expr *)Args.get()[0])) {
4426          SourceRange Brackets;
4427
4428          // Scavange the location of the brackets from the entity, if we can.
4429          if (DeclaratorDecl *DD = Entity.getDecl()) {
4430            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
4431              TypeLoc TL = TInfo->getTypeLoc();
4432              if (IncompleteArrayTypeLoc *ArrayLoc
4433                                      = dyn_cast<IncompleteArrayTypeLoc>(&TL))
4434              Brackets = ArrayLoc->getBracketsRange();
4435            }
4436          }
4437
4438          *ResultType
4439            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
4440                                                   /*NumElts=*/0,
4441                                                   ArrayT->getSizeModifier(),
4442                                       ArrayT->getIndexTypeCVRQualifiers(),
4443                                                   Brackets);
4444        }
4445
4446      }
4447    }
4448    assert(Kind.getKind() == InitializationKind::IK_Copy ||
4449           Kind.isExplicitCast());
4450    return ExprResult(Args.release()[0]);
4451  }
4452
4453  // No steps means no initialization.
4454  if (Steps.empty())
4455    return S.Owned((Expr *)0);
4456
4457  QualType DestType = Entity.getType().getNonReferenceType();
4458  // FIXME: Ugly hack around the fact that Entity.getType() is not
4459  // the same as Entity.getDecl()->getType() in cases involving type merging,
4460  //  and we want latter when it makes sense.
4461  if (ResultType)
4462    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
4463                                     Entity.getType();
4464
4465  ExprResult CurInit = S.Owned((Expr *)0);
4466
4467  // For initialization steps that start with a single initializer,
4468  // grab the only argument out the Args and place it into the "current"
4469  // initializer.
4470  switch (Steps.front().Kind) {
4471  case SK_ResolveAddressOfOverloadedFunction:
4472  case SK_CastDerivedToBaseRValue:
4473  case SK_CastDerivedToBaseXValue:
4474  case SK_CastDerivedToBaseLValue:
4475  case SK_BindReference:
4476  case SK_BindReferenceToTemporary:
4477  case SK_ExtraneousCopyToTemporary:
4478  case SK_UserConversion:
4479  case SK_QualificationConversionLValue:
4480  case SK_QualificationConversionXValue:
4481  case SK_QualificationConversionRValue:
4482  case SK_ConversionSequence:
4483  case SK_ListConstructorCall:
4484  case SK_ListInitialization:
4485  case SK_CAssignment:
4486  case SK_StringInit:
4487  case SK_ObjCObjectConversion:
4488  case SK_ArrayInit:
4489  case SK_PassByIndirectCopyRestore:
4490  case SK_PassByIndirectRestore:
4491  case SK_ProduceObjCObject: {
4492    assert(Args.size() == 1);
4493    CurInit = Args.get()[0];
4494    if (!CurInit.get()) return ExprError();
4495
4496    // Read from a property when initializing something with it.
4497    if (CurInit.get()->getObjectKind() == OK_ObjCProperty) {
4498      CurInit = S.ConvertPropertyForRValue(CurInit.take());
4499      if (CurInit.isInvalid())
4500        return ExprError();
4501    }
4502    break;
4503  }
4504
4505  case SK_ConstructorInitialization:
4506  case SK_ZeroInitialization:
4507    break;
4508  }
4509
4510  // Walk through the computed steps for the initialization sequence,
4511  // performing the specified conversions along the way.
4512  bool ConstructorInitRequiresZeroInit = false;
4513  for (step_iterator Step = step_begin(), StepEnd = step_end();
4514       Step != StepEnd; ++Step) {
4515    if (CurInit.isInvalid())
4516      return ExprError();
4517
4518    QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
4519
4520    switch (Step->Kind) {
4521    case SK_ResolveAddressOfOverloadedFunction:
4522      // Overload resolution determined which function invoke; update the
4523      // initializer to reflect that choice.
4524      S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
4525      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
4526      CurInit = S.FixOverloadedFunctionReference(move(CurInit),
4527                                                 Step->Function.FoundDecl,
4528                                                 Step->Function.Function);
4529      break;
4530
4531    case SK_CastDerivedToBaseRValue:
4532    case SK_CastDerivedToBaseXValue:
4533    case SK_CastDerivedToBaseLValue: {
4534      // We have a derived-to-base cast that produces either an rvalue or an
4535      // lvalue. Perform that cast.
4536
4537      CXXCastPath BasePath;
4538
4539      // Casts to inaccessible base classes are allowed with C-style casts.
4540      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
4541      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
4542                                         CurInit.get()->getLocStart(),
4543                                         CurInit.get()->getSourceRange(),
4544                                         &BasePath, IgnoreBaseAccess))
4545        return ExprError();
4546
4547      if (S.BasePathInvolvesVirtualBase(BasePath)) {
4548        QualType T = SourceType;
4549        if (const PointerType *Pointer = T->getAs<PointerType>())
4550          T = Pointer->getPointeeType();
4551        if (const RecordType *RecordTy = T->getAs<RecordType>())
4552          S.MarkVTableUsed(CurInit.get()->getLocStart(),
4553                           cast<CXXRecordDecl>(RecordTy->getDecl()));
4554      }
4555
4556      ExprValueKind VK =
4557          Step->Kind == SK_CastDerivedToBaseLValue ?
4558              VK_LValue :
4559              (Step->Kind == SK_CastDerivedToBaseXValue ?
4560                   VK_XValue :
4561                   VK_RValue);
4562      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
4563                                                 Step->Type,
4564                                                 CK_DerivedToBase,
4565                                                 CurInit.get(),
4566                                                 &BasePath, VK));
4567      break;
4568    }
4569
4570    case SK_BindReference:
4571      if (FieldDecl *BitField = CurInit.get()->getBitField()) {
4572        // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
4573        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
4574          << Entity.getType().isVolatileQualified()
4575          << BitField->getDeclName()
4576          << CurInit.get()->getSourceRange();
4577        S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
4578        return ExprError();
4579      }
4580
4581      if (CurInit.get()->refersToVectorElement()) {
4582        // References cannot bind to vector elements.
4583        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
4584          << Entity.getType().isVolatileQualified()
4585          << CurInit.get()->getSourceRange();
4586        PrintInitLocationNote(S, Entity);
4587        return ExprError();
4588      }
4589
4590      // Reference binding does not have any corresponding ASTs.
4591
4592      // Check exception specifications
4593      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4594        return ExprError();
4595
4596      break;
4597
4598    case SK_BindReferenceToTemporary:
4599      // Check exception specifications
4600      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4601        return ExprError();
4602
4603      // Materialize the temporary into memory.
4604      CurInit = new (S.Context) MaterializeTemporaryExpr(
4605                                         Entity.getType().getNonReferenceType(),
4606                                                         CurInit.get(),
4607                                     Entity.getType()->isLValueReferenceType());
4608
4609      // If we're binding to an Objective-C object that has lifetime, we
4610      // need cleanups.
4611      if (S.getLangOptions().ObjCAutoRefCount &&
4612          CurInit.get()->getType()->isObjCLifetimeType())
4613        S.ExprNeedsCleanups = true;
4614
4615      break;
4616
4617    case SK_ExtraneousCopyToTemporary:
4618      CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
4619                           /*IsExtraneousCopy=*/true);
4620      break;
4621
4622    case SK_UserConversion: {
4623      // We have a user-defined conversion that invokes either a constructor
4624      // or a conversion function.
4625      CastKind CastKind;
4626      bool IsCopy = false;
4627      FunctionDecl *Fn = Step->Function.Function;
4628      DeclAccessPair FoundFn = Step->Function.FoundDecl;
4629      bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
4630      bool CreatedObject = false;
4631      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
4632        // Build a call to the selected constructor.
4633        ASTOwningVector<Expr*> ConstructorArgs(S);
4634        SourceLocation Loc = CurInit.get()->getLocStart();
4635        CurInit.release(); // Ownership transferred into MultiExprArg, below.
4636
4637        // Determine the arguments required to actually perform the constructor
4638        // call.
4639        Expr *Arg = CurInit.get();
4640        if (S.CompleteConstructorCall(Constructor,
4641                                      MultiExprArg(&Arg, 1),
4642                                      Loc, ConstructorArgs))
4643          return ExprError();
4644
4645        // Build the an expression that constructs a temporary.
4646        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
4647                                          move_arg(ConstructorArgs),
4648                                          HadMultipleCandidates,
4649                                          /*ZeroInit*/ false,
4650                                          CXXConstructExpr::CK_Complete,
4651                                          SourceRange());
4652        if (CurInit.isInvalid())
4653          return ExprError();
4654
4655        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
4656                                 FoundFn.getAccess());
4657        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
4658
4659        CastKind = CK_ConstructorConversion;
4660        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
4661        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
4662            S.IsDerivedFrom(SourceType, Class))
4663          IsCopy = true;
4664
4665        CreatedObject = true;
4666      } else {
4667        // Build a call to the conversion function.
4668        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
4669        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
4670                                    FoundFn);
4671        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
4672
4673        // FIXME: Should we move this initialization into a separate
4674        // derived-to-base conversion? I believe the answer is "no", because
4675        // we don't want to turn off access control here for c-style casts.
4676        ExprResult CurInitExprRes =
4677          S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
4678                                                FoundFn, Conversion);
4679        if(CurInitExprRes.isInvalid())
4680          return ExprError();
4681        CurInit = move(CurInitExprRes);
4682
4683        // Build the actual call to the conversion function.
4684        CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
4685                                           HadMultipleCandidates);
4686        if (CurInit.isInvalid() || !CurInit.get())
4687          return ExprError();
4688
4689        CastKind = CK_UserDefinedConversion;
4690
4691        CreatedObject = Conversion->getResultType()->isRecordType();
4692      }
4693
4694      bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
4695      if (RequiresCopy || shouldBindAsTemporary(Entity))
4696        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4697      else if (CreatedObject && shouldDestroyTemporary(Entity)) {
4698        QualType T = CurInit.get()->getType();
4699        if (const RecordType *Record = T->getAs<RecordType>()) {
4700          CXXDestructorDecl *Destructor
4701            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
4702          S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
4703                                  S.PDiag(diag::err_access_dtor_temp) << T);
4704          S.MarkDeclarationReferenced(CurInit.get()->getLocStart(), Destructor);
4705          S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
4706        }
4707      }
4708
4709      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
4710                                                 CurInit.get()->getType(),
4711                                                 CastKind, CurInit.get(), 0,
4712                                                CurInit.get()->getValueKind()));
4713
4714      if (RequiresCopy)
4715        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
4716                             move(CurInit), /*IsExtraneousCopy=*/false);
4717
4718      break;
4719    }
4720
4721    case SK_QualificationConversionLValue:
4722    case SK_QualificationConversionXValue:
4723    case SK_QualificationConversionRValue: {
4724      // Perform a qualification conversion; these can never go wrong.
4725      ExprValueKind VK =
4726          Step->Kind == SK_QualificationConversionLValue ?
4727              VK_LValue :
4728              (Step->Kind == SK_QualificationConversionXValue ?
4729                   VK_XValue :
4730                   VK_RValue);
4731      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
4732      break;
4733    }
4734
4735    case SK_ConversionSequence: {
4736      Sema::CheckedConversionKind CCK
4737        = Kind.isCStyleCast()? Sema::CCK_CStyleCast
4738        : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
4739        : Kind.isExplicitCast()? Sema::CCK_OtherCast
4740        : Sema::CCK_ImplicitConversion;
4741      ExprResult CurInitExprRes =
4742        S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
4743                                    getAssignmentAction(Entity), CCK);
4744      if (CurInitExprRes.isInvalid())
4745        return ExprError();
4746      CurInit = move(CurInitExprRes);
4747      break;
4748    }
4749
4750    case SK_ListInitialization: {
4751      InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
4752      QualType Ty = Step->Type;
4753      InitListChecker PerformInitList(S, Entity, InitList,
4754          ResultType ? *ResultType : Ty, /*VerifyOnly=*/false,
4755          Kind.getKind() != InitializationKind::IK_Direct ||
4756            !S.getLangOptions().CPlusPlus0x);
4757      if (PerformInitList.HadError())
4758        return ExprError();
4759
4760      CurInit.release();
4761      CurInit = S.Owned(PerformInitList.getFullyStructuredList());
4762      break;
4763    }
4764
4765    case SK_ListConstructorCall:
4766      assert(false && "List constructor calls not yet supported.");
4767
4768    case SK_ConstructorInitialization: {
4769      unsigned NumArgs = Args.size();
4770      CXXConstructorDecl *Constructor
4771        = cast<CXXConstructorDecl>(Step->Function.Function);
4772      bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
4773
4774      // Build a call to the selected constructor.
4775      ASTOwningVector<Expr*> ConstructorArgs(S);
4776      SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
4777                             ? Kind.getEqualLoc()
4778                             : Kind.getLocation();
4779
4780      if (Kind.getKind() == InitializationKind::IK_Default) {
4781        // Force even a trivial, implicit default constructor to be
4782        // semantically checked. We do this explicitly because we don't build
4783        // the definition for completely trivial constructors.
4784        CXXRecordDecl *ClassDecl = Constructor->getParent();
4785        assert(ClassDecl && "No parent class for constructor.");
4786        if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
4787            ClassDecl->hasTrivialDefaultConstructor() &&
4788            !Constructor->isUsed(false))
4789          S.DefineImplicitDefaultConstructor(Loc, Constructor);
4790      }
4791
4792      // Determine the arguments required to actually perform the constructor
4793      // call.
4794      if (S.CompleteConstructorCall(Constructor, move(Args),
4795                                    Loc, ConstructorArgs))
4796        return ExprError();
4797
4798
4799      if (Entity.getKind() == InitializedEntity::EK_Temporary &&
4800          NumArgs != 1 && // FIXME: Hack to work around cast weirdness
4801          (Kind.getKind() == InitializationKind::IK_Direct ||
4802           Kind.getKind() == InitializationKind::IK_Value)) {
4803        // An explicitly-constructed temporary, e.g., X(1, 2).
4804        unsigned NumExprs = ConstructorArgs.size();
4805        Expr **Exprs = (Expr **)ConstructorArgs.take();
4806        S.MarkDeclarationReferenced(Loc, Constructor);
4807        S.DiagnoseUseOfDecl(Constructor, Loc);
4808
4809        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4810        if (!TSInfo)
4811          TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4812
4813        CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
4814                                                                 Constructor,
4815                                                                 TSInfo,
4816                                                                 Exprs,
4817                                                                 NumExprs,
4818                                                         Kind.getParenRange(),
4819                                                         HadMultipleCandidates,
4820                                             ConstructorInitRequiresZeroInit));
4821      } else {
4822        CXXConstructExpr::ConstructionKind ConstructKind =
4823          CXXConstructExpr::CK_Complete;
4824
4825        if (Entity.getKind() == InitializedEntity::EK_Base) {
4826          ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4827            CXXConstructExpr::CK_VirtualBase :
4828            CXXConstructExpr::CK_NonVirtualBase;
4829        } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
4830          ConstructKind = CXXConstructExpr::CK_Delegating;
4831        }
4832
4833        // Only get the parenthesis range if it is a direct construction.
4834        SourceRange parenRange =
4835            Kind.getKind() == InitializationKind::IK_Direct ?
4836            Kind.getParenRange() : SourceRange();
4837
4838        // If the entity allows NRVO, mark the construction as elidable
4839        // unconditionally.
4840        if (Entity.allowsNRVO())
4841          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4842                                            Constructor, /*Elidable=*/true,
4843                                            move_arg(ConstructorArgs),
4844                                            HadMultipleCandidates,
4845                                            ConstructorInitRequiresZeroInit,
4846                                            ConstructKind,
4847                                            parenRange);
4848        else
4849          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4850                                            Constructor,
4851                                            move_arg(ConstructorArgs),
4852                                            HadMultipleCandidates,
4853                                            ConstructorInitRequiresZeroInit,
4854                                            ConstructKind,
4855                                            parenRange);
4856      }
4857      if (CurInit.isInvalid())
4858        return ExprError();
4859
4860      // Only check access if all of that succeeded.
4861      S.CheckConstructorAccess(Loc, Constructor, Entity,
4862                               Step->Function.FoundDecl.getAccess());
4863      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Loc);
4864
4865      if (shouldBindAsTemporary(Entity))
4866        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4867
4868      break;
4869    }
4870
4871    case SK_ZeroInitialization: {
4872      step_iterator NextStep = Step;
4873      ++NextStep;
4874      if (NextStep != StepEnd &&
4875          NextStep->Kind == SK_ConstructorInitialization) {
4876        // The need for zero-initialization is recorded directly into
4877        // the call to the object's constructor within the next step.
4878        ConstructorInitRequiresZeroInit = true;
4879      } else if (Kind.getKind() == InitializationKind::IK_Value &&
4880                 S.getLangOptions().CPlusPlus &&
4881                 !Kind.isImplicitValueInit()) {
4882        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4883        if (!TSInfo)
4884          TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
4885                                                    Kind.getRange().getBegin());
4886
4887        CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
4888                              TSInfo->getType().getNonLValueExprType(S.Context),
4889                                                                 TSInfo,
4890                                                    Kind.getRange().getEnd()));
4891      } else {
4892        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
4893      }
4894      break;
4895    }
4896
4897    case SK_CAssignment: {
4898      QualType SourceType = CurInit.get()->getType();
4899      ExprResult Result = move(CurInit);
4900      Sema::AssignConvertType ConvTy =
4901        S.CheckSingleAssignmentConstraints(Step->Type, Result);
4902      if (Result.isInvalid())
4903        return ExprError();
4904      CurInit = move(Result);
4905
4906      // If this is a call, allow conversion to a transparent union.
4907      ExprResult CurInitExprRes = move(CurInit);
4908      if (ConvTy != Sema::Compatible &&
4909          Entity.getKind() == InitializedEntity::EK_Parameter &&
4910          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
4911            == Sema::Compatible)
4912        ConvTy = Sema::Compatible;
4913      if (CurInitExprRes.isInvalid())
4914        return ExprError();
4915      CurInit = move(CurInitExprRes);
4916
4917      bool Complained;
4918      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
4919                                     Step->Type, SourceType,
4920                                     CurInit.get(),
4921                                     getAssignmentAction(Entity),
4922                                     &Complained)) {
4923        PrintInitLocationNote(S, Entity);
4924        return ExprError();
4925      } else if (Complained)
4926        PrintInitLocationNote(S, Entity);
4927      break;
4928    }
4929
4930    case SK_StringInit: {
4931      QualType Ty = Step->Type;
4932      CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
4933                      S.Context.getAsArrayType(Ty), S);
4934      break;
4935    }
4936
4937    case SK_ObjCObjectConversion:
4938      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
4939                          CK_ObjCObjectLValueCast,
4940                          CurInit.get()->getValueKind());
4941      break;
4942
4943    case SK_ArrayInit:
4944      // Okay: we checked everything before creating this step. Note that
4945      // this is a GNU extension.
4946      S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
4947        << Step->Type << CurInit.get()->getType()
4948        << CurInit.get()->getSourceRange();
4949
4950      // If the destination type is an incomplete array type, update the
4951      // type accordingly.
4952      if (ResultType) {
4953        if (const IncompleteArrayType *IncompleteDest
4954                           = S.Context.getAsIncompleteArrayType(Step->Type)) {
4955          if (const ConstantArrayType *ConstantSource
4956                 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
4957            *ResultType = S.Context.getConstantArrayType(
4958                                             IncompleteDest->getElementType(),
4959                                             ConstantSource->getSize(),
4960                                             ArrayType::Normal, 0);
4961          }
4962        }
4963      }
4964      break;
4965
4966    case SK_PassByIndirectCopyRestore:
4967    case SK_PassByIndirectRestore:
4968      checkIndirectCopyRestoreSource(S, CurInit.get());
4969      CurInit = S.Owned(new (S.Context)
4970                        ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
4971                                Step->Kind == SK_PassByIndirectCopyRestore));
4972      break;
4973
4974    case SK_ProduceObjCObject:
4975      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
4976                                                 CK_ARCProduceObject,
4977                                                 CurInit.take(), 0, VK_RValue));
4978      break;
4979    }
4980  }
4981
4982  // Diagnose non-fatal problems with the completed initialization.
4983  if (Entity.getKind() == InitializedEntity::EK_Member &&
4984      cast<FieldDecl>(Entity.getDecl())->isBitField())
4985    S.CheckBitFieldInitialization(Kind.getLocation(),
4986                                  cast<FieldDecl>(Entity.getDecl()),
4987                                  CurInit.get());
4988
4989  return move(CurInit);
4990}
4991
4992//===----------------------------------------------------------------------===//
4993// Diagnose initialization failures
4994//===----------------------------------------------------------------------===//
4995bool InitializationSequence::Diagnose(Sema &S,
4996                                      const InitializedEntity &Entity,
4997                                      const InitializationKind &Kind,
4998                                      Expr **Args, unsigned NumArgs) {
4999  if (!Failed())
5000    return false;
5001
5002  QualType DestType = Entity.getType();
5003  switch (Failure) {
5004  case FK_TooManyInitsForReference:
5005    // FIXME: Customize for the initialized entity?
5006    if (NumArgs == 0)
5007      S.Diag(Kind.getLocation(), diag::err_reference_without_init)
5008        << DestType.getNonReferenceType();
5009    else  // FIXME: diagnostic below could be better!
5010      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
5011        << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
5012    break;
5013
5014  case FK_ArrayNeedsInitList:
5015  case FK_ArrayNeedsInitListOrStringLiteral:
5016    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
5017      << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
5018    break;
5019
5020  case FK_ArrayTypeMismatch:
5021  case FK_NonConstantArrayInit:
5022    S.Diag(Kind.getLocation(),
5023           (Failure == FK_ArrayTypeMismatch
5024              ? diag::err_array_init_different_type
5025              : diag::err_array_init_non_constant_array))
5026      << DestType.getNonReferenceType()
5027      << Args[0]->getType()
5028      << Args[0]->getSourceRange();
5029    break;
5030
5031  case FK_AddressOfOverloadFailed: {
5032    DeclAccessPair Found;
5033    S.ResolveAddressOfOverloadedFunction(Args[0],
5034                                         DestType.getNonReferenceType(),
5035                                         true,
5036                                         Found);
5037    break;
5038  }
5039
5040  case FK_ReferenceInitOverloadFailed:
5041  case FK_UserConversionOverloadFailed:
5042    switch (FailedOverloadResult) {
5043    case OR_Ambiguous:
5044      if (Failure == FK_UserConversionOverloadFailed)
5045        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
5046          << Args[0]->getType() << DestType
5047          << Args[0]->getSourceRange();
5048      else
5049        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
5050          << DestType << Args[0]->getType()
5051          << Args[0]->getSourceRange();
5052
5053      FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args, NumArgs);
5054      break;
5055
5056    case OR_No_Viable_Function:
5057      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
5058        << Args[0]->getType() << DestType.getNonReferenceType()
5059        << Args[0]->getSourceRange();
5060      FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
5061      break;
5062
5063    case OR_Deleted: {
5064      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
5065        << Args[0]->getType() << DestType.getNonReferenceType()
5066        << Args[0]->getSourceRange();
5067      OverloadCandidateSet::iterator Best;
5068      OverloadingResult Ovl
5069        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
5070                                                true);
5071      if (Ovl == OR_Deleted) {
5072        S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
5073          << 1 << Best->Function->isDeleted();
5074      } else {
5075        llvm_unreachable("Inconsistent overload resolution?");
5076      }
5077      break;
5078    }
5079
5080    case OR_Success:
5081      llvm_unreachable("Conversion did not fail!");
5082      break;
5083    }
5084    break;
5085
5086  case FK_NonConstLValueReferenceBindingToTemporary:
5087  case FK_NonConstLValueReferenceBindingToUnrelated:
5088    S.Diag(Kind.getLocation(),
5089           Failure == FK_NonConstLValueReferenceBindingToTemporary
5090             ? diag::err_lvalue_reference_bind_to_temporary
5091             : diag::err_lvalue_reference_bind_to_unrelated)
5092      << DestType.getNonReferenceType().isVolatileQualified()
5093      << DestType.getNonReferenceType()
5094      << Args[0]->getType()
5095      << Args[0]->getSourceRange();
5096    break;
5097
5098  case FK_RValueReferenceBindingToLValue:
5099    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
5100      << DestType.getNonReferenceType() << Args[0]->getType()
5101      << Args[0]->getSourceRange();
5102    break;
5103
5104  case FK_ReferenceInitDropsQualifiers:
5105    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
5106      << DestType.getNonReferenceType()
5107      << Args[0]->getType()
5108      << Args[0]->getSourceRange();
5109    break;
5110
5111  case FK_ReferenceInitFailed:
5112    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
5113      << DestType.getNonReferenceType()
5114      << Args[0]->isLValue()
5115      << Args[0]->getType()
5116      << Args[0]->getSourceRange();
5117    if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5118        Args[0]->getType()->isObjCObjectPointerType())
5119      S.EmitRelatedResultTypeNote(Args[0]);
5120    break;
5121
5122  case FK_ConversionFailed: {
5123    QualType FromType = Args[0]->getType();
5124    S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
5125      << (int)Entity.getKind()
5126      << DestType
5127      << Args[0]->isLValue()
5128      << FromType
5129      << Args[0]->getSourceRange();
5130    if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5131        Args[0]->getType()->isObjCObjectPointerType())
5132      S.EmitRelatedResultTypeNote(Args[0]);
5133    break;
5134  }
5135
5136  case FK_ConversionFromPropertyFailed:
5137    // No-op. This error has already been reported.
5138    break;
5139
5140  case FK_TooManyInitsForScalar: {
5141    SourceRange R;
5142
5143    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
5144      R = SourceRange(InitList->getInit(0)->getLocEnd(),
5145                      InitList->getLocEnd());
5146    else
5147      R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
5148
5149    R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
5150    if (Kind.isCStyleOrFunctionalCast())
5151      S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
5152        << R;
5153    else
5154      S.Diag(Kind.getLocation(), diag::err_excess_initializers)
5155        << /*scalar=*/2 << R;
5156    break;
5157  }
5158
5159  case FK_ReferenceBindingToInitList:
5160    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
5161      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
5162    break;
5163
5164  case FK_InitListBadDestinationType:
5165    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
5166      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
5167    break;
5168
5169  case FK_ConstructorOverloadFailed: {
5170    SourceRange ArgsRange;
5171    if (NumArgs)
5172      ArgsRange = SourceRange(Args[0]->getLocStart(),
5173                              Args[NumArgs - 1]->getLocEnd());
5174
5175    // FIXME: Using "DestType" for the entity we're printing is probably
5176    // bad.
5177    switch (FailedOverloadResult) {
5178      case OR_Ambiguous:
5179        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
5180          << DestType << ArgsRange;
5181        FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5182                                          Args, NumArgs);
5183        break;
5184
5185      case OR_No_Viable_Function:
5186        if (Kind.getKind() == InitializationKind::IK_Default &&
5187            (Entity.getKind() == InitializedEntity::EK_Base ||
5188             Entity.getKind() == InitializedEntity::EK_Member) &&
5189            isa<CXXConstructorDecl>(S.CurContext)) {
5190          // This is implicit default initialization of a member or
5191          // base within a constructor. If no viable function was
5192          // found, notify the user that she needs to explicitly
5193          // initialize this base/member.
5194          CXXConstructorDecl *Constructor
5195            = cast<CXXConstructorDecl>(S.CurContext);
5196          if (Entity.getKind() == InitializedEntity::EK_Base) {
5197            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5198              << Constructor->isImplicit()
5199              << S.Context.getTypeDeclType(Constructor->getParent())
5200              << /*base=*/0
5201              << Entity.getType();
5202
5203            RecordDecl *BaseDecl
5204              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
5205                                                                  ->getDecl();
5206            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
5207              << S.Context.getTagDeclType(BaseDecl);
5208          } else {
5209            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5210              << Constructor->isImplicit()
5211              << S.Context.getTypeDeclType(Constructor->getParent())
5212              << /*member=*/1
5213              << Entity.getName();
5214            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
5215
5216            if (const RecordType *Record
5217                                 = Entity.getType()->getAs<RecordType>())
5218              S.Diag(Record->getDecl()->getLocation(),
5219                     diag::note_previous_decl)
5220                << S.Context.getTagDeclType(Record->getDecl());
5221          }
5222          break;
5223        }
5224
5225        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
5226          << DestType << ArgsRange;
5227        FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
5228        break;
5229
5230      case OR_Deleted: {
5231        S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5232          << true << DestType << ArgsRange;
5233        OverloadCandidateSet::iterator Best;
5234        OverloadingResult Ovl
5235          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5236        if (Ovl == OR_Deleted) {
5237          S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
5238            << 1 << Best->Function->isDeleted();
5239        } else {
5240          llvm_unreachable("Inconsistent overload resolution?");
5241        }
5242        break;
5243      }
5244
5245      case OR_Success:
5246        llvm_unreachable("Conversion did not fail!");
5247        break;
5248    }
5249    break;
5250  }
5251
5252  case FK_DefaultInitOfConst:
5253    if (Entity.getKind() == InitializedEntity::EK_Member &&
5254        isa<CXXConstructorDecl>(S.CurContext)) {
5255      // This is implicit default-initialization of a const member in
5256      // a constructor. Complain that it needs to be explicitly
5257      // initialized.
5258      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
5259      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
5260        << Constructor->isImplicit()
5261        << S.Context.getTypeDeclType(Constructor->getParent())
5262        << /*const=*/1
5263        << Entity.getName();
5264      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
5265        << Entity.getName();
5266    } else {
5267      S.Diag(Kind.getLocation(), diag::err_default_init_const)
5268        << DestType << (bool)DestType->getAs<RecordType>();
5269    }
5270    break;
5271
5272  case FK_Incomplete:
5273    S.RequireCompleteType(Kind.getLocation(), DestType,
5274                          diag::err_init_incomplete_type);
5275    break;
5276
5277  case FK_ListInitializationFailed: {
5278    // Run the init list checker again to emit diagnostics.
5279    InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5280    QualType DestType = Entity.getType();
5281    InitListChecker DiagnoseInitList(S, Entity, InitList,
5282            DestType, /*VerifyOnly=*/false,
5283            Kind.getKind() != InitializationKind::IK_Direct ||
5284              !S.getLangOptions().CPlusPlus0x);
5285    assert(DiagnoseInitList.HadError() &&
5286           "Inconsistent init list check result.");
5287    break;
5288  }
5289
5290  case FK_PlaceholderType: {
5291    // FIXME: Already diagnosed!
5292    break;
5293  }
5294  }
5295
5296  PrintInitLocationNote(S, Entity);
5297  return true;
5298}
5299
5300void InitializationSequence::dump(raw_ostream &OS) const {
5301  switch (SequenceKind) {
5302  case FailedSequence: {
5303    OS << "Failed sequence: ";
5304    switch (Failure) {
5305    case FK_TooManyInitsForReference:
5306      OS << "too many initializers for reference";
5307      break;
5308
5309    case FK_ArrayNeedsInitList:
5310      OS << "array requires initializer list";
5311      break;
5312
5313    case FK_ArrayNeedsInitListOrStringLiteral:
5314      OS << "array requires initializer list or string literal";
5315      break;
5316
5317    case FK_ArrayTypeMismatch:
5318      OS << "array type mismatch";
5319      break;
5320
5321    case FK_NonConstantArrayInit:
5322      OS << "non-constant array initializer";
5323      break;
5324
5325    case FK_AddressOfOverloadFailed:
5326      OS << "address of overloaded function failed";
5327      break;
5328
5329    case FK_ReferenceInitOverloadFailed:
5330      OS << "overload resolution for reference initialization failed";
5331      break;
5332
5333    case FK_NonConstLValueReferenceBindingToTemporary:
5334      OS << "non-const lvalue reference bound to temporary";
5335      break;
5336
5337    case FK_NonConstLValueReferenceBindingToUnrelated:
5338      OS << "non-const lvalue reference bound to unrelated type";
5339      break;
5340
5341    case FK_RValueReferenceBindingToLValue:
5342      OS << "rvalue reference bound to an lvalue";
5343      break;
5344
5345    case FK_ReferenceInitDropsQualifiers:
5346      OS << "reference initialization drops qualifiers";
5347      break;
5348
5349    case FK_ReferenceInitFailed:
5350      OS << "reference initialization failed";
5351      break;
5352
5353    case FK_ConversionFailed:
5354      OS << "conversion failed";
5355      break;
5356
5357    case FK_ConversionFromPropertyFailed:
5358      OS << "conversion from property failed";
5359      break;
5360
5361    case FK_TooManyInitsForScalar:
5362      OS << "too many initializers for scalar";
5363      break;
5364
5365    case FK_ReferenceBindingToInitList:
5366      OS << "referencing binding to initializer list";
5367      break;
5368
5369    case FK_InitListBadDestinationType:
5370      OS << "initializer list for non-aggregate, non-scalar type";
5371      break;
5372
5373    case FK_UserConversionOverloadFailed:
5374      OS << "overloading failed for user-defined conversion";
5375      break;
5376
5377    case FK_ConstructorOverloadFailed:
5378      OS << "constructor overloading failed";
5379      break;
5380
5381    case FK_DefaultInitOfConst:
5382      OS << "default initialization of a const variable";
5383      break;
5384
5385    case FK_Incomplete:
5386      OS << "initialization of incomplete type";
5387      break;
5388
5389    case FK_ListInitializationFailed:
5390      OS << "list initialization checker failure";
5391      break;
5392
5393    case FK_PlaceholderType:
5394      OS << "initializer expression isn't contextually valid";
5395      break;
5396    }
5397    OS << '\n';
5398    return;
5399  }
5400
5401  case DependentSequence:
5402    OS << "Dependent sequence\n";
5403    return;
5404
5405  case NormalSequence:
5406    OS << "Normal sequence: ";
5407    break;
5408  }
5409
5410  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
5411    if (S != step_begin()) {
5412      OS << " -> ";
5413    }
5414
5415    switch (S->Kind) {
5416    case SK_ResolveAddressOfOverloadedFunction:
5417      OS << "resolve address of overloaded function";
5418      break;
5419
5420    case SK_CastDerivedToBaseRValue:
5421      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
5422      break;
5423
5424    case SK_CastDerivedToBaseXValue:
5425      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
5426      break;
5427
5428    case SK_CastDerivedToBaseLValue:
5429      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
5430      break;
5431
5432    case SK_BindReference:
5433      OS << "bind reference to lvalue";
5434      break;
5435
5436    case SK_BindReferenceToTemporary:
5437      OS << "bind reference to a temporary";
5438      break;
5439
5440    case SK_ExtraneousCopyToTemporary:
5441      OS << "extraneous C++03 copy to temporary";
5442      break;
5443
5444    case SK_UserConversion:
5445      OS << "user-defined conversion via " << *S->Function.Function;
5446      break;
5447
5448    case SK_QualificationConversionRValue:
5449      OS << "qualification conversion (rvalue)";
5450
5451    case SK_QualificationConversionXValue:
5452      OS << "qualification conversion (xvalue)";
5453
5454    case SK_QualificationConversionLValue:
5455      OS << "qualification conversion (lvalue)";
5456      break;
5457
5458    case SK_ConversionSequence:
5459      OS << "implicit conversion sequence (";
5460      S->ICS->DebugPrint(); // FIXME: use OS
5461      OS << ")";
5462      break;
5463
5464    case SK_ListInitialization:
5465      OS << "list aggregate initialization";
5466      break;
5467
5468    case SK_ListConstructorCall:
5469      OS << "list initialization via constructor";
5470      break;
5471
5472    case SK_ConstructorInitialization:
5473      OS << "constructor initialization";
5474      break;
5475
5476    case SK_ZeroInitialization:
5477      OS << "zero initialization";
5478      break;
5479
5480    case SK_CAssignment:
5481      OS << "C assignment";
5482      break;
5483
5484    case SK_StringInit:
5485      OS << "string initialization";
5486      break;
5487
5488    case SK_ObjCObjectConversion:
5489      OS << "Objective-C object conversion";
5490      break;
5491
5492    case SK_ArrayInit:
5493      OS << "array initialization";
5494      break;
5495
5496    case SK_PassByIndirectCopyRestore:
5497      OS << "pass by indirect copy and restore";
5498      break;
5499
5500    case SK_PassByIndirectRestore:
5501      OS << "pass by indirect restore";
5502      break;
5503
5504    case SK_ProduceObjCObject:
5505      OS << "Objective-C object retension";
5506      break;
5507    }
5508  }
5509}
5510
5511void InitializationSequence::dump() const {
5512  dump(llvm::errs());
5513}
5514
5515static void DiagnoseNarrowingInInitList(
5516    Sema& S, QualType EntityType, const Expr *InitE,
5517    bool Constant, const APValue &ConstantValue) {
5518  if (Constant) {
5519    S.Diag(InitE->getLocStart(),
5520           S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt
5521           ? diag::err_init_list_constant_narrowing
5522           : diag::warn_init_list_constant_narrowing)
5523      << InitE->getSourceRange()
5524      << ConstantValue
5525      << EntityType.getLocalUnqualifiedType();
5526  } else
5527    S.Diag(InitE->getLocStart(),
5528           S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt
5529           ? diag::err_init_list_variable_narrowing
5530           : diag::warn_init_list_variable_narrowing)
5531      << InitE->getSourceRange()
5532      << InitE->getType().getLocalUnqualifiedType()
5533      << EntityType.getLocalUnqualifiedType();
5534
5535  llvm::SmallString<128> StaticCast;
5536  llvm::raw_svector_ostream OS(StaticCast);
5537  OS << "static_cast<";
5538  if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
5539    // It's important to use the typedef's name if there is one so that the
5540    // fixit doesn't break code using types like int64_t.
5541    //
5542    // FIXME: This will break if the typedef requires qualification.  But
5543    // getQualifiedNameAsString() includes non-machine-parsable components.
5544    OS << *TT->getDecl();
5545  } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
5546    OS << BT->getName(S.getLangOptions());
5547  else {
5548    // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
5549    // with a broken cast.
5550    return;
5551  }
5552  OS << ">(";
5553  S.Diag(InitE->getLocStart(), diag::note_init_list_narrowing_override)
5554    << InitE->getSourceRange()
5555    << FixItHint::CreateInsertion(InitE->getLocStart(), OS.str())
5556    << FixItHint::CreateInsertion(
5557      S.getPreprocessor().getLocForEndOfToken(InitE->getLocEnd()), ")");
5558}
5559
5560//===----------------------------------------------------------------------===//
5561// Initialization helper functions
5562//===----------------------------------------------------------------------===//
5563bool
5564Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
5565                                   ExprResult Init) {
5566  if (Init.isInvalid())
5567    return false;
5568
5569  Expr *InitE = Init.get();
5570  assert(InitE && "No initialization expression");
5571
5572  InitializationKind Kind = InitializationKind::CreateCopy(SourceLocation(),
5573                                                           SourceLocation());
5574  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
5575  return !Seq.Failed();
5576}
5577
5578ExprResult
5579Sema::PerformCopyInitialization(const InitializedEntity &Entity,
5580                                SourceLocation EqualLoc,
5581                                ExprResult Init,
5582                                bool TopLevelOfInitList) {
5583  if (Init.isInvalid())
5584    return ExprError();
5585
5586  Expr *InitE = Init.get();
5587  assert(InitE && "No initialization expression?");
5588
5589  if (EqualLoc.isInvalid())
5590    EqualLoc = InitE->getLocStart();
5591
5592  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
5593                                                           EqualLoc);
5594  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
5595  Init.release();
5596
5597  bool Constant = false;
5598  APValue Result;
5599  if (TopLevelOfInitList &&
5600      Seq.endsWithNarrowing(Context, InitE, &Constant, &Result)) {
5601    DiagnoseNarrowingInInitList(*this, Entity.getType(), InitE,
5602                                Constant, Result);
5603  }
5604  return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
5605}
5606