SemaInit.cpp revision 8e97a38c31a2587f9cdcca5ec240883adb1c0888
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14// This file also implements Sema::CheckInitializerTypes.
15//
16//===----------------------------------------------------------------------===//
17
18#include "SemaInit.h"
19#include "Lookup.h"
20#include "Sema.h"
21#include "clang/Parse/Designator.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/TypeLoc.h"
26#include "llvm/Support/ErrorHandling.h"
27#include <map>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Sema Initialization Checking
32//===----------------------------------------------------------------------===//
33
34static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
35  const ArrayType *AT = Context.getAsArrayType(DeclType);
36  if (!AT) return 0;
37
38  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
39    return 0;
40
41  // See if this is a string literal or @encode.
42  Init = Init->IgnoreParens();
43
44  // Handle @encode, which is a narrow string.
45  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
46    return Init;
47
48  // Otherwise we can only handle string literals.
49  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
50  if (SL == 0) return 0;
51
52  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
53  // char array can be initialized with a narrow string.
54  // Only allow char x[] = "foo";  not char x[] = L"foo";
55  if (!SL->isWide())
56    return ElemTy->isCharType() ? Init : 0;
57
58  // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
59  // correction from DR343): "An array with element type compatible with a
60  // qualified or unqualified version of wchar_t may be initialized by a wide
61  // string literal, optionally enclosed in braces."
62  if (Context.typesAreCompatible(Context.getWCharType(),
63                                 ElemTy.getUnqualifiedType()))
64    return Init;
65
66  return 0;
67}
68
69static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
70  // Get the length of the string as parsed.
71  uint64_t StrLength =
72    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
73
74
75  const ArrayType *AT = S.Context.getAsArrayType(DeclT);
76  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
77    // C99 6.7.8p14. We have an array of character type with unknown size
78    // being initialized to a string literal.
79    llvm::APSInt ConstVal(32);
80    ConstVal = StrLength;
81    // Return a new array type (C99 6.7.8p22).
82    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
83                                           ConstVal,
84                                           ArrayType::Normal, 0);
85    return;
86  }
87
88  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
89
90  // C99 6.7.8p14. We have an array of character type with known size.  However,
91  // the size may be smaller or larger than the string we are initializing.
92  // FIXME: Avoid truncation for 64-bit length strings.
93  if (StrLength-1 > CAT->getSize().getZExtValue())
94    S.Diag(Str->getSourceRange().getBegin(),
95           diag::warn_initializer_string_for_char_array_too_long)
96      << Str->getSourceRange();
97
98  // Set the type to the actual size that we are initializing.  If we have
99  // something like:
100  //   char x[1] = "foo";
101  // then this will set the string literal's type to char[1].
102  Str->setType(DeclT);
103}
104
105//===----------------------------------------------------------------------===//
106// Semantic checking for initializer lists.
107//===----------------------------------------------------------------------===//
108
109/// @brief Semantic checking for initializer lists.
110///
111/// The InitListChecker class contains a set of routines that each
112/// handle the initialization of a certain kind of entity, e.g.,
113/// arrays, vectors, struct/union types, scalars, etc. The
114/// InitListChecker itself performs a recursive walk of the subobject
115/// structure of the type to be initialized, while stepping through
116/// the initializer list one element at a time. The IList and Index
117/// parameters to each of the Check* routines contain the active
118/// (syntactic) initializer list and the index into that initializer
119/// list that represents the current initializer. Each routine is
120/// responsible for moving that Index forward as it consumes elements.
121///
122/// Each Check* routine also has a StructuredList/StructuredIndex
123/// arguments, which contains the current the "structured" (semantic)
124/// initializer list and the index into that initializer list where we
125/// are copying initializers as we map them over to the semantic
126/// list. Once we have completed our recursive walk of the subobject
127/// structure, we will have constructed a full semantic initializer
128/// list.
129///
130/// C99 designators cause changes in the initializer list traversal,
131/// because they make the initialization "jump" into a specific
132/// subobject and then continue the initialization from that
133/// point. CheckDesignatedInitializer() recursively steps into the
134/// designated subobject and manages backing out the recursion to
135/// initialize the subobjects after the one designated.
136namespace {
137class InitListChecker {
138  Sema &SemaRef;
139  bool hadError;
140  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
141  InitListExpr *FullyStructuredList;
142
143  void CheckImplicitInitList(const InitializedEntity &Entity,
144                             InitListExpr *ParentIList, QualType T,
145                             unsigned &Index, InitListExpr *StructuredList,
146                             unsigned &StructuredIndex,
147                             bool TopLevelObject = false);
148  void CheckExplicitInitList(const InitializedEntity &Entity,
149                             InitListExpr *IList, QualType &T,
150                             unsigned &Index, InitListExpr *StructuredList,
151                             unsigned &StructuredIndex,
152                             bool TopLevelObject = false);
153  void CheckListElementTypes(const InitializedEntity &Entity,
154                             InitListExpr *IList, QualType &DeclType,
155                             bool SubobjectIsDesignatorContext,
156                             unsigned &Index,
157                             InitListExpr *StructuredList,
158                             unsigned &StructuredIndex,
159                             bool TopLevelObject = false);
160  void CheckSubElementType(const InitializedEntity &Entity,
161                           InitListExpr *IList, QualType ElemType,
162                           unsigned &Index,
163                           InitListExpr *StructuredList,
164                           unsigned &StructuredIndex);
165  void CheckScalarType(const InitializedEntity &Entity,
166                       InitListExpr *IList, QualType DeclType,
167                       unsigned &Index,
168                       InitListExpr *StructuredList,
169                       unsigned &StructuredIndex);
170  void CheckReferenceType(const InitializedEntity &Entity,
171                          InitListExpr *IList, QualType DeclType,
172                          unsigned &Index,
173                          InitListExpr *StructuredList,
174                          unsigned &StructuredIndex);
175  void CheckVectorType(const InitializedEntity &Entity,
176                       InitListExpr *IList, QualType DeclType, unsigned &Index,
177                       InitListExpr *StructuredList,
178                       unsigned &StructuredIndex);
179  void CheckStructUnionTypes(const InitializedEntity &Entity,
180                             InitListExpr *IList, QualType DeclType,
181                             RecordDecl::field_iterator Field,
182                             bool SubobjectIsDesignatorContext, unsigned &Index,
183                             InitListExpr *StructuredList,
184                             unsigned &StructuredIndex,
185                             bool TopLevelObject = false);
186  void CheckArrayType(const InitializedEntity &Entity,
187                      InitListExpr *IList, QualType &DeclType,
188                      llvm::APSInt elementIndex,
189                      bool SubobjectIsDesignatorContext, unsigned &Index,
190                      InitListExpr *StructuredList,
191                      unsigned &StructuredIndex);
192  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
193                                  InitListExpr *IList, DesignatedInitExpr *DIE,
194                                  unsigned DesigIdx,
195                                  QualType &CurrentObjectType,
196                                  RecordDecl::field_iterator *NextField,
197                                  llvm::APSInt *NextElementIndex,
198                                  unsigned &Index,
199                                  InitListExpr *StructuredList,
200                                  unsigned &StructuredIndex,
201                                  bool FinishSubobjectInit,
202                                  bool TopLevelObject);
203  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
204                                           QualType CurrentObjectType,
205                                           InitListExpr *StructuredList,
206                                           unsigned StructuredIndex,
207                                           SourceRange InitRange);
208  void UpdateStructuredListElement(InitListExpr *StructuredList,
209                                   unsigned &StructuredIndex,
210                                   Expr *expr);
211  int numArrayElements(QualType DeclType);
212  int numStructUnionElements(QualType DeclType);
213
214  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
215                               const InitializedEntity &ParentEntity,
216                               InitListExpr *ILE, bool &RequiresSecondPass);
217  void FillInValueInitializations(const InitializedEntity &Entity,
218                                  InitListExpr *ILE, bool &RequiresSecondPass);
219public:
220  InitListChecker(Sema &S, const InitializedEntity &Entity,
221                  InitListExpr *IL, QualType &T);
222  bool HadError() { return hadError; }
223
224  // @brief Retrieves the fully-structured initializer list used for
225  // semantic analysis and code generation.
226  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
227};
228} // end anonymous namespace
229
230void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
231                                        const InitializedEntity &ParentEntity,
232                                              InitListExpr *ILE,
233                                              bool &RequiresSecondPass) {
234  SourceLocation Loc = ILE->getSourceRange().getBegin();
235  unsigned NumInits = ILE->getNumInits();
236  InitializedEntity MemberEntity
237    = InitializedEntity::InitializeMember(Field, &ParentEntity);
238  if (Init >= NumInits || !ILE->getInit(Init)) {
239    // FIXME: We probably don't need to handle references
240    // specially here, since value-initialization of references is
241    // handled in InitializationSequence.
242    if (Field->getType()->isReferenceType()) {
243      // C++ [dcl.init.aggr]p9:
244      //   If an incomplete or empty initializer-list leaves a
245      //   member of reference type uninitialized, the program is
246      //   ill-formed.
247      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
248        << Field->getType()
249        << ILE->getSyntacticForm()->getSourceRange();
250      SemaRef.Diag(Field->getLocation(),
251                   diag::note_uninit_reference_member);
252      hadError = true;
253      return;
254    }
255
256    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
257                                                              true);
258    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
259    if (!InitSeq) {
260      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
261      hadError = true;
262      return;
263    }
264
265    Sema::OwningExprResult MemberInit
266      = InitSeq.Perform(SemaRef, MemberEntity, Kind,
267                        Sema::MultiExprArg(SemaRef, 0, 0));
268    if (MemberInit.isInvalid()) {
269      hadError = true;
270      return;
271    }
272
273    if (hadError) {
274      // Do nothing
275    } else if (Init < NumInits) {
276      ILE->setInit(Init, MemberInit.takeAs<Expr>());
277    } else if (InitSeq.getKind()
278                 == InitializationSequence::ConstructorInitialization) {
279      // Value-initialization requires a constructor call, so
280      // extend the initializer list to include the constructor
281      // call and make a note that we'll need to take another pass
282      // through the initializer list.
283      ILE->updateInit(Init, MemberInit.takeAs<Expr>());
284      RequiresSecondPass = true;
285    }
286  } else if (InitListExpr *InnerILE
287               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
288    FillInValueInitializations(MemberEntity, InnerILE,
289                               RequiresSecondPass);
290}
291
292/// Recursively replaces NULL values within the given initializer list
293/// with expressions that perform value-initialization of the
294/// appropriate type.
295void
296InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
297                                            InitListExpr *ILE,
298                                            bool &RequiresSecondPass) {
299  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
300         "Should not have void type");
301  SourceLocation Loc = ILE->getSourceRange().getBegin();
302  if (ILE->getSyntacticForm())
303    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
304
305  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
306    if (RType->getDecl()->isUnion() &&
307        ILE->getInitializedFieldInUnion())
308      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
309                              Entity, ILE, RequiresSecondPass);
310    else {
311      unsigned Init = 0;
312      for (RecordDecl::field_iterator
313             Field = RType->getDecl()->field_begin(),
314             FieldEnd = RType->getDecl()->field_end();
315           Field != FieldEnd; ++Field) {
316        if (Field->isUnnamedBitfield())
317          continue;
318
319        if (hadError)
320          return;
321
322        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
323        if (hadError)
324          return;
325
326        ++Init;
327
328        // Only look at the first initialization of a union.
329        if (RType->getDecl()->isUnion())
330          break;
331      }
332    }
333
334    return;
335  }
336
337  QualType ElementType;
338
339  InitializedEntity ElementEntity = Entity;
340  unsigned NumInits = ILE->getNumInits();
341  unsigned NumElements = NumInits;
342  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
343    ElementType = AType->getElementType();
344    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
345      NumElements = CAType->getSize().getZExtValue();
346    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
347                                                         0, Entity);
348  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
349    ElementType = VType->getElementType();
350    NumElements = VType->getNumElements();
351    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
352                                                         0, Entity);
353  } else
354    ElementType = ILE->getType();
355
356
357  for (unsigned Init = 0; Init != NumElements; ++Init) {
358    if (hadError)
359      return;
360
361    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
362        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
363      ElementEntity.setElementIndex(Init);
364
365    if (Init >= NumInits || !ILE->getInit(Init)) {
366      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
367                                                                true);
368      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
369      if (!InitSeq) {
370        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
371        hadError = true;
372        return;
373      }
374
375      Sema::OwningExprResult ElementInit
376        = InitSeq.Perform(SemaRef, ElementEntity, Kind,
377                          Sema::MultiExprArg(SemaRef, 0, 0));
378      if (ElementInit.isInvalid()) {
379        hadError = true;
380        return;
381      }
382
383      if (hadError) {
384        // Do nothing
385      } else if (Init < NumInits) {
386        ILE->setInit(Init, ElementInit.takeAs<Expr>());
387      } else if (InitSeq.getKind()
388                   == InitializationSequence::ConstructorInitialization) {
389        // Value-initialization requires a constructor call, so
390        // extend the initializer list to include the constructor
391        // call and make a note that we'll need to take another pass
392        // through the initializer list.
393        ILE->updateInit(Init, ElementInit.takeAs<Expr>());
394        RequiresSecondPass = true;
395      }
396    } else if (InitListExpr *InnerILE
397                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
398      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
399  }
400}
401
402
403InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
404                                 InitListExpr *IL, QualType &T)
405  : SemaRef(S) {
406  hadError = false;
407
408  unsigned newIndex = 0;
409  unsigned newStructuredIndex = 0;
410  FullyStructuredList
411    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
412  CheckExplicitInitList(Entity, IL, T, newIndex,
413                        FullyStructuredList, newStructuredIndex,
414                        /*TopLevelObject=*/true);
415
416  if (!hadError) {
417    bool RequiresSecondPass = false;
418    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
419    if (RequiresSecondPass && !hadError)
420      FillInValueInitializations(Entity, FullyStructuredList,
421                                 RequiresSecondPass);
422  }
423}
424
425int InitListChecker::numArrayElements(QualType DeclType) {
426  // FIXME: use a proper constant
427  int maxElements = 0x7FFFFFFF;
428  if (const ConstantArrayType *CAT =
429        SemaRef.Context.getAsConstantArrayType(DeclType)) {
430    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
431  }
432  return maxElements;
433}
434
435int InitListChecker::numStructUnionElements(QualType DeclType) {
436  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
437  int InitializableMembers = 0;
438  for (RecordDecl::field_iterator
439         Field = structDecl->field_begin(),
440         FieldEnd = structDecl->field_end();
441       Field != FieldEnd; ++Field) {
442    if ((*Field)->getIdentifier() || !(*Field)->isBitField())
443      ++InitializableMembers;
444  }
445  if (structDecl->isUnion())
446    return std::min(InitializableMembers, 1);
447  return InitializableMembers - structDecl->hasFlexibleArrayMember();
448}
449
450void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
451                                            InitListExpr *ParentIList,
452                                            QualType T, unsigned &Index,
453                                            InitListExpr *StructuredList,
454                                            unsigned &StructuredIndex,
455                                            bool TopLevelObject) {
456  int maxElements = 0;
457
458  if (T->isArrayType())
459    maxElements = numArrayElements(T);
460  else if (T->isStructureType() || T->isUnionType())
461    maxElements = numStructUnionElements(T);
462  else if (T->isVectorType())
463    maxElements = T->getAs<VectorType>()->getNumElements();
464  else
465    assert(0 && "CheckImplicitInitList(): Illegal type");
466
467  if (maxElements == 0) {
468    SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
469                  diag::err_implicit_empty_initializer);
470    ++Index;
471    hadError = true;
472    return;
473  }
474
475  // Build a structured initializer list corresponding to this subobject.
476  InitListExpr *StructuredSubobjectInitList
477    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
478                                 StructuredIndex,
479          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
480                      ParentIList->getSourceRange().getEnd()));
481  unsigned StructuredSubobjectInitIndex = 0;
482
483  // Check the element types and build the structural subobject.
484  unsigned StartIndex = Index;
485  CheckListElementTypes(Entity, ParentIList, T,
486                        /*SubobjectIsDesignatorContext=*/false, Index,
487                        StructuredSubobjectInitList,
488                        StructuredSubobjectInitIndex,
489                        TopLevelObject);
490  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
491  StructuredSubobjectInitList->setType(T);
492
493  // Update the structured sub-object initializer so that it's ending
494  // range corresponds with the end of the last initializer it used.
495  if (EndIndex < ParentIList->getNumInits()) {
496    SourceLocation EndLoc
497      = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
498    StructuredSubobjectInitList->setRBraceLoc(EndLoc);
499  }
500}
501
502void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
503                                            InitListExpr *IList, QualType &T,
504                                            unsigned &Index,
505                                            InitListExpr *StructuredList,
506                                            unsigned &StructuredIndex,
507                                            bool TopLevelObject) {
508  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
509  SyntacticToSemantic[IList] = StructuredList;
510  StructuredList->setSyntacticForm(IList);
511  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
512                        Index, StructuredList, StructuredIndex, TopLevelObject);
513  IList->setType(T);
514  StructuredList->setType(T);
515  if (hadError)
516    return;
517
518  if (Index < IList->getNumInits()) {
519    // We have leftover initializers
520    if (StructuredIndex == 1 &&
521        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
522      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
523      if (SemaRef.getLangOptions().CPlusPlus) {
524        DK = diag::err_excess_initializers_in_char_array_initializer;
525        hadError = true;
526      }
527      // Special-case
528      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
529        << IList->getInit(Index)->getSourceRange();
530    } else if (!T->isIncompleteType()) {
531      // Don't complain for incomplete types, since we'll get an error
532      // elsewhere
533      QualType CurrentObjectType = StructuredList->getType();
534      int initKind =
535        CurrentObjectType->isArrayType()? 0 :
536        CurrentObjectType->isVectorType()? 1 :
537        CurrentObjectType->isScalarType()? 2 :
538        CurrentObjectType->isUnionType()? 3 :
539        4;
540
541      unsigned DK = diag::warn_excess_initializers;
542      if (SemaRef.getLangOptions().CPlusPlus) {
543        DK = diag::err_excess_initializers;
544        hadError = true;
545      }
546      if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
547        DK = diag::err_excess_initializers;
548        hadError = true;
549      }
550
551      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
552        << initKind << IList->getInit(Index)->getSourceRange();
553    }
554  }
555
556  if (T->isScalarType() && !TopLevelObject)
557    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
558      << IList->getSourceRange()
559      << CodeModificationHint::CreateRemoval(IList->getLocStart())
560      << CodeModificationHint::CreateRemoval(IList->getLocEnd());
561}
562
563void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
564                                            InitListExpr *IList,
565                                            QualType &DeclType,
566                                            bool SubobjectIsDesignatorContext,
567                                            unsigned &Index,
568                                            InitListExpr *StructuredList,
569                                            unsigned &StructuredIndex,
570                                            bool TopLevelObject) {
571  if (DeclType->isScalarType()) {
572    CheckScalarType(Entity, IList, DeclType, Index,
573                    StructuredList, StructuredIndex);
574  } else if (DeclType->isVectorType()) {
575    CheckVectorType(Entity, IList, DeclType, Index,
576                    StructuredList, StructuredIndex);
577  } else if (DeclType->isAggregateType()) {
578    if (DeclType->isRecordType()) {
579      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
580      CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
581                            SubobjectIsDesignatorContext, Index,
582                            StructuredList, StructuredIndex,
583                            TopLevelObject);
584    } else if (DeclType->isArrayType()) {
585      llvm::APSInt Zero(
586                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
587                      false);
588      CheckArrayType(Entity, IList, DeclType, Zero,
589                     SubobjectIsDesignatorContext, Index,
590                     StructuredList, StructuredIndex);
591    } else
592      assert(0 && "Aggregate that isn't a structure or array?!");
593  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
594    // This type is invalid, issue a diagnostic.
595    ++Index;
596    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
597      << DeclType;
598    hadError = true;
599  } else if (DeclType->isRecordType()) {
600    // C++ [dcl.init]p14:
601    //   [...] If the class is an aggregate (8.5.1), and the initializer
602    //   is a brace-enclosed list, see 8.5.1.
603    //
604    // Note: 8.5.1 is handled below; here, we diagnose the case where
605    // we have an initializer list and a destination type that is not
606    // an aggregate.
607    // FIXME: In C++0x, this is yet another form of initialization.
608    SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
609      << DeclType << IList->getSourceRange();
610    hadError = true;
611  } else if (DeclType->isReferenceType()) {
612    CheckReferenceType(Entity, IList, DeclType, Index,
613                       StructuredList, StructuredIndex);
614  } else {
615    // In C, all types are either scalars or aggregates, but
616    // additional handling is needed here for C++ (and possibly others?).
617    assert(0 && "Unsupported initializer type");
618  }
619}
620
621void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
622                                          InitListExpr *IList,
623                                          QualType ElemType,
624                                          unsigned &Index,
625                                          InitListExpr *StructuredList,
626                                          unsigned &StructuredIndex) {
627  Expr *expr = IList->getInit(Index);
628  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
629    unsigned newIndex = 0;
630    unsigned newStructuredIndex = 0;
631    InitListExpr *newStructuredList
632      = getStructuredSubobjectInit(IList, Index, ElemType,
633                                   StructuredList, StructuredIndex,
634                                   SubInitList->getSourceRange());
635    CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
636                          newStructuredList, newStructuredIndex);
637    ++StructuredIndex;
638    ++Index;
639  } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
640    CheckStringInit(Str, ElemType, SemaRef);
641    UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
642    ++Index;
643  } else if (ElemType->isScalarType()) {
644    CheckScalarType(Entity, IList, ElemType, Index,
645                    StructuredList, StructuredIndex);
646  } else if (ElemType->isReferenceType()) {
647    CheckReferenceType(Entity, IList, ElemType, Index,
648                       StructuredList, StructuredIndex);
649  } else {
650    if (SemaRef.getLangOptions().CPlusPlus) {
651      // C++ [dcl.init.aggr]p12:
652      //   All implicit type conversions (clause 4) are considered when
653      //   initializing the aggregate member with an ini- tializer from
654      //   an initializer-list. If the initializer can initialize a
655      //   member, the member is initialized. [...]
656
657      // FIXME: Better EqualLoc?
658      InitializationKind Kind =
659        InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
660      InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
661
662      if (Seq) {
663        Sema::OwningExprResult Result =
664          Seq.Perform(SemaRef, Entity, Kind,
665                      Sema::MultiExprArg(SemaRef, (void **)&expr, 1));
666        if (Result.isInvalid())
667          hadError = true;
668
669        UpdateStructuredListElement(StructuredList, StructuredIndex,
670                                    Result.takeAs<Expr>());
671        ++Index;
672        return;
673      }
674
675      // Fall through for subaggregate initialization
676    } else {
677      // C99 6.7.8p13:
678      //
679      //   The initializer for a structure or union object that has
680      //   automatic storage duration shall be either an initializer
681      //   list as described below, or a single expression that has
682      //   compatible structure or union type. In the latter case, the
683      //   initial value of the object, including unnamed members, is
684      //   that of the expression.
685      if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
686          SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) {
687        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
688        ++Index;
689        return;
690      }
691
692      // Fall through for subaggregate initialization
693    }
694
695    // C++ [dcl.init.aggr]p12:
696    //
697    //   [...] Otherwise, if the member is itself a non-empty
698    //   subaggregate, brace elision is assumed and the initializer is
699    //   considered for the initialization of the first member of
700    //   the subaggregate.
701    if (ElemType->isAggregateType() || ElemType->isVectorType()) {
702      CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
703                            StructuredIndex);
704      ++StructuredIndex;
705    } else {
706      // We cannot initialize this element, so let
707      // PerformCopyInitialization produce the appropriate diagnostic.
708      SemaRef.PerformCopyInitialization(expr, ElemType, Sema::AA_Initializing);
709      hadError = true;
710      ++Index;
711      ++StructuredIndex;
712    }
713  }
714}
715
716void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
717                                      InitListExpr *IList, QualType DeclType,
718                                      unsigned &Index,
719                                      InitListExpr *StructuredList,
720                                      unsigned &StructuredIndex) {
721  if (Index < IList->getNumInits()) {
722    Expr *expr = IList->getInit(Index);
723    if (isa<InitListExpr>(expr)) {
724      SemaRef.Diag(IList->getLocStart(),
725                    diag::err_many_braces_around_scalar_init)
726        << IList->getSourceRange();
727      hadError = true;
728      ++Index;
729      ++StructuredIndex;
730      return;
731    } else if (isa<DesignatedInitExpr>(expr)) {
732      SemaRef.Diag(expr->getSourceRange().getBegin(),
733                    diag::err_designator_for_scalar_init)
734        << DeclType << expr->getSourceRange();
735      hadError = true;
736      ++Index;
737      ++StructuredIndex;
738      return;
739    }
740
741    Sema::OwningExprResult Result =
742      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
743                                        SemaRef.Owned(expr));
744
745    Expr *ResultExpr;
746
747    if (Result.isInvalid())
748      hadError = true; // types weren't compatible.
749    else {
750      ResultExpr = Result.takeAs<Expr>();
751
752      if (ResultExpr != expr) {
753        // The type was promoted, update initializer list.
754        IList->setInit(Index, ResultExpr);
755      }
756    }
757    if (hadError)
758      ++StructuredIndex;
759    else
760      UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
761    ++Index;
762  } else {
763    SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
764      << IList->getSourceRange();
765    hadError = true;
766    ++Index;
767    ++StructuredIndex;
768    return;
769  }
770}
771
772void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
773                                         InitListExpr *IList, QualType DeclType,
774                                         unsigned &Index,
775                                         InitListExpr *StructuredList,
776                                         unsigned &StructuredIndex) {
777  if (Index < IList->getNumInits()) {
778    Expr *expr = IList->getInit(Index);
779    if (isa<InitListExpr>(expr)) {
780      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
781        << DeclType << IList->getSourceRange();
782      hadError = true;
783      ++Index;
784      ++StructuredIndex;
785      return;
786    }
787
788    Sema::OwningExprResult Result =
789      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
790                                        SemaRef.Owned(expr));
791
792    if (Result.isInvalid())
793      hadError = true;
794
795    expr = Result.takeAs<Expr>();
796    IList->setInit(Index, expr);
797
798    if (hadError)
799      ++StructuredIndex;
800    else
801      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
802    ++Index;
803  } else {
804    // FIXME: It would be wonderful if we could point at the actual member. In
805    // general, it would be useful to pass location information down the stack,
806    // so that we know the location (or decl) of the "current object" being
807    // initialized.
808    SemaRef.Diag(IList->getLocStart(),
809                  diag::err_init_reference_member_uninitialized)
810      << DeclType
811      << IList->getSourceRange();
812    hadError = true;
813    ++Index;
814    ++StructuredIndex;
815    return;
816  }
817}
818
819void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
820                                      InitListExpr *IList, QualType DeclType,
821                                      unsigned &Index,
822                                      InitListExpr *StructuredList,
823                                      unsigned &StructuredIndex) {
824  if (Index < IList->getNumInits()) {
825    const VectorType *VT = DeclType->getAs<VectorType>();
826    unsigned maxElements = VT->getNumElements();
827    unsigned numEltsInit = 0;
828    QualType elementType = VT->getElementType();
829
830    if (!SemaRef.getLangOptions().OpenCL) {
831      InitializedEntity ElementEntity =
832        InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
833
834      for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
835        // Don't attempt to go past the end of the init list
836        if (Index >= IList->getNumInits())
837          break;
838
839        ElementEntity.setElementIndex(Index);
840        CheckSubElementType(ElementEntity, IList, elementType, Index,
841                            StructuredList, StructuredIndex);
842      }
843    } else {
844      InitializedEntity ElementEntity =
845        InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
846
847      // OpenCL initializers allows vectors to be constructed from vectors.
848      for (unsigned i = 0; i < maxElements; ++i) {
849        // Don't attempt to go past the end of the init list
850        if (Index >= IList->getNumInits())
851          break;
852
853        ElementEntity.setElementIndex(Index);
854
855        QualType IType = IList->getInit(Index)->getType();
856        if (!IType->isVectorType()) {
857          CheckSubElementType(ElementEntity, IList, elementType, Index,
858                              StructuredList, StructuredIndex);
859          ++numEltsInit;
860        } else {
861          const VectorType *IVT = IType->getAs<VectorType>();
862          unsigned numIElts = IVT->getNumElements();
863          QualType VecType = SemaRef.Context.getExtVectorType(elementType,
864                                                              numIElts);
865          CheckSubElementType(ElementEntity, IList, VecType, Index,
866                              StructuredList, StructuredIndex);
867          numEltsInit += numIElts;
868        }
869      }
870    }
871
872    // OpenCL & AltiVec require all elements to be initialized.
873    if (numEltsInit != maxElements)
874      if (SemaRef.getLangOptions().OpenCL || SemaRef.getLangOptions().AltiVec)
875        SemaRef.Diag(IList->getSourceRange().getBegin(),
876                     diag::err_vector_incorrect_num_initializers)
877          << (numEltsInit < maxElements) << maxElements << numEltsInit;
878  }
879}
880
881void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
882                                     InitListExpr *IList, QualType &DeclType,
883                                     llvm::APSInt elementIndex,
884                                     bool SubobjectIsDesignatorContext,
885                                     unsigned &Index,
886                                     InitListExpr *StructuredList,
887                                     unsigned &StructuredIndex) {
888  // Check for the special-case of initializing an array with a string.
889  if (Index < IList->getNumInits()) {
890    if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
891                                 SemaRef.Context)) {
892      CheckStringInit(Str, DeclType, SemaRef);
893      // We place the string literal directly into the resulting
894      // initializer list. This is the only place where the structure
895      // of the structured initializer list doesn't match exactly,
896      // because doing so would involve allocating one character
897      // constant for each string.
898      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
899      StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
900      ++Index;
901      return;
902    }
903  }
904  if (const VariableArrayType *VAT =
905        SemaRef.Context.getAsVariableArrayType(DeclType)) {
906    // Check for VLAs; in standard C it would be possible to check this
907    // earlier, but I don't know where clang accepts VLAs (gcc accepts
908    // them in all sorts of strange places).
909    SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
910                  diag::err_variable_object_no_init)
911      << VAT->getSizeExpr()->getSourceRange();
912    hadError = true;
913    ++Index;
914    ++StructuredIndex;
915    return;
916  }
917
918  // We might know the maximum number of elements in advance.
919  llvm::APSInt maxElements(elementIndex.getBitWidth(),
920                           elementIndex.isUnsigned());
921  bool maxElementsKnown = false;
922  if (const ConstantArrayType *CAT =
923        SemaRef.Context.getAsConstantArrayType(DeclType)) {
924    maxElements = CAT->getSize();
925    elementIndex.extOrTrunc(maxElements.getBitWidth());
926    elementIndex.setIsUnsigned(maxElements.isUnsigned());
927    maxElementsKnown = true;
928  }
929
930  QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
931                             ->getElementType();
932  while (Index < IList->getNumInits()) {
933    Expr *Init = IList->getInit(Index);
934    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
935      // If we're not the subobject that matches up with the '{' for
936      // the designator, we shouldn't be handling the
937      // designator. Return immediately.
938      if (!SubobjectIsDesignatorContext)
939        return;
940
941      // Handle this designated initializer. elementIndex will be
942      // updated to be the next array element we'll initialize.
943      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
944                                     DeclType, 0, &elementIndex, Index,
945                                     StructuredList, StructuredIndex, true,
946                                     false)) {
947        hadError = true;
948        continue;
949      }
950
951      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
952        maxElements.extend(elementIndex.getBitWidth());
953      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
954        elementIndex.extend(maxElements.getBitWidth());
955      elementIndex.setIsUnsigned(maxElements.isUnsigned());
956
957      // If the array is of incomplete type, keep track of the number of
958      // elements in the initializer.
959      if (!maxElementsKnown && elementIndex > maxElements)
960        maxElements = elementIndex;
961
962      continue;
963    }
964
965    // If we know the maximum number of elements, and we've already
966    // hit it, stop consuming elements in the initializer list.
967    if (maxElementsKnown && elementIndex == maxElements)
968      break;
969
970    InitializedEntity ElementEntity =
971      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
972                                           Entity);
973    // Check this element.
974    CheckSubElementType(ElementEntity, IList, elementType, Index,
975                        StructuredList, StructuredIndex);
976    ++elementIndex;
977
978    // If the array is of incomplete type, keep track of the number of
979    // elements in the initializer.
980    if (!maxElementsKnown && elementIndex > maxElements)
981      maxElements = elementIndex;
982  }
983  if (!hadError && DeclType->isIncompleteArrayType()) {
984    // If this is an incomplete array type, the actual type needs to
985    // be calculated here.
986    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
987    if (maxElements == Zero) {
988      // Sizing an array implicitly to zero is not allowed by ISO C,
989      // but is supported by GNU.
990      SemaRef.Diag(IList->getLocStart(),
991                    diag::ext_typecheck_zero_array_size);
992    }
993
994    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
995                                                     ArrayType::Normal, 0);
996  }
997}
998
999void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1000                                            InitListExpr *IList,
1001                                            QualType DeclType,
1002                                            RecordDecl::field_iterator Field,
1003                                            bool SubobjectIsDesignatorContext,
1004                                            unsigned &Index,
1005                                            InitListExpr *StructuredList,
1006                                            unsigned &StructuredIndex,
1007                                            bool TopLevelObject) {
1008  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1009
1010  // If the record is invalid, some of it's members are invalid. To avoid
1011  // confusion, we forgo checking the intializer for the entire record.
1012  if (structDecl->isInvalidDecl()) {
1013    hadError = true;
1014    return;
1015  }
1016
1017  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1018    // Value-initialize the first named member of the union.
1019    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1020    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1021         Field != FieldEnd; ++Field) {
1022      if (Field->getDeclName()) {
1023        StructuredList->setInitializedFieldInUnion(*Field);
1024        break;
1025      }
1026    }
1027    return;
1028  }
1029
1030  // If structDecl is a forward declaration, this loop won't do
1031  // anything except look at designated initializers; That's okay,
1032  // because an error should get printed out elsewhere. It might be
1033  // worthwhile to skip over the rest of the initializer, though.
1034  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1035  RecordDecl::field_iterator FieldEnd = RD->field_end();
1036  bool InitializedSomething = false;
1037  while (Index < IList->getNumInits()) {
1038    Expr *Init = IList->getInit(Index);
1039
1040    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1041      // If we're not the subobject that matches up with the '{' for
1042      // the designator, we shouldn't be handling the
1043      // designator. Return immediately.
1044      if (!SubobjectIsDesignatorContext)
1045        return;
1046
1047      // Handle this designated initializer. Field will be updated to
1048      // the next field that we'll be initializing.
1049      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1050                                     DeclType, &Field, 0, Index,
1051                                     StructuredList, StructuredIndex,
1052                                     true, TopLevelObject))
1053        hadError = true;
1054
1055      InitializedSomething = true;
1056      continue;
1057    }
1058
1059    if (Field == FieldEnd) {
1060      // We've run out of fields. We're done.
1061      break;
1062    }
1063
1064    // We've already initialized a member of a union. We're done.
1065    if (InitializedSomething && DeclType->isUnionType())
1066      break;
1067
1068    // If we've hit the flexible array member at the end, we're done.
1069    if (Field->getType()->isIncompleteArrayType())
1070      break;
1071
1072    if (Field->isUnnamedBitfield()) {
1073      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1074      ++Field;
1075      continue;
1076    }
1077
1078    InitializedEntity MemberEntity =
1079      InitializedEntity::InitializeMember(*Field, &Entity);
1080    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1081                        StructuredList, StructuredIndex);
1082    InitializedSomething = true;
1083
1084    if (DeclType->isUnionType()) {
1085      // Initialize the first field within the union.
1086      StructuredList->setInitializedFieldInUnion(*Field);
1087    }
1088
1089    ++Field;
1090  }
1091
1092  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1093      Index >= IList->getNumInits())
1094    return;
1095
1096  // Handle GNU flexible array initializers.
1097  if (!TopLevelObject &&
1098      (!isa<InitListExpr>(IList->getInit(Index)) ||
1099       cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1100    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1101                  diag::err_flexible_array_init_nonempty)
1102      << IList->getInit(Index)->getSourceRange().getBegin();
1103    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1104      << *Field;
1105    hadError = true;
1106    ++Index;
1107    return;
1108  } else {
1109    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1110                 diag::ext_flexible_array_init)
1111      << IList->getInit(Index)->getSourceRange().getBegin();
1112    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1113      << *Field;
1114  }
1115
1116  InitializedEntity MemberEntity =
1117    InitializedEntity::InitializeMember(*Field, &Entity);
1118
1119  if (isa<InitListExpr>(IList->getInit(Index)))
1120    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1121                        StructuredList, StructuredIndex);
1122  else
1123    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1124                          StructuredList, StructuredIndex);
1125}
1126
1127/// \brief Expand a field designator that refers to a member of an
1128/// anonymous struct or union into a series of field designators that
1129/// refers to the field within the appropriate subobject.
1130///
1131/// Field/FieldIndex will be updated to point to the (new)
1132/// currently-designated field.
1133static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1134                                           DesignatedInitExpr *DIE,
1135                                           unsigned DesigIdx,
1136                                           FieldDecl *Field,
1137                                        RecordDecl::field_iterator &FieldIter,
1138                                           unsigned &FieldIndex) {
1139  typedef DesignatedInitExpr::Designator Designator;
1140
1141  // Build the path from the current object to the member of the
1142  // anonymous struct/union (backwards).
1143  llvm::SmallVector<FieldDecl *, 4> Path;
1144  SemaRef.BuildAnonymousStructUnionMemberPath(Field, Path);
1145
1146  // Build the replacement designators.
1147  llvm::SmallVector<Designator, 4> Replacements;
1148  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
1149         FI = Path.rbegin(), FIEnd = Path.rend();
1150       FI != FIEnd; ++FI) {
1151    if (FI + 1 == FIEnd)
1152      Replacements.push_back(Designator((IdentifierInfo *)0,
1153                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1154                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1155    else
1156      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1157                                        SourceLocation()));
1158    Replacements.back().setField(*FI);
1159  }
1160
1161  // Expand the current designator into the set of replacement
1162  // designators, so we have a full subobject path down to where the
1163  // member of the anonymous struct/union is actually stored.
1164  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1165                        &Replacements[0] + Replacements.size());
1166
1167  // Update FieldIter/FieldIndex;
1168  RecordDecl *Record = cast<RecordDecl>(Path.back()->getDeclContext());
1169  FieldIter = Record->field_begin();
1170  FieldIndex = 0;
1171  for (RecordDecl::field_iterator FEnd = Record->field_end();
1172       FieldIter != FEnd; ++FieldIter) {
1173    if (FieldIter->isUnnamedBitfield())
1174        continue;
1175
1176    if (*FieldIter == Path.back())
1177      return;
1178
1179    ++FieldIndex;
1180  }
1181
1182  assert(false && "Unable to find anonymous struct/union field");
1183}
1184
1185/// @brief Check the well-formedness of a C99 designated initializer.
1186///
1187/// Determines whether the designated initializer @p DIE, which
1188/// resides at the given @p Index within the initializer list @p
1189/// IList, is well-formed for a current object of type @p DeclType
1190/// (C99 6.7.8). The actual subobject that this designator refers to
1191/// within the current subobject is returned in either
1192/// @p NextField or @p NextElementIndex (whichever is appropriate).
1193///
1194/// @param IList  The initializer list in which this designated
1195/// initializer occurs.
1196///
1197/// @param DIE The designated initializer expression.
1198///
1199/// @param DesigIdx  The index of the current designator.
1200///
1201/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1202/// into which the designation in @p DIE should refer.
1203///
1204/// @param NextField  If non-NULL and the first designator in @p DIE is
1205/// a field, this will be set to the field declaration corresponding
1206/// to the field named by the designator.
1207///
1208/// @param NextElementIndex  If non-NULL and the first designator in @p
1209/// DIE is an array designator or GNU array-range designator, this
1210/// will be set to the last index initialized by this designator.
1211///
1212/// @param Index  Index into @p IList where the designated initializer
1213/// @p DIE occurs.
1214///
1215/// @param StructuredList  The initializer list expression that
1216/// describes all of the subobject initializers in the order they'll
1217/// actually be initialized.
1218///
1219/// @returns true if there was an error, false otherwise.
1220bool
1221InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1222                                            InitListExpr *IList,
1223                                      DesignatedInitExpr *DIE,
1224                                      unsigned DesigIdx,
1225                                      QualType &CurrentObjectType,
1226                                      RecordDecl::field_iterator *NextField,
1227                                      llvm::APSInt *NextElementIndex,
1228                                      unsigned &Index,
1229                                      InitListExpr *StructuredList,
1230                                      unsigned &StructuredIndex,
1231                                            bool FinishSubobjectInit,
1232                                            bool TopLevelObject) {
1233  if (DesigIdx == DIE->size()) {
1234    // Check the actual initialization for the designated object type.
1235    bool prevHadError = hadError;
1236
1237    // Temporarily remove the designator expression from the
1238    // initializer list that the child calls see, so that we don't try
1239    // to re-process the designator.
1240    unsigned OldIndex = Index;
1241    IList->setInit(OldIndex, DIE->getInit());
1242
1243    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1244                        StructuredList, StructuredIndex);
1245
1246    // Restore the designated initializer expression in the syntactic
1247    // form of the initializer list.
1248    if (IList->getInit(OldIndex) != DIE->getInit())
1249      DIE->setInit(IList->getInit(OldIndex));
1250    IList->setInit(OldIndex, DIE);
1251
1252    return hadError && !prevHadError;
1253  }
1254
1255  bool IsFirstDesignator = (DesigIdx == 0);
1256  assert((IsFirstDesignator || StructuredList) &&
1257         "Need a non-designated initializer list to start from");
1258
1259  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1260  // Determine the structural initializer list that corresponds to the
1261  // current subobject.
1262  StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1263    : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1264                                 StructuredList, StructuredIndex,
1265                                 SourceRange(D->getStartLocation(),
1266                                             DIE->getSourceRange().getEnd()));
1267  assert(StructuredList && "Expected a structured initializer list");
1268
1269  if (D->isFieldDesignator()) {
1270    // C99 6.7.8p7:
1271    //
1272    //   If a designator has the form
1273    //
1274    //      . identifier
1275    //
1276    //   then the current object (defined below) shall have
1277    //   structure or union type and the identifier shall be the
1278    //   name of a member of that type.
1279    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1280    if (!RT) {
1281      SourceLocation Loc = D->getDotLoc();
1282      if (Loc.isInvalid())
1283        Loc = D->getFieldLoc();
1284      SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1285        << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1286      ++Index;
1287      return true;
1288    }
1289
1290    // Note: we perform a linear search of the fields here, despite
1291    // the fact that we have a faster lookup method, because we always
1292    // need to compute the field's index.
1293    FieldDecl *KnownField = D->getField();
1294    IdentifierInfo *FieldName = D->getFieldName();
1295    unsigned FieldIndex = 0;
1296    RecordDecl::field_iterator
1297      Field = RT->getDecl()->field_begin(),
1298      FieldEnd = RT->getDecl()->field_end();
1299    for (; Field != FieldEnd; ++Field) {
1300      if (Field->isUnnamedBitfield())
1301        continue;
1302
1303      if (KnownField == *Field || Field->getIdentifier() == FieldName)
1304        break;
1305
1306      ++FieldIndex;
1307    }
1308
1309    if (Field == FieldEnd) {
1310      // There was no normal field in the struct with the designated
1311      // name. Perform another lookup for this name, which may find
1312      // something that we can't designate (e.g., a member function),
1313      // may find nothing, or may find a member of an anonymous
1314      // struct/union.
1315      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1316      FieldDecl *ReplacementField = 0;
1317      if (Lookup.first == Lookup.second) {
1318        // Name lookup didn't find anything. Determine whether this
1319        // was a typo for another field name.
1320        LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
1321                       Sema::LookupMemberName);
1322        if (SemaRef.CorrectTypo(R, /*Scope=*/0, /*SS=*/0, RT->getDecl()) &&
1323            (ReplacementField = R.getAsSingle<FieldDecl>()) &&
1324            ReplacementField->getDeclContext()->getLookupContext()
1325                                                      ->Equals(RT->getDecl())) {
1326          SemaRef.Diag(D->getFieldLoc(),
1327                       diag::err_field_designator_unknown_suggest)
1328            << FieldName << CurrentObjectType << R.getLookupName()
1329            << CodeModificationHint::CreateReplacement(D->getFieldLoc(),
1330                                               R.getLookupName().getAsString());
1331          SemaRef.Diag(ReplacementField->getLocation(),
1332                       diag::note_previous_decl)
1333            << ReplacementField->getDeclName();
1334        } else {
1335          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1336            << FieldName << CurrentObjectType;
1337          ++Index;
1338          return true;
1339        }
1340      } else if (!KnownField) {
1341        // Determine whether we found a field at all.
1342        ReplacementField = dyn_cast<FieldDecl>(*Lookup.first);
1343      }
1344
1345      if (!ReplacementField) {
1346        // Name lookup found something, but it wasn't a field.
1347        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1348          << FieldName;
1349        SemaRef.Diag((*Lookup.first)->getLocation(),
1350                      diag::note_field_designator_found);
1351        ++Index;
1352        return true;
1353      }
1354
1355      if (!KnownField &&
1356          cast<RecordDecl>((ReplacementField)->getDeclContext())
1357                                                 ->isAnonymousStructOrUnion()) {
1358        // Handle an field designator that refers to a member of an
1359        // anonymous struct or union.
1360        ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx,
1361                                       ReplacementField,
1362                                       Field, FieldIndex);
1363        D = DIE->getDesignator(DesigIdx);
1364      } else if (!KnownField) {
1365        // The replacement field comes from typo correction; find it
1366        // in the list of fields.
1367        FieldIndex = 0;
1368        Field = RT->getDecl()->field_begin();
1369        for (; Field != FieldEnd; ++Field) {
1370          if (Field->isUnnamedBitfield())
1371            continue;
1372
1373          if (ReplacementField == *Field ||
1374              Field->getIdentifier() == ReplacementField->getIdentifier())
1375            break;
1376
1377          ++FieldIndex;
1378        }
1379      }
1380    } else if (!KnownField &&
1381               cast<RecordDecl>((*Field)->getDeclContext())
1382                 ->isAnonymousStructOrUnion()) {
1383      ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, *Field,
1384                                     Field, FieldIndex);
1385      D = DIE->getDesignator(DesigIdx);
1386    }
1387
1388    // All of the fields of a union are located at the same place in
1389    // the initializer list.
1390    if (RT->getDecl()->isUnion()) {
1391      FieldIndex = 0;
1392      StructuredList->setInitializedFieldInUnion(*Field);
1393    }
1394
1395    // Update the designator with the field declaration.
1396    D->setField(*Field);
1397
1398    // Make sure that our non-designated initializer list has space
1399    // for a subobject corresponding to this field.
1400    if (FieldIndex >= StructuredList->getNumInits())
1401      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1402
1403    // This designator names a flexible array member.
1404    if (Field->getType()->isIncompleteArrayType()) {
1405      bool Invalid = false;
1406      if ((DesigIdx + 1) != DIE->size()) {
1407        // We can't designate an object within the flexible array
1408        // member (because GCC doesn't allow it).
1409        DesignatedInitExpr::Designator *NextD
1410          = DIE->getDesignator(DesigIdx + 1);
1411        SemaRef.Diag(NextD->getStartLocation(),
1412                      diag::err_designator_into_flexible_array_member)
1413          << SourceRange(NextD->getStartLocation(),
1414                         DIE->getSourceRange().getEnd());
1415        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1416          << *Field;
1417        Invalid = true;
1418      }
1419
1420      if (!hadError && !isa<InitListExpr>(DIE->getInit())) {
1421        // The initializer is not an initializer list.
1422        SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1423                      diag::err_flexible_array_init_needs_braces)
1424          << DIE->getInit()->getSourceRange();
1425        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1426          << *Field;
1427        Invalid = true;
1428      }
1429
1430      // Handle GNU flexible array initializers.
1431      if (!Invalid && !TopLevelObject &&
1432          cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1433        SemaRef.Diag(DIE->getSourceRange().getBegin(),
1434                      diag::err_flexible_array_init_nonempty)
1435          << DIE->getSourceRange().getBegin();
1436        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1437          << *Field;
1438        Invalid = true;
1439      }
1440
1441      if (Invalid) {
1442        ++Index;
1443        return true;
1444      }
1445
1446      // Initialize the array.
1447      bool prevHadError = hadError;
1448      unsigned newStructuredIndex = FieldIndex;
1449      unsigned OldIndex = Index;
1450      IList->setInit(Index, DIE->getInit());
1451
1452      InitializedEntity MemberEntity =
1453        InitializedEntity::InitializeMember(*Field, &Entity);
1454      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1455                          StructuredList, newStructuredIndex);
1456
1457      IList->setInit(OldIndex, DIE);
1458      if (hadError && !prevHadError) {
1459        ++Field;
1460        ++FieldIndex;
1461        if (NextField)
1462          *NextField = Field;
1463        StructuredIndex = FieldIndex;
1464        return true;
1465      }
1466    } else {
1467      // Recurse to check later designated subobjects.
1468      QualType FieldType = (*Field)->getType();
1469      unsigned newStructuredIndex = FieldIndex;
1470
1471      InitializedEntity MemberEntity =
1472        InitializedEntity::InitializeMember(*Field, &Entity);
1473      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1474                                     FieldType, 0, 0, Index,
1475                                     StructuredList, newStructuredIndex,
1476                                     true, false))
1477        return true;
1478    }
1479
1480    // Find the position of the next field to be initialized in this
1481    // subobject.
1482    ++Field;
1483    ++FieldIndex;
1484
1485    // If this the first designator, our caller will continue checking
1486    // the rest of this struct/class/union subobject.
1487    if (IsFirstDesignator) {
1488      if (NextField)
1489        *NextField = Field;
1490      StructuredIndex = FieldIndex;
1491      return false;
1492    }
1493
1494    if (!FinishSubobjectInit)
1495      return false;
1496
1497    // We've already initialized something in the union; we're done.
1498    if (RT->getDecl()->isUnion())
1499      return hadError;
1500
1501    // Check the remaining fields within this class/struct/union subobject.
1502    bool prevHadError = hadError;
1503
1504    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1505                          StructuredList, FieldIndex);
1506    return hadError && !prevHadError;
1507  }
1508
1509  // C99 6.7.8p6:
1510  //
1511  //   If a designator has the form
1512  //
1513  //      [ constant-expression ]
1514  //
1515  //   then the current object (defined below) shall have array
1516  //   type and the expression shall be an integer constant
1517  //   expression. If the array is of unknown size, any
1518  //   nonnegative value is valid.
1519  //
1520  // Additionally, cope with the GNU extension that permits
1521  // designators of the form
1522  //
1523  //      [ constant-expression ... constant-expression ]
1524  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1525  if (!AT) {
1526    SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1527      << CurrentObjectType;
1528    ++Index;
1529    return true;
1530  }
1531
1532  Expr *IndexExpr = 0;
1533  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1534  if (D->isArrayDesignator()) {
1535    IndexExpr = DIE->getArrayIndex(*D);
1536    DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1537    DesignatedEndIndex = DesignatedStartIndex;
1538  } else {
1539    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1540
1541
1542    DesignatedStartIndex =
1543      DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1544    DesignatedEndIndex =
1545      DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1546    IndexExpr = DIE->getArrayRangeEnd(*D);
1547
1548    if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
1549      FullyStructuredList->sawArrayRangeDesignator();
1550  }
1551
1552  if (isa<ConstantArrayType>(AT)) {
1553    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1554    DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1555    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1556    DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1557    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1558    if (DesignatedEndIndex >= MaxElements) {
1559      SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1560                    diag::err_array_designator_too_large)
1561        << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1562        << IndexExpr->getSourceRange();
1563      ++Index;
1564      return true;
1565    }
1566  } else {
1567    // Make sure the bit-widths and signedness match.
1568    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1569      DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1570    else if (DesignatedStartIndex.getBitWidth() <
1571             DesignatedEndIndex.getBitWidth())
1572      DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1573    DesignatedStartIndex.setIsUnsigned(true);
1574    DesignatedEndIndex.setIsUnsigned(true);
1575  }
1576
1577  // Make sure that our non-designated initializer list has space
1578  // for a subobject corresponding to this array element.
1579  if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1580    StructuredList->resizeInits(SemaRef.Context,
1581                                DesignatedEndIndex.getZExtValue() + 1);
1582
1583  // Repeatedly perform subobject initializations in the range
1584  // [DesignatedStartIndex, DesignatedEndIndex].
1585
1586  // Move to the next designator
1587  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1588  unsigned OldIndex = Index;
1589
1590  InitializedEntity ElementEntity =
1591    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1592
1593  while (DesignatedStartIndex <= DesignatedEndIndex) {
1594    // Recurse to check later designated subobjects.
1595    QualType ElementType = AT->getElementType();
1596    Index = OldIndex;
1597
1598    ElementEntity.setElementIndex(ElementIndex);
1599    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
1600                                   ElementType, 0, 0, Index,
1601                                   StructuredList, ElementIndex,
1602                                   (DesignatedStartIndex == DesignatedEndIndex),
1603                                   false))
1604      return true;
1605
1606    // Move to the next index in the array that we'll be initializing.
1607    ++DesignatedStartIndex;
1608    ElementIndex = DesignatedStartIndex.getZExtValue();
1609  }
1610
1611  // If this the first designator, our caller will continue checking
1612  // the rest of this array subobject.
1613  if (IsFirstDesignator) {
1614    if (NextElementIndex)
1615      *NextElementIndex = DesignatedStartIndex;
1616    StructuredIndex = ElementIndex;
1617    return false;
1618  }
1619
1620  if (!FinishSubobjectInit)
1621    return false;
1622
1623  // Check the remaining elements within this array subobject.
1624  bool prevHadError = hadError;
1625  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
1626                 /*SubobjectIsDesignatorContext=*/false, Index,
1627                 StructuredList, ElementIndex);
1628  return hadError && !prevHadError;
1629}
1630
1631// Get the structured initializer list for a subobject of type
1632// @p CurrentObjectType.
1633InitListExpr *
1634InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1635                                            QualType CurrentObjectType,
1636                                            InitListExpr *StructuredList,
1637                                            unsigned StructuredIndex,
1638                                            SourceRange InitRange) {
1639  Expr *ExistingInit = 0;
1640  if (!StructuredList)
1641    ExistingInit = SyntacticToSemantic[IList];
1642  else if (StructuredIndex < StructuredList->getNumInits())
1643    ExistingInit = StructuredList->getInit(StructuredIndex);
1644
1645  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1646    return Result;
1647
1648  if (ExistingInit) {
1649    // We are creating an initializer list that initializes the
1650    // subobjects of the current object, but there was already an
1651    // initialization that completely initialized the current
1652    // subobject, e.g., by a compound literal:
1653    //
1654    // struct X { int a, b; };
1655    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1656    //
1657    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1658    // designated initializer re-initializes the whole
1659    // subobject [0], overwriting previous initializers.
1660    SemaRef.Diag(InitRange.getBegin(),
1661                 diag::warn_subobject_initializer_overrides)
1662      << InitRange;
1663    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1664                  diag::note_previous_initializer)
1665      << /*FIXME:has side effects=*/0
1666      << ExistingInit->getSourceRange();
1667  }
1668
1669  InitListExpr *Result
1670    = new (SemaRef.Context) InitListExpr(InitRange.getBegin(), 0, 0,
1671                                         InitRange.getEnd());
1672
1673  Result->setType(CurrentObjectType);
1674
1675  // Pre-allocate storage for the structured initializer list.
1676  unsigned NumElements = 0;
1677  unsigned NumInits = 0;
1678  if (!StructuredList)
1679    NumInits = IList->getNumInits();
1680  else if (Index < IList->getNumInits()) {
1681    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1682      NumInits = SubList->getNumInits();
1683  }
1684
1685  if (const ArrayType *AType
1686      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1687    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1688      NumElements = CAType->getSize().getZExtValue();
1689      // Simple heuristic so that we don't allocate a very large
1690      // initializer with many empty entries at the end.
1691      if (NumInits && NumElements > NumInits)
1692        NumElements = 0;
1693    }
1694  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
1695    NumElements = VType->getNumElements();
1696  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
1697    RecordDecl *RDecl = RType->getDecl();
1698    if (RDecl->isUnion())
1699      NumElements = 1;
1700    else
1701      NumElements = std::distance(RDecl->field_begin(),
1702                                  RDecl->field_end());
1703  }
1704
1705  if (NumElements < NumInits)
1706    NumElements = IList->getNumInits();
1707
1708  Result->reserveInits(NumElements);
1709
1710  // Link this new initializer list into the structured initializer
1711  // lists.
1712  if (StructuredList)
1713    StructuredList->updateInit(StructuredIndex, Result);
1714  else {
1715    Result->setSyntacticForm(IList);
1716    SyntacticToSemantic[IList] = Result;
1717  }
1718
1719  return Result;
1720}
1721
1722/// Update the initializer at index @p StructuredIndex within the
1723/// structured initializer list to the value @p expr.
1724void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1725                                                  unsigned &StructuredIndex,
1726                                                  Expr *expr) {
1727  // No structured initializer list to update
1728  if (!StructuredList)
1729    return;
1730
1731  if (Expr *PrevInit = StructuredList->updateInit(StructuredIndex, expr)) {
1732    // This initializer overwrites a previous initializer. Warn.
1733    SemaRef.Diag(expr->getSourceRange().getBegin(),
1734                  diag::warn_initializer_overrides)
1735      << expr->getSourceRange();
1736    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1737                  diag::note_previous_initializer)
1738      << /*FIXME:has side effects=*/0
1739      << PrevInit->getSourceRange();
1740  }
1741
1742  ++StructuredIndex;
1743}
1744
1745/// Check that the given Index expression is a valid array designator
1746/// value. This is essentailly just a wrapper around
1747/// VerifyIntegerConstantExpression that also checks for negative values
1748/// and produces a reasonable diagnostic if there is a
1749/// failure. Returns true if there was an error, false otherwise.  If
1750/// everything went okay, Value will receive the value of the constant
1751/// expression.
1752static bool
1753CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1754  SourceLocation Loc = Index->getSourceRange().getBegin();
1755
1756  // Make sure this is an integer constant expression.
1757  if (S.VerifyIntegerConstantExpression(Index, &Value))
1758    return true;
1759
1760  if (Value.isSigned() && Value.isNegative())
1761    return S.Diag(Loc, diag::err_array_designator_negative)
1762      << Value.toString(10) << Index->getSourceRange();
1763
1764  Value.setIsUnsigned(true);
1765  return false;
1766}
1767
1768Sema::OwningExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1769                                                        SourceLocation Loc,
1770                                                        bool GNUSyntax,
1771                                                        OwningExprResult Init) {
1772  typedef DesignatedInitExpr::Designator ASTDesignator;
1773
1774  bool Invalid = false;
1775  llvm::SmallVector<ASTDesignator, 32> Designators;
1776  llvm::SmallVector<Expr *, 32> InitExpressions;
1777
1778  // Build designators and check array designator expressions.
1779  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1780    const Designator &D = Desig.getDesignator(Idx);
1781    switch (D.getKind()) {
1782    case Designator::FieldDesignator:
1783      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1784                                          D.getFieldLoc()));
1785      break;
1786
1787    case Designator::ArrayDesignator: {
1788      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1789      llvm::APSInt IndexValue;
1790      if (!Index->isTypeDependent() &&
1791          !Index->isValueDependent() &&
1792          CheckArrayDesignatorExpr(*this, Index, IndexValue))
1793        Invalid = true;
1794      else {
1795        Designators.push_back(ASTDesignator(InitExpressions.size(),
1796                                            D.getLBracketLoc(),
1797                                            D.getRBracketLoc()));
1798        InitExpressions.push_back(Index);
1799      }
1800      break;
1801    }
1802
1803    case Designator::ArrayRangeDesignator: {
1804      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1805      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1806      llvm::APSInt StartValue;
1807      llvm::APSInt EndValue;
1808      bool StartDependent = StartIndex->isTypeDependent() ||
1809                            StartIndex->isValueDependent();
1810      bool EndDependent = EndIndex->isTypeDependent() ||
1811                          EndIndex->isValueDependent();
1812      if ((!StartDependent &&
1813           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1814          (!EndDependent &&
1815           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1816        Invalid = true;
1817      else {
1818        // Make sure we're comparing values with the same bit width.
1819        if (StartDependent || EndDependent) {
1820          // Nothing to compute.
1821        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1822          EndValue.extend(StartValue.getBitWidth());
1823        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1824          StartValue.extend(EndValue.getBitWidth());
1825
1826        if (!StartDependent && !EndDependent && EndValue < StartValue) {
1827          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1828            << StartValue.toString(10) << EndValue.toString(10)
1829            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1830          Invalid = true;
1831        } else {
1832          Designators.push_back(ASTDesignator(InitExpressions.size(),
1833                                              D.getLBracketLoc(),
1834                                              D.getEllipsisLoc(),
1835                                              D.getRBracketLoc()));
1836          InitExpressions.push_back(StartIndex);
1837          InitExpressions.push_back(EndIndex);
1838        }
1839      }
1840      break;
1841    }
1842    }
1843  }
1844
1845  if (Invalid || Init.isInvalid())
1846    return ExprError();
1847
1848  // Clear out the expressions within the designation.
1849  Desig.ClearExprs(*this);
1850
1851  DesignatedInitExpr *DIE
1852    = DesignatedInitExpr::Create(Context,
1853                                 Designators.data(), Designators.size(),
1854                                 InitExpressions.data(), InitExpressions.size(),
1855                                 Loc, GNUSyntax, Init.takeAs<Expr>());
1856  return Owned(DIE);
1857}
1858
1859bool Sema::CheckInitList(const InitializedEntity &Entity,
1860                         InitListExpr *&InitList, QualType &DeclType) {
1861  InitListChecker CheckInitList(*this, Entity, InitList, DeclType);
1862  if (!CheckInitList.HadError())
1863    InitList = CheckInitList.getFullyStructuredList();
1864
1865  return CheckInitList.HadError();
1866}
1867
1868//===----------------------------------------------------------------------===//
1869// Initialization entity
1870//===----------------------------------------------------------------------===//
1871
1872InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
1873                                     const InitializedEntity &Parent)
1874  : Parent(&Parent), Index(Index)
1875{
1876  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
1877    Kind = EK_ArrayElement;
1878    Type = AT->getElementType();
1879  } else {
1880    Kind = EK_VectorElement;
1881    Type = Parent.getType()->getAs<VectorType>()->getElementType();
1882  }
1883}
1884
1885InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
1886                                                    CXXBaseSpecifier *Base)
1887{
1888  InitializedEntity Result;
1889  Result.Kind = EK_Base;
1890  Result.Base = Base;
1891  Result.Type = Base->getType();
1892  return Result;
1893}
1894
1895DeclarationName InitializedEntity::getName() const {
1896  switch (getKind()) {
1897  case EK_Parameter:
1898    if (!VariableOrMember)
1899      return DeclarationName();
1900    // Fall through
1901
1902  case EK_Variable:
1903  case EK_Member:
1904    return VariableOrMember->getDeclName();
1905
1906  case EK_Result:
1907  case EK_Exception:
1908  case EK_New:
1909  case EK_Temporary:
1910  case EK_Base:
1911  case EK_ArrayElement:
1912  case EK_VectorElement:
1913    return DeclarationName();
1914  }
1915
1916  // Silence GCC warning
1917  return DeclarationName();
1918}
1919
1920DeclaratorDecl *InitializedEntity::getDecl() const {
1921  switch (getKind()) {
1922  case EK_Variable:
1923  case EK_Parameter:
1924  case EK_Member:
1925    return VariableOrMember;
1926
1927  case EK_Result:
1928  case EK_Exception:
1929  case EK_New:
1930  case EK_Temporary:
1931  case EK_Base:
1932  case EK_ArrayElement:
1933  case EK_VectorElement:
1934    return 0;
1935  }
1936
1937  // Silence GCC warning
1938  return 0;
1939}
1940
1941//===----------------------------------------------------------------------===//
1942// Initialization sequence
1943//===----------------------------------------------------------------------===//
1944
1945void InitializationSequence::Step::Destroy() {
1946  switch (Kind) {
1947  case SK_ResolveAddressOfOverloadedFunction:
1948  case SK_CastDerivedToBaseRValue:
1949  case SK_CastDerivedToBaseLValue:
1950  case SK_BindReference:
1951  case SK_BindReferenceToTemporary:
1952  case SK_UserConversion:
1953  case SK_QualificationConversionRValue:
1954  case SK_QualificationConversionLValue:
1955  case SK_ListInitialization:
1956  case SK_ConstructorInitialization:
1957  case SK_ZeroInitialization:
1958  case SK_CAssignment:
1959  case SK_StringInit:
1960    break;
1961
1962  case SK_ConversionSequence:
1963    delete ICS;
1964  }
1965}
1966
1967void InitializationSequence::AddAddressOverloadResolutionStep(
1968                                                      FunctionDecl *Function) {
1969  Step S;
1970  S.Kind = SK_ResolveAddressOfOverloadedFunction;
1971  S.Type = Function->getType();
1972  S.Function = Function;
1973  Steps.push_back(S);
1974}
1975
1976void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
1977                                                      bool IsLValue) {
1978  Step S;
1979  S.Kind = IsLValue? SK_CastDerivedToBaseLValue : SK_CastDerivedToBaseRValue;
1980  S.Type = BaseType;
1981  Steps.push_back(S);
1982}
1983
1984void InitializationSequence::AddReferenceBindingStep(QualType T,
1985                                                     bool BindingTemporary) {
1986  Step S;
1987  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
1988  S.Type = T;
1989  Steps.push_back(S);
1990}
1991
1992void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
1993                                                   QualType T) {
1994  Step S;
1995  S.Kind = SK_UserConversion;
1996  S.Type = T;
1997  S.Function = Function;
1998  Steps.push_back(S);
1999}
2000
2001void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2002                                                            bool IsLValue) {
2003  Step S;
2004  S.Kind = IsLValue? SK_QualificationConversionLValue
2005                   : SK_QualificationConversionRValue;
2006  S.Type = Ty;
2007  Steps.push_back(S);
2008}
2009
2010void InitializationSequence::AddConversionSequenceStep(
2011                                       const ImplicitConversionSequence &ICS,
2012                                                       QualType T) {
2013  Step S;
2014  S.Kind = SK_ConversionSequence;
2015  S.Type = T;
2016  S.ICS = new ImplicitConversionSequence(ICS);
2017  Steps.push_back(S);
2018}
2019
2020void InitializationSequence::AddListInitializationStep(QualType T) {
2021  Step S;
2022  S.Kind = SK_ListInitialization;
2023  S.Type = T;
2024  Steps.push_back(S);
2025}
2026
2027void
2028InitializationSequence::AddConstructorInitializationStep(
2029                                              CXXConstructorDecl *Constructor,
2030                                                         QualType T) {
2031  Step S;
2032  S.Kind = SK_ConstructorInitialization;
2033  S.Type = T;
2034  S.Function = Constructor;
2035  Steps.push_back(S);
2036}
2037
2038void InitializationSequence::AddZeroInitializationStep(QualType T) {
2039  Step S;
2040  S.Kind = SK_ZeroInitialization;
2041  S.Type = T;
2042  Steps.push_back(S);
2043}
2044
2045void InitializationSequence::AddCAssignmentStep(QualType T) {
2046  Step S;
2047  S.Kind = SK_CAssignment;
2048  S.Type = T;
2049  Steps.push_back(S);
2050}
2051
2052void InitializationSequence::AddStringInitStep(QualType T) {
2053  Step S;
2054  S.Kind = SK_StringInit;
2055  S.Type = T;
2056  Steps.push_back(S);
2057}
2058
2059void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2060                                                OverloadingResult Result) {
2061  SequenceKind = FailedSequence;
2062  this->Failure = Failure;
2063  this->FailedOverloadResult = Result;
2064}
2065
2066//===----------------------------------------------------------------------===//
2067// Attempt initialization
2068//===----------------------------------------------------------------------===//
2069
2070/// \brief Attempt list initialization (C++0x [dcl.init.list])
2071static void TryListInitialization(Sema &S,
2072                                  const InitializedEntity &Entity,
2073                                  const InitializationKind &Kind,
2074                                  InitListExpr *InitList,
2075                                  InitializationSequence &Sequence) {
2076  // FIXME: We only perform rudimentary checking of list
2077  // initializations at this point, then assume that any list
2078  // initialization of an array, aggregate, or scalar will be
2079  // well-formed. We we actually "perform" list initialization, we'll
2080  // do all of the necessary checking.  C++0x initializer lists will
2081  // force us to perform more checking here.
2082  Sequence.setSequenceKind(InitializationSequence::ListInitialization);
2083
2084  QualType DestType = Entity.getType();
2085
2086  // C++ [dcl.init]p13:
2087  //   If T is a scalar type, then a declaration of the form
2088  //
2089  //     T x = { a };
2090  //
2091  //   is equivalent to
2092  //
2093  //     T x = a;
2094  if (DestType->isScalarType()) {
2095    if (InitList->getNumInits() > 1 && S.getLangOptions().CPlusPlus) {
2096      Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
2097      return;
2098    }
2099
2100    // Assume scalar initialization from a single value works.
2101  } else if (DestType->isAggregateType()) {
2102    // Assume aggregate initialization works.
2103  } else if (DestType->isVectorType()) {
2104    // Assume vector initialization works.
2105  } else if (DestType->isReferenceType()) {
2106    // FIXME: C++0x defines behavior for this.
2107    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2108    return;
2109  } else if (DestType->isRecordType()) {
2110    // FIXME: C++0x defines behavior for this
2111    Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
2112  }
2113
2114  // Add a general "list initialization" step.
2115  Sequence.AddListInitializationStep(DestType);
2116}
2117
2118/// \brief Try a reference initialization that involves calling a conversion
2119/// function.
2120///
2121/// FIXME: look intos DRs 656, 896
2122static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
2123                                             const InitializedEntity &Entity,
2124                                             const InitializationKind &Kind,
2125                                                          Expr *Initializer,
2126                                                          bool AllowRValues,
2127                                             InitializationSequence &Sequence) {
2128  QualType DestType = Entity.getType();
2129  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2130  QualType T1 = cv1T1.getUnqualifiedType();
2131  QualType cv2T2 = Initializer->getType();
2132  QualType T2 = cv2T2.getUnqualifiedType();
2133
2134  bool DerivedToBase;
2135  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
2136                                         T1, T2, DerivedToBase) &&
2137         "Must have incompatible references when binding via conversion");
2138  (void)DerivedToBase;
2139
2140  // Build the candidate set directly in the initialization sequence
2141  // structure, so that it will persist if we fail.
2142  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2143  CandidateSet.clear();
2144
2145  // Determine whether we are allowed to call explicit constructors or
2146  // explicit conversion operators.
2147  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2148
2149  const RecordType *T1RecordType = 0;
2150  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>())) {
2151    // The type we're converting to is a class type. Enumerate its constructors
2152    // to see if there is a suitable conversion.
2153    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
2154
2155    DeclarationName ConstructorName
2156      = S.Context.DeclarationNames.getCXXConstructorName(
2157                           S.Context.getCanonicalType(T1).getUnqualifiedType());
2158    DeclContext::lookup_iterator Con, ConEnd;
2159    for (llvm::tie(Con, ConEnd) = T1RecordDecl->lookup(ConstructorName);
2160         Con != ConEnd; ++Con) {
2161      // Find the constructor (which may be a template).
2162      CXXConstructorDecl *Constructor = 0;
2163      FunctionTemplateDecl *ConstructorTmpl
2164        = dyn_cast<FunctionTemplateDecl>(*Con);
2165      if (ConstructorTmpl)
2166        Constructor = cast<CXXConstructorDecl>(
2167                                         ConstructorTmpl->getTemplatedDecl());
2168      else
2169        Constructor = cast<CXXConstructorDecl>(*Con);
2170
2171      if (!Constructor->isInvalidDecl() &&
2172          Constructor->isConvertingConstructor(AllowExplicit)) {
2173        if (ConstructorTmpl)
2174          S.AddTemplateOverloadCandidate(ConstructorTmpl,
2175                                         ConstructorTmpl->getAccess(),
2176                                         /*ExplicitArgs*/ 0,
2177                                         &Initializer, 1, CandidateSet);
2178        else
2179          S.AddOverloadCandidate(Constructor, Constructor->getAccess(),
2180                                 &Initializer, 1, CandidateSet);
2181      }
2182    }
2183  }
2184
2185  if (const RecordType *T2RecordType = T2->getAs<RecordType>()) {
2186    // The type we're converting from is a class type, enumerate its conversion
2187    // functions.
2188    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
2189
2190    // Determine the type we are converting to. If we are allowed to
2191    // convert to an rvalue, take the type that the destination type
2192    // refers to.
2193    QualType ToType = AllowRValues? cv1T1 : DestType;
2194
2195    const UnresolvedSetImpl *Conversions
2196      = T2RecordDecl->getVisibleConversionFunctions();
2197    for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2198           E = Conversions->end(); I != E; ++I) {
2199      NamedDecl *D = *I;
2200      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2201      if (isa<UsingShadowDecl>(D))
2202        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2203
2204      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2205      CXXConversionDecl *Conv;
2206      if (ConvTemplate)
2207        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2208      else
2209        Conv = cast<CXXConversionDecl>(*I);
2210
2211      // If the conversion function doesn't return a reference type,
2212      // it can't be considered for this conversion unless we're allowed to
2213      // consider rvalues.
2214      // FIXME: Do we need to make sure that we only consider conversion
2215      // candidates with reference-compatible results? That might be needed to
2216      // break recursion.
2217      if ((AllowExplicit || !Conv->isExplicit()) &&
2218          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
2219        if (ConvTemplate)
2220          S.AddTemplateConversionCandidate(ConvTemplate, I.getAccess(),
2221                                           ActingDC, Initializer,
2222                                           ToType, CandidateSet);
2223        else
2224          S.AddConversionCandidate(Conv, I.getAccess(), ActingDC,
2225                                   Initializer, cv1T1, CandidateSet);
2226      }
2227    }
2228  }
2229
2230  SourceLocation DeclLoc = Initializer->getLocStart();
2231
2232  // Perform overload resolution. If it fails, return the failed result.
2233  OverloadCandidateSet::iterator Best;
2234  if (OverloadingResult Result
2235        = S.BestViableFunction(CandidateSet, DeclLoc, Best))
2236    return Result;
2237
2238  FunctionDecl *Function = Best->Function;
2239
2240  // Compute the returned type of the conversion.
2241  if (isa<CXXConversionDecl>(Function))
2242    T2 = Function->getResultType();
2243  else
2244    T2 = cv1T1;
2245
2246  // Add the user-defined conversion step.
2247  Sequence.AddUserConversionStep(Function, T2.getNonReferenceType());
2248
2249  // Determine whether we need to perform derived-to-base or
2250  // cv-qualification adjustments.
2251  bool NewDerivedToBase = false;
2252  Sema::ReferenceCompareResult NewRefRelationship
2253    = S.CompareReferenceRelationship(DeclLoc, T1, T2.getNonReferenceType(),
2254                                     NewDerivedToBase);
2255  assert(NewRefRelationship != Sema::Ref_Incompatible &&
2256         "Overload resolution picked a bad conversion function");
2257  (void)NewRefRelationship;
2258  if (NewDerivedToBase)
2259    Sequence.AddDerivedToBaseCastStep(
2260                                S.Context.getQualifiedType(T1,
2261                                  T2.getNonReferenceType().getQualifiers()),
2262                                  /*isLValue=*/true);
2263
2264  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
2265    Sequence.AddQualificationConversionStep(cv1T1, T2->isReferenceType());
2266
2267  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
2268  return OR_Success;
2269}
2270
2271/// \brief Attempt reference initialization (C++0x [dcl.init.list])
2272static void TryReferenceInitialization(Sema &S,
2273                                       const InitializedEntity &Entity,
2274                                       const InitializationKind &Kind,
2275                                       Expr *Initializer,
2276                                       InitializationSequence &Sequence) {
2277  Sequence.setSequenceKind(InitializationSequence::ReferenceBinding);
2278
2279  QualType DestType = Entity.getType();
2280  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2281  Qualifiers T1Quals;
2282  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2283  QualType cv2T2 = Initializer->getType();
2284  Qualifiers T2Quals;
2285  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
2286  SourceLocation DeclLoc = Initializer->getLocStart();
2287
2288  // If the initializer is the address of an overloaded function, try
2289  // to resolve the overloaded function. If all goes well, T2 is the
2290  // type of the resulting function.
2291  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2292    FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
2293                                                            T1,
2294                                                            false);
2295    if (!Fn) {
2296      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2297      return;
2298    }
2299
2300    Sequence.AddAddressOverloadResolutionStep(Fn);
2301    cv2T2 = Fn->getType();
2302    T2 = cv2T2.getUnqualifiedType();
2303  }
2304
2305  // FIXME: Rvalue references
2306  bool ForceRValue = false;
2307
2308  // Compute some basic properties of the types and the initializer.
2309  bool isLValueRef = DestType->isLValueReferenceType();
2310  bool isRValueRef = !isLValueRef;
2311  bool DerivedToBase = false;
2312  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2313                                    Initializer->isLvalue(S.Context);
2314  Sema::ReferenceCompareResult RefRelationship
2315    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase);
2316
2317  // C++0x [dcl.init.ref]p5:
2318  //   A reference to type "cv1 T1" is initialized by an expression of type
2319  //   "cv2 T2" as follows:
2320  //
2321  //     - If the reference is an lvalue reference and the initializer
2322  //       expression
2323  OverloadingResult ConvOvlResult = OR_Success;
2324  if (isLValueRef) {
2325    if (InitLvalue == Expr::LV_Valid &&
2326        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2327      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
2328      //     reference-compatible with "cv2 T2," or
2329      //
2330      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
2331      // bit-field when we're determining whether the reference initialization
2332      // can occur. However, we do pay attention to whether it is a bit-field
2333      // to decide whether we're actually binding to a temporary created from
2334      // the bit-field.
2335      if (DerivedToBase)
2336        Sequence.AddDerivedToBaseCastStep(
2337                         S.Context.getQualifiedType(T1, T2Quals),
2338                         /*isLValue=*/true);
2339      if (T1Quals != T2Quals)
2340        Sequence.AddQualificationConversionStep(cv1T1, /*IsLValue=*/true);
2341      bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
2342           Initializer->getBitField();
2343      Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
2344      return;
2345    }
2346
2347    //     - has a class type (i.e., T2 is a class type), where T1 is not
2348    //       reference-related to T2, and can be implicitly converted to an
2349    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
2350    //       with "cv3 T3" (this conversion is selected by enumerating the
2351    //       applicable conversion functions (13.3.1.6) and choosing the best
2352    //       one through overload resolution (13.3)),
2353    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType()) {
2354      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
2355                                                       Initializer,
2356                                                       /*AllowRValues=*/false,
2357                                                       Sequence);
2358      if (ConvOvlResult == OR_Success)
2359        return;
2360      if (ConvOvlResult != OR_No_Viable_Function) {
2361        Sequence.SetOverloadFailure(
2362                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2363                                    ConvOvlResult);
2364      }
2365    }
2366  }
2367
2368  //     - Otherwise, the reference shall be an lvalue reference to a
2369  //       non-volatile const type (i.e., cv1 shall be const), or the reference
2370  //       shall be an rvalue reference and the initializer expression shall
2371  //       be an rvalue.
2372  if (!((isLValueRef && T1Quals.hasConst()) ||
2373        (isRValueRef && InitLvalue != Expr::LV_Valid))) {
2374    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2375      Sequence.SetOverloadFailure(
2376                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2377                                  ConvOvlResult);
2378    else if (isLValueRef)
2379      Sequence.SetFailed(InitLvalue == Expr::LV_Valid
2380        ? (RefRelationship == Sema::Ref_Related
2381             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
2382             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
2383        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
2384    else
2385      Sequence.SetFailed(
2386                    InitializationSequence::FK_RValueReferenceBindingToLValue);
2387
2388    return;
2389  }
2390
2391  //       - If T1 and T2 are class types and
2392  if (T1->isRecordType() && T2->isRecordType()) {
2393    //       - the initializer expression is an rvalue and "cv1 T1" is
2394    //         reference-compatible with "cv2 T2", or
2395    if (InitLvalue != Expr::LV_Valid &&
2396        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2397      if (DerivedToBase)
2398        Sequence.AddDerivedToBaseCastStep(
2399                         S.Context.getQualifiedType(T1, T2Quals),
2400                         /*isLValue=*/false);
2401      if (T1Quals != T2Quals)
2402        Sequence.AddQualificationConversionStep(cv1T1, /*IsLValue=*/false);
2403      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2404      return;
2405    }
2406
2407    //       - T1 is not reference-related to T2 and the initializer expression
2408    //         can be implicitly converted to an rvalue of type "cv3 T3" (this
2409    //         conversion is selected by enumerating the applicable conversion
2410    //         functions (13.3.1.6) and choosing the best one through overload
2411    //         resolution (13.3)),
2412    if (RefRelationship == Sema::Ref_Incompatible) {
2413      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
2414                                                       Kind, Initializer,
2415                                                       /*AllowRValues=*/true,
2416                                                       Sequence);
2417      if (ConvOvlResult)
2418        Sequence.SetOverloadFailure(
2419                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2420                                    ConvOvlResult);
2421
2422      return;
2423    }
2424
2425    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2426    return;
2427  }
2428
2429  //      - If the initializer expression is an rvalue, with T2 an array type,
2430  //        and "cv1 T1" is reference-compatible with "cv2 T2," the reference
2431  //        is bound to the object represented by the rvalue (see 3.10).
2432  // FIXME: How can an array type be reference-compatible with anything?
2433  // Don't we mean the element types of T1 and T2?
2434
2435  //      - Otherwise, a temporary of type “cv1 T1” is created and initialized
2436  //        from the initializer expression using the rules for a non-reference
2437  //        copy initialization (8.5). The reference is then bound to the
2438  //        temporary. [...]
2439  // Determine whether we are allowed to call explicit constructors or
2440  // explicit conversion operators.
2441  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
2442  ImplicitConversionSequence ICS
2443    = S.TryImplicitConversion(Initializer, cv1T1,
2444                              /*SuppressUserConversions=*/false, AllowExplicit,
2445                              /*ForceRValue=*/false,
2446                              /*FIXME:InOverloadResolution=*/false,
2447                              /*UserCast=*/Kind.isExplicitCast());
2448
2449  if (ICS.isBad()) {
2450    // FIXME: Use the conversion function set stored in ICS to turn
2451    // this into an overloading ambiguity diagnostic. However, we need
2452    // to keep that set as an OverloadCandidateSet rather than as some
2453    // other kind of set.
2454    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2455      Sequence.SetOverloadFailure(
2456                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2457                                  ConvOvlResult);
2458    else
2459      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
2460    return;
2461  }
2462
2463  //        [...] If T1 is reference-related to T2, cv1 must be the
2464  //        same cv-qualification as, or greater cv-qualification
2465  //        than, cv2; otherwise, the program is ill-formed.
2466  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
2467  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
2468  if (RefRelationship == Sema::Ref_Related &&
2469      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
2470    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2471    return;
2472  }
2473
2474  // Perform the actual conversion.
2475  Sequence.AddConversionSequenceStep(ICS, cv1T1);
2476  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2477  return;
2478}
2479
2480/// \brief Attempt character array initialization from a string literal
2481/// (C++ [dcl.init.string], C99 6.7.8).
2482static void TryStringLiteralInitialization(Sema &S,
2483                                           const InitializedEntity &Entity,
2484                                           const InitializationKind &Kind,
2485                                           Expr *Initializer,
2486                                       InitializationSequence &Sequence) {
2487  Sequence.setSequenceKind(InitializationSequence::StringInit);
2488  Sequence.AddStringInitStep(Entity.getType());
2489}
2490
2491/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2492/// enumerates the constructors of the initialized entity and performs overload
2493/// resolution to select the best.
2494static void TryConstructorInitialization(Sema &S,
2495                                         const InitializedEntity &Entity,
2496                                         const InitializationKind &Kind,
2497                                         Expr **Args, unsigned NumArgs,
2498                                         QualType DestType,
2499                                         InitializationSequence &Sequence) {
2500  if (Kind.getKind() == InitializationKind::IK_Copy)
2501    Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
2502  else
2503    Sequence.setSequenceKind(InitializationSequence::ConstructorInitialization);
2504
2505  // Build the candidate set directly in the initialization sequence
2506  // structure, so that it will persist if we fail.
2507  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2508  CandidateSet.clear();
2509
2510  // Determine whether we are allowed to call explicit constructors or
2511  // explicit conversion operators.
2512  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
2513                        Kind.getKind() == InitializationKind::IK_Value ||
2514                        Kind.getKind() == InitializationKind::IK_Default);
2515
2516  // The type we're converting to is a class type. Enumerate its constructors
2517  // to see if one is suitable.
2518  const RecordType *DestRecordType = DestType->getAs<RecordType>();
2519  assert(DestRecordType && "Constructor initialization requires record type");
2520  CXXRecordDecl *DestRecordDecl
2521    = cast<CXXRecordDecl>(DestRecordType->getDecl());
2522
2523  DeclarationName ConstructorName
2524    = S.Context.DeclarationNames.getCXXConstructorName(
2525                     S.Context.getCanonicalType(DestType).getUnqualifiedType());
2526  DeclContext::lookup_iterator Con, ConEnd;
2527  for (llvm::tie(Con, ConEnd) = DestRecordDecl->lookup(ConstructorName);
2528       Con != ConEnd; ++Con) {
2529    // Find the constructor (which may be a template).
2530    CXXConstructorDecl *Constructor = 0;
2531    FunctionTemplateDecl *ConstructorTmpl
2532      = dyn_cast<FunctionTemplateDecl>(*Con);
2533    if (ConstructorTmpl)
2534      Constructor = cast<CXXConstructorDecl>(
2535                                           ConstructorTmpl->getTemplatedDecl());
2536    else
2537      Constructor = cast<CXXConstructorDecl>(*Con);
2538
2539    if (!Constructor->isInvalidDecl() &&
2540        (AllowExplicit || !Constructor->isExplicit())) {
2541      if (ConstructorTmpl)
2542        S.AddTemplateOverloadCandidate(ConstructorTmpl,
2543                                       ConstructorTmpl->getAccess(),
2544                                       /*ExplicitArgs*/ 0,
2545                                       Args, NumArgs, CandidateSet);
2546      else
2547        S.AddOverloadCandidate(Constructor, Constructor->getAccess(),
2548                               Args, NumArgs, CandidateSet);
2549    }
2550  }
2551
2552  SourceLocation DeclLoc = Kind.getLocation();
2553
2554  // Perform overload resolution. If it fails, return the failed result.
2555  OverloadCandidateSet::iterator Best;
2556  if (OverloadingResult Result
2557        = S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2558    Sequence.SetOverloadFailure(
2559                          InitializationSequence::FK_ConstructorOverloadFailed,
2560                                Result);
2561    return;
2562  }
2563
2564  // Add the constructor initialization step. Any cv-qualification conversion is
2565  // subsumed by the initialization.
2566  if (Kind.getKind() == InitializationKind::IK_Copy) {
2567    Sequence.AddUserConversionStep(Best->Function, DestType);
2568  } else {
2569    Sequence.AddConstructorInitializationStep(
2570                                      cast<CXXConstructorDecl>(Best->Function),
2571                                      DestType);
2572  }
2573}
2574
2575/// \brief Attempt value initialization (C++ [dcl.init]p7).
2576static void TryValueInitialization(Sema &S,
2577                                   const InitializedEntity &Entity,
2578                                   const InitializationKind &Kind,
2579                                   InitializationSequence &Sequence) {
2580  // C++ [dcl.init]p5:
2581  //
2582  //   To value-initialize an object of type T means:
2583  QualType T = Entity.getType();
2584
2585  //     -- if T is an array type, then each element is value-initialized;
2586  while (const ArrayType *AT = S.Context.getAsArrayType(T))
2587    T = AT->getElementType();
2588
2589  if (const RecordType *RT = T->getAs<RecordType>()) {
2590    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2591      // -- if T is a class type (clause 9) with a user-declared
2592      //    constructor (12.1), then the default constructor for T is
2593      //    called (and the initialization is ill-formed if T has no
2594      //    accessible default constructor);
2595      //
2596      // FIXME: we really want to refer to a single subobject of the array,
2597      // but Entity doesn't have a way to capture that (yet).
2598      if (ClassDecl->hasUserDeclaredConstructor())
2599        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2600
2601      // -- if T is a (possibly cv-qualified) non-union class type
2602      //    without a user-provided constructor, then the object is
2603      //    zero-initialized and, if T’s implicitly-declared default
2604      //    constructor is non-trivial, that constructor is called.
2605      if ((ClassDecl->getTagKind() == TagDecl::TK_class ||
2606           ClassDecl->getTagKind() == TagDecl::TK_struct) &&
2607          !ClassDecl->hasTrivialConstructor()) {
2608        Sequence.AddZeroInitializationStep(Entity.getType());
2609        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2610      }
2611    }
2612  }
2613
2614  Sequence.AddZeroInitializationStep(Entity.getType());
2615  Sequence.setSequenceKind(InitializationSequence::ZeroInitialization);
2616}
2617
2618/// \brief Attempt default initialization (C++ [dcl.init]p6).
2619static void TryDefaultInitialization(Sema &S,
2620                                     const InitializedEntity &Entity,
2621                                     const InitializationKind &Kind,
2622                                     InitializationSequence &Sequence) {
2623  assert(Kind.getKind() == InitializationKind::IK_Default);
2624
2625  // C++ [dcl.init]p6:
2626  //   To default-initialize an object of type T means:
2627  //     - if T is an array type, each element is default-initialized;
2628  QualType DestType = Entity.getType();
2629  while (const ArrayType *Array = S.Context.getAsArrayType(DestType))
2630    DestType = Array->getElementType();
2631
2632  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
2633  //       constructor for T is called (and the initialization is ill-formed if
2634  //       T has no accessible default constructor);
2635  if (DestType->isRecordType()) {
2636    // FIXME: If a program calls for the default initialization of an object of
2637    // a const-qualified type T, T shall be a class type with a user-provided
2638    // default constructor.
2639    return TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType,
2640                                        Sequence);
2641  }
2642
2643  //     - otherwise, no initialization is performed.
2644  Sequence.setSequenceKind(InitializationSequence::NoInitialization);
2645
2646  //   If a program calls for the default initialization of an object of
2647  //   a const-qualified type T, T shall be a class type with a user-provided
2648  //   default constructor.
2649  if (DestType.isConstQualified())
2650    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2651}
2652
2653/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
2654/// which enumerates all conversion functions and performs overload resolution
2655/// to select the best.
2656static void TryUserDefinedConversion(Sema &S,
2657                                     const InitializedEntity &Entity,
2658                                     const InitializationKind &Kind,
2659                                     Expr *Initializer,
2660                                     InitializationSequence &Sequence) {
2661  Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
2662
2663  QualType DestType = Entity.getType();
2664  assert(!DestType->isReferenceType() && "References are handled elsewhere");
2665  QualType SourceType = Initializer->getType();
2666  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
2667         "Must have a class type to perform a user-defined conversion");
2668
2669  // Build the candidate set directly in the initialization sequence
2670  // structure, so that it will persist if we fail.
2671  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2672  CandidateSet.clear();
2673
2674  // Determine whether we are allowed to call explicit constructors or
2675  // explicit conversion operators.
2676  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2677
2678  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
2679    // The type we're converting to is a class type. Enumerate its constructors
2680    // to see if there is a suitable conversion.
2681    CXXRecordDecl *DestRecordDecl
2682      = cast<CXXRecordDecl>(DestRecordType->getDecl());
2683
2684    DeclarationName ConstructorName
2685      = S.Context.DeclarationNames.getCXXConstructorName(
2686                     S.Context.getCanonicalType(DestType).getUnqualifiedType());
2687    DeclContext::lookup_iterator Con, ConEnd;
2688    for (llvm::tie(Con, ConEnd) = DestRecordDecl->lookup(ConstructorName);
2689         Con != ConEnd; ++Con) {
2690      // Find the constructor (which may be a template).
2691      CXXConstructorDecl *Constructor = 0;
2692      FunctionTemplateDecl *ConstructorTmpl
2693        = dyn_cast<FunctionTemplateDecl>(*Con);
2694      if (ConstructorTmpl)
2695        Constructor = cast<CXXConstructorDecl>(
2696                                           ConstructorTmpl->getTemplatedDecl());
2697      else
2698        Constructor = cast<CXXConstructorDecl>(*Con);
2699
2700      if (!Constructor->isInvalidDecl() &&
2701          Constructor->isConvertingConstructor(AllowExplicit)) {
2702        if (ConstructorTmpl)
2703          S.AddTemplateOverloadCandidate(ConstructorTmpl,
2704                                         ConstructorTmpl->getAccess(),
2705                                         /*ExplicitArgs*/ 0,
2706                                         &Initializer, 1, CandidateSet);
2707        else
2708          S.AddOverloadCandidate(Constructor, Constructor->getAccess(),
2709                                 &Initializer, 1, CandidateSet);
2710      }
2711    }
2712  }
2713
2714  SourceLocation DeclLoc = Initializer->getLocStart();
2715
2716  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
2717    // The type we're converting from is a class type, enumerate its conversion
2718    // functions.
2719
2720    // We can only enumerate the conversion functions for a complete type; if
2721    // the type isn't complete, simply skip this step.
2722    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
2723      CXXRecordDecl *SourceRecordDecl
2724        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
2725
2726      const UnresolvedSetImpl *Conversions
2727        = SourceRecordDecl->getVisibleConversionFunctions();
2728      for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2729           E = Conversions->end();
2730           I != E; ++I) {
2731        NamedDecl *D = *I;
2732        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2733        if (isa<UsingShadowDecl>(D))
2734          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2735
2736        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2737        CXXConversionDecl *Conv;
2738        if (ConvTemplate)
2739          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2740        else
2741          Conv = cast<CXXConversionDecl>(*I);
2742
2743        if (AllowExplicit || !Conv->isExplicit()) {
2744          if (ConvTemplate)
2745            S.AddTemplateConversionCandidate(ConvTemplate, I.getAccess(),
2746                                             ActingDC, Initializer, DestType,
2747                                             CandidateSet);
2748          else
2749            S.AddConversionCandidate(Conv, I.getAccess(), ActingDC,
2750                                     Initializer, DestType, CandidateSet);
2751        }
2752      }
2753    }
2754  }
2755
2756  // Perform overload resolution. If it fails, return the failed result.
2757  OverloadCandidateSet::iterator Best;
2758  if (OverloadingResult Result
2759        = S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2760    Sequence.SetOverloadFailure(
2761                        InitializationSequence::FK_UserConversionOverloadFailed,
2762                                Result);
2763    return;
2764  }
2765
2766  FunctionDecl *Function = Best->Function;
2767
2768  if (isa<CXXConstructorDecl>(Function)) {
2769    // Add the user-defined conversion step. Any cv-qualification conversion is
2770    // subsumed by the initialization.
2771    Sequence.AddUserConversionStep(Function, DestType);
2772    return;
2773  }
2774
2775  // Add the user-defined conversion step that calls the conversion function.
2776  QualType ConvType = Function->getResultType().getNonReferenceType();
2777  Sequence.AddUserConversionStep(Function, ConvType);
2778
2779  // If the conversion following the call to the conversion function is
2780  // interesting, add it as a separate step.
2781  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
2782      Best->FinalConversion.Third) {
2783    ImplicitConversionSequence ICS;
2784    ICS.setStandard();
2785    ICS.Standard = Best->FinalConversion;
2786    Sequence.AddConversionSequenceStep(ICS, DestType);
2787  }
2788}
2789
2790/// \brief Attempt an implicit conversion (C++ [conv]) converting from one
2791/// non-class type to another.
2792static void TryImplicitConversion(Sema &S,
2793                                  const InitializedEntity &Entity,
2794                                  const InitializationKind &Kind,
2795                                  Expr *Initializer,
2796                                  InitializationSequence &Sequence) {
2797  ImplicitConversionSequence ICS
2798    = S.TryImplicitConversion(Initializer, Entity.getType(),
2799                              /*SuppressUserConversions=*/true,
2800                              /*AllowExplicit=*/false,
2801                              /*ForceRValue=*/false,
2802                              /*FIXME:InOverloadResolution=*/false,
2803                              /*UserCast=*/Kind.isExplicitCast());
2804
2805  if (ICS.isBad()) {
2806    Sequence.SetFailed(InitializationSequence::FK_ConversionFailed);
2807    return;
2808  }
2809
2810  Sequence.AddConversionSequenceStep(ICS, Entity.getType());
2811}
2812
2813InitializationSequence::InitializationSequence(Sema &S,
2814                                               const InitializedEntity &Entity,
2815                                               const InitializationKind &Kind,
2816                                               Expr **Args,
2817                                               unsigned NumArgs) {
2818  ASTContext &Context = S.Context;
2819
2820  // C++0x [dcl.init]p16:
2821  //   The semantics of initializers are as follows. The destination type is
2822  //   the type of the object or reference being initialized and the source
2823  //   type is the type of the initializer expression. The source type is not
2824  //   defined when the initializer is a braced-init-list or when it is a
2825  //   parenthesized list of expressions.
2826  QualType DestType = Entity.getType();
2827
2828  if (DestType->isDependentType() ||
2829      Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
2830    SequenceKind = DependentSequence;
2831    return;
2832  }
2833
2834  QualType SourceType;
2835  Expr *Initializer = 0;
2836  if (NumArgs == 1) {
2837    Initializer = Args[0];
2838    if (!isa<InitListExpr>(Initializer))
2839      SourceType = Initializer->getType();
2840  }
2841
2842  //     - If the initializer is a braced-init-list, the object is
2843  //       list-initialized (8.5.4).
2844  if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
2845    TryListInitialization(S, Entity, Kind, InitList, *this);
2846    return;
2847  }
2848
2849  //     - If the destination type is a reference type, see 8.5.3.
2850  if (DestType->isReferenceType()) {
2851    // C++0x [dcl.init.ref]p1:
2852    //   A variable declared to be a T& or T&&, that is, "reference to type T"
2853    //   (8.3.2), shall be initialized by an object, or function, of type T or
2854    //   by an object that can be converted into a T.
2855    // (Therefore, multiple arguments are not permitted.)
2856    if (NumArgs != 1)
2857      SetFailed(FK_TooManyInitsForReference);
2858    else
2859      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
2860    return;
2861  }
2862
2863  //     - If the destination type is an array of characters, an array of
2864  //       char16_t, an array of char32_t, or an array of wchar_t, and the
2865  //       initializer is a string literal, see 8.5.2.
2866  if (Initializer && IsStringInit(Initializer, DestType, Context)) {
2867    TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
2868    return;
2869  }
2870
2871  //     - If the initializer is (), the object is value-initialized.
2872  if (Kind.getKind() == InitializationKind::IK_Value ||
2873      (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
2874    TryValueInitialization(S, Entity, Kind, *this);
2875    return;
2876  }
2877
2878  // Handle default initialization.
2879  if (Kind.getKind() == InitializationKind::IK_Default){
2880    TryDefaultInitialization(S, Entity, Kind, *this);
2881    return;
2882  }
2883
2884  //     - Otherwise, if the destination type is an array, the program is
2885  //       ill-formed.
2886  if (const ArrayType *AT = Context.getAsArrayType(DestType)) {
2887    if (AT->getElementType()->isAnyCharacterType())
2888      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
2889    else
2890      SetFailed(FK_ArrayNeedsInitList);
2891
2892    return;
2893  }
2894
2895  // Handle initialization in C
2896  if (!S.getLangOptions().CPlusPlus) {
2897    setSequenceKind(CAssignment);
2898    AddCAssignmentStep(DestType);
2899    return;
2900  }
2901
2902  //     - If the destination type is a (possibly cv-qualified) class type:
2903  if (DestType->isRecordType()) {
2904    //     - If the initialization is direct-initialization, or if it is
2905    //       copy-initialization where the cv-unqualified version of the
2906    //       source type is the same class as, or a derived class of, the
2907    //       class of the destination, constructors are considered. [...]
2908    if (Kind.getKind() == InitializationKind::IK_Direct ||
2909        (Kind.getKind() == InitializationKind::IK_Copy &&
2910         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
2911          S.IsDerivedFrom(SourceType, DestType))))
2912      TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
2913                                   Entity.getType(), *this);
2914    //     - Otherwise (i.e., for the remaining copy-initialization cases),
2915    //       user-defined conversion sequences that can convert from the source
2916    //       type to the destination type or (when a conversion function is
2917    //       used) to a derived class thereof are enumerated as described in
2918    //       13.3.1.4, and the best one is chosen through overload resolution
2919    //       (13.3).
2920    else
2921      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
2922    return;
2923  }
2924
2925  if (NumArgs > 1) {
2926    SetFailed(FK_TooManyInitsForScalar);
2927    return;
2928  }
2929  assert(NumArgs == 1 && "Zero-argument case handled above");
2930
2931  //    - Otherwise, if the source type is a (possibly cv-qualified) class
2932  //      type, conversion functions are considered.
2933  if (!SourceType.isNull() && SourceType->isRecordType()) {
2934    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
2935    return;
2936  }
2937
2938  //    - Otherwise, the initial value of the object being initialized is the
2939  //      (possibly converted) value of the initializer expression. Standard
2940  //      conversions (Clause 4) will be used, if necessary, to convert the
2941  //      initializer expression to the cv-unqualified version of the
2942  //      destination type; no user-defined conversions are considered.
2943  setSequenceKind(StandardConversion);
2944  TryImplicitConversion(S, Entity, Kind, Initializer, *this);
2945}
2946
2947InitializationSequence::~InitializationSequence() {
2948  for (llvm::SmallVectorImpl<Step>::iterator Step = Steps.begin(),
2949                                          StepEnd = Steps.end();
2950       Step != StepEnd; ++Step)
2951    Step->Destroy();
2952}
2953
2954//===----------------------------------------------------------------------===//
2955// Perform initialization
2956//===----------------------------------------------------------------------===//
2957static Sema::AssignmentAction
2958getAssignmentAction(const InitializedEntity &Entity) {
2959  switch(Entity.getKind()) {
2960  case InitializedEntity::EK_Variable:
2961  case InitializedEntity::EK_New:
2962    return Sema::AA_Initializing;
2963
2964  case InitializedEntity::EK_Parameter:
2965    // FIXME: Can we tell when we're sending vs. passing?
2966    return Sema::AA_Passing;
2967
2968  case InitializedEntity::EK_Result:
2969    return Sema::AA_Returning;
2970
2971  case InitializedEntity::EK_Exception:
2972  case InitializedEntity::EK_Base:
2973    llvm_unreachable("No assignment action for C++-specific initialization");
2974    break;
2975
2976  case InitializedEntity::EK_Temporary:
2977    // FIXME: Can we tell apart casting vs. converting?
2978    return Sema::AA_Casting;
2979
2980  case InitializedEntity::EK_Member:
2981  case InitializedEntity::EK_ArrayElement:
2982  case InitializedEntity::EK_VectorElement:
2983    return Sema::AA_Initializing;
2984  }
2985
2986  return Sema::AA_Converting;
2987}
2988
2989static bool shouldBindAsTemporary(const InitializedEntity &Entity,
2990                                  bool IsCopy) {
2991  switch (Entity.getKind()) {
2992  case InitializedEntity::EK_Result:
2993  case InitializedEntity::EK_Exception:
2994  case InitializedEntity::EK_ArrayElement:
2995  case InitializedEntity::EK_Member:
2996    return !IsCopy;
2997
2998  case InitializedEntity::EK_New:
2999  case InitializedEntity::EK_Variable:
3000  case InitializedEntity::EK_Base:
3001  case InitializedEntity::EK_VectorElement:
3002    return false;
3003
3004  case InitializedEntity::EK_Parameter:
3005  case InitializedEntity::EK_Temporary:
3006    return true;
3007  }
3008
3009  llvm_unreachable("missed an InitializedEntity kind?");
3010}
3011
3012/// \brief If we need to perform an additional copy of the initialized object
3013/// for this kind of entity (e.g., the result of a function or an object being
3014/// thrown), make the copy.
3015static Sema::OwningExprResult CopyIfRequiredForEntity(Sema &S,
3016                                            const InitializedEntity &Entity,
3017                                             const InitializationKind &Kind,
3018                                             Sema::OwningExprResult CurInit) {
3019  Expr *CurInitExpr = (Expr *)CurInit.get();
3020
3021  SourceLocation Loc;
3022
3023  switch (Entity.getKind()) {
3024  case InitializedEntity::EK_Result:
3025    if (Entity.getType()->isReferenceType())
3026      return move(CurInit);
3027    Loc = Entity.getReturnLoc();
3028    break;
3029
3030  case InitializedEntity::EK_Exception:
3031    Loc = Entity.getThrowLoc();
3032    break;
3033
3034  case InitializedEntity::EK_Variable:
3035    if (Entity.getType()->isReferenceType() ||
3036        Kind.getKind() != InitializationKind::IK_Copy)
3037      return move(CurInit);
3038    Loc = Entity.getDecl()->getLocation();
3039    break;
3040
3041  case InitializedEntity::EK_ArrayElement:
3042  case InitializedEntity::EK_Member:
3043    if (Entity.getType()->isReferenceType() ||
3044        Kind.getKind() != InitializationKind::IK_Copy)
3045      return move(CurInit);
3046    Loc = CurInitExpr->getLocStart();
3047    break;
3048
3049  case InitializedEntity::EK_Parameter:
3050    // FIXME: Do we need this initialization for a parameter?
3051    return move(CurInit);
3052
3053  case InitializedEntity::EK_New:
3054  case InitializedEntity::EK_Temporary:
3055  case InitializedEntity::EK_Base:
3056  case InitializedEntity::EK_VectorElement:
3057    // We don't need to copy for any of these initialized entities.
3058    return move(CurInit);
3059  }
3060
3061  CXXRecordDecl *Class = 0;
3062  if (const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>())
3063    Class = cast<CXXRecordDecl>(Record->getDecl());
3064  if (!Class)
3065    return move(CurInit);
3066
3067  // Perform overload resolution using the class's copy constructors.
3068  DeclarationName ConstructorName
3069    = S.Context.DeclarationNames.getCXXConstructorName(
3070                  S.Context.getCanonicalType(S.Context.getTypeDeclType(Class)));
3071  DeclContext::lookup_iterator Con, ConEnd;
3072  OverloadCandidateSet CandidateSet;
3073  for (llvm::tie(Con, ConEnd) = Class->lookup(ConstructorName);
3074       Con != ConEnd; ++Con) {
3075    // Find the constructor (which may be a template).
3076    CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(*Con);
3077    if (!Constructor || Constructor->isInvalidDecl() ||
3078        !Constructor->isCopyConstructor())
3079      continue;
3080
3081    S.AddOverloadCandidate(Constructor, Constructor->getAccess(),
3082                           &CurInitExpr, 1, CandidateSet);
3083  }
3084
3085  OverloadCandidateSet::iterator Best;
3086  switch (S.BestViableFunction(CandidateSet, Loc, Best)) {
3087  case OR_Success:
3088    break;
3089
3090  case OR_No_Viable_Function:
3091    S.Diag(Loc, diag::err_temp_copy_no_viable)
3092      << (int)Entity.getKind() << CurInitExpr->getType()
3093      << CurInitExpr->getSourceRange();
3094    S.PrintOverloadCandidates(CandidateSet, Sema::OCD_AllCandidates,
3095                              &CurInitExpr, 1);
3096    return S.ExprError();
3097
3098  case OR_Ambiguous:
3099    S.Diag(Loc, diag::err_temp_copy_ambiguous)
3100      << (int)Entity.getKind() << CurInitExpr->getType()
3101      << CurInitExpr->getSourceRange();
3102    S.PrintOverloadCandidates(CandidateSet, Sema::OCD_ViableCandidates,
3103                              &CurInitExpr, 1);
3104    return S.ExprError();
3105
3106  case OR_Deleted:
3107    S.Diag(Loc, diag::err_temp_copy_deleted)
3108      << (int)Entity.getKind() << CurInitExpr->getType()
3109      << CurInitExpr->getSourceRange();
3110    S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3111      << Best->Function->isDeleted();
3112    return S.ExprError();
3113  }
3114
3115  CurInit.release();
3116  return S.BuildCXXConstructExpr(Loc, CurInitExpr->getType(),
3117                                 cast<CXXConstructorDecl>(Best->Function),
3118                                 /*Elidable=*/true,
3119                                 Sema::MultiExprArg(S,
3120                                                    (void**)&CurInitExpr, 1));
3121}
3122
3123Action::OwningExprResult
3124InitializationSequence::Perform(Sema &S,
3125                                const InitializedEntity &Entity,
3126                                const InitializationKind &Kind,
3127                                Action::MultiExprArg Args,
3128                                QualType *ResultType) {
3129  if (SequenceKind == FailedSequence) {
3130    unsigned NumArgs = Args.size();
3131    Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
3132    return S.ExprError();
3133  }
3134
3135  if (SequenceKind == DependentSequence) {
3136    // If the declaration is a non-dependent, incomplete array type
3137    // that has an initializer, then its type will be completed once
3138    // the initializer is instantiated.
3139    if (ResultType && !Entity.getType()->isDependentType() &&
3140        Args.size() == 1) {
3141      QualType DeclType = Entity.getType();
3142      if (const IncompleteArrayType *ArrayT
3143                           = S.Context.getAsIncompleteArrayType(DeclType)) {
3144        // FIXME: We don't currently have the ability to accurately
3145        // compute the length of an initializer list without
3146        // performing full type-checking of the initializer list
3147        // (since we have to determine where braces are implicitly
3148        // introduced and such).  So, we fall back to making the array
3149        // type a dependently-sized array type with no specified
3150        // bound.
3151        if (isa<InitListExpr>((Expr *)Args.get()[0])) {
3152          SourceRange Brackets;
3153
3154          // Scavange the location of the brackets from the entity, if we can.
3155          if (DeclaratorDecl *DD = Entity.getDecl()) {
3156            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
3157              TypeLoc TL = TInfo->getTypeLoc();
3158              if (IncompleteArrayTypeLoc *ArrayLoc
3159                                      = dyn_cast<IncompleteArrayTypeLoc>(&TL))
3160              Brackets = ArrayLoc->getBracketsRange();
3161            }
3162          }
3163
3164          *ResultType
3165            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
3166                                                   /*NumElts=*/0,
3167                                                   ArrayT->getSizeModifier(),
3168                                       ArrayT->getIndexTypeCVRQualifiers(),
3169                                                   Brackets);
3170        }
3171
3172      }
3173    }
3174
3175    if (Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast())
3176      return Sema::OwningExprResult(S, Args.release()[0]);
3177
3178    unsigned NumArgs = Args.size();
3179    return S.Owned(new (S.Context) ParenListExpr(S.Context,
3180                                                 SourceLocation(),
3181                                                 (Expr **)Args.release(),
3182                                                 NumArgs,
3183                                                 SourceLocation()));
3184  }
3185
3186  if (SequenceKind == NoInitialization)
3187    return S.Owned((Expr *)0);
3188
3189  QualType DestType = Entity.getType().getNonReferenceType();
3190  // FIXME: Ugly hack around the fact that Entity.getType() is not
3191  // the same as Entity.getDecl()->getType() in cases involving type merging,
3192  //  and we want latter when it makes sense.
3193  if (ResultType)
3194    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
3195                                     Entity.getType();
3196
3197  Sema::OwningExprResult CurInit = S.Owned((Expr *)0);
3198
3199  assert(!Steps.empty() && "Cannot have an empty initialization sequence");
3200
3201  // For initialization steps that start with a single initializer,
3202  // grab the only argument out the Args and place it into the "current"
3203  // initializer.
3204  switch (Steps.front().Kind) {
3205  case SK_ResolveAddressOfOverloadedFunction:
3206  case SK_CastDerivedToBaseRValue:
3207  case SK_CastDerivedToBaseLValue:
3208  case SK_BindReference:
3209  case SK_BindReferenceToTemporary:
3210  case SK_UserConversion:
3211  case SK_QualificationConversionLValue:
3212  case SK_QualificationConversionRValue:
3213  case SK_ConversionSequence:
3214  case SK_ListInitialization:
3215  case SK_CAssignment:
3216  case SK_StringInit:
3217    assert(Args.size() == 1);
3218    CurInit = Sema::OwningExprResult(S, ((Expr **)(Args.get()))[0]->Retain());
3219    if (CurInit.isInvalid())
3220      return S.ExprError();
3221    break;
3222
3223  case SK_ConstructorInitialization:
3224  case SK_ZeroInitialization:
3225    break;
3226  }
3227
3228  // Walk through the computed steps for the initialization sequence,
3229  // performing the specified conversions along the way.
3230  bool ConstructorInitRequiresZeroInit = false;
3231  for (step_iterator Step = step_begin(), StepEnd = step_end();
3232       Step != StepEnd; ++Step) {
3233    if (CurInit.isInvalid())
3234      return S.ExprError();
3235
3236    Expr *CurInitExpr = (Expr *)CurInit.get();
3237    QualType SourceType = CurInitExpr? CurInitExpr->getType() : QualType();
3238
3239    switch (Step->Kind) {
3240    case SK_ResolveAddressOfOverloadedFunction:
3241      // Overload resolution determined which function invoke; update the
3242      // initializer to reflect that choice.
3243      CurInit = S.FixOverloadedFunctionReference(move(CurInit), Step->Function);
3244      break;
3245
3246    case SK_CastDerivedToBaseRValue:
3247    case SK_CastDerivedToBaseLValue: {
3248      // We have a derived-to-base cast that produces either an rvalue or an
3249      // lvalue. Perform that cast.
3250
3251      // Casts to inaccessible base classes are allowed with C-style casts.
3252      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3253      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
3254                                         CurInitExpr->getLocStart(),
3255                                         CurInitExpr->getSourceRange(),
3256                                         IgnoreBaseAccess))
3257        return S.ExprError();
3258
3259      CurInit = S.Owned(new (S.Context) ImplicitCastExpr(Step->Type,
3260                                                    CastExpr::CK_DerivedToBase,
3261                                                      (Expr*)CurInit.release(),
3262                                     Step->Kind == SK_CastDerivedToBaseLValue));
3263      break;
3264    }
3265
3266    case SK_BindReference:
3267      if (FieldDecl *BitField = CurInitExpr->getBitField()) {
3268        // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
3269        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
3270          << Entity.getType().isVolatileQualified()
3271          << BitField->getDeclName()
3272          << CurInitExpr->getSourceRange();
3273        S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
3274        return S.ExprError();
3275      }
3276
3277      // Reference binding does not have any corresponding ASTs.
3278
3279      // Check exception specifications
3280      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3281        return S.ExprError();
3282      break;
3283
3284    case SK_BindReferenceToTemporary:
3285      // Check exception specifications
3286      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3287        return S.ExprError();
3288
3289      // FIXME: At present, we have no AST to describe when we need to make a
3290      // temporary to bind a reference to. We should.
3291      break;
3292
3293    case SK_UserConversion: {
3294      // We have a user-defined conversion that invokes either a constructor
3295      // or a conversion function.
3296      CastExpr::CastKind CastKind = CastExpr::CK_Unknown;
3297      bool IsCopy = false;
3298      if (CXXConstructorDecl *Constructor
3299                              = dyn_cast<CXXConstructorDecl>(Step->Function)) {
3300        // Build a call to the selected constructor.
3301        ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3302        SourceLocation Loc = CurInitExpr->getLocStart();
3303        CurInit.release(); // Ownership transferred into MultiExprArg, below.
3304
3305        // Determine the arguments required to actually perform the constructor
3306        // call.
3307        if (S.CompleteConstructorCall(Constructor,
3308                                      Sema::MultiExprArg(S,
3309                                                         (void **)&CurInitExpr,
3310                                                         1),
3311                                      Loc, ConstructorArgs))
3312          return S.ExprError();
3313
3314        // Build the an expression that constructs a temporary.
3315        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
3316                                          move_arg(ConstructorArgs));
3317        if (CurInit.isInvalid())
3318          return S.ExprError();
3319
3320        CastKind = CastExpr::CK_ConstructorConversion;
3321        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
3322        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
3323            S.IsDerivedFrom(SourceType, Class))
3324          IsCopy = true;
3325      } else {
3326        // Build a call to the conversion function.
3327        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Step->Function);
3328
3329        // FIXME: Should we move this initialization into a separate
3330        // derived-to-base conversion? I believe the answer is "no", because
3331        // we don't want to turn off access control here for c-style casts.
3332        if (S.PerformObjectArgumentInitialization(CurInitExpr, Conversion))
3333          return S.ExprError();
3334
3335        // Do a little dance to make sure that CurInit has the proper
3336        // pointer.
3337        CurInit.release();
3338
3339        // Build the actual call to the conversion function.
3340        CurInit = S.Owned(S.BuildCXXMemberCallExpr(CurInitExpr, Conversion));
3341        if (CurInit.isInvalid() || !CurInit.get())
3342          return S.ExprError();
3343
3344        CastKind = CastExpr::CK_UserDefinedConversion;
3345      }
3346
3347      if (shouldBindAsTemporary(Entity, IsCopy))
3348        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3349
3350      CurInitExpr = CurInit.takeAs<Expr>();
3351      CurInit = S.Owned(new (S.Context) ImplicitCastExpr(CurInitExpr->getType(),
3352                                                         CastKind,
3353                                                         CurInitExpr,
3354                                                         false));
3355
3356      if (!IsCopy)
3357        CurInit = CopyIfRequiredForEntity(S, Entity, Kind, move(CurInit));
3358      break;
3359    }
3360
3361    case SK_QualificationConversionLValue:
3362    case SK_QualificationConversionRValue:
3363      // Perform a qualification conversion; these can never go wrong.
3364      S.ImpCastExprToType(CurInitExpr, Step->Type,
3365                          CastExpr::CK_NoOp,
3366                          Step->Kind == SK_QualificationConversionLValue);
3367      CurInit.release();
3368      CurInit = S.Owned(CurInitExpr);
3369      break;
3370
3371    case SK_ConversionSequence:
3372        if (S.PerformImplicitConversion(CurInitExpr, Step->Type, Sema::AA_Converting,
3373                                      false, false, *Step->ICS))
3374        return S.ExprError();
3375
3376      CurInit.release();
3377      CurInit = S.Owned(CurInitExpr);
3378      break;
3379
3380    case SK_ListInitialization: {
3381      InitListExpr *InitList = cast<InitListExpr>(CurInitExpr);
3382      QualType Ty = Step->Type;
3383      if (S.CheckInitList(Entity, InitList, ResultType? *ResultType : Ty))
3384        return S.ExprError();
3385
3386      CurInit.release();
3387      CurInit = S.Owned(InitList);
3388      break;
3389    }
3390
3391    case SK_ConstructorInitialization: {
3392      CXXConstructorDecl *Constructor
3393        = cast<CXXConstructorDecl>(Step->Function);
3394
3395      // Build a call to the selected constructor.
3396      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3397      SourceLocation Loc = Kind.getLocation();
3398
3399      // Determine the arguments required to actually perform the constructor
3400      // call.
3401      if (S.CompleteConstructorCall(Constructor, move(Args),
3402                                    Loc, ConstructorArgs))
3403        return S.ExprError();
3404
3405      // Build the an expression that constructs a temporary.
3406      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3407                                        Constructor,
3408                                        move_arg(ConstructorArgs),
3409                                        ConstructorInitRequiresZeroInit);
3410      if (CurInit.isInvalid())
3411        return S.ExprError();
3412
3413      bool Elidable
3414        = cast<CXXConstructExpr>((Expr *)CurInit.get())->isElidable();
3415      if (shouldBindAsTemporary(Entity, Elidable))
3416        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3417
3418      if (!Elidable)
3419        CurInit = CopyIfRequiredForEntity(S, Entity, Kind, move(CurInit));
3420      break;
3421    }
3422
3423    case SK_ZeroInitialization: {
3424      step_iterator NextStep = Step;
3425      ++NextStep;
3426      if (NextStep != StepEnd &&
3427          NextStep->Kind == SK_ConstructorInitialization) {
3428        // The need for zero-initialization is recorded directly into
3429        // the call to the object's constructor within the next step.
3430        ConstructorInitRequiresZeroInit = true;
3431      } else if (Kind.getKind() == InitializationKind::IK_Value &&
3432                 S.getLangOptions().CPlusPlus &&
3433                 !Kind.isImplicitValueInit()) {
3434        CurInit = S.Owned(new (S.Context) CXXZeroInitValueExpr(Step->Type,
3435                                                   Kind.getRange().getBegin(),
3436                                                    Kind.getRange().getEnd()));
3437      } else {
3438        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
3439      }
3440      break;
3441    }
3442
3443    case SK_CAssignment: {
3444      QualType SourceType = CurInitExpr->getType();
3445      Sema::AssignConvertType ConvTy =
3446        S.CheckSingleAssignmentConstraints(Step->Type, CurInitExpr);
3447
3448      // If this is a call, allow conversion to a transparent union.
3449      if (ConvTy != Sema::Compatible &&
3450          Entity.getKind() == InitializedEntity::EK_Parameter &&
3451          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExpr)
3452            == Sema::Compatible)
3453        ConvTy = Sema::Compatible;
3454
3455      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
3456                                     Step->Type, SourceType,
3457                                     CurInitExpr, getAssignmentAction(Entity)))
3458        return S.ExprError();
3459
3460      CurInit.release();
3461      CurInit = S.Owned(CurInitExpr);
3462      break;
3463    }
3464
3465    case SK_StringInit: {
3466      QualType Ty = Step->Type;
3467      CheckStringInit(CurInitExpr, ResultType ? *ResultType : Ty, S);
3468      break;
3469    }
3470    }
3471  }
3472
3473  return move(CurInit);
3474}
3475
3476//===----------------------------------------------------------------------===//
3477// Diagnose initialization failures
3478//===----------------------------------------------------------------------===//
3479bool InitializationSequence::Diagnose(Sema &S,
3480                                      const InitializedEntity &Entity,
3481                                      const InitializationKind &Kind,
3482                                      Expr **Args, unsigned NumArgs) {
3483  if (SequenceKind != FailedSequence)
3484    return false;
3485
3486  QualType DestType = Entity.getType();
3487  switch (Failure) {
3488  case FK_TooManyInitsForReference:
3489    S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
3490      << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
3491    break;
3492
3493  case FK_ArrayNeedsInitList:
3494  case FK_ArrayNeedsInitListOrStringLiteral:
3495    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
3496      << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
3497    break;
3498
3499  case FK_AddressOfOverloadFailed:
3500    S.ResolveAddressOfOverloadedFunction(Args[0],
3501                                         DestType.getNonReferenceType(),
3502                                         true);
3503    break;
3504
3505  case FK_ReferenceInitOverloadFailed:
3506  case FK_UserConversionOverloadFailed:
3507    switch (FailedOverloadResult) {
3508    case OR_Ambiguous:
3509      if (Failure == FK_UserConversionOverloadFailed)
3510        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
3511          << Args[0]->getType() << DestType
3512          << Args[0]->getSourceRange();
3513      else
3514        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
3515          << DestType << Args[0]->getType()
3516          << Args[0]->getSourceRange();
3517
3518      S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_ViableCandidates,
3519                                Args, NumArgs);
3520      break;
3521
3522    case OR_No_Viable_Function:
3523      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
3524        << Args[0]->getType() << DestType.getNonReferenceType()
3525        << Args[0]->getSourceRange();
3526      S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_AllCandidates,
3527                                Args, NumArgs);
3528      break;
3529
3530    case OR_Deleted: {
3531      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
3532        << Args[0]->getType() << DestType.getNonReferenceType()
3533        << Args[0]->getSourceRange();
3534      OverloadCandidateSet::iterator Best;
3535      OverloadingResult Ovl = S.BestViableFunction(FailedCandidateSet,
3536                                                   Kind.getLocation(),
3537                                                   Best);
3538      if (Ovl == OR_Deleted) {
3539        S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3540          << Best->Function->isDeleted();
3541      } else {
3542        llvm_unreachable("Inconsistent overload resolution?");
3543      }
3544      break;
3545    }
3546
3547    case OR_Success:
3548      llvm_unreachable("Conversion did not fail!");
3549      break;
3550    }
3551    break;
3552
3553  case FK_NonConstLValueReferenceBindingToTemporary:
3554  case FK_NonConstLValueReferenceBindingToUnrelated:
3555    S.Diag(Kind.getLocation(),
3556           Failure == FK_NonConstLValueReferenceBindingToTemporary
3557             ? diag::err_lvalue_reference_bind_to_temporary
3558             : diag::err_lvalue_reference_bind_to_unrelated)
3559      << DestType.getNonReferenceType()
3560      << Args[0]->getType()
3561      << Args[0]->getSourceRange();
3562    break;
3563
3564  case FK_RValueReferenceBindingToLValue:
3565    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
3566      << Args[0]->getSourceRange();
3567    break;
3568
3569  case FK_ReferenceInitDropsQualifiers:
3570    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
3571      << DestType.getNonReferenceType()
3572      << Args[0]->getType()
3573      << Args[0]->getSourceRange();
3574    break;
3575
3576  case FK_ReferenceInitFailed:
3577    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
3578      << DestType.getNonReferenceType()
3579      << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
3580      << Args[0]->getType()
3581      << Args[0]->getSourceRange();
3582    break;
3583
3584  case FK_ConversionFailed:
3585    S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
3586      << (int)Entity.getKind()
3587      << DestType
3588      << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
3589      << Args[0]->getType()
3590      << Args[0]->getSourceRange();
3591    break;
3592
3593  case FK_TooManyInitsForScalar: {
3594    SourceRange R;
3595
3596    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
3597      R = SourceRange(InitList->getInit(1)->getLocStart(),
3598                      InitList->getLocEnd());
3599    else
3600      R = SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
3601
3602    S.Diag(Kind.getLocation(), diag::err_excess_initializers)
3603      << /*scalar=*/2 << R;
3604    break;
3605  }
3606
3607  case FK_ReferenceBindingToInitList:
3608    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
3609      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
3610    break;
3611
3612  case FK_InitListBadDestinationType:
3613    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
3614      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
3615    break;
3616
3617  case FK_ConstructorOverloadFailed: {
3618    SourceRange ArgsRange;
3619    if (NumArgs)
3620      ArgsRange = SourceRange(Args[0]->getLocStart(),
3621                              Args[NumArgs - 1]->getLocEnd());
3622
3623    // FIXME: Using "DestType" for the entity we're printing is probably
3624    // bad.
3625    switch (FailedOverloadResult) {
3626      case OR_Ambiguous:
3627        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
3628          << DestType << ArgsRange;
3629        S.PrintOverloadCandidates(FailedCandidateSet,
3630                                  Sema::OCD_ViableCandidates, Args, NumArgs);
3631        break;
3632
3633      case OR_No_Viable_Function:
3634        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
3635          << DestType << ArgsRange;
3636        S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_AllCandidates,
3637                                  Args, NumArgs);
3638        break;
3639
3640      case OR_Deleted: {
3641        S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
3642          << true << DestType << ArgsRange;
3643        OverloadCandidateSet::iterator Best;
3644        OverloadingResult Ovl = S.BestViableFunction(FailedCandidateSet,
3645                                                     Kind.getLocation(),
3646                                                     Best);
3647        if (Ovl == OR_Deleted) {
3648          S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3649            << Best->Function->isDeleted();
3650        } else {
3651          llvm_unreachable("Inconsistent overload resolution?");
3652        }
3653        break;
3654      }
3655
3656      case OR_Success:
3657        llvm_unreachable("Conversion did not fail!");
3658        break;
3659    }
3660    break;
3661  }
3662
3663  case FK_DefaultInitOfConst:
3664    S.Diag(Kind.getLocation(), diag::err_default_init_const)
3665      << DestType;
3666    break;
3667  }
3668
3669  return true;
3670}
3671
3672void InitializationSequence::dump(llvm::raw_ostream &OS) const {
3673  switch (SequenceKind) {
3674  case FailedSequence: {
3675    OS << "Failed sequence: ";
3676    switch (Failure) {
3677    case FK_TooManyInitsForReference:
3678      OS << "too many initializers for reference";
3679      break;
3680
3681    case FK_ArrayNeedsInitList:
3682      OS << "array requires initializer list";
3683      break;
3684
3685    case FK_ArrayNeedsInitListOrStringLiteral:
3686      OS << "array requires initializer list or string literal";
3687      break;
3688
3689    case FK_AddressOfOverloadFailed:
3690      OS << "address of overloaded function failed";
3691      break;
3692
3693    case FK_ReferenceInitOverloadFailed:
3694      OS << "overload resolution for reference initialization failed";
3695      break;
3696
3697    case FK_NonConstLValueReferenceBindingToTemporary:
3698      OS << "non-const lvalue reference bound to temporary";
3699      break;
3700
3701    case FK_NonConstLValueReferenceBindingToUnrelated:
3702      OS << "non-const lvalue reference bound to unrelated type";
3703      break;
3704
3705    case FK_RValueReferenceBindingToLValue:
3706      OS << "rvalue reference bound to an lvalue";
3707      break;
3708
3709    case FK_ReferenceInitDropsQualifiers:
3710      OS << "reference initialization drops qualifiers";
3711      break;
3712
3713    case FK_ReferenceInitFailed:
3714      OS << "reference initialization failed";
3715      break;
3716
3717    case FK_ConversionFailed:
3718      OS << "conversion failed";
3719      break;
3720
3721    case FK_TooManyInitsForScalar:
3722      OS << "too many initializers for scalar";
3723      break;
3724
3725    case FK_ReferenceBindingToInitList:
3726      OS << "referencing binding to initializer list";
3727      break;
3728
3729    case FK_InitListBadDestinationType:
3730      OS << "initializer list for non-aggregate, non-scalar type";
3731      break;
3732
3733    case FK_UserConversionOverloadFailed:
3734      OS << "overloading failed for user-defined conversion";
3735      break;
3736
3737    case FK_ConstructorOverloadFailed:
3738      OS << "constructor overloading failed";
3739      break;
3740
3741    case FK_DefaultInitOfConst:
3742      OS << "default initialization of a const variable";
3743      break;
3744    }
3745    OS << '\n';
3746    return;
3747  }
3748
3749  case DependentSequence:
3750    OS << "Dependent sequence: ";
3751    return;
3752
3753  case UserDefinedConversion:
3754    OS << "User-defined conversion sequence: ";
3755    break;
3756
3757  case ConstructorInitialization:
3758    OS << "Constructor initialization sequence: ";
3759    break;
3760
3761  case ReferenceBinding:
3762    OS << "Reference binding: ";
3763    break;
3764
3765  case ListInitialization:
3766    OS << "List initialization: ";
3767    break;
3768
3769  case ZeroInitialization:
3770    OS << "Zero initialization\n";
3771    return;
3772
3773  case NoInitialization:
3774    OS << "No initialization\n";
3775    return;
3776
3777  case StandardConversion:
3778    OS << "Standard conversion: ";
3779    break;
3780
3781  case CAssignment:
3782    OS << "C assignment: ";
3783    break;
3784
3785  case StringInit:
3786    OS << "String initialization: ";
3787    break;
3788  }
3789
3790  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
3791    if (S != step_begin()) {
3792      OS << " -> ";
3793    }
3794
3795    switch (S->Kind) {
3796    case SK_ResolveAddressOfOverloadedFunction:
3797      OS << "resolve address of overloaded function";
3798      break;
3799
3800    case SK_CastDerivedToBaseRValue:
3801      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
3802      break;
3803
3804    case SK_CastDerivedToBaseLValue:
3805      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
3806      break;
3807
3808    case SK_BindReference:
3809      OS << "bind reference to lvalue";
3810      break;
3811
3812    case SK_BindReferenceToTemporary:
3813      OS << "bind reference to a temporary";
3814      break;
3815
3816    case SK_UserConversion:
3817      OS << "user-defined conversion via " << S->Function->getNameAsString();
3818      break;
3819
3820    case SK_QualificationConversionRValue:
3821      OS << "qualification conversion (rvalue)";
3822
3823    case SK_QualificationConversionLValue:
3824      OS << "qualification conversion (lvalue)";
3825      break;
3826
3827    case SK_ConversionSequence:
3828      OS << "implicit conversion sequence (";
3829      S->ICS->DebugPrint(); // FIXME: use OS
3830      OS << ")";
3831      break;
3832
3833    case SK_ListInitialization:
3834      OS << "list initialization";
3835      break;
3836
3837    case SK_ConstructorInitialization:
3838      OS << "constructor initialization";
3839      break;
3840
3841    case SK_ZeroInitialization:
3842      OS << "zero initialization";
3843      break;
3844
3845    case SK_CAssignment:
3846      OS << "C assignment";
3847      break;
3848
3849    case SK_StringInit:
3850      OS << "string initialization";
3851      break;
3852    }
3853  }
3854}
3855
3856void InitializationSequence::dump() const {
3857  dump(llvm::errs());
3858}
3859
3860//===----------------------------------------------------------------------===//
3861// Initialization helper functions
3862//===----------------------------------------------------------------------===//
3863Sema::OwningExprResult
3864Sema::PerformCopyInitialization(const InitializedEntity &Entity,
3865                                SourceLocation EqualLoc,
3866                                OwningExprResult Init) {
3867  if (Init.isInvalid())
3868    return ExprError();
3869
3870  Expr *InitE = (Expr *)Init.get();
3871  assert(InitE && "No initialization expression?");
3872
3873  if (EqualLoc.isInvalid())
3874    EqualLoc = InitE->getLocStart();
3875
3876  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
3877                                                           EqualLoc);
3878  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
3879  Init.release();
3880  return Seq.Perform(*this, Entity, Kind,
3881                     MultiExprArg(*this, (void**)&InitE, 1));
3882}
3883