SemaInit.cpp revision a64a869312066ff6119d1d7ae03f88ce499e3f82
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14// This file also implements Sema::CheckInitializerTypes.
15//
16//===----------------------------------------------------------------------===//
17
18#include "SemaInit.h"
19#include "Lookup.h"
20#include "Sema.h"
21#include "clang/Parse/Designator.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/TypeLoc.h"
26#include "llvm/Support/ErrorHandling.h"
27#include <map>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Sema Initialization Checking
32//===----------------------------------------------------------------------===//
33
34static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
35  const ArrayType *AT = Context.getAsArrayType(DeclType);
36  if (!AT) return 0;
37
38  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
39    return 0;
40
41  // See if this is a string literal or @encode.
42  Init = Init->IgnoreParens();
43
44  // Handle @encode, which is a narrow string.
45  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
46    return Init;
47
48  // Otherwise we can only handle string literals.
49  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
50  if (SL == 0) return 0;
51
52  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
53  // char array can be initialized with a narrow string.
54  // Only allow char x[] = "foo";  not char x[] = L"foo";
55  if (!SL->isWide())
56    return ElemTy->isCharType() ? Init : 0;
57
58  // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
59  // correction from DR343): "An array with element type compatible with a
60  // qualified or unqualified version of wchar_t may be initialized by a wide
61  // string literal, optionally enclosed in braces."
62  if (Context.typesAreCompatible(Context.getWCharType(),
63                                 ElemTy.getUnqualifiedType()))
64    return Init;
65
66  return 0;
67}
68
69static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
70  // Get the length of the string as parsed.
71  uint64_t StrLength =
72    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
73
74
75  const ArrayType *AT = S.Context.getAsArrayType(DeclT);
76  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
77    // C99 6.7.8p14. We have an array of character type with unknown size
78    // being initialized to a string literal.
79    llvm::APSInt ConstVal(32);
80    ConstVal = StrLength;
81    // Return a new array type (C99 6.7.8p22).
82    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
83                                           ConstVal,
84                                           ArrayType::Normal, 0);
85    return;
86  }
87
88  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
89
90  // C99 6.7.8p14. We have an array of character type with known size.  However,
91  // the size may be smaller or larger than the string we are initializing.
92  // FIXME: Avoid truncation for 64-bit length strings.
93  if (StrLength-1 > CAT->getSize().getZExtValue())
94    S.Diag(Str->getSourceRange().getBegin(),
95           diag::warn_initializer_string_for_char_array_too_long)
96      << Str->getSourceRange();
97
98  // Set the type to the actual size that we are initializing.  If we have
99  // something like:
100  //   char x[1] = "foo";
101  // then this will set the string literal's type to char[1].
102  Str->setType(DeclT);
103}
104
105//===----------------------------------------------------------------------===//
106// Semantic checking for initializer lists.
107//===----------------------------------------------------------------------===//
108
109/// @brief Semantic checking for initializer lists.
110///
111/// The InitListChecker class contains a set of routines that each
112/// handle the initialization of a certain kind of entity, e.g.,
113/// arrays, vectors, struct/union types, scalars, etc. The
114/// InitListChecker itself performs a recursive walk of the subobject
115/// structure of the type to be initialized, while stepping through
116/// the initializer list one element at a time. The IList and Index
117/// parameters to each of the Check* routines contain the active
118/// (syntactic) initializer list and the index into that initializer
119/// list that represents the current initializer. Each routine is
120/// responsible for moving that Index forward as it consumes elements.
121///
122/// Each Check* routine also has a StructuredList/StructuredIndex
123/// arguments, which contains the current the "structured" (semantic)
124/// initializer list and the index into that initializer list where we
125/// are copying initializers as we map them over to the semantic
126/// list. Once we have completed our recursive walk of the subobject
127/// structure, we will have constructed a full semantic initializer
128/// list.
129///
130/// C99 designators cause changes in the initializer list traversal,
131/// because they make the initialization "jump" into a specific
132/// subobject and then continue the initialization from that
133/// point. CheckDesignatedInitializer() recursively steps into the
134/// designated subobject and manages backing out the recursion to
135/// initialize the subobjects after the one designated.
136namespace {
137class InitListChecker {
138  Sema &SemaRef;
139  bool hadError;
140  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
141  InitListExpr *FullyStructuredList;
142
143  void CheckImplicitInitList(const InitializedEntity &Entity,
144                             InitListExpr *ParentIList, QualType T,
145                             unsigned &Index, InitListExpr *StructuredList,
146                             unsigned &StructuredIndex,
147                             bool TopLevelObject = false);
148  void CheckExplicitInitList(const InitializedEntity &Entity,
149                             InitListExpr *IList, QualType &T,
150                             unsigned &Index, InitListExpr *StructuredList,
151                             unsigned &StructuredIndex,
152                             bool TopLevelObject = false);
153  void CheckListElementTypes(const InitializedEntity &Entity,
154                             InitListExpr *IList, QualType &DeclType,
155                             bool SubobjectIsDesignatorContext,
156                             unsigned &Index,
157                             InitListExpr *StructuredList,
158                             unsigned &StructuredIndex,
159                             bool TopLevelObject = false);
160  void CheckSubElementType(const InitializedEntity &Entity,
161                           InitListExpr *IList, QualType ElemType,
162                           unsigned &Index,
163                           InitListExpr *StructuredList,
164                           unsigned &StructuredIndex);
165  void CheckScalarType(const InitializedEntity &Entity,
166                       InitListExpr *IList, QualType DeclType,
167                       unsigned &Index,
168                       InitListExpr *StructuredList,
169                       unsigned &StructuredIndex);
170  void CheckReferenceType(const InitializedEntity &Entity,
171                          InitListExpr *IList, QualType DeclType,
172                          unsigned &Index,
173                          InitListExpr *StructuredList,
174                          unsigned &StructuredIndex);
175  void CheckVectorType(const InitializedEntity &Entity,
176                       InitListExpr *IList, QualType DeclType, unsigned &Index,
177                       InitListExpr *StructuredList,
178                       unsigned &StructuredIndex);
179  void CheckStructUnionTypes(const InitializedEntity &Entity,
180                             InitListExpr *IList, QualType DeclType,
181                             RecordDecl::field_iterator Field,
182                             bool SubobjectIsDesignatorContext, unsigned &Index,
183                             InitListExpr *StructuredList,
184                             unsigned &StructuredIndex,
185                             bool TopLevelObject = false);
186  void CheckArrayType(const InitializedEntity &Entity,
187                      InitListExpr *IList, QualType &DeclType,
188                      llvm::APSInt elementIndex,
189                      bool SubobjectIsDesignatorContext, unsigned &Index,
190                      InitListExpr *StructuredList,
191                      unsigned &StructuredIndex);
192  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
193                                  InitListExpr *IList, DesignatedInitExpr *DIE,
194                                  unsigned DesigIdx,
195                                  QualType &CurrentObjectType,
196                                  RecordDecl::field_iterator *NextField,
197                                  llvm::APSInt *NextElementIndex,
198                                  unsigned &Index,
199                                  InitListExpr *StructuredList,
200                                  unsigned &StructuredIndex,
201                                  bool FinishSubobjectInit,
202                                  bool TopLevelObject);
203  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
204                                           QualType CurrentObjectType,
205                                           InitListExpr *StructuredList,
206                                           unsigned StructuredIndex,
207                                           SourceRange InitRange);
208  void UpdateStructuredListElement(InitListExpr *StructuredList,
209                                   unsigned &StructuredIndex,
210                                   Expr *expr);
211  int numArrayElements(QualType DeclType);
212  int numStructUnionElements(QualType DeclType);
213
214  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
215                               const InitializedEntity &ParentEntity,
216                               InitListExpr *ILE, bool &RequiresSecondPass);
217  void FillInValueInitializations(const InitializedEntity &Entity,
218                                  InitListExpr *ILE, bool &RequiresSecondPass);
219public:
220  InitListChecker(Sema &S, const InitializedEntity &Entity,
221                  InitListExpr *IL, QualType &T);
222  bool HadError() { return hadError; }
223
224  // @brief Retrieves the fully-structured initializer list used for
225  // semantic analysis and code generation.
226  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
227};
228} // end anonymous namespace
229
230void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
231                                        const InitializedEntity &ParentEntity,
232                                              InitListExpr *ILE,
233                                              bool &RequiresSecondPass) {
234  SourceLocation Loc = ILE->getSourceRange().getBegin();
235  unsigned NumInits = ILE->getNumInits();
236  InitializedEntity MemberEntity
237    = InitializedEntity::InitializeMember(Field, &ParentEntity);
238  if (Init >= NumInits || !ILE->getInit(Init)) {
239    // FIXME: We probably don't need to handle references
240    // specially here, since value-initialization of references is
241    // handled in InitializationSequence.
242    if (Field->getType()->isReferenceType()) {
243      // C++ [dcl.init.aggr]p9:
244      //   If an incomplete or empty initializer-list leaves a
245      //   member of reference type uninitialized, the program is
246      //   ill-formed.
247      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
248        << Field->getType()
249        << ILE->getSyntacticForm()->getSourceRange();
250      SemaRef.Diag(Field->getLocation(),
251                   diag::note_uninit_reference_member);
252      hadError = true;
253      return;
254    }
255
256    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
257                                                              true);
258    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
259    if (!InitSeq) {
260      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
261      hadError = true;
262      return;
263    }
264
265    Sema::OwningExprResult MemberInit
266      = InitSeq.Perform(SemaRef, MemberEntity, Kind,
267                        Sema::MultiExprArg(SemaRef, 0, 0));
268    if (MemberInit.isInvalid()) {
269      hadError = true;
270      return;
271    }
272
273    if (hadError) {
274      // Do nothing
275    } else if (Init < NumInits) {
276      ILE->setInit(Init, MemberInit.takeAs<Expr>());
277    } else if (InitSeq.getKind()
278                 == InitializationSequence::ConstructorInitialization) {
279      // Value-initialization requires a constructor call, so
280      // extend the initializer list to include the constructor
281      // call and make a note that we'll need to take another pass
282      // through the initializer list.
283      ILE->updateInit(Init, MemberInit.takeAs<Expr>());
284      RequiresSecondPass = true;
285    }
286  } else if (InitListExpr *InnerILE
287               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
288    FillInValueInitializations(MemberEntity, InnerILE,
289                               RequiresSecondPass);
290}
291
292/// Recursively replaces NULL values within the given initializer list
293/// with expressions that perform value-initialization of the
294/// appropriate type.
295void
296InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
297                                            InitListExpr *ILE,
298                                            bool &RequiresSecondPass) {
299  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
300         "Should not have void type");
301  SourceLocation Loc = ILE->getSourceRange().getBegin();
302  if (ILE->getSyntacticForm())
303    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
304
305  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
306    if (RType->getDecl()->isUnion() &&
307        ILE->getInitializedFieldInUnion())
308      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
309                              Entity, ILE, RequiresSecondPass);
310    else {
311      unsigned Init = 0;
312      for (RecordDecl::field_iterator
313             Field = RType->getDecl()->field_begin(),
314             FieldEnd = RType->getDecl()->field_end();
315           Field != FieldEnd; ++Field) {
316        if (Field->isUnnamedBitfield())
317          continue;
318
319        if (hadError)
320          return;
321
322        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
323        if (hadError)
324          return;
325
326        ++Init;
327
328        // Only look at the first initialization of a union.
329        if (RType->getDecl()->isUnion())
330          break;
331      }
332    }
333
334    return;
335  }
336
337  QualType ElementType;
338
339  InitializedEntity ElementEntity = Entity;
340  unsigned NumInits = ILE->getNumInits();
341  unsigned NumElements = NumInits;
342  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
343    ElementType = AType->getElementType();
344    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
345      NumElements = CAType->getSize().getZExtValue();
346    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
347                                                         0, Entity);
348  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
349    ElementType = VType->getElementType();
350    NumElements = VType->getNumElements();
351    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
352                                                         0, Entity);
353  } else
354    ElementType = ILE->getType();
355
356
357  for (unsigned Init = 0; Init != NumElements; ++Init) {
358    if (hadError)
359      return;
360
361    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
362        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
363      ElementEntity.setElementIndex(Init);
364
365    if (Init >= NumInits || !ILE->getInit(Init)) {
366      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
367                                                                true);
368      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
369      if (!InitSeq) {
370        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
371        hadError = true;
372        return;
373      }
374
375      Sema::OwningExprResult ElementInit
376        = InitSeq.Perform(SemaRef, ElementEntity, Kind,
377                          Sema::MultiExprArg(SemaRef, 0, 0));
378      if (ElementInit.isInvalid()) {
379        hadError = true;
380        return;
381      }
382
383      if (hadError) {
384        // Do nothing
385      } else if (Init < NumInits) {
386        ILE->setInit(Init, ElementInit.takeAs<Expr>());
387      } else if (InitSeq.getKind()
388                   == InitializationSequence::ConstructorInitialization) {
389        // Value-initialization requires a constructor call, so
390        // extend the initializer list to include the constructor
391        // call and make a note that we'll need to take another pass
392        // through the initializer list.
393        ILE->updateInit(Init, ElementInit.takeAs<Expr>());
394        RequiresSecondPass = true;
395      }
396    } else if (InitListExpr *InnerILE
397                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
398      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
399  }
400}
401
402
403InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
404                                 InitListExpr *IL, QualType &T)
405  : SemaRef(S) {
406  hadError = false;
407
408  unsigned newIndex = 0;
409  unsigned newStructuredIndex = 0;
410  FullyStructuredList
411    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
412  CheckExplicitInitList(Entity, IL, T, newIndex,
413                        FullyStructuredList, newStructuredIndex,
414                        /*TopLevelObject=*/true);
415
416  if (!hadError) {
417    bool RequiresSecondPass = false;
418    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
419    if (RequiresSecondPass && !hadError)
420      FillInValueInitializations(Entity, FullyStructuredList,
421                                 RequiresSecondPass);
422  }
423}
424
425int InitListChecker::numArrayElements(QualType DeclType) {
426  // FIXME: use a proper constant
427  int maxElements = 0x7FFFFFFF;
428  if (const ConstantArrayType *CAT =
429        SemaRef.Context.getAsConstantArrayType(DeclType)) {
430    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
431  }
432  return maxElements;
433}
434
435int InitListChecker::numStructUnionElements(QualType DeclType) {
436  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
437  int InitializableMembers = 0;
438  for (RecordDecl::field_iterator
439         Field = structDecl->field_begin(),
440         FieldEnd = structDecl->field_end();
441       Field != FieldEnd; ++Field) {
442    if ((*Field)->getIdentifier() || !(*Field)->isBitField())
443      ++InitializableMembers;
444  }
445  if (structDecl->isUnion())
446    return std::min(InitializableMembers, 1);
447  return InitializableMembers - structDecl->hasFlexibleArrayMember();
448}
449
450void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
451                                            InitListExpr *ParentIList,
452                                            QualType T, unsigned &Index,
453                                            InitListExpr *StructuredList,
454                                            unsigned &StructuredIndex,
455                                            bool TopLevelObject) {
456  int maxElements = 0;
457
458  if (T->isArrayType())
459    maxElements = numArrayElements(T);
460  else if (T->isStructureType() || T->isUnionType())
461    maxElements = numStructUnionElements(T);
462  else if (T->isVectorType())
463    maxElements = T->getAs<VectorType>()->getNumElements();
464  else
465    assert(0 && "CheckImplicitInitList(): Illegal type");
466
467  if (maxElements == 0) {
468    SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
469                  diag::err_implicit_empty_initializer);
470    ++Index;
471    hadError = true;
472    return;
473  }
474
475  // Build a structured initializer list corresponding to this subobject.
476  InitListExpr *StructuredSubobjectInitList
477    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
478                                 StructuredIndex,
479          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
480                      ParentIList->getSourceRange().getEnd()));
481  unsigned StructuredSubobjectInitIndex = 0;
482
483  // Check the element types and build the structural subobject.
484  unsigned StartIndex = Index;
485  CheckListElementTypes(Entity, ParentIList, T,
486                        /*SubobjectIsDesignatorContext=*/false, Index,
487                        StructuredSubobjectInitList,
488                        StructuredSubobjectInitIndex,
489                        TopLevelObject);
490  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
491  StructuredSubobjectInitList->setType(T);
492
493  // Update the structured sub-object initializer so that it's ending
494  // range corresponds with the end of the last initializer it used.
495  if (EndIndex < ParentIList->getNumInits()) {
496    SourceLocation EndLoc
497      = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
498    StructuredSubobjectInitList->setRBraceLoc(EndLoc);
499  }
500}
501
502void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
503                                            InitListExpr *IList, QualType &T,
504                                            unsigned &Index,
505                                            InitListExpr *StructuredList,
506                                            unsigned &StructuredIndex,
507                                            bool TopLevelObject) {
508  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
509  SyntacticToSemantic[IList] = StructuredList;
510  StructuredList->setSyntacticForm(IList);
511  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
512                        Index, StructuredList, StructuredIndex, TopLevelObject);
513  IList->setType(T);
514  StructuredList->setType(T);
515  if (hadError)
516    return;
517
518  if (Index < IList->getNumInits()) {
519    // We have leftover initializers
520    if (StructuredIndex == 1 &&
521        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
522      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
523      if (SemaRef.getLangOptions().CPlusPlus) {
524        DK = diag::err_excess_initializers_in_char_array_initializer;
525        hadError = true;
526      }
527      // Special-case
528      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
529        << IList->getInit(Index)->getSourceRange();
530    } else if (!T->isIncompleteType()) {
531      // Don't complain for incomplete types, since we'll get an error
532      // elsewhere
533      QualType CurrentObjectType = StructuredList->getType();
534      int initKind =
535        CurrentObjectType->isArrayType()? 0 :
536        CurrentObjectType->isVectorType()? 1 :
537        CurrentObjectType->isScalarType()? 2 :
538        CurrentObjectType->isUnionType()? 3 :
539        4;
540
541      unsigned DK = diag::warn_excess_initializers;
542      if (SemaRef.getLangOptions().CPlusPlus) {
543        DK = diag::err_excess_initializers;
544        hadError = true;
545      }
546      if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
547        DK = diag::err_excess_initializers;
548        hadError = true;
549      }
550
551      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
552        << initKind << IList->getInit(Index)->getSourceRange();
553    }
554  }
555
556  if (T->isScalarType() && !TopLevelObject)
557    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
558      << IList->getSourceRange()
559      << CodeModificationHint::CreateRemoval(IList->getLocStart())
560      << CodeModificationHint::CreateRemoval(IList->getLocEnd());
561}
562
563void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
564                                            InitListExpr *IList,
565                                            QualType &DeclType,
566                                            bool SubobjectIsDesignatorContext,
567                                            unsigned &Index,
568                                            InitListExpr *StructuredList,
569                                            unsigned &StructuredIndex,
570                                            bool TopLevelObject) {
571  if (DeclType->isScalarType()) {
572    CheckScalarType(Entity, IList, DeclType, Index,
573                    StructuredList, StructuredIndex);
574  } else if (DeclType->isVectorType()) {
575    CheckVectorType(Entity, IList, DeclType, Index,
576                    StructuredList, StructuredIndex);
577  } else if (DeclType->isAggregateType()) {
578    if (DeclType->isRecordType()) {
579      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
580      CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
581                            SubobjectIsDesignatorContext, Index,
582                            StructuredList, StructuredIndex,
583                            TopLevelObject);
584    } else if (DeclType->isArrayType()) {
585      llvm::APSInt Zero(
586                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
587                      false);
588      CheckArrayType(Entity, IList, DeclType, Zero,
589                     SubobjectIsDesignatorContext, Index,
590                     StructuredList, StructuredIndex);
591    } else
592      assert(0 && "Aggregate that isn't a structure or array?!");
593  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
594    // This type is invalid, issue a diagnostic.
595    ++Index;
596    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
597      << DeclType;
598    hadError = true;
599  } else if (DeclType->isRecordType()) {
600    // C++ [dcl.init]p14:
601    //   [...] If the class is an aggregate (8.5.1), and the initializer
602    //   is a brace-enclosed list, see 8.5.1.
603    //
604    // Note: 8.5.1 is handled below; here, we diagnose the case where
605    // we have an initializer list and a destination type that is not
606    // an aggregate.
607    // FIXME: In C++0x, this is yet another form of initialization.
608    SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
609      << DeclType << IList->getSourceRange();
610    hadError = true;
611  } else if (DeclType->isReferenceType()) {
612    CheckReferenceType(Entity, IList, DeclType, Index,
613                       StructuredList, StructuredIndex);
614  } else {
615    // In C, all types are either scalars or aggregates, but
616    // additional handling is needed here for C++ (and possibly others?).
617    assert(0 && "Unsupported initializer type");
618  }
619}
620
621void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
622                                          InitListExpr *IList,
623                                          QualType ElemType,
624                                          unsigned &Index,
625                                          InitListExpr *StructuredList,
626                                          unsigned &StructuredIndex) {
627  Expr *expr = IList->getInit(Index);
628  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
629    unsigned newIndex = 0;
630    unsigned newStructuredIndex = 0;
631    InitListExpr *newStructuredList
632      = getStructuredSubobjectInit(IList, Index, ElemType,
633                                   StructuredList, StructuredIndex,
634                                   SubInitList->getSourceRange());
635    CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
636                          newStructuredList, newStructuredIndex);
637    ++StructuredIndex;
638    ++Index;
639  } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
640    CheckStringInit(Str, ElemType, SemaRef);
641    UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
642    ++Index;
643  } else if (ElemType->isScalarType()) {
644    CheckScalarType(Entity, IList, ElemType, Index,
645                    StructuredList, StructuredIndex);
646  } else if (ElemType->isReferenceType()) {
647    CheckReferenceType(Entity, IList, ElemType, Index,
648                       StructuredList, StructuredIndex);
649  } else {
650    if (SemaRef.getLangOptions().CPlusPlus) {
651      // C++ [dcl.init.aggr]p12:
652      //   All implicit type conversions (clause 4) are considered when
653      //   initializing the aggregate member with an ini- tializer from
654      //   an initializer-list. If the initializer can initialize a
655      //   member, the member is initialized. [...]
656
657      // FIXME: Better EqualLoc?
658      InitializationKind Kind =
659        InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
660      InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
661
662      if (Seq) {
663        Sema::OwningExprResult Result =
664          Seq.Perform(SemaRef, Entity, Kind,
665                      Sema::MultiExprArg(SemaRef, (void **)&expr, 1));
666        if (Result.isInvalid())
667          hadError = true;
668
669        UpdateStructuredListElement(StructuredList, StructuredIndex,
670                                    Result.takeAs<Expr>());
671        ++Index;
672        return;
673      }
674
675      // Fall through for subaggregate initialization
676    } else {
677      // C99 6.7.8p13:
678      //
679      //   The initializer for a structure or union object that has
680      //   automatic storage duration shall be either an initializer
681      //   list as described below, or a single expression that has
682      //   compatible structure or union type. In the latter case, the
683      //   initial value of the object, including unnamed members, is
684      //   that of the expression.
685      if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
686          SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) {
687        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
688        ++Index;
689        return;
690      }
691
692      // Fall through for subaggregate initialization
693    }
694
695    // C++ [dcl.init.aggr]p12:
696    //
697    //   [...] Otherwise, if the member is itself a non-empty
698    //   subaggregate, brace elision is assumed and the initializer is
699    //   considered for the initialization of the first member of
700    //   the subaggregate.
701    if (ElemType->isAggregateType() || ElemType->isVectorType()) {
702      CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
703                            StructuredIndex);
704      ++StructuredIndex;
705    } else {
706      // We cannot initialize this element, so let
707      // PerformCopyInitialization produce the appropriate diagnostic.
708      SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
709                                        SemaRef.Owned(expr));
710      IList->setInit(Index, 0);
711      hadError = true;
712      ++Index;
713      ++StructuredIndex;
714    }
715  }
716}
717
718void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
719                                      InitListExpr *IList, QualType DeclType,
720                                      unsigned &Index,
721                                      InitListExpr *StructuredList,
722                                      unsigned &StructuredIndex) {
723  if (Index < IList->getNumInits()) {
724    Expr *expr = IList->getInit(Index);
725    if (isa<InitListExpr>(expr)) {
726      SemaRef.Diag(IList->getLocStart(),
727                    diag::err_many_braces_around_scalar_init)
728        << IList->getSourceRange();
729      hadError = true;
730      ++Index;
731      ++StructuredIndex;
732      return;
733    } else if (isa<DesignatedInitExpr>(expr)) {
734      SemaRef.Diag(expr->getSourceRange().getBegin(),
735                    diag::err_designator_for_scalar_init)
736        << DeclType << expr->getSourceRange();
737      hadError = true;
738      ++Index;
739      ++StructuredIndex;
740      return;
741    }
742
743    Sema::OwningExprResult Result =
744      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
745                                        SemaRef.Owned(expr));
746
747    Expr *ResultExpr;
748
749    if (Result.isInvalid())
750      hadError = true; // types weren't compatible.
751    else {
752      ResultExpr = Result.takeAs<Expr>();
753
754      if (ResultExpr != expr) {
755        // The type was promoted, update initializer list.
756        IList->setInit(Index, ResultExpr);
757      }
758    }
759    if (hadError)
760      ++StructuredIndex;
761    else
762      UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
763    ++Index;
764  } else {
765    SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
766      << IList->getSourceRange();
767    hadError = true;
768    ++Index;
769    ++StructuredIndex;
770    return;
771  }
772}
773
774void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
775                                         InitListExpr *IList, QualType DeclType,
776                                         unsigned &Index,
777                                         InitListExpr *StructuredList,
778                                         unsigned &StructuredIndex) {
779  if (Index < IList->getNumInits()) {
780    Expr *expr = IList->getInit(Index);
781    if (isa<InitListExpr>(expr)) {
782      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
783        << DeclType << IList->getSourceRange();
784      hadError = true;
785      ++Index;
786      ++StructuredIndex;
787      return;
788    }
789
790    Sema::OwningExprResult Result =
791      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
792                                        SemaRef.Owned(expr));
793
794    if (Result.isInvalid())
795      hadError = true;
796
797    expr = Result.takeAs<Expr>();
798    IList->setInit(Index, expr);
799
800    if (hadError)
801      ++StructuredIndex;
802    else
803      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
804    ++Index;
805  } else {
806    // FIXME: It would be wonderful if we could point at the actual member. In
807    // general, it would be useful to pass location information down the stack,
808    // so that we know the location (or decl) of the "current object" being
809    // initialized.
810    SemaRef.Diag(IList->getLocStart(),
811                  diag::err_init_reference_member_uninitialized)
812      << DeclType
813      << IList->getSourceRange();
814    hadError = true;
815    ++Index;
816    ++StructuredIndex;
817    return;
818  }
819}
820
821void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
822                                      InitListExpr *IList, QualType DeclType,
823                                      unsigned &Index,
824                                      InitListExpr *StructuredList,
825                                      unsigned &StructuredIndex) {
826  if (Index < IList->getNumInits()) {
827    const VectorType *VT = DeclType->getAs<VectorType>();
828    unsigned maxElements = VT->getNumElements();
829    unsigned numEltsInit = 0;
830    QualType elementType = VT->getElementType();
831
832    if (!SemaRef.getLangOptions().OpenCL) {
833      InitializedEntity ElementEntity =
834        InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
835
836      for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
837        // Don't attempt to go past the end of the init list
838        if (Index >= IList->getNumInits())
839          break;
840
841        ElementEntity.setElementIndex(Index);
842        CheckSubElementType(ElementEntity, IList, elementType, Index,
843                            StructuredList, StructuredIndex);
844      }
845    } else {
846      InitializedEntity ElementEntity =
847        InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
848
849      // OpenCL initializers allows vectors to be constructed from vectors.
850      for (unsigned i = 0; i < maxElements; ++i) {
851        // Don't attempt to go past the end of the init list
852        if (Index >= IList->getNumInits())
853          break;
854
855        ElementEntity.setElementIndex(Index);
856
857        QualType IType = IList->getInit(Index)->getType();
858        if (!IType->isVectorType()) {
859          CheckSubElementType(ElementEntity, IList, elementType, Index,
860                              StructuredList, StructuredIndex);
861          ++numEltsInit;
862        } else {
863          const VectorType *IVT = IType->getAs<VectorType>();
864          unsigned numIElts = IVT->getNumElements();
865          QualType VecType = SemaRef.Context.getExtVectorType(elementType,
866                                                              numIElts);
867          CheckSubElementType(ElementEntity, IList, VecType, Index,
868                              StructuredList, StructuredIndex);
869          numEltsInit += numIElts;
870        }
871      }
872    }
873
874    // OpenCL & AltiVec require all elements to be initialized.
875    if (numEltsInit != maxElements)
876      if (SemaRef.getLangOptions().OpenCL || SemaRef.getLangOptions().AltiVec)
877        SemaRef.Diag(IList->getSourceRange().getBegin(),
878                     diag::err_vector_incorrect_num_initializers)
879          << (numEltsInit < maxElements) << maxElements << numEltsInit;
880  }
881}
882
883void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
884                                     InitListExpr *IList, QualType &DeclType,
885                                     llvm::APSInt elementIndex,
886                                     bool SubobjectIsDesignatorContext,
887                                     unsigned &Index,
888                                     InitListExpr *StructuredList,
889                                     unsigned &StructuredIndex) {
890  // Check for the special-case of initializing an array with a string.
891  if (Index < IList->getNumInits()) {
892    if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
893                                 SemaRef.Context)) {
894      CheckStringInit(Str, DeclType, SemaRef);
895      // We place the string literal directly into the resulting
896      // initializer list. This is the only place where the structure
897      // of the structured initializer list doesn't match exactly,
898      // because doing so would involve allocating one character
899      // constant for each string.
900      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
901      StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
902      ++Index;
903      return;
904    }
905  }
906  if (const VariableArrayType *VAT =
907        SemaRef.Context.getAsVariableArrayType(DeclType)) {
908    // Check for VLAs; in standard C it would be possible to check this
909    // earlier, but I don't know where clang accepts VLAs (gcc accepts
910    // them in all sorts of strange places).
911    SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
912                  diag::err_variable_object_no_init)
913      << VAT->getSizeExpr()->getSourceRange();
914    hadError = true;
915    ++Index;
916    ++StructuredIndex;
917    return;
918  }
919
920  // We might know the maximum number of elements in advance.
921  llvm::APSInt maxElements(elementIndex.getBitWidth(),
922                           elementIndex.isUnsigned());
923  bool maxElementsKnown = false;
924  if (const ConstantArrayType *CAT =
925        SemaRef.Context.getAsConstantArrayType(DeclType)) {
926    maxElements = CAT->getSize();
927    elementIndex.extOrTrunc(maxElements.getBitWidth());
928    elementIndex.setIsUnsigned(maxElements.isUnsigned());
929    maxElementsKnown = true;
930  }
931
932  QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
933                             ->getElementType();
934  while (Index < IList->getNumInits()) {
935    Expr *Init = IList->getInit(Index);
936    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
937      // If we're not the subobject that matches up with the '{' for
938      // the designator, we shouldn't be handling the
939      // designator. Return immediately.
940      if (!SubobjectIsDesignatorContext)
941        return;
942
943      // Handle this designated initializer. elementIndex will be
944      // updated to be the next array element we'll initialize.
945      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
946                                     DeclType, 0, &elementIndex, Index,
947                                     StructuredList, StructuredIndex, true,
948                                     false)) {
949        hadError = true;
950        continue;
951      }
952
953      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
954        maxElements.extend(elementIndex.getBitWidth());
955      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
956        elementIndex.extend(maxElements.getBitWidth());
957      elementIndex.setIsUnsigned(maxElements.isUnsigned());
958
959      // If the array is of incomplete type, keep track of the number of
960      // elements in the initializer.
961      if (!maxElementsKnown && elementIndex > maxElements)
962        maxElements = elementIndex;
963
964      continue;
965    }
966
967    // If we know the maximum number of elements, and we've already
968    // hit it, stop consuming elements in the initializer list.
969    if (maxElementsKnown && elementIndex == maxElements)
970      break;
971
972    InitializedEntity ElementEntity =
973      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
974                                           Entity);
975    // Check this element.
976    CheckSubElementType(ElementEntity, IList, elementType, Index,
977                        StructuredList, StructuredIndex);
978    ++elementIndex;
979
980    // If the array is of incomplete type, keep track of the number of
981    // elements in the initializer.
982    if (!maxElementsKnown && elementIndex > maxElements)
983      maxElements = elementIndex;
984  }
985  if (!hadError && DeclType->isIncompleteArrayType()) {
986    // If this is an incomplete array type, the actual type needs to
987    // be calculated here.
988    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
989    if (maxElements == Zero) {
990      // Sizing an array implicitly to zero is not allowed by ISO C,
991      // but is supported by GNU.
992      SemaRef.Diag(IList->getLocStart(),
993                    diag::ext_typecheck_zero_array_size);
994    }
995
996    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
997                                                     ArrayType::Normal, 0);
998  }
999}
1000
1001void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1002                                            InitListExpr *IList,
1003                                            QualType DeclType,
1004                                            RecordDecl::field_iterator Field,
1005                                            bool SubobjectIsDesignatorContext,
1006                                            unsigned &Index,
1007                                            InitListExpr *StructuredList,
1008                                            unsigned &StructuredIndex,
1009                                            bool TopLevelObject) {
1010  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1011
1012  // If the record is invalid, some of it's members are invalid. To avoid
1013  // confusion, we forgo checking the intializer for the entire record.
1014  if (structDecl->isInvalidDecl()) {
1015    hadError = true;
1016    return;
1017  }
1018
1019  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1020    // Value-initialize the first named member of the union.
1021    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1022    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1023         Field != FieldEnd; ++Field) {
1024      if (Field->getDeclName()) {
1025        StructuredList->setInitializedFieldInUnion(*Field);
1026        break;
1027      }
1028    }
1029    return;
1030  }
1031
1032  // If structDecl is a forward declaration, this loop won't do
1033  // anything except look at designated initializers; That's okay,
1034  // because an error should get printed out elsewhere. It might be
1035  // worthwhile to skip over the rest of the initializer, though.
1036  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1037  RecordDecl::field_iterator FieldEnd = RD->field_end();
1038  bool InitializedSomething = false;
1039  while (Index < IList->getNumInits()) {
1040    Expr *Init = IList->getInit(Index);
1041
1042    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1043      // If we're not the subobject that matches up with the '{' for
1044      // the designator, we shouldn't be handling the
1045      // designator. Return immediately.
1046      if (!SubobjectIsDesignatorContext)
1047        return;
1048
1049      // Handle this designated initializer. Field will be updated to
1050      // the next field that we'll be initializing.
1051      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1052                                     DeclType, &Field, 0, Index,
1053                                     StructuredList, StructuredIndex,
1054                                     true, TopLevelObject))
1055        hadError = true;
1056
1057      InitializedSomething = true;
1058      continue;
1059    }
1060
1061    if (Field == FieldEnd) {
1062      // We've run out of fields. We're done.
1063      break;
1064    }
1065
1066    // We've already initialized a member of a union. We're done.
1067    if (InitializedSomething && DeclType->isUnionType())
1068      break;
1069
1070    // If we've hit the flexible array member at the end, we're done.
1071    if (Field->getType()->isIncompleteArrayType())
1072      break;
1073
1074    if (Field->isUnnamedBitfield()) {
1075      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1076      ++Field;
1077      continue;
1078    }
1079
1080    InitializedEntity MemberEntity =
1081      InitializedEntity::InitializeMember(*Field, &Entity);
1082    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1083                        StructuredList, StructuredIndex);
1084    InitializedSomething = true;
1085
1086    if (DeclType->isUnionType()) {
1087      // Initialize the first field within the union.
1088      StructuredList->setInitializedFieldInUnion(*Field);
1089    }
1090
1091    ++Field;
1092  }
1093
1094  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1095      Index >= IList->getNumInits())
1096    return;
1097
1098  // Handle GNU flexible array initializers.
1099  if (!TopLevelObject &&
1100      (!isa<InitListExpr>(IList->getInit(Index)) ||
1101       cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1102    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1103                  diag::err_flexible_array_init_nonempty)
1104      << IList->getInit(Index)->getSourceRange().getBegin();
1105    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1106      << *Field;
1107    hadError = true;
1108    ++Index;
1109    return;
1110  } else {
1111    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1112                 diag::ext_flexible_array_init)
1113      << IList->getInit(Index)->getSourceRange().getBegin();
1114    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1115      << *Field;
1116  }
1117
1118  InitializedEntity MemberEntity =
1119    InitializedEntity::InitializeMember(*Field, &Entity);
1120
1121  if (isa<InitListExpr>(IList->getInit(Index)))
1122    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1123                        StructuredList, StructuredIndex);
1124  else
1125    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1126                          StructuredList, StructuredIndex);
1127}
1128
1129/// \brief Expand a field designator that refers to a member of an
1130/// anonymous struct or union into a series of field designators that
1131/// refers to the field within the appropriate subobject.
1132///
1133/// Field/FieldIndex will be updated to point to the (new)
1134/// currently-designated field.
1135static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1136                                           DesignatedInitExpr *DIE,
1137                                           unsigned DesigIdx,
1138                                           FieldDecl *Field,
1139                                        RecordDecl::field_iterator &FieldIter,
1140                                           unsigned &FieldIndex) {
1141  typedef DesignatedInitExpr::Designator Designator;
1142
1143  // Build the path from the current object to the member of the
1144  // anonymous struct/union (backwards).
1145  llvm::SmallVector<FieldDecl *, 4> Path;
1146  SemaRef.BuildAnonymousStructUnionMemberPath(Field, Path);
1147
1148  // Build the replacement designators.
1149  llvm::SmallVector<Designator, 4> Replacements;
1150  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
1151         FI = Path.rbegin(), FIEnd = Path.rend();
1152       FI != FIEnd; ++FI) {
1153    if (FI + 1 == FIEnd)
1154      Replacements.push_back(Designator((IdentifierInfo *)0,
1155                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1156                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1157    else
1158      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1159                                        SourceLocation()));
1160    Replacements.back().setField(*FI);
1161  }
1162
1163  // Expand the current designator into the set of replacement
1164  // designators, so we have a full subobject path down to where the
1165  // member of the anonymous struct/union is actually stored.
1166  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1167                        &Replacements[0] + Replacements.size());
1168
1169  // Update FieldIter/FieldIndex;
1170  RecordDecl *Record = cast<RecordDecl>(Path.back()->getDeclContext());
1171  FieldIter = Record->field_begin();
1172  FieldIndex = 0;
1173  for (RecordDecl::field_iterator FEnd = Record->field_end();
1174       FieldIter != FEnd; ++FieldIter) {
1175    if (FieldIter->isUnnamedBitfield())
1176        continue;
1177
1178    if (*FieldIter == Path.back())
1179      return;
1180
1181    ++FieldIndex;
1182  }
1183
1184  assert(false && "Unable to find anonymous struct/union field");
1185}
1186
1187/// @brief Check the well-formedness of a C99 designated initializer.
1188///
1189/// Determines whether the designated initializer @p DIE, which
1190/// resides at the given @p Index within the initializer list @p
1191/// IList, is well-formed for a current object of type @p DeclType
1192/// (C99 6.7.8). The actual subobject that this designator refers to
1193/// within the current subobject is returned in either
1194/// @p NextField or @p NextElementIndex (whichever is appropriate).
1195///
1196/// @param IList  The initializer list in which this designated
1197/// initializer occurs.
1198///
1199/// @param DIE The designated initializer expression.
1200///
1201/// @param DesigIdx  The index of the current designator.
1202///
1203/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1204/// into which the designation in @p DIE should refer.
1205///
1206/// @param NextField  If non-NULL and the first designator in @p DIE is
1207/// a field, this will be set to the field declaration corresponding
1208/// to the field named by the designator.
1209///
1210/// @param NextElementIndex  If non-NULL and the first designator in @p
1211/// DIE is an array designator or GNU array-range designator, this
1212/// will be set to the last index initialized by this designator.
1213///
1214/// @param Index  Index into @p IList where the designated initializer
1215/// @p DIE occurs.
1216///
1217/// @param StructuredList  The initializer list expression that
1218/// describes all of the subobject initializers in the order they'll
1219/// actually be initialized.
1220///
1221/// @returns true if there was an error, false otherwise.
1222bool
1223InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1224                                            InitListExpr *IList,
1225                                      DesignatedInitExpr *DIE,
1226                                      unsigned DesigIdx,
1227                                      QualType &CurrentObjectType,
1228                                      RecordDecl::field_iterator *NextField,
1229                                      llvm::APSInt *NextElementIndex,
1230                                      unsigned &Index,
1231                                      InitListExpr *StructuredList,
1232                                      unsigned &StructuredIndex,
1233                                            bool FinishSubobjectInit,
1234                                            bool TopLevelObject) {
1235  if (DesigIdx == DIE->size()) {
1236    // Check the actual initialization for the designated object type.
1237    bool prevHadError = hadError;
1238
1239    // Temporarily remove the designator expression from the
1240    // initializer list that the child calls see, so that we don't try
1241    // to re-process the designator.
1242    unsigned OldIndex = Index;
1243    IList->setInit(OldIndex, DIE->getInit());
1244
1245    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1246                        StructuredList, StructuredIndex);
1247
1248    // Restore the designated initializer expression in the syntactic
1249    // form of the initializer list.
1250    if (IList->getInit(OldIndex) != DIE->getInit())
1251      DIE->setInit(IList->getInit(OldIndex));
1252    IList->setInit(OldIndex, DIE);
1253
1254    return hadError && !prevHadError;
1255  }
1256
1257  bool IsFirstDesignator = (DesigIdx == 0);
1258  assert((IsFirstDesignator || StructuredList) &&
1259         "Need a non-designated initializer list to start from");
1260
1261  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1262  // Determine the structural initializer list that corresponds to the
1263  // current subobject.
1264  StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1265    : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1266                                 StructuredList, StructuredIndex,
1267                                 SourceRange(D->getStartLocation(),
1268                                             DIE->getSourceRange().getEnd()));
1269  assert(StructuredList && "Expected a structured initializer list");
1270
1271  if (D->isFieldDesignator()) {
1272    // C99 6.7.8p7:
1273    //
1274    //   If a designator has the form
1275    //
1276    //      . identifier
1277    //
1278    //   then the current object (defined below) shall have
1279    //   structure or union type and the identifier shall be the
1280    //   name of a member of that type.
1281    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1282    if (!RT) {
1283      SourceLocation Loc = D->getDotLoc();
1284      if (Loc.isInvalid())
1285        Loc = D->getFieldLoc();
1286      SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1287        << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1288      ++Index;
1289      return true;
1290    }
1291
1292    // Note: we perform a linear search of the fields here, despite
1293    // the fact that we have a faster lookup method, because we always
1294    // need to compute the field's index.
1295    FieldDecl *KnownField = D->getField();
1296    IdentifierInfo *FieldName = D->getFieldName();
1297    unsigned FieldIndex = 0;
1298    RecordDecl::field_iterator
1299      Field = RT->getDecl()->field_begin(),
1300      FieldEnd = RT->getDecl()->field_end();
1301    for (; Field != FieldEnd; ++Field) {
1302      if (Field->isUnnamedBitfield())
1303        continue;
1304
1305      if (KnownField == *Field || Field->getIdentifier() == FieldName)
1306        break;
1307
1308      ++FieldIndex;
1309    }
1310
1311    if (Field == FieldEnd) {
1312      // There was no normal field in the struct with the designated
1313      // name. Perform another lookup for this name, which may find
1314      // something that we can't designate (e.g., a member function),
1315      // may find nothing, or may find a member of an anonymous
1316      // struct/union.
1317      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1318      FieldDecl *ReplacementField = 0;
1319      if (Lookup.first == Lookup.second) {
1320        // Name lookup didn't find anything. Determine whether this
1321        // was a typo for another field name.
1322        LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
1323                       Sema::LookupMemberName);
1324        if (SemaRef.CorrectTypo(R, /*Scope=*/0, /*SS=*/0, RT->getDecl()) &&
1325            (ReplacementField = R.getAsSingle<FieldDecl>()) &&
1326            ReplacementField->getDeclContext()->getLookupContext()
1327                                                      ->Equals(RT->getDecl())) {
1328          SemaRef.Diag(D->getFieldLoc(),
1329                       diag::err_field_designator_unknown_suggest)
1330            << FieldName << CurrentObjectType << R.getLookupName()
1331            << CodeModificationHint::CreateReplacement(D->getFieldLoc(),
1332                                               R.getLookupName().getAsString());
1333          SemaRef.Diag(ReplacementField->getLocation(),
1334                       diag::note_previous_decl)
1335            << ReplacementField->getDeclName();
1336        } else {
1337          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1338            << FieldName << CurrentObjectType;
1339          ++Index;
1340          return true;
1341        }
1342      } else if (!KnownField) {
1343        // Determine whether we found a field at all.
1344        ReplacementField = dyn_cast<FieldDecl>(*Lookup.first);
1345      }
1346
1347      if (!ReplacementField) {
1348        // Name lookup found something, but it wasn't a field.
1349        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1350          << FieldName;
1351        SemaRef.Diag((*Lookup.first)->getLocation(),
1352                      diag::note_field_designator_found);
1353        ++Index;
1354        return true;
1355      }
1356
1357      if (!KnownField &&
1358          cast<RecordDecl>((ReplacementField)->getDeclContext())
1359                                                 ->isAnonymousStructOrUnion()) {
1360        // Handle an field designator that refers to a member of an
1361        // anonymous struct or union.
1362        ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx,
1363                                       ReplacementField,
1364                                       Field, FieldIndex);
1365        D = DIE->getDesignator(DesigIdx);
1366      } else if (!KnownField) {
1367        // The replacement field comes from typo correction; find it
1368        // in the list of fields.
1369        FieldIndex = 0;
1370        Field = RT->getDecl()->field_begin();
1371        for (; Field != FieldEnd; ++Field) {
1372          if (Field->isUnnamedBitfield())
1373            continue;
1374
1375          if (ReplacementField == *Field ||
1376              Field->getIdentifier() == ReplacementField->getIdentifier())
1377            break;
1378
1379          ++FieldIndex;
1380        }
1381      }
1382    } else if (!KnownField &&
1383               cast<RecordDecl>((*Field)->getDeclContext())
1384                 ->isAnonymousStructOrUnion()) {
1385      ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, *Field,
1386                                     Field, FieldIndex);
1387      D = DIE->getDesignator(DesigIdx);
1388    }
1389
1390    // All of the fields of a union are located at the same place in
1391    // the initializer list.
1392    if (RT->getDecl()->isUnion()) {
1393      FieldIndex = 0;
1394      StructuredList->setInitializedFieldInUnion(*Field);
1395    }
1396
1397    // Update the designator with the field declaration.
1398    D->setField(*Field);
1399
1400    // Make sure that our non-designated initializer list has space
1401    // for a subobject corresponding to this field.
1402    if (FieldIndex >= StructuredList->getNumInits())
1403      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1404
1405    // This designator names a flexible array member.
1406    if (Field->getType()->isIncompleteArrayType()) {
1407      bool Invalid = false;
1408      if ((DesigIdx + 1) != DIE->size()) {
1409        // We can't designate an object within the flexible array
1410        // member (because GCC doesn't allow it).
1411        DesignatedInitExpr::Designator *NextD
1412          = DIE->getDesignator(DesigIdx + 1);
1413        SemaRef.Diag(NextD->getStartLocation(),
1414                      diag::err_designator_into_flexible_array_member)
1415          << SourceRange(NextD->getStartLocation(),
1416                         DIE->getSourceRange().getEnd());
1417        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1418          << *Field;
1419        Invalid = true;
1420      }
1421
1422      if (!hadError && !isa<InitListExpr>(DIE->getInit())) {
1423        // The initializer is not an initializer list.
1424        SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1425                      diag::err_flexible_array_init_needs_braces)
1426          << DIE->getInit()->getSourceRange();
1427        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1428          << *Field;
1429        Invalid = true;
1430      }
1431
1432      // Handle GNU flexible array initializers.
1433      if (!Invalid && !TopLevelObject &&
1434          cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1435        SemaRef.Diag(DIE->getSourceRange().getBegin(),
1436                      diag::err_flexible_array_init_nonempty)
1437          << DIE->getSourceRange().getBegin();
1438        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1439          << *Field;
1440        Invalid = true;
1441      }
1442
1443      if (Invalid) {
1444        ++Index;
1445        return true;
1446      }
1447
1448      // Initialize the array.
1449      bool prevHadError = hadError;
1450      unsigned newStructuredIndex = FieldIndex;
1451      unsigned OldIndex = Index;
1452      IList->setInit(Index, DIE->getInit());
1453
1454      InitializedEntity MemberEntity =
1455        InitializedEntity::InitializeMember(*Field, &Entity);
1456      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1457                          StructuredList, newStructuredIndex);
1458
1459      IList->setInit(OldIndex, DIE);
1460      if (hadError && !prevHadError) {
1461        ++Field;
1462        ++FieldIndex;
1463        if (NextField)
1464          *NextField = Field;
1465        StructuredIndex = FieldIndex;
1466        return true;
1467      }
1468    } else {
1469      // Recurse to check later designated subobjects.
1470      QualType FieldType = (*Field)->getType();
1471      unsigned newStructuredIndex = FieldIndex;
1472
1473      InitializedEntity MemberEntity =
1474        InitializedEntity::InitializeMember(*Field, &Entity);
1475      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1476                                     FieldType, 0, 0, Index,
1477                                     StructuredList, newStructuredIndex,
1478                                     true, false))
1479        return true;
1480    }
1481
1482    // Find the position of the next field to be initialized in this
1483    // subobject.
1484    ++Field;
1485    ++FieldIndex;
1486
1487    // If this the first designator, our caller will continue checking
1488    // the rest of this struct/class/union subobject.
1489    if (IsFirstDesignator) {
1490      if (NextField)
1491        *NextField = Field;
1492      StructuredIndex = FieldIndex;
1493      return false;
1494    }
1495
1496    if (!FinishSubobjectInit)
1497      return false;
1498
1499    // We've already initialized something in the union; we're done.
1500    if (RT->getDecl()->isUnion())
1501      return hadError;
1502
1503    // Check the remaining fields within this class/struct/union subobject.
1504    bool prevHadError = hadError;
1505
1506    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1507                          StructuredList, FieldIndex);
1508    return hadError && !prevHadError;
1509  }
1510
1511  // C99 6.7.8p6:
1512  //
1513  //   If a designator has the form
1514  //
1515  //      [ constant-expression ]
1516  //
1517  //   then the current object (defined below) shall have array
1518  //   type and the expression shall be an integer constant
1519  //   expression. If the array is of unknown size, any
1520  //   nonnegative value is valid.
1521  //
1522  // Additionally, cope with the GNU extension that permits
1523  // designators of the form
1524  //
1525  //      [ constant-expression ... constant-expression ]
1526  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1527  if (!AT) {
1528    SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1529      << CurrentObjectType;
1530    ++Index;
1531    return true;
1532  }
1533
1534  Expr *IndexExpr = 0;
1535  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1536  if (D->isArrayDesignator()) {
1537    IndexExpr = DIE->getArrayIndex(*D);
1538    DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1539    DesignatedEndIndex = DesignatedStartIndex;
1540  } else {
1541    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1542
1543
1544    DesignatedStartIndex =
1545      DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1546    DesignatedEndIndex =
1547      DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1548    IndexExpr = DIE->getArrayRangeEnd(*D);
1549
1550    if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
1551      FullyStructuredList->sawArrayRangeDesignator();
1552  }
1553
1554  if (isa<ConstantArrayType>(AT)) {
1555    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1556    DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1557    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1558    DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1559    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1560    if (DesignatedEndIndex >= MaxElements) {
1561      SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1562                    diag::err_array_designator_too_large)
1563        << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1564        << IndexExpr->getSourceRange();
1565      ++Index;
1566      return true;
1567    }
1568  } else {
1569    // Make sure the bit-widths and signedness match.
1570    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1571      DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1572    else if (DesignatedStartIndex.getBitWidth() <
1573             DesignatedEndIndex.getBitWidth())
1574      DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1575    DesignatedStartIndex.setIsUnsigned(true);
1576    DesignatedEndIndex.setIsUnsigned(true);
1577  }
1578
1579  // Make sure that our non-designated initializer list has space
1580  // for a subobject corresponding to this array element.
1581  if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1582    StructuredList->resizeInits(SemaRef.Context,
1583                                DesignatedEndIndex.getZExtValue() + 1);
1584
1585  // Repeatedly perform subobject initializations in the range
1586  // [DesignatedStartIndex, DesignatedEndIndex].
1587
1588  // Move to the next designator
1589  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1590  unsigned OldIndex = Index;
1591
1592  InitializedEntity ElementEntity =
1593    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1594
1595  while (DesignatedStartIndex <= DesignatedEndIndex) {
1596    // Recurse to check later designated subobjects.
1597    QualType ElementType = AT->getElementType();
1598    Index = OldIndex;
1599
1600    ElementEntity.setElementIndex(ElementIndex);
1601    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
1602                                   ElementType, 0, 0, Index,
1603                                   StructuredList, ElementIndex,
1604                                   (DesignatedStartIndex == DesignatedEndIndex),
1605                                   false))
1606      return true;
1607
1608    // Move to the next index in the array that we'll be initializing.
1609    ++DesignatedStartIndex;
1610    ElementIndex = DesignatedStartIndex.getZExtValue();
1611  }
1612
1613  // If this the first designator, our caller will continue checking
1614  // the rest of this array subobject.
1615  if (IsFirstDesignator) {
1616    if (NextElementIndex)
1617      *NextElementIndex = DesignatedStartIndex;
1618    StructuredIndex = ElementIndex;
1619    return false;
1620  }
1621
1622  if (!FinishSubobjectInit)
1623    return false;
1624
1625  // Check the remaining elements within this array subobject.
1626  bool prevHadError = hadError;
1627  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
1628                 /*SubobjectIsDesignatorContext=*/false, Index,
1629                 StructuredList, ElementIndex);
1630  return hadError && !prevHadError;
1631}
1632
1633// Get the structured initializer list for a subobject of type
1634// @p CurrentObjectType.
1635InitListExpr *
1636InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1637                                            QualType CurrentObjectType,
1638                                            InitListExpr *StructuredList,
1639                                            unsigned StructuredIndex,
1640                                            SourceRange InitRange) {
1641  Expr *ExistingInit = 0;
1642  if (!StructuredList)
1643    ExistingInit = SyntacticToSemantic[IList];
1644  else if (StructuredIndex < StructuredList->getNumInits())
1645    ExistingInit = StructuredList->getInit(StructuredIndex);
1646
1647  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1648    return Result;
1649
1650  if (ExistingInit) {
1651    // We are creating an initializer list that initializes the
1652    // subobjects of the current object, but there was already an
1653    // initialization that completely initialized the current
1654    // subobject, e.g., by a compound literal:
1655    //
1656    // struct X { int a, b; };
1657    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1658    //
1659    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1660    // designated initializer re-initializes the whole
1661    // subobject [0], overwriting previous initializers.
1662    SemaRef.Diag(InitRange.getBegin(),
1663                 diag::warn_subobject_initializer_overrides)
1664      << InitRange;
1665    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1666                  diag::note_previous_initializer)
1667      << /*FIXME:has side effects=*/0
1668      << ExistingInit->getSourceRange();
1669  }
1670
1671  InitListExpr *Result
1672    = new (SemaRef.Context) InitListExpr(InitRange.getBegin(), 0, 0,
1673                                         InitRange.getEnd());
1674
1675  Result->setType(CurrentObjectType);
1676
1677  // Pre-allocate storage for the structured initializer list.
1678  unsigned NumElements = 0;
1679  unsigned NumInits = 0;
1680  if (!StructuredList)
1681    NumInits = IList->getNumInits();
1682  else if (Index < IList->getNumInits()) {
1683    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1684      NumInits = SubList->getNumInits();
1685  }
1686
1687  if (const ArrayType *AType
1688      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1689    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1690      NumElements = CAType->getSize().getZExtValue();
1691      // Simple heuristic so that we don't allocate a very large
1692      // initializer with many empty entries at the end.
1693      if (NumInits && NumElements > NumInits)
1694        NumElements = 0;
1695    }
1696  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
1697    NumElements = VType->getNumElements();
1698  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
1699    RecordDecl *RDecl = RType->getDecl();
1700    if (RDecl->isUnion())
1701      NumElements = 1;
1702    else
1703      NumElements = std::distance(RDecl->field_begin(),
1704                                  RDecl->field_end());
1705  }
1706
1707  if (NumElements < NumInits)
1708    NumElements = IList->getNumInits();
1709
1710  Result->reserveInits(NumElements);
1711
1712  // Link this new initializer list into the structured initializer
1713  // lists.
1714  if (StructuredList)
1715    StructuredList->updateInit(StructuredIndex, Result);
1716  else {
1717    Result->setSyntacticForm(IList);
1718    SyntacticToSemantic[IList] = Result;
1719  }
1720
1721  return Result;
1722}
1723
1724/// Update the initializer at index @p StructuredIndex within the
1725/// structured initializer list to the value @p expr.
1726void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1727                                                  unsigned &StructuredIndex,
1728                                                  Expr *expr) {
1729  // No structured initializer list to update
1730  if (!StructuredList)
1731    return;
1732
1733  if (Expr *PrevInit = StructuredList->updateInit(StructuredIndex, expr)) {
1734    // This initializer overwrites a previous initializer. Warn.
1735    SemaRef.Diag(expr->getSourceRange().getBegin(),
1736                  diag::warn_initializer_overrides)
1737      << expr->getSourceRange();
1738    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1739                  diag::note_previous_initializer)
1740      << /*FIXME:has side effects=*/0
1741      << PrevInit->getSourceRange();
1742  }
1743
1744  ++StructuredIndex;
1745}
1746
1747/// Check that the given Index expression is a valid array designator
1748/// value. This is essentailly just a wrapper around
1749/// VerifyIntegerConstantExpression that also checks for negative values
1750/// and produces a reasonable diagnostic if there is a
1751/// failure. Returns true if there was an error, false otherwise.  If
1752/// everything went okay, Value will receive the value of the constant
1753/// expression.
1754static bool
1755CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1756  SourceLocation Loc = Index->getSourceRange().getBegin();
1757
1758  // Make sure this is an integer constant expression.
1759  if (S.VerifyIntegerConstantExpression(Index, &Value))
1760    return true;
1761
1762  if (Value.isSigned() && Value.isNegative())
1763    return S.Diag(Loc, diag::err_array_designator_negative)
1764      << Value.toString(10) << Index->getSourceRange();
1765
1766  Value.setIsUnsigned(true);
1767  return false;
1768}
1769
1770Sema::OwningExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1771                                                        SourceLocation Loc,
1772                                                        bool GNUSyntax,
1773                                                        OwningExprResult Init) {
1774  typedef DesignatedInitExpr::Designator ASTDesignator;
1775
1776  bool Invalid = false;
1777  llvm::SmallVector<ASTDesignator, 32> Designators;
1778  llvm::SmallVector<Expr *, 32> InitExpressions;
1779
1780  // Build designators and check array designator expressions.
1781  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1782    const Designator &D = Desig.getDesignator(Idx);
1783    switch (D.getKind()) {
1784    case Designator::FieldDesignator:
1785      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1786                                          D.getFieldLoc()));
1787      break;
1788
1789    case Designator::ArrayDesignator: {
1790      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1791      llvm::APSInt IndexValue;
1792      if (!Index->isTypeDependent() &&
1793          !Index->isValueDependent() &&
1794          CheckArrayDesignatorExpr(*this, Index, IndexValue))
1795        Invalid = true;
1796      else {
1797        Designators.push_back(ASTDesignator(InitExpressions.size(),
1798                                            D.getLBracketLoc(),
1799                                            D.getRBracketLoc()));
1800        InitExpressions.push_back(Index);
1801      }
1802      break;
1803    }
1804
1805    case Designator::ArrayRangeDesignator: {
1806      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1807      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1808      llvm::APSInt StartValue;
1809      llvm::APSInt EndValue;
1810      bool StartDependent = StartIndex->isTypeDependent() ||
1811                            StartIndex->isValueDependent();
1812      bool EndDependent = EndIndex->isTypeDependent() ||
1813                          EndIndex->isValueDependent();
1814      if ((!StartDependent &&
1815           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1816          (!EndDependent &&
1817           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1818        Invalid = true;
1819      else {
1820        // Make sure we're comparing values with the same bit width.
1821        if (StartDependent || EndDependent) {
1822          // Nothing to compute.
1823        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1824          EndValue.extend(StartValue.getBitWidth());
1825        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1826          StartValue.extend(EndValue.getBitWidth());
1827
1828        if (!StartDependent && !EndDependent && EndValue < StartValue) {
1829          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1830            << StartValue.toString(10) << EndValue.toString(10)
1831            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1832          Invalid = true;
1833        } else {
1834          Designators.push_back(ASTDesignator(InitExpressions.size(),
1835                                              D.getLBracketLoc(),
1836                                              D.getEllipsisLoc(),
1837                                              D.getRBracketLoc()));
1838          InitExpressions.push_back(StartIndex);
1839          InitExpressions.push_back(EndIndex);
1840        }
1841      }
1842      break;
1843    }
1844    }
1845  }
1846
1847  if (Invalid || Init.isInvalid())
1848    return ExprError();
1849
1850  // Clear out the expressions within the designation.
1851  Desig.ClearExprs(*this);
1852
1853  DesignatedInitExpr *DIE
1854    = DesignatedInitExpr::Create(Context,
1855                                 Designators.data(), Designators.size(),
1856                                 InitExpressions.data(), InitExpressions.size(),
1857                                 Loc, GNUSyntax, Init.takeAs<Expr>());
1858  return Owned(DIE);
1859}
1860
1861bool Sema::CheckInitList(const InitializedEntity &Entity,
1862                         InitListExpr *&InitList, QualType &DeclType) {
1863  InitListChecker CheckInitList(*this, Entity, InitList, DeclType);
1864  if (!CheckInitList.HadError())
1865    InitList = CheckInitList.getFullyStructuredList();
1866
1867  return CheckInitList.HadError();
1868}
1869
1870//===----------------------------------------------------------------------===//
1871// Initialization entity
1872//===----------------------------------------------------------------------===//
1873
1874InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
1875                                     const InitializedEntity &Parent)
1876  : Parent(&Parent), Index(Index)
1877{
1878  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
1879    Kind = EK_ArrayElement;
1880    Type = AT->getElementType();
1881  } else {
1882    Kind = EK_VectorElement;
1883    Type = Parent.getType()->getAs<VectorType>()->getElementType();
1884  }
1885}
1886
1887InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
1888                                                    CXXBaseSpecifier *Base)
1889{
1890  InitializedEntity Result;
1891  Result.Kind = EK_Base;
1892  Result.Base = Base;
1893  Result.Type = Base->getType();
1894  return Result;
1895}
1896
1897DeclarationName InitializedEntity::getName() const {
1898  switch (getKind()) {
1899  case EK_Parameter:
1900    if (!VariableOrMember)
1901      return DeclarationName();
1902    // Fall through
1903
1904  case EK_Variable:
1905  case EK_Member:
1906    return VariableOrMember->getDeclName();
1907
1908  case EK_Result:
1909  case EK_Exception:
1910  case EK_New:
1911  case EK_Temporary:
1912  case EK_Base:
1913  case EK_ArrayElement:
1914  case EK_VectorElement:
1915    return DeclarationName();
1916  }
1917
1918  // Silence GCC warning
1919  return DeclarationName();
1920}
1921
1922DeclaratorDecl *InitializedEntity::getDecl() const {
1923  switch (getKind()) {
1924  case EK_Variable:
1925  case EK_Parameter:
1926  case EK_Member:
1927    return VariableOrMember;
1928
1929  case EK_Result:
1930  case EK_Exception:
1931  case EK_New:
1932  case EK_Temporary:
1933  case EK_Base:
1934  case EK_ArrayElement:
1935  case EK_VectorElement:
1936    return 0;
1937  }
1938
1939  // Silence GCC warning
1940  return 0;
1941}
1942
1943//===----------------------------------------------------------------------===//
1944// Initialization sequence
1945//===----------------------------------------------------------------------===//
1946
1947void InitializationSequence::Step::Destroy() {
1948  switch (Kind) {
1949  case SK_ResolveAddressOfOverloadedFunction:
1950  case SK_CastDerivedToBaseRValue:
1951  case SK_CastDerivedToBaseLValue:
1952  case SK_BindReference:
1953  case SK_BindReferenceToTemporary:
1954  case SK_UserConversion:
1955  case SK_QualificationConversionRValue:
1956  case SK_QualificationConversionLValue:
1957  case SK_ListInitialization:
1958  case SK_ConstructorInitialization:
1959  case SK_ZeroInitialization:
1960  case SK_CAssignment:
1961  case SK_StringInit:
1962    break;
1963
1964  case SK_ConversionSequence:
1965    delete ICS;
1966  }
1967}
1968
1969void InitializationSequence::AddAddressOverloadResolutionStep(
1970                                                      FunctionDecl *Function) {
1971  Step S;
1972  S.Kind = SK_ResolveAddressOfOverloadedFunction;
1973  S.Type = Function->getType();
1974  // Access is currently ignored for these.
1975  S.Function = DeclAccessPair::make(Function, AccessSpecifier(0));
1976  Steps.push_back(S);
1977}
1978
1979void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
1980                                                      bool IsLValue) {
1981  Step S;
1982  S.Kind = IsLValue? SK_CastDerivedToBaseLValue : SK_CastDerivedToBaseRValue;
1983  S.Type = BaseType;
1984  Steps.push_back(S);
1985}
1986
1987void InitializationSequence::AddReferenceBindingStep(QualType T,
1988                                                     bool BindingTemporary) {
1989  Step S;
1990  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
1991  S.Type = T;
1992  Steps.push_back(S);
1993}
1994
1995void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
1996                                                   AccessSpecifier Access,
1997                                                   QualType T) {
1998  Step S;
1999  S.Kind = SK_UserConversion;
2000  S.Type = T;
2001  S.Function = DeclAccessPair::make(Function, Access);
2002  Steps.push_back(S);
2003}
2004
2005void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2006                                                            bool IsLValue) {
2007  Step S;
2008  S.Kind = IsLValue? SK_QualificationConversionLValue
2009                   : SK_QualificationConversionRValue;
2010  S.Type = Ty;
2011  Steps.push_back(S);
2012}
2013
2014void InitializationSequence::AddConversionSequenceStep(
2015                                       const ImplicitConversionSequence &ICS,
2016                                                       QualType T) {
2017  Step S;
2018  S.Kind = SK_ConversionSequence;
2019  S.Type = T;
2020  S.ICS = new ImplicitConversionSequence(ICS);
2021  Steps.push_back(S);
2022}
2023
2024void InitializationSequence::AddListInitializationStep(QualType T) {
2025  Step S;
2026  S.Kind = SK_ListInitialization;
2027  S.Type = T;
2028  Steps.push_back(S);
2029}
2030
2031void
2032InitializationSequence::AddConstructorInitializationStep(
2033                                              CXXConstructorDecl *Constructor,
2034                                                       AccessSpecifier Access,
2035                                                         QualType T) {
2036  Step S;
2037  S.Kind = SK_ConstructorInitialization;
2038  S.Type = T;
2039  S.Function = DeclAccessPair::make(Constructor, Access);
2040  Steps.push_back(S);
2041}
2042
2043void InitializationSequence::AddZeroInitializationStep(QualType T) {
2044  Step S;
2045  S.Kind = SK_ZeroInitialization;
2046  S.Type = T;
2047  Steps.push_back(S);
2048}
2049
2050void InitializationSequence::AddCAssignmentStep(QualType T) {
2051  Step S;
2052  S.Kind = SK_CAssignment;
2053  S.Type = T;
2054  Steps.push_back(S);
2055}
2056
2057void InitializationSequence::AddStringInitStep(QualType T) {
2058  Step S;
2059  S.Kind = SK_StringInit;
2060  S.Type = T;
2061  Steps.push_back(S);
2062}
2063
2064void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2065                                                OverloadingResult Result) {
2066  SequenceKind = FailedSequence;
2067  this->Failure = Failure;
2068  this->FailedOverloadResult = Result;
2069}
2070
2071//===----------------------------------------------------------------------===//
2072// Attempt initialization
2073//===----------------------------------------------------------------------===//
2074
2075/// \brief Attempt list initialization (C++0x [dcl.init.list])
2076static void TryListInitialization(Sema &S,
2077                                  const InitializedEntity &Entity,
2078                                  const InitializationKind &Kind,
2079                                  InitListExpr *InitList,
2080                                  InitializationSequence &Sequence) {
2081  // FIXME: We only perform rudimentary checking of list
2082  // initializations at this point, then assume that any list
2083  // initialization of an array, aggregate, or scalar will be
2084  // well-formed. We we actually "perform" list initialization, we'll
2085  // do all of the necessary checking.  C++0x initializer lists will
2086  // force us to perform more checking here.
2087  Sequence.setSequenceKind(InitializationSequence::ListInitialization);
2088
2089  QualType DestType = Entity.getType();
2090
2091  // C++ [dcl.init]p13:
2092  //   If T is a scalar type, then a declaration of the form
2093  //
2094  //     T x = { a };
2095  //
2096  //   is equivalent to
2097  //
2098  //     T x = a;
2099  if (DestType->isScalarType()) {
2100    if (InitList->getNumInits() > 1 && S.getLangOptions().CPlusPlus) {
2101      Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
2102      return;
2103    }
2104
2105    // Assume scalar initialization from a single value works.
2106  } else if (DestType->isAggregateType()) {
2107    // Assume aggregate initialization works.
2108  } else if (DestType->isVectorType()) {
2109    // Assume vector initialization works.
2110  } else if (DestType->isReferenceType()) {
2111    // FIXME: C++0x defines behavior for this.
2112    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2113    return;
2114  } else if (DestType->isRecordType()) {
2115    // FIXME: C++0x defines behavior for this
2116    Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
2117  }
2118
2119  // Add a general "list initialization" step.
2120  Sequence.AddListInitializationStep(DestType);
2121}
2122
2123/// \brief Try a reference initialization that involves calling a conversion
2124/// function.
2125///
2126/// FIXME: look intos DRs 656, 896
2127static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
2128                                             const InitializedEntity &Entity,
2129                                             const InitializationKind &Kind,
2130                                                          Expr *Initializer,
2131                                                          bool AllowRValues,
2132                                             InitializationSequence &Sequence) {
2133  QualType DestType = Entity.getType();
2134  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2135  QualType T1 = cv1T1.getUnqualifiedType();
2136  QualType cv2T2 = Initializer->getType();
2137  QualType T2 = cv2T2.getUnqualifiedType();
2138
2139  bool DerivedToBase;
2140  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
2141                                         T1, T2, DerivedToBase) &&
2142         "Must have incompatible references when binding via conversion");
2143  (void)DerivedToBase;
2144
2145  // Build the candidate set directly in the initialization sequence
2146  // structure, so that it will persist if we fail.
2147  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2148  CandidateSet.clear();
2149
2150  // Determine whether we are allowed to call explicit constructors or
2151  // explicit conversion operators.
2152  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2153
2154  const RecordType *T1RecordType = 0;
2155  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>())) {
2156    // The type we're converting to is a class type. Enumerate its constructors
2157    // to see if there is a suitable conversion.
2158    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
2159
2160    DeclarationName ConstructorName
2161      = S.Context.DeclarationNames.getCXXConstructorName(
2162                           S.Context.getCanonicalType(T1).getUnqualifiedType());
2163    DeclContext::lookup_iterator Con, ConEnd;
2164    for (llvm::tie(Con, ConEnd) = T1RecordDecl->lookup(ConstructorName);
2165         Con != ConEnd; ++Con) {
2166      // Find the constructor (which may be a template).
2167      CXXConstructorDecl *Constructor = 0;
2168      FunctionTemplateDecl *ConstructorTmpl
2169        = dyn_cast<FunctionTemplateDecl>(*Con);
2170      if (ConstructorTmpl)
2171        Constructor = cast<CXXConstructorDecl>(
2172                                         ConstructorTmpl->getTemplatedDecl());
2173      else
2174        Constructor = cast<CXXConstructorDecl>(*Con);
2175
2176      if (!Constructor->isInvalidDecl() &&
2177          Constructor->isConvertingConstructor(AllowExplicit)) {
2178        if (ConstructorTmpl)
2179          S.AddTemplateOverloadCandidate(ConstructorTmpl,
2180                                         ConstructorTmpl->getAccess(),
2181                                         /*ExplicitArgs*/ 0,
2182                                         &Initializer, 1, CandidateSet);
2183        else
2184          S.AddOverloadCandidate(Constructor, Constructor->getAccess(),
2185                                 &Initializer, 1, CandidateSet);
2186      }
2187    }
2188  }
2189
2190  if (const RecordType *T2RecordType = T2->getAs<RecordType>()) {
2191    // The type we're converting from is a class type, enumerate its conversion
2192    // functions.
2193    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
2194
2195    // Determine the type we are converting to. If we are allowed to
2196    // convert to an rvalue, take the type that the destination type
2197    // refers to.
2198    QualType ToType = AllowRValues? cv1T1 : DestType;
2199
2200    const UnresolvedSetImpl *Conversions
2201      = T2RecordDecl->getVisibleConversionFunctions();
2202    for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2203           E = Conversions->end(); I != E; ++I) {
2204      NamedDecl *D = *I;
2205      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2206      if (isa<UsingShadowDecl>(D))
2207        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2208
2209      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2210      CXXConversionDecl *Conv;
2211      if (ConvTemplate)
2212        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2213      else
2214        Conv = cast<CXXConversionDecl>(*I);
2215
2216      // If the conversion function doesn't return a reference type,
2217      // it can't be considered for this conversion unless we're allowed to
2218      // consider rvalues.
2219      // FIXME: Do we need to make sure that we only consider conversion
2220      // candidates with reference-compatible results? That might be needed to
2221      // break recursion.
2222      if ((AllowExplicit || !Conv->isExplicit()) &&
2223          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
2224        if (ConvTemplate)
2225          S.AddTemplateConversionCandidate(ConvTemplate, I.getAccess(),
2226                                           ActingDC, Initializer,
2227                                           ToType, CandidateSet);
2228        else
2229          S.AddConversionCandidate(Conv, I.getAccess(), ActingDC,
2230                                   Initializer, cv1T1, CandidateSet);
2231      }
2232    }
2233  }
2234
2235  SourceLocation DeclLoc = Initializer->getLocStart();
2236
2237  // Perform overload resolution. If it fails, return the failed result.
2238  OverloadCandidateSet::iterator Best;
2239  if (OverloadingResult Result
2240        = S.BestViableFunction(CandidateSet, DeclLoc, Best))
2241    return Result;
2242
2243  FunctionDecl *Function = Best->Function;
2244
2245  // Compute the returned type of the conversion.
2246  if (isa<CXXConversionDecl>(Function))
2247    T2 = Function->getResultType();
2248  else
2249    T2 = cv1T1;
2250
2251  // Add the user-defined conversion step.
2252  Sequence.AddUserConversionStep(Function, Best->getAccess(),
2253                                 T2.getNonReferenceType());
2254
2255  // Determine whether we need to perform derived-to-base or
2256  // cv-qualification adjustments.
2257  bool NewDerivedToBase = false;
2258  Sema::ReferenceCompareResult NewRefRelationship
2259    = S.CompareReferenceRelationship(DeclLoc, T1, T2.getNonReferenceType(),
2260                                     NewDerivedToBase);
2261  assert(NewRefRelationship != Sema::Ref_Incompatible &&
2262         "Overload resolution picked a bad conversion function");
2263  (void)NewRefRelationship;
2264  if (NewDerivedToBase)
2265    Sequence.AddDerivedToBaseCastStep(
2266                                S.Context.getQualifiedType(T1,
2267                                  T2.getNonReferenceType().getQualifiers()),
2268                                  /*isLValue=*/true);
2269
2270  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
2271    Sequence.AddQualificationConversionStep(cv1T1, T2->isReferenceType());
2272
2273  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
2274  return OR_Success;
2275}
2276
2277/// \brief Attempt reference initialization (C++0x [dcl.init.list])
2278static void TryReferenceInitialization(Sema &S,
2279                                       const InitializedEntity &Entity,
2280                                       const InitializationKind &Kind,
2281                                       Expr *Initializer,
2282                                       InitializationSequence &Sequence) {
2283  Sequence.setSequenceKind(InitializationSequence::ReferenceBinding);
2284
2285  QualType DestType = Entity.getType();
2286  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2287  Qualifiers T1Quals;
2288  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2289  QualType cv2T2 = Initializer->getType();
2290  Qualifiers T2Quals;
2291  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
2292  SourceLocation DeclLoc = Initializer->getLocStart();
2293
2294  // If the initializer is the address of an overloaded function, try
2295  // to resolve the overloaded function. If all goes well, T2 is the
2296  // type of the resulting function.
2297  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2298    FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
2299                                                            T1,
2300                                                            false);
2301    if (!Fn) {
2302      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2303      return;
2304    }
2305
2306    Sequence.AddAddressOverloadResolutionStep(Fn);
2307    cv2T2 = Fn->getType();
2308    T2 = cv2T2.getUnqualifiedType();
2309  }
2310
2311  // FIXME: Rvalue references
2312  bool ForceRValue = false;
2313
2314  // Compute some basic properties of the types and the initializer.
2315  bool isLValueRef = DestType->isLValueReferenceType();
2316  bool isRValueRef = !isLValueRef;
2317  bool DerivedToBase = false;
2318  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2319                                    Initializer->isLvalue(S.Context);
2320  Sema::ReferenceCompareResult RefRelationship
2321    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase);
2322
2323  // C++0x [dcl.init.ref]p5:
2324  //   A reference to type "cv1 T1" is initialized by an expression of type
2325  //   "cv2 T2" as follows:
2326  //
2327  //     - If the reference is an lvalue reference and the initializer
2328  //       expression
2329  OverloadingResult ConvOvlResult = OR_Success;
2330  if (isLValueRef) {
2331    if (InitLvalue == Expr::LV_Valid &&
2332        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2333      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
2334      //     reference-compatible with "cv2 T2," or
2335      //
2336      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
2337      // bit-field when we're determining whether the reference initialization
2338      // can occur. However, we do pay attention to whether it is a bit-field
2339      // to decide whether we're actually binding to a temporary created from
2340      // the bit-field.
2341      if (DerivedToBase)
2342        Sequence.AddDerivedToBaseCastStep(
2343                         S.Context.getQualifiedType(T1, T2Quals),
2344                         /*isLValue=*/true);
2345      if (T1Quals != T2Quals)
2346        Sequence.AddQualificationConversionStep(cv1T1, /*IsLValue=*/true);
2347      bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
2348        (Initializer->getBitField() || Initializer->refersToVectorElement());
2349      Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
2350      return;
2351    }
2352
2353    //     - has a class type (i.e., T2 is a class type), where T1 is not
2354    //       reference-related to T2, and can be implicitly converted to an
2355    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
2356    //       with "cv3 T3" (this conversion is selected by enumerating the
2357    //       applicable conversion functions (13.3.1.6) and choosing the best
2358    //       one through overload resolution (13.3)),
2359    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType()) {
2360      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
2361                                                       Initializer,
2362                                                       /*AllowRValues=*/false,
2363                                                       Sequence);
2364      if (ConvOvlResult == OR_Success)
2365        return;
2366      if (ConvOvlResult != OR_No_Viable_Function) {
2367        Sequence.SetOverloadFailure(
2368                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2369                                    ConvOvlResult);
2370      }
2371    }
2372  }
2373
2374  //     - Otherwise, the reference shall be an lvalue reference to a
2375  //       non-volatile const type (i.e., cv1 shall be const), or the reference
2376  //       shall be an rvalue reference and the initializer expression shall
2377  //       be an rvalue.
2378  if (!((isLValueRef && T1Quals.hasConst() && !T1Quals.hasVolatile()) ||
2379        (isRValueRef && InitLvalue != Expr::LV_Valid))) {
2380    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2381      Sequence.SetOverloadFailure(
2382                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2383                                  ConvOvlResult);
2384    else if (isLValueRef)
2385      Sequence.SetFailed(InitLvalue == Expr::LV_Valid
2386        ? (RefRelationship == Sema::Ref_Related
2387             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
2388             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
2389        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
2390    else
2391      Sequence.SetFailed(
2392                    InitializationSequence::FK_RValueReferenceBindingToLValue);
2393
2394    return;
2395  }
2396
2397  //       - If T1 and T2 are class types and
2398  if (T1->isRecordType() && T2->isRecordType()) {
2399    //       - the initializer expression is an rvalue and "cv1 T1" is
2400    //         reference-compatible with "cv2 T2", or
2401    if (InitLvalue != Expr::LV_Valid &&
2402        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2403      if (DerivedToBase)
2404        Sequence.AddDerivedToBaseCastStep(
2405                         S.Context.getQualifiedType(T1, T2Quals),
2406                         /*isLValue=*/false);
2407      if (T1Quals != T2Quals)
2408        Sequence.AddQualificationConversionStep(cv1T1, /*IsLValue=*/false);
2409      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2410      return;
2411    }
2412
2413    //       - T1 is not reference-related to T2 and the initializer expression
2414    //         can be implicitly converted to an rvalue of type "cv3 T3" (this
2415    //         conversion is selected by enumerating the applicable conversion
2416    //         functions (13.3.1.6) and choosing the best one through overload
2417    //         resolution (13.3)),
2418    if (RefRelationship == Sema::Ref_Incompatible) {
2419      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
2420                                                       Kind, Initializer,
2421                                                       /*AllowRValues=*/true,
2422                                                       Sequence);
2423      if (ConvOvlResult)
2424        Sequence.SetOverloadFailure(
2425                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2426                                    ConvOvlResult);
2427
2428      return;
2429    }
2430
2431    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2432    return;
2433  }
2434
2435  //      - If the initializer expression is an rvalue, with T2 an array type,
2436  //        and "cv1 T1" is reference-compatible with "cv2 T2," the reference
2437  //        is bound to the object represented by the rvalue (see 3.10).
2438  // FIXME: How can an array type be reference-compatible with anything?
2439  // Don't we mean the element types of T1 and T2?
2440
2441  //      - Otherwise, a temporary of type “cv1 T1” is created and initialized
2442  //        from the initializer expression using the rules for a non-reference
2443  //        copy initialization (8.5). The reference is then bound to the
2444  //        temporary. [...]
2445  // Determine whether we are allowed to call explicit constructors or
2446  // explicit conversion operators.
2447  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
2448  ImplicitConversionSequence ICS
2449    = S.TryImplicitConversion(Initializer, cv1T1,
2450                              /*SuppressUserConversions=*/false, AllowExplicit,
2451                              /*ForceRValue=*/false,
2452                              /*FIXME:InOverloadResolution=*/false,
2453                              /*UserCast=*/Kind.isExplicitCast());
2454
2455  if (ICS.isBad()) {
2456    // FIXME: Use the conversion function set stored in ICS to turn
2457    // this into an overloading ambiguity diagnostic. However, we need
2458    // to keep that set as an OverloadCandidateSet rather than as some
2459    // other kind of set.
2460    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2461      Sequence.SetOverloadFailure(
2462                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2463                                  ConvOvlResult);
2464    else
2465      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
2466    return;
2467  }
2468
2469  //        [...] If T1 is reference-related to T2, cv1 must be the
2470  //        same cv-qualification as, or greater cv-qualification
2471  //        than, cv2; otherwise, the program is ill-formed.
2472  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
2473  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
2474  if (RefRelationship == Sema::Ref_Related &&
2475      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
2476    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2477    return;
2478  }
2479
2480  // Perform the actual conversion.
2481  Sequence.AddConversionSequenceStep(ICS, cv1T1);
2482  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2483  return;
2484}
2485
2486/// \brief Attempt character array initialization from a string literal
2487/// (C++ [dcl.init.string], C99 6.7.8).
2488static void TryStringLiteralInitialization(Sema &S,
2489                                           const InitializedEntity &Entity,
2490                                           const InitializationKind &Kind,
2491                                           Expr *Initializer,
2492                                       InitializationSequence &Sequence) {
2493  Sequence.setSequenceKind(InitializationSequence::StringInit);
2494  Sequence.AddStringInitStep(Entity.getType());
2495}
2496
2497/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2498/// enumerates the constructors of the initialized entity and performs overload
2499/// resolution to select the best.
2500static void TryConstructorInitialization(Sema &S,
2501                                         const InitializedEntity &Entity,
2502                                         const InitializationKind &Kind,
2503                                         Expr **Args, unsigned NumArgs,
2504                                         QualType DestType,
2505                                         InitializationSequence &Sequence) {
2506  if (Kind.getKind() == InitializationKind::IK_Copy)
2507    Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
2508  else
2509    Sequence.setSequenceKind(InitializationSequence::ConstructorInitialization);
2510
2511  // Build the candidate set directly in the initialization sequence
2512  // structure, so that it will persist if we fail.
2513  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2514  CandidateSet.clear();
2515
2516  // Determine whether we are allowed to call explicit constructors or
2517  // explicit conversion operators.
2518  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
2519                        Kind.getKind() == InitializationKind::IK_Value ||
2520                        Kind.getKind() == InitializationKind::IK_Default);
2521
2522  // The type we're converting to is a class type. Enumerate its constructors
2523  // to see if one is suitable.
2524  const RecordType *DestRecordType = DestType->getAs<RecordType>();
2525  assert(DestRecordType && "Constructor initialization requires record type");
2526  CXXRecordDecl *DestRecordDecl
2527    = cast<CXXRecordDecl>(DestRecordType->getDecl());
2528
2529  DeclarationName ConstructorName
2530    = S.Context.DeclarationNames.getCXXConstructorName(
2531                     S.Context.getCanonicalType(DestType).getUnqualifiedType());
2532  DeclContext::lookup_iterator Con, ConEnd;
2533  for (llvm::tie(Con, ConEnd) = DestRecordDecl->lookup(ConstructorName);
2534       Con != ConEnd; ++Con) {
2535    // Find the constructor (which may be a template).
2536    CXXConstructorDecl *Constructor = 0;
2537    FunctionTemplateDecl *ConstructorTmpl
2538      = dyn_cast<FunctionTemplateDecl>(*Con);
2539    if (ConstructorTmpl)
2540      Constructor = cast<CXXConstructorDecl>(
2541                                           ConstructorTmpl->getTemplatedDecl());
2542    else
2543      Constructor = cast<CXXConstructorDecl>(*Con);
2544
2545    if (!Constructor->isInvalidDecl() &&
2546        (AllowExplicit || !Constructor->isExplicit())) {
2547      if (ConstructorTmpl)
2548        S.AddTemplateOverloadCandidate(ConstructorTmpl,
2549                                       ConstructorTmpl->getAccess(),
2550                                       /*ExplicitArgs*/ 0,
2551                                       Args, NumArgs, CandidateSet);
2552      else
2553        S.AddOverloadCandidate(Constructor, Constructor->getAccess(),
2554                               Args, NumArgs, CandidateSet);
2555    }
2556  }
2557
2558  SourceLocation DeclLoc = Kind.getLocation();
2559
2560  // Perform overload resolution. If it fails, return the failed result.
2561  OverloadCandidateSet::iterator Best;
2562  if (OverloadingResult Result
2563        = S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2564    Sequence.SetOverloadFailure(
2565                          InitializationSequence::FK_ConstructorOverloadFailed,
2566                                Result);
2567    return;
2568  }
2569
2570  // C++0x [dcl.init]p6:
2571  //   If a program calls for the default initialization of an object
2572  //   of a const-qualified type T, T shall be a class type with a
2573  //   user-provided default constructor.
2574  if (Kind.getKind() == InitializationKind::IK_Default &&
2575      Entity.getType().isConstQualified() &&
2576      cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
2577    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2578    return;
2579  }
2580
2581  // Add the constructor initialization step. Any cv-qualification conversion is
2582  // subsumed by the initialization.
2583  if (Kind.getKind() == InitializationKind::IK_Copy) {
2584    Sequence.AddUserConversionStep(Best->Function, Best->getAccess(), DestType);
2585  } else {
2586    Sequence.AddConstructorInitializationStep(
2587                                      cast<CXXConstructorDecl>(Best->Function),
2588                                      Best->getAccess(),
2589                                      DestType);
2590  }
2591}
2592
2593/// \brief Attempt value initialization (C++ [dcl.init]p7).
2594static void TryValueInitialization(Sema &S,
2595                                   const InitializedEntity &Entity,
2596                                   const InitializationKind &Kind,
2597                                   InitializationSequence &Sequence) {
2598  // C++ [dcl.init]p5:
2599  //
2600  //   To value-initialize an object of type T means:
2601  QualType T = Entity.getType();
2602
2603  //     -- if T is an array type, then each element is value-initialized;
2604  while (const ArrayType *AT = S.Context.getAsArrayType(T))
2605    T = AT->getElementType();
2606
2607  if (const RecordType *RT = T->getAs<RecordType>()) {
2608    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2609      // -- if T is a class type (clause 9) with a user-declared
2610      //    constructor (12.1), then the default constructor for T is
2611      //    called (and the initialization is ill-formed if T has no
2612      //    accessible default constructor);
2613      //
2614      // FIXME: we really want to refer to a single subobject of the array,
2615      // but Entity doesn't have a way to capture that (yet).
2616      if (ClassDecl->hasUserDeclaredConstructor())
2617        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2618
2619      // -- if T is a (possibly cv-qualified) non-union class type
2620      //    without a user-provided constructor, then the object is
2621      //    zero-initialized and, if T’s implicitly-declared default
2622      //    constructor is non-trivial, that constructor is called.
2623      if ((ClassDecl->getTagKind() == TagDecl::TK_class ||
2624           ClassDecl->getTagKind() == TagDecl::TK_struct) &&
2625          !ClassDecl->hasTrivialConstructor()) {
2626        Sequence.AddZeroInitializationStep(Entity.getType());
2627        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2628      }
2629    }
2630  }
2631
2632  Sequence.AddZeroInitializationStep(Entity.getType());
2633  Sequence.setSequenceKind(InitializationSequence::ZeroInitialization);
2634}
2635
2636/// \brief Attempt default initialization (C++ [dcl.init]p6).
2637static void TryDefaultInitialization(Sema &S,
2638                                     const InitializedEntity &Entity,
2639                                     const InitializationKind &Kind,
2640                                     InitializationSequence &Sequence) {
2641  assert(Kind.getKind() == InitializationKind::IK_Default);
2642
2643  // C++ [dcl.init]p6:
2644  //   To default-initialize an object of type T means:
2645  //     - if T is an array type, each element is default-initialized;
2646  QualType DestType = Entity.getType();
2647  while (const ArrayType *Array = S.Context.getAsArrayType(DestType))
2648    DestType = Array->getElementType();
2649
2650  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
2651  //       constructor for T is called (and the initialization is ill-formed if
2652  //       T has no accessible default constructor);
2653  if (DestType->isRecordType()) {
2654    return TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType,
2655                                        Sequence);
2656  }
2657
2658  //     - otherwise, no initialization is performed.
2659  Sequence.setSequenceKind(InitializationSequence::NoInitialization);
2660
2661  //   If a program calls for the default initialization of an object of
2662  //   a const-qualified type T, T shall be a class type with a user-provided
2663  //   default constructor.
2664  if (DestType.isConstQualified())
2665    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2666}
2667
2668/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
2669/// which enumerates all conversion functions and performs overload resolution
2670/// to select the best.
2671static void TryUserDefinedConversion(Sema &S,
2672                                     const InitializedEntity &Entity,
2673                                     const InitializationKind &Kind,
2674                                     Expr *Initializer,
2675                                     InitializationSequence &Sequence) {
2676  Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
2677
2678  QualType DestType = Entity.getType();
2679  assert(!DestType->isReferenceType() && "References are handled elsewhere");
2680  QualType SourceType = Initializer->getType();
2681  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
2682         "Must have a class type to perform a user-defined conversion");
2683
2684  // Build the candidate set directly in the initialization sequence
2685  // structure, so that it will persist if we fail.
2686  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2687  CandidateSet.clear();
2688
2689  // Determine whether we are allowed to call explicit constructors or
2690  // explicit conversion operators.
2691  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2692
2693  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
2694    // The type we're converting to is a class type. Enumerate its constructors
2695    // to see if there is a suitable conversion.
2696    CXXRecordDecl *DestRecordDecl
2697      = cast<CXXRecordDecl>(DestRecordType->getDecl());
2698
2699    DeclarationName ConstructorName
2700      = S.Context.DeclarationNames.getCXXConstructorName(
2701                     S.Context.getCanonicalType(DestType).getUnqualifiedType());
2702    DeclContext::lookup_iterator Con, ConEnd;
2703    for (llvm::tie(Con, ConEnd) = DestRecordDecl->lookup(ConstructorName);
2704         Con != ConEnd; ++Con) {
2705      // Find the constructor (which may be a template).
2706      CXXConstructorDecl *Constructor = 0;
2707      FunctionTemplateDecl *ConstructorTmpl
2708        = dyn_cast<FunctionTemplateDecl>(*Con);
2709      if (ConstructorTmpl)
2710        Constructor = cast<CXXConstructorDecl>(
2711                                           ConstructorTmpl->getTemplatedDecl());
2712      else
2713        Constructor = cast<CXXConstructorDecl>(*Con);
2714
2715      if (!Constructor->isInvalidDecl() &&
2716          Constructor->isConvertingConstructor(AllowExplicit)) {
2717        if (ConstructorTmpl)
2718          S.AddTemplateOverloadCandidate(ConstructorTmpl,
2719                                         ConstructorTmpl->getAccess(),
2720                                         /*ExplicitArgs*/ 0,
2721                                         &Initializer, 1, CandidateSet);
2722        else
2723          S.AddOverloadCandidate(Constructor, Constructor->getAccess(),
2724                                 &Initializer, 1, CandidateSet);
2725      }
2726    }
2727  }
2728
2729  SourceLocation DeclLoc = Initializer->getLocStart();
2730
2731  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
2732    // The type we're converting from is a class type, enumerate its conversion
2733    // functions.
2734
2735    // We can only enumerate the conversion functions for a complete type; if
2736    // the type isn't complete, simply skip this step.
2737    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
2738      CXXRecordDecl *SourceRecordDecl
2739        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
2740
2741      const UnresolvedSetImpl *Conversions
2742        = SourceRecordDecl->getVisibleConversionFunctions();
2743      for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2744           E = Conversions->end();
2745           I != E; ++I) {
2746        NamedDecl *D = *I;
2747        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2748        if (isa<UsingShadowDecl>(D))
2749          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2750
2751        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2752        CXXConversionDecl *Conv;
2753        if (ConvTemplate)
2754          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2755        else
2756          Conv = cast<CXXConversionDecl>(*I);
2757
2758        if (AllowExplicit || !Conv->isExplicit()) {
2759          if (ConvTemplate)
2760            S.AddTemplateConversionCandidate(ConvTemplate, I.getAccess(),
2761                                             ActingDC, Initializer, DestType,
2762                                             CandidateSet);
2763          else
2764            S.AddConversionCandidate(Conv, I.getAccess(), ActingDC,
2765                                     Initializer, DestType, CandidateSet);
2766        }
2767      }
2768    }
2769  }
2770
2771  // Perform overload resolution. If it fails, return the failed result.
2772  OverloadCandidateSet::iterator Best;
2773  if (OverloadingResult Result
2774        = S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2775    Sequence.SetOverloadFailure(
2776                        InitializationSequence::FK_UserConversionOverloadFailed,
2777                                Result);
2778    return;
2779  }
2780
2781  FunctionDecl *Function = Best->Function;
2782
2783  if (isa<CXXConstructorDecl>(Function)) {
2784    // Add the user-defined conversion step. Any cv-qualification conversion is
2785    // subsumed by the initialization.
2786    Sequence.AddUserConversionStep(Function, Best->getAccess(), DestType);
2787    return;
2788  }
2789
2790  // Add the user-defined conversion step that calls the conversion function.
2791  QualType ConvType = Function->getResultType().getNonReferenceType();
2792  Sequence.AddUserConversionStep(Function, Best->getAccess(), ConvType);
2793
2794  // If the conversion following the call to the conversion function is
2795  // interesting, add it as a separate step.
2796  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
2797      Best->FinalConversion.Third) {
2798    ImplicitConversionSequence ICS;
2799    ICS.setStandard();
2800    ICS.Standard = Best->FinalConversion;
2801    Sequence.AddConversionSequenceStep(ICS, DestType);
2802  }
2803}
2804
2805/// \brief Attempt an implicit conversion (C++ [conv]) converting from one
2806/// non-class type to another.
2807static void TryImplicitConversion(Sema &S,
2808                                  const InitializedEntity &Entity,
2809                                  const InitializationKind &Kind,
2810                                  Expr *Initializer,
2811                                  InitializationSequence &Sequence) {
2812  ImplicitConversionSequence ICS
2813    = S.TryImplicitConversion(Initializer, Entity.getType(),
2814                              /*SuppressUserConversions=*/true,
2815                              /*AllowExplicit=*/false,
2816                              /*ForceRValue=*/false,
2817                              /*FIXME:InOverloadResolution=*/false,
2818                              /*UserCast=*/Kind.isExplicitCast());
2819
2820  if (ICS.isBad()) {
2821    Sequence.SetFailed(InitializationSequence::FK_ConversionFailed);
2822    return;
2823  }
2824
2825  Sequence.AddConversionSequenceStep(ICS, Entity.getType());
2826}
2827
2828InitializationSequence::InitializationSequence(Sema &S,
2829                                               const InitializedEntity &Entity,
2830                                               const InitializationKind &Kind,
2831                                               Expr **Args,
2832                                               unsigned NumArgs) {
2833  ASTContext &Context = S.Context;
2834
2835  // C++0x [dcl.init]p16:
2836  //   The semantics of initializers are as follows. The destination type is
2837  //   the type of the object or reference being initialized and the source
2838  //   type is the type of the initializer expression. The source type is not
2839  //   defined when the initializer is a braced-init-list or when it is a
2840  //   parenthesized list of expressions.
2841  QualType DestType = Entity.getType();
2842
2843  if (DestType->isDependentType() ||
2844      Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
2845    SequenceKind = DependentSequence;
2846    return;
2847  }
2848
2849  QualType SourceType;
2850  Expr *Initializer = 0;
2851  if (NumArgs == 1) {
2852    Initializer = Args[0];
2853    if (!isa<InitListExpr>(Initializer))
2854      SourceType = Initializer->getType();
2855  }
2856
2857  //     - If the initializer is a braced-init-list, the object is
2858  //       list-initialized (8.5.4).
2859  if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
2860    TryListInitialization(S, Entity, Kind, InitList, *this);
2861    return;
2862  }
2863
2864  //     - If the destination type is a reference type, see 8.5.3.
2865  if (DestType->isReferenceType()) {
2866    // C++0x [dcl.init.ref]p1:
2867    //   A variable declared to be a T& or T&&, that is, "reference to type T"
2868    //   (8.3.2), shall be initialized by an object, or function, of type T or
2869    //   by an object that can be converted into a T.
2870    // (Therefore, multiple arguments are not permitted.)
2871    if (NumArgs != 1)
2872      SetFailed(FK_TooManyInitsForReference);
2873    else
2874      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
2875    return;
2876  }
2877
2878  //     - If the destination type is an array of characters, an array of
2879  //       char16_t, an array of char32_t, or an array of wchar_t, and the
2880  //       initializer is a string literal, see 8.5.2.
2881  if (Initializer && IsStringInit(Initializer, DestType, Context)) {
2882    TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
2883    return;
2884  }
2885
2886  //     - If the initializer is (), the object is value-initialized.
2887  if (Kind.getKind() == InitializationKind::IK_Value ||
2888      (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
2889    TryValueInitialization(S, Entity, Kind, *this);
2890    return;
2891  }
2892
2893  // Handle default initialization.
2894  if (Kind.getKind() == InitializationKind::IK_Default){
2895    TryDefaultInitialization(S, Entity, Kind, *this);
2896    return;
2897  }
2898
2899  //     - Otherwise, if the destination type is an array, the program is
2900  //       ill-formed.
2901  if (const ArrayType *AT = Context.getAsArrayType(DestType)) {
2902    if (AT->getElementType()->isAnyCharacterType())
2903      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
2904    else
2905      SetFailed(FK_ArrayNeedsInitList);
2906
2907    return;
2908  }
2909
2910  // Handle initialization in C
2911  if (!S.getLangOptions().CPlusPlus) {
2912    setSequenceKind(CAssignment);
2913    AddCAssignmentStep(DestType);
2914    return;
2915  }
2916
2917  //     - If the destination type is a (possibly cv-qualified) class type:
2918  if (DestType->isRecordType()) {
2919    //     - If the initialization is direct-initialization, or if it is
2920    //       copy-initialization where the cv-unqualified version of the
2921    //       source type is the same class as, or a derived class of, the
2922    //       class of the destination, constructors are considered. [...]
2923    if (Kind.getKind() == InitializationKind::IK_Direct ||
2924        (Kind.getKind() == InitializationKind::IK_Copy &&
2925         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
2926          S.IsDerivedFrom(SourceType, DestType))))
2927      TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
2928                                   Entity.getType(), *this);
2929    //     - Otherwise (i.e., for the remaining copy-initialization cases),
2930    //       user-defined conversion sequences that can convert from the source
2931    //       type to the destination type or (when a conversion function is
2932    //       used) to a derived class thereof are enumerated as described in
2933    //       13.3.1.4, and the best one is chosen through overload resolution
2934    //       (13.3).
2935    else
2936      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
2937    return;
2938  }
2939
2940  if (NumArgs > 1) {
2941    SetFailed(FK_TooManyInitsForScalar);
2942    return;
2943  }
2944  assert(NumArgs == 1 && "Zero-argument case handled above");
2945
2946  //    - Otherwise, if the source type is a (possibly cv-qualified) class
2947  //      type, conversion functions are considered.
2948  if (!SourceType.isNull() && SourceType->isRecordType()) {
2949    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
2950    return;
2951  }
2952
2953  //    - Otherwise, the initial value of the object being initialized is the
2954  //      (possibly converted) value of the initializer expression. Standard
2955  //      conversions (Clause 4) will be used, if necessary, to convert the
2956  //      initializer expression to the cv-unqualified version of the
2957  //      destination type; no user-defined conversions are considered.
2958  setSequenceKind(StandardConversion);
2959  TryImplicitConversion(S, Entity, Kind, Initializer, *this);
2960}
2961
2962InitializationSequence::~InitializationSequence() {
2963  for (llvm::SmallVectorImpl<Step>::iterator Step = Steps.begin(),
2964                                          StepEnd = Steps.end();
2965       Step != StepEnd; ++Step)
2966    Step->Destroy();
2967}
2968
2969//===----------------------------------------------------------------------===//
2970// Perform initialization
2971//===----------------------------------------------------------------------===//
2972static Sema::AssignmentAction
2973getAssignmentAction(const InitializedEntity &Entity) {
2974  switch(Entity.getKind()) {
2975  case InitializedEntity::EK_Variable:
2976  case InitializedEntity::EK_New:
2977    return Sema::AA_Initializing;
2978
2979  case InitializedEntity::EK_Parameter:
2980    // FIXME: Can we tell when we're sending vs. passing?
2981    return Sema::AA_Passing;
2982
2983  case InitializedEntity::EK_Result:
2984    return Sema::AA_Returning;
2985
2986  case InitializedEntity::EK_Exception:
2987  case InitializedEntity::EK_Base:
2988    llvm_unreachable("No assignment action for C++-specific initialization");
2989    break;
2990
2991  case InitializedEntity::EK_Temporary:
2992    // FIXME: Can we tell apart casting vs. converting?
2993    return Sema::AA_Casting;
2994
2995  case InitializedEntity::EK_Member:
2996  case InitializedEntity::EK_ArrayElement:
2997  case InitializedEntity::EK_VectorElement:
2998    return Sema::AA_Initializing;
2999  }
3000
3001  return Sema::AA_Converting;
3002}
3003
3004static bool shouldBindAsTemporary(const InitializedEntity &Entity,
3005                                  bool IsCopy) {
3006  switch (Entity.getKind()) {
3007  case InitializedEntity::EK_Result:
3008  case InitializedEntity::EK_Exception:
3009  case InitializedEntity::EK_ArrayElement:
3010  case InitializedEntity::EK_Member:
3011    return !IsCopy;
3012
3013  case InitializedEntity::EK_New:
3014  case InitializedEntity::EK_Variable:
3015  case InitializedEntity::EK_Base:
3016  case InitializedEntity::EK_VectorElement:
3017    return false;
3018
3019  case InitializedEntity::EK_Parameter:
3020  case InitializedEntity::EK_Temporary:
3021    return true;
3022  }
3023
3024  llvm_unreachable("missed an InitializedEntity kind?");
3025}
3026
3027/// \brief If we need to perform an additional copy of the initialized object
3028/// for this kind of entity (e.g., the result of a function or an object being
3029/// thrown), make the copy.
3030static Sema::OwningExprResult CopyIfRequiredForEntity(Sema &S,
3031                                            const InitializedEntity &Entity,
3032                                             const InitializationKind &Kind,
3033                                             Sema::OwningExprResult CurInit) {
3034  Expr *CurInitExpr = (Expr *)CurInit.get();
3035
3036  SourceLocation Loc;
3037
3038  switch (Entity.getKind()) {
3039  case InitializedEntity::EK_Result:
3040    if (Entity.getType()->isReferenceType())
3041      return move(CurInit);
3042    Loc = Entity.getReturnLoc();
3043    break;
3044
3045  case InitializedEntity::EK_Exception:
3046    Loc = Entity.getThrowLoc();
3047    break;
3048
3049  case InitializedEntity::EK_Variable:
3050    if (Entity.getType()->isReferenceType() ||
3051        Kind.getKind() != InitializationKind::IK_Copy)
3052      return move(CurInit);
3053    Loc = Entity.getDecl()->getLocation();
3054    break;
3055
3056  case InitializedEntity::EK_ArrayElement:
3057  case InitializedEntity::EK_Member:
3058    if (Entity.getType()->isReferenceType() ||
3059        Kind.getKind() != InitializationKind::IK_Copy)
3060      return move(CurInit);
3061    Loc = CurInitExpr->getLocStart();
3062    break;
3063
3064  case InitializedEntity::EK_Parameter:
3065    // FIXME: Do we need this initialization for a parameter?
3066    return move(CurInit);
3067
3068  case InitializedEntity::EK_New:
3069  case InitializedEntity::EK_Temporary:
3070  case InitializedEntity::EK_Base:
3071  case InitializedEntity::EK_VectorElement:
3072    // We don't need to copy for any of these initialized entities.
3073    return move(CurInit);
3074  }
3075
3076  CXXRecordDecl *Class = 0;
3077  if (const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>())
3078    Class = cast<CXXRecordDecl>(Record->getDecl());
3079  if (!Class)
3080    return move(CurInit);
3081
3082  // Perform overload resolution using the class's copy constructors.
3083  DeclarationName ConstructorName
3084    = S.Context.DeclarationNames.getCXXConstructorName(
3085                  S.Context.getCanonicalType(S.Context.getTypeDeclType(Class)));
3086  DeclContext::lookup_iterator Con, ConEnd;
3087  OverloadCandidateSet CandidateSet;
3088  for (llvm::tie(Con, ConEnd) = Class->lookup(ConstructorName);
3089       Con != ConEnd; ++Con) {
3090    // Find the constructor (which may be a template).
3091    CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(*Con);
3092    if (!Constructor || Constructor->isInvalidDecl() ||
3093        !Constructor->isCopyConstructor())
3094      continue;
3095
3096    S.AddOverloadCandidate(Constructor, Constructor->getAccess(),
3097                           &CurInitExpr, 1, CandidateSet);
3098  }
3099
3100  OverloadCandidateSet::iterator Best;
3101  switch (S.BestViableFunction(CandidateSet, Loc, Best)) {
3102  case OR_Success:
3103    break;
3104
3105  case OR_No_Viable_Function:
3106    S.Diag(Loc, diag::err_temp_copy_no_viable)
3107      << (int)Entity.getKind() << CurInitExpr->getType()
3108      << CurInitExpr->getSourceRange();
3109    S.PrintOverloadCandidates(CandidateSet, Sema::OCD_AllCandidates,
3110                              &CurInitExpr, 1);
3111    return S.ExprError();
3112
3113  case OR_Ambiguous:
3114    S.Diag(Loc, diag::err_temp_copy_ambiguous)
3115      << (int)Entity.getKind() << CurInitExpr->getType()
3116      << CurInitExpr->getSourceRange();
3117    S.PrintOverloadCandidates(CandidateSet, Sema::OCD_ViableCandidates,
3118                              &CurInitExpr, 1);
3119    return S.ExprError();
3120
3121  case OR_Deleted:
3122    S.Diag(Loc, diag::err_temp_copy_deleted)
3123      << (int)Entity.getKind() << CurInitExpr->getType()
3124      << CurInitExpr->getSourceRange();
3125    S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3126      << Best->Function->isDeleted();
3127    return S.ExprError();
3128  }
3129
3130  CurInit.release();
3131  return S.BuildCXXConstructExpr(Loc, CurInitExpr->getType(),
3132                                 cast<CXXConstructorDecl>(Best->Function),
3133                                 /*Elidable=*/true,
3134                                 Sema::MultiExprArg(S,
3135                                                    (void**)&CurInitExpr, 1));
3136}
3137
3138Action::OwningExprResult
3139InitializationSequence::Perform(Sema &S,
3140                                const InitializedEntity &Entity,
3141                                const InitializationKind &Kind,
3142                                Action::MultiExprArg Args,
3143                                QualType *ResultType) {
3144  if (SequenceKind == FailedSequence) {
3145    unsigned NumArgs = Args.size();
3146    Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
3147    return S.ExprError();
3148  }
3149
3150  if (SequenceKind == DependentSequence) {
3151    // If the declaration is a non-dependent, incomplete array type
3152    // that has an initializer, then its type will be completed once
3153    // the initializer is instantiated.
3154    if (ResultType && !Entity.getType()->isDependentType() &&
3155        Args.size() == 1) {
3156      QualType DeclType = Entity.getType();
3157      if (const IncompleteArrayType *ArrayT
3158                           = S.Context.getAsIncompleteArrayType(DeclType)) {
3159        // FIXME: We don't currently have the ability to accurately
3160        // compute the length of an initializer list without
3161        // performing full type-checking of the initializer list
3162        // (since we have to determine where braces are implicitly
3163        // introduced and such).  So, we fall back to making the array
3164        // type a dependently-sized array type with no specified
3165        // bound.
3166        if (isa<InitListExpr>((Expr *)Args.get()[0])) {
3167          SourceRange Brackets;
3168
3169          // Scavange the location of the brackets from the entity, if we can.
3170          if (DeclaratorDecl *DD = Entity.getDecl()) {
3171            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
3172              TypeLoc TL = TInfo->getTypeLoc();
3173              if (IncompleteArrayTypeLoc *ArrayLoc
3174                                      = dyn_cast<IncompleteArrayTypeLoc>(&TL))
3175              Brackets = ArrayLoc->getBracketsRange();
3176            }
3177          }
3178
3179          *ResultType
3180            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
3181                                                   /*NumElts=*/0,
3182                                                   ArrayT->getSizeModifier(),
3183                                       ArrayT->getIndexTypeCVRQualifiers(),
3184                                                   Brackets);
3185        }
3186
3187      }
3188    }
3189
3190    if (Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast())
3191      return Sema::OwningExprResult(S, Args.release()[0]);
3192
3193    unsigned NumArgs = Args.size();
3194    return S.Owned(new (S.Context) ParenListExpr(S.Context,
3195                                                 SourceLocation(),
3196                                                 (Expr **)Args.release(),
3197                                                 NumArgs,
3198                                                 SourceLocation()));
3199  }
3200
3201  if (SequenceKind == NoInitialization)
3202    return S.Owned((Expr *)0);
3203
3204  QualType DestType = Entity.getType().getNonReferenceType();
3205  // FIXME: Ugly hack around the fact that Entity.getType() is not
3206  // the same as Entity.getDecl()->getType() in cases involving type merging,
3207  //  and we want latter when it makes sense.
3208  if (ResultType)
3209    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
3210                                     Entity.getType();
3211
3212  Sema::OwningExprResult CurInit = S.Owned((Expr *)0);
3213
3214  assert(!Steps.empty() && "Cannot have an empty initialization sequence");
3215
3216  // For initialization steps that start with a single initializer,
3217  // grab the only argument out the Args and place it into the "current"
3218  // initializer.
3219  switch (Steps.front().Kind) {
3220  case SK_ResolveAddressOfOverloadedFunction:
3221  case SK_CastDerivedToBaseRValue:
3222  case SK_CastDerivedToBaseLValue:
3223  case SK_BindReference:
3224  case SK_BindReferenceToTemporary:
3225  case SK_UserConversion:
3226  case SK_QualificationConversionLValue:
3227  case SK_QualificationConversionRValue:
3228  case SK_ConversionSequence:
3229  case SK_ListInitialization:
3230  case SK_CAssignment:
3231  case SK_StringInit:
3232    assert(Args.size() == 1);
3233    CurInit = Sema::OwningExprResult(S, ((Expr **)(Args.get()))[0]->Retain());
3234    if (CurInit.isInvalid())
3235      return S.ExprError();
3236    break;
3237
3238  case SK_ConstructorInitialization:
3239  case SK_ZeroInitialization:
3240    break;
3241  }
3242
3243  // Walk through the computed steps for the initialization sequence,
3244  // performing the specified conversions along the way.
3245  bool ConstructorInitRequiresZeroInit = false;
3246  for (step_iterator Step = step_begin(), StepEnd = step_end();
3247       Step != StepEnd; ++Step) {
3248    if (CurInit.isInvalid())
3249      return S.ExprError();
3250
3251    Expr *CurInitExpr = (Expr *)CurInit.get();
3252    QualType SourceType = CurInitExpr? CurInitExpr->getType() : QualType();
3253
3254    switch (Step->Kind) {
3255    case SK_ResolveAddressOfOverloadedFunction:
3256      // Overload resolution determined which function invoke; update the
3257      // initializer to reflect that choice.
3258      // Access control was done in overload resolution.
3259      CurInit = S.FixOverloadedFunctionReference(move(CurInit),
3260                              cast<FunctionDecl>(Step->Function.getDecl()));
3261      break;
3262
3263    case SK_CastDerivedToBaseRValue:
3264    case SK_CastDerivedToBaseLValue: {
3265      // We have a derived-to-base cast that produces either an rvalue or an
3266      // lvalue. Perform that cast.
3267
3268      // Casts to inaccessible base classes are allowed with C-style casts.
3269      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3270      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
3271                                         CurInitExpr->getLocStart(),
3272                                         CurInitExpr->getSourceRange(),
3273                                         IgnoreBaseAccess))
3274        return S.ExprError();
3275
3276      CurInit = S.Owned(new (S.Context) ImplicitCastExpr(Step->Type,
3277                                                    CastExpr::CK_DerivedToBase,
3278                                                      (Expr*)CurInit.release(),
3279                                     Step->Kind == SK_CastDerivedToBaseLValue));
3280      break;
3281    }
3282
3283    case SK_BindReference:
3284      if (FieldDecl *BitField = CurInitExpr->getBitField()) {
3285        // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
3286        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
3287          << Entity.getType().isVolatileQualified()
3288          << BitField->getDeclName()
3289          << CurInitExpr->getSourceRange();
3290        S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
3291        return S.ExprError();
3292      }
3293
3294      if (CurInitExpr->refersToVectorElement()) {
3295        // References cannot bind to vector elements.
3296        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
3297          << Entity.getType().isVolatileQualified()
3298          << CurInitExpr->getSourceRange();
3299        return S.ExprError();
3300      }
3301
3302      // Reference binding does not have any corresponding ASTs.
3303
3304      // Check exception specifications
3305      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3306        return S.ExprError();
3307
3308      break;
3309
3310    case SK_BindReferenceToTemporary:
3311      // Reference binding does not have any corresponding ASTs.
3312
3313      // Check exception specifications
3314      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3315        return S.ExprError();
3316
3317      break;
3318
3319    case SK_UserConversion: {
3320      // We have a user-defined conversion that invokes either a constructor
3321      // or a conversion function.
3322      CastExpr::CastKind CastKind = CastExpr::CK_Unknown;
3323      bool IsCopy = false;
3324      FunctionDecl *Fn = cast<FunctionDecl>(Step->Function.getDecl());
3325      AccessSpecifier FnAccess = Step->Function.getAccess();
3326      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
3327        // Build a call to the selected constructor.
3328        ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3329        SourceLocation Loc = CurInitExpr->getLocStart();
3330        CurInit.release(); // Ownership transferred into MultiExprArg, below.
3331
3332        // Determine the arguments required to actually perform the constructor
3333        // call.
3334        if (S.CompleteConstructorCall(Constructor,
3335                                      Sema::MultiExprArg(S,
3336                                                         (void **)&CurInitExpr,
3337                                                         1),
3338                                      Loc, ConstructorArgs))
3339          return S.ExprError();
3340
3341        // Build the an expression that constructs a temporary.
3342        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
3343                                          move_arg(ConstructorArgs));
3344        if (CurInit.isInvalid())
3345          return S.ExprError();
3346
3347        S.CheckConstructorAccess(Kind.getLocation(), Constructor, FnAccess);
3348
3349        CastKind = CastExpr::CK_ConstructorConversion;
3350        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
3351        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
3352            S.IsDerivedFrom(SourceType, Class))
3353          IsCopy = true;
3354      } else {
3355        // Build a call to the conversion function.
3356        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
3357
3358        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInitExpr,
3359                                    Conversion, FnAccess);
3360
3361        // FIXME: Should we move this initialization into a separate
3362        // derived-to-base conversion? I believe the answer is "no", because
3363        // we don't want to turn off access control here for c-style casts.
3364        if (S.PerformObjectArgumentInitialization(CurInitExpr, Conversion))
3365          return S.ExprError();
3366
3367        // Do a little dance to make sure that CurInit has the proper
3368        // pointer.
3369        CurInit.release();
3370
3371        // Build the actual call to the conversion function.
3372        CurInit = S.Owned(S.BuildCXXMemberCallExpr(CurInitExpr, Conversion));
3373        if (CurInit.isInvalid() || !CurInit.get())
3374          return S.ExprError();
3375
3376        CastKind = CastExpr::CK_UserDefinedConversion;
3377      }
3378
3379      if (shouldBindAsTemporary(Entity, IsCopy))
3380        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3381
3382      CurInitExpr = CurInit.takeAs<Expr>();
3383      CurInit = S.Owned(new (S.Context) ImplicitCastExpr(CurInitExpr->getType(),
3384                                                         CastKind,
3385                                                         CurInitExpr,
3386                                                         false));
3387
3388      if (!IsCopy)
3389        CurInit = CopyIfRequiredForEntity(S, Entity, Kind, move(CurInit));
3390      break;
3391    }
3392
3393    case SK_QualificationConversionLValue:
3394    case SK_QualificationConversionRValue:
3395      // Perform a qualification conversion; these can never go wrong.
3396      S.ImpCastExprToType(CurInitExpr, Step->Type,
3397                          CastExpr::CK_NoOp,
3398                          Step->Kind == SK_QualificationConversionLValue);
3399      CurInit.release();
3400      CurInit = S.Owned(CurInitExpr);
3401      break;
3402
3403    case SK_ConversionSequence:
3404        if (S.PerformImplicitConversion(CurInitExpr, Step->Type, Sema::AA_Converting,
3405                                      false, false, *Step->ICS))
3406        return S.ExprError();
3407
3408      CurInit.release();
3409      CurInit = S.Owned(CurInitExpr);
3410      break;
3411
3412    case SK_ListInitialization: {
3413      InitListExpr *InitList = cast<InitListExpr>(CurInitExpr);
3414      QualType Ty = Step->Type;
3415      if (S.CheckInitList(Entity, InitList, ResultType? *ResultType : Ty))
3416        return S.ExprError();
3417
3418      CurInit.release();
3419      CurInit = S.Owned(InitList);
3420      break;
3421    }
3422
3423    case SK_ConstructorInitialization: {
3424      CXXConstructorDecl *Constructor
3425        = cast<CXXConstructorDecl>(Step->Function.getDecl());
3426
3427      // Build a call to the selected constructor.
3428      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3429      SourceLocation Loc = Kind.getLocation();
3430
3431      // Determine the arguments required to actually perform the constructor
3432      // call.
3433      if (S.CompleteConstructorCall(Constructor, move(Args),
3434                                    Loc, ConstructorArgs))
3435        return S.ExprError();
3436
3437      // Build the an expression that constructs a temporary.
3438      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3439                                        Constructor,
3440                                        move_arg(ConstructorArgs),
3441                                        ConstructorInitRequiresZeroInit,
3442                               Entity.getKind() == InitializedEntity::EK_Base);
3443      if (CurInit.isInvalid())
3444        return S.ExprError();
3445
3446      // Only check access if all of that succeeded.
3447      S.CheckConstructorAccess(Loc, Constructor, Step->Function.getAccess());
3448
3449      bool Elidable
3450        = cast<CXXConstructExpr>((Expr *)CurInit.get())->isElidable();
3451      if (shouldBindAsTemporary(Entity, Elidable))
3452        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3453
3454      if (!Elidable)
3455        CurInit = CopyIfRequiredForEntity(S, Entity, Kind, move(CurInit));
3456      break;
3457    }
3458
3459    case SK_ZeroInitialization: {
3460      step_iterator NextStep = Step;
3461      ++NextStep;
3462      if (NextStep != StepEnd &&
3463          NextStep->Kind == SK_ConstructorInitialization) {
3464        // The need for zero-initialization is recorded directly into
3465        // the call to the object's constructor within the next step.
3466        ConstructorInitRequiresZeroInit = true;
3467      } else if (Kind.getKind() == InitializationKind::IK_Value &&
3468                 S.getLangOptions().CPlusPlus &&
3469                 !Kind.isImplicitValueInit()) {
3470        CurInit = S.Owned(new (S.Context) CXXZeroInitValueExpr(Step->Type,
3471                                                   Kind.getRange().getBegin(),
3472                                                    Kind.getRange().getEnd()));
3473      } else {
3474        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
3475      }
3476      break;
3477    }
3478
3479    case SK_CAssignment: {
3480      QualType SourceType = CurInitExpr->getType();
3481      Sema::AssignConvertType ConvTy =
3482        S.CheckSingleAssignmentConstraints(Step->Type, CurInitExpr);
3483
3484      // If this is a call, allow conversion to a transparent union.
3485      if (ConvTy != Sema::Compatible &&
3486          Entity.getKind() == InitializedEntity::EK_Parameter &&
3487          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExpr)
3488            == Sema::Compatible)
3489        ConvTy = Sema::Compatible;
3490
3491      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
3492                                     Step->Type, SourceType,
3493                                     CurInitExpr, getAssignmentAction(Entity)))
3494        return S.ExprError();
3495
3496      CurInit.release();
3497      CurInit = S.Owned(CurInitExpr);
3498      break;
3499    }
3500
3501    case SK_StringInit: {
3502      QualType Ty = Step->Type;
3503      CheckStringInit(CurInitExpr, ResultType ? *ResultType : Ty, S);
3504      break;
3505    }
3506    }
3507  }
3508
3509  return move(CurInit);
3510}
3511
3512//===----------------------------------------------------------------------===//
3513// Diagnose initialization failures
3514//===----------------------------------------------------------------------===//
3515bool InitializationSequence::Diagnose(Sema &S,
3516                                      const InitializedEntity &Entity,
3517                                      const InitializationKind &Kind,
3518                                      Expr **Args, unsigned NumArgs) {
3519  if (SequenceKind != FailedSequence)
3520    return false;
3521
3522  QualType DestType = Entity.getType();
3523  switch (Failure) {
3524  case FK_TooManyInitsForReference:
3525    // FIXME: Customize for the initialized entity?
3526    if (NumArgs == 0)
3527      S.Diag(Kind.getLocation(), diag::err_reference_without_init)
3528        << DestType.getNonReferenceType();
3529    else  // FIXME: diagnostic below could be better!
3530      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
3531        << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
3532    break;
3533
3534  case FK_ArrayNeedsInitList:
3535  case FK_ArrayNeedsInitListOrStringLiteral:
3536    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
3537      << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
3538    break;
3539
3540  case FK_AddressOfOverloadFailed:
3541    S.ResolveAddressOfOverloadedFunction(Args[0],
3542                                         DestType.getNonReferenceType(),
3543                                         true);
3544    break;
3545
3546  case FK_ReferenceInitOverloadFailed:
3547  case FK_UserConversionOverloadFailed:
3548    switch (FailedOverloadResult) {
3549    case OR_Ambiguous:
3550      if (Failure == FK_UserConversionOverloadFailed)
3551        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
3552          << Args[0]->getType() << DestType
3553          << Args[0]->getSourceRange();
3554      else
3555        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
3556          << DestType << Args[0]->getType()
3557          << Args[0]->getSourceRange();
3558
3559      S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_ViableCandidates,
3560                                Args, NumArgs);
3561      break;
3562
3563    case OR_No_Viable_Function:
3564      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
3565        << Args[0]->getType() << DestType.getNonReferenceType()
3566        << Args[0]->getSourceRange();
3567      S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_AllCandidates,
3568                                Args, NumArgs);
3569      break;
3570
3571    case OR_Deleted: {
3572      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
3573        << Args[0]->getType() << DestType.getNonReferenceType()
3574        << Args[0]->getSourceRange();
3575      OverloadCandidateSet::iterator Best;
3576      OverloadingResult Ovl = S.BestViableFunction(FailedCandidateSet,
3577                                                   Kind.getLocation(),
3578                                                   Best);
3579      if (Ovl == OR_Deleted) {
3580        S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3581          << Best->Function->isDeleted();
3582      } else {
3583        llvm_unreachable("Inconsistent overload resolution?");
3584      }
3585      break;
3586    }
3587
3588    case OR_Success:
3589      llvm_unreachable("Conversion did not fail!");
3590      break;
3591    }
3592    break;
3593
3594  case FK_NonConstLValueReferenceBindingToTemporary:
3595  case FK_NonConstLValueReferenceBindingToUnrelated:
3596    S.Diag(Kind.getLocation(),
3597           Failure == FK_NonConstLValueReferenceBindingToTemporary
3598             ? diag::err_lvalue_reference_bind_to_temporary
3599             : diag::err_lvalue_reference_bind_to_unrelated)
3600      << DestType.getNonReferenceType().isVolatileQualified()
3601      << DestType.getNonReferenceType()
3602      << Args[0]->getType()
3603      << Args[0]->getSourceRange();
3604    break;
3605
3606  case FK_RValueReferenceBindingToLValue:
3607    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
3608      << Args[0]->getSourceRange();
3609    break;
3610
3611  case FK_ReferenceInitDropsQualifiers:
3612    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
3613      << DestType.getNonReferenceType()
3614      << Args[0]->getType()
3615      << Args[0]->getSourceRange();
3616    break;
3617
3618  case FK_ReferenceInitFailed:
3619    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
3620      << DestType.getNonReferenceType()
3621      << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
3622      << Args[0]->getType()
3623      << Args[0]->getSourceRange();
3624    break;
3625
3626  case FK_ConversionFailed:
3627    S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
3628      << (int)Entity.getKind()
3629      << DestType
3630      << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
3631      << Args[0]->getType()
3632      << Args[0]->getSourceRange();
3633    break;
3634
3635  case FK_TooManyInitsForScalar: {
3636    SourceRange R;
3637
3638    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
3639      R = SourceRange(InitList->getInit(1)->getLocStart(),
3640                      InitList->getLocEnd());
3641    else
3642      R = SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
3643
3644    S.Diag(Kind.getLocation(), diag::err_excess_initializers)
3645      << /*scalar=*/2 << R;
3646    break;
3647  }
3648
3649  case FK_ReferenceBindingToInitList:
3650    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
3651      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
3652    break;
3653
3654  case FK_InitListBadDestinationType:
3655    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
3656      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
3657    break;
3658
3659  case FK_ConstructorOverloadFailed: {
3660    SourceRange ArgsRange;
3661    if (NumArgs)
3662      ArgsRange = SourceRange(Args[0]->getLocStart(),
3663                              Args[NumArgs - 1]->getLocEnd());
3664
3665    // FIXME: Using "DestType" for the entity we're printing is probably
3666    // bad.
3667    switch (FailedOverloadResult) {
3668      case OR_Ambiguous:
3669        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
3670          << DestType << ArgsRange;
3671        S.PrintOverloadCandidates(FailedCandidateSet,
3672                                  Sema::OCD_ViableCandidates, Args, NumArgs);
3673        break;
3674
3675      case OR_No_Viable_Function:
3676        if (Kind.getKind() == InitializationKind::IK_Default &&
3677            (Entity.getKind() == InitializedEntity::EK_Base ||
3678             Entity.getKind() == InitializedEntity::EK_Member) &&
3679            isa<CXXConstructorDecl>(S.CurContext)) {
3680          // This is implicit default initialization of a member or
3681          // base within a constructor. If no viable function was
3682          // found, notify the user that she needs to explicitly
3683          // initialize this base/member.
3684          CXXConstructorDecl *Constructor
3685            = cast<CXXConstructorDecl>(S.CurContext);
3686          if (Entity.getKind() == InitializedEntity::EK_Base) {
3687            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
3688              << Constructor->isImplicit()
3689              << S.Context.getTypeDeclType(Constructor->getParent())
3690              << /*base=*/0
3691              << Entity.getType();
3692
3693            RecordDecl *BaseDecl
3694              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
3695                                                                  ->getDecl();
3696            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
3697              << S.Context.getTagDeclType(BaseDecl);
3698          } else {
3699            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
3700              << Constructor->isImplicit()
3701              << S.Context.getTypeDeclType(Constructor->getParent())
3702              << /*member=*/1
3703              << Entity.getName();
3704            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
3705
3706            if (const RecordType *Record
3707                                 = Entity.getType()->getAs<RecordType>())
3708              S.Diag(Record->getDecl()->getLocation(),
3709                     diag::note_previous_decl)
3710                << S.Context.getTagDeclType(Record->getDecl());
3711          }
3712          break;
3713        }
3714
3715        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
3716          << DestType << ArgsRange;
3717        S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_AllCandidates,
3718                                  Args, NumArgs);
3719        break;
3720
3721      case OR_Deleted: {
3722        S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
3723          << true << DestType << ArgsRange;
3724        OverloadCandidateSet::iterator Best;
3725        OverloadingResult Ovl = S.BestViableFunction(FailedCandidateSet,
3726                                                     Kind.getLocation(),
3727                                                     Best);
3728        if (Ovl == OR_Deleted) {
3729          S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3730            << Best->Function->isDeleted();
3731        } else {
3732          llvm_unreachable("Inconsistent overload resolution?");
3733        }
3734        break;
3735      }
3736
3737      case OR_Success:
3738        llvm_unreachable("Conversion did not fail!");
3739        break;
3740    }
3741    break;
3742  }
3743
3744  case FK_DefaultInitOfConst:
3745    if (Entity.getKind() == InitializedEntity::EK_Member &&
3746        isa<CXXConstructorDecl>(S.CurContext)) {
3747      // This is implicit default-initialization of a const member in
3748      // a constructor. Complain that it needs to be explicitly
3749      // initialized.
3750      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
3751      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
3752        << Constructor->isImplicit()
3753        << S.Context.getTypeDeclType(Constructor->getParent())
3754        << /*const=*/1
3755        << Entity.getName();
3756      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
3757        << Entity.getName();
3758    } else {
3759      S.Diag(Kind.getLocation(), diag::err_default_init_const)
3760        << DestType << (bool)DestType->getAs<RecordType>();
3761    }
3762    break;
3763  }
3764
3765  return true;
3766}
3767
3768void InitializationSequence::dump(llvm::raw_ostream &OS) const {
3769  switch (SequenceKind) {
3770  case FailedSequence: {
3771    OS << "Failed sequence: ";
3772    switch (Failure) {
3773    case FK_TooManyInitsForReference:
3774      OS << "too many initializers for reference";
3775      break;
3776
3777    case FK_ArrayNeedsInitList:
3778      OS << "array requires initializer list";
3779      break;
3780
3781    case FK_ArrayNeedsInitListOrStringLiteral:
3782      OS << "array requires initializer list or string literal";
3783      break;
3784
3785    case FK_AddressOfOverloadFailed:
3786      OS << "address of overloaded function failed";
3787      break;
3788
3789    case FK_ReferenceInitOverloadFailed:
3790      OS << "overload resolution for reference initialization failed";
3791      break;
3792
3793    case FK_NonConstLValueReferenceBindingToTemporary:
3794      OS << "non-const lvalue reference bound to temporary";
3795      break;
3796
3797    case FK_NonConstLValueReferenceBindingToUnrelated:
3798      OS << "non-const lvalue reference bound to unrelated type";
3799      break;
3800
3801    case FK_RValueReferenceBindingToLValue:
3802      OS << "rvalue reference bound to an lvalue";
3803      break;
3804
3805    case FK_ReferenceInitDropsQualifiers:
3806      OS << "reference initialization drops qualifiers";
3807      break;
3808
3809    case FK_ReferenceInitFailed:
3810      OS << "reference initialization failed";
3811      break;
3812
3813    case FK_ConversionFailed:
3814      OS << "conversion failed";
3815      break;
3816
3817    case FK_TooManyInitsForScalar:
3818      OS << "too many initializers for scalar";
3819      break;
3820
3821    case FK_ReferenceBindingToInitList:
3822      OS << "referencing binding to initializer list";
3823      break;
3824
3825    case FK_InitListBadDestinationType:
3826      OS << "initializer list for non-aggregate, non-scalar type";
3827      break;
3828
3829    case FK_UserConversionOverloadFailed:
3830      OS << "overloading failed for user-defined conversion";
3831      break;
3832
3833    case FK_ConstructorOverloadFailed:
3834      OS << "constructor overloading failed";
3835      break;
3836
3837    case FK_DefaultInitOfConst:
3838      OS << "default initialization of a const variable";
3839      break;
3840    }
3841    OS << '\n';
3842    return;
3843  }
3844
3845  case DependentSequence:
3846    OS << "Dependent sequence: ";
3847    return;
3848
3849  case UserDefinedConversion:
3850    OS << "User-defined conversion sequence: ";
3851    break;
3852
3853  case ConstructorInitialization:
3854    OS << "Constructor initialization sequence: ";
3855    break;
3856
3857  case ReferenceBinding:
3858    OS << "Reference binding: ";
3859    break;
3860
3861  case ListInitialization:
3862    OS << "List initialization: ";
3863    break;
3864
3865  case ZeroInitialization:
3866    OS << "Zero initialization\n";
3867    return;
3868
3869  case NoInitialization:
3870    OS << "No initialization\n";
3871    return;
3872
3873  case StandardConversion:
3874    OS << "Standard conversion: ";
3875    break;
3876
3877  case CAssignment:
3878    OS << "C assignment: ";
3879    break;
3880
3881  case StringInit:
3882    OS << "String initialization: ";
3883    break;
3884  }
3885
3886  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
3887    if (S != step_begin()) {
3888      OS << " -> ";
3889    }
3890
3891    switch (S->Kind) {
3892    case SK_ResolveAddressOfOverloadedFunction:
3893      OS << "resolve address of overloaded function";
3894      break;
3895
3896    case SK_CastDerivedToBaseRValue:
3897      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
3898      break;
3899
3900    case SK_CastDerivedToBaseLValue:
3901      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
3902      break;
3903
3904    case SK_BindReference:
3905      OS << "bind reference to lvalue";
3906      break;
3907
3908    case SK_BindReferenceToTemporary:
3909      OS << "bind reference to a temporary";
3910      break;
3911
3912    case SK_UserConversion:
3913      OS << "user-defined conversion via " << S->Function->getNameAsString();
3914      break;
3915
3916    case SK_QualificationConversionRValue:
3917      OS << "qualification conversion (rvalue)";
3918
3919    case SK_QualificationConversionLValue:
3920      OS << "qualification conversion (lvalue)";
3921      break;
3922
3923    case SK_ConversionSequence:
3924      OS << "implicit conversion sequence (";
3925      S->ICS->DebugPrint(); // FIXME: use OS
3926      OS << ")";
3927      break;
3928
3929    case SK_ListInitialization:
3930      OS << "list initialization";
3931      break;
3932
3933    case SK_ConstructorInitialization:
3934      OS << "constructor initialization";
3935      break;
3936
3937    case SK_ZeroInitialization:
3938      OS << "zero initialization";
3939      break;
3940
3941    case SK_CAssignment:
3942      OS << "C assignment";
3943      break;
3944
3945    case SK_StringInit:
3946      OS << "string initialization";
3947      break;
3948    }
3949  }
3950}
3951
3952void InitializationSequence::dump() const {
3953  dump(llvm::errs());
3954}
3955
3956//===----------------------------------------------------------------------===//
3957// Initialization helper functions
3958//===----------------------------------------------------------------------===//
3959Sema::OwningExprResult
3960Sema::PerformCopyInitialization(const InitializedEntity &Entity,
3961                                SourceLocation EqualLoc,
3962                                OwningExprResult Init) {
3963  if (Init.isInvalid())
3964    return ExprError();
3965
3966  Expr *InitE = (Expr *)Init.get();
3967  assert(InitE && "No initialization expression?");
3968
3969  if (EqualLoc.isInvalid())
3970    EqualLoc = InitE->getLocStart();
3971
3972  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
3973                                                           EqualLoc);
3974  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
3975  Init.release();
3976  return Seq.Perform(*this, Entity, Kind,
3977                     MultiExprArg(*this, (void**)&InitE, 1));
3978}
3979