SemaInit.cpp revision 8e587a15da6d3457a418239d5eb4146fcbd209f3
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14// This file also implements Sema::CheckInitializerTypes.
15//
16//===----------------------------------------------------------------------===//
17
18#include "Sema.h"
19#include "clang/Parse/Designator.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include <map>
24using namespace clang;
25
26//===----------------------------------------------------------------------===//
27// Sema Initialization Checking
28//===----------------------------------------------------------------------===//
29
30static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
31  const ArrayType *AT = Context.getAsArrayType(DeclType);
32  if (!AT) return 0;
33
34  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
35    return 0;
36
37  // See if this is a string literal or @encode.
38  Init = Init->IgnoreParens();
39
40  // Handle @encode, which is a narrow string.
41  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
42    return Init;
43
44  // Otherwise we can only handle string literals.
45  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
46  if (SL == 0) return 0;
47
48  // char array can be initialized with a narrow string.
49  // Only allow char x[] = "foo";  not char x[] = L"foo";
50  if (!SL->isWide())
51    return AT->getElementType()->isCharType() ? Init : 0;
52
53  // wchar_t array can be initialized with a wide string: C99 6.7.8p15:
54  // "An array with element type compatible with wchar_t may be initialized by a
55  // wide string literal, optionally enclosed in braces."
56  if (Context.typesAreCompatible(Context.getWCharType(), AT->getElementType()))
57    // Only allow wchar_t x[] = L"foo";  not wchar_t x[] = "foo";
58    return Init;
59
60  return 0;
61}
62
63static bool CheckSingleInitializer(Expr *&Init, QualType DeclType,
64                                   bool DirectInit, Sema &S) {
65  // Get the type before calling CheckSingleAssignmentConstraints(), since
66  // it can promote the expression.
67  QualType InitType = Init->getType();
68
69  if (S.getLangOptions().CPlusPlus) {
70    // FIXME: I dislike this error message. A lot.
71    if (S.PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
72      return S.Diag(Init->getSourceRange().getBegin(),
73                    diag::err_typecheck_convert_incompatible)
74        << DeclType << Init->getType() << "initializing"
75        << Init->getSourceRange();
76    return false;
77  }
78
79  Sema::AssignConvertType ConvTy =
80    S.CheckSingleAssignmentConstraints(DeclType, Init);
81  return S.DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
82                                  InitType, Init, "initializing");
83}
84
85static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
86  // Get the length of the string as parsed.
87  uint64_t StrLength =
88    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
89
90
91  const ArrayType *AT = S.Context.getAsArrayType(DeclT);
92  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
93    // C99 6.7.8p14. We have an array of character type with unknown size
94    // being initialized to a string literal.
95    llvm::APSInt ConstVal(32);
96    ConstVal = StrLength;
97    // Return a new array type (C99 6.7.8p22).
98    DeclT = S.Context.getConstantArrayType(IAT->getElementType(), ConstVal,
99                                           ArrayType::Normal, 0);
100    return;
101  }
102
103  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
104
105  // C99 6.7.8p14. We have an array of character type with known size.  However,
106  // the size may be smaller or larger than the string we are initializing.
107  // FIXME: Avoid truncation for 64-bit length strings.
108  if (StrLength-1 > CAT->getSize().getZExtValue())
109    S.Diag(Str->getSourceRange().getBegin(),
110           diag::warn_initializer_string_for_char_array_too_long)
111      << Str->getSourceRange();
112
113  // Set the type to the actual size that we are initializing.  If we have
114  // something like:
115  //   char x[1] = "foo";
116  // then this will set the string literal's type to char[1].
117  Str->setType(DeclT);
118}
119
120bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
121                                 SourceLocation InitLoc,
122                                 DeclarationName InitEntity, bool DirectInit) {
123  if (DeclType->isDependentType() ||
124      Init->isTypeDependent() || Init->isValueDependent())
125    return false;
126
127  // C++ [dcl.init.ref]p1:
128  //   A variable declared to be a T& or T&&, that is "reference to type T"
129  //   (8.3.2), shall be initialized by an object, or function, of
130  //   type T or by an object that can be converted into a T.
131  if (DeclType->isReferenceType())
132    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
133
134  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
135  // of unknown size ("[]") or an object type that is not a variable array type.
136  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
137    return Diag(InitLoc,  diag::err_variable_object_no_init)
138    << VAT->getSizeExpr()->getSourceRange();
139
140  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
141  if (!InitList) {
142    // FIXME: Handle wide strings
143    if (Expr *Str = IsStringInit(Init, DeclType, Context)) {
144      CheckStringInit(Str, DeclType, *this);
145      return false;
146    }
147
148    // C++ [dcl.init]p14:
149    //   -- If the destination type is a (possibly cv-qualified) class
150    //      type:
151    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
152      QualType DeclTypeC = Context.getCanonicalType(DeclType);
153      QualType InitTypeC = Context.getCanonicalType(Init->getType());
154
155      //   -- If the initialization is direct-initialization, or if it is
156      //      copy-initialization where the cv-unqualified version of the
157      //      source type is the same class as, or a derived class of, the
158      //      class of the destination, constructors are considered.
159      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
160          IsDerivedFrom(InitTypeC, DeclTypeC)) {
161        const CXXRecordDecl *RD =
162          cast<CXXRecordDecl>(DeclType->getAsRecordType()->getDecl());
163
164        // No need to make a CXXConstructExpr if both the ctor and dtor are
165        // trivial.
166        if (RD->hasTrivialConstructor() && RD->hasTrivialDestructor())
167          return false;
168
169        CXXConstructorDecl *Constructor
170        = PerformInitializationByConstructor(DeclType, &Init, 1,
171                                             InitLoc, Init->getSourceRange(),
172                                             InitEntity,
173                                             DirectInit? IK_Direct : IK_Copy);
174        if (!Constructor)
175          return true;
176
177        Init = CXXConstructExpr::Create(Context, DeclType, Constructor, false,
178                                        &Init, 1);
179        return false;
180      }
181
182      //   -- Otherwise (i.e., for the remaining copy-initialization
183      //      cases), user-defined conversion sequences that can
184      //      convert from the source type to the destination type or
185      //      (when a conversion function is used) to a derived class
186      //      thereof are enumerated as described in 13.3.1.4, and the
187      //      best one is chosen through overload resolution
188      //      (13.3). If the conversion cannot be done or is
189      //      ambiguous, the initialization is ill-formed. The
190      //      function selected is called with the initializer
191      //      expression as its argument; if the function is a
192      //      constructor, the call initializes a temporary of the
193      //      destination type.
194      // FIXME: We're pretending to do copy elision here; return to this when we
195      // have ASTs for such things.
196      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
197        return false;
198
199      if (InitEntity)
200        return Diag(InitLoc, diag::err_cannot_initialize_decl)
201        << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
202        << Init->getType() << Init->getSourceRange();
203      else
204        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
205        << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
206        << Init->getType() << Init->getSourceRange();
207    }
208
209    // C99 6.7.8p16.
210    if (DeclType->isArrayType())
211      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
212      << Init->getSourceRange();
213
214    return CheckSingleInitializer(Init, DeclType, DirectInit, *this);
215  }
216
217  bool hadError = CheckInitList(InitList, DeclType);
218  Init = InitList;
219  return hadError;
220}
221
222//===----------------------------------------------------------------------===//
223// Semantic checking for initializer lists.
224//===----------------------------------------------------------------------===//
225
226/// @brief Semantic checking for initializer lists.
227///
228/// The InitListChecker class contains a set of routines that each
229/// handle the initialization of a certain kind of entity, e.g.,
230/// arrays, vectors, struct/union types, scalars, etc. The
231/// InitListChecker itself performs a recursive walk of the subobject
232/// structure of the type to be initialized, while stepping through
233/// the initializer list one element at a time. The IList and Index
234/// parameters to each of the Check* routines contain the active
235/// (syntactic) initializer list and the index into that initializer
236/// list that represents the current initializer. Each routine is
237/// responsible for moving that Index forward as it consumes elements.
238///
239/// Each Check* routine also has a StructuredList/StructuredIndex
240/// arguments, which contains the current the "structured" (semantic)
241/// initializer list and the index into that initializer list where we
242/// are copying initializers as we map them over to the semantic
243/// list. Once we have completed our recursive walk of the subobject
244/// structure, we will have constructed a full semantic initializer
245/// list.
246///
247/// C99 designators cause changes in the initializer list traversal,
248/// because they make the initialization "jump" into a specific
249/// subobject and then continue the initialization from that
250/// point. CheckDesignatedInitializer() recursively steps into the
251/// designated subobject and manages backing out the recursion to
252/// initialize the subobjects after the one designated.
253namespace {
254class InitListChecker {
255  Sema &SemaRef;
256  bool hadError;
257  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
258  InitListExpr *FullyStructuredList;
259
260  void CheckImplicitInitList(InitListExpr *ParentIList, QualType T,
261                             unsigned &Index, InitListExpr *StructuredList,
262                             unsigned &StructuredIndex,
263                             bool TopLevelObject = false);
264  void CheckExplicitInitList(InitListExpr *IList, QualType &T,
265                             unsigned &Index, InitListExpr *StructuredList,
266                             unsigned &StructuredIndex,
267                             bool TopLevelObject = false);
268  void CheckListElementTypes(InitListExpr *IList, QualType &DeclType,
269                             bool SubobjectIsDesignatorContext,
270                             unsigned &Index,
271                             InitListExpr *StructuredList,
272                             unsigned &StructuredIndex,
273                             bool TopLevelObject = false);
274  void CheckSubElementType(InitListExpr *IList, QualType ElemType,
275                           unsigned &Index,
276                           InitListExpr *StructuredList,
277                           unsigned &StructuredIndex);
278  void CheckScalarType(InitListExpr *IList, QualType DeclType,
279                       unsigned &Index,
280                       InitListExpr *StructuredList,
281                       unsigned &StructuredIndex);
282  void CheckReferenceType(InitListExpr *IList, QualType DeclType,
283                          unsigned &Index,
284                          InitListExpr *StructuredList,
285                          unsigned &StructuredIndex);
286  void CheckVectorType(InitListExpr *IList, QualType DeclType, unsigned &Index,
287                       InitListExpr *StructuredList,
288                       unsigned &StructuredIndex);
289  void CheckStructUnionTypes(InitListExpr *IList, QualType DeclType,
290                             RecordDecl::field_iterator Field,
291                             bool SubobjectIsDesignatorContext, unsigned &Index,
292                             InitListExpr *StructuredList,
293                             unsigned &StructuredIndex,
294                             bool TopLevelObject = false);
295  void CheckArrayType(InitListExpr *IList, QualType &DeclType,
296                      llvm::APSInt elementIndex,
297                      bool SubobjectIsDesignatorContext, unsigned &Index,
298                      InitListExpr *StructuredList,
299                      unsigned &StructuredIndex);
300  bool CheckDesignatedInitializer(InitListExpr *IList, DesignatedInitExpr *DIE,
301                                  unsigned DesigIdx,
302                                  QualType &CurrentObjectType,
303                                  RecordDecl::field_iterator *NextField,
304                                  llvm::APSInt *NextElementIndex,
305                                  unsigned &Index,
306                                  InitListExpr *StructuredList,
307                                  unsigned &StructuredIndex,
308                                  bool FinishSubobjectInit,
309                                  bool TopLevelObject);
310  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
311                                           QualType CurrentObjectType,
312                                           InitListExpr *StructuredList,
313                                           unsigned StructuredIndex,
314                                           SourceRange InitRange);
315  void UpdateStructuredListElement(InitListExpr *StructuredList,
316                                   unsigned &StructuredIndex,
317                                   Expr *expr);
318  int numArrayElements(QualType DeclType);
319  int numStructUnionElements(QualType DeclType);
320
321  void FillInValueInitializations(InitListExpr *ILE);
322public:
323  InitListChecker(Sema &S, InitListExpr *IL, QualType &T);
324  bool HadError() { return hadError; }
325
326  // @brief Retrieves the fully-structured initializer list used for
327  // semantic analysis and code generation.
328  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
329};
330} // end anonymous namespace
331
332/// Recursively replaces NULL values within the given initializer list
333/// with expressions that perform value-initialization of the
334/// appropriate type.
335void InitListChecker::FillInValueInitializations(InitListExpr *ILE) {
336  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
337         "Should not have void type");
338  SourceLocation Loc = ILE->getSourceRange().getBegin();
339  if (ILE->getSyntacticForm())
340    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
341
342  if (const RecordType *RType = ILE->getType()->getAsRecordType()) {
343    unsigned Init = 0, NumInits = ILE->getNumInits();
344    for (RecordDecl::field_iterator
345           Field = RType->getDecl()->field_begin(SemaRef.Context),
346           FieldEnd = RType->getDecl()->field_end(SemaRef.Context);
347         Field != FieldEnd; ++Field) {
348      if (Field->isUnnamedBitfield())
349        continue;
350
351      if (Init >= NumInits || !ILE->getInit(Init)) {
352        if (Field->getType()->isReferenceType()) {
353          // C++ [dcl.init.aggr]p9:
354          //   If an incomplete or empty initializer-list leaves a
355          //   member of reference type uninitialized, the program is
356          //   ill-formed.
357          SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
358            << Field->getType()
359            << ILE->getSyntacticForm()->getSourceRange();
360          SemaRef.Diag(Field->getLocation(),
361                        diag::note_uninit_reference_member);
362          hadError = true;
363          return;
364        } else if (SemaRef.CheckValueInitialization(Field->getType(), Loc)) {
365          hadError = true;
366          return;
367        }
368
369        // FIXME: If value-initialization involves calling a constructor, should
370        // we make that call explicit in the representation (even when it means
371        // extending the initializer list)?
372        if (Init < NumInits && !hadError)
373          ILE->setInit(Init,
374              new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()));
375      } else if (InitListExpr *InnerILE
376                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
377        FillInValueInitializations(InnerILE);
378      ++Init;
379
380      // Only look at the first initialization of a union.
381      if (RType->getDecl()->isUnion())
382        break;
383    }
384
385    return;
386  }
387
388  QualType ElementType;
389
390  unsigned NumInits = ILE->getNumInits();
391  unsigned NumElements = NumInits;
392  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
393    ElementType = AType->getElementType();
394    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
395      NumElements = CAType->getSize().getZExtValue();
396  } else if (const VectorType *VType = ILE->getType()->getAsVectorType()) {
397    ElementType = VType->getElementType();
398    NumElements = VType->getNumElements();
399  } else
400    ElementType = ILE->getType();
401
402  for (unsigned Init = 0; Init != NumElements; ++Init) {
403    if (Init >= NumInits || !ILE->getInit(Init)) {
404      if (SemaRef.CheckValueInitialization(ElementType, Loc)) {
405        hadError = true;
406        return;
407      }
408
409      // FIXME: If value-initialization involves calling a constructor, should
410      // we make that call explicit in the representation (even when it means
411      // extending the initializer list)?
412      if (Init < NumInits && !hadError)
413        ILE->setInit(Init,
414                     new (SemaRef.Context) ImplicitValueInitExpr(ElementType));
415    }
416    else if (InitListExpr *InnerILE =dyn_cast<InitListExpr>(ILE->getInit(Init)))
417      FillInValueInitializations(InnerILE);
418  }
419}
420
421
422InitListChecker::InitListChecker(Sema &S, InitListExpr *IL, QualType &T)
423  : SemaRef(S) {
424  hadError = false;
425
426  unsigned newIndex = 0;
427  unsigned newStructuredIndex = 0;
428  FullyStructuredList
429    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
430  CheckExplicitInitList(IL, T, newIndex, FullyStructuredList, newStructuredIndex,
431                        /*TopLevelObject=*/true);
432
433  if (!hadError)
434    FillInValueInitializations(FullyStructuredList);
435}
436
437int InitListChecker::numArrayElements(QualType DeclType) {
438  // FIXME: use a proper constant
439  int maxElements = 0x7FFFFFFF;
440  if (const ConstantArrayType *CAT =
441        SemaRef.Context.getAsConstantArrayType(DeclType)) {
442    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
443  }
444  return maxElements;
445}
446
447int InitListChecker::numStructUnionElements(QualType DeclType) {
448  RecordDecl *structDecl = DeclType->getAsRecordType()->getDecl();
449  int InitializableMembers = 0;
450  for (RecordDecl::field_iterator
451         Field = structDecl->field_begin(SemaRef.Context),
452         FieldEnd = structDecl->field_end(SemaRef.Context);
453       Field != FieldEnd; ++Field) {
454    if ((*Field)->getIdentifier() || !(*Field)->isBitField())
455      ++InitializableMembers;
456  }
457  if (structDecl->isUnion())
458    return std::min(InitializableMembers, 1);
459  return InitializableMembers - structDecl->hasFlexibleArrayMember();
460}
461
462void InitListChecker::CheckImplicitInitList(InitListExpr *ParentIList,
463                                            QualType T, unsigned &Index,
464                                            InitListExpr *StructuredList,
465                                            unsigned &StructuredIndex,
466                                            bool TopLevelObject) {
467  int maxElements = 0;
468
469  if (T->isArrayType())
470    maxElements = numArrayElements(T);
471  else if (T->isStructureType() || T->isUnionType())
472    maxElements = numStructUnionElements(T);
473  else if (T->isVectorType())
474    maxElements = T->getAsVectorType()->getNumElements();
475  else
476    assert(0 && "CheckImplicitInitList(): Illegal type");
477
478  if (maxElements == 0) {
479    SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
480                  diag::err_implicit_empty_initializer);
481    ++Index;
482    hadError = true;
483    return;
484  }
485
486  // Build a structured initializer list corresponding to this subobject.
487  InitListExpr *StructuredSubobjectInitList
488    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
489                                 StructuredIndex,
490          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
491                      ParentIList->getSourceRange().getEnd()));
492  unsigned StructuredSubobjectInitIndex = 0;
493
494  // Check the element types and build the structural subobject.
495  unsigned StartIndex = Index;
496  CheckListElementTypes(ParentIList, T, false, Index,
497                        StructuredSubobjectInitList,
498                        StructuredSubobjectInitIndex,
499                        TopLevelObject);
500  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
501  StructuredSubobjectInitList->setType(T);
502
503  // Update the structured sub-object initializer so that it's ending
504  // range corresponds with the end of the last initializer it used.
505  if (EndIndex < ParentIList->getNumInits()) {
506    SourceLocation EndLoc
507      = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
508    StructuredSubobjectInitList->setRBraceLoc(EndLoc);
509  }
510}
511
512void InitListChecker::CheckExplicitInitList(InitListExpr *IList, QualType &T,
513                                            unsigned &Index,
514                                            InitListExpr *StructuredList,
515                                            unsigned &StructuredIndex,
516                                            bool TopLevelObject) {
517  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
518  SyntacticToSemantic[IList] = StructuredList;
519  StructuredList->setSyntacticForm(IList);
520  CheckListElementTypes(IList, T, true, Index, StructuredList,
521                        StructuredIndex, TopLevelObject);
522  IList->setType(T);
523  StructuredList->setType(T);
524  if (hadError)
525    return;
526
527  if (Index < IList->getNumInits()) {
528    // We have leftover initializers
529    if (StructuredIndex == 1 &&
530        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
531      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
532      if (SemaRef.getLangOptions().CPlusPlus) {
533        DK = diag::err_excess_initializers_in_char_array_initializer;
534        hadError = true;
535      }
536      // Special-case
537      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
538        << IList->getInit(Index)->getSourceRange();
539    } else if (!T->isIncompleteType()) {
540      // Don't complain for incomplete types, since we'll get an error
541      // elsewhere
542      QualType CurrentObjectType = StructuredList->getType();
543      int initKind =
544        CurrentObjectType->isArrayType()? 0 :
545        CurrentObjectType->isVectorType()? 1 :
546        CurrentObjectType->isScalarType()? 2 :
547        CurrentObjectType->isUnionType()? 3 :
548        4;
549
550      unsigned DK = diag::warn_excess_initializers;
551      if (SemaRef.getLangOptions().CPlusPlus) {
552        DK = diag::err_excess_initializers;
553        hadError = true;
554      }
555
556      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
557        << initKind << IList->getInit(Index)->getSourceRange();
558    }
559  }
560
561  if (T->isScalarType() && !TopLevelObject)
562    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
563      << IList->getSourceRange()
564      << CodeModificationHint::CreateRemoval(SourceRange(IList->getLocStart()))
565      << CodeModificationHint::CreateRemoval(SourceRange(IList->getLocEnd()));
566}
567
568void InitListChecker::CheckListElementTypes(InitListExpr *IList,
569                                            QualType &DeclType,
570                                            bool SubobjectIsDesignatorContext,
571                                            unsigned &Index,
572                                            InitListExpr *StructuredList,
573                                            unsigned &StructuredIndex,
574                                            bool TopLevelObject) {
575  if (DeclType->isScalarType()) {
576    CheckScalarType(IList, DeclType, Index, StructuredList, StructuredIndex);
577  } else if (DeclType->isVectorType()) {
578    CheckVectorType(IList, DeclType, Index, StructuredList, StructuredIndex);
579  } else if (DeclType->isAggregateType()) {
580    if (DeclType->isRecordType()) {
581      RecordDecl *RD = DeclType->getAsRecordType()->getDecl();
582      CheckStructUnionTypes(IList, DeclType, RD->field_begin(SemaRef.Context),
583                            SubobjectIsDesignatorContext, Index,
584                            StructuredList, StructuredIndex,
585                            TopLevelObject);
586    } else if (DeclType->isArrayType()) {
587      llvm::APSInt Zero(
588                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
589                      false);
590      CheckArrayType(IList, DeclType, Zero, SubobjectIsDesignatorContext, Index,
591                     StructuredList, StructuredIndex);
592    }
593    else
594      assert(0 && "Aggregate that isn't a structure or array?!");
595  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
596    // This type is invalid, issue a diagnostic.
597    ++Index;
598    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
599      << DeclType;
600    hadError = true;
601  } else if (DeclType->isRecordType()) {
602    // C++ [dcl.init]p14:
603    //   [...] If the class is an aggregate (8.5.1), and the initializer
604    //   is a brace-enclosed list, see 8.5.1.
605    //
606    // Note: 8.5.1 is handled below; here, we diagnose the case where
607    // we have an initializer list and a destination type that is not
608    // an aggregate.
609    // FIXME: In C++0x, this is yet another form of initialization.
610    SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
611      << DeclType << IList->getSourceRange();
612    hadError = true;
613  } else if (DeclType->isReferenceType()) {
614    CheckReferenceType(IList, DeclType, Index, StructuredList, StructuredIndex);
615  } else {
616    // In C, all types are either scalars or aggregates, but
617    // additional handling is needed here for C++ (and possibly others?).
618    assert(0 && "Unsupported initializer type");
619  }
620}
621
622void InitListChecker::CheckSubElementType(InitListExpr *IList,
623                                          QualType ElemType,
624                                          unsigned &Index,
625                                          InitListExpr *StructuredList,
626                                          unsigned &StructuredIndex) {
627  Expr *expr = IList->getInit(Index);
628  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
629    unsigned newIndex = 0;
630    unsigned newStructuredIndex = 0;
631    InitListExpr *newStructuredList
632      = getStructuredSubobjectInit(IList, Index, ElemType,
633                                   StructuredList, StructuredIndex,
634                                   SubInitList->getSourceRange());
635    CheckExplicitInitList(SubInitList, ElemType, newIndex,
636                          newStructuredList, newStructuredIndex);
637    ++StructuredIndex;
638    ++Index;
639  } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
640    CheckStringInit(Str, ElemType, SemaRef);
641    UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
642    ++Index;
643  } else if (ElemType->isScalarType()) {
644    CheckScalarType(IList, ElemType, Index, StructuredList, StructuredIndex);
645  } else if (ElemType->isReferenceType()) {
646    CheckReferenceType(IList, ElemType, Index, StructuredList, StructuredIndex);
647  } else {
648    if (SemaRef.getLangOptions().CPlusPlus) {
649      // C++ [dcl.init.aggr]p12:
650      //   All implicit type conversions (clause 4) are considered when
651      //   initializing the aggregate member with an ini- tializer from
652      //   an initializer-list. If the initializer can initialize a
653      //   member, the member is initialized. [...]
654      ImplicitConversionSequence ICS
655        = SemaRef.TryCopyInitialization(expr, ElemType);
656      if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion) {
657        if (SemaRef.PerformImplicitConversion(expr, ElemType, ICS,
658                                               "initializing"))
659          hadError = true;
660        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
661        ++Index;
662        return;
663      }
664
665      // Fall through for subaggregate initialization
666    } else {
667      // C99 6.7.8p13:
668      //
669      //   The initializer for a structure or union object that has
670      //   automatic storage duration shall be either an initializer
671      //   list as described below, or a single expression that has
672      //   compatible structure or union type. In the latter case, the
673      //   initial value of the object, including unnamed members, is
674      //   that of the expression.
675      if (ElemType->isRecordType() &&
676          SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) {
677        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
678        ++Index;
679        return;
680      }
681
682      // Fall through for subaggregate initialization
683    }
684
685    // C++ [dcl.init.aggr]p12:
686    //
687    //   [...] Otherwise, if the member is itself a non-empty
688    //   subaggregate, brace elision is assumed and the initializer is
689    //   considered for the initialization of the first member of
690    //   the subaggregate.
691    if (ElemType->isAggregateType() || ElemType->isVectorType()) {
692      CheckImplicitInitList(IList, ElemType, Index, StructuredList,
693                            StructuredIndex);
694      ++StructuredIndex;
695    } else {
696      // We cannot initialize this element, so let
697      // PerformCopyInitialization produce the appropriate diagnostic.
698      SemaRef.PerformCopyInitialization(expr, ElemType, "initializing");
699      hadError = true;
700      ++Index;
701      ++StructuredIndex;
702    }
703  }
704}
705
706void InitListChecker::CheckScalarType(InitListExpr *IList, QualType DeclType,
707                                      unsigned &Index,
708                                      InitListExpr *StructuredList,
709                                      unsigned &StructuredIndex) {
710  if (Index < IList->getNumInits()) {
711    Expr *expr = IList->getInit(Index);
712    if (isa<InitListExpr>(expr)) {
713      SemaRef.Diag(IList->getLocStart(),
714                    diag::err_many_braces_around_scalar_init)
715        << IList->getSourceRange();
716      hadError = true;
717      ++Index;
718      ++StructuredIndex;
719      return;
720    } else if (isa<DesignatedInitExpr>(expr)) {
721      SemaRef.Diag(expr->getSourceRange().getBegin(),
722                    diag::err_designator_for_scalar_init)
723        << DeclType << expr->getSourceRange();
724      hadError = true;
725      ++Index;
726      ++StructuredIndex;
727      return;
728    }
729
730    Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
731    if (CheckSingleInitializer(expr, DeclType, false, SemaRef))
732      hadError = true; // types weren't compatible.
733    else if (savExpr != expr) {
734      // The type was promoted, update initializer list.
735      IList->setInit(Index, expr);
736    }
737    if (hadError)
738      ++StructuredIndex;
739    else
740      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
741    ++Index;
742  } else {
743    SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
744      << IList->getSourceRange();
745    hadError = true;
746    ++Index;
747    ++StructuredIndex;
748    return;
749  }
750}
751
752void InitListChecker::CheckReferenceType(InitListExpr *IList, QualType DeclType,
753                                         unsigned &Index,
754                                         InitListExpr *StructuredList,
755                                         unsigned &StructuredIndex) {
756  if (Index < IList->getNumInits()) {
757    Expr *expr = IList->getInit(Index);
758    if (isa<InitListExpr>(expr)) {
759      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
760        << DeclType << IList->getSourceRange();
761      hadError = true;
762      ++Index;
763      ++StructuredIndex;
764      return;
765    }
766
767    Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
768    if (SemaRef.CheckReferenceInit(expr, DeclType))
769      hadError = true;
770    else if (savExpr != expr) {
771      // The type was promoted, update initializer list.
772      IList->setInit(Index, expr);
773    }
774    if (hadError)
775      ++StructuredIndex;
776    else
777      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
778    ++Index;
779  } else {
780    // FIXME: It would be wonderful if we could point at the actual member. In
781    // general, it would be useful to pass location information down the stack,
782    // so that we know the location (or decl) of the "current object" being
783    // initialized.
784    SemaRef.Diag(IList->getLocStart(),
785                  diag::err_init_reference_member_uninitialized)
786      << DeclType
787      << IList->getSourceRange();
788    hadError = true;
789    ++Index;
790    ++StructuredIndex;
791    return;
792  }
793}
794
795void InitListChecker::CheckVectorType(InitListExpr *IList, QualType DeclType,
796                                      unsigned &Index,
797                                      InitListExpr *StructuredList,
798                                      unsigned &StructuredIndex) {
799  if (Index < IList->getNumInits()) {
800    const VectorType *VT = DeclType->getAsVectorType();
801    int maxElements = VT->getNumElements();
802    QualType elementType = VT->getElementType();
803
804    for (int i = 0; i < maxElements; ++i) {
805      // Don't attempt to go past the end of the init list
806      if (Index >= IList->getNumInits())
807        break;
808      CheckSubElementType(IList, elementType, Index,
809                          StructuredList, StructuredIndex);
810    }
811  }
812}
813
814void InitListChecker::CheckArrayType(InitListExpr *IList, QualType &DeclType,
815                                     llvm::APSInt elementIndex,
816                                     bool SubobjectIsDesignatorContext,
817                                     unsigned &Index,
818                                     InitListExpr *StructuredList,
819                                     unsigned &StructuredIndex) {
820  // Check for the special-case of initializing an array with a string.
821  if (Index < IList->getNumInits()) {
822    if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
823                                 SemaRef.Context)) {
824      CheckStringInit(Str, DeclType, SemaRef);
825      // We place the string literal directly into the resulting
826      // initializer list. This is the only place where the structure
827      // of the structured initializer list doesn't match exactly,
828      // because doing so would involve allocating one character
829      // constant for each string.
830      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
831      StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
832      ++Index;
833      return;
834    }
835  }
836  if (const VariableArrayType *VAT =
837        SemaRef.Context.getAsVariableArrayType(DeclType)) {
838    // Check for VLAs; in standard C it would be possible to check this
839    // earlier, but I don't know where clang accepts VLAs (gcc accepts
840    // them in all sorts of strange places).
841    SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
842                  diag::err_variable_object_no_init)
843      << VAT->getSizeExpr()->getSourceRange();
844    hadError = true;
845    ++Index;
846    ++StructuredIndex;
847    return;
848  }
849
850  // We might know the maximum number of elements in advance.
851  llvm::APSInt maxElements(elementIndex.getBitWidth(),
852                           elementIndex.isUnsigned());
853  bool maxElementsKnown = false;
854  if (const ConstantArrayType *CAT =
855        SemaRef.Context.getAsConstantArrayType(DeclType)) {
856    maxElements = CAT->getSize();
857    elementIndex.extOrTrunc(maxElements.getBitWidth());
858    elementIndex.setIsUnsigned(maxElements.isUnsigned());
859    maxElementsKnown = true;
860  }
861
862  QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
863                             ->getElementType();
864  while (Index < IList->getNumInits()) {
865    Expr *Init = IList->getInit(Index);
866    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
867      // If we're not the subobject that matches up with the '{' for
868      // the designator, we shouldn't be handling the
869      // designator. Return immediately.
870      if (!SubobjectIsDesignatorContext)
871        return;
872
873      // Handle this designated initializer. elementIndex will be
874      // updated to be the next array element we'll initialize.
875      if (CheckDesignatedInitializer(IList, DIE, 0,
876                                     DeclType, 0, &elementIndex, Index,
877                                     StructuredList, StructuredIndex, true,
878                                     false)) {
879        hadError = true;
880        continue;
881      }
882
883      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
884        maxElements.extend(elementIndex.getBitWidth());
885      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
886        elementIndex.extend(maxElements.getBitWidth());
887      elementIndex.setIsUnsigned(maxElements.isUnsigned());
888
889      // If the array is of incomplete type, keep track of the number of
890      // elements in the initializer.
891      if (!maxElementsKnown && elementIndex > maxElements)
892        maxElements = elementIndex;
893
894      continue;
895    }
896
897    // If we know the maximum number of elements, and we've already
898    // hit it, stop consuming elements in the initializer list.
899    if (maxElementsKnown && elementIndex == maxElements)
900      break;
901
902    // Check this element.
903    CheckSubElementType(IList, elementType, Index,
904                        StructuredList, StructuredIndex);
905    ++elementIndex;
906
907    // If the array is of incomplete type, keep track of the number of
908    // elements in the initializer.
909    if (!maxElementsKnown && elementIndex > maxElements)
910      maxElements = elementIndex;
911  }
912  if (!hadError && DeclType->isIncompleteArrayType()) {
913    // If this is an incomplete array type, the actual type needs to
914    // be calculated here.
915    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
916    if (maxElements == Zero) {
917      // Sizing an array implicitly to zero is not allowed by ISO C,
918      // but is supported by GNU.
919      SemaRef.Diag(IList->getLocStart(),
920                    diag::ext_typecheck_zero_array_size);
921    }
922
923    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
924                                                     ArrayType::Normal, 0);
925  }
926}
927
928void InitListChecker::CheckStructUnionTypes(InitListExpr *IList,
929                                            QualType DeclType,
930                                            RecordDecl::field_iterator Field,
931                                            bool SubobjectIsDesignatorContext,
932                                            unsigned &Index,
933                                            InitListExpr *StructuredList,
934                                            unsigned &StructuredIndex,
935                                            bool TopLevelObject) {
936  RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl();
937
938  // If the record is invalid, some of it's members are invalid. To avoid
939  // confusion, we forgo checking the intializer for the entire record.
940  if (structDecl->isInvalidDecl()) {
941    hadError = true;
942    return;
943  }
944
945  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
946    // Value-initialize the first named member of the union.
947    RecordDecl *RD = DeclType->getAsRecordType()->getDecl();
948    for (RecordDecl::field_iterator FieldEnd = RD->field_end(SemaRef.Context);
949         Field != FieldEnd; ++Field) {
950      if (Field->getDeclName()) {
951        StructuredList->setInitializedFieldInUnion(*Field);
952        break;
953      }
954    }
955    return;
956  }
957
958  // If structDecl is a forward declaration, this loop won't do
959  // anything except look at designated initializers; That's okay,
960  // because an error should get printed out elsewhere. It might be
961  // worthwhile to skip over the rest of the initializer, though.
962  RecordDecl *RD = DeclType->getAsRecordType()->getDecl();
963  RecordDecl::field_iterator FieldEnd = RD->field_end(SemaRef.Context);
964  bool InitializedSomething = false;
965  while (Index < IList->getNumInits()) {
966    Expr *Init = IList->getInit(Index);
967
968    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
969      // If we're not the subobject that matches up with the '{' for
970      // the designator, we shouldn't be handling the
971      // designator. Return immediately.
972      if (!SubobjectIsDesignatorContext)
973        return;
974
975      // Handle this designated initializer. Field will be updated to
976      // the next field that we'll be initializing.
977      if (CheckDesignatedInitializer(IList, DIE, 0,
978                                     DeclType, &Field, 0, Index,
979                                     StructuredList, StructuredIndex,
980                                     true, TopLevelObject))
981        hadError = true;
982
983      InitializedSomething = true;
984      continue;
985    }
986
987    if (Field == FieldEnd) {
988      // We've run out of fields. We're done.
989      break;
990    }
991
992    // We've already initialized a member of a union. We're done.
993    if (InitializedSomething && DeclType->isUnionType())
994      break;
995
996    // If we've hit the flexible array member at the end, we're done.
997    if (Field->getType()->isIncompleteArrayType())
998      break;
999
1000    if (Field->isUnnamedBitfield()) {
1001      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1002      ++Field;
1003      continue;
1004    }
1005
1006    CheckSubElementType(IList, Field->getType(), Index,
1007                        StructuredList, StructuredIndex);
1008    InitializedSomething = true;
1009
1010    if (DeclType->isUnionType()) {
1011      // Initialize the first field within the union.
1012      StructuredList->setInitializedFieldInUnion(*Field);
1013    }
1014
1015    ++Field;
1016  }
1017
1018  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1019      Index >= IList->getNumInits())
1020    return;
1021
1022  // Handle GNU flexible array initializers.
1023  if (!TopLevelObject &&
1024      (!isa<InitListExpr>(IList->getInit(Index)) ||
1025       cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1026    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1027                  diag::err_flexible_array_init_nonempty)
1028      << IList->getInit(Index)->getSourceRange().getBegin();
1029    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1030      << *Field;
1031    hadError = true;
1032    ++Index;
1033    return;
1034  } else {
1035    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1036                 diag::ext_flexible_array_init)
1037      << IList->getInit(Index)->getSourceRange().getBegin();
1038    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1039      << *Field;
1040  }
1041
1042  if (isa<InitListExpr>(IList->getInit(Index)))
1043    CheckSubElementType(IList, Field->getType(), Index, StructuredList,
1044                        StructuredIndex);
1045  else
1046    CheckImplicitInitList(IList, Field->getType(), Index, StructuredList,
1047                          StructuredIndex);
1048}
1049
1050/// \brief Expand a field designator that refers to a member of an
1051/// anonymous struct or union into a series of field designators that
1052/// refers to the field within the appropriate subobject.
1053///
1054/// Field/FieldIndex will be updated to point to the (new)
1055/// currently-designated field.
1056static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1057                                           DesignatedInitExpr *DIE,
1058                                           unsigned DesigIdx,
1059                                           FieldDecl *Field,
1060                                        RecordDecl::field_iterator &FieldIter,
1061                                           unsigned &FieldIndex) {
1062  typedef DesignatedInitExpr::Designator Designator;
1063
1064  // Build the path from the current object to the member of the
1065  // anonymous struct/union (backwards).
1066  llvm::SmallVector<FieldDecl *, 4> Path;
1067  SemaRef.BuildAnonymousStructUnionMemberPath(Field, Path);
1068
1069  // Build the replacement designators.
1070  llvm::SmallVector<Designator, 4> Replacements;
1071  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
1072         FI = Path.rbegin(), FIEnd = Path.rend();
1073       FI != FIEnd; ++FI) {
1074    if (FI + 1 == FIEnd)
1075      Replacements.push_back(Designator((IdentifierInfo *)0,
1076                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1077                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1078    else
1079      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1080                                        SourceLocation()));
1081    Replacements.back().setField(*FI);
1082  }
1083
1084  // Expand the current designator into the set of replacement
1085  // designators, so we have a full subobject path down to where the
1086  // member of the anonymous struct/union is actually stored.
1087  DIE->ExpandDesignator(DesigIdx, &Replacements[0],
1088                        &Replacements[0] + Replacements.size());
1089
1090  // Update FieldIter/FieldIndex;
1091  RecordDecl *Record = cast<RecordDecl>(Path.back()->getDeclContext());
1092  FieldIter = Record->field_begin(SemaRef.Context);
1093  FieldIndex = 0;
1094  for (RecordDecl::field_iterator FEnd = Record->field_end(SemaRef.Context);
1095       FieldIter != FEnd; ++FieldIter) {
1096    if (FieldIter->isUnnamedBitfield())
1097        continue;
1098
1099    if (*FieldIter == Path.back())
1100      return;
1101
1102    ++FieldIndex;
1103  }
1104
1105  assert(false && "Unable to find anonymous struct/union field");
1106}
1107
1108/// @brief Check the well-formedness of a C99 designated initializer.
1109///
1110/// Determines whether the designated initializer @p DIE, which
1111/// resides at the given @p Index within the initializer list @p
1112/// IList, is well-formed for a current object of type @p DeclType
1113/// (C99 6.7.8). The actual subobject that this designator refers to
1114/// within the current subobject is returned in either
1115/// @p NextField or @p NextElementIndex (whichever is appropriate).
1116///
1117/// @param IList  The initializer list in which this designated
1118/// initializer occurs.
1119///
1120/// @param DIE The designated initializer expression.
1121///
1122/// @param DesigIdx  The index of the current designator.
1123///
1124/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1125/// into which the designation in @p DIE should refer.
1126///
1127/// @param NextField  If non-NULL and the first designator in @p DIE is
1128/// a field, this will be set to the field declaration corresponding
1129/// to the field named by the designator.
1130///
1131/// @param NextElementIndex  If non-NULL and the first designator in @p
1132/// DIE is an array designator or GNU array-range designator, this
1133/// will be set to the last index initialized by this designator.
1134///
1135/// @param Index  Index into @p IList where the designated initializer
1136/// @p DIE occurs.
1137///
1138/// @param StructuredList  The initializer list expression that
1139/// describes all of the subobject initializers in the order they'll
1140/// actually be initialized.
1141///
1142/// @returns true if there was an error, false otherwise.
1143bool
1144InitListChecker::CheckDesignatedInitializer(InitListExpr *IList,
1145                                      DesignatedInitExpr *DIE,
1146                                      unsigned DesigIdx,
1147                                      QualType &CurrentObjectType,
1148                                      RecordDecl::field_iterator *NextField,
1149                                      llvm::APSInt *NextElementIndex,
1150                                      unsigned &Index,
1151                                      InitListExpr *StructuredList,
1152                                      unsigned &StructuredIndex,
1153                                            bool FinishSubobjectInit,
1154                                            bool TopLevelObject) {
1155  if (DesigIdx == DIE->size()) {
1156    // Check the actual initialization for the designated object type.
1157    bool prevHadError = hadError;
1158
1159    // Temporarily remove the designator expression from the
1160    // initializer list that the child calls see, so that we don't try
1161    // to re-process the designator.
1162    unsigned OldIndex = Index;
1163    IList->setInit(OldIndex, DIE->getInit());
1164
1165    CheckSubElementType(IList, CurrentObjectType, Index,
1166                        StructuredList, StructuredIndex);
1167
1168    // Restore the designated initializer expression in the syntactic
1169    // form of the initializer list.
1170    if (IList->getInit(OldIndex) != DIE->getInit())
1171      DIE->setInit(IList->getInit(OldIndex));
1172    IList->setInit(OldIndex, DIE);
1173
1174    return hadError && !prevHadError;
1175  }
1176
1177  bool IsFirstDesignator = (DesigIdx == 0);
1178  assert((IsFirstDesignator || StructuredList) &&
1179         "Need a non-designated initializer list to start from");
1180
1181  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1182  // Determine the structural initializer list that corresponds to the
1183  // current subobject.
1184  StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1185    : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1186                                 StructuredList, StructuredIndex,
1187                                 SourceRange(D->getStartLocation(),
1188                                             DIE->getSourceRange().getEnd()));
1189  assert(StructuredList && "Expected a structured initializer list");
1190
1191  if (D->isFieldDesignator()) {
1192    // C99 6.7.8p7:
1193    //
1194    //   If a designator has the form
1195    //
1196    //      . identifier
1197    //
1198    //   then the current object (defined below) shall have
1199    //   structure or union type and the identifier shall be the
1200    //   name of a member of that type.
1201    const RecordType *RT = CurrentObjectType->getAsRecordType();
1202    if (!RT) {
1203      SourceLocation Loc = D->getDotLoc();
1204      if (Loc.isInvalid())
1205        Loc = D->getFieldLoc();
1206      SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1207        << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1208      ++Index;
1209      return true;
1210    }
1211
1212    // Note: we perform a linear search of the fields here, despite
1213    // the fact that we have a faster lookup method, because we always
1214    // need to compute the field's index.
1215    FieldDecl *KnownField = D->getField();
1216    IdentifierInfo *FieldName = D->getFieldName();
1217    unsigned FieldIndex = 0;
1218    RecordDecl::field_iterator
1219      Field = RT->getDecl()->field_begin(SemaRef.Context),
1220      FieldEnd = RT->getDecl()->field_end(SemaRef.Context);
1221    for (; Field != FieldEnd; ++Field) {
1222      if (Field->isUnnamedBitfield())
1223        continue;
1224
1225      if (KnownField == *Field || Field->getIdentifier() == FieldName)
1226        break;
1227
1228      ++FieldIndex;
1229    }
1230
1231    if (Field == FieldEnd) {
1232      // There was no normal field in the struct with the designated
1233      // name. Perform another lookup for this name, which may find
1234      // something that we can't designate (e.g., a member function),
1235      // may find nothing, or may find a member of an anonymous
1236      // struct/union.
1237      DeclContext::lookup_result Lookup
1238        = RT->getDecl()->lookup(SemaRef.Context, FieldName);
1239      if (Lookup.first == Lookup.second) {
1240        // Name lookup didn't find anything.
1241        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1242          << FieldName << CurrentObjectType;
1243        ++Index;
1244        return true;
1245      } else if (!KnownField && isa<FieldDecl>(*Lookup.first) &&
1246                 cast<RecordDecl>((*Lookup.first)->getDeclContext())
1247                   ->isAnonymousStructOrUnion()) {
1248        // Handle an field designator that refers to a member of an
1249        // anonymous struct or union.
1250        ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx,
1251                                       cast<FieldDecl>(*Lookup.first),
1252                                       Field, FieldIndex);
1253        D = DIE->getDesignator(DesigIdx);
1254      } else {
1255        // Name lookup found something, but it wasn't a field.
1256        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1257          << FieldName;
1258        SemaRef.Diag((*Lookup.first)->getLocation(),
1259                      diag::note_field_designator_found);
1260        ++Index;
1261        return true;
1262      }
1263    } else if (!KnownField &&
1264               cast<RecordDecl>((*Field)->getDeclContext())
1265                 ->isAnonymousStructOrUnion()) {
1266      ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, *Field,
1267                                     Field, FieldIndex);
1268      D = DIE->getDesignator(DesigIdx);
1269    }
1270
1271    // All of the fields of a union are located at the same place in
1272    // the initializer list.
1273    if (RT->getDecl()->isUnion()) {
1274      FieldIndex = 0;
1275      StructuredList->setInitializedFieldInUnion(*Field);
1276    }
1277
1278    // Update the designator with the field declaration.
1279    D->setField(*Field);
1280
1281    // Make sure that our non-designated initializer list has space
1282    // for a subobject corresponding to this field.
1283    if (FieldIndex >= StructuredList->getNumInits())
1284      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1285
1286    // This designator names a flexible array member.
1287    if (Field->getType()->isIncompleteArrayType()) {
1288      bool Invalid = false;
1289      if ((DesigIdx + 1) != DIE->size()) {
1290        // We can't designate an object within the flexible array
1291        // member (because GCC doesn't allow it).
1292        DesignatedInitExpr::Designator *NextD
1293          = DIE->getDesignator(DesigIdx + 1);
1294        SemaRef.Diag(NextD->getStartLocation(),
1295                      diag::err_designator_into_flexible_array_member)
1296          << SourceRange(NextD->getStartLocation(),
1297                         DIE->getSourceRange().getEnd());
1298        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1299          << *Field;
1300        Invalid = true;
1301      }
1302
1303      if (!hadError && !isa<InitListExpr>(DIE->getInit())) {
1304        // The initializer is not an initializer list.
1305        SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1306                      diag::err_flexible_array_init_needs_braces)
1307          << DIE->getInit()->getSourceRange();
1308        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1309          << *Field;
1310        Invalid = true;
1311      }
1312
1313      // Handle GNU flexible array initializers.
1314      if (!Invalid && !TopLevelObject &&
1315          cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1316        SemaRef.Diag(DIE->getSourceRange().getBegin(),
1317                      diag::err_flexible_array_init_nonempty)
1318          << DIE->getSourceRange().getBegin();
1319        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1320          << *Field;
1321        Invalid = true;
1322      }
1323
1324      if (Invalid) {
1325        ++Index;
1326        return true;
1327      }
1328
1329      // Initialize the array.
1330      bool prevHadError = hadError;
1331      unsigned newStructuredIndex = FieldIndex;
1332      unsigned OldIndex = Index;
1333      IList->setInit(Index, DIE->getInit());
1334      CheckSubElementType(IList, Field->getType(), Index,
1335                          StructuredList, newStructuredIndex);
1336      IList->setInit(OldIndex, DIE);
1337      if (hadError && !prevHadError) {
1338        ++Field;
1339        ++FieldIndex;
1340        if (NextField)
1341          *NextField = Field;
1342        StructuredIndex = FieldIndex;
1343        return true;
1344      }
1345    } else {
1346      // Recurse to check later designated subobjects.
1347      QualType FieldType = (*Field)->getType();
1348      unsigned newStructuredIndex = FieldIndex;
1349      if (CheckDesignatedInitializer(IList, DIE, DesigIdx + 1, FieldType, 0, 0,
1350                                     Index, StructuredList, newStructuredIndex,
1351                                     true, false))
1352        return true;
1353    }
1354
1355    // Find the position of the next field to be initialized in this
1356    // subobject.
1357    ++Field;
1358    ++FieldIndex;
1359
1360    // If this the first designator, our caller will continue checking
1361    // the rest of this struct/class/union subobject.
1362    if (IsFirstDesignator) {
1363      if (NextField)
1364        *NextField = Field;
1365      StructuredIndex = FieldIndex;
1366      return false;
1367    }
1368
1369    if (!FinishSubobjectInit)
1370      return false;
1371
1372    // We've already initialized something in the union; we're done.
1373    if (RT->getDecl()->isUnion())
1374      return hadError;
1375
1376    // Check the remaining fields within this class/struct/union subobject.
1377    bool prevHadError = hadError;
1378    CheckStructUnionTypes(IList, CurrentObjectType, Field, false, Index,
1379                          StructuredList, FieldIndex);
1380    return hadError && !prevHadError;
1381  }
1382
1383  // C99 6.7.8p6:
1384  //
1385  //   If a designator has the form
1386  //
1387  //      [ constant-expression ]
1388  //
1389  //   then the current object (defined below) shall have array
1390  //   type and the expression shall be an integer constant
1391  //   expression. If the array is of unknown size, any
1392  //   nonnegative value is valid.
1393  //
1394  // Additionally, cope with the GNU extension that permits
1395  // designators of the form
1396  //
1397  //      [ constant-expression ... constant-expression ]
1398  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1399  if (!AT) {
1400    SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1401      << CurrentObjectType;
1402    ++Index;
1403    return true;
1404  }
1405
1406  Expr *IndexExpr = 0;
1407  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1408  if (D->isArrayDesignator()) {
1409    IndexExpr = DIE->getArrayIndex(*D);
1410    DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1411    DesignatedEndIndex = DesignatedStartIndex;
1412  } else {
1413    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1414
1415
1416    DesignatedStartIndex =
1417      DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1418    DesignatedEndIndex =
1419      DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1420    IndexExpr = DIE->getArrayRangeEnd(*D);
1421
1422    if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
1423      FullyStructuredList->sawArrayRangeDesignator();
1424  }
1425
1426  if (isa<ConstantArrayType>(AT)) {
1427    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1428    DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1429    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1430    DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1431    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1432    if (DesignatedEndIndex >= MaxElements) {
1433      SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1434                    diag::err_array_designator_too_large)
1435        << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1436        << IndexExpr->getSourceRange();
1437      ++Index;
1438      return true;
1439    }
1440  } else {
1441    // Make sure the bit-widths and signedness match.
1442    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1443      DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1444    else if (DesignatedStartIndex.getBitWidth() <
1445             DesignatedEndIndex.getBitWidth())
1446      DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1447    DesignatedStartIndex.setIsUnsigned(true);
1448    DesignatedEndIndex.setIsUnsigned(true);
1449  }
1450
1451  // Make sure that our non-designated initializer list has space
1452  // for a subobject corresponding to this array element.
1453  if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1454    StructuredList->resizeInits(SemaRef.Context,
1455                                DesignatedEndIndex.getZExtValue() + 1);
1456
1457  // Repeatedly perform subobject initializations in the range
1458  // [DesignatedStartIndex, DesignatedEndIndex].
1459
1460  // Move to the next designator
1461  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1462  unsigned OldIndex = Index;
1463  while (DesignatedStartIndex <= DesignatedEndIndex) {
1464    // Recurse to check later designated subobjects.
1465    QualType ElementType = AT->getElementType();
1466    Index = OldIndex;
1467    if (CheckDesignatedInitializer(IList, DIE, DesigIdx + 1, ElementType, 0, 0,
1468                                   Index, StructuredList, ElementIndex,
1469                                   (DesignatedStartIndex == DesignatedEndIndex),
1470                                   false))
1471      return true;
1472
1473    // Move to the next index in the array that we'll be initializing.
1474    ++DesignatedStartIndex;
1475    ElementIndex = DesignatedStartIndex.getZExtValue();
1476  }
1477
1478  // If this the first designator, our caller will continue checking
1479  // the rest of this array subobject.
1480  if (IsFirstDesignator) {
1481    if (NextElementIndex)
1482      *NextElementIndex = DesignatedStartIndex;
1483    StructuredIndex = ElementIndex;
1484    return false;
1485  }
1486
1487  if (!FinishSubobjectInit)
1488    return false;
1489
1490  // Check the remaining elements within this array subobject.
1491  bool prevHadError = hadError;
1492  CheckArrayType(IList, CurrentObjectType, DesignatedStartIndex, false, Index,
1493                 StructuredList, ElementIndex);
1494  return hadError && !prevHadError;
1495}
1496
1497// Get the structured initializer list for a subobject of type
1498// @p CurrentObjectType.
1499InitListExpr *
1500InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1501                                            QualType CurrentObjectType,
1502                                            InitListExpr *StructuredList,
1503                                            unsigned StructuredIndex,
1504                                            SourceRange InitRange) {
1505  Expr *ExistingInit = 0;
1506  if (!StructuredList)
1507    ExistingInit = SyntacticToSemantic[IList];
1508  else if (StructuredIndex < StructuredList->getNumInits())
1509    ExistingInit = StructuredList->getInit(StructuredIndex);
1510
1511  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1512    return Result;
1513
1514  if (ExistingInit) {
1515    // We are creating an initializer list that initializes the
1516    // subobjects of the current object, but there was already an
1517    // initialization that completely initialized the current
1518    // subobject, e.g., by a compound literal:
1519    //
1520    // struct X { int a, b; };
1521    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1522    //
1523    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1524    // designated initializer re-initializes the whole
1525    // subobject [0], overwriting previous initializers.
1526    SemaRef.Diag(InitRange.getBegin(),
1527                 diag::warn_subobject_initializer_overrides)
1528      << InitRange;
1529    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1530                  diag::note_previous_initializer)
1531      << /*FIXME:has side effects=*/0
1532      << ExistingInit->getSourceRange();
1533  }
1534
1535  InitListExpr *Result
1536    = new (SemaRef.Context) InitListExpr(InitRange.getBegin(), 0, 0,
1537                                         InitRange.getEnd());
1538
1539  Result->setType(CurrentObjectType);
1540
1541  // Pre-allocate storage for the structured initializer list.
1542  unsigned NumElements = 0;
1543  unsigned NumInits = 0;
1544  if (!StructuredList)
1545    NumInits = IList->getNumInits();
1546  else if (Index < IList->getNumInits()) {
1547    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1548      NumInits = SubList->getNumInits();
1549  }
1550
1551  if (const ArrayType *AType
1552      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1553    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1554      NumElements = CAType->getSize().getZExtValue();
1555      // Simple heuristic so that we don't allocate a very large
1556      // initializer with many empty entries at the end.
1557      if (NumInits && NumElements > NumInits)
1558        NumElements = 0;
1559    }
1560  } else if (const VectorType *VType = CurrentObjectType->getAsVectorType())
1561    NumElements = VType->getNumElements();
1562  else if (const RecordType *RType = CurrentObjectType->getAsRecordType()) {
1563    RecordDecl *RDecl = RType->getDecl();
1564    if (RDecl->isUnion())
1565      NumElements = 1;
1566    else
1567      NumElements = std::distance(RDecl->field_begin(SemaRef.Context),
1568                                  RDecl->field_end(SemaRef.Context));
1569  }
1570
1571  if (NumElements < NumInits)
1572    NumElements = IList->getNumInits();
1573
1574  Result->reserveInits(NumElements);
1575
1576  // Link this new initializer list into the structured initializer
1577  // lists.
1578  if (StructuredList)
1579    StructuredList->updateInit(StructuredIndex, Result);
1580  else {
1581    Result->setSyntacticForm(IList);
1582    SyntacticToSemantic[IList] = Result;
1583  }
1584
1585  return Result;
1586}
1587
1588/// Update the initializer at index @p StructuredIndex within the
1589/// structured initializer list to the value @p expr.
1590void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1591                                                  unsigned &StructuredIndex,
1592                                                  Expr *expr) {
1593  // No structured initializer list to update
1594  if (!StructuredList)
1595    return;
1596
1597  if (Expr *PrevInit = StructuredList->updateInit(StructuredIndex, expr)) {
1598    // This initializer overwrites a previous initializer. Warn.
1599    SemaRef.Diag(expr->getSourceRange().getBegin(),
1600                  diag::warn_initializer_overrides)
1601      << expr->getSourceRange();
1602    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1603                  diag::note_previous_initializer)
1604      << /*FIXME:has side effects=*/0
1605      << PrevInit->getSourceRange();
1606  }
1607
1608  ++StructuredIndex;
1609}
1610
1611/// Check that the given Index expression is a valid array designator
1612/// value. This is essentailly just a wrapper around
1613/// VerifyIntegerConstantExpression that also checks for negative values
1614/// and produces a reasonable diagnostic if there is a
1615/// failure. Returns true if there was an error, false otherwise.  If
1616/// everything went okay, Value will receive the value of the constant
1617/// expression.
1618static bool
1619CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1620  SourceLocation Loc = Index->getSourceRange().getBegin();
1621
1622  // Make sure this is an integer constant expression.
1623  if (S.VerifyIntegerConstantExpression(Index, &Value))
1624    return true;
1625
1626  if (Value.isSigned() && Value.isNegative())
1627    return S.Diag(Loc, diag::err_array_designator_negative)
1628      << Value.toString(10) << Index->getSourceRange();
1629
1630  Value.setIsUnsigned(true);
1631  return false;
1632}
1633
1634Sema::OwningExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1635                                                        SourceLocation Loc,
1636                                                        bool GNUSyntax,
1637                                                        OwningExprResult Init) {
1638  typedef DesignatedInitExpr::Designator ASTDesignator;
1639
1640  bool Invalid = false;
1641  llvm::SmallVector<ASTDesignator, 32> Designators;
1642  llvm::SmallVector<Expr *, 32> InitExpressions;
1643
1644  // Build designators and check array designator expressions.
1645  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1646    const Designator &D = Desig.getDesignator(Idx);
1647    switch (D.getKind()) {
1648    case Designator::FieldDesignator:
1649      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1650                                          D.getFieldLoc()));
1651      break;
1652
1653    case Designator::ArrayDesignator: {
1654      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1655      llvm::APSInt IndexValue;
1656      if (!Index->isTypeDependent() &&
1657          !Index->isValueDependent() &&
1658          CheckArrayDesignatorExpr(*this, Index, IndexValue))
1659        Invalid = true;
1660      else {
1661        Designators.push_back(ASTDesignator(InitExpressions.size(),
1662                                            D.getLBracketLoc(),
1663                                            D.getRBracketLoc()));
1664        InitExpressions.push_back(Index);
1665      }
1666      break;
1667    }
1668
1669    case Designator::ArrayRangeDesignator: {
1670      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1671      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1672      llvm::APSInt StartValue;
1673      llvm::APSInt EndValue;
1674      bool StartDependent = StartIndex->isTypeDependent() ||
1675                            StartIndex->isValueDependent();
1676      bool EndDependent = EndIndex->isTypeDependent() ||
1677                          EndIndex->isValueDependent();
1678      if ((!StartDependent &&
1679           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1680          (!EndDependent &&
1681           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1682        Invalid = true;
1683      else {
1684        // Make sure we're comparing values with the same bit width.
1685        if (StartDependent || EndDependent) {
1686          // Nothing to compute.
1687        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1688          EndValue.extend(StartValue.getBitWidth());
1689        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1690          StartValue.extend(EndValue.getBitWidth());
1691
1692        if (!StartDependent && !EndDependent && EndValue < StartValue) {
1693          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1694            << StartValue.toString(10) << EndValue.toString(10)
1695            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1696          Invalid = true;
1697        } else {
1698          Designators.push_back(ASTDesignator(InitExpressions.size(),
1699                                              D.getLBracketLoc(),
1700                                              D.getEllipsisLoc(),
1701                                              D.getRBracketLoc()));
1702          InitExpressions.push_back(StartIndex);
1703          InitExpressions.push_back(EndIndex);
1704        }
1705      }
1706      break;
1707    }
1708    }
1709  }
1710
1711  if (Invalid || Init.isInvalid())
1712    return ExprError();
1713
1714  // Clear out the expressions within the designation.
1715  Desig.ClearExprs(*this);
1716
1717  DesignatedInitExpr *DIE
1718    = DesignatedInitExpr::Create(Context,
1719                                 Designators.data(), Designators.size(),
1720                                 InitExpressions.data(), InitExpressions.size(),
1721                                 Loc, GNUSyntax, Init.takeAs<Expr>());
1722  return Owned(DIE);
1723}
1724
1725bool Sema::CheckInitList(InitListExpr *&InitList, QualType &DeclType) {
1726  InitListChecker CheckInitList(*this, InitList, DeclType);
1727  if (!CheckInitList.HadError())
1728    InitList = CheckInitList.getFullyStructuredList();
1729
1730  return CheckInitList.HadError();
1731}
1732
1733/// \brief Diagnose any semantic errors with value-initialization of
1734/// the given type.
1735///
1736/// Value-initialization effectively zero-initializes any types
1737/// without user-declared constructors, and calls the default
1738/// constructor for a for any type that has a user-declared
1739/// constructor (C++ [dcl.init]p5). Value-initialization can fail when
1740/// a type with a user-declared constructor does not have an
1741/// accessible, non-deleted default constructor. In C, everything can
1742/// be value-initialized, which corresponds to C's notion of
1743/// initializing objects with static storage duration when no
1744/// initializer is provided for that object.
1745///
1746/// \returns true if there was an error, false otherwise.
1747bool Sema::CheckValueInitialization(QualType Type, SourceLocation Loc) {
1748  // C++ [dcl.init]p5:
1749  //
1750  //   To value-initialize an object of type T means:
1751
1752  //     -- if T is an array type, then each element is value-initialized;
1753  if (const ArrayType *AT = Context.getAsArrayType(Type))
1754    return CheckValueInitialization(AT->getElementType(), Loc);
1755
1756  if (const RecordType *RT = Type->getAsRecordType()) {
1757    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1758      // -- if T is a class type (clause 9) with a user-declared
1759      //    constructor (12.1), then the default constructor for T is
1760      //    called (and the initialization is ill-formed if T has no
1761      //    accessible default constructor);
1762      if (ClassDecl->hasUserDeclaredConstructor())
1763        // FIXME: Eventually, we'll need to put the constructor decl into the
1764        // AST.
1765        return PerformInitializationByConstructor(Type, 0, 0, Loc,
1766                                                  SourceRange(Loc),
1767                                                  DeclarationName(),
1768                                                  IK_Direct);
1769    }
1770  }
1771
1772  if (Type->isReferenceType()) {
1773    // C++ [dcl.init]p5:
1774    //   [...] A program that calls for default-initialization or
1775    //   value-initialization of an entity of reference type is
1776    //   ill-formed. [...]
1777    // FIXME: Once we have code that goes through this path, add an actual
1778    // diagnostic :)
1779  }
1780
1781  return false;
1782}
1783