SemaInit.cpp revision 856d3798af7c2f7251e4a295f3da7a09ce4c62ab
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/Sema/Designator.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/SemaInternal.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/TypeLoc.h"
26#include "llvm/Support/ErrorHandling.h"
27#include <map>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Sema Initialization Checking
32//===----------------------------------------------------------------------===//
33
34static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
35                          ASTContext &Context) {
36  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
37    return 0;
38
39  // See if this is a string literal or @encode.
40  Init = Init->IgnoreParens();
41
42  // Handle @encode, which is a narrow string.
43  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
44    return Init;
45
46  // Otherwise we can only handle string literals.
47  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
48  if (SL == 0) return 0;
49
50  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
51  // char array can be initialized with a narrow string.
52  // Only allow char x[] = "foo";  not char x[] = L"foo";
53  if (!SL->isWide())
54    return ElemTy->isCharType() ? Init : 0;
55
56  // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
57  // correction from DR343): "An array with element type compatible with a
58  // qualified or unqualified version of wchar_t may be initialized by a wide
59  // string literal, optionally enclosed in braces."
60  if (Context.typesAreCompatible(Context.getWCharType(),
61                                 ElemTy.getUnqualifiedType()))
62    return Init;
63
64  return 0;
65}
66
67static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
68  const ArrayType *arrayType = Context.getAsArrayType(declType);
69  if (!arrayType) return 0;
70
71  return IsStringInit(init, arrayType, Context);
72}
73
74static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
75                            Sema &S) {
76  // Get the length of the string as parsed.
77  uint64_t StrLength =
78    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
79
80
81  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
82    // C99 6.7.8p14. We have an array of character type with unknown size
83    // being initialized to a string literal.
84    llvm::APSInt ConstVal(32);
85    ConstVal = StrLength;
86    // Return a new array type (C99 6.7.8p22).
87    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
88                                           ConstVal,
89                                           ArrayType::Normal, 0);
90    return;
91  }
92
93  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
94
95  // We have an array of character type with known size.  However,
96  // the size may be smaller or larger than the string we are initializing.
97  // FIXME: Avoid truncation for 64-bit length strings.
98  if (S.getLangOptions().CPlusPlus) {
99    if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
100      // For Pascal strings it's OK to strip off the terminating null character,
101      // so the example below is valid:
102      //
103      // unsigned char a[2] = "\pa";
104      if (SL->isPascal())
105        StrLength--;
106    }
107
108    // [dcl.init.string]p2
109    if (StrLength > CAT->getSize().getZExtValue())
110      S.Diag(Str->getSourceRange().getBegin(),
111             diag::err_initializer_string_for_char_array_too_long)
112        << Str->getSourceRange();
113  } else {
114    // C99 6.7.8p14.
115    if (StrLength-1 > CAT->getSize().getZExtValue())
116      S.Diag(Str->getSourceRange().getBegin(),
117             diag::warn_initializer_string_for_char_array_too_long)
118        << Str->getSourceRange();
119  }
120
121  // Set the type to the actual size that we are initializing.  If we have
122  // something like:
123  //   char x[1] = "foo";
124  // then this will set the string literal's type to char[1].
125  Str->setType(DeclT);
126}
127
128//===----------------------------------------------------------------------===//
129// Semantic checking for initializer lists.
130//===----------------------------------------------------------------------===//
131
132/// @brief Semantic checking for initializer lists.
133///
134/// The InitListChecker class contains a set of routines that each
135/// handle the initialization of a certain kind of entity, e.g.,
136/// arrays, vectors, struct/union types, scalars, etc. The
137/// InitListChecker itself performs a recursive walk of the subobject
138/// structure of the type to be initialized, while stepping through
139/// the initializer list one element at a time. The IList and Index
140/// parameters to each of the Check* routines contain the active
141/// (syntactic) initializer list and the index into that initializer
142/// list that represents the current initializer. Each routine is
143/// responsible for moving that Index forward as it consumes elements.
144///
145/// Each Check* routine also has a StructuredList/StructuredIndex
146/// arguments, which contains the current "structured" (semantic)
147/// initializer list and the index into that initializer list where we
148/// are copying initializers as we map them over to the semantic
149/// list. Once we have completed our recursive walk of the subobject
150/// structure, we will have constructed a full semantic initializer
151/// list.
152///
153/// C99 designators cause changes in the initializer list traversal,
154/// because they make the initialization "jump" into a specific
155/// subobject and then continue the initialization from that
156/// point. CheckDesignatedInitializer() recursively steps into the
157/// designated subobject and manages backing out the recursion to
158/// initialize the subobjects after the one designated.
159namespace {
160class InitListChecker {
161  Sema &SemaRef;
162  bool hadError;
163  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
164  InitListExpr *FullyStructuredList;
165
166  void CheckImplicitInitList(const InitializedEntity &Entity,
167                             InitListExpr *ParentIList, QualType T,
168                             unsigned &Index, InitListExpr *StructuredList,
169                             unsigned &StructuredIndex,
170                             bool TopLevelObject = false);
171  void CheckExplicitInitList(const InitializedEntity &Entity,
172                             InitListExpr *IList, QualType &T,
173                             unsigned &Index, InitListExpr *StructuredList,
174                             unsigned &StructuredIndex,
175                             bool TopLevelObject = false);
176  void CheckListElementTypes(const InitializedEntity &Entity,
177                             InitListExpr *IList, QualType &DeclType,
178                             bool SubobjectIsDesignatorContext,
179                             unsigned &Index,
180                             InitListExpr *StructuredList,
181                             unsigned &StructuredIndex,
182                             bool TopLevelObject = false);
183  void CheckSubElementType(const InitializedEntity &Entity,
184                           InitListExpr *IList, QualType ElemType,
185                           unsigned &Index,
186                           InitListExpr *StructuredList,
187                           unsigned &StructuredIndex);
188  void CheckScalarType(const InitializedEntity &Entity,
189                       InitListExpr *IList, QualType DeclType,
190                       unsigned &Index,
191                       InitListExpr *StructuredList,
192                       unsigned &StructuredIndex);
193  void CheckReferenceType(const InitializedEntity &Entity,
194                          InitListExpr *IList, QualType DeclType,
195                          unsigned &Index,
196                          InitListExpr *StructuredList,
197                          unsigned &StructuredIndex);
198  void CheckVectorType(const InitializedEntity &Entity,
199                       InitListExpr *IList, QualType DeclType, unsigned &Index,
200                       InitListExpr *StructuredList,
201                       unsigned &StructuredIndex);
202  void CheckStructUnionTypes(const InitializedEntity &Entity,
203                             InitListExpr *IList, QualType DeclType,
204                             RecordDecl::field_iterator Field,
205                             bool SubobjectIsDesignatorContext, unsigned &Index,
206                             InitListExpr *StructuredList,
207                             unsigned &StructuredIndex,
208                             bool TopLevelObject = false);
209  void CheckArrayType(const InitializedEntity &Entity,
210                      InitListExpr *IList, QualType &DeclType,
211                      llvm::APSInt elementIndex,
212                      bool SubobjectIsDesignatorContext, unsigned &Index,
213                      InitListExpr *StructuredList,
214                      unsigned &StructuredIndex);
215  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
216                                  InitListExpr *IList, DesignatedInitExpr *DIE,
217                                  unsigned DesigIdx,
218                                  QualType &CurrentObjectType,
219                                  RecordDecl::field_iterator *NextField,
220                                  llvm::APSInt *NextElementIndex,
221                                  unsigned &Index,
222                                  InitListExpr *StructuredList,
223                                  unsigned &StructuredIndex,
224                                  bool FinishSubobjectInit,
225                                  bool TopLevelObject);
226  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
227                                           QualType CurrentObjectType,
228                                           InitListExpr *StructuredList,
229                                           unsigned StructuredIndex,
230                                           SourceRange InitRange);
231  void UpdateStructuredListElement(InitListExpr *StructuredList,
232                                   unsigned &StructuredIndex,
233                                   Expr *expr);
234  int numArrayElements(QualType DeclType);
235  int numStructUnionElements(QualType DeclType);
236
237  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
238                               const InitializedEntity &ParentEntity,
239                               InitListExpr *ILE, bool &RequiresSecondPass);
240  void FillInValueInitializations(const InitializedEntity &Entity,
241                                  InitListExpr *ILE, bool &RequiresSecondPass);
242public:
243  InitListChecker(Sema &S, const InitializedEntity &Entity,
244                  InitListExpr *IL, QualType &T);
245  bool HadError() { return hadError; }
246
247  // @brief Retrieves the fully-structured initializer list used for
248  // semantic analysis and code generation.
249  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
250};
251} // end anonymous namespace
252
253void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
254                                        const InitializedEntity &ParentEntity,
255                                              InitListExpr *ILE,
256                                              bool &RequiresSecondPass) {
257  SourceLocation Loc = ILE->getSourceRange().getBegin();
258  unsigned NumInits = ILE->getNumInits();
259  InitializedEntity MemberEntity
260    = InitializedEntity::InitializeMember(Field, &ParentEntity);
261  if (Init >= NumInits || !ILE->getInit(Init)) {
262    // FIXME: We probably don't need to handle references
263    // specially here, since value-initialization of references is
264    // handled in InitializationSequence.
265    if (Field->getType()->isReferenceType()) {
266      // C++ [dcl.init.aggr]p9:
267      //   If an incomplete or empty initializer-list leaves a
268      //   member of reference type uninitialized, the program is
269      //   ill-formed.
270      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
271        << Field->getType()
272        << ILE->getSyntacticForm()->getSourceRange();
273      SemaRef.Diag(Field->getLocation(),
274                   diag::note_uninit_reference_member);
275      hadError = true;
276      return;
277    }
278
279    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
280                                                              true);
281    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
282    if (!InitSeq) {
283      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
284      hadError = true;
285      return;
286    }
287
288    ExprResult MemberInit
289      = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
290    if (MemberInit.isInvalid()) {
291      hadError = true;
292      return;
293    }
294
295    if (hadError) {
296      // Do nothing
297    } else if (Init < NumInits) {
298      ILE->setInit(Init, MemberInit.takeAs<Expr>());
299    } else if (InitSeq.isConstructorInitialization()) {
300      // Value-initialization requires a constructor call, so
301      // extend the initializer list to include the constructor
302      // call and make a note that we'll need to take another pass
303      // through the initializer list.
304      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
305      RequiresSecondPass = true;
306    }
307  } else if (InitListExpr *InnerILE
308               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
309    FillInValueInitializations(MemberEntity, InnerILE,
310                               RequiresSecondPass);
311}
312
313/// Recursively replaces NULL values within the given initializer list
314/// with expressions that perform value-initialization of the
315/// appropriate type.
316void
317InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
318                                            InitListExpr *ILE,
319                                            bool &RequiresSecondPass) {
320  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
321         "Should not have void type");
322  SourceLocation Loc = ILE->getSourceRange().getBegin();
323  if (ILE->getSyntacticForm())
324    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
325
326  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
327    if (RType->getDecl()->isUnion() &&
328        ILE->getInitializedFieldInUnion())
329      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
330                              Entity, ILE, RequiresSecondPass);
331    else {
332      unsigned Init = 0;
333      for (RecordDecl::field_iterator
334             Field = RType->getDecl()->field_begin(),
335             FieldEnd = RType->getDecl()->field_end();
336           Field != FieldEnd; ++Field) {
337        if (Field->isUnnamedBitfield())
338          continue;
339
340        if (hadError)
341          return;
342
343        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
344        if (hadError)
345          return;
346
347        ++Init;
348
349        // Only look at the first initialization of a union.
350        if (RType->getDecl()->isUnion())
351          break;
352      }
353    }
354
355    return;
356  }
357
358  QualType ElementType;
359
360  InitializedEntity ElementEntity = Entity;
361  unsigned NumInits = ILE->getNumInits();
362  unsigned NumElements = NumInits;
363  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
364    ElementType = AType->getElementType();
365    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
366      NumElements = CAType->getSize().getZExtValue();
367    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
368                                                         0, Entity);
369  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
370    ElementType = VType->getElementType();
371    NumElements = VType->getNumElements();
372    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
373                                                         0, Entity);
374  } else
375    ElementType = ILE->getType();
376
377
378  for (unsigned Init = 0; Init != NumElements; ++Init) {
379    if (hadError)
380      return;
381
382    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
383        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
384      ElementEntity.setElementIndex(Init);
385
386    if (Init >= NumInits || !ILE->getInit(Init)) {
387      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
388                                                                true);
389      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
390      if (!InitSeq) {
391        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
392        hadError = true;
393        return;
394      }
395
396      ExprResult ElementInit
397        = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
398      if (ElementInit.isInvalid()) {
399        hadError = true;
400        return;
401      }
402
403      if (hadError) {
404        // Do nothing
405      } else if (Init < NumInits) {
406        // For arrays, just set the expression used for value-initialization
407        // of the "holes" in the array.
408        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
409          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
410        else
411          ILE->setInit(Init, ElementInit.takeAs<Expr>());
412      } else {
413        // For arrays, just set the expression used for value-initialization
414        // of the rest of elements and exit.
415        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
416          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
417          return;
418        }
419
420        if (InitSeq.isConstructorInitialization()) {
421          // Value-initialization requires a constructor call, so
422          // extend the initializer list to include the constructor
423          // call and make a note that we'll need to take another pass
424          // through the initializer list.
425          ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
426          RequiresSecondPass = true;
427        }
428      }
429    } else if (InitListExpr *InnerILE
430                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
431      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
432  }
433}
434
435
436InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
437                                 InitListExpr *IL, QualType &T)
438  : SemaRef(S) {
439  hadError = false;
440
441  unsigned newIndex = 0;
442  unsigned newStructuredIndex = 0;
443  FullyStructuredList
444    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
445  CheckExplicitInitList(Entity, IL, T, newIndex,
446                        FullyStructuredList, newStructuredIndex,
447                        /*TopLevelObject=*/true);
448
449  if (!hadError) {
450    bool RequiresSecondPass = false;
451    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
452    if (RequiresSecondPass && !hadError)
453      FillInValueInitializations(Entity, FullyStructuredList,
454                                 RequiresSecondPass);
455  }
456}
457
458int InitListChecker::numArrayElements(QualType DeclType) {
459  // FIXME: use a proper constant
460  int maxElements = 0x7FFFFFFF;
461  if (const ConstantArrayType *CAT =
462        SemaRef.Context.getAsConstantArrayType(DeclType)) {
463    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
464  }
465  return maxElements;
466}
467
468int InitListChecker::numStructUnionElements(QualType DeclType) {
469  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
470  int InitializableMembers = 0;
471  for (RecordDecl::field_iterator
472         Field = structDecl->field_begin(),
473         FieldEnd = structDecl->field_end();
474       Field != FieldEnd; ++Field) {
475    if ((*Field)->getIdentifier() || !(*Field)->isBitField())
476      ++InitializableMembers;
477  }
478  if (structDecl->isUnion())
479    return std::min(InitializableMembers, 1);
480  return InitializableMembers - structDecl->hasFlexibleArrayMember();
481}
482
483void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
484                                            InitListExpr *ParentIList,
485                                            QualType T, unsigned &Index,
486                                            InitListExpr *StructuredList,
487                                            unsigned &StructuredIndex,
488                                            bool TopLevelObject) {
489  int maxElements = 0;
490
491  if (T->isArrayType())
492    maxElements = numArrayElements(T);
493  else if (T->isRecordType())
494    maxElements = numStructUnionElements(T);
495  else if (T->isVectorType())
496    maxElements = T->getAs<VectorType>()->getNumElements();
497  else
498    assert(0 && "CheckImplicitInitList(): Illegal type");
499
500  if (maxElements == 0) {
501    SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
502                  diag::err_implicit_empty_initializer);
503    ++Index;
504    hadError = true;
505    return;
506  }
507
508  // Build a structured initializer list corresponding to this subobject.
509  InitListExpr *StructuredSubobjectInitList
510    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
511                                 StructuredIndex,
512          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
513                      ParentIList->getSourceRange().getEnd()));
514  unsigned StructuredSubobjectInitIndex = 0;
515
516  // Check the element types and build the structural subobject.
517  unsigned StartIndex = Index;
518  CheckListElementTypes(Entity, ParentIList, T,
519                        /*SubobjectIsDesignatorContext=*/false, Index,
520                        StructuredSubobjectInitList,
521                        StructuredSubobjectInitIndex,
522                        TopLevelObject);
523  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
524  StructuredSubobjectInitList->setType(T);
525
526  // Update the structured sub-object initializer so that it's ending
527  // range corresponds with the end of the last initializer it used.
528  if (EndIndex < ParentIList->getNumInits()) {
529    SourceLocation EndLoc
530      = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
531    StructuredSubobjectInitList->setRBraceLoc(EndLoc);
532  }
533
534  // Warn about missing braces.
535  if (T->isArrayType() || T->isRecordType()) {
536    SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
537                 diag::warn_missing_braces)
538    << StructuredSubobjectInitList->getSourceRange()
539    << FixItHint::CreateInsertion(StructuredSubobjectInitList->getLocStart(),
540                                  "{")
541    << FixItHint::CreateInsertion(SemaRef.PP.getLocForEndOfToken(
542                                      StructuredSubobjectInitList->getLocEnd()),
543                                  "}");
544  }
545}
546
547void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
548                                            InitListExpr *IList, QualType &T,
549                                            unsigned &Index,
550                                            InitListExpr *StructuredList,
551                                            unsigned &StructuredIndex,
552                                            bool TopLevelObject) {
553  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
554  SyntacticToSemantic[IList] = StructuredList;
555  StructuredList->setSyntacticForm(IList);
556  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
557                        Index, StructuredList, StructuredIndex, TopLevelObject);
558  QualType ExprTy = T.getNonLValueExprType(SemaRef.Context);
559  IList->setType(ExprTy);
560  StructuredList->setType(ExprTy);
561  if (hadError)
562    return;
563
564  if (Index < IList->getNumInits()) {
565    // We have leftover initializers
566    if (StructuredIndex == 1 &&
567        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
568      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
569      if (SemaRef.getLangOptions().CPlusPlus) {
570        DK = diag::err_excess_initializers_in_char_array_initializer;
571        hadError = true;
572      }
573      // Special-case
574      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
575        << IList->getInit(Index)->getSourceRange();
576    } else if (!T->isIncompleteType()) {
577      // Don't complain for incomplete types, since we'll get an error
578      // elsewhere
579      QualType CurrentObjectType = StructuredList->getType();
580      int initKind =
581        CurrentObjectType->isArrayType()? 0 :
582        CurrentObjectType->isVectorType()? 1 :
583        CurrentObjectType->isScalarType()? 2 :
584        CurrentObjectType->isUnionType()? 3 :
585        4;
586
587      unsigned DK = diag::warn_excess_initializers;
588      if (SemaRef.getLangOptions().CPlusPlus) {
589        DK = diag::err_excess_initializers;
590        hadError = true;
591      }
592      if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
593        DK = diag::err_excess_initializers;
594        hadError = true;
595      }
596
597      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
598        << initKind << IList->getInit(Index)->getSourceRange();
599    }
600  }
601
602  if (T->isScalarType() && !TopLevelObject)
603    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
604      << IList->getSourceRange()
605      << FixItHint::CreateRemoval(IList->getLocStart())
606      << FixItHint::CreateRemoval(IList->getLocEnd());
607}
608
609void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
610                                            InitListExpr *IList,
611                                            QualType &DeclType,
612                                            bool SubobjectIsDesignatorContext,
613                                            unsigned &Index,
614                                            InitListExpr *StructuredList,
615                                            unsigned &StructuredIndex,
616                                            bool TopLevelObject) {
617  if (DeclType->isScalarType()) {
618    CheckScalarType(Entity, IList, DeclType, Index,
619                    StructuredList, StructuredIndex);
620  } else if (DeclType->isVectorType()) {
621    CheckVectorType(Entity, IList, DeclType, Index,
622                    StructuredList, StructuredIndex);
623  } else if (DeclType->isAggregateType()) {
624    if (DeclType->isRecordType()) {
625      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
626      CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
627                            SubobjectIsDesignatorContext, Index,
628                            StructuredList, StructuredIndex,
629                            TopLevelObject);
630    } else if (DeclType->isArrayType()) {
631      llvm::APSInt Zero(
632                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
633                      false);
634      CheckArrayType(Entity, IList, DeclType, Zero,
635                     SubobjectIsDesignatorContext, Index,
636                     StructuredList, StructuredIndex);
637    } else
638      assert(0 && "Aggregate that isn't a structure or array?!");
639  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
640    // This type is invalid, issue a diagnostic.
641    ++Index;
642    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
643      << DeclType;
644    hadError = true;
645  } else if (DeclType->isRecordType()) {
646    // C++ [dcl.init]p14:
647    //   [...] If the class is an aggregate (8.5.1), and the initializer
648    //   is a brace-enclosed list, see 8.5.1.
649    //
650    // Note: 8.5.1 is handled below; here, we diagnose the case where
651    // we have an initializer list and a destination type that is not
652    // an aggregate.
653    // FIXME: In C++0x, this is yet another form of initialization.
654    SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
655      << DeclType << IList->getSourceRange();
656    hadError = true;
657  } else if (DeclType->isReferenceType()) {
658    CheckReferenceType(Entity, IList, DeclType, Index,
659                       StructuredList, StructuredIndex);
660  } else if (DeclType->isObjCObjectType()) {
661    SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
662      << DeclType;
663    hadError = true;
664  } else {
665    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
666      << DeclType;
667    hadError = true;
668  }
669}
670
671void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
672                                          InitListExpr *IList,
673                                          QualType ElemType,
674                                          unsigned &Index,
675                                          InitListExpr *StructuredList,
676                                          unsigned &StructuredIndex) {
677  Expr *expr = IList->getInit(Index);
678  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
679    unsigned newIndex = 0;
680    unsigned newStructuredIndex = 0;
681    InitListExpr *newStructuredList
682      = getStructuredSubobjectInit(IList, Index, ElemType,
683                                   StructuredList, StructuredIndex,
684                                   SubInitList->getSourceRange());
685    CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
686                          newStructuredList, newStructuredIndex);
687    ++StructuredIndex;
688    ++Index;
689    return;
690  } else if (ElemType->isScalarType()) {
691    return CheckScalarType(Entity, IList, ElemType, Index,
692                           StructuredList, StructuredIndex);
693  } else if (ElemType->isReferenceType()) {
694    return CheckReferenceType(Entity, IList, ElemType, Index,
695                              StructuredList, StructuredIndex);
696  }
697
698  if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
699    // arrayType can be incomplete if we're initializing a flexible
700    // array member.  There's nothing we can do with the completed
701    // type here, though.
702
703    if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
704      CheckStringInit(Str, ElemType, arrayType, SemaRef);
705      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
706      ++Index;
707      return;
708    }
709
710    // Fall through for subaggregate initialization.
711
712  } else if (SemaRef.getLangOptions().CPlusPlus) {
713    // C++ [dcl.init.aggr]p12:
714    //   All implicit type conversions (clause 4) are considered when
715    //   initializing the aggregate member with an ini- tializer from
716    //   an initializer-list. If the initializer can initialize a
717    //   member, the member is initialized. [...]
718
719    // FIXME: Better EqualLoc?
720    InitializationKind Kind =
721      InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
722    InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
723
724    if (Seq) {
725      ExprResult Result =
726        Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
727      if (Result.isInvalid())
728        hadError = true;
729
730      UpdateStructuredListElement(StructuredList, StructuredIndex,
731                                  Result.takeAs<Expr>());
732      ++Index;
733      return;
734    }
735
736    // Fall through for subaggregate initialization
737  } else {
738    // C99 6.7.8p13:
739    //
740    //   The initializer for a structure or union object that has
741    //   automatic storage duration shall be either an initializer
742    //   list as described below, or a single expression that has
743    //   compatible structure or union type. In the latter case, the
744    //   initial value of the object, including unnamed members, is
745    //   that of the expression.
746    ExprResult ExprRes = SemaRef.Owned(expr);
747    if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
748        SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes)
749          == Sema::Compatible) {
750      if (ExprRes.isInvalid())
751        hadError = true;
752      else {
753        ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
754	      if (ExprRes.isInvalid())
755	        hadError = true;
756      }
757      UpdateStructuredListElement(StructuredList, StructuredIndex,
758                                  ExprRes.takeAs<Expr>());
759      ++Index;
760      return;
761    }
762    ExprRes.release();
763    // Fall through for subaggregate initialization
764  }
765
766  // C++ [dcl.init.aggr]p12:
767  //
768  //   [...] Otherwise, if the member is itself a non-empty
769  //   subaggregate, brace elision is assumed and the initializer is
770  //   considered for the initialization of the first member of
771  //   the subaggregate.
772  if (ElemType->isAggregateType() || ElemType->isVectorType()) {
773    CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
774                          StructuredIndex);
775    ++StructuredIndex;
776  } else {
777    // We cannot initialize this element, so let
778    // PerformCopyInitialization produce the appropriate diagnostic.
779    SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
780                                      SemaRef.Owned(expr));
781    hadError = true;
782    ++Index;
783    ++StructuredIndex;
784  }
785}
786
787void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
788                                      InitListExpr *IList, QualType DeclType,
789                                      unsigned &Index,
790                                      InitListExpr *StructuredList,
791                                      unsigned &StructuredIndex) {
792  if (Index >= IList->getNumInits()) {
793    SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
794      << IList->getSourceRange();
795    hadError = true;
796    ++Index;
797    ++StructuredIndex;
798    return;
799  }
800
801  Expr *expr = IList->getInit(Index);
802  if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
803    SemaRef.Diag(SubIList->getLocStart(),
804                 diag::warn_many_braces_around_scalar_init)
805      << SubIList->getSourceRange();
806
807    CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
808                    StructuredIndex);
809    return;
810  } else if (isa<DesignatedInitExpr>(expr)) {
811    SemaRef.Diag(expr->getSourceRange().getBegin(),
812                 diag::err_designator_for_scalar_init)
813      << DeclType << expr->getSourceRange();
814    hadError = true;
815    ++Index;
816    ++StructuredIndex;
817    return;
818  }
819
820  ExprResult Result =
821    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
822                                      SemaRef.Owned(expr));
823
824  Expr *ResultExpr = 0;
825
826  if (Result.isInvalid())
827    hadError = true; // types weren't compatible.
828  else {
829    ResultExpr = Result.takeAs<Expr>();
830
831    if (ResultExpr != expr) {
832      // The type was promoted, update initializer list.
833      IList->setInit(Index, ResultExpr);
834    }
835  }
836  if (hadError)
837    ++StructuredIndex;
838  else
839    UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
840  ++Index;
841}
842
843void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
844                                         InitListExpr *IList, QualType DeclType,
845                                         unsigned &Index,
846                                         InitListExpr *StructuredList,
847                                         unsigned &StructuredIndex) {
848  if (Index < IList->getNumInits()) {
849    Expr *expr = IList->getInit(Index);
850    if (isa<InitListExpr>(expr)) {
851      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
852        << DeclType << IList->getSourceRange();
853      hadError = true;
854      ++Index;
855      ++StructuredIndex;
856      return;
857    }
858
859    ExprResult Result =
860      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
861                                        SemaRef.Owned(expr));
862
863    if (Result.isInvalid())
864      hadError = true;
865
866    expr = Result.takeAs<Expr>();
867    IList->setInit(Index, expr);
868
869    if (hadError)
870      ++StructuredIndex;
871    else
872      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
873    ++Index;
874  } else {
875    // FIXME: It would be wonderful if we could point at the actual member. In
876    // general, it would be useful to pass location information down the stack,
877    // so that we know the location (or decl) of the "current object" being
878    // initialized.
879    SemaRef.Diag(IList->getLocStart(),
880                  diag::err_init_reference_member_uninitialized)
881      << DeclType
882      << IList->getSourceRange();
883    hadError = true;
884    ++Index;
885    ++StructuredIndex;
886    return;
887  }
888}
889
890void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
891                                      InitListExpr *IList, QualType DeclType,
892                                      unsigned &Index,
893                                      InitListExpr *StructuredList,
894                                      unsigned &StructuredIndex) {
895  if (Index >= IList->getNumInits())
896    return;
897
898  const VectorType *VT = DeclType->getAs<VectorType>();
899  unsigned maxElements = VT->getNumElements();
900  unsigned numEltsInit = 0;
901  QualType elementType = VT->getElementType();
902
903  if (!SemaRef.getLangOptions().OpenCL) {
904    // If the initializing element is a vector, try to copy-initialize
905    // instead of breaking it apart (which is doomed to failure anyway).
906    Expr *Init = IList->getInit(Index);
907    if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
908      ExprResult Result =
909        SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
910                                          SemaRef.Owned(Init));
911
912      Expr *ResultExpr = 0;
913      if (Result.isInvalid())
914        hadError = true; // types weren't compatible.
915      else {
916        ResultExpr = Result.takeAs<Expr>();
917
918        if (ResultExpr != Init) {
919          // The type was promoted, update initializer list.
920          IList->setInit(Index, ResultExpr);
921        }
922      }
923      if (hadError)
924        ++StructuredIndex;
925      else
926        UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
927      ++Index;
928      return;
929    }
930
931    InitializedEntity ElementEntity =
932      InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
933
934    for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
935      // Don't attempt to go past the end of the init list
936      if (Index >= IList->getNumInits())
937        break;
938
939      ElementEntity.setElementIndex(Index);
940      CheckSubElementType(ElementEntity, IList, elementType, Index,
941                          StructuredList, StructuredIndex);
942    }
943    return;
944  }
945
946  InitializedEntity ElementEntity =
947    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
948
949  // OpenCL initializers allows vectors to be constructed from vectors.
950  for (unsigned i = 0; i < maxElements; ++i) {
951    // Don't attempt to go past the end of the init list
952    if (Index >= IList->getNumInits())
953      break;
954
955    ElementEntity.setElementIndex(Index);
956
957    QualType IType = IList->getInit(Index)->getType();
958    if (!IType->isVectorType()) {
959      CheckSubElementType(ElementEntity, IList, elementType, Index,
960                          StructuredList, StructuredIndex);
961      ++numEltsInit;
962    } else {
963      QualType VecType;
964      const VectorType *IVT = IType->getAs<VectorType>();
965      unsigned numIElts = IVT->getNumElements();
966
967      if (IType->isExtVectorType())
968        VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
969      else
970        VecType = SemaRef.Context.getVectorType(elementType, numIElts,
971                                                IVT->getVectorKind());
972      CheckSubElementType(ElementEntity, IList, VecType, Index,
973                          StructuredList, StructuredIndex);
974      numEltsInit += numIElts;
975    }
976  }
977
978  // OpenCL requires all elements to be initialized.
979  if (numEltsInit != maxElements)
980    if (SemaRef.getLangOptions().OpenCL)
981      SemaRef.Diag(IList->getSourceRange().getBegin(),
982                   diag::err_vector_incorrect_num_initializers)
983        << (numEltsInit < maxElements) << maxElements << numEltsInit;
984}
985
986void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
987                                     InitListExpr *IList, QualType &DeclType,
988                                     llvm::APSInt elementIndex,
989                                     bool SubobjectIsDesignatorContext,
990                                     unsigned &Index,
991                                     InitListExpr *StructuredList,
992                                     unsigned &StructuredIndex) {
993  const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
994
995  // Check for the special-case of initializing an array with a string.
996  if (Index < IList->getNumInits()) {
997    if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
998                                 SemaRef.Context)) {
999      CheckStringInit(Str, DeclType, arrayType, SemaRef);
1000      // We place the string literal directly into the resulting
1001      // initializer list. This is the only place where the structure
1002      // of the structured initializer list doesn't match exactly,
1003      // because doing so would involve allocating one character
1004      // constant for each string.
1005      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
1006      StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1007      ++Index;
1008      return;
1009    }
1010  }
1011  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1012    // Check for VLAs; in standard C it would be possible to check this
1013    // earlier, but I don't know where clang accepts VLAs (gcc accepts
1014    // them in all sorts of strange places).
1015    SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1016                  diag::err_variable_object_no_init)
1017      << VAT->getSizeExpr()->getSourceRange();
1018    hadError = true;
1019    ++Index;
1020    ++StructuredIndex;
1021    return;
1022  }
1023
1024  // We might know the maximum number of elements in advance.
1025  llvm::APSInt maxElements(elementIndex.getBitWidth(),
1026                           elementIndex.isUnsigned());
1027  bool maxElementsKnown = false;
1028  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1029    maxElements = CAT->getSize();
1030    elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1031    elementIndex.setIsUnsigned(maxElements.isUnsigned());
1032    maxElementsKnown = true;
1033  }
1034
1035  QualType elementType = arrayType->getElementType();
1036  while (Index < IList->getNumInits()) {
1037    Expr *Init = IList->getInit(Index);
1038    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1039      // If we're not the subobject that matches up with the '{' for
1040      // the designator, we shouldn't be handling the
1041      // designator. Return immediately.
1042      if (!SubobjectIsDesignatorContext)
1043        return;
1044
1045      // Handle this designated initializer. elementIndex will be
1046      // updated to be the next array element we'll initialize.
1047      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1048                                     DeclType, 0, &elementIndex, Index,
1049                                     StructuredList, StructuredIndex, true,
1050                                     false)) {
1051        hadError = true;
1052        continue;
1053      }
1054
1055      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1056        maxElements = maxElements.extend(elementIndex.getBitWidth());
1057      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1058        elementIndex = elementIndex.extend(maxElements.getBitWidth());
1059      elementIndex.setIsUnsigned(maxElements.isUnsigned());
1060
1061      // If the array is of incomplete type, keep track of the number of
1062      // elements in the initializer.
1063      if (!maxElementsKnown && elementIndex > maxElements)
1064        maxElements = elementIndex;
1065
1066      continue;
1067    }
1068
1069    // If we know the maximum number of elements, and we've already
1070    // hit it, stop consuming elements in the initializer list.
1071    if (maxElementsKnown && elementIndex == maxElements)
1072      break;
1073
1074    InitializedEntity ElementEntity =
1075      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1076                                           Entity);
1077    // Check this element.
1078    CheckSubElementType(ElementEntity, IList, elementType, Index,
1079                        StructuredList, StructuredIndex);
1080    ++elementIndex;
1081
1082    // If the array is of incomplete type, keep track of the number of
1083    // elements in the initializer.
1084    if (!maxElementsKnown && elementIndex > maxElements)
1085      maxElements = elementIndex;
1086  }
1087  if (!hadError && DeclType->isIncompleteArrayType()) {
1088    // If this is an incomplete array type, the actual type needs to
1089    // be calculated here.
1090    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1091    if (maxElements == Zero) {
1092      // Sizing an array implicitly to zero is not allowed by ISO C,
1093      // but is supported by GNU.
1094      SemaRef.Diag(IList->getLocStart(),
1095                    diag::ext_typecheck_zero_array_size);
1096    }
1097
1098    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1099                                                     ArrayType::Normal, 0);
1100  }
1101}
1102
1103void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1104                                            InitListExpr *IList,
1105                                            QualType DeclType,
1106                                            RecordDecl::field_iterator Field,
1107                                            bool SubobjectIsDesignatorContext,
1108                                            unsigned &Index,
1109                                            InitListExpr *StructuredList,
1110                                            unsigned &StructuredIndex,
1111                                            bool TopLevelObject) {
1112  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1113
1114  // If the record is invalid, some of it's members are invalid. To avoid
1115  // confusion, we forgo checking the intializer for the entire record.
1116  if (structDecl->isInvalidDecl()) {
1117    hadError = true;
1118    return;
1119  }
1120
1121  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1122    // Value-initialize the first named member of the union.
1123    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1124    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1125         Field != FieldEnd; ++Field) {
1126      if (Field->getDeclName()) {
1127        StructuredList->setInitializedFieldInUnion(*Field);
1128        break;
1129      }
1130    }
1131    return;
1132  }
1133
1134  // If structDecl is a forward declaration, this loop won't do
1135  // anything except look at designated initializers; That's okay,
1136  // because an error should get printed out elsewhere. It might be
1137  // worthwhile to skip over the rest of the initializer, though.
1138  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1139  RecordDecl::field_iterator FieldEnd = RD->field_end();
1140  bool InitializedSomething = false;
1141  bool CheckForMissingFields = true;
1142  while (Index < IList->getNumInits()) {
1143    Expr *Init = IList->getInit(Index);
1144
1145    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1146      // If we're not the subobject that matches up with the '{' for
1147      // the designator, we shouldn't be handling the
1148      // designator. Return immediately.
1149      if (!SubobjectIsDesignatorContext)
1150        return;
1151
1152      // Handle this designated initializer. Field will be updated to
1153      // the next field that we'll be initializing.
1154      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1155                                     DeclType, &Field, 0, Index,
1156                                     StructuredList, StructuredIndex,
1157                                     true, TopLevelObject))
1158        hadError = true;
1159
1160      InitializedSomething = true;
1161
1162      // Disable check for missing fields when designators are used.
1163      // This matches gcc behaviour.
1164      CheckForMissingFields = false;
1165      continue;
1166    }
1167
1168    if (Field == FieldEnd) {
1169      // We've run out of fields. We're done.
1170      break;
1171    }
1172
1173    // We've already initialized a member of a union. We're done.
1174    if (InitializedSomething && DeclType->isUnionType())
1175      break;
1176
1177    // If we've hit the flexible array member at the end, we're done.
1178    if (Field->getType()->isIncompleteArrayType())
1179      break;
1180
1181    if (Field->isUnnamedBitfield()) {
1182      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1183      ++Field;
1184      continue;
1185    }
1186
1187    InitializedEntity MemberEntity =
1188      InitializedEntity::InitializeMember(*Field, &Entity);
1189    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1190                        StructuredList, StructuredIndex);
1191    InitializedSomething = true;
1192
1193    if (DeclType->isUnionType()) {
1194      // Initialize the first field within the union.
1195      StructuredList->setInitializedFieldInUnion(*Field);
1196    }
1197
1198    ++Field;
1199  }
1200
1201  // Emit warnings for missing struct field initializers.
1202  if (InitializedSomething && CheckForMissingFields && Field != FieldEnd &&
1203      !Field->getType()->isIncompleteArrayType() && !DeclType->isUnionType()) {
1204    // It is possible we have one or more unnamed bitfields remaining.
1205    // Find first (if any) named field and emit warning.
1206    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1207         it != end; ++it) {
1208      if (!it->isUnnamedBitfield()) {
1209        SemaRef.Diag(IList->getSourceRange().getEnd(),
1210                     diag::warn_missing_field_initializers) << it->getName();
1211        break;
1212      }
1213    }
1214  }
1215
1216  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1217      Index >= IList->getNumInits())
1218    return;
1219
1220  // Handle GNU flexible array initializers.
1221  if (!TopLevelObject &&
1222      (!isa<InitListExpr>(IList->getInit(Index)) ||
1223       cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1224    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1225                  diag::err_flexible_array_init_nonempty)
1226      << IList->getInit(Index)->getSourceRange().getBegin();
1227    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1228      << *Field;
1229    hadError = true;
1230    ++Index;
1231    return;
1232  } else {
1233    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1234                 diag::ext_flexible_array_init)
1235      << IList->getInit(Index)->getSourceRange().getBegin();
1236    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1237      << *Field;
1238  }
1239
1240  InitializedEntity MemberEntity =
1241    InitializedEntity::InitializeMember(*Field, &Entity);
1242
1243  if (isa<InitListExpr>(IList->getInit(Index)))
1244    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1245                        StructuredList, StructuredIndex);
1246  else
1247    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1248                          StructuredList, StructuredIndex);
1249}
1250
1251/// \brief Expand a field designator that refers to a member of an
1252/// anonymous struct or union into a series of field designators that
1253/// refers to the field within the appropriate subobject.
1254///
1255static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1256                                           DesignatedInitExpr *DIE,
1257                                           unsigned DesigIdx,
1258                                           IndirectFieldDecl *IndirectField) {
1259  typedef DesignatedInitExpr::Designator Designator;
1260
1261  // Build the replacement designators.
1262  llvm::SmallVector<Designator, 4> Replacements;
1263  for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1264       PE = IndirectField->chain_end(); PI != PE; ++PI) {
1265    if (PI + 1 == PE)
1266      Replacements.push_back(Designator((IdentifierInfo *)0,
1267                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1268                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1269    else
1270      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1271                                        SourceLocation()));
1272    assert(isa<FieldDecl>(*PI));
1273    Replacements.back().setField(cast<FieldDecl>(*PI));
1274  }
1275
1276  // Expand the current designator into the set of replacement
1277  // designators, so we have a full subobject path down to where the
1278  // member of the anonymous struct/union is actually stored.
1279  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1280                        &Replacements[0] + Replacements.size());
1281}
1282
1283/// \brief Given an implicit anonymous field, search the IndirectField that
1284///  corresponds to FieldName.
1285static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1286                                                 IdentifierInfo *FieldName) {
1287  assert(AnonField->isAnonymousStructOrUnion());
1288  Decl *NextDecl = AnonField->getNextDeclInContext();
1289  while (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(NextDecl)) {
1290    if (FieldName && FieldName == IF->getAnonField()->getIdentifier())
1291      return IF;
1292    NextDecl = NextDecl->getNextDeclInContext();
1293  }
1294  return 0;
1295}
1296
1297/// @brief Check the well-formedness of a C99 designated initializer.
1298///
1299/// Determines whether the designated initializer @p DIE, which
1300/// resides at the given @p Index within the initializer list @p
1301/// IList, is well-formed for a current object of type @p DeclType
1302/// (C99 6.7.8). The actual subobject that this designator refers to
1303/// within the current subobject is returned in either
1304/// @p NextField or @p NextElementIndex (whichever is appropriate).
1305///
1306/// @param IList  The initializer list in which this designated
1307/// initializer occurs.
1308///
1309/// @param DIE The designated initializer expression.
1310///
1311/// @param DesigIdx  The index of the current designator.
1312///
1313/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1314/// into which the designation in @p DIE should refer.
1315///
1316/// @param NextField  If non-NULL and the first designator in @p DIE is
1317/// a field, this will be set to the field declaration corresponding
1318/// to the field named by the designator.
1319///
1320/// @param NextElementIndex  If non-NULL and the first designator in @p
1321/// DIE is an array designator or GNU array-range designator, this
1322/// will be set to the last index initialized by this designator.
1323///
1324/// @param Index  Index into @p IList where the designated initializer
1325/// @p DIE occurs.
1326///
1327/// @param StructuredList  The initializer list expression that
1328/// describes all of the subobject initializers in the order they'll
1329/// actually be initialized.
1330///
1331/// @returns true if there was an error, false otherwise.
1332bool
1333InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1334                                            InitListExpr *IList,
1335                                      DesignatedInitExpr *DIE,
1336                                      unsigned DesigIdx,
1337                                      QualType &CurrentObjectType,
1338                                      RecordDecl::field_iterator *NextField,
1339                                      llvm::APSInt *NextElementIndex,
1340                                      unsigned &Index,
1341                                      InitListExpr *StructuredList,
1342                                      unsigned &StructuredIndex,
1343                                            bool FinishSubobjectInit,
1344                                            bool TopLevelObject) {
1345  if (DesigIdx == DIE->size()) {
1346    // Check the actual initialization for the designated object type.
1347    bool prevHadError = hadError;
1348
1349    // Temporarily remove the designator expression from the
1350    // initializer list that the child calls see, so that we don't try
1351    // to re-process the designator.
1352    unsigned OldIndex = Index;
1353    IList->setInit(OldIndex, DIE->getInit());
1354
1355    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1356                        StructuredList, StructuredIndex);
1357
1358    // Restore the designated initializer expression in the syntactic
1359    // form of the initializer list.
1360    if (IList->getInit(OldIndex) != DIE->getInit())
1361      DIE->setInit(IList->getInit(OldIndex));
1362    IList->setInit(OldIndex, DIE);
1363
1364    return hadError && !prevHadError;
1365  }
1366
1367  bool IsFirstDesignator = (DesigIdx == 0);
1368  assert((IsFirstDesignator || StructuredList) &&
1369         "Need a non-designated initializer list to start from");
1370
1371  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1372  // Determine the structural initializer list that corresponds to the
1373  // current subobject.
1374  StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1375    : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1376                                 StructuredList, StructuredIndex,
1377                                 SourceRange(D->getStartLocation(),
1378                                             DIE->getSourceRange().getEnd()));
1379  assert(StructuredList && "Expected a structured initializer list");
1380
1381  if (D->isFieldDesignator()) {
1382    // C99 6.7.8p7:
1383    //
1384    //   If a designator has the form
1385    //
1386    //      . identifier
1387    //
1388    //   then the current object (defined below) shall have
1389    //   structure or union type and the identifier shall be the
1390    //   name of a member of that type.
1391    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1392    if (!RT) {
1393      SourceLocation Loc = D->getDotLoc();
1394      if (Loc.isInvalid())
1395        Loc = D->getFieldLoc();
1396      SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1397        << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1398      ++Index;
1399      return true;
1400    }
1401
1402    // Note: we perform a linear search of the fields here, despite
1403    // the fact that we have a faster lookup method, because we always
1404    // need to compute the field's index.
1405    FieldDecl *KnownField = D->getField();
1406    IdentifierInfo *FieldName = D->getFieldName();
1407    unsigned FieldIndex = 0;
1408    RecordDecl::field_iterator
1409      Field = RT->getDecl()->field_begin(),
1410      FieldEnd = RT->getDecl()->field_end();
1411    for (; Field != FieldEnd; ++Field) {
1412      if (Field->isUnnamedBitfield())
1413        continue;
1414
1415      // If we find a field representing an anonymous field, look in the
1416      // IndirectFieldDecl that follow for the designated initializer.
1417      if (!KnownField && Field->isAnonymousStructOrUnion()) {
1418        if (IndirectFieldDecl *IF =
1419            FindIndirectFieldDesignator(*Field, FieldName)) {
1420          ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1421          D = DIE->getDesignator(DesigIdx);
1422          break;
1423        }
1424      }
1425      if (KnownField && KnownField == *Field)
1426        break;
1427      if (FieldName && FieldName == Field->getIdentifier())
1428        break;
1429
1430      ++FieldIndex;
1431    }
1432
1433    if (Field == FieldEnd) {
1434      // There was no normal field in the struct with the designated
1435      // name. Perform another lookup for this name, which may find
1436      // something that we can't designate (e.g., a member function),
1437      // may find nothing, or may find a member of an anonymous
1438      // struct/union.
1439      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1440      FieldDecl *ReplacementField = 0;
1441      if (Lookup.first == Lookup.second) {
1442        // Name lookup didn't find anything. Determine whether this
1443        // was a typo for another field name.
1444        LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
1445                       Sema::LookupMemberName);
1446        if (SemaRef.CorrectTypo(R, /*Scope=*/0, /*SS=*/0, RT->getDecl(), false,
1447                                Sema::CTC_NoKeywords) &&
1448            (ReplacementField = R.getAsSingle<FieldDecl>()) &&
1449            ReplacementField->getDeclContext()->getRedeclContext()
1450                                                      ->Equals(RT->getDecl())) {
1451          SemaRef.Diag(D->getFieldLoc(),
1452                       diag::err_field_designator_unknown_suggest)
1453            << FieldName << CurrentObjectType << R.getLookupName()
1454            << FixItHint::CreateReplacement(D->getFieldLoc(),
1455                                            R.getLookupName().getAsString());
1456          SemaRef.Diag(ReplacementField->getLocation(),
1457                       diag::note_previous_decl)
1458            << ReplacementField->getDeclName();
1459        } else {
1460          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1461            << FieldName << CurrentObjectType;
1462          ++Index;
1463          return true;
1464        }
1465      }
1466
1467      if (!ReplacementField) {
1468        // Name lookup found something, but it wasn't a field.
1469        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1470          << FieldName;
1471        SemaRef.Diag((*Lookup.first)->getLocation(),
1472                      diag::note_field_designator_found);
1473        ++Index;
1474        return true;
1475      }
1476
1477      if (!KnownField) {
1478        // The replacement field comes from typo correction; find it
1479        // in the list of fields.
1480        FieldIndex = 0;
1481        Field = RT->getDecl()->field_begin();
1482        for (; Field != FieldEnd; ++Field) {
1483          if (Field->isUnnamedBitfield())
1484            continue;
1485
1486          if (ReplacementField == *Field ||
1487              Field->getIdentifier() == ReplacementField->getIdentifier())
1488            break;
1489
1490          ++FieldIndex;
1491        }
1492      }
1493    }
1494
1495    // All of the fields of a union are located at the same place in
1496    // the initializer list.
1497    if (RT->getDecl()->isUnion()) {
1498      FieldIndex = 0;
1499      StructuredList->setInitializedFieldInUnion(*Field);
1500    }
1501
1502    // Update the designator with the field declaration.
1503    D->setField(*Field);
1504
1505    // Make sure that our non-designated initializer list has space
1506    // for a subobject corresponding to this field.
1507    if (FieldIndex >= StructuredList->getNumInits())
1508      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1509
1510    // This designator names a flexible array member.
1511    if (Field->getType()->isIncompleteArrayType()) {
1512      bool Invalid = false;
1513      if ((DesigIdx + 1) != DIE->size()) {
1514        // We can't designate an object within the flexible array
1515        // member (because GCC doesn't allow it).
1516        DesignatedInitExpr::Designator *NextD
1517          = DIE->getDesignator(DesigIdx + 1);
1518        SemaRef.Diag(NextD->getStartLocation(),
1519                      diag::err_designator_into_flexible_array_member)
1520          << SourceRange(NextD->getStartLocation(),
1521                         DIE->getSourceRange().getEnd());
1522        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1523          << *Field;
1524        Invalid = true;
1525      }
1526
1527      if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1528          !isa<StringLiteral>(DIE->getInit())) {
1529        // The initializer is not an initializer list.
1530        SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1531                      diag::err_flexible_array_init_needs_braces)
1532          << DIE->getInit()->getSourceRange();
1533        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1534          << *Field;
1535        Invalid = true;
1536      }
1537
1538      // Handle GNU flexible array initializers.
1539      if (!Invalid && !TopLevelObject &&
1540          cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1541        SemaRef.Diag(DIE->getSourceRange().getBegin(),
1542                      diag::err_flexible_array_init_nonempty)
1543          << DIE->getSourceRange().getBegin();
1544        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1545          << *Field;
1546        Invalid = true;
1547      }
1548
1549      if (Invalid) {
1550        ++Index;
1551        return true;
1552      }
1553
1554      // Initialize the array.
1555      bool prevHadError = hadError;
1556      unsigned newStructuredIndex = FieldIndex;
1557      unsigned OldIndex = Index;
1558      IList->setInit(Index, DIE->getInit());
1559
1560      InitializedEntity MemberEntity =
1561        InitializedEntity::InitializeMember(*Field, &Entity);
1562      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1563                          StructuredList, newStructuredIndex);
1564
1565      IList->setInit(OldIndex, DIE);
1566      if (hadError && !prevHadError) {
1567        ++Field;
1568        ++FieldIndex;
1569        if (NextField)
1570          *NextField = Field;
1571        StructuredIndex = FieldIndex;
1572        return true;
1573      }
1574    } else {
1575      // Recurse to check later designated subobjects.
1576      QualType FieldType = (*Field)->getType();
1577      unsigned newStructuredIndex = FieldIndex;
1578
1579      InitializedEntity MemberEntity =
1580        InitializedEntity::InitializeMember(*Field, &Entity);
1581      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1582                                     FieldType, 0, 0, Index,
1583                                     StructuredList, newStructuredIndex,
1584                                     true, false))
1585        return true;
1586    }
1587
1588    // Find the position of the next field to be initialized in this
1589    // subobject.
1590    ++Field;
1591    ++FieldIndex;
1592
1593    // If this the first designator, our caller will continue checking
1594    // the rest of this struct/class/union subobject.
1595    if (IsFirstDesignator) {
1596      if (NextField)
1597        *NextField = Field;
1598      StructuredIndex = FieldIndex;
1599      return false;
1600    }
1601
1602    if (!FinishSubobjectInit)
1603      return false;
1604
1605    // We've already initialized something in the union; we're done.
1606    if (RT->getDecl()->isUnion())
1607      return hadError;
1608
1609    // Check the remaining fields within this class/struct/union subobject.
1610    bool prevHadError = hadError;
1611
1612    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1613                          StructuredList, FieldIndex);
1614    return hadError && !prevHadError;
1615  }
1616
1617  // C99 6.7.8p6:
1618  //
1619  //   If a designator has the form
1620  //
1621  //      [ constant-expression ]
1622  //
1623  //   then the current object (defined below) shall have array
1624  //   type and the expression shall be an integer constant
1625  //   expression. If the array is of unknown size, any
1626  //   nonnegative value is valid.
1627  //
1628  // Additionally, cope with the GNU extension that permits
1629  // designators of the form
1630  //
1631  //      [ constant-expression ... constant-expression ]
1632  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1633  if (!AT) {
1634    SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1635      << CurrentObjectType;
1636    ++Index;
1637    return true;
1638  }
1639
1640  Expr *IndexExpr = 0;
1641  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1642  if (D->isArrayDesignator()) {
1643    IndexExpr = DIE->getArrayIndex(*D);
1644    DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1645    DesignatedEndIndex = DesignatedStartIndex;
1646  } else {
1647    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1648
1649    DesignatedStartIndex =
1650      DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1651    DesignatedEndIndex =
1652      DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1653    IndexExpr = DIE->getArrayRangeEnd(*D);
1654
1655    // Codegen can't handle evaluating array range designators that have side
1656    // effects, because we replicate the AST value for each initialized element.
1657    // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
1658    // elements with something that has a side effect, so codegen can emit an
1659    // "error unsupported" error instead of miscompiling the app.
1660    if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
1661        DIE->getInit()->HasSideEffects(SemaRef.Context))
1662      FullyStructuredList->sawArrayRangeDesignator();
1663  }
1664
1665  if (isa<ConstantArrayType>(AT)) {
1666    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1667    DesignatedStartIndex
1668      = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1669    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1670    DesignatedEndIndex
1671      = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1672    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1673    if (DesignatedEndIndex >= MaxElements) {
1674      SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1675                    diag::err_array_designator_too_large)
1676        << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1677        << IndexExpr->getSourceRange();
1678      ++Index;
1679      return true;
1680    }
1681  } else {
1682    // Make sure the bit-widths and signedness match.
1683    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1684      DesignatedEndIndex
1685        = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1686    else if (DesignatedStartIndex.getBitWidth() <
1687             DesignatedEndIndex.getBitWidth())
1688      DesignatedStartIndex
1689        = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1690    DesignatedStartIndex.setIsUnsigned(true);
1691    DesignatedEndIndex.setIsUnsigned(true);
1692  }
1693
1694  // Make sure that our non-designated initializer list has space
1695  // for a subobject corresponding to this array element.
1696  if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1697    StructuredList->resizeInits(SemaRef.Context,
1698                                DesignatedEndIndex.getZExtValue() + 1);
1699
1700  // Repeatedly perform subobject initializations in the range
1701  // [DesignatedStartIndex, DesignatedEndIndex].
1702
1703  // Move to the next designator
1704  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1705  unsigned OldIndex = Index;
1706
1707  InitializedEntity ElementEntity =
1708    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1709
1710  while (DesignatedStartIndex <= DesignatedEndIndex) {
1711    // Recurse to check later designated subobjects.
1712    QualType ElementType = AT->getElementType();
1713    Index = OldIndex;
1714
1715    ElementEntity.setElementIndex(ElementIndex);
1716    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
1717                                   ElementType, 0, 0, Index,
1718                                   StructuredList, ElementIndex,
1719                                   (DesignatedStartIndex == DesignatedEndIndex),
1720                                   false))
1721      return true;
1722
1723    // Move to the next index in the array that we'll be initializing.
1724    ++DesignatedStartIndex;
1725    ElementIndex = DesignatedStartIndex.getZExtValue();
1726  }
1727
1728  // If this the first designator, our caller will continue checking
1729  // the rest of this array subobject.
1730  if (IsFirstDesignator) {
1731    if (NextElementIndex)
1732      *NextElementIndex = DesignatedStartIndex;
1733    StructuredIndex = ElementIndex;
1734    return false;
1735  }
1736
1737  if (!FinishSubobjectInit)
1738    return false;
1739
1740  // Check the remaining elements within this array subobject.
1741  bool prevHadError = hadError;
1742  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
1743                 /*SubobjectIsDesignatorContext=*/false, Index,
1744                 StructuredList, ElementIndex);
1745  return hadError && !prevHadError;
1746}
1747
1748// Get the structured initializer list for a subobject of type
1749// @p CurrentObjectType.
1750InitListExpr *
1751InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1752                                            QualType CurrentObjectType,
1753                                            InitListExpr *StructuredList,
1754                                            unsigned StructuredIndex,
1755                                            SourceRange InitRange) {
1756  Expr *ExistingInit = 0;
1757  if (!StructuredList)
1758    ExistingInit = SyntacticToSemantic[IList];
1759  else if (StructuredIndex < StructuredList->getNumInits())
1760    ExistingInit = StructuredList->getInit(StructuredIndex);
1761
1762  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1763    return Result;
1764
1765  if (ExistingInit) {
1766    // We are creating an initializer list that initializes the
1767    // subobjects of the current object, but there was already an
1768    // initialization that completely initialized the current
1769    // subobject, e.g., by a compound literal:
1770    //
1771    // struct X { int a, b; };
1772    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1773    //
1774    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1775    // designated initializer re-initializes the whole
1776    // subobject [0], overwriting previous initializers.
1777    SemaRef.Diag(InitRange.getBegin(),
1778                 diag::warn_subobject_initializer_overrides)
1779      << InitRange;
1780    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1781                  diag::note_previous_initializer)
1782      << /*FIXME:has side effects=*/0
1783      << ExistingInit->getSourceRange();
1784  }
1785
1786  InitListExpr *Result
1787    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
1788                                         InitRange.getBegin(), 0, 0,
1789                                         InitRange.getEnd());
1790
1791  Result->setType(CurrentObjectType.getNonLValueExprType(SemaRef.Context));
1792
1793  // Pre-allocate storage for the structured initializer list.
1794  unsigned NumElements = 0;
1795  unsigned NumInits = 0;
1796  bool GotNumInits = false;
1797  if (!StructuredList) {
1798    NumInits = IList->getNumInits();
1799    GotNumInits = true;
1800  } else if (Index < IList->getNumInits()) {
1801    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
1802      NumInits = SubList->getNumInits();
1803      GotNumInits = true;
1804    }
1805  }
1806
1807  if (const ArrayType *AType
1808      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1809    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1810      NumElements = CAType->getSize().getZExtValue();
1811      // Simple heuristic so that we don't allocate a very large
1812      // initializer with many empty entries at the end.
1813      if (GotNumInits && NumElements > NumInits)
1814        NumElements = 0;
1815    }
1816  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
1817    NumElements = VType->getNumElements();
1818  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
1819    RecordDecl *RDecl = RType->getDecl();
1820    if (RDecl->isUnion())
1821      NumElements = 1;
1822    else
1823      NumElements = std::distance(RDecl->field_begin(),
1824                                  RDecl->field_end());
1825  }
1826
1827  if (NumElements < NumInits)
1828    NumElements = IList->getNumInits();
1829
1830  Result->reserveInits(SemaRef.Context, NumElements);
1831
1832  // Link this new initializer list into the structured initializer
1833  // lists.
1834  if (StructuredList)
1835    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
1836  else {
1837    Result->setSyntacticForm(IList);
1838    SyntacticToSemantic[IList] = Result;
1839  }
1840
1841  return Result;
1842}
1843
1844/// Update the initializer at index @p StructuredIndex within the
1845/// structured initializer list to the value @p expr.
1846void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1847                                                  unsigned &StructuredIndex,
1848                                                  Expr *expr) {
1849  // No structured initializer list to update
1850  if (!StructuredList)
1851    return;
1852
1853  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
1854                                                  StructuredIndex, expr)) {
1855    // This initializer overwrites a previous initializer. Warn.
1856    SemaRef.Diag(expr->getSourceRange().getBegin(),
1857                  diag::warn_initializer_overrides)
1858      << expr->getSourceRange();
1859    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1860                  diag::note_previous_initializer)
1861      << /*FIXME:has side effects=*/0
1862      << PrevInit->getSourceRange();
1863  }
1864
1865  ++StructuredIndex;
1866}
1867
1868/// Check that the given Index expression is a valid array designator
1869/// value. This is essentailly just a wrapper around
1870/// VerifyIntegerConstantExpression that also checks for negative values
1871/// and produces a reasonable diagnostic if there is a
1872/// failure. Returns true if there was an error, false otherwise.  If
1873/// everything went okay, Value will receive the value of the constant
1874/// expression.
1875static bool
1876CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1877  SourceLocation Loc = Index->getSourceRange().getBegin();
1878
1879  // Make sure this is an integer constant expression.
1880  if (S.VerifyIntegerConstantExpression(Index, &Value))
1881    return true;
1882
1883  if (Value.isSigned() && Value.isNegative())
1884    return S.Diag(Loc, diag::err_array_designator_negative)
1885      << Value.toString(10) << Index->getSourceRange();
1886
1887  Value.setIsUnsigned(true);
1888  return false;
1889}
1890
1891ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1892                                            SourceLocation Loc,
1893                                            bool GNUSyntax,
1894                                            ExprResult Init) {
1895  typedef DesignatedInitExpr::Designator ASTDesignator;
1896
1897  bool Invalid = false;
1898  llvm::SmallVector<ASTDesignator, 32> Designators;
1899  llvm::SmallVector<Expr *, 32> InitExpressions;
1900
1901  // Build designators and check array designator expressions.
1902  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1903    const Designator &D = Desig.getDesignator(Idx);
1904    switch (D.getKind()) {
1905    case Designator::FieldDesignator:
1906      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1907                                          D.getFieldLoc()));
1908      break;
1909
1910    case Designator::ArrayDesignator: {
1911      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1912      llvm::APSInt IndexValue;
1913      if (!Index->isTypeDependent() &&
1914          !Index->isValueDependent() &&
1915          CheckArrayDesignatorExpr(*this, Index, IndexValue))
1916        Invalid = true;
1917      else {
1918        Designators.push_back(ASTDesignator(InitExpressions.size(),
1919                                            D.getLBracketLoc(),
1920                                            D.getRBracketLoc()));
1921        InitExpressions.push_back(Index);
1922      }
1923      break;
1924    }
1925
1926    case Designator::ArrayRangeDesignator: {
1927      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1928      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1929      llvm::APSInt StartValue;
1930      llvm::APSInt EndValue;
1931      bool StartDependent = StartIndex->isTypeDependent() ||
1932                            StartIndex->isValueDependent();
1933      bool EndDependent = EndIndex->isTypeDependent() ||
1934                          EndIndex->isValueDependent();
1935      if ((!StartDependent &&
1936           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1937          (!EndDependent &&
1938           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1939        Invalid = true;
1940      else {
1941        // Make sure we're comparing values with the same bit width.
1942        if (StartDependent || EndDependent) {
1943          // Nothing to compute.
1944        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1945          EndValue = EndValue.extend(StartValue.getBitWidth());
1946        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1947          StartValue = StartValue.extend(EndValue.getBitWidth());
1948
1949        if (!StartDependent && !EndDependent && EndValue < StartValue) {
1950          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1951            << StartValue.toString(10) << EndValue.toString(10)
1952            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1953          Invalid = true;
1954        } else {
1955          Designators.push_back(ASTDesignator(InitExpressions.size(),
1956                                              D.getLBracketLoc(),
1957                                              D.getEllipsisLoc(),
1958                                              D.getRBracketLoc()));
1959          InitExpressions.push_back(StartIndex);
1960          InitExpressions.push_back(EndIndex);
1961        }
1962      }
1963      break;
1964    }
1965    }
1966  }
1967
1968  if (Invalid || Init.isInvalid())
1969    return ExprError();
1970
1971  // Clear out the expressions within the designation.
1972  Desig.ClearExprs(*this);
1973
1974  DesignatedInitExpr *DIE
1975    = DesignatedInitExpr::Create(Context,
1976                                 Designators.data(), Designators.size(),
1977                                 InitExpressions.data(), InitExpressions.size(),
1978                                 Loc, GNUSyntax, Init.takeAs<Expr>());
1979
1980  if (getLangOptions().CPlusPlus)
1981    Diag(DIE->getLocStart(), diag::ext_designated_init_cxx)
1982      << DIE->getSourceRange();
1983  else if (!getLangOptions().C99)
1984    Diag(DIE->getLocStart(), diag::ext_designated_init)
1985      << DIE->getSourceRange();
1986
1987  return Owned(DIE);
1988}
1989
1990bool Sema::CheckInitList(const InitializedEntity &Entity,
1991                         InitListExpr *&InitList, QualType &DeclType) {
1992  InitListChecker CheckInitList(*this, Entity, InitList, DeclType);
1993  if (!CheckInitList.HadError())
1994    InitList = CheckInitList.getFullyStructuredList();
1995
1996  return CheckInitList.HadError();
1997}
1998
1999//===----------------------------------------------------------------------===//
2000// Initialization entity
2001//===----------------------------------------------------------------------===//
2002
2003InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2004                                     const InitializedEntity &Parent)
2005  : Parent(&Parent), Index(Index)
2006{
2007  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2008    Kind = EK_ArrayElement;
2009    Type = AT->getElementType();
2010  } else {
2011    Kind = EK_VectorElement;
2012    Type = Parent.getType()->getAs<VectorType>()->getElementType();
2013  }
2014}
2015
2016InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2017                                                    CXXBaseSpecifier *Base,
2018                                                    bool IsInheritedVirtualBase)
2019{
2020  InitializedEntity Result;
2021  Result.Kind = EK_Base;
2022  Result.Base = reinterpret_cast<uintptr_t>(Base);
2023  if (IsInheritedVirtualBase)
2024    Result.Base |= 0x01;
2025
2026  Result.Type = Base->getType();
2027  return Result;
2028}
2029
2030DeclarationName InitializedEntity::getName() const {
2031  switch (getKind()) {
2032  case EK_Parameter: {
2033    ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2034    return (D ? D->getDeclName() : DeclarationName());
2035  }
2036
2037  case EK_Variable:
2038  case EK_Member:
2039    return VariableOrMember->getDeclName();
2040
2041  case EK_Result:
2042  case EK_Exception:
2043  case EK_New:
2044  case EK_Temporary:
2045  case EK_Base:
2046  case EK_Delegating:
2047  case EK_ArrayElement:
2048  case EK_VectorElement:
2049  case EK_BlockElement:
2050    return DeclarationName();
2051  }
2052
2053  // Silence GCC warning
2054  return DeclarationName();
2055}
2056
2057DeclaratorDecl *InitializedEntity::getDecl() const {
2058  switch (getKind()) {
2059  case EK_Variable:
2060  case EK_Member:
2061    return VariableOrMember;
2062
2063  case EK_Parameter:
2064    return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2065
2066  case EK_Result:
2067  case EK_Exception:
2068  case EK_New:
2069  case EK_Temporary:
2070  case EK_Base:
2071  case EK_Delegating:
2072  case EK_ArrayElement:
2073  case EK_VectorElement:
2074  case EK_BlockElement:
2075    return 0;
2076  }
2077
2078  // Silence GCC warning
2079  return 0;
2080}
2081
2082bool InitializedEntity::allowsNRVO() const {
2083  switch (getKind()) {
2084  case EK_Result:
2085  case EK_Exception:
2086    return LocAndNRVO.NRVO;
2087
2088  case EK_Variable:
2089  case EK_Parameter:
2090  case EK_Member:
2091  case EK_New:
2092  case EK_Temporary:
2093  case EK_Base:
2094  case EK_Delegating:
2095  case EK_ArrayElement:
2096  case EK_VectorElement:
2097  case EK_BlockElement:
2098    break;
2099  }
2100
2101  return false;
2102}
2103
2104//===----------------------------------------------------------------------===//
2105// Initialization sequence
2106//===----------------------------------------------------------------------===//
2107
2108void InitializationSequence::Step::Destroy() {
2109  switch (Kind) {
2110  case SK_ResolveAddressOfOverloadedFunction:
2111  case SK_CastDerivedToBaseRValue:
2112  case SK_CastDerivedToBaseXValue:
2113  case SK_CastDerivedToBaseLValue:
2114  case SK_BindReference:
2115  case SK_BindReferenceToTemporary:
2116  case SK_ExtraneousCopyToTemporary:
2117  case SK_UserConversion:
2118  case SK_QualificationConversionRValue:
2119  case SK_QualificationConversionXValue:
2120  case SK_QualificationConversionLValue:
2121  case SK_ListInitialization:
2122  case SK_ConstructorInitialization:
2123  case SK_ZeroInitialization:
2124  case SK_CAssignment:
2125  case SK_StringInit:
2126  case SK_ObjCObjectConversion:
2127  case SK_ArrayInit:
2128  case SK_PassByIndirectCopyRestore:
2129  case SK_PassByIndirectRestore:
2130  case SK_ProduceObjCObject:
2131    break;
2132
2133  case SK_ConversionSequence:
2134    delete ICS;
2135  }
2136}
2137
2138bool InitializationSequence::isDirectReferenceBinding() const {
2139  return getKind() == ReferenceBinding && Steps.back().Kind == SK_BindReference;
2140}
2141
2142bool InitializationSequence::isAmbiguous() const {
2143  if (!Failed())
2144    return false;
2145
2146  switch (getFailureKind()) {
2147  case FK_TooManyInitsForReference:
2148  case FK_ArrayNeedsInitList:
2149  case FK_ArrayNeedsInitListOrStringLiteral:
2150  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2151  case FK_NonConstLValueReferenceBindingToTemporary:
2152  case FK_NonConstLValueReferenceBindingToUnrelated:
2153  case FK_RValueReferenceBindingToLValue:
2154  case FK_ReferenceInitDropsQualifiers:
2155  case FK_ReferenceInitFailed:
2156  case FK_ConversionFailed:
2157  case FK_ConversionFromPropertyFailed:
2158  case FK_TooManyInitsForScalar:
2159  case FK_ReferenceBindingToInitList:
2160  case FK_InitListBadDestinationType:
2161  case FK_DefaultInitOfConst:
2162  case FK_Incomplete:
2163  case FK_ArrayTypeMismatch:
2164  case FK_NonConstantArrayInit:
2165    return false;
2166
2167  case FK_ReferenceInitOverloadFailed:
2168  case FK_UserConversionOverloadFailed:
2169  case FK_ConstructorOverloadFailed:
2170    return FailedOverloadResult == OR_Ambiguous;
2171  }
2172
2173  return false;
2174}
2175
2176bool InitializationSequence::isConstructorInitialization() const {
2177  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2178}
2179
2180void InitializationSequence::AddAddressOverloadResolutionStep(
2181                                                      FunctionDecl *Function,
2182                                                      DeclAccessPair Found) {
2183  Step S;
2184  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2185  S.Type = Function->getType();
2186  S.Function.Function = Function;
2187  S.Function.FoundDecl = Found;
2188  Steps.push_back(S);
2189}
2190
2191void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2192                                                      ExprValueKind VK) {
2193  Step S;
2194  switch (VK) {
2195  case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2196  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2197  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2198  default: llvm_unreachable("No such category");
2199  }
2200  S.Type = BaseType;
2201  Steps.push_back(S);
2202}
2203
2204void InitializationSequence::AddReferenceBindingStep(QualType T,
2205                                                     bool BindingTemporary) {
2206  Step S;
2207  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2208  S.Type = T;
2209  Steps.push_back(S);
2210}
2211
2212void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2213  Step S;
2214  S.Kind = SK_ExtraneousCopyToTemporary;
2215  S.Type = T;
2216  Steps.push_back(S);
2217}
2218
2219void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2220                                                   DeclAccessPair FoundDecl,
2221                                                   QualType T) {
2222  Step S;
2223  S.Kind = SK_UserConversion;
2224  S.Type = T;
2225  S.Function.Function = Function;
2226  S.Function.FoundDecl = FoundDecl;
2227  Steps.push_back(S);
2228}
2229
2230void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2231                                                            ExprValueKind VK) {
2232  Step S;
2233  S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2234  switch (VK) {
2235  case VK_RValue:
2236    S.Kind = SK_QualificationConversionRValue;
2237    break;
2238  case VK_XValue:
2239    S.Kind = SK_QualificationConversionXValue;
2240    break;
2241  case VK_LValue:
2242    S.Kind = SK_QualificationConversionLValue;
2243    break;
2244  }
2245  S.Type = Ty;
2246  Steps.push_back(S);
2247}
2248
2249void InitializationSequence::AddConversionSequenceStep(
2250                                       const ImplicitConversionSequence &ICS,
2251                                                       QualType T) {
2252  Step S;
2253  S.Kind = SK_ConversionSequence;
2254  S.Type = T;
2255  S.ICS = new ImplicitConversionSequence(ICS);
2256  Steps.push_back(S);
2257}
2258
2259void InitializationSequence::AddListInitializationStep(QualType T) {
2260  Step S;
2261  S.Kind = SK_ListInitialization;
2262  S.Type = T;
2263  Steps.push_back(S);
2264}
2265
2266void
2267InitializationSequence::AddConstructorInitializationStep(
2268                                              CXXConstructorDecl *Constructor,
2269                                                       AccessSpecifier Access,
2270                                                         QualType T) {
2271  Step S;
2272  S.Kind = SK_ConstructorInitialization;
2273  S.Type = T;
2274  S.Function.Function = Constructor;
2275  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2276  Steps.push_back(S);
2277}
2278
2279void InitializationSequence::AddZeroInitializationStep(QualType T) {
2280  Step S;
2281  S.Kind = SK_ZeroInitialization;
2282  S.Type = T;
2283  Steps.push_back(S);
2284}
2285
2286void InitializationSequence::AddCAssignmentStep(QualType T) {
2287  Step S;
2288  S.Kind = SK_CAssignment;
2289  S.Type = T;
2290  Steps.push_back(S);
2291}
2292
2293void InitializationSequence::AddStringInitStep(QualType T) {
2294  Step S;
2295  S.Kind = SK_StringInit;
2296  S.Type = T;
2297  Steps.push_back(S);
2298}
2299
2300void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2301  Step S;
2302  S.Kind = SK_ObjCObjectConversion;
2303  S.Type = T;
2304  Steps.push_back(S);
2305}
2306
2307void InitializationSequence::AddArrayInitStep(QualType T) {
2308  Step S;
2309  S.Kind = SK_ArrayInit;
2310  S.Type = T;
2311  Steps.push_back(S);
2312}
2313
2314void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2315                                                              bool shouldCopy) {
2316  Step s;
2317  s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2318                       : SK_PassByIndirectRestore);
2319  s.Type = type;
2320  Steps.push_back(s);
2321}
2322
2323void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2324  Step S;
2325  S.Kind = SK_ProduceObjCObject;
2326  S.Type = T;
2327  Steps.push_back(S);
2328}
2329
2330void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2331                                                OverloadingResult Result) {
2332  setSequenceKind(FailedSequence);
2333  this->Failure = Failure;
2334  this->FailedOverloadResult = Result;
2335}
2336
2337//===----------------------------------------------------------------------===//
2338// Attempt initialization
2339//===----------------------------------------------------------------------===//
2340
2341static void MaybeProduceObjCObject(Sema &S,
2342                                   InitializationSequence &Sequence,
2343                                   const InitializedEntity &Entity) {
2344  if (!S.getLangOptions().ObjCAutoRefCount) return;
2345
2346  /// When initializing a parameter, produce the value if it's marked
2347  /// __attribute__((ns_consumed)).
2348  if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2349    if (!Entity.isParameterConsumed())
2350      return;
2351
2352    assert(Entity.getType()->isObjCRetainableType() &&
2353           "consuming an object of unretainable type?");
2354    Sequence.AddProduceObjCObjectStep(Entity.getType());
2355
2356  /// When initializing a return value, if the return type is a
2357  /// retainable type, then returns need to immediately retain the
2358  /// object.  If an autorelease is required, it will be done at the
2359  /// last instant.
2360  } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2361    if (!Entity.getType()->isObjCRetainableType())
2362      return;
2363
2364    Sequence.AddProduceObjCObjectStep(Entity.getType());
2365  }
2366}
2367
2368/// \brief Attempt list initialization (C++0x [dcl.init.list])
2369static void TryListInitialization(Sema &S,
2370                                  const InitializedEntity &Entity,
2371                                  const InitializationKind &Kind,
2372                                  InitListExpr *InitList,
2373                                  InitializationSequence &Sequence) {
2374  // FIXME: We only perform rudimentary checking of list
2375  // initializations at this point, then assume that any list
2376  // initialization of an array, aggregate, or scalar will be
2377  // well-formed. When we actually "perform" list initialization, we'll
2378  // do all of the necessary checking.  C++0x initializer lists will
2379  // force us to perform more checking here.
2380
2381  QualType DestType = Entity.getType();
2382
2383  // C++ [dcl.init]p13:
2384  //   If T is a scalar type, then a declaration of the form
2385  //
2386  //     T x = { a };
2387  //
2388  //   is equivalent to
2389  //
2390  //     T x = a;
2391  if (DestType->isScalarType()) {
2392    if (InitList->getNumInits() > 1 && S.getLangOptions().CPlusPlus) {
2393      Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
2394      return;
2395    }
2396
2397    // Assume scalar initialization from a single value works.
2398  } else if (DestType->isAggregateType()) {
2399    // Assume aggregate initialization works.
2400  } else if (DestType->isVectorType()) {
2401    // Assume vector initialization works.
2402  } else if (DestType->isReferenceType()) {
2403    // FIXME: C++0x defines behavior for this.
2404    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2405    return;
2406  } else if (DestType->isRecordType()) {
2407    // FIXME: C++0x defines behavior for this
2408    Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
2409  }
2410
2411  // Add a general "list initialization" step.
2412  Sequence.AddListInitializationStep(DestType);
2413}
2414
2415/// \brief Try a reference initialization that involves calling a conversion
2416/// function.
2417static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
2418                                             const InitializedEntity &Entity,
2419                                             const InitializationKind &Kind,
2420                                                          Expr *Initializer,
2421                                                          bool AllowRValues,
2422                                             InitializationSequence &Sequence) {
2423  QualType DestType = Entity.getType();
2424  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2425  QualType T1 = cv1T1.getUnqualifiedType();
2426  QualType cv2T2 = Initializer->getType();
2427  QualType T2 = cv2T2.getUnqualifiedType();
2428
2429  bool DerivedToBase;
2430  bool ObjCConversion;
2431  bool ObjCLifetimeConversion;
2432  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
2433                                         T1, T2, DerivedToBase,
2434                                         ObjCConversion,
2435                                         ObjCLifetimeConversion) &&
2436         "Must have incompatible references when binding via conversion");
2437  (void)DerivedToBase;
2438  (void)ObjCConversion;
2439  (void)ObjCLifetimeConversion;
2440
2441  // Build the candidate set directly in the initialization sequence
2442  // structure, so that it will persist if we fail.
2443  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2444  CandidateSet.clear();
2445
2446  // Determine whether we are allowed to call explicit constructors or
2447  // explicit conversion operators.
2448  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2449
2450  const RecordType *T1RecordType = 0;
2451  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
2452      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
2453    // The type we're converting to is a class type. Enumerate its constructors
2454    // to see if there is a suitable conversion.
2455    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
2456
2457    DeclContext::lookup_iterator Con, ConEnd;
2458    for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
2459         Con != ConEnd; ++Con) {
2460      NamedDecl *D = *Con;
2461      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2462
2463      // Find the constructor (which may be a template).
2464      CXXConstructorDecl *Constructor = 0;
2465      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2466      if (ConstructorTmpl)
2467        Constructor = cast<CXXConstructorDecl>(
2468                                         ConstructorTmpl->getTemplatedDecl());
2469      else
2470        Constructor = cast<CXXConstructorDecl>(D);
2471
2472      if (!Constructor->isInvalidDecl() &&
2473          Constructor->isConvertingConstructor(AllowExplicit)) {
2474        if (ConstructorTmpl)
2475          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2476                                         /*ExplicitArgs*/ 0,
2477                                         &Initializer, 1, CandidateSet,
2478                                         /*SuppressUserConversions=*/true);
2479        else
2480          S.AddOverloadCandidate(Constructor, FoundDecl,
2481                                 &Initializer, 1, CandidateSet,
2482                                 /*SuppressUserConversions=*/true);
2483      }
2484    }
2485  }
2486  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
2487    return OR_No_Viable_Function;
2488
2489  const RecordType *T2RecordType = 0;
2490  if ((T2RecordType = T2->getAs<RecordType>()) &&
2491      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
2492    // The type we're converting from is a class type, enumerate its conversion
2493    // functions.
2494    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
2495
2496    const UnresolvedSetImpl *Conversions
2497      = T2RecordDecl->getVisibleConversionFunctions();
2498    for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2499           E = Conversions->end(); I != E; ++I) {
2500      NamedDecl *D = *I;
2501      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2502      if (isa<UsingShadowDecl>(D))
2503        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2504
2505      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2506      CXXConversionDecl *Conv;
2507      if (ConvTemplate)
2508        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2509      else
2510        Conv = cast<CXXConversionDecl>(D);
2511
2512      // If the conversion function doesn't return a reference type,
2513      // it can't be considered for this conversion unless we're allowed to
2514      // consider rvalues.
2515      // FIXME: Do we need to make sure that we only consider conversion
2516      // candidates with reference-compatible results? That might be needed to
2517      // break recursion.
2518      if ((AllowExplicit || !Conv->isExplicit()) &&
2519          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
2520        if (ConvTemplate)
2521          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2522                                           ActingDC, Initializer,
2523                                           DestType, CandidateSet);
2524        else
2525          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2526                                   Initializer, DestType, CandidateSet);
2527      }
2528    }
2529  }
2530  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
2531    return OR_No_Viable_Function;
2532
2533  SourceLocation DeclLoc = Initializer->getLocStart();
2534
2535  // Perform overload resolution. If it fails, return the failed result.
2536  OverloadCandidateSet::iterator Best;
2537  if (OverloadingResult Result
2538        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
2539    return Result;
2540
2541  FunctionDecl *Function = Best->Function;
2542
2543  // This is the overload that will actually be used for the initialization, so
2544  // mark it as used.
2545  S.MarkDeclarationReferenced(DeclLoc, Function);
2546
2547  // Compute the returned type of the conversion.
2548  if (isa<CXXConversionDecl>(Function))
2549    T2 = Function->getResultType();
2550  else
2551    T2 = cv1T1;
2552
2553  // Add the user-defined conversion step.
2554  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
2555                                 T2.getNonLValueExprType(S.Context));
2556
2557  // Determine whether we need to perform derived-to-base or
2558  // cv-qualification adjustments.
2559  ExprValueKind VK = VK_RValue;
2560  if (T2->isLValueReferenceType())
2561    VK = VK_LValue;
2562  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
2563    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
2564
2565  bool NewDerivedToBase = false;
2566  bool NewObjCConversion = false;
2567  bool NewObjCLifetimeConversion = false;
2568  Sema::ReferenceCompareResult NewRefRelationship
2569    = S.CompareReferenceRelationship(DeclLoc, T1,
2570                                     T2.getNonLValueExprType(S.Context),
2571                                     NewDerivedToBase, NewObjCConversion,
2572                                     NewObjCLifetimeConversion);
2573  if (NewRefRelationship == Sema::Ref_Incompatible) {
2574    // If the type we've converted to is not reference-related to the
2575    // type we're looking for, then there is another conversion step
2576    // we need to perform to produce a temporary of the right type
2577    // that we'll be binding to.
2578    ImplicitConversionSequence ICS;
2579    ICS.setStandard();
2580    ICS.Standard = Best->FinalConversion;
2581    T2 = ICS.Standard.getToType(2);
2582    Sequence.AddConversionSequenceStep(ICS, T2);
2583  } else if (NewDerivedToBase)
2584    Sequence.AddDerivedToBaseCastStep(
2585                                S.Context.getQualifiedType(T1,
2586                                  T2.getNonReferenceType().getQualifiers()),
2587                                      VK);
2588  else if (NewObjCConversion)
2589    Sequence.AddObjCObjectConversionStep(
2590                                S.Context.getQualifiedType(T1,
2591                                  T2.getNonReferenceType().getQualifiers()));
2592
2593  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
2594    Sequence.AddQualificationConversionStep(cv1T1, VK);
2595
2596  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
2597  return OR_Success;
2598}
2599
2600/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
2601static void TryReferenceInitialization(Sema &S,
2602                                       const InitializedEntity &Entity,
2603                                       const InitializationKind &Kind,
2604                                       Expr *Initializer,
2605                                       InitializationSequence &Sequence) {
2606  Sequence.setSequenceKind(InitializationSequence::ReferenceBinding);
2607
2608  QualType DestType = Entity.getType();
2609  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2610  Qualifiers T1Quals;
2611  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2612  QualType cv2T2 = Initializer->getType();
2613  Qualifiers T2Quals;
2614  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
2615  SourceLocation DeclLoc = Initializer->getLocStart();
2616
2617  // If the initializer is the address of an overloaded function, try
2618  // to resolve the overloaded function. If all goes well, T2 is the
2619  // type of the resulting function.
2620  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2621    DeclAccessPair Found;
2622    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
2623                                                                T1,
2624                                                                false,
2625                                                                Found)) {
2626      Sequence.AddAddressOverloadResolutionStep(Fn, Found);
2627      cv2T2 = Fn->getType();
2628      T2 = cv2T2.getUnqualifiedType();
2629    } else if (!T1->isRecordType()) {
2630      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2631      return;
2632    }
2633  }
2634
2635  // Compute some basic properties of the types and the initializer.
2636  bool isLValueRef = DestType->isLValueReferenceType();
2637  bool isRValueRef = !isLValueRef;
2638  bool DerivedToBase = false;
2639  bool ObjCConversion = false;
2640  bool ObjCLifetimeConversion = false;
2641  Expr::Classification InitCategory = Initializer->Classify(S.Context);
2642  Sema::ReferenceCompareResult RefRelationship
2643    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
2644                                     ObjCConversion, ObjCLifetimeConversion);
2645
2646  // C++0x [dcl.init.ref]p5:
2647  //   A reference to type "cv1 T1" is initialized by an expression of type
2648  //   "cv2 T2" as follows:
2649  //
2650  //     - If the reference is an lvalue reference and the initializer
2651  //       expression
2652  // Note the analogous bullet points for rvlaue refs to functions. Because
2653  // there are no function rvalues in C++, rvalue refs to functions are treated
2654  // like lvalue refs.
2655  OverloadingResult ConvOvlResult = OR_Success;
2656  bool T1Function = T1->isFunctionType();
2657  if (isLValueRef || T1Function) {
2658    if (InitCategory.isLValue() &&
2659        (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
2660         (Kind.isCStyleOrFunctionalCast() &&
2661          RefRelationship == Sema::Ref_Related))) {
2662      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
2663      //     reference-compatible with "cv2 T2," or
2664      //
2665      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
2666      // bit-field when we're determining whether the reference initialization
2667      // can occur. However, we do pay attention to whether it is a bit-field
2668      // to decide whether we're actually binding to a temporary created from
2669      // the bit-field.
2670      if (DerivedToBase)
2671        Sequence.AddDerivedToBaseCastStep(
2672                         S.Context.getQualifiedType(T1, T2Quals),
2673                         VK_LValue);
2674      else if (ObjCConversion)
2675        Sequence.AddObjCObjectConversionStep(
2676                                     S.Context.getQualifiedType(T1, T2Quals));
2677
2678      if (T1Quals != T2Quals)
2679        Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
2680      bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
2681        (Initializer->getBitField() || Initializer->refersToVectorElement());
2682      Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
2683      return;
2684    }
2685
2686    //     - has a class type (i.e., T2 is a class type), where T1 is not
2687    //       reference-related to T2, and can be implicitly converted to an
2688    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
2689    //       with "cv3 T3" (this conversion is selected by enumerating the
2690    //       applicable conversion functions (13.3.1.6) and choosing the best
2691    //       one through overload resolution (13.3)),
2692    // If we have an rvalue ref to function type here, the rhs must be
2693    // an rvalue.
2694    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
2695        (isLValueRef || InitCategory.isRValue())) {
2696      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
2697                                                       Initializer,
2698                                                   /*AllowRValues=*/isRValueRef,
2699                                                       Sequence);
2700      if (ConvOvlResult == OR_Success)
2701        return;
2702      if (ConvOvlResult != OR_No_Viable_Function) {
2703        Sequence.SetOverloadFailure(
2704                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2705                                    ConvOvlResult);
2706      }
2707    }
2708  }
2709
2710  //     - Otherwise, the reference shall be an lvalue reference to a
2711  //       non-volatile const type (i.e., cv1 shall be const), or the reference
2712  //       shall be an rvalue reference.
2713  if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
2714    if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
2715      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2716    else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2717      Sequence.SetOverloadFailure(
2718                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2719                                  ConvOvlResult);
2720    else
2721      Sequence.SetFailed(InitCategory.isLValue()
2722        ? (RefRelationship == Sema::Ref_Related
2723             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
2724             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
2725        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
2726
2727    return;
2728  }
2729
2730  //    - If the initializer expression
2731  //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
2732  //        "cv1 T1" is reference-compatible with "cv2 T2"
2733  // Note: functions are handled below.
2734  if (!T1Function &&
2735      (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
2736       (Kind.isCStyleOrFunctionalCast() &&
2737        RefRelationship == Sema::Ref_Related)) &&
2738      (InitCategory.isXValue() ||
2739       (InitCategory.isPRValue() && T2->isRecordType()) ||
2740       (InitCategory.isPRValue() && T2->isArrayType()))) {
2741    ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
2742    if (InitCategory.isPRValue() && T2->isRecordType()) {
2743      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
2744      // compiler the freedom to perform a copy here or bind to the
2745      // object, while C++0x requires that we bind directly to the
2746      // object. Hence, we always bind to the object without making an
2747      // extra copy. However, in C++03 requires that we check for the
2748      // presence of a suitable copy constructor:
2749      //
2750      //   The constructor that would be used to make the copy shall
2751      //   be callable whether or not the copy is actually done.
2752      if (!S.getLangOptions().CPlusPlus0x && !S.getLangOptions().Microsoft)
2753        Sequence.AddExtraneousCopyToTemporary(cv2T2);
2754    }
2755
2756    if (DerivedToBase)
2757      Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
2758                                        ValueKind);
2759    else if (ObjCConversion)
2760      Sequence.AddObjCObjectConversionStep(
2761                                       S.Context.getQualifiedType(T1, T2Quals));
2762
2763    if (T1Quals != T2Quals)
2764      Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
2765    Sequence.AddReferenceBindingStep(cv1T1,
2766         /*bindingTemporary=*/(InitCategory.isPRValue() && !T2->isArrayType()));
2767    return;
2768  }
2769
2770  //       - has a class type (i.e., T2 is a class type), where T1 is not
2771  //         reference-related to T2, and can be implicitly converted to an
2772  //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
2773  //         where "cv1 T1" is reference-compatible with "cv3 T3",
2774  if (T2->isRecordType()) {
2775    if (RefRelationship == Sema::Ref_Incompatible) {
2776      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
2777                                                       Kind, Initializer,
2778                                                       /*AllowRValues=*/true,
2779                                                       Sequence);
2780      if (ConvOvlResult)
2781        Sequence.SetOverloadFailure(
2782                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2783                                    ConvOvlResult);
2784
2785      return;
2786    }
2787
2788    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2789    return;
2790  }
2791
2792  //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
2793  //        from the initializer expression using the rules for a non-reference
2794  //        copy initialization (8.5). The reference is then bound to the
2795  //        temporary. [...]
2796
2797  // Determine whether we are allowed to call explicit constructors or
2798  // explicit conversion operators.
2799  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
2800
2801  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
2802
2803  ImplicitConversionSequence ICS
2804    = S.TryImplicitConversion(Initializer, TempEntity.getType(),
2805                              /*SuppressUserConversions*/ false,
2806                              AllowExplicit,
2807                              /*FIXME:InOverloadResolution=*/false,
2808                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
2809                              /*AllowObjCWritebackConversion=*/false);
2810
2811  if (ICS.isBad()) {
2812    // FIXME: Use the conversion function set stored in ICS to turn
2813    // this into an overloading ambiguity diagnostic. However, we need
2814    // to keep that set as an OverloadCandidateSet rather than as some
2815    // other kind of set.
2816    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2817      Sequence.SetOverloadFailure(
2818                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2819                                  ConvOvlResult);
2820    else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
2821      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2822    else
2823      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
2824    return;
2825  } else {
2826    Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
2827  }
2828
2829  //        [...] If T1 is reference-related to T2, cv1 must be the
2830  //        same cv-qualification as, or greater cv-qualification
2831  //        than, cv2; otherwise, the program is ill-formed.
2832  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
2833  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
2834  if (RefRelationship == Sema::Ref_Related &&
2835      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
2836    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2837    return;
2838  }
2839
2840  //   [...] If T1 is reference-related to T2 and the reference is an rvalue
2841  //   reference, the initializer expression shall not be an lvalue.
2842  if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
2843      InitCategory.isLValue()) {
2844    Sequence.SetFailed(
2845                    InitializationSequence::FK_RValueReferenceBindingToLValue);
2846    return;
2847  }
2848
2849  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2850  return;
2851}
2852
2853/// \brief Attempt character array initialization from a string literal
2854/// (C++ [dcl.init.string], C99 6.7.8).
2855static void TryStringLiteralInitialization(Sema &S,
2856                                           const InitializedEntity &Entity,
2857                                           const InitializationKind &Kind,
2858                                           Expr *Initializer,
2859                                       InitializationSequence &Sequence) {
2860  Sequence.AddStringInitStep(Entity.getType());
2861}
2862
2863/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2864/// enumerates the constructors of the initialized entity and performs overload
2865/// resolution to select the best.
2866static void TryConstructorInitialization(Sema &S,
2867                                         const InitializedEntity &Entity,
2868                                         const InitializationKind &Kind,
2869                                         Expr **Args, unsigned NumArgs,
2870                                         QualType DestType,
2871                                         InitializationSequence &Sequence) {
2872  // Build the candidate set directly in the initialization sequence
2873  // structure, so that it will persist if we fail.
2874  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2875  CandidateSet.clear();
2876
2877  // Determine whether we are allowed to call explicit constructors or
2878  // explicit conversion operators.
2879  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
2880                        Kind.getKind() == InitializationKind::IK_Value ||
2881                        Kind.getKind() == InitializationKind::IK_Default);
2882
2883  // The type we're constructing needs to be complete.
2884  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2885    Sequence.SetFailed(InitializationSequence::FK_Incomplete);
2886    return;
2887  }
2888
2889  // The type we're converting to is a class type. Enumerate its constructors
2890  // to see if one is suitable.
2891  const RecordType *DestRecordType = DestType->getAs<RecordType>();
2892  assert(DestRecordType && "Constructor initialization requires record type");
2893  CXXRecordDecl *DestRecordDecl
2894    = cast<CXXRecordDecl>(DestRecordType->getDecl());
2895
2896  DeclContext::lookup_iterator Con, ConEnd;
2897  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
2898       Con != ConEnd; ++Con) {
2899    NamedDecl *D = *Con;
2900    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2901    bool SuppressUserConversions = false;
2902
2903    // Find the constructor (which may be a template).
2904    CXXConstructorDecl *Constructor = 0;
2905    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2906    if (ConstructorTmpl)
2907      Constructor = cast<CXXConstructorDecl>(
2908                                           ConstructorTmpl->getTemplatedDecl());
2909    else {
2910      Constructor = cast<CXXConstructorDecl>(D);
2911
2912      // If we're performing copy initialization using a copy constructor, we
2913      // suppress user-defined conversions on the arguments.
2914      // FIXME: Move constructors?
2915      if (Kind.getKind() == InitializationKind::IK_Copy &&
2916          Constructor->isCopyConstructor())
2917        SuppressUserConversions = true;
2918    }
2919
2920    if (!Constructor->isInvalidDecl() &&
2921        (AllowExplicit || !Constructor->isExplicit())) {
2922      if (ConstructorTmpl)
2923        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2924                                       /*ExplicitArgs*/ 0,
2925                                       Args, NumArgs, CandidateSet,
2926                                       SuppressUserConversions);
2927      else
2928        S.AddOverloadCandidate(Constructor, FoundDecl,
2929                               Args, NumArgs, CandidateSet,
2930                               SuppressUserConversions);
2931    }
2932  }
2933
2934  SourceLocation DeclLoc = Kind.getLocation();
2935
2936  // Perform overload resolution. If it fails, return the failed result.
2937  OverloadCandidateSet::iterator Best;
2938  if (OverloadingResult Result
2939        = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
2940    Sequence.SetOverloadFailure(
2941                          InitializationSequence::FK_ConstructorOverloadFailed,
2942                                Result);
2943    return;
2944  }
2945
2946  // C++0x [dcl.init]p6:
2947  //   If a program calls for the default initialization of an object
2948  //   of a const-qualified type T, T shall be a class type with a
2949  //   user-provided default constructor.
2950  if (Kind.getKind() == InitializationKind::IK_Default &&
2951      Entity.getType().isConstQualified() &&
2952      cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
2953    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2954    return;
2955  }
2956
2957  // Add the constructor initialization step. Any cv-qualification conversion is
2958  // subsumed by the initialization.
2959  Sequence.AddConstructorInitializationStep(
2960                                      cast<CXXConstructorDecl>(Best->Function),
2961                                      Best->FoundDecl.getAccess(),
2962                                      DestType);
2963}
2964
2965/// \brief Attempt value initialization (C++ [dcl.init]p7).
2966static void TryValueInitialization(Sema &S,
2967                                   const InitializedEntity &Entity,
2968                                   const InitializationKind &Kind,
2969                                   InitializationSequence &Sequence) {
2970  // C++ [dcl.init]p5:
2971  //
2972  //   To value-initialize an object of type T means:
2973  QualType T = Entity.getType();
2974
2975  //     -- if T is an array type, then each element is value-initialized;
2976  while (const ArrayType *AT = S.Context.getAsArrayType(T))
2977    T = AT->getElementType();
2978
2979  if (const RecordType *RT = T->getAs<RecordType>()) {
2980    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2981      // -- if T is a class type (clause 9) with a user-declared
2982      //    constructor (12.1), then the default constructor for T is
2983      //    called (and the initialization is ill-formed if T has no
2984      //    accessible default constructor);
2985      //
2986      // FIXME: we really want to refer to a single subobject of the array,
2987      // but Entity doesn't have a way to capture that (yet).
2988      if (ClassDecl->hasUserDeclaredConstructor())
2989        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2990
2991      // -- if T is a (possibly cv-qualified) non-union class type
2992      //    without a user-provided constructor, then the object is
2993      //    zero-initialized and, if T's implicitly-declared default
2994      //    constructor is non-trivial, that constructor is called.
2995      if ((ClassDecl->getTagKind() == TTK_Class ||
2996           ClassDecl->getTagKind() == TTK_Struct)) {
2997        Sequence.AddZeroInitializationStep(Entity.getType());
2998        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2999      }
3000    }
3001  }
3002
3003  Sequence.AddZeroInitializationStep(Entity.getType());
3004}
3005
3006/// \brief Attempt default initialization (C++ [dcl.init]p6).
3007static void TryDefaultInitialization(Sema &S,
3008                                     const InitializedEntity &Entity,
3009                                     const InitializationKind &Kind,
3010                                     InitializationSequence &Sequence) {
3011  assert(Kind.getKind() == InitializationKind::IK_Default);
3012
3013  // C++ [dcl.init]p6:
3014  //   To default-initialize an object of type T means:
3015  //     - if T is an array type, each element is default-initialized;
3016  QualType DestType = S.Context.getBaseElementType(Entity.getType());
3017
3018  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3019  //       constructor for T is called (and the initialization is ill-formed if
3020  //       T has no accessible default constructor);
3021  if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
3022    TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
3023    return;
3024  }
3025
3026  //     - otherwise, no initialization is performed.
3027
3028  //   If a program calls for the default initialization of an object of
3029  //   a const-qualified type T, T shall be a class type with a user-provided
3030  //   default constructor.
3031  if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus) {
3032    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3033    return;
3034  }
3035
3036  // If the destination type has a lifetime property, zero-initialize it.
3037  if (DestType.getQualifiers().hasObjCLifetime()) {
3038    Sequence.AddZeroInitializationStep(Entity.getType());
3039    return;
3040  }
3041}
3042
3043/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3044/// which enumerates all conversion functions and performs overload resolution
3045/// to select the best.
3046static void TryUserDefinedConversion(Sema &S,
3047                                     const InitializedEntity &Entity,
3048                                     const InitializationKind &Kind,
3049                                     Expr *Initializer,
3050                                     InitializationSequence &Sequence) {
3051  QualType DestType = Entity.getType();
3052  assert(!DestType->isReferenceType() && "References are handled elsewhere");
3053  QualType SourceType = Initializer->getType();
3054  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3055         "Must have a class type to perform a user-defined conversion");
3056
3057  // Build the candidate set directly in the initialization sequence
3058  // structure, so that it will persist if we fail.
3059  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3060  CandidateSet.clear();
3061
3062  // Determine whether we are allowed to call explicit constructors or
3063  // explicit conversion operators.
3064  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
3065
3066  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
3067    // The type we're converting to is a class type. Enumerate its constructors
3068    // to see if there is a suitable conversion.
3069    CXXRecordDecl *DestRecordDecl
3070      = cast<CXXRecordDecl>(DestRecordType->getDecl());
3071
3072    // Try to complete the type we're converting to.
3073    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3074      DeclContext::lookup_iterator Con, ConEnd;
3075      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
3076           Con != ConEnd; ++Con) {
3077        NamedDecl *D = *Con;
3078        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3079
3080        // Find the constructor (which may be a template).
3081        CXXConstructorDecl *Constructor = 0;
3082        FunctionTemplateDecl *ConstructorTmpl
3083          = dyn_cast<FunctionTemplateDecl>(D);
3084        if (ConstructorTmpl)
3085          Constructor = cast<CXXConstructorDecl>(
3086                                           ConstructorTmpl->getTemplatedDecl());
3087        else
3088          Constructor = cast<CXXConstructorDecl>(D);
3089
3090        if (!Constructor->isInvalidDecl() &&
3091            Constructor->isConvertingConstructor(AllowExplicit)) {
3092          if (ConstructorTmpl)
3093            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3094                                           /*ExplicitArgs*/ 0,
3095                                           &Initializer, 1, CandidateSet,
3096                                           /*SuppressUserConversions=*/true);
3097          else
3098            S.AddOverloadCandidate(Constructor, FoundDecl,
3099                                   &Initializer, 1, CandidateSet,
3100                                   /*SuppressUserConversions=*/true);
3101        }
3102      }
3103    }
3104  }
3105
3106  SourceLocation DeclLoc = Initializer->getLocStart();
3107
3108  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3109    // The type we're converting from is a class type, enumerate its conversion
3110    // functions.
3111
3112    // We can only enumerate the conversion functions for a complete type; if
3113    // the type isn't complete, simply skip this step.
3114    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3115      CXXRecordDecl *SourceRecordDecl
3116        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3117
3118      const UnresolvedSetImpl *Conversions
3119        = SourceRecordDecl->getVisibleConversionFunctions();
3120      for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3121           E = Conversions->end();
3122           I != E; ++I) {
3123        NamedDecl *D = *I;
3124        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3125        if (isa<UsingShadowDecl>(D))
3126          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3127
3128        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3129        CXXConversionDecl *Conv;
3130        if (ConvTemplate)
3131          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3132        else
3133          Conv = cast<CXXConversionDecl>(D);
3134
3135        if (AllowExplicit || !Conv->isExplicit()) {
3136          if (ConvTemplate)
3137            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3138                                             ActingDC, Initializer, DestType,
3139                                             CandidateSet);
3140          else
3141            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3142                                     Initializer, DestType, CandidateSet);
3143        }
3144      }
3145    }
3146  }
3147
3148  // Perform overload resolution. If it fails, return the failed result.
3149  OverloadCandidateSet::iterator Best;
3150  if (OverloadingResult Result
3151        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3152    Sequence.SetOverloadFailure(
3153                        InitializationSequence::FK_UserConversionOverloadFailed,
3154                                Result);
3155    return;
3156  }
3157
3158  FunctionDecl *Function = Best->Function;
3159  S.MarkDeclarationReferenced(DeclLoc, Function);
3160
3161  if (isa<CXXConstructorDecl>(Function)) {
3162    // Add the user-defined conversion step. Any cv-qualification conversion is
3163    // subsumed by the initialization.
3164    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3165    return;
3166  }
3167
3168  // Add the user-defined conversion step that calls the conversion function.
3169  QualType ConvType = Function->getCallResultType();
3170  if (ConvType->getAs<RecordType>()) {
3171    // If we're converting to a class type, there may be an copy if
3172    // the resulting temporary object (possible to create an object of
3173    // a base class type). That copy is not a separate conversion, so
3174    // we just make a note of the actual destination type (possibly a
3175    // base class of the type returned by the conversion function) and
3176    // let the user-defined conversion step handle the conversion.
3177    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3178    return;
3179  }
3180
3181  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType);
3182
3183  // If the conversion following the call to the conversion function
3184  // is interesting, add it as a separate step.
3185  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3186      Best->FinalConversion.Third) {
3187    ImplicitConversionSequence ICS;
3188    ICS.setStandard();
3189    ICS.Standard = Best->FinalConversion;
3190    Sequence.AddConversionSequenceStep(ICS, DestType);
3191  }
3192}
3193
3194/// The non-zero enum values here are indexes into diagnostic alternatives.
3195enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
3196
3197/// Determines whether this expression is an acceptable ICR source.
3198static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e) {
3199  // Skip parens.
3200  e = e->IgnoreParens();
3201
3202  // Skip address-of nodes.
3203  if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
3204    if (op->getOpcode() == UO_AddrOf)
3205      return isInvalidICRSource(C, op->getSubExpr());
3206
3207  // Skip certain casts.
3208  } else if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
3209    switch (cast->getCastKind()) {
3210    case CK_Dependent:
3211    case CK_BitCast:
3212    case CK_LValueBitCast:
3213    case CK_LValueToRValue:
3214    case CK_NoOp:
3215      return isInvalidICRSource(C, cast->getSubExpr());
3216
3217    case CK_ArrayToPointerDecay:
3218      return IIK_nonscalar;
3219
3220    case CK_NullToPointer:
3221      return IIK_okay;
3222
3223    default:
3224      break;
3225    }
3226
3227  // If we have a declaration reference, it had better be a local variable.
3228  } else if (DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(e)) {
3229    if (VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()))
3230      return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
3231
3232  // If we have a conditional operator, check both sides.
3233  } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
3234    if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS()))
3235      return iik;
3236
3237    return isInvalidICRSource(C, cond->getRHS());
3238
3239  // These are never scalar.
3240  } else if (isa<ArraySubscriptExpr>(e)) {
3241    return IIK_nonscalar;
3242
3243  // Otherwise, it needs to be a null pointer constant.
3244  } else {
3245    return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
3246            ? IIK_okay : IIK_nonlocal);
3247  }
3248
3249  return IIK_nonlocal;
3250}
3251
3252/// Check whether the given expression is a valid operand for an
3253/// indirect copy/restore.
3254static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
3255  assert(src->isRValue());
3256
3257  InvalidICRKind iik = isInvalidICRSource(S.Context, src);
3258  if (iik == IIK_okay) return;
3259
3260  S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
3261    << ((unsigned) iik - 1)  // shift index into diagnostic explanations
3262    << src->getSourceRange();
3263}
3264
3265/// \brief Determine whether we have compatible array types for the
3266/// purposes of GNU by-copy array initialization.
3267static bool hasCompatibleArrayTypes(ASTContext &Context,
3268                                    const ArrayType *Dest,
3269                                    const ArrayType *Source) {
3270  // If the source and destination array types are equivalent, we're
3271  // done.
3272  if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
3273    return true;
3274
3275  // Make sure that the element types are the same.
3276  if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
3277    return false;
3278
3279  // The only mismatch we allow is when the destination is an
3280  // incomplete array type and the source is a constant array type.
3281  return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
3282}
3283
3284static bool tryObjCWritebackConversion(Sema &S,
3285                                       InitializationSequence &Sequence,
3286                                       const InitializedEntity &Entity,
3287                                       Expr *Initializer) {
3288  bool ArrayDecay = false;
3289  QualType ArgType = Initializer->getType();
3290  QualType ArgPointee;
3291  if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
3292    ArrayDecay = true;
3293    ArgPointee = ArgArrayType->getElementType();
3294    ArgType = S.Context.getPointerType(ArgPointee);
3295  }
3296
3297  // Handle write-back conversion.
3298  QualType ConvertedArgType;
3299  if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
3300                                   ConvertedArgType))
3301    return false;
3302
3303  // We should copy unless we're passing to an argument explicitly
3304  // marked 'out'.
3305  bool ShouldCopy = true;
3306  if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
3307    ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
3308
3309  // Do we need an lvalue conversion?
3310  if (ArrayDecay || Initializer->isGLValue()) {
3311    ImplicitConversionSequence ICS;
3312    ICS.setStandard();
3313    ICS.Standard.setAsIdentityConversion();
3314
3315    QualType ResultType;
3316    if (ArrayDecay) {
3317      ICS.Standard.First = ICK_Array_To_Pointer;
3318      ResultType = S.Context.getPointerType(ArgPointee);
3319    } else {
3320      ICS.Standard.First = ICK_Lvalue_To_Rvalue;
3321      ResultType = Initializer->getType().getNonLValueExprType(S.Context);
3322    }
3323
3324    Sequence.AddConversionSequenceStep(ICS, ResultType);
3325  }
3326
3327  Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
3328  return true;
3329}
3330
3331InitializationSequence::InitializationSequence(Sema &S,
3332                                               const InitializedEntity &Entity,
3333                                               const InitializationKind &Kind,
3334                                               Expr **Args,
3335                                               unsigned NumArgs)
3336    : FailedCandidateSet(Kind.getLocation()) {
3337  ASTContext &Context = S.Context;
3338
3339  // C++0x [dcl.init]p16:
3340  //   The semantics of initializers are as follows. The destination type is
3341  //   the type of the object or reference being initialized and the source
3342  //   type is the type of the initializer expression. The source type is not
3343  //   defined when the initializer is a braced-init-list or when it is a
3344  //   parenthesized list of expressions.
3345  QualType DestType = Entity.getType();
3346
3347  if (DestType->isDependentType() ||
3348      Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
3349    SequenceKind = DependentSequence;
3350    return;
3351  }
3352
3353  // Almost everything is a normal sequence.
3354  setSequenceKind(NormalSequence);
3355
3356  for (unsigned I = 0; I != NumArgs; ++I)
3357    if (Args[I]->getObjectKind() == OK_ObjCProperty) {
3358      ExprResult Result = S.ConvertPropertyForRValue(Args[I]);
3359      if (Result.isInvalid()) {
3360        SetFailed(FK_ConversionFromPropertyFailed);
3361        return;
3362      }
3363      Args[I] = Result.take();
3364    }
3365
3366  QualType SourceType;
3367  Expr *Initializer = 0;
3368  if (NumArgs == 1) {
3369    Initializer = Args[0];
3370    if (!isa<InitListExpr>(Initializer))
3371      SourceType = Initializer->getType();
3372  }
3373
3374  //     - If the initializer is a braced-init-list, the object is
3375  //       list-initialized (8.5.4).
3376  if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
3377    TryListInitialization(S, Entity, Kind, InitList, *this);
3378    return;
3379  }
3380
3381  //     - If the destination type is a reference type, see 8.5.3.
3382  if (DestType->isReferenceType()) {
3383    // C++0x [dcl.init.ref]p1:
3384    //   A variable declared to be a T& or T&&, that is, "reference to type T"
3385    //   (8.3.2), shall be initialized by an object, or function, of type T or
3386    //   by an object that can be converted into a T.
3387    // (Therefore, multiple arguments are not permitted.)
3388    if (NumArgs != 1)
3389      SetFailed(FK_TooManyInitsForReference);
3390    else
3391      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
3392    return;
3393  }
3394
3395  //     - If the initializer is (), the object is value-initialized.
3396  if (Kind.getKind() == InitializationKind::IK_Value ||
3397      (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
3398    TryValueInitialization(S, Entity, Kind, *this);
3399    return;
3400  }
3401
3402  // Handle default initialization.
3403  if (Kind.getKind() == InitializationKind::IK_Default) {
3404    TryDefaultInitialization(S, Entity, Kind, *this);
3405    return;
3406  }
3407
3408  //     - If the destination type is an array of characters, an array of
3409  //       char16_t, an array of char32_t, or an array of wchar_t, and the
3410  //       initializer is a string literal, see 8.5.2.
3411  //     - Otherwise, if the destination type is an array, the program is
3412  //       ill-formed.
3413  if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
3414    if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
3415      TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
3416      return;
3417    }
3418
3419    // Note: as an GNU C extension, we allow initialization of an
3420    // array from a compound literal that creates an array of the same
3421    // type, so long as the initializer has no side effects.
3422    if (!S.getLangOptions().CPlusPlus && Initializer &&
3423        isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
3424        Initializer->getType()->isArrayType()) {
3425      const ArrayType *SourceAT
3426        = Context.getAsArrayType(Initializer->getType());
3427      if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
3428        SetFailed(FK_ArrayTypeMismatch);
3429      else if (Initializer->HasSideEffects(S.Context))
3430        SetFailed(FK_NonConstantArrayInit);
3431      else {
3432        AddArrayInitStep(DestType);
3433      }
3434    } else if (DestAT->getElementType()->isAnyCharacterType())
3435      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
3436    else
3437      SetFailed(FK_ArrayNeedsInitList);
3438
3439    return;
3440  }
3441
3442  // Determine whether we should consider writeback conversions for
3443  // Objective-C ARC.
3444  bool allowObjCWritebackConversion = S.getLangOptions().ObjCAutoRefCount &&
3445    Entity.getKind() == InitializedEntity::EK_Parameter;
3446
3447  // We're at the end of the line for C: it's either a write-back conversion
3448  // or it's a C assignment. There's no need to check anything else.
3449  if (!S.getLangOptions().CPlusPlus) {
3450    // If allowed, check whether this is an Objective-C writeback conversion.
3451    if (allowObjCWritebackConversion &&
3452        tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
3453      return;
3454    }
3455
3456    // Handle initialization in C
3457    AddCAssignmentStep(DestType);
3458    MaybeProduceObjCObject(S, *this, Entity);
3459    return;
3460  }
3461
3462  assert(S.getLangOptions().CPlusPlus);
3463
3464  //     - If the destination type is a (possibly cv-qualified) class type:
3465  if (DestType->isRecordType()) {
3466    //     - If the initialization is direct-initialization, or if it is
3467    //       copy-initialization where the cv-unqualified version of the
3468    //       source type is the same class as, or a derived class of, the
3469    //       class of the destination, constructors are considered. [...]
3470    if (Kind.getKind() == InitializationKind::IK_Direct ||
3471        (Kind.getKind() == InitializationKind::IK_Copy &&
3472         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
3473          S.IsDerivedFrom(SourceType, DestType))))
3474      TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
3475                                   Entity.getType(), *this);
3476    //     - Otherwise (i.e., for the remaining copy-initialization cases),
3477    //       user-defined conversion sequences that can convert from the source
3478    //       type to the destination type or (when a conversion function is
3479    //       used) to a derived class thereof are enumerated as described in
3480    //       13.3.1.4, and the best one is chosen through overload resolution
3481    //       (13.3).
3482    else
3483      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3484    return;
3485  }
3486
3487  if (NumArgs > 1) {
3488    SetFailed(FK_TooManyInitsForScalar);
3489    return;
3490  }
3491  assert(NumArgs == 1 && "Zero-argument case handled above");
3492
3493  //    - Otherwise, if the source type is a (possibly cv-qualified) class
3494  //      type, conversion functions are considered.
3495  if (!SourceType.isNull() && SourceType->isRecordType()) {
3496    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3497    MaybeProduceObjCObject(S, *this, Entity);
3498    return;
3499  }
3500
3501  //    - Otherwise, the initial value of the object being initialized is the
3502  //      (possibly converted) value of the initializer expression. Standard
3503  //      conversions (Clause 4) will be used, if necessary, to convert the
3504  //      initializer expression to the cv-unqualified version of the
3505  //      destination type; no user-defined conversions are considered.
3506
3507  ImplicitConversionSequence ICS
3508    = S.TryImplicitConversion(Initializer, Entity.getType(),
3509                              /*SuppressUserConversions*/true,
3510                              /*AllowExplicitConversions*/ false,
3511                              /*InOverloadResolution*/ false,
3512                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3513                              allowObjCWritebackConversion);
3514
3515  if (ICS.isStandard() &&
3516      ICS.Standard.Second == ICK_Writeback_Conversion) {
3517    // Objective-C ARC writeback conversion.
3518
3519    // We should copy unless we're passing to an argument explicitly
3520    // marked 'out'.
3521    bool ShouldCopy = true;
3522    if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
3523      ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
3524
3525    // If there was an lvalue adjustment, add it as a separate conversion.
3526    if (ICS.Standard.First == ICK_Array_To_Pointer ||
3527        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
3528      ImplicitConversionSequence LvalueICS;
3529      LvalueICS.setStandard();
3530      LvalueICS.Standard.setAsIdentityConversion();
3531      LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
3532      LvalueICS.Standard.First = ICS.Standard.First;
3533      AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
3534    }
3535
3536    AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
3537  } else if (ICS.isBad()) {
3538    DeclAccessPair dap;
3539    if (Initializer->getType() == Context.OverloadTy &&
3540          !S.ResolveAddressOfOverloadedFunction(Initializer
3541                      , DestType, false, dap))
3542      SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3543    else
3544      SetFailed(InitializationSequence::FK_ConversionFailed);
3545  } else {
3546    AddConversionSequenceStep(ICS, Entity.getType());
3547
3548    MaybeProduceObjCObject(S, *this, Entity);
3549  }
3550}
3551
3552InitializationSequence::~InitializationSequence() {
3553  for (llvm::SmallVectorImpl<Step>::iterator Step = Steps.begin(),
3554                                          StepEnd = Steps.end();
3555       Step != StepEnd; ++Step)
3556    Step->Destroy();
3557}
3558
3559//===----------------------------------------------------------------------===//
3560// Perform initialization
3561//===----------------------------------------------------------------------===//
3562static Sema::AssignmentAction
3563getAssignmentAction(const InitializedEntity &Entity) {
3564  switch(Entity.getKind()) {
3565  case InitializedEntity::EK_Variable:
3566  case InitializedEntity::EK_New:
3567  case InitializedEntity::EK_Exception:
3568  case InitializedEntity::EK_Base:
3569  case InitializedEntity::EK_Delegating:
3570    return Sema::AA_Initializing;
3571
3572  case InitializedEntity::EK_Parameter:
3573    if (Entity.getDecl() &&
3574        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
3575      return Sema::AA_Sending;
3576
3577    return Sema::AA_Passing;
3578
3579  case InitializedEntity::EK_Result:
3580    return Sema::AA_Returning;
3581
3582  case InitializedEntity::EK_Temporary:
3583    // FIXME: Can we tell apart casting vs. converting?
3584    return Sema::AA_Casting;
3585
3586  case InitializedEntity::EK_Member:
3587  case InitializedEntity::EK_ArrayElement:
3588  case InitializedEntity::EK_VectorElement:
3589  case InitializedEntity::EK_BlockElement:
3590    return Sema::AA_Initializing;
3591  }
3592
3593  return Sema::AA_Converting;
3594}
3595
3596/// \brief Whether we should binding a created object as a temporary when
3597/// initializing the given entity.
3598static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
3599  switch (Entity.getKind()) {
3600  case InitializedEntity::EK_ArrayElement:
3601  case InitializedEntity::EK_Member:
3602  case InitializedEntity::EK_Result:
3603  case InitializedEntity::EK_New:
3604  case InitializedEntity::EK_Variable:
3605  case InitializedEntity::EK_Base:
3606  case InitializedEntity::EK_Delegating:
3607  case InitializedEntity::EK_VectorElement:
3608  case InitializedEntity::EK_Exception:
3609  case InitializedEntity::EK_BlockElement:
3610    return false;
3611
3612  case InitializedEntity::EK_Parameter:
3613  case InitializedEntity::EK_Temporary:
3614    return true;
3615  }
3616
3617  llvm_unreachable("missed an InitializedEntity kind?");
3618}
3619
3620/// \brief Whether the given entity, when initialized with an object
3621/// created for that initialization, requires destruction.
3622static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
3623  switch (Entity.getKind()) {
3624    case InitializedEntity::EK_Member:
3625    case InitializedEntity::EK_Result:
3626    case InitializedEntity::EK_New:
3627    case InitializedEntity::EK_Base:
3628    case InitializedEntity::EK_Delegating:
3629    case InitializedEntity::EK_VectorElement:
3630    case InitializedEntity::EK_BlockElement:
3631      return false;
3632
3633    case InitializedEntity::EK_Variable:
3634    case InitializedEntity::EK_Parameter:
3635    case InitializedEntity::EK_Temporary:
3636    case InitializedEntity::EK_ArrayElement:
3637    case InitializedEntity::EK_Exception:
3638      return true;
3639  }
3640
3641  llvm_unreachable("missed an InitializedEntity kind?");
3642}
3643
3644/// \brief Make a (potentially elidable) temporary copy of the object
3645/// provided by the given initializer by calling the appropriate copy
3646/// constructor.
3647///
3648/// \param S The Sema object used for type-checking.
3649///
3650/// \param T The type of the temporary object, which must either be
3651/// the type of the initializer expression or a superclass thereof.
3652///
3653/// \param Enter The entity being initialized.
3654///
3655/// \param CurInit The initializer expression.
3656///
3657/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
3658/// is permitted in C++03 (but not C++0x) when binding a reference to
3659/// an rvalue.
3660///
3661/// \returns An expression that copies the initializer expression into
3662/// a temporary object, or an error expression if a copy could not be
3663/// created.
3664static ExprResult CopyObject(Sema &S,
3665                             QualType T,
3666                             const InitializedEntity &Entity,
3667                             ExprResult CurInit,
3668                             bool IsExtraneousCopy) {
3669  // Determine which class type we're copying to.
3670  Expr *CurInitExpr = (Expr *)CurInit.get();
3671  CXXRecordDecl *Class = 0;
3672  if (const RecordType *Record = T->getAs<RecordType>())
3673    Class = cast<CXXRecordDecl>(Record->getDecl());
3674  if (!Class)
3675    return move(CurInit);
3676
3677  // C++0x [class.copy]p32:
3678  //   When certain criteria are met, an implementation is allowed to
3679  //   omit the copy/move construction of a class object, even if the
3680  //   copy/move constructor and/or destructor for the object have
3681  //   side effects. [...]
3682  //     - when a temporary class object that has not been bound to a
3683  //       reference (12.2) would be copied/moved to a class object
3684  //       with the same cv-unqualified type, the copy/move operation
3685  //       can be omitted by constructing the temporary object
3686  //       directly into the target of the omitted copy/move
3687  //
3688  // Note that the other three bullets are handled elsewhere. Copy
3689  // elision for return statements and throw expressions are handled as part
3690  // of constructor initialization, while copy elision for exception handlers
3691  // is handled by the run-time.
3692  bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
3693  SourceLocation Loc;
3694  switch (Entity.getKind()) {
3695  case InitializedEntity::EK_Result:
3696    Loc = Entity.getReturnLoc();
3697    break;
3698
3699  case InitializedEntity::EK_Exception:
3700    Loc = Entity.getThrowLoc();
3701    break;
3702
3703  case InitializedEntity::EK_Variable:
3704    Loc = Entity.getDecl()->getLocation();
3705    break;
3706
3707  case InitializedEntity::EK_ArrayElement:
3708  case InitializedEntity::EK_Member:
3709  case InitializedEntity::EK_Parameter:
3710  case InitializedEntity::EK_Temporary:
3711  case InitializedEntity::EK_New:
3712  case InitializedEntity::EK_Base:
3713  case InitializedEntity::EK_Delegating:
3714  case InitializedEntity::EK_VectorElement:
3715  case InitializedEntity::EK_BlockElement:
3716    Loc = CurInitExpr->getLocStart();
3717    break;
3718  }
3719
3720  // Make sure that the type we are copying is complete.
3721  if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
3722    return move(CurInit);
3723
3724  // Perform overload resolution using the class's copy/move constructors.
3725  DeclContext::lookup_iterator Con, ConEnd;
3726  OverloadCandidateSet CandidateSet(Loc);
3727  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
3728       Con != ConEnd; ++Con) {
3729    // Only consider copy/move constructors and constructor templates. Per
3730    // C++0x [dcl.init]p16, second bullet to class types, this
3731    // initialization is direct-initialization.
3732    CXXConstructorDecl *Constructor = 0;
3733
3734    if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
3735      // Handle copy/moveconstructors, only.
3736      if (!Constructor || Constructor->isInvalidDecl() ||
3737          !Constructor->isCopyOrMoveConstructor() ||
3738          !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
3739        continue;
3740
3741      DeclAccessPair FoundDecl
3742        = DeclAccessPair::make(Constructor, Constructor->getAccess());
3743      S.AddOverloadCandidate(Constructor, FoundDecl,
3744                             &CurInitExpr, 1, CandidateSet);
3745      continue;
3746    }
3747
3748    // Handle constructor templates.
3749    FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
3750    if (ConstructorTmpl->isInvalidDecl())
3751      continue;
3752
3753    Constructor = cast<CXXConstructorDecl>(
3754                                         ConstructorTmpl->getTemplatedDecl());
3755    if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
3756      continue;
3757
3758    // FIXME: Do we need to limit this to copy-constructor-like
3759    // candidates?
3760    DeclAccessPair FoundDecl
3761      = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
3762    S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
3763                                   &CurInitExpr, 1, CandidateSet, true);
3764  }
3765
3766  OverloadCandidateSet::iterator Best;
3767  switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
3768  case OR_Success:
3769    break;
3770
3771  case OR_No_Viable_Function:
3772    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
3773           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
3774           : diag::err_temp_copy_no_viable)
3775      << (int)Entity.getKind() << CurInitExpr->getType()
3776      << CurInitExpr->getSourceRange();
3777    CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1);
3778    if (!IsExtraneousCopy || S.isSFINAEContext())
3779      return ExprError();
3780    return move(CurInit);
3781
3782  case OR_Ambiguous:
3783    S.Diag(Loc, diag::err_temp_copy_ambiguous)
3784      << (int)Entity.getKind() << CurInitExpr->getType()
3785      << CurInitExpr->getSourceRange();
3786    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1);
3787    return ExprError();
3788
3789  case OR_Deleted:
3790    S.Diag(Loc, diag::err_temp_copy_deleted)
3791      << (int)Entity.getKind() << CurInitExpr->getType()
3792      << CurInitExpr->getSourceRange();
3793    S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3794      << 1 << Best->Function->isDeleted();
3795    return ExprError();
3796  }
3797
3798  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3799  ASTOwningVector<Expr*> ConstructorArgs(S);
3800  CurInit.release(); // Ownership transferred into MultiExprArg, below.
3801
3802  S.CheckConstructorAccess(Loc, Constructor, Entity,
3803                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
3804
3805  if (IsExtraneousCopy) {
3806    // If this is a totally extraneous copy for C++03 reference
3807    // binding purposes, just return the original initialization
3808    // expression. We don't generate an (elided) copy operation here
3809    // because doing so would require us to pass down a flag to avoid
3810    // infinite recursion, where each step adds another extraneous,
3811    // elidable copy.
3812
3813    // Instantiate the default arguments of any extra parameters in
3814    // the selected copy constructor, as if we were going to create a
3815    // proper call to the copy constructor.
3816    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
3817      ParmVarDecl *Parm = Constructor->getParamDecl(I);
3818      if (S.RequireCompleteType(Loc, Parm->getType(),
3819                                S.PDiag(diag::err_call_incomplete_argument)))
3820        break;
3821
3822      // Build the default argument expression; we don't actually care
3823      // if this succeeds or not, because this routine will complain
3824      // if there was a problem.
3825      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
3826    }
3827
3828    return S.Owned(CurInitExpr);
3829  }
3830
3831  S.MarkDeclarationReferenced(Loc, Constructor);
3832
3833  // Determine the arguments required to actually perform the
3834  // constructor call (we might have derived-to-base conversions, or
3835  // the copy constructor may have default arguments).
3836  if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
3837                                Loc, ConstructorArgs))
3838    return ExprError();
3839
3840  // Actually perform the constructor call.
3841  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
3842                                    move_arg(ConstructorArgs),
3843                                    /*ZeroInit*/ false,
3844                                    CXXConstructExpr::CK_Complete,
3845                                    SourceRange());
3846
3847  // If we're supposed to bind temporaries, do so.
3848  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
3849    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3850  return move(CurInit);
3851}
3852
3853void InitializationSequence::PrintInitLocationNote(Sema &S,
3854                                              const InitializedEntity &Entity) {
3855  if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
3856    if (Entity.getDecl()->getLocation().isInvalid())
3857      return;
3858
3859    if (Entity.getDecl()->getDeclName())
3860      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
3861        << Entity.getDecl()->getDeclName();
3862    else
3863      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
3864  }
3865}
3866
3867ExprResult
3868InitializationSequence::Perform(Sema &S,
3869                                const InitializedEntity &Entity,
3870                                const InitializationKind &Kind,
3871                                MultiExprArg Args,
3872                                QualType *ResultType) {
3873  if (Failed()) {
3874    unsigned NumArgs = Args.size();
3875    Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
3876    return ExprError();
3877  }
3878
3879  if (getKind() == DependentSequence) {
3880    // If the declaration is a non-dependent, incomplete array type
3881    // that has an initializer, then its type will be completed once
3882    // the initializer is instantiated.
3883    if (ResultType && !Entity.getType()->isDependentType() &&
3884        Args.size() == 1) {
3885      QualType DeclType = Entity.getType();
3886      if (const IncompleteArrayType *ArrayT
3887                           = S.Context.getAsIncompleteArrayType(DeclType)) {
3888        // FIXME: We don't currently have the ability to accurately
3889        // compute the length of an initializer list without
3890        // performing full type-checking of the initializer list
3891        // (since we have to determine where braces are implicitly
3892        // introduced and such).  So, we fall back to making the array
3893        // type a dependently-sized array type with no specified
3894        // bound.
3895        if (isa<InitListExpr>((Expr *)Args.get()[0])) {
3896          SourceRange Brackets;
3897
3898          // Scavange the location of the brackets from the entity, if we can.
3899          if (DeclaratorDecl *DD = Entity.getDecl()) {
3900            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
3901              TypeLoc TL = TInfo->getTypeLoc();
3902              if (IncompleteArrayTypeLoc *ArrayLoc
3903                                      = dyn_cast<IncompleteArrayTypeLoc>(&TL))
3904              Brackets = ArrayLoc->getBracketsRange();
3905            }
3906          }
3907
3908          *ResultType
3909            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
3910                                                   /*NumElts=*/0,
3911                                                   ArrayT->getSizeModifier(),
3912                                       ArrayT->getIndexTypeCVRQualifiers(),
3913                                                   Brackets);
3914        }
3915
3916      }
3917    }
3918
3919    if (Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast())
3920      return ExprResult(Args.release()[0]);
3921
3922    if (Args.size() == 0)
3923      return S.Owned((Expr *)0);
3924
3925    unsigned NumArgs = Args.size();
3926    return S.Owned(new (S.Context) ParenListExpr(S.Context,
3927                                                 SourceLocation(),
3928                                                 (Expr **)Args.release(),
3929                                                 NumArgs,
3930                                                 SourceLocation()));
3931  }
3932
3933  // No steps means no initialization.
3934  if (Steps.empty())
3935    return S.Owned((Expr *)0);
3936
3937  QualType DestType = Entity.getType().getNonReferenceType();
3938  // FIXME: Ugly hack around the fact that Entity.getType() is not
3939  // the same as Entity.getDecl()->getType() in cases involving type merging,
3940  //  and we want latter when it makes sense.
3941  if (ResultType)
3942    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
3943                                     Entity.getType();
3944
3945  ExprResult CurInit = S.Owned((Expr *)0);
3946
3947  // For initialization steps that start with a single initializer,
3948  // grab the only argument out the Args and place it into the "current"
3949  // initializer.
3950  switch (Steps.front().Kind) {
3951  case SK_ResolveAddressOfOverloadedFunction:
3952  case SK_CastDerivedToBaseRValue:
3953  case SK_CastDerivedToBaseXValue:
3954  case SK_CastDerivedToBaseLValue:
3955  case SK_BindReference:
3956  case SK_BindReferenceToTemporary:
3957  case SK_ExtraneousCopyToTemporary:
3958  case SK_UserConversion:
3959  case SK_QualificationConversionLValue:
3960  case SK_QualificationConversionXValue:
3961  case SK_QualificationConversionRValue:
3962  case SK_ConversionSequence:
3963  case SK_ListInitialization:
3964  case SK_CAssignment:
3965  case SK_StringInit:
3966  case SK_ObjCObjectConversion:
3967  case SK_ArrayInit:
3968  case SK_PassByIndirectCopyRestore:
3969  case SK_PassByIndirectRestore:
3970  case SK_ProduceObjCObject: {
3971    assert(Args.size() == 1);
3972    CurInit = Args.get()[0];
3973    if (!CurInit.get()) return ExprError();
3974
3975    // Read from a property when initializing something with it.
3976    if (CurInit.get()->getObjectKind() == OK_ObjCProperty) {
3977      CurInit = S.ConvertPropertyForRValue(CurInit.take());
3978      if (CurInit.isInvalid())
3979        return ExprError();
3980    }
3981    break;
3982  }
3983
3984  case SK_ConstructorInitialization:
3985  case SK_ZeroInitialization:
3986    break;
3987  }
3988
3989  // Walk through the computed steps for the initialization sequence,
3990  // performing the specified conversions along the way.
3991  bool ConstructorInitRequiresZeroInit = false;
3992  for (step_iterator Step = step_begin(), StepEnd = step_end();
3993       Step != StepEnd; ++Step) {
3994    if (CurInit.isInvalid())
3995      return ExprError();
3996
3997    QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
3998
3999    switch (Step->Kind) {
4000    case SK_ResolveAddressOfOverloadedFunction:
4001      // Overload resolution determined which function invoke; update the
4002      // initializer to reflect that choice.
4003      S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
4004      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
4005      CurInit = S.FixOverloadedFunctionReference(move(CurInit),
4006                                                 Step->Function.FoundDecl,
4007                                                 Step->Function.Function);
4008      break;
4009
4010    case SK_CastDerivedToBaseRValue:
4011    case SK_CastDerivedToBaseXValue:
4012    case SK_CastDerivedToBaseLValue: {
4013      // We have a derived-to-base cast that produces either an rvalue or an
4014      // lvalue. Perform that cast.
4015
4016      CXXCastPath BasePath;
4017
4018      // Casts to inaccessible base classes are allowed with C-style casts.
4019      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
4020      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
4021                                         CurInit.get()->getLocStart(),
4022                                         CurInit.get()->getSourceRange(),
4023                                         &BasePath, IgnoreBaseAccess))
4024        return ExprError();
4025
4026      if (S.BasePathInvolvesVirtualBase(BasePath)) {
4027        QualType T = SourceType;
4028        if (const PointerType *Pointer = T->getAs<PointerType>())
4029          T = Pointer->getPointeeType();
4030        if (const RecordType *RecordTy = T->getAs<RecordType>())
4031          S.MarkVTableUsed(CurInit.get()->getLocStart(),
4032                           cast<CXXRecordDecl>(RecordTy->getDecl()));
4033      }
4034
4035      ExprValueKind VK =
4036          Step->Kind == SK_CastDerivedToBaseLValue ?
4037              VK_LValue :
4038              (Step->Kind == SK_CastDerivedToBaseXValue ?
4039                   VK_XValue :
4040                   VK_RValue);
4041      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
4042                                                 Step->Type,
4043                                                 CK_DerivedToBase,
4044                                                 CurInit.get(),
4045                                                 &BasePath, VK));
4046      break;
4047    }
4048
4049    case SK_BindReference:
4050      if (FieldDecl *BitField = CurInit.get()->getBitField()) {
4051        // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
4052        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
4053          << Entity.getType().isVolatileQualified()
4054          << BitField->getDeclName()
4055          << CurInit.get()->getSourceRange();
4056        S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
4057        return ExprError();
4058      }
4059
4060      if (CurInit.get()->refersToVectorElement()) {
4061        // References cannot bind to vector elements.
4062        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
4063          << Entity.getType().isVolatileQualified()
4064          << CurInit.get()->getSourceRange();
4065        PrintInitLocationNote(S, Entity);
4066        return ExprError();
4067      }
4068
4069      // Reference binding does not have any corresponding ASTs.
4070
4071      // Check exception specifications
4072      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4073        return ExprError();
4074
4075      break;
4076
4077    case SK_BindReferenceToTemporary:
4078      // Reference binding does not have any corresponding ASTs.
4079
4080      // Check exception specifications
4081      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4082        return ExprError();
4083
4084      break;
4085
4086    case SK_ExtraneousCopyToTemporary:
4087      CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
4088                           /*IsExtraneousCopy=*/true);
4089      break;
4090
4091    case SK_UserConversion: {
4092      // We have a user-defined conversion that invokes either a constructor
4093      // or a conversion function.
4094      CastKind CastKind;
4095      bool IsCopy = false;
4096      FunctionDecl *Fn = Step->Function.Function;
4097      DeclAccessPair FoundFn = Step->Function.FoundDecl;
4098      bool CreatedObject = false;
4099      bool IsLvalue = false;
4100      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
4101        // Build a call to the selected constructor.
4102        ASTOwningVector<Expr*> ConstructorArgs(S);
4103        SourceLocation Loc = CurInit.get()->getLocStart();
4104        CurInit.release(); // Ownership transferred into MultiExprArg, below.
4105
4106        // Determine the arguments required to actually perform the constructor
4107        // call.
4108        Expr *Arg = CurInit.get();
4109        if (S.CompleteConstructorCall(Constructor,
4110                                      MultiExprArg(&Arg, 1),
4111                                      Loc, ConstructorArgs))
4112          return ExprError();
4113
4114        // Build the an expression that constructs a temporary.
4115        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
4116                                          move_arg(ConstructorArgs),
4117                                          /*ZeroInit*/ false,
4118                                          CXXConstructExpr::CK_Complete,
4119                                          SourceRange());
4120        if (CurInit.isInvalid())
4121          return ExprError();
4122
4123        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
4124                                 FoundFn.getAccess());
4125        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
4126
4127        CastKind = CK_ConstructorConversion;
4128        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
4129        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
4130            S.IsDerivedFrom(SourceType, Class))
4131          IsCopy = true;
4132
4133        CreatedObject = true;
4134      } else {
4135        // Build a call to the conversion function.
4136        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
4137        IsLvalue = Conversion->getResultType()->isLValueReferenceType();
4138        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
4139                                    FoundFn);
4140        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
4141
4142        // FIXME: Should we move this initialization into a separate
4143        // derived-to-base conversion? I believe the answer is "no", because
4144        // we don't want to turn off access control here for c-style casts.
4145        ExprResult CurInitExprRes =
4146          S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
4147                                                FoundFn, Conversion);
4148        if(CurInitExprRes.isInvalid())
4149          return ExprError();
4150        CurInit = move(CurInitExprRes);
4151
4152        // Build the actual call to the conversion function.
4153        CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion);
4154        if (CurInit.isInvalid() || !CurInit.get())
4155          return ExprError();
4156
4157        CastKind = CK_UserDefinedConversion;
4158
4159        CreatedObject = Conversion->getResultType()->isRecordType();
4160      }
4161
4162      bool RequiresCopy = !IsCopy &&
4163        getKind() != InitializationSequence::ReferenceBinding;
4164      if (RequiresCopy || shouldBindAsTemporary(Entity))
4165        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4166      else if (CreatedObject && shouldDestroyTemporary(Entity)) {
4167        QualType T = CurInit.get()->getType();
4168        if (const RecordType *Record = T->getAs<RecordType>()) {
4169          CXXDestructorDecl *Destructor
4170            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
4171          S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
4172                                  S.PDiag(diag::err_access_dtor_temp) << T);
4173          S.MarkDeclarationReferenced(CurInit.get()->getLocStart(), Destructor);
4174          S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
4175        }
4176      }
4177
4178      // FIXME: xvalues
4179      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
4180                                                 CurInit.get()->getType(),
4181                                                 CastKind, CurInit.get(), 0,
4182                                           IsLvalue ? VK_LValue : VK_RValue));
4183
4184      if (RequiresCopy)
4185        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
4186                             move(CurInit), /*IsExtraneousCopy=*/false);
4187
4188      break;
4189    }
4190
4191    case SK_QualificationConversionLValue:
4192    case SK_QualificationConversionXValue:
4193    case SK_QualificationConversionRValue: {
4194      // Perform a qualification conversion; these can never go wrong.
4195      ExprValueKind VK =
4196          Step->Kind == SK_QualificationConversionLValue ?
4197              VK_LValue :
4198              (Step->Kind == SK_QualificationConversionXValue ?
4199                   VK_XValue :
4200                   VK_RValue);
4201      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
4202      break;
4203    }
4204
4205    case SK_ConversionSequence: {
4206      Sema::CheckedConversionKind CCK
4207        = Kind.isCStyleCast()? Sema::CCK_CStyleCast
4208        : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
4209        : Kind.isExplicitCast()? Sema::CCK_OtherCast
4210        : Sema::CCK_ImplicitConversion;
4211      ExprResult CurInitExprRes =
4212        S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
4213                                    getAssignmentAction(Entity), CCK);
4214      if (CurInitExprRes.isInvalid())
4215        return ExprError();
4216      CurInit = move(CurInitExprRes);
4217      break;
4218    }
4219
4220    case SK_ListInitialization: {
4221      InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
4222      QualType Ty = Step->Type;
4223      if (S.CheckInitList(Entity, InitList, ResultType? *ResultType : Ty))
4224        return ExprError();
4225
4226      CurInit.release();
4227      CurInit = S.Owned(InitList);
4228      break;
4229    }
4230
4231    case SK_ConstructorInitialization: {
4232      unsigned NumArgs = Args.size();
4233      CXXConstructorDecl *Constructor
4234        = cast<CXXConstructorDecl>(Step->Function.Function);
4235
4236      // Build a call to the selected constructor.
4237      ASTOwningVector<Expr*> ConstructorArgs(S);
4238      SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
4239                             ? Kind.getEqualLoc()
4240                             : Kind.getLocation();
4241
4242      if (Kind.getKind() == InitializationKind::IK_Default) {
4243        // Force even a trivial, implicit default constructor to be
4244        // semantically checked. We do this explicitly because we don't build
4245        // the definition for completely trivial constructors.
4246        CXXRecordDecl *ClassDecl = Constructor->getParent();
4247        assert(ClassDecl && "No parent class for constructor.");
4248        if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
4249            ClassDecl->hasTrivialDefaultConstructor() &&
4250            !Constructor->isUsed(false))
4251          S.DefineImplicitDefaultConstructor(Loc, Constructor);
4252      }
4253
4254      // Determine the arguments required to actually perform the constructor
4255      // call.
4256      if (S.CompleteConstructorCall(Constructor, move(Args),
4257                                    Loc, ConstructorArgs))
4258        return ExprError();
4259
4260
4261      if (Entity.getKind() == InitializedEntity::EK_Temporary &&
4262          NumArgs != 1 && // FIXME: Hack to work around cast weirdness
4263          (Kind.getKind() == InitializationKind::IK_Direct ||
4264           Kind.getKind() == InitializationKind::IK_Value)) {
4265        // An explicitly-constructed temporary, e.g., X(1, 2).
4266        unsigned NumExprs = ConstructorArgs.size();
4267        Expr **Exprs = (Expr **)ConstructorArgs.take();
4268        S.MarkDeclarationReferenced(Loc, Constructor);
4269        S.DiagnoseUseOfDecl(Constructor, Loc);
4270
4271        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4272        if (!TSInfo)
4273          TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4274
4275        CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
4276                                                                 Constructor,
4277                                                                 TSInfo,
4278                                                                 Exprs,
4279                                                                 NumExprs,
4280                                                         Kind.getParenRange(),
4281                                             ConstructorInitRequiresZeroInit));
4282      } else {
4283        CXXConstructExpr::ConstructionKind ConstructKind =
4284          CXXConstructExpr::CK_Complete;
4285
4286        if (Entity.getKind() == InitializedEntity::EK_Base) {
4287          ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4288            CXXConstructExpr::CK_VirtualBase :
4289            CXXConstructExpr::CK_NonVirtualBase;
4290        } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
4291          ConstructKind = CXXConstructExpr::CK_Delegating;
4292        }
4293
4294        // Only get the parenthesis range if it is a direct construction.
4295        SourceRange parenRange =
4296            Kind.getKind() == InitializationKind::IK_Direct ?
4297            Kind.getParenRange() : SourceRange();
4298
4299        // If the entity allows NRVO, mark the construction as elidable
4300        // unconditionally.
4301        if (Entity.allowsNRVO())
4302          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4303                                            Constructor, /*Elidable=*/true,
4304                                            move_arg(ConstructorArgs),
4305                                            ConstructorInitRequiresZeroInit,
4306                                            ConstructKind,
4307                                            parenRange);
4308        else
4309          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4310                                            Constructor,
4311                                            move_arg(ConstructorArgs),
4312                                            ConstructorInitRequiresZeroInit,
4313                                            ConstructKind,
4314                                            parenRange);
4315      }
4316      if (CurInit.isInvalid())
4317        return ExprError();
4318
4319      // Only check access if all of that succeeded.
4320      S.CheckConstructorAccess(Loc, Constructor, Entity,
4321                               Step->Function.FoundDecl.getAccess());
4322      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Loc);
4323
4324      if (shouldBindAsTemporary(Entity))
4325        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4326
4327      break;
4328    }
4329
4330    case SK_ZeroInitialization: {
4331      step_iterator NextStep = Step;
4332      ++NextStep;
4333      if (NextStep != StepEnd &&
4334          NextStep->Kind == SK_ConstructorInitialization) {
4335        // The need for zero-initialization is recorded directly into
4336        // the call to the object's constructor within the next step.
4337        ConstructorInitRequiresZeroInit = true;
4338      } else if (Kind.getKind() == InitializationKind::IK_Value &&
4339                 S.getLangOptions().CPlusPlus &&
4340                 !Kind.isImplicitValueInit()) {
4341        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4342        if (!TSInfo)
4343          TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
4344                                                    Kind.getRange().getBegin());
4345
4346        CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
4347                              TSInfo->getType().getNonLValueExprType(S.Context),
4348                                                                 TSInfo,
4349                                                    Kind.getRange().getEnd()));
4350      } else {
4351        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
4352      }
4353      break;
4354    }
4355
4356    case SK_CAssignment: {
4357      QualType SourceType = CurInit.get()->getType();
4358      ExprResult Result = move(CurInit);
4359      Sema::AssignConvertType ConvTy =
4360        S.CheckSingleAssignmentConstraints(Step->Type, Result);
4361      if (Result.isInvalid())
4362        return ExprError();
4363      CurInit = move(Result);
4364
4365      // If this is a call, allow conversion to a transparent union.
4366      ExprResult CurInitExprRes = move(CurInit);
4367      if (ConvTy != Sema::Compatible &&
4368          Entity.getKind() == InitializedEntity::EK_Parameter &&
4369          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
4370            == Sema::Compatible)
4371        ConvTy = Sema::Compatible;
4372      if (CurInitExprRes.isInvalid())
4373        return ExprError();
4374      CurInit = move(CurInitExprRes);
4375
4376      bool Complained;
4377      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
4378                                     Step->Type, SourceType,
4379                                     CurInit.get(),
4380                                     getAssignmentAction(Entity),
4381                                     &Complained)) {
4382        PrintInitLocationNote(S, Entity);
4383        return ExprError();
4384      } else if (Complained)
4385        PrintInitLocationNote(S, Entity);
4386      break;
4387    }
4388
4389    case SK_StringInit: {
4390      QualType Ty = Step->Type;
4391      CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
4392                      S.Context.getAsArrayType(Ty), S);
4393      break;
4394    }
4395
4396    case SK_ObjCObjectConversion:
4397      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
4398                          CK_ObjCObjectLValueCast,
4399                          S.CastCategory(CurInit.get()));
4400      break;
4401
4402    case SK_ArrayInit:
4403      // Okay: we checked everything before creating this step. Note that
4404      // this is a GNU extension.
4405      S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
4406        << Step->Type << CurInit.get()->getType()
4407        << CurInit.get()->getSourceRange();
4408
4409      // If the destination type is an incomplete array type, update the
4410      // type accordingly.
4411      if (ResultType) {
4412        if (const IncompleteArrayType *IncompleteDest
4413                           = S.Context.getAsIncompleteArrayType(Step->Type)) {
4414          if (const ConstantArrayType *ConstantSource
4415                 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
4416            *ResultType = S.Context.getConstantArrayType(
4417                                             IncompleteDest->getElementType(),
4418                                             ConstantSource->getSize(),
4419                                             ArrayType::Normal, 0);
4420          }
4421        }
4422      }
4423      break;
4424
4425    case SK_PassByIndirectCopyRestore:
4426    case SK_PassByIndirectRestore:
4427      checkIndirectCopyRestoreSource(S, CurInit.get());
4428      CurInit = S.Owned(new (S.Context)
4429                        ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
4430                                Step->Kind == SK_PassByIndirectCopyRestore));
4431      break;
4432
4433    case SK_ProduceObjCObject:
4434      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
4435                                                 CK_ObjCProduceObject,
4436                                                 CurInit.take(), 0, VK_RValue));
4437      break;
4438    }
4439  }
4440
4441  // Diagnose non-fatal problems with the completed initialization.
4442  if (Entity.getKind() == InitializedEntity::EK_Member &&
4443      cast<FieldDecl>(Entity.getDecl())->isBitField())
4444    S.CheckBitFieldInitialization(Kind.getLocation(),
4445                                  cast<FieldDecl>(Entity.getDecl()),
4446                                  CurInit.get());
4447
4448  return move(CurInit);
4449}
4450
4451//===----------------------------------------------------------------------===//
4452// Diagnose initialization failures
4453//===----------------------------------------------------------------------===//
4454bool InitializationSequence::Diagnose(Sema &S,
4455                                      const InitializedEntity &Entity,
4456                                      const InitializationKind &Kind,
4457                                      Expr **Args, unsigned NumArgs) {
4458  if (!Failed())
4459    return false;
4460
4461  QualType DestType = Entity.getType();
4462  switch (Failure) {
4463  case FK_TooManyInitsForReference:
4464    // FIXME: Customize for the initialized entity?
4465    if (NumArgs == 0)
4466      S.Diag(Kind.getLocation(), diag::err_reference_without_init)
4467        << DestType.getNonReferenceType();
4468    else  // FIXME: diagnostic below could be better!
4469      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
4470        << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
4471    break;
4472
4473  case FK_ArrayNeedsInitList:
4474  case FK_ArrayNeedsInitListOrStringLiteral:
4475    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
4476      << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
4477    break;
4478
4479  case FK_ArrayTypeMismatch:
4480  case FK_NonConstantArrayInit:
4481    S.Diag(Kind.getLocation(),
4482           (Failure == FK_ArrayTypeMismatch
4483              ? diag::err_array_init_different_type
4484              : diag::err_array_init_non_constant_array))
4485      << DestType.getNonReferenceType()
4486      << Args[0]->getType()
4487      << Args[0]->getSourceRange();
4488    break;
4489
4490  case FK_AddressOfOverloadFailed: {
4491    DeclAccessPair Found;
4492    S.ResolveAddressOfOverloadedFunction(Args[0],
4493                                         DestType.getNonReferenceType(),
4494                                         true,
4495                                         Found);
4496    break;
4497  }
4498
4499  case FK_ReferenceInitOverloadFailed:
4500  case FK_UserConversionOverloadFailed:
4501    switch (FailedOverloadResult) {
4502    case OR_Ambiguous:
4503      if (Failure == FK_UserConversionOverloadFailed)
4504        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
4505          << Args[0]->getType() << DestType
4506          << Args[0]->getSourceRange();
4507      else
4508        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
4509          << DestType << Args[0]->getType()
4510          << Args[0]->getSourceRange();
4511
4512      FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args, NumArgs);
4513      break;
4514
4515    case OR_No_Viable_Function:
4516      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
4517        << Args[0]->getType() << DestType.getNonReferenceType()
4518        << Args[0]->getSourceRange();
4519      FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
4520      break;
4521
4522    case OR_Deleted: {
4523      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
4524        << Args[0]->getType() << DestType.getNonReferenceType()
4525        << Args[0]->getSourceRange();
4526      OverloadCandidateSet::iterator Best;
4527      OverloadingResult Ovl
4528        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
4529                                                true);
4530      if (Ovl == OR_Deleted) {
4531        S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4532          << 1 << Best->Function->isDeleted();
4533      } else {
4534        llvm_unreachable("Inconsistent overload resolution?");
4535      }
4536      break;
4537    }
4538
4539    case OR_Success:
4540      llvm_unreachable("Conversion did not fail!");
4541      break;
4542    }
4543    break;
4544
4545  case FK_NonConstLValueReferenceBindingToTemporary:
4546  case FK_NonConstLValueReferenceBindingToUnrelated:
4547    S.Diag(Kind.getLocation(),
4548           Failure == FK_NonConstLValueReferenceBindingToTemporary
4549             ? diag::err_lvalue_reference_bind_to_temporary
4550             : diag::err_lvalue_reference_bind_to_unrelated)
4551      << DestType.getNonReferenceType().isVolatileQualified()
4552      << DestType.getNonReferenceType()
4553      << Args[0]->getType()
4554      << Args[0]->getSourceRange();
4555    break;
4556
4557  case FK_RValueReferenceBindingToLValue:
4558    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
4559      << DestType.getNonReferenceType() << Args[0]->getType()
4560      << Args[0]->getSourceRange();
4561    break;
4562
4563  case FK_ReferenceInitDropsQualifiers:
4564    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
4565      << DestType.getNonReferenceType()
4566      << Args[0]->getType()
4567      << Args[0]->getSourceRange();
4568    break;
4569
4570  case FK_ReferenceInitFailed:
4571    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
4572      << DestType.getNonReferenceType()
4573      << Args[0]->isLValue()
4574      << Args[0]->getType()
4575      << Args[0]->getSourceRange();
4576    if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
4577        Args[0]->getType()->isObjCObjectPointerType())
4578      S.EmitRelatedResultTypeNote(Args[0]);
4579    break;
4580
4581  case FK_ConversionFailed: {
4582    QualType FromType = Args[0]->getType();
4583    S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
4584      << (int)Entity.getKind()
4585      << DestType
4586      << Args[0]->isLValue()
4587      << FromType
4588      << Args[0]->getSourceRange();
4589    if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
4590        Args[0]->getType()->isObjCObjectPointerType())
4591      S.EmitRelatedResultTypeNote(Args[0]);
4592    break;
4593  }
4594
4595  case FK_ConversionFromPropertyFailed:
4596    // No-op. This error has already been reported.
4597    break;
4598
4599  case FK_TooManyInitsForScalar: {
4600    SourceRange R;
4601
4602    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
4603      R = SourceRange(InitList->getInit(0)->getLocEnd(),
4604                      InitList->getLocEnd());
4605    else
4606      R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
4607
4608    R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
4609    if (Kind.isCStyleOrFunctionalCast())
4610      S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
4611        << R;
4612    else
4613      S.Diag(Kind.getLocation(), diag::err_excess_initializers)
4614        << /*scalar=*/2 << R;
4615    break;
4616  }
4617
4618  case FK_ReferenceBindingToInitList:
4619    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
4620      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
4621    break;
4622
4623  case FK_InitListBadDestinationType:
4624    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
4625      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
4626    break;
4627
4628  case FK_ConstructorOverloadFailed: {
4629    SourceRange ArgsRange;
4630    if (NumArgs)
4631      ArgsRange = SourceRange(Args[0]->getLocStart(),
4632                              Args[NumArgs - 1]->getLocEnd());
4633
4634    // FIXME: Using "DestType" for the entity we're printing is probably
4635    // bad.
4636    switch (FailedOverloadResult) {
4637      case OR_Ambiguous:
4638        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
4639          << DestType << ArgsRange;
4640        FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
4641                                          Args, NumArgs);
4642        break;
4643
4644      case OR_No_Viable_Function:
4645        if (Kind.getKind() == InitializationKind::IK_Default &&
4646            (Entity.getKind() == InitializedEntity::EK_Base ||
4647             Entity.getKind() == InitializedEntity::EK_Member) &&
4648            isa<CXXConstructorDecl>(S.CurContext)) {
4649          // This is implicit default initialization of a member or
4650          // base within a constructor. If no viable function was
4651          // found, notify the user that she needs to explicitly
4652          // initialize this base/member.
4653          CXXConstructorDecl *Constructor
4654            = cast<CXXConstructorDecl>(S.CurContext);
4655          if (Entity.getKind() == InitializedEntity::EK_Base) {
4656            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4657              << Constructor->isImplicit()
4658              << S.Context.getTypeDeclType(Constructor->getParent())
4659              << /*base=*/0
4660              << Entity.getType();
4661
4662            RecordDecl *BaseDecl
4663              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
4664                                                                  ->getDecl();
4665            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
4666              << S.Context.getTagDeclType(BaseDecl);
4667          } else {
4668            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4669              << Constructor->isImplicit()
4670              << S.Context.getTypeDeclType(Constructor->getParent())
4671              << /*member=*/1
4672              << Entity.getName();
4673            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
4674
4675            if (const RecordType *Record
4676                                 = Entity.getType()->getAs<RecordType>())
4677              S.Diag(Record->getDecl()->getLocation(),
4678                     diag::note_previous_decl)
4679                << S.Context.getTagDeclType(Record->getDecl());
4680          }
4681          break;
4682        }
4683
4684        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
4685          << DestType << ArgsRange;
4686        FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
4687        break;
4688
4689      case OR_Deleted: {
4690        S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
4691          << true << DestType << ArgsRange;
4692        OverloadCandidateSet::iterator Best;
4693        OverloadingResult Ovl
4694          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
4695        if (Ovl == OR_Deleted) {
4696          S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4697            << 1 << Best->Function->isDeleted();
4698        } else {
4699          llvm_unreachable("Inconsistent overload resolution?");
4700        }
4701        break;
4702      }
4703
4704      case OR_Success:
4705        llvm_unreachable("Conversion did not fail!");
4706        break;
4707    }
4708    break;
4709  }
4710
4711  case FK_DefaultInitOfConst:
4712    if (Entity.getKind() == InitializedEntity::EK_Member &&
4713        isa<CXXConstructorDecl>(S.CurContext)) {
4714      // This is implicit default-initialization of a const member in
4715      // a constructor. Complain that it needs to be explicitly
4716      // initialized.
4717      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
4718      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
4719        << Constructor->isImplicit()
4720        << S.Context.getTypeDeclType(Constructor->getParent())
4721        << /*const=*/1
4722        << Entity.getName();
4723      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
4724        << Entity.getName();
4725    } else {
4726      S.Diag(Kind.getLocation(), diag::err_default_init_const)
4727        << DestType << (bool)DestType->getAs<RecordType>();
4728    }
4729    break;
4730
4731    case FK_Incomplete:
4732      S.RequireCompleteType(Kind.getLocation(), DestType,
4733                            diag::err_init_incomplete_type);
4734      break;
4735  }
4736
4737  PrintInitLocationNote(S, Entity);
4738  return true;
4739}
4740
4741void InitializationSequence::dump(llvm::raw_ostream &OS) const {
4742  switch (SequenceKind) {
4743  case FailedSequence: {
4744    OS << "Failed sequence: ";
4745    switch (Failure) {
4746    case FK_TooManyInitsForReference:
4747      OS << "too many initializers for reference";
4748      break;
4749
4750    case FK_ArrayNeedsInitList:
4751      OS << "array requires initializer list";
4752      break;
4753
4754    case FK_ArrayNeedsInitListOrStringLiteral:
4755      OS << "array requires initializer list or string literal";
4756      break;
4757
4758    case FK_ArrayTypeMismatch:
4759      OS << "array type mismatch";
4760      break;
4761
4762    case FK_NonConstantArrayInit:
4763      OS << "non-constant array initializer";
4764      break;
4765
4766    case FK_AddressOfOverloadFailed:
4767      OS << "address of overloaded function failed";
4768      break;
4769
4770    case FK_ReferenceInitOverloadFailed:
4771      OS << "overload resolution for reference initialization failed";
4772      break;
4773
4774    case FK_NonConstLValueReferenceBindingToTemporary:
4775      OS << "non-const lvalue reference bound to temporary";
4776      break;
4777
4778    case FK_NonConstLValueReferenceBindingToUnrelated:
4779      OS << "non-const lvalue reference bound to unrelated type";
4780      break;
4781
4782    case FK_RValueReferenceBindingToLValue:
4783      OS << "rvalue reference bound to an lvalue";
4784      break;
4785
4786    case FK_ReferenceInitDropsQualifiers:
4787      OS << "reference initialization drops qualifiers";
4788      break;
4789
4790    case FK_ReferenceInitFailed:
4791      OS << "reference initialization failed";
4792      break;
4793
4794    case FK_ConversionFailed:
4795      OS << "conversion failed";
4796      break;
4797
4798    case FK_ConversionFromPropertyFailed:
4799      OS << "conversion from property failed";
4800      break;
4801
4802    case FK_TooManyInitsForScalar:
4803      OS << "too many initializers for scalar";
4804      break;
4805
4806    case FK_ReferenceBindingToInitList:
4807      OS << "referencing binding to initializer list";
4808      break;
4809
4810    case FK_InitListBadDestinationType:
4811      OS << "initializer list for non-aggregate, non-scalar type";
4812      break;
4813
4814    case FK_UserConversionOverloadFailed:
4815      OS << "overloading failed for user-defined conversion";
4816      break;
4817
4818    case FK_ConstructorOverloadFailed:
4819      OS << "constructor overloading failed";
4820      break;
4821
4822    case FK_DefaultInitOfConst:
4823      OS << "default initialization of a const variable";
4824      break;
4825
4826    case FK_Incomplete:
4827      OS << "initialization of incomplete type";
4828      break;
4829    }
4830    OS << '\n';
4831    return;
4832  }
4833
4834  case DependentSequence:
4835    OS << "Dependent sequence\n";
4836    return;
4837
4838  case NormalSequence:
4839    OS << "Normal sequence: ";
4840    break;
4841
4842  case ReferenceBinding:
4843    OS << "Reference binding: ";
4844    break;
4845  }
4846
4847  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
4848    if (S != step_begin()) {
4849      OS << " -> ";
4850    }
4851
4852    switch (S->Kind) {
4853    case SK_ResolveAddressOfOverloadedFunction:
4854      OS << "resolve address of overloaded function";
4855      break;
4856
4857    case SK_CastDerivedToBaseRValue:
4858      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
4859      break;
4860
4861    case SK_CastDerivedToBaseXValue:
4862      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
4863      break;
4864
4865    case SK_CastDerivedToBaseLValue:
4866      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
4867      break;
4868
4869    case SK_BindReference:
4870      OS << "bind reference to lvalue";
4871      break;
4872
4873    case SK_BindReferenceToTemporary:
4874      OS << "bind reference to a temporary";
4875      break;
4876
4877    case SK_ExtraneousCopyToTemporary:
4878      OS << "extraneous C++03 copy to temporary";
4879      break;
4880
4881    case SK_UserConversion:
4882      OS << "user-defined conversion via " << S->Function.Function;
4883      break;
4884
4885    case SK_QualificationConversionRValue:
4886      OS << "qualification conversion (rvalue)";
4887
4888    case SK_QualificationConversionXValue:
4889      OS << "qualification conversion (xvalue)";
4890
4891    case SK_QualificationConversionLValue:
4892      OS << "qualification conversion (lvalue)";
4893      break;
4894
4895    case SK_ConversionSequence:
4896      OS << "implicit conversion sequence (";
4897      S->ICS->DebugPrint(); // FIXME: use OS
4898      OS << ")";
4899      break;
4900
4901    case SK_ListInitialization:
4902      OS << "list initialization";
4903      break;
4904
4905    case SK_ConstructorInitialization:
4906      OS << "constructor initialization";
4907      break;
4908
4909    case SK_ZeroInitialization:
4910      OS << "zero initialization";
4911      break;
4912
4913    case SK_CAssignment:
4914      OS << "C assignment";
4915      break;
4916
4917    case SK_StringInit:
4918      OS << "string initialization";
4919      break;
4920
4921    case SK_ObjCObjectConversion:
4922      OS << "Objective-C object conversion";
4923      break;
4924
4925    case SK_ArrayInit:
4926      OS << "array initialization";
4927      break;
4928
4929    case SK_PassByIndirectCopyRestore:
4930      OS << "pass by indirect copy and restore";
4931      break;
4932
4933    case SK_PassByIndirectRestore:
4934      OS << "pass by indirect restore";
4935      break;
4936
4937    case SK_ProduceObjCObject:
4938      OS << "Objective-C object retension";
4939      break;
4940    }
4941  }
4942}
4943
4944void InitializationSequence::dump() const {
4945  dump(llvm::errs());
4946}
4947
4948//===----------------------------------------------------------------------===//
4949// Initialization helper functions
4950//===----------------------------------------------------------------------===//
4951bool
4952Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
4953                                   ExprResult Init) {
4954  if (Init.isInvalid())
4955    return false;
4956
4957  Expr *InitE = Init.get();
4958  assert(InitE && "No initialization expression");
4959
4960  InitializationKind Kind = InitializationKind::CreateCopy(SourceLocation(),
4961                                                           SourceLocation());
4962  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
4963  return !Seq.Failed();
4964}
4965
4966ExprResult
4967Sema::PerformCopyInitialization(const InitializedEntity &Entity,
4968                                SourceLocation EqualLoc,
4969                                ExprResult Init) {
4970  if (Init.isInvalid())
4971    return ExprError();
4972
4973  Expr *InitE = Init.get();
4974  assert(InitE && "No initialization expression?");
4975
4976  if (EqualLoc.isInvalid())
4977    EqualLoc = InitE->getLocStart();
4978
4979  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
4980                                                           EqualLoc);
4981  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
4982  Init.release();
4983  return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
4984}
4985