SemaInit.cpp revision b2855ad68d93824faf47c09bbef90ba74157f0f4
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/Sema/Designator.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/SemaInternal.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/TypeLoc.h"
26#include "llvm/Support/ErrorHandling.h"
27#include <map>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Sema Initialization Checking
32//===----------------------------------------------------------------------===//
33
34static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
35  const ArrayType *AT = Context.getAsArrayType(DeclType);
36  if (!AT) return 0;
37
38  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
39    return 0;
40
41  // See if this is a string literal or @encode.
42  Init = Init->IgnoreParens();
43
44  // Handle @encode, which is a narrow string.
45  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
46    return Init;
47
48  // Otherwise we can only handle string literals.
49  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
50  if (SL == 0) return 0;
51
52  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
53  // char array can be initialized with a narrow string.
54  // Only allow char x[] = "foo";  not char x[] = L"foo";
55  if (!SL->isWide())
56    return ElemTy->isCharType() ? Init : 0;
57
58  // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
59  // correction from DR343): "An array with element type compatible with a
60  // qualified or unqualified version of wchar_t may be initialized by a wide
61  // string literal, optionally enclosed in braces."
62  if (Context.typesAreCompatible(Context.getWCharType(),
63                                 ElemTy.getUnqualifiedType()))
64    return Init;
65
66  return 0;
67}
68
69static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
70  // Get the length of the string as parsed.
71  uint64_t StrLength =
72    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
73
74
75  const ArrayType *AT = S.Context.getAsArrayType(DeclT);
76  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
77    // C99 6.7.8p14. We have an array of character type with unknown size
78    // being initialized to a string literal.
79    llvm::APSInt ConstVal(32);
80    ConstVal = StrLength;
81    // Return a new array type (C99 6.7.8p22).
82    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
83                                           ConstVal,
84                                           ArrayType::Normal, 0);
85    return;
86  }
87
88  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
89
90  // C99 6.7.8p14. We have an array of character type with known size.  However,
91  // the size may be smaller or larger than the string we are initializing.
92  // FIXME: Avoid truncation for 64-bit length strings.
93  if (StrLength-1 > CAT->getSize().getZExtValue())
94    S.Diag(Str->getSourceRange().getBegin(),
95           diag::warn_initializer_string_for_char_array_too_long)
96      << Str->getSourceRange();
97
98  // Set the type to the actual size that we are initializing.  If we have
99  // something like:
100  //   char x[1] = "foo";
101  // then this will set the string literal's type to char[1].
102  Str->setType(DeclT);
103}
104
105//===----------------------------------------------------------------------===//
106// Semantic checking for initializer lists.
107//===----------------------------------------------------------------------===//
108
109/// @brief Semantic checking for initializer lists.
110///
111/// The InitListChecker class contains a set of routines that each
112/// handle the initialization of a certain kind of entity, e.g.,
113/// arrays, vectors, struct/union types, scalars, etc. The
114/// InitListChecker itself performs a recursive walk of the subobject
115/// structure of the type to be initialized, while stepping through
116/// the initializer list one element at a time. The IList and Index
117/// parameters to each of the Check* routines contain the active
118/// (syntactic) initializer list and the index into that initializer
119/// list that represents the current initializer. Each routine is
120/// responsible for moving that Index forward as it consumes elements.
121///
122/// Each Check* routine also has a StructuredList/StructuredIndex
123/// arguments, which contains the current the "structured" (semantic)
124/// initializer list and the index into that initializer list where we
125/// are copying initializers as we map them over to the semantic
126/// list. Once we have completed our recursive walk of the subobject
127/// structure, we will have constructed a full semantic initializer
128/// list.
129///
130/// C99 designators cause changes in the initializer list traversal,
131/// because they make the initialization "jump" into a specific
132/// subobject and then continue the initialization from that
133/// point. CheckDesignatedInitializer() recursively steps into the
134/// designated subobject and manages backing out the recursion to
135/// initialize the subobjects after the one designated.
136namespace {
137class InitListChecker {
138  Sema &SemaRef;
139  bool hadError;
140  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
141  InitListExpr *FullyStructuredList;
142
143  void CheckImplicitInitList(const InitializedEntity &Entity,
144                             InitListExpr *ParentIList, QualType T,
145                             unsigned &Index, InitListExpr *StructuredList,
146                             unsigned &StructuredIndex,
147                             bool TopLevelObject = false);
148  void CheckExplicitInitList(const InitializedEntity &Entity,
149                             InitListExpr *IList, QualType &T,
150                             unsigned &Index, InitListExpr *StructuredList,
151                             unsigned &StructuredIndex,
152                             bool TopLevelObject = false);
153  void CheckListElementTypes(const InitializedEntity &Entity,
154                             InitListExpr *IList, QualType &DeclType,
155                             bool SubobjectIsDesignatorContext,
156                             unsigned &Index,
157                             InitListExpr *StructuredList,
158                             unsigned &StructuredIndex,
159                             bool TopLevelObject = false);
160  void CheckSubElementType(const InitializedEntity &Entity,
161                           InitListExpr *IList, QualType ElemType,
162                           unsigned &Index,
163                           InitListExpr *StructuredList,
164                           unsigned &StructuredIndex);
165  void CheckScalarType(const InitializedEntity &Entity,
166                       InitListExpr *IList, QualType DeclType,
167                       unsigned &Index,
168                       InitListExpr *StructuredList,
169                       unsigned &StructuredIndex);
170  void CheckReferenceType(const InitializedEntity &Entity,
171                          InitListExpr *IList, QualType DeclType,
172                          unsigned &Index,
173                          InitListExpr *StructuredList,
174                          unsigned &StructuredIndex);
175  void CheckVectorType(const InitializedEntity &Entity,
176                       InitListExpr *IList, QualType DeclType, unsigned &Index,
177                       InitListExpr *StructuredList,
178                       unsigned &StructuredIndex);
179  void CheckStructUnionTypes(const InitializedEntity &Entity,
180                             InitListExpr *IList, QualType DeclType,
181                             RecordDecl::field_iterator Field,
182                             bool SubobjectIsDesignatorContext, unsigned &Index,
183                             InitListExpr *StructuredList,
184                             unsigned &StructuredIndex,
185                             bool TopLevelObject = false);
186  void CheckArrayType(const InitializedEntity &Entity,
187                      InitListExpr *IList, QualType &DeclType,
188                      llvm::APSInt elementIndex,
189                      bool SubobjectIsDesignatorContext, unsigned &Index,
190                      InitListExpr *StructuredList,
191                      unsigned &StructuredIndex);
192  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
193                                  InitListExpr *IList, DesignatedInitExpr *DIE,
194                                  unsigned DesigIdx,
195                                  QualType &CurrentObjectType,
196                                  RecordDecl::field_iterator *NextField,
197                                  llvm::APSInt *NextElementIndex,
198                                  unsigned &Index,
199                                  InitListExpr *StructuredList,
200                                  unsigned &StructuredIndex,
201                                  bool FinishSubobjectInit,
202                                  bool TopLevelObject);
203  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
204                                           QualType CurrentObjectType,
205                                           InitListExpr *StructuredList,
206                                           unsigned StructuredIndex,
207                                           SourceRange InitRange);
208  void UpdateStructuredListElement(InitListExpr *StructuredList,
209                                   unsigned &StructuredIndex,
210                                   Expr *expr);
211  int numArrayElements(QualType DeclType);
212  int numStructUnionElements(QualType DeclType);
213
214  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
215                               const InitializedEntity &ParentEntity,
216                               InitListExpr *ILE, bool &RequiresSecondPass);
217  void FillInValueInitializations(const InitializedEntity &Entity,
218                                  InitListExpr *ILE, bool &RequiresSecondPass);
219public:
220  InitListChecker(Sema &S, const InitializedEntity &Entity,
221                  InitListExpr *IL, QualType &T);
222  bool HadError() { return hadError; }
223
224  // @brief Retrieves the fully-structured initializer list used for
225  // semantic analysis and code generation.
226  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
227};
228} // end anonymous namespace
229
230void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
231                                        const InitializedEntity &ParentEntity,
232                                              InitListExpr *ILE,
233                                              bool &RequiresSecondPass) {
234  SourceLocation Loc = ILE->getSourceRange().getBegin();
235  unsigned NumInits = ILE->getNumInits();
236  InitializedEntity MemberEntity
237    = InitializedEntity::InitializeMember(Field, &ParentEntity);
238  if (Init >= NumInits || !ILE->getInit(Init)) {
239    // FIXME: We probably don't need to handle references
240    // specially here, since value-initialization of references is
241    // handled in InitializationSequence.
242    if (Field->getType()->isReferenceType()) {
243      // C++ [dcl.init.aggr]p9:
244      //   If an incomplete or empty initializer-list leaves a
245      //   member of reference type uninitialized, the program is
246      //   ill-formed.
247      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
248        << Field->getType()
249        << ILE->getSyntacticForm()->getSourceRange();
250      SemaRef.Diag(Field->getLocation(),
251                   diag::note_uninit_reference_member);
252      hadError = true;
253      return;
254    }
255
256    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
257                                                              true);
258    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
259    if (!InitSeq) {
260      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
261      hadError = true;
262      return;
263    }
264
265    ExprResult MemberInit
266      = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
267    if (MemberInit.isInvalid()) {
268      hadError = true;
269      return;
270    }
271
272    if (hadError) {
273      // Do nothing
274    } else if (Init < NumInits) {
275      ILE->setInit(Init, MemberInit.takeAs<Expr>());
276    } else if (InitSeq.getKind()
277                 == InitializationSequence::ConstructorInitialization) {
278      // Value-initialization requires a constructor call, so
279      // extend the initializer list to include the constructor
280      // call and make a note that we'll need to take another pass
281      // through the initializer list.
282      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
283      RequiresSecondPass = true;
284    }
285  } else if (InitListExpr *InnerILE
286               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
287    FillInValueInitializations(MemberEntity, InnerILE,
288                               RequiresSecondPass);
289}
290
291/// Recursively replaces NULL values within the given initializer list
292/// with expressions that perform value-initialization of the
293/// appropriate type.
294void
295InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
296                                            InitListExpr *ILE,
297                                            bool &RequiresSecondPass) {
298  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
299         "Should not have void type");
300  SourceLocation Loc = ILE->getSourceRange().getBegin();
301  if (ILE->getSyntacticForm())
302    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
303
304  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
305    if (RType->getDecl()->isUnion() &&
306        ILE->getInitializedFieldInUnion())
307      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
308                              Entity, ILE, RequiresSecondPass);
309    else {
310      unsigned Init = 0;
311      for (RecordDecl::field_iterator
312             Field = RType->getDecl()->field_begin(),
313             FieldEnd = RType->getDecl()->field_end();
314           Field != FieldEnd; ++Field) {
315        if (Field->isUnnamedBitfield())
316          continue;
317
318        if (hadError)
319          return;
320
321        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
322        if (hadError)
323          return;
324
325        ++Init;
326
327        // Only look at the first initialization of a union.
328        if (RType->getDecl()->isUnion())
329          break;
330      }
331    }
332
333    return;
334  }
335
336  QualType ElementType;
337
338  InitializedEntity ElementEntity = Entity;
339  unsigned NumInits = ILE->getNumInits();
340  unsigned NumElements = NumInits;
341  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
342    ElementType = AType->getElementType();
343    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
344      NumElements = CAType->getSize().getZExtValue();
345    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
346                                                         0, Entity);
347  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
348    ElementType = VType->getElementType();
349    NumElements = VType->getNumElements();
350    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
351                                                         0, Entity);
352  } else
353    ElementType = ILE->getType();
354
355
356  for (unsigned Init = 0; Init != NumElements; ++Init) {
357    if (hadError)
358      return;
359
360    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
361        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
362      ElementEntity.setElementIndex(Init);
363
364    if (Init >= NumInits || !ILE->getInit(Init)) {
365      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
366                                                                true);
367      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
368      if (!InitSeq) {
369        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
370        hadError = true;
371        return;
372      }
373
374      ExprResult ElementInit
375        = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
376      if (ElementInit.isInvalid()) {
377        hadError = true;
378        return;
379      }
380
381      if (hadError) {
382        // Do nothing
383      } else if (Init < NumInits) {
384        ILE->setInit(Init, ElementInit.takeAs<Expr>());
385      } else if (InitSeq.getKind()
386                   == InitializationSequence::ConstructorInitialization) {
387        // Value-initialization requires a constructor call, so
388        // extend the initializer list to include the constructor
389        // call and make a note that we'll need to take another pass
390        // through the initializer list.
391        ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
392        RequiresSecondPass = true;
393      }
394    } else if (InitListExpr *InnerILE
395                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
396      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
397  }
398}
399
400
401InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
402                                 InitListExpr *IL, QualType &T)
403  : SemaRef(S) {
404  hadError = false;
405
406  unsigned newIndex = 0;
407  unsigned newStructuredIndex = 0;
408  FullyStructuredList
409    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
410  CheckExplicitInitList(Entity, IL, T, newIndex,
411                        FullyStructuredList, newStructuredIndex,
412                        /*TopLevelObject=*/true);
413
414  if (!hadError) {
415    bool RequiresSecondPass = false;
416    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
417    if (RequiresSecondPass && !hadError)
418      FillInValueInitializations(Entity, FullyStructuredList,
419                                 RequiresSecondPass);
420  }
421}
422
423int InitListChecker::numArrayElements(QualType DeclType) {
424  // FIXME: use a proper constant
425  int maxElements = 0x7FFFFFFF;
426  if (const ConstantArrayType *CAT =
427        SemaRef.Context.getAsConstantArrayType(DeclType)) {
428    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
429  }
430  return maxElements;
431}
432
433int InitListChecker::numStructUnionElements(QualType DeclType) {
434  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
435  int InitializableMembers = 0;
436  for (RecordDecl::field_iterator
437         Field = structDecl->field_begin(),
438         FieldEnd = structDecl->field_end();
439       Field != FieldEnd; ++Field) {
440    if ((*Field)->getIdentifier() || !(*Field)->isBitField())
441      ++InitializableMembers;
442  }
443  if (structDecl->isUnion())
444    return std::min(InitializableMembers, 1);
445  return InitializableMembers - structDecl->hasFlexibleArrayMember();
446}
447
448void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
449                                            InitListExpr *ParentIList,
450                                            QualType T, unsigned &Index,
451                                            InitListExpr *StructuredList,
452                                            unsigned &StructuredIndex,
453                                            bool TopLevelObject) {
454  int maxElements = 0;
455
456  if (T->isArrayType())
457    maxElements = numArrayElements(T);
458  else if (T->isRecordType())
459    maxElements = numStructUnionElements(T);
460  else if (T->isVectorType())
461    maxElements = T->getAs<VectorType>()->getNumElements();
462  else
463    assert(0 && "CheckImplicitInitList(): Illegal type");
464
465  if (maxElements == 0) {
466    SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
467                  diag::err_implicit_empty_initializer);
468    ++Index;
469    hadError = true;
470    return;
471  }
472
473  // Build a structured initializer list corresponding to this subobject.
474  InitListExpr *StructuredSubobjectInitList
475    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
476                                 StructuredIndex,
477          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
478                      ParentIList->getSourceRange().getEnd()));
479  unsigned StructuredSubobjectInitIndex = 0;
480
481  // Check the element types and build the structural subobject.
482  unsigned StartIndex = Index;
483  CheckListElementTypes(Entity, ParentIList, T,
484                        /*SubobjectIsDesignatorContext=*/false, Index,
485                        StructuredSubobjectInitList,
486                        StructuredSubobjectInitIndex,
487                        TopLevelObject);
488  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
489  StructuredSubobjectInitList->setType(T);
490
491  // Update the structured sub-object initializer so that it's ending
492  // range corresponds with the end of the last initializer it used.
493  if (EndIndex < ParentIList->getNumInits()) {
494    SourceLocation EndLoc
495      = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
496    StructuredSubobjectInitList->setRBraceLoc(EndLoc);
497  }
498
499  // Warn about missing braces.
500  if (T->isArrayType() || T->isRecordType()) {
501    SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
502                 diag::warn_missing_braces)
503    << StructuredSubobjectInitList->getSourceRange()
504    << FixItHint::CreateInsertion(StructuredSubobjectInitList->getLocStart(),
505                                  "{")
506    << FixItHint::CreateInsertion(SemaRef.PP.getLocForEndOfToken(
507                                      StructuredSubobjectInitList->getLocEnd()),
508                                  "}");
509  }
510}
511
512void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
513                                            InitListExpr *IList, QualType &T,
514                                            unsigned &Index,
515                                            InitListExpr *StructuredList,
516                                            unsigned &StructuredIndex,
517                                            bool TopLevelObject) {
518  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
519  SyntacticToSemantic[IList] = StructuredList;
520  StructuredList->setSyntacticForm(IList);
521  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
522                        Index, StructuredList, StructuredIndex, TopLevelObject);
523  QualType ExprTy = T.getNonLValueExprType(SemaRef.Context);
524  IList->setType(ExprTy);
525  StructuredList->setType(ExprTy);
526  if (hadError)
527    return;
528
529  if (Index < IList->getNumInits()) {
530    // We have leftover initializers
531    if (StructuredIndex == 1 &&
532        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
533      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
534      if (SemaRef.getLangOptions().CPlusPlus) {
535        DK = diag::err_excess_initializers_in_char_array_initializer;
536        hadError = true;
537      }
538      // Special-case
539      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
540        << IList->getInit(Index)->getSourceRange();
541    } else if (!T->isIncompleteType()) {
542      // Don't complain for incomplete types, since we'll get an error
543      // elsewhere
544      QualType CurrentObjectType = StructuredList->getType();
545      int initKind =
546        CurrentObjectType->isArrayType()? 0 :
547        CurrentObjectType->isVectorType()? 1 :
548        CurrentObjectType->isScalarType()? 2 :
549        CurrentObjectType->isUnionType()? 3 :
550        4;
551
552      unsigned DK = diag::warn_excess_initializers;
553      if (SemaRef.getLangOptions().CPlusPlus) {
554        DK = diag::err_excess_initializers;
555        hadError = true;
556      }
557      if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
558        DK = diag::err_excess_initializers;
559        hadError = true;
560      }
561
562      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
563        << initKind << IList->getInit(Index)->getSourceRange();
564    }
565  }
566
567  if (T->isScalarType() && !TopLevelObject)
568    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
569      << IList->getSourceRange()
570      << FixItHint::CreateRemoval(IList->getLocStart())
571      << FixItHint::CreateRemoval(IList->getLocEnd());
572}
573
574void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
575                                            InitListExpr *IList,
576                                            QualType &DeclType,
577                                            bool SubobjectIsDesignatorContext,
578                                            unsigned &Index,
579                                            InitListExpr *StructuredList,
580                                            unsigned &StructuredIndex,
581                                            bool TopLevelObject) {
582  if (DeclType->isScalarType()) {
583    CheckScalarType(Entity, IList, DeclType, Index,
584                    StructuredList, StructuredIndex);
585  } else if (DeclType->isVectorType()) {
586    CheckVectorType(Entity, IList, DeclType, Index,
587                    StructuredList, StructuredIndex);
588  } else if (DeclType->isAggregateType()) {
589    if (DeclType->isRecordType()) {
590      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
591      CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
592                            SubobjectIsDesignatorContext, Index,
593                            StructuredList, StructuredIndex,
594                            TopLevelObject);
595    } else if (DeclType->isArrayType()) {
596      llvm::APSInt Zero(
597                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
598                      false);
599      CheckArrayType(Entity, IList, DeclType, Zero,
600                     SubobjectIsDesignatorContext, Index,
601                     StructuredList, StructuredIndex);
602    } else
603      assert(0 && "Aggregate that isn't a structure or array?!");
604  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
605    // This type is invalid, issue a diagnostic.
606    ++Index;
607    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
608      << DeclType;
609    hadError = true;
610  } else if (DeclType->isRecordType()) {
611    // C++ [dcl.init]p14:
612    //   [...] If the class is an aggregate (8.5.1), and the initializer
613    //   is a brace-enclosed list, see 8.5.1.
614    //
615    // Note: 8.5.1 is handled below; here, we diagnose the case where
616    // we have an initializer list and a destination type that is not
617    // an aggregate.
618    // FIXME: In C++0x, this is yet another form of initialization.
619    SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
620      << DeclType << IList->getSourceRange();
621    hadError = true;
622  } else if (DeclType->isReferenceType()) {
623    CheckReferenceType(Entity, IList, DeclType, Index,
624                       StructuredList, StructuredIndex);
625  } else if (DeclType->isObjCObjectType()) {
626    SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
627      << DeclType;
628    hadError = true;
629  } else {
630    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
631      << DeclType;
632    hadError = true;
633  }
634}
635
636void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
637                                          InitListExpr *IList,
638                                          QualType ElemType,
639                                          unsigned &Index,
640                                          InitListExpr *StructuredList,
641                                          unsigned &StructuredIndex) {
642  Expr *expr = IList->getInit(Index);
643  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
644    unsigned newIndex = 0;
645    unsigned newStructuredIndex = 0;
646    InitListExpr *newStructuredList
647      = getStructuredSubobjectInit(IList, Index, ElemType,
648                                   StructuredList, StructuredIndex,
649                                   SubInitList->getSourceRange());
650    CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
651                          newStructuredList, newStructuredIndex);
652    ++StructuredIndex;
653    ++Index;
654  } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
655    CheckStringInit(Str, ElemType, SemaRef);
656    UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
657    ++Index;
658  } else if (ElemType->isScalarType()) {
659    CheckScalarType(Entity, IList, ElemType, Index,
660                    StructuredList, StructuredIndex);
661  } else if (ElemType->isReferenceType()) {
662    CheckReferenceType(Entity, IList, ElemType, Index,
663                       StructuredList, StructuredIndex);
664  } else {
665    if (SemaRef.getLangOptions().CPlusPlus) {
666      // C++ [dcl.init.aggr]p12:
667      //   All implicit type conversions (clause 4) are considered when
668      //   initializing the aggregate member with an ini- tializer from
669      //   an initializer-list. If the initializer can initialize a
670      //   member, the member is initialized. [...]
671
672      // FIXME: Better EqualLoc?
673      InitializationKind Kind =
674        InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
675      InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
676
677      if (Seq) {
678        ExprResult Result =
679          Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
680        if (Result.isInvalid())
681          hadError = true;
682
683        UpdateStructuredListElement(StructuredList, StructuredIndex,
684                                    Result.takeAs<Expr>());
685        ++Index;
686        return;
687      }
688
689      // Fall through for subaggregate initialization
690    } else {
691      // C99 6.7.8p13:
692      //
693      //   The initializer for a structure or union object that has
694      //   automatic storage duration shall be either an initializer
695      //   list as described below, or a single expression that has
696      //   compatible structure or union type. In the latter case, the
697      //   initial value of the object, including unnamed members, is
698      //   that of the expression.
699      if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
700          SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) {
701        SemaRef.DefaultFunctionArrayLvalueConversion(expr);
702        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
703        ++Index;
704        return;
705      }
706
707      // Fall through for subaggregate initialization
708    }
709
710    // C++ [dcl.init.aggr]p12:
711    //
712    //   [...] Otherwise, if the member is itself a non-empty
713    //   subaggregate, brace elision is assumed and the initializer is
714    //   considered for the initialization of the first member of
715    //   the subaggregate.
716    if (ElemType->isAggregateType() || ElemType->isVectorType()) {
717      CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
718                            StructuredIndex);
719      ++StructuredIndex;
720    } else {
721      // We cannot initialize this element, so let
722      // PerformCopyInitialization produce the appropriate diagnostic.
723      SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
724                                        SemaRef.Owned(expr));
725      hadError = true;
726      ++Index;
727      ++StructuredIndex;
728    }
729  }
730}
731
732void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
733                                      InitListExpr *IList, QualType DeclType,
734                                      unsigned &Index,
735                                      InitListExpr *StructuredList,
736                                      unsigned &StructuredIndex) {
737  if (Index >= IList->getNumInits()) {
738    SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
739      << IList->getSourceRange();
740    hadError = true;
741    ++Index;
742    ++StructuredIndex;
743    return;
744  }
745
746  Expr *expr = IList->getInit(Index);
747  if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
748    SemaRef.Diag(SubIList->getLocStart(),
749                 diag::warn_many_braces_around_scalar_init)
750      << SubIList->getSourceRange();
751
752    CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
753                    StructuredIndex);
754    return;
755  } else if (isa<DesignatedInitExpr>(expr)) {
756    SemaRef.Diag(expr->getSourceRange().getBegin(),
757                 diag::err_designator_for_scalar_init)
758      << DeclType << expr->getSourceRange();
759    hadError = true;
760    ++Index;
761    ++StructuredIndex;
762    return;
763  }
764
765  ExprResult Result =
766    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
767                                      SemaRef.Owned(expr));
768
769  Expr *ResultExpr = 0;
770
771  if (Result.isInvalid())
772    hadError = true; // types weren't compatible.
773  else {
774    ResultExpr = Result.takeAs<Expr>();
775
776    if (ResultExpr != expr) {
777      // The type was promoted, update initializer list.
778      IList->setInit(Index, ResultExpr);
779    }
780  }
781  if (hadError)
782    ++StructuredIndex;
783  else
784    UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
785  ++Index;
786}
787
788void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
789                                         InitListExpr *IList, QualType DeclType,
790                                         unsigned &Index,
791                                         InitListExpr *StructuredList,
792                                         unsigned &StructuredIndex) {
793  if (Index < IList->getNumInits()) {
794    Expr *expr = IList->getInit(Index);
795    if (isa<InitListExpr>(expr)) {
796      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
797        << DeclType << IList->getSourceRange();
798      hadError = true;
799      ++Index;
800      ++StructuredIndex;
801      return;
802    }
803
804    ExprResult Result =
805      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
806                                        SemaRef.Owned(expr));
807
808    if (Result.isInvalid())
809      hadError = true;
810
811    expr = Result.takeAs<Expr>();
812    IList->setInit(Index, expr);
813
814    if (hadError)
815      ++StructuredIndex;
816    else
817      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
818    ++Index;
819  } else {
820    // FIXME: It would be wonderful if we could point at the actual member. In
821    // general, it would be useful to pass location information down the stack,
822    // so that we know the location (or decl) of the "current object" being
823    // initialized.
824    SemaRef.Diag(IList->getLocStart(),
825                  diag::err_init_reference_member_uninitialized)
826      << DeclType
827      << IList->getSourceRange();
828    hadError = true;
829    ++Index;
830    ++StructuredIndex;
831    return;
832  }
833}
834
835void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
836                                      InitListExpr *IList, QualType DeclType,
837                                      unsigned &Index,
838                                      InitListExpr *StructuredList,
839                                      unsigned &StructuredIndex) {
840  if (Index >= IList->getNumInits())
841    return;
842
843  const VectorType *VT = DeclType->getAs<VectorType>();
844  unsigned maxElements = VT->getNumElements();
845  unsigned numEltsInit = 0;
846  QualType elementType = VT->getElementType();
847
848  if (!SemaRef.getLangOptions().OpenCL) {
849    // If the initializing element is a vector, try to copy-initialize
850    // instead of breaking it apart (which is doomed to failure anyway).
851    Expr *Init = IList->getInit(Index);
852    if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
853      ExprResult Result =
854        SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
855                                          SemaRef.Owned(Init));
856
857      Expr *ResultExpr = 0;
858      if (Result.isInvalid())
859        hadError = true; // types weren't compatible.
860      else {
861        ResultExpr = Result.takeAs<Expr>();
862
863        if (ResultExpr != Init) {
864          // The type was promoted, update initializer list.
865          IList->setInit(Index, ResultExpr);
866        }
867      }
868      if (hadError)
869        ++StructuredIndex;
870      else
871        UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
872      ++Index;
873      return;
874    }
875
876    InitializedEntity ElementEntity =
877      InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
878
879    for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
880      // Don't attempt to go past the end of the init list
881      if (Index >= IList->getNumInits())
882        break;
883
884      ElementEntity.setElementIndex(Index);
885      CheckSubElementType(ElementEntity, IList, elementType, Index,
886                          StructuredList, StructuredIndex);
887    }
888    return;
889  }
890
891  InitializedEntity ElementEntity =
892    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
893
894  // OpenCL initializers allows vectors to be constructed from vectors.
895  for (unsigned i = 0; i < maxElements; ++i) {
896    // Don't attempt to go past the end of the init list
897    if (Index >= IList->getNumInits())
898      break;
899
900    ElementEntity.setElementIndex(Index);
901
902    QualType IType = IList->getInit(Index)->getType();
903    if (!IType->isVectorType()) {
904      CheckSubElementType(ElementEntity, IList, elementType, Index,
905                          StructuredList, StructuredIndex);
906      ++numEltsInit;
907    } else {
908      QualType VecType;
909      const VectorType *IVT = IType->getAs<VectorType>();
910      unsigned numIElts = IVT->getNumElements();
911
912      if (IType->isExtVectorType())
913        VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
914      else
915        VecType = SemaRef.Context.getVectorType(elementType, numIElts,
916                                                IVT->getVectorKind());
917      CheckSubElementType(ElementEntity, IList, VecType, Index,
918                          StructuredList, StructuredIndex);
919      numEltsInit += numIElts;
920    }
921  }
922
923  // OpenCL requires all elements to be initialized.
924  if (numEltsInit != maxElements)
925    if (SemaRef.getLangOptions().OpenCL)
926      SemaRef.Diag(IList->getSourceRange().getBegin(),
927                   diag::err_vector_incorrect_num_initializers)
928        << (numEltsInit < maxElements) << maxElements << numEltsInit;
929}
930
931void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
932                                     InitListExpr *IList, QualType &DeclType,
933                                     llvm::APSInt elementIndex,
934                                     bool SubobjectIsDesignatorContext,
935                                     unsigned &Index,
936                                     InitListExpr *StructuredList,
937                                     unsigned &StructuredIndex) {
938  // Check for the special-case of initializing an array with a string.
939  if (Index < IList->getNumInits()) {
940    if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
941                                 SemaRef.Context)) {
942      CheckStringInit(Str, DeclType, SemaRef);
943      // We place the string literal directly into the resulting
944      // initializer list. This is the only place where the structure
945      // of the structured initializer list doesn't match exactly,
946      // because doing so would involve allocating one character
947      // constant for each string.
948      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
949      StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
950      ++Index;
951      return;
952    }
953  }
954  if (const VariableArrayType *VAT =
955        SemaRef.Context.getAsVariableArrayType(DeclType)) {
956    // Check for VLAs; in standard C it would be possible to check this
957    // earlier, but I don't know where clang accepts VLAs (gcc accepts
958    // them in all sorts of strange places).
959    SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
960                  diag::err_variable_object_no_init)
961      << VAT->getSizeExpr()->getSourceRange();
962    hadError = true;
963    ++Index;
964    ++StructuredIndex;
965    return;
966  }
967
968  // We might know the maximum number of elements in advance.
969  llvm::APSInt maxElements(elementIndex.getBitWidth(),
970                           elementIndex.isUnsigned());
971  bool maxElementsKnown = false;
972  if (const ConstantArrayType *CAT =
973        SemaRef.Context.getAsConstantArrayType(DeclType)) {
974    maxElements = CAT->getSize();
975    elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
976    elementIndex.setIsUnsigned(maxElements.isUnsigned());
977    maxElementsKnown = true;
978  }
979
980  QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
981                             ->getElementType();
982  while (Index < IList->getNumInits()) {
983    Expr *Init = IList->getInit(Index);
984    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
985      // If we're not the subobject that matches up with the '{' for
986      // the designator, we shouldn't be handling the
987      // designator. Return immediately.
988      if (!SubobjectIsDesignatorContext)
989        return;
990
991      // Handle this designated initializer. elementIndex will be
992      // updated to be the next array element we'll initialize.
993      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
994                                     DeclType, 0, &elementIndex, Index,
995                                     StructuredList, StructuredIndex, true,
996                                     false)) {
997        hadError = true;
998        continue;
999      }
1000
1001      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1002        maxElements = maxElements.extend(elementIndex.getBitWidth());
1003      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1004        elementIndex = elementIndex.extend(maxElements.getBitWidth());
1005      elementIndex.setIsUnsigned(maxElements.isUnsigned());
1006
1007      // If the array is of incomplete type, keep track of the number of
1008      // elements in the initializer.
1009      if (!maxElementsKnown && elementIndex > maxElements)
1010        maxElements = elementIndex;
1011
1012      continue;
1013    }
1014
1015    // If we know the maximum number of elements, and we've already
1016    // hit it, stop consuming elements in the initializer list.
1017    if (maxElementsKnown && elementIndex == maxElements)
1018      break;
1019
1020    InitializedEntity ElementEntity =
1021      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1022                                           Entity);
1023    // Check this element.
1024    CheckSubElementType(ElementEntity, IList, elementType, Index,
1025                        StructuredList, StructuredIndex);
1026    ++elementIndex;
1027
1028    // If the array is of incomplete type, keep track of the number of
1029    // elements in the initializer.
1030    if (!maxElementsKnown && elementIndex > maxElements)
1031      maxElements = elementIndex;
1032  }
1033  if (!hadError && DeclType->isIncompleteArrayType()) {
1034    // If this is an incomplete array type, the actual type needs to
1035    // be calculated here.
1036    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1037    if (maxElements == Zero) {
1038      // Sizing an array implicitly to zero is not allowed by ISO C,
1039      // but is supported by GNU.
1040      SemaRef.Diag(IList->getLocStart(),
1041                    diag::ext_typecheck_zero_array_size);
1042    }
1043
1044    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1045                                                     ArrayType::Normal, 0);
1046  }
1047}
1048
1049void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1050                                            InitListExpr *IList,
1051                                            QualType DeclType,
1052                                            RecordDecl::field_iterator Field,
1053                                            bool SubobjectIsDesignatorContext,
1054                                            unsigned &Index,
1055                                            InitListExpr *StructuredList,
1056                                            unsigned &StructuredIndex,
1057                                            bool TopLevelObject) {
1058  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1059
1060  // If the record is invalid, some of it's members are invalid. To avoid
1061  // confusion, we forgo checking the intializer for the entire record.
1062  if (structDecl->isInvalidDecl()) {
1063    hadError = true;
1064    return;
1065  }
1066
1067  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1068    // Value-initialize the first named member of the union.
1069    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1070    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1071         Field != FieldEnd; ++Field) {
1072      if (Field->getDeclName()) {
1073        StructuredList->setInitializedFieldInUnion(*Field);
1074        break;
1075      }
1076    }
1077    return;
1078  }
1079
1080  // If structDecl is a forward declaration, this loop won't do
1081  // anything except look at designated initializers; That's okay,
1082  // because an error should get printed out elsewhere. It might be
1083  // worthwhile to skip over the rest of the initializer, though.
1084  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1085  RecordDecl::field_iterator FieldEnd = RD->field_end();
1086  bool InitializedSomething = false;
1087  bool CheckForMissingFields = true;
1088  while (Index < IList->getNumInits()) {
1089    Expr *Init = IList->getInit(Index);
1090
1091    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1092      // If we're not the subobject that matches up with the '{' for
1093      // the designator, we shouldn't be handling the
1094      // designator. Return immediately.
1095      if (!SubobjectIsDesignatorContext)
1096        return;
1097
1098      // Handle this designated initializer. Field will be updated to
1099      // the next field that we'll be initializing.
1100      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1101                                     DeclType, &Field, 0, Index,
1102                                     StructuredList, StructuredIndex,
1103                                     true, TopLevelObject))
1104        hadError = true;
1105
1106      InitializedSomething = true;
1107
1108      // Disable check for missing fields when designators are used.
1109      // This matches gcc behaviour.
1110      CheckForMissingFields = false;
1111      continue;
1112    }
1113
1114    if (Field == FieldEnd) {
1115      // We've run out of fields. We're done.
1116      break;
1117    }
1118
1119    // We've already initialized a member of a union. We're done.
1120    if (InitializedSomething && DeclType->isUnionType())
1121      break;
1122
1123    // If we've hit the flexible array member at the end, we're done.
1124    if (Field->getType()->isIncompleteArrayType())
1125      break;
1126
1127    if (Field->isUnnamedBitfield()) {
1128      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1129      ++Field;
1130      continue;
1131    }
1132
1133    InitializedEntity MemberEntity =
1134      InitializedEntity::InitializeMember(*Field, &Entity);
1135    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1136                        StructuredList, StructuredIndex);
1137    InitializedSomething = true;
1138
1139    if (DeclType->isUnionType()) {
1140      // Initialize the first field within the union.
1141      StructuredList->setInitializedFieldInUnion(*Field);
1142    }
1143
1144    ++Field;
1145  }
1146
1147  // Emit warnings for missing struct field initializers.
1148  if (InitializedSomething && CheckForMissingFields && Field != FieldEnd &&
1149      !Field->getType()->isIncompleteArrayType() && !DeclType->isUnionType()) {
1150    // It is possible we have one or more unnamed bitfields remaining.
1151    // Find first (if any) named field and emit warning.
1152    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1153         it != end; ++it) {
1154      if (!it->isUnnamedBitfield()) {
1155        SemaRef.Diag(IList->getSourceRange().getEnd(),
1156                     diag::warn_missing_field_initializers) << it->getName();
1157        break;
1158      }
1159    }
1160  }
1161
1162  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1163      Index >= IList->getNumInits())
1164    return;
1165
1166  // Handle GNU flexible array initializers.
1167  if (!TopLevelObject &&
1168      (!isa<InitListExpr>(IList->getInit(Index)) ||
1169       cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1170    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1171                  diag::err_flexible_array_init_nonempty)
1172      << IList->getInit(Index)->getSourceRange().getBegin();
1173    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1174      << *Field;
1175    hadError = true;
1176    ++Index;
1177    return;
1178  } else {
1179    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1180                 diag::ext_flexible_array_init)
1181      << IList->getInit(Index)->getSourceRange().getBegin();
1182    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1183      << *Field;
1184  }
1185
1186  InitializedEntity MemberEntity =
1187    InitializedEntity::InitializeMember(*Field, &Entity);
1188
1189  if (isa<InitListExpr>(IList->getInit(Index)))
1190    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1191                        StructuredList, StructuredIndex);
1192  else
1193    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1194                          StructuredList, StructuredIndex);
1195}
1196
1197/// \brief Expand a field designator that refers to a member of an
1198/// anonymous struct or union into a series of field designators that
1199/// refers to the field within the appropriate subobject.
1200///
1201static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1202                                           DesignatedInitExpr *DIE,
1203                                           unsigned DesigIdx,
1204                                           IndirectFieldDecl *IndirectField) {
1205  typedef DesignatedInitExpr::Designator Designator;
1206
1207  // Build the replacement designators.
1208  llvm::SmallVector<Designator, 4> Replacements;
1209  for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1210       PE = IndirectField->chain_end(); PI != PE; ++PI) {
1211    if (PI + 1 == PE)
1212      Replacements.push_back(Designator((IdentifierInfo *)0,
1213                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1214                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1215    else
1216      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1217                                        SourceLocation()));
1218    assert(isa<FieldDecl>(*PI));
1219    Replacements.back().setField(cast<FieldDecl>(*PI));
1220  }
1221
1222  // Expand the current designator into the set of replacement
1223  // designators, so we have a full subobject path down to where the
1224  // member of the anonymous struct/union is actually stored.
1225  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1226                        &Replacements[0] + Replacements.size());
1227}
1228
1229/// \brief Given an implicit anonymous field, search the IndirectField that
1230///  corresponds to FieldName.
1231static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1232                                                 IdentifierInfo *FieldName) {
1233  assert(AnonField->isAnonymousStructOrUnion());
1234  Decl *NextDecl = AnonField->getNextDeclInContext();
1235  while (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(NextDecl)) {
1236    if (FieldName && FieldName == IF->getAnonField()->getIdentifier())
1237      return IF;
1238    NextDecl = NextDecl->getNextDeclInContext();
1239  }
1240  return 0;
1241}
1242
1243/// @brief Check the well-formedness of a C99 designated initializer.
1244///
1245/// Determines whether the designated initializer @p DIE, which
1246/// resides at the given @p Index within the initializer list @p
1247/// IList, is well-formed for a current object of type @p DeclType
1248/// (C99 6.7.8). The actual subobject that this designator refers to
1249/// within the current subobject is returned in either
1250/// @p NextField or @p NextElementIndex (whichever is appropriate).
1251///
1252/// @param IList  The initializer list in which this designated
1253/// initializer occurs.
1254///
1255/// @param DIE The designated initializer expression.
1256///
1257/// @param DesigIdx  The index of the current designator.
1258///
1259/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1260/// into which the designation in @p DIE should refer.
1261///
1262/// @param NextField  If non-NULL and the first designator in @p DIE is
1263/// a field, this will be set to the field declaration corresponding
1264/// to the field named by the designator.
1265///
1266/// @param NextElementIndex  If non-NULL and the first designator in @p
1267/// DIE is an array designator or GNU array-range designator, this
1268/// will be set to the last index initialized by this designator.
1269///
1270/// @param Index  Index into @p IList where the designated initializer
1271/// @p DIE occurs.
1272///
1273/// @param StructuredList  The initializer list expression that
1274/// describes all of the subobject initializers in the order they'll
1275/// actually be initialized.
1276///
1277/// @returns true if there was an error, false otherwise.
1278bool
1279InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1280                                            InitListExpr *IList,
1281                                      DesignatedInitExpr *DIE,
1282                                      unsigned DesigIdx,
1283                                      QualType &CurrentObjectType,
1284                                      RecordDecl::field_iterator *NextField,
1285                                      llvm::APSInt *NextElementIndex,
1286                                      unsigned &Index,
1287                                      InitListExpr *StructuredList,
1288                                      unsigned &StructuredIndex,
1289                                            bool FinishSubobjectInit,
1290                                            bool TopLevelObject) {
1291  if (DesigIdx == DIE->size()) {
1292    // Check the actual initialization for the designated object type.
1293    bool prevHadError = hadError;
1294
1295    // Temporarily remove the designator expression from the
1296    // initializer list that the child calls see, so that we don't try
1297    // to re-process the designator.
1298    unsigned OldIndex = Index;
1299    IList->setInit(OldIndex, DIE->getInit());
1300
1301    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1302                        StructuredList, StructuredIndex);
1303
1304    // Restore the designated initializer expression in the syntactic
1305    // form of the initializer list.
1306    if (IList->getInit(OldIndex) != DIE->getInit())
1307      DIE->setInit(IList->getInit(OldIndex));
1308    IList->setInit(OldIndex, DIE);
1309
1310    return hadError && !prevHadError;
1311  }
1312
1313  bool IsFirstDesignator = (DesigIdx == 0);
1314  assert((IsFirstDesignator || StructuredList) &&
1315         "Need a non-designated initializer list to start from");
1316
1317  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1318  // Determine the structural initializer list that corresponds to the
1319  // current subobject.
1320  StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1321    : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1322                                 StructuredList, StructuredIndex,
1323                                 SourceRange(D->getStartLocation(),
1324                                             DIE->getSourceRange().getEnd()));
1325  assert(StructuredList && "Expected a structured initializer list");
1326
1327  if (D->isFieldDesignator()) {
1328    // C99 6.7.8p7:
1329    //
1330    //   If a designator has the form
1331    //
1332    //      . identifier
1333    //
1334    //   then the current object (defined below) shall have
1335    //   structure or union type and the identifier shall be the
1336    //   name of a member of that type.
1337    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1338    if (!RT) {
1339      SourceLocation Loc = D->getDotLoc();
1340      if (Loc.isInvalid())
1341        Loc = D->getFieldLoc();
1342      SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1343        << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1344      ++Index;
1345      return true;
1346    }
1347
1348    // Note: we perform a linear search of the fields here, despite
1349    // the fact that we have a faster lookup method, because we always
1350    // need to compute the field's index.
1351    FieldDecl *KnownField = D->getField();
1352    IdentifierInfo *FieldName = D->getFieldName();
1353    unsigned FieldIndex = 0;
1354    RecordDecl::field_iterator
1355      Field = RT->getDecl()->field_begin(),
1356      FieldEnd = RT->getDecl()->field_end();
1357    for (; Field != FieldEnd; ++Field) {
1358      if (Field->isUnnamedBitfield())
1359        continue;
1360
1361      // If we find a field representing an anonymous field, look in the
1362      // IndirectFieldDecl that follow for the designated initializer.
1363      if (!KnownField && Field->isAnonymousStructOrUnion()) {
1364        if (IndirectFieldDecl *IF =
1365            FindIndirectFieldDesignator(*Field, FieldName)) {
1366          ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1367          D = DIE->getDesignator(DesigIdx);
1368          break;
1369        }
1370      }
1371      if (KnownField && KnownField == *Field)
1372        break;
1373      if (FieldName && FieldName == Field->getIdentifier())
1374        break;
1375
1376      ++FieldIndex;
1377    }
1378
1379    if (Field == FieldEnd) {
1380      // There was no normal field in the struct with the designated
1381      // name. Perform another lookup for this name, which may find
1382      // something that we can't designate (e.g., a member function),
1383      // may find nothing, or may find a member of an anonymous
1384      // struct/union.
1385      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1386      FieldDecl *ReplacementField = 0;
1387      if (Lookup.first == Lookup.second) {
1388        // Name lookup didn't find anything. Determine whether this
1389        // was a typo for another field name.
1390        LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
1391                       Sema::LookupMemberName);
1392        if (SemaRef.CorrectTypo(R, /*Scope=*/0, /*SS=*/0, RT->getDecl(), false,
1393                                Sema::CTC_NoKeywords) &&
1394            (ReplacementField = R.getAsSingle<FieldDecl>()) &&
1395            ReplacementField->getDeclContext()->getRedeclContext()
1396                                                      ->Equals(RT->getDecl())) {
1397          SemaRef.Diag(D->getFieldLoc(),
1398                       diag::err_field_designator_unknown_suggest)
1399            << FieldName << CurrentObjectType << R.getLookupName()
1400            << FixItHint::CreateReplacement(D->getFieldLoc(),
1401                                            R.getLookupName().getAsString());
1402          SemaRef.Diag(ReplacementField->getLocation(),
1403                       diag::note_previous_decl)
1404            << ReplacementField->getDeclName();
1405        } else {
1406          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1407            << FieldName << CurrentObjectType;
1408          ++Index;
1409          return true;
1410        }
1411      }
1412
1413      if (!ReplacementField) {
1414        // Name lookup found something, but it wasn't a field.
1415        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1416          << FieldName;
1417        SemaRef.Diag((*Lookup.first)->getLocation(),
1418                      diag::note_field_designator_found);
1419        ++Index;
1420        return true;
1421      }
1422
1423      if (!KnownField) {
1424        // The replacement field comes from typo correction; find it
1425        // in the list of fields.
1426        FieldIndex = 0;
1427        Field = RT->getDecl()->field_begin();
1428        for (; Field != FieldEnd; ++Field) {
1429          if (Field->isUnnamedBitfield())
1430            continue;
1431
1432          if (ReplacementField == *Field ||
1433              Field->getIdentifier() == ReplacementField->getIdentifier())
1434            break;
1435
1436          ++FieldIndex;
1437        }
1438      }
1439    }
1440
1441    // All of the fields of a union are located at the same place in
1442    // the initializer list.
1443    if (RT->getDecl()->isUnion()) {
1444      FieldIndex = 0;
1445      StructuredList->setInitializedFieldInUnion(*Field);
1446    }
1447
1448    // Update the designator with the field declaration.
1449    D->setField(*Field);
1450
1451    // Make sure that our non-designated initializer list has space
1452    // for a subobject corresponding to this field.
1453    if (FieldIndex >= StructuredList->getNumInits())
1454      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1455
1456    // This designator names a flexible array member.
1457    if (Field->getType()->isIncompleteArrayType()) {
1458      bool Invalid = false;
1459      if ((DesigIdx + 1) != DIE->size()) {
1460        // We can't designate an object within the flexible array
1461        // member (because GCC doesn't allow it).
1462        DesignatedInitExpr::Designator *NextD
1463          = DIE->getDesignator(DesigIdx + 1);
1464        SemaRef.Diag(NextD->getStartLocation(),
1465                      diag::err_designator_into_flexible_array_member)
1466          << SourceRange(NextD->getStartLocation(),
1467                         DIE->getSourceRange().getEnd());
1468        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1469          << *Field;
1470        Invalid = true;
1471      }
1472
1473      if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1474          !isa<StringLiteral>(DIE->getInit())) {
1475        // The initializer is not an initializer list.
1476        SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1477                      diag::err_flexible_array_init_needs_braces)
1478          << DIE->getInit()->getSourceRange();
1479        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1480          << *Field;
1481        Invalid = true;
1482      }
1483
1484      // Handle GNU flexible array initializers.
1485      if (!Invalid && !TopLevelObject &&
1486          cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1487        SemaRef.Diag(DIE->getSourceRange().getBegin(),
1488                      diag::err_flexible_array_init_nonempty)
1489          << DIE->getSourceRange().getBegin();
1490        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1491          << *Field;
1492        Invalid = true;
1493      }
1494
1495      if (Invalid) {
1496        ++Index;
1497        return true;
1498      }
1499
1500      // Initialize the array.
1501      bool prevHadError = hadError;
1502      unsigned newStructuredIndex = FieldIndex;
1503      unsigned OldIndex = Index;
1504      IList->setInit(Index, DIE->getInit());
1505
1506      InitializedEntity MemberEntity =
1507        InitializedEntity::InitializeMember(*Field, &Entity);
1508      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1509                          StructuredList, newStructuredIndex);
1510
1511      IList->setInit(OldIndex, DIE);
1512      if (hadError && !prevHadError) {
1513        ++Field;
1514        ++FieldIndex;
1515        if (NextField)
1516          *NextField = Field;
1517        StructuredIndex = FieldIndex;
1518        return true;
1519      }
1520    } else {
1521      // Recurse to check later designated subobjects.
1522      QualType FieldType = (*Field)->getType();
1523      unsigned newStructuredIndex = FieldIndex;
1524
1525      InitializedEntity MemberEntity =
1526        InitializedEntity::InitializeMember(*Field, &Entity);
1527      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1528                                     FieldType, 0, 0, Index,
1529                                     StructuredList, newStructuredIndex,
1530                                     true, false))
1531        return true;
1532    }
1533
1534    // Find the position of the next field to be initialized in this
1535    // subobject.
1536    ++Field;
1537    ++FieldIndex;
1538
1539    // If this the first designator, our caller will continue checking
1540    // the rest of this struct/class/union subobject.
1541    if (IsFirstDesignator) {
1542      if (NextField)
1543        *NextField = Field;
1544      StructuredIndex = FieldIndex;
1545      return false;
1546    }
1547
1548    if (!FinishSubobjectInit)
1549      return false;
1550
1551    // We've already initialized something in the union; we're done.
1552    if (RT->getDecl()->isUnion())
1553      return hadError;
1554
1555    // Check the remaining fields within this class/struct/union subobject.
1556    bool prevHadError = hadError;
1557
1558    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1559                          StructuredList, FieldIndex);
1560    return hadError && !prevHadError;
1561  }
1562
1563  // C99 6.7.8p6:
1564  //
1565  //   If a designator has the form
1566  //
1567  //      [ constant-expression ]
1568  //
1569  //   then the current object (defined below) shall have array
1570  //   type and the expression shall be an integer constant
1571  //   expression. If the array is of unknown size, any
1572  //   nonnegative value is valid.
1573  //
1574  // Additionally, cope with the GNU extension that permits
1575  // designators of the form
1576  //
1577  //      [ constant-expression ... constant-expression ]
1578  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1579  if (!AT) {
1580    SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1581      << CurrentObjectType;
1582    ++Index;
1583    return true;
1584  }
1585
1586  Expr *IndexExpr = 0;
1587  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1588  if (D->isArrayDesignator()) {
1589    IndexExpr = DIE->getArrayIndex(*D);
1590    DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1591    DesignatedEndIndex = DesignatedStartIndex;
1592  } else {
1593    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1594
1595
1596    DesignatedStartIndex =
1597      DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1598    DesignatedEndIndex =
1599      DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1600    IndexExpr = DIE->getArrayRangeEnd(*D);
1601
1602    if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
1603      FullyStructuredList->sawArrayRangeDesignator();
1604  }
1605
1606  if (isa<ConstantArrayType>(AT)) {
1607    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1608    DesignatedStartIndex
1609      = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1610    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1611    DesignatedEndIndex
1612      = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1613    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1614    if (DesignatedEndIndex >= MaxElements) {
1615      SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1616                    diag::err_array_designator_too_large)
1617        << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1618        << IndexExpr->getSourceRange();
1619      ++Index;
1620      return true;
1621    }
1622  } else {
1623    // Make sure the bit-widths and signedness match.
1624    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1625      DesignatedEndIndex
1626        = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1627    else if (DesignatedStartIndex.getBitWidth() <
1628             DesignatedEndIndex.getBitWidth())
1629      DesignatedStartIndex
1630        = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1631    DesignatedStartIndex.setIsUnsigned(true);
1632    DesignatedEndIndex.setIsUnsigned(true);
1633  }
1634
1635  // Make sure that our non-designated initializer list has space
1636  // for a subobject corresponding to this array element.
1637  if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1638    StructuredList->resizeInits(SemaRef.Context,
1639                                DesignatedEndIndex.getZExtValue() + 1);
1640
1641  // Repeatedly perform subobject initializations in the range
1642  // [DesignatedStartIndex, DesignatedEndIndex].
1643
1644  // Move to the next designator
1645  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1646  unsigned OldIndex = Index;
1647
1648  InitializedEntity ElementEntity =
1649    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1650
1651  while (DesignatedStartIndex <= DesignatedEndIndex) {
1652    // Recurse to check later designated subobjects.
1653    QualType ElementType = AT->getElementType();
1654    Index = OldIndex;
1655
1656    ElementEntity.setElementIndex(ElementIndex);
1657    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
1658                                   ElementType, 0, 0, Index,
1659                                   StructuredList, ElementIndex,
1660                                   (DesignatedStartIndex == DesignatedEndIndex),
1661                                   false))
1662      return true;
1663
1664    // Move to the next index in the array that we'll be initializing.
1665    ++DesignatedStartIndex;
1666    ElementIndex = DesignatedStartIndex.getZExtValue();
1667  }
1668
1669  // If this the first designator, our caller will continue checking
1670  // the rest of this array subobject.
1671  if (IsFirstDesignator) {
1672    if (NextElementIndex)
1673      *NextElementIndex = DesignatedStartIndex;
1674    StructuredIndex = ElementIndex;
1675    return false;
1676  }
1677
1678  if (!FinishSubobjectInit)
1679    return false;
1680
1681  // Check the remaining elements within this array subobject.
1682  bool prevHadError = hadError;
1683  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
1684                 /*SubobjectIsDesignatorContext=*/false, Index,
1685                 StructuredList, ElementIndex);
1686  return hadError && !prevHadError;
1687}
1688
1689// Get the structured initializer list for a subobject of type
1690// @p CurrentObjectType.
1691InitListExpr *
1692InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1693                                            QualType CurrentObjectType,
1694                                            InitListExpr *StructuredList,
1695                                            unsigned StructuredIndex,
1696                                            SourceRange InitRange) {
1697  Expr *ExistingInit = 0;
1698  if (!StructuredList)
1699    ExistingInit = SyntacticToSemantic[IList];
1700  else if (StructuredIndex < StructuredList->getNumInits())
1701    ExistingInit = StructuredList->getInit(StructuredIndex);
1702
1703  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1704    return Result;
1705
1706  if (ExistingInit) {
1707    // We are creating an initializer list that initializes the
1708    // subobjects of the current object, but there was already an
1709    // initialization that completely initialized the current
1710    // subobject, e.g., by a compound literal:
1711    //
1712    // struct X { int a, b; };
1713    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1714    //
1715    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1716    // designated initializer re-initializes the whole
1717    // subobject [0], overwriting previous initializers.
1718    SemaRef.Diag(InitRange.getBegin(),
1719                 diag::warn_subobject_initializer_overrides)
1720      << InitRange;
1721    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1722                  diag::note_previous_initializer)
1723      << /*FIXME:has side effects=*/0
1724      << ExistingInit->getSourceRange();
1725  }
1726
1727  InitListExpr *Result
1728    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
1729                                         InitRange.getBegin(), 0, 0,
1730                                         InitRange.getEnd());
1731
1732  Result->setType(CurrentObjectType.getNonLValueExprType(SemaRef.Context));
1733
1734  // Pre-allocate storage for the structured initializer list.
1735  unsigned NumElements = 0;
1736  unsigned NumInits = 0;
1737  if (!StructuredList)
1738    NumInits = IList->getNumInits();
1739  else if (Index < IList->getNumInits()) {
1740    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1741      NumInits = SubList->getNumInits();
1742  }
1743
1744  if (const ArrayType *AType
1745      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1746    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1747      NumElements = CAType->getSize().getZExtValue();
1748      // Simple heuristic so that we don't allocate a very large
1749      // initializer with many empty entries at the end.
1750      if (NumInits && NumElements > NumInits)
1751        NumElements = 0;
1752    }
1753  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
1754    NumElements = VType->getNumElements();
1755  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
1756    RecordDecl *RDecl = RType->getDecl();
1757    if (RDecl->isUnion())
1758      NumElements = 1;
1759    else
1760      NumElements = std::distance(RDecl->field_begin(),
1761                                  RDecl->field_end());
1762  }
1763
1764  if (NumElements < NumInits)
1765    NumElements = IList->getNumInits();
1766
1767  Result->reserveInits(SemaRef.Context, NumElements);
1768
1769  // Link this new initializer list into the structured initializer
1770  // lists.
1771  if (StructuredList)
1772    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
1773  else {
1774    Result->setSyntacticForm(IList);
1775    SyntacticToSemantic[IList] = Result;
1776  }
1777
1778  return Result;
1779}
1780
1781/// Update the initializer at index @p StructuredIndex within the
1782/// structured initializer list to the value @p expr.
1783void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1784                                                  unsigned &StructuredIndex,
1785                                                  Expr *expr) {
1786  // No structured initializer list to update
1787  if (!StructuredList)
1788    return;
1789
1790  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
1791                                                  StructuredIndex, expr)) {
1792    // This initializer overwrites a previous initializer. Warn.
1793    SemaRef.Diag(expr->getSourceRange().getBegin(),
1794                  diag::warn_initializer_overrides)
1795      << expr->getSourceRange();
1796    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1797                  diag::note_previous_initializer)
1798      << /*FIXME:has side effects=*/0
1799      << PrevInit->getSourceRange();
1800  }
1801
1802  ++StructuredIndex;
1803}
1804
1805/// Check that the given Index expression is a valid array designator
1806/// value. This is essentailly just a wrapper around
1807/// VerifyIntegerConstantExpression that also checks for negative values
1808/// and produces a reasonable diagnostic if there is a
1809/// failure. Returns true if there was an error, false otherwise.  If
1810/// everything went okay, Value will receive the value of the constant
1811/// expression.
1812static bool
1813CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1814  SourceLocation Loc = Index->getSourceRange().getBegin();
1815
1816  // Make sure this is an integer constant expression.
1817  if (S.VerifyIntegerConstantExpression(Index, &Value))
1818    return true;
1819
1820  if (Value.isSigned() && Value.isNegative())
1821    return S.Diag(Loc, diag::err_array_designator_negative)
1822      << Value.toString(10) << Index->getSourceRange();
1823
1824  Value.setIsUnsigned(true);
1825  return false;
1826}
1827
1828ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1829                                            SourceLocation Loc,
1830                                            bool GNUSyntax,
1831                                            ExprResult Init) {
1832  typedef DesignatedInitExpr::Designator ASTDesignator;
1833
1834  bool Invalid = false;
1835  llvm::SmallVector<ASTDesignator, 32> Designators;
1836  llvm::SmallVector<Expr *, 32> InitExpressions;
1837
1838  // Build designators and check array designator expressions.
1839  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1840    const Designator &D = Desig.getDesignator(Idx);
1841    switch (D.getKind()) {
1842    case Designator::FieldDesignator:
1843      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1844                                          D.getFieldLoc()));
1845      break;
1846
1847    case Designator::ArrayDesignator: {
1848      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1849      llvm::APSInt IndexValue;
1850      if (!Index->isTypeDependent() &&
1851          !Index->isValueDependent() &&
1852          CheckArrayDesignatorExpr(*this, Index, IndexValue))
1853        Invalid = true;
1854      else {
1855        Designators.push_back(ASTDesignator(InitExpressions.size(),
1856                                            D.getLBracketLoc(),
1857                                            D.getRBracketLoc()));
1858        InitExpressions.push_back(Index);
1859      }
1860      break;
1861    }
1862
1863    case Designator::ArrayRangeDesignator: {
1864      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1865      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1866      llvm::APSInt StartValue;
1867      llvm::APSInt EndValue;
1868      bool StartDependent = StartIndex->isTypeDependent() ||
1869                            StartIndex->isValueDependent();
1870      bool EndDependent = EndIndex->isTypeDependent() ||
1871                          EndIndex->isValueDependent();
1872      if ((!StartDependent &&
1873           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1874          (!EndDependent &&
1875           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1876        Invalid = true;
1877      else {
1878        // Make sure we're comparing values with the same bit width.
1879        if (StartDependent || EndDependent) {
1880          // Nothing to compute.
1881        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1882          EndValue = EndValue.extend(StartValue.getBitWidth());
1883        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1884          StartValue = StartValue.extend(EndValue.getBitWidth());
1885
1886        if (!StartDependent && !EndDependent && EndValue < StartValue) {
1887          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1888            << StartValue.toString(10) << EndValue.toString(10)
1889            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1890          Invalid = true;
1891        } else {
1892          Designators.push_back(ASTDesignator(InitExpressions.size(),
1893                                              D.getLBracketLoc(),
1894                                              D.getEllipsisLoc(),
1895                                              D.getRBracketLoc()));
1896          InitExpressions.push_back(StartIndex);
1897          InitExpressions.push_back(EndIndex);
1898        }
1899      }
1900      break;
1901    }
1902    }
1903  }
1904
1905  if (Invalid || Init.isInvalid())
1906    return ExprError();
1907
1908  // Clear out the expressions within the designation.
1909  Desig.ClearExprs(*this);
1910
1911  DesignatedInitExpr *DIE
1912    = DesignatedInitExpr::Create(Context,
1913                                 Designators.data(), Designators.size(),
1914                                 InitExpressions.data(), InitExpressions.size(),
1915                                 Loc, GNUSyntax, Init.takeAs<Expr>());
1916
1917  if (getLangOptions().CPlusPlus)
1918    Diag(DIE->getLocStart(), diag::ext_designated_init)
1919      << DIE->getSourceRange();
1920
1921  return Owned(DIE);
1922}
1923
1924bool Sema::CheckInitList(const InitializedEntity &Entity,
1925                         InitListExpr *&InitList, QualType &DeclType) {
1926  InitListChecker CheckInitList(*this, Entity, InitList, DeclType);
1927  if (!CheckInitList.HadError())
1928    InitList = CheckInitList.getFullyStructuredList();
1929
1930  return CheckInitList.HadError();
1931}
1932
1933//===----------------------------------------------------------------------===//
1934// Initialization entity
1935//===----------------------------------------------------------------------===//
1936
1937InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
1938                                     const InitializedEntity &Parent)
1939  : Parent(&Parent), Index(Index)
1940{
1941  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
1942    Kind = EK_ArrayElement;
1943    Type = AT->getElementType();
1944  } else {
1945    Kind = EK_VectorElement;
1946    Type = Parent.getType()->getAs<VectorType>()->getElementType();
1947  }
1948}
1949
1950InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
1951                                                    CXXBaseSpecifier *Base,
1952                                                    bool IsInheritedVirtualBase)
1953{
1954  InitializedEntity Result;
1955  Result.Kind = EK_Base;
1956  Result.Base = reinterpret_cast<uintptr_t>(Base);
1957  if (IsInheritedVirtualBase)
1958    Result.Base |= 0x01;
1959
1960  Result.Type = Base->getType();
1961  return Result;
1962}
1963
1964DeclarationName InitializedEntity::getName() const {
1965  switch (getKind()) {
1966  case EK_Parameter:
1967    if (!VariableOrMember)
1968      return DeclarationName();
1969    // Fall through
1970
1971  case EK_Variable:
1972  case EK_Member:
1973    return VariableOrMember->getDeclName();
1974
1975  case EK_Result:
1976  case EK_Exception:
1977  case EK_New:
1978  case EK_Temporary:
1979  case EK_Base:
1980  case EK_ArrayElement:
1981  case EK_VectorElement:
1982  case EK_BlockElement:
1983    return DeclarationName();
1984  }
1985
1986  // Silence GCC warning
1987  return DeclarationName();
1988}
1989
1990DeclaratorDecl *InitializedEntity::getDecl() const {
1991  switch (getKind()) {
1992  case EK_Variable:
1993  case EK_Parameter:
1994  case EK_Member:
1995    return VariableOrMember;
1996
1997  case EK_Result:
1998  case EK_Exception:
1999  case EK_New:
2000  case EK_Temporary:
2001  case EK_Base:
2002  case EK_ArrayElement:
2003  case EK_VectorElement:
2004  case EK_BlockElement:
2005    return 0;
2006  }
2007
2008  // Silence GCC warning
2009  return 0;
2010}
2011
2012bool InitializedEntity::allowsNRVO() const {
2013  switch (getKind()) {
2014  case EK_Result:
2015  case EK_Exception:
2016    return LocAndNRVO.NRVO;
2017
2018  case EK_Variable:
2019  case EK_Parameter:
2020  case EK_Member:
2021  case EK_New:
2022  case EK_Temporary:
2023  case EK_Base:
2024  case EK_ArrayElement:
2025  case EK_VectorElement:
2026  case EK_BlockElement:
2027    break;
2028  }
2029
2030  return false;
2031}
2032
2033//===----------------------------------------------------------------------===//
2034// Initialization sequence
2035//===----------------------------------------------------------------------===//
2036
2037void InitializationSequence::Step::Destroy() {
2038  switch (Kind) {
2039  case SK_ResolveAddressOfOverloadedFunction:
2040  case SK_CastDerivedToBaseRValue:
2041  case SK_CastDerivedToBaseXValue:
2042  case SK_CastDerivedToBaseLValue:
2043  case SK_BindReference:
2044  case SK_BindReferenceToTemporary:
2045  case SK_ExtraneousCopyToTemporary:
2046  case SK_UserConversion:
2047  case SK_QualificationConversionRValue:
2048  case SK_QualificationConversionXValue:
2049  case SK_QualificationConversionLValue:
2050  case SK_ListInitialization:
2051  case SK_ConstructorInitialization:
2052  case SK_ZeroInitialization:
2053  case SK_CAssignment:
2054  case SK_StringInit:
2055  case SK_ObjCObjectConversion:
2056    break;
2057
2058  case SK_ConversionSequence:
2059    delete ICS;
2060  }
2061}
2062
2063bool InitializationSequence::isDirectReferenceBinding() const {
2064  return getKind() == ReferenceBinding && Steps.back().Kind == SK_BindReference;
2065}
2066
2067bool InitializationSequence::isAmbiguous() const {
2068  if (getKind() != FailedSequence)
2069    return false;
2070
2071  switch (getFailureKind()) {
2072  case FK_TooManyInitsForReference:
2073  case FK_ArrayNeedsInitList:
2074  case FK_ArrayNeedsInitListOrStringLiteral:
2075  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2076  case FK_NonConstLValueReferenceBindingToTemporary:
2077  case FK_NonConstLValueReferenceBindingToUnrelated:
2078  case FK_RValueReferenceBindingToLValue:
2079  case FK_ReferenceInitDropsQualifiers:
2080  case FK_ReferenceInitFailed:
2081  case FK_ConversionFailed:
2082  case FK_TooManyInitsForScalar:
2083  case FK_ReferenceBindingToInitList:
2084  case FK_InitListBadDestinationType:
2085  case FK_DefaultInitOfConst:
2086  case FK_Incomplete:
2087    return false;
2088
2089  case FK_ReferenceInitOverloadFailed:
2090  case FK_UserConversionOverloadFailed:
2091  case FK_ConstructorOverloadFailed:
2092    return FailedOverloadResult == OR_Ambiguous;
2093  }
2094
2095  return false;
2096}
2097
2098bool InitializationSequence::isConstructorInitialization() const {
2099  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2100}
2101
2102void InitializationSequence::AddAddressOverloadResolutionStep(
2103                                                      FunctionDecl *Function,
2104                                                      DeclAccessPair Found) {
2105  Step S;
2106  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2107  S.Type = Function->getType();
2108  S.Function.Function = Function;
2109  S.Function.FoundDecl = Found;
2110  Steps.push_back(S);
2111}
2112
2113void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2114                                                      ExprValueKind VK) {
2115  Step S;
2116  switch (VK) {
2117  case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2118  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2119  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2120  default: llvm_unreachable("No such category");
2121  }
2122  S.Type = BaseType;
2123  Steps.push_back(S);
2124}
2125
2126void InitializationSequence::AddReferenceBindingStep(QualType T,
2127                                                     bool BindingTemporary) {
2128  Step S;
2129  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2130  S.Type = T;
2131  Steps.push_back(S);
2132}
2133
2134void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2135  Step S;
2136  S.Kind = SK_ExtraneousCopyToTemporary;
2137  S.Type = T;
2138  Steps.push_back(S);
2139}
2140
2141void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2142                                                   DeclAccessPair FoundDecl,
2143                                                   QualType T) {
2144  Step S;
2145  S.Kind = SK_UserConversion;
2146  S.Type = T;
2147  S.Function.Function = Function;
2148  S.Function.FoundDecl = FoundDecl;
2149  Steps.push_back(S);
2150}
2151
2152void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2153                                                            ExprValueKind VK) {
2154  Step S;
2155  S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2156  switch (VK) {
2157  case VK_RValue:
2158    S.Kind = SK_QualificationConversionRValue;
2159    break;
2160  case VK_XValue:
2161    S.Kind = SK_QualificationConversionXValue;
2162    break;
2163  case VK_LValue:
2164    S.Kind = SK_QualificationConversionLValue;
2165    break;
2166  }
2167  S.Type = Ty;
2168  Steps.push_back(S);
2169}
2170
2171void InitializationSequence::AddConversionSequenceStep(
2172                                       const ImplicitConversionSequence &ICS,
2173                                                       QualType T) {
2174  Step S;
2175  S.Kind = SK_ConversionSequence;
2176  S.Type = T;
2177  S.ICS = new ImplicitConversionSequence(ICS);
2178  Steps.push_back(S);
2179}
2180
2181void InitializationSequence::AddListInitializationStep(QualType T) {
2182  Step S;
2183  S.Kind = SK_ListInitialization;
2184  S.Type = T;
2185  Steps.push_back(S);
2186}
2187
2188void
2189InitializationSequence::AddConstructorInitializationStep(
2190                                              CXXConstructorDecl *Constructor,
2191                                                       AccessSpecifier Access,
2192                                                         QualType T) {
2193  Step S;
2194  S.Kind = SK_ConstructorInitialization;
2195  S.Type = T;
2196  S.Function.Function = Constructor;
2197  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2198  Steps.push_back(S);
2199}
2200
2201void InitializationSequence::AddZeroInitializationStep(QualType T) {
2202  Step S;
2203  S.Kind = SK_ZeroInitialization;
2204  S.Type = T;
2205  Steps.push_back(S);
2206}
2207
2208void InitializationSequence::AddCAssignmentStep(QualType T) {
2209  Step S;
2210  S.Kind = SK_CAssignment;
2211  S.Type = T;
2212  Steps.push_back(S);
2213}
2214
2215void InitializationSequence::AddStringInitStep(QualType T) {
2216  Step S;
2217  S.Kind = SK_StringInit;
2218  S.Type = T;
2219  Steps.push_back(S);
2220}
2221
2222void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2223  Step S;
2224  S.Kind = SK_ObjCObjectConversion;
2225  S.Type = T;
2226  Steps.push_back(S);
2227}
2228
2229void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2230                                                OverloadingResult Result) {
2231  SequenceKind = FailedSequence;
2232  this->Failure = Failure;
2233  this->FailedOverloadResult = Result;
2234}
2235
2236//===----------------------------------------------------------------------===//
2237// Attempt initialization
2238//===----------------------------------------------------------------------===//
2239
2240/// \brief Attempt list initialization (C++0x [dcl.init.list])
2241static void TryListInitialization(Sema &S,
2242                                  const InitializedEntity &Entity,
2243                                  const InitializationKind &Kind,
2244                                  InitListExpr *InitList,
2245                                  InitializationSequence &Sequence) {
2246  // FIXME: We only perform rudimentary checking of list
2247  // initializations at this point, then assume that any list
2248  // initialization of an array, aggregate, or scalar will be
2249  // well-formed. When we actually "perform" list initialization, we'll
2250  // do all of the necessary checking.  C++0x initializer lists will
2251  // force us to perform more checking here.
2252  Sequence.setSequenceKind(InitializationSequence::ListInitialization);
2253
2254  QualType DestType = Entity.getType();
2255
2256  // C++ [dcl.init]p13:
2257  //   If T is a scalar type, then a declaration of the form
2258  //
2259  //     T x = { a };
2260  //
2261  //   is equivalent to
2262  //
2263  //     T x = a;
2264  if (DestType->isScalarType()) {
2265    if (InitList->getNumInits() > 1 && S.getLangOptions().CPlusPlus) {
2266      Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
2267      return;
2268    }
2269
2270    // Assume scalar initialization from a single value works.
2271  } else if (DestType->isAggregateType()) {
2272    // Assume aggregate initialization works.
2273  } else if (DestType->isVectorType()) {
2274    // Assume vector initialization works.
2275  } else if (DestType->isReferenceType()) {
2276    // FIXME: C++0x defines behavior for this.
2277    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2278    return;
2279  } else if (DestType->isRecordType()) {
2280    // FIXME: C++0x defines behavior for this
2281    Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
2282  }
2283
2284  // Add a general "list initialization" step.
2285  Sequence.AddListInitializationStep(DestType);
2286}
2287
2288/// \brief Try a reference initialization that involves calling a conversion
2289/// function.
2290static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
2291                                             const InitializedEntity &Entity,
2292                                             const InitializationKind &Kind,
2293                                                          Expr *Initializer,
2294                                                          bool AllowRValues,
2295                                             InitializationSequence &Sequence) {
2296  QualType DestType = Entity.getType();
2297  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2298  QualType T1 = cv1T1.getUnqualifiedType();
2299  QualType cv2T2 = Initializer->getType();
2300  QualType T2 = cv2T2.getUnqualifiedType();
2301
2302  bool DerivedToBase;
2303  bool ObjCConversion;
2304  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
2305                                         T1, T2, DerivedToBase,
2306                                         ObjCConversion) &&
2307         "Must have incompatible references when binding via conversion");
2308  (void)DerivedToBase;
2309  (void)ObjCConversion;
2310
2311  // Build the candidate set directly in the initialization sequence
2312  // structure, so that it will persist if we fail.
2313  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2314  CandidateSet.clear();
2315
2316  // Determine whether we are allowed to call explicit constructors or
2317  // explicit conversion operators.
2318  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2319
2320  const RecordType *T1RecordType = 0;
2321  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
2322      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
2323    // The type we're converting to is a class type. Enumerate its constructors
2324    // to see if there is a suitable conversion.
2325    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
2326
2327    DeclContext::lookup_iterator Con, ConEnd;
2328    for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
2329         Con != ConEnd; ++Con) {
2330      NamedDecl *D = *Con;
2331      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2332
2333      // Find the constructor (which may be a template).
2334      CXXConstructorDecl *Constructor = 0;
2335      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2336      if (ConstructorTmpl)
2337        Constructor = cast<CXXConstructorDecl>(
2338                                         ConstructorTmpl->getTemplatedDecl());
2339      else
2340        Constructor = cast<CXXConstructorDecl>(D);
2341
2342      if (!Constructor->isInvalidDecl() &&
2343          Constructor->isConvertingConstructor(AllowExplicit)) {
2344        if (ConstructorTmpl)
2345          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2346                                         /*ExplicitArgs*/ 0,
2347                                         &Initializer, 1, CandidateSet,
2348                                         /*SuppressUserConversions=*/true);
2349        else
2350          S.AddOverloadCandidate(Constructor, FoundDecl,
2351                                 &Initializer, 1, CandidateSet,
2352                                 /*SuppressUserConversions=*/true);
2353      }
2354    }
2355  }
2356  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
2357    return OR_No_Viable_Function;
2358
2359  const RecordType *T2RecordType = 0;
2360  if ((T2RecordType = T2->getAs<RecordType>()) &&
2361      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
2362    // The type we're converting from is a class type, enumerate its conversion
2363    // functions.
2364    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
2365
2366    const UnresolvedSetImpl *Conversions
2367      = T2RecordDecl->getVisibleConversionFunctions();
2368    for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2369           E = Conversions->end(); I != E; ++I) {
2370      NamedDecl *D = *I;
2371      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2372      if (isa<UsingShadowDecl>(D))
2373        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2374
2375      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2376      CXXConversionDecl *Conv;
2377      if (ConvTemplate)
2378        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2379      else
2380        Conv = cast<CXXConversionDecl>(D);
2381
2382      // If the conversion function doesn't return a reference type,
2383      // it can't be considered for this conversion unless we're allowed to
2384      // consider rvalues.
2385      // FIXME: Do we need to make sure that we only consider conversion
2386      // candidates with reference-compatible results? That might be needed to
2387      // break recursion.
2388      if ((AllowExplicit || !Conv->isExplicit()) &&
2389          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
2390        if (ConvTemplate)
2391          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2392                                           ActingDC, Initializer,
2393                                           DestType, CandidateSet);
2394        else
2395          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2396                                   Initializer, DestType, CandidateSet);
2397      }
2398    }
2399  }
2400  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
2401    return OR_No_Viable_Function;
2402
2403  SourceLocation DeclLoc = Initializer->getLocStart();
2404
2405  // Perform overload resolution. If it fails, return the failed result.
2406  OverloadCandidateSet::iterator Best;
2407  if (OverloadingResult Result
2408        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
2409    return Result;
2410
2411  FunctionDecl *Function = Best->Function;
2412
2413  // Compute the returned type of the conversion.
2414  if (isa<CXXConversionDecl>(Function))
2415    T2 = Function->getResultType();
2416  else
2417    T2 = cv1T1;
2418
2419  // Add the user-defined conversion step.
2420  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
2421                                 T2.getNonLValueExprType(S.Context));
2422
2423  // Determine whether we need to perform derived-to-base or
2424  // cv-qualification adjustments.
2425  ExprValueKind VK = VK_RValue;
2426  if (T2->isLValueReferenceType())
2427    VK = VK_LValue;
2428  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
2429    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
2430
2431  bool NewDerivedToBase = false;
2432  bool NewObjCConversion = false;
2433  Sema::ReferenceCompareResult NewRefRelationship
2434    = S.CompareReferenceRelationship(DeclLoc, T1,
2435                                     T2.getNonLValueExprType(S.Context),
2436                                     NewDerivedToBase, NewObjCConversion);
2437  if (NewRefRelationship == Sema::Ref_Incompatible) {
2438    // If the type we've converted to is not reference-related to the
2439    // type we're looking for, then there is another conversion step
2440    // we need to perform to produce a temporary of the right type
2441    // that we'll be binding to.
2442    ImplicitConversionSequence ICS;
2443    ICS.setStandard();
2444    ICS.Standard = Best->FinalConversion;
2445    T2 = ICS.Standard.getToType(2);
2446    Sequence.AddConversionSequenceStep(ICS, T2);
2447  } else if (NewDerivedToBase)
2448    Sequence.AddDerivedToBaseCastStep(
2449                                S.Context.getQualifiedType(T1,
2450                                  T2.getNonReferenceType().getQualifiers()),
2451                                      VK);
2452  else if (NewObjCConversion)
2453    Sequence.AddObjCObjectConversionStep(
2454                                S.Context.getQualifiedType(T1,
2455                                  T2.getNonReferenceType().getQualifiers()));
2456
2457  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
2458    Sequence.AddQualificationConversionStep(cv1T1, VK);
2459
2460  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
2461  return OR_Success;
2462}
2463
2464/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
2465static void TryReferenceInitialization(Sema &S,
2466                                       const InitializedEntity &Entity,
2467                                       const InitializationKind &Kind,
2468                                       Expr *Initializer,
2469                                       InitializationSequence &Sequence) {
2470  Sequence.setSequenceKind(InitializationSequence::ReferenceBinding);
2471
2472  QualType DestType = Entity.getType();
2473  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2474  Qualifiers T1Quals;
2475  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2476  QualType cv2T2 = Initializer->getType();
2477  Qualifiers T2Quals;
2478  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
2479  SourceLocation DeclLoc = Initializer->getLocStart();
2480
2481  // If the initializer is the address of an overloaded function, try
2482  // to resolve the overloaded function. If all goes well, T2 is the
2483  // type of the resulting function.
2484  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2485    DeclAccessPair Found;
2486    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
2487                                                                T1,
2488                                                                false,
2489                                                                Found)) {
2490      Sequence.AddAddressOverloadResolutionStep(Fn, Found);
2491      cv2T2 = Fn->getType();
2492      T2 = cv2T2.getUnqualifiedType();
2493    } else if (!T1->isRecordType()) {
2494      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2495      return;
2496    }
2497  }
2498
2499  // Compute some basic properties of the types and the initializer.
2500  bool isLValueRef = DestType->isLValueReferenceType();
2501  bool isRValueRef = !isLValueRef;
2502  bool DerivedToBase = false;
2503  bool ObjCConversion = false;
2504  Expr::Classification InitCategory = Initializer->Classify(S.Context);
2505  Sema::ReferenceCompareResult RefRelationship
2506    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
2507                                     ObjCConversion);
2508
2509  // C++0x [dcl.init.ref]p5:
2510  //   A reference to type "cv1 T1" is initialized by an expression of type
2511  //   "cv2 T2" as follows:
2512  //
2513  //     - If the reference is an lvalue reference and the initializer
2514  //       expression
2515  // Note the analogous bullet points for rvlaue refs to functions. Because
2516  // there are no function rvalues in C++, rvalue refs to functions are treated
2517  // like lvalue refs.
2518  OverloadingResult ConvOvlResult = OR_Success;
2519  bool T1Function = T1->isFunctionType();
2520  if (isLValueRef || T1Function) {
2521    if (InitCategory.isLValue() &&
2522        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2523      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
2524      //     reference-compatible with "cv2 T2," or
2525      //
2526      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
2527      // bit-field when we're determining whether the reference initialization
2528      // can occur. However, we do pay attention to whether it is a bit-field
2529      // to decide whether we're actually binding to a temporary created from
2530      // the bit-field.
2531      if (DerivedToBase)
2532        Sequence.AddDerivedToBaseCastStep(
2533                         S.Context.getQualifiedType(T1, T2Quals),
2534                         VK_LValue);
2535      else if (ObjCConversion)
2536        Sequence.AddObjCObjectConversionStep(
2537                                     S.Context.getQualifiedType(T1, T2Quals));
2538
2539      if (T1Quals != T2Quals)
2540        Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
2541      bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
2542        (Initializer->getBitField() || Initializer->refersToVectorElement());
2543      Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
2544      return;
2545    }
2546
2547    //     - has a class type (i.e., T2 is a class type), where T1 is not
2548    //       reference-related to T2, and can be implicitly converted to an
2549    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
2550    //       with "cv3 T3" (this conversion is selected by enumerating the
2551    //       applicable conversion functions (13.3.1.6) and choosing the best
2552    //       one through overload resolution (13.3)),
2553    // If we have an rvalue ref to function type here, the rhs must be
2554    // an rvalue.
2555    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
2556        (isLValueRef || InitCategory.isRValue())) {
2557      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
2558                                                       Initializer,
2559                                                   /*AllowRValues=*/isRValueRef,
2560                                                       Sequence);
2561      if (ConvOvlResult == OR_Success)
2562        return;
2563      if (ConvOvlResult != OR_No_Viable_Function) {
2564        Sequence.SetOverloadFailure(
2565                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2566                                    ConvOvlResult);
2567      }
2568    }
2569  }
2570
2571  //     - Otherwise, the reference shall be an lvalue reference to a
2572  //       non-volatile const type (i.e., cv1 shall be const), or the reference
2573  //       shall be an rvalue reference.
2574  if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
2575    if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
2576      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2577    else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2578      Sequence.SetOverloadFailure(
2579                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2580                                  ConvOvlResult);
2581    else
2582      Sequence.SetFailed(InitCategory.isLValue()
2583        ? (RefRelationship == Sema::Ref_Related
2584             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
2585             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
2586        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
2587
2588    return;
2589  }
2590
2591  //    - If the initializer expression
2592  //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
2593  //        "cv1 T1" is reference-compatible with "cv2 T2"
2594  // Note: functions are handled below.
2595  if (!T1Function &&
2596      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
2597      (InitCategory.isXValue() ||
2598       (InitCategory.isPRValue() && T2->isRecordType()) ||
2599       (InitCategory.isPRValue() && T2->isArrayType()))) {
2600    ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
2601    if (InitCategory.isPRValue() && T2->isRecordType()) {
2602      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
2603      // compiler the freedom to perform a copy here or bind to the
2604      // object, while C++0x requires that we bind directly to the
2605      // object. Hence, we always bind to the object without making an
2606      // extra copy. However, in C++03 requires that we check for the
2607      // presence of a suitable copy constructor:
2608      //
2609      //   The constructor that would be used to make the copy shall
2610      //   be callable whether or not the copy is actually done.
2611      if (!S.getLangOptions().CPlusPlus0x && !S.getLangOptions().Microsoft)
2612        Sequence.AddExtraneousCopyToTemporary(cv2T2);
2613    }
2614
2615    if (DerivedToBase)
2616      Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
2617                                        ValueKind);
2618    else if (ObjCConversion)
2619      Sequence.AddObjCObjectConversionStep(
2620                                       S.Context.getQualifiedType(T1, T2Quals));
2621
2622    if (T1Quals != T2Quals)
2623      Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
2624    Sequence.AddReferenceBindingStep(cv1T1,
2625         /*bindingTemporary=*/(InitCategory.isPRValue() && !T2->isArrayType()));
2626    return;
2627  }
2628
2629  //       - has a class type (i.e., T2 is a class type), where T1 is not
2630  //         reference-related to T2, and can be implicitly converted to an
2631  //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
2632  //         where "cv1 T1" is reference-compatible with "cv3 T3",
2633  //
2634  // FIXME: Need to handle xvalue, class prvalue, etc. cases in
2635  // TryRefInitWithConversionFunction.
2636  if (T2->isRecordType()) {
2637    if (RefRelationship == Sema::Ref_Incompatible) {
2638      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
2639                                                       Kind, Initializer,
2640                                                       /*AllowRValues=*/true,
2641                                                       Sequence);
2642      if (ConvOvlResult)
2643        Sequence.SetOverloadFailure(
2644                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2645                                    ConvOvlResult);
2646
2647      return;
2648    }
2649
2650    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2651    return;
2652  }
2653
2654  //      - Otherwise, a temporary of type “cv1 T1” is created and initialized
2655  //        from the initializer expression using the rules for a non-reference
2656  //        copy initialization (8.5). The reference is then bound to the
2657  //        temporary. [...]
2658
2659  // Determine whether we are allowed to call explicit constructors or
2660  // explicit conversion operators.
2661  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
2662
2663  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
2664
2665  if (S.TryImplicitConversion(Sequence, TempEntity, Initializer,
2666                              /*SuppressUserConversions*/ false,
2667                              AllowExplicit,
2668                              /*FIXME:InOverloadResolution=*/false)) {
2669    // FIXME: Use the conversion function set stored in ICS to turn
2670    // this into an overloading ambiguity diagnostic. However, we need
2671    // to keep that set as an OverloadCandidateSet rather than as some
2672    // other kind of set.
2673    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2674      Sequence.SetOverloadFailure(
2675                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2676                                  ConvOvlResult);
2677    else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
2678      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2679    else
2680      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
2681    return;
2682  }
2683
2684  //        [...] If T1 is reference-related to T2, cv1 must be the
2685  //        same cv-qualification as, or greater cv-qualification
2686  //        than, cv2; otherwise, the program is ill-formed.
2687  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
2688  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
2689  if (RefRelationship == Sema::Ref_Related &&
2690      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
2691    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2692    return;
2693  }
2694
2695  //   [...] If T1 is reference-related to T2 and the reference is an rvalue
2696  //   reference, the initializer expression shall not be an lvalue.
2697  if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
2698      InitCategory.isLValue()) {
2699    Sequence.SetFailed(
2700                    InitializationSequence::FK_RValueReferenceBindingToLValue);
2701    return;
2702  }
2703
2704  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2705  return;
2706}
2707
2708/// \brief Attempt character array initialization from a string literal
2709/// (C++ [dcl.init.string], C99 6.7.8).
2710static void TryStringLiteralInitialization(Sema &S,
2711                                           const InitializedEntity &Entity,
2712                                           const InitializationKind &Kind,
2713                                           Expr *Initializer,
2714                                       InitializationSequence &Sequence) {
2715  Sequence.setSequenceKind(InitializationSequence::StringInit);
2716  Sequence.AddStringInitStep(Entity.getType());
2717}
2718
2719/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2720/// enumerates the constructors of the initialized entity and performs overload
2721/// resolution to select the best.
2722static void TryConstructorInitialization(Sema &S,
2723                                         const InitializedEntity &Entity,
2724                                         const InitializationKind &Kind,
2725                                         Expr **Args, unsigned NumArgs,
2726                                         QualType DestType,
2727                                         InitializationSequence &Sequence) {
2728  Sequence.setSequenceKind(InitializationSequence::ConstructorInitialization);
2729
2730  // Build the candidate set directly in the initialization sequence
2731  // structure, so that it will persist if we fail.
2732  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2733  CandidateSet.clear();
2734
2735  // Determine whether we are allowed to call explicit constructors or
2736  // explicit conversion operators.
2737  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
2738                        Kind.getKind() == InitializationKind::IK_Value ||
2739                        Kind.getKind() == InitializationKind::IK_Default);
2740
2741  // The type we're constructing needs to be complete.
2742  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2743    Sequence.SetFailed(InitializationSequence::FK_Incomplete);
2744    return;
2745  }
2746
2747  // The type we're converting to is a class type. Enumerate its constructors
2748  // to see if one is suitable.
2749  const RecordType *DestRecordType = DestType->getAs<RecordType>();
2750  assert(DestRecordType && "Constructor initialization requires record type");
2751  CXXRecordDecl *DestRecordDecl
2752    = cast<CXXRecordDecl>(DestRecordType->getDecl());
2753
2754  DeclContext::lookup_iterator Con, ConEnd;
2755  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
2756       Con != ConEnd; ++Con) {
2757    NamedDecl *D = *Con;
2758    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2759    bool SuppressUserConversions = false;
2760
2761    // Find the constructor (which may be a template).
2762    CXXConstructorDecl *Constructor = 0;
2763    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2764    if (ConstructorTmpl)
2765      Constructor = cast<CXXConstructorDecl>(
2766                                           ConstructorTmpl->getTemplatedDecl());
2767    else {
2768      Constructor = cast<CXXConstructorDecl>(D);
2769
2770      // If we're performing copy initialization using a copy constructor, we
2771      // suppress user-defined conversions on the arguments.
2772      // FIXME: Move constructors?
2773      if (Kind.getKind() == InitializationKind::IK_Copy &&
2774          Constructor->isCopyConstructor())
2775        SuppressUserConversions = true;
2776    }
2777
2778    if (!Constructor->isInvalidDecl() &&
2779        (AllowExplicit || !Constructor->isExplicit())) {
2780      if (ConstructorTmpl)
2781        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2782                                       /*ExplicitArgs*/ 0,
2783                                       Args, NumArgs, CandidateSet,
2784                                       SuppressUserConversions);
2785      else
2786        S.AddOverloadCandidate(Constructor, FoundDecl,
2787                               Args, NumArgs, CandidateSet,
2788                               SuppressUserConversions);
2789    }
2790  }
2791
2792  SourceLocation DeclLoc = Kind.getLocation();
2793
2794  // Perform overload resolution. If it fails, return the failed result.
2795  OverloadCandidateSet::iterator Best;
2796  if (OverloadingResult Result
2797        = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
2798    Sequence.SetOverloadFailure(
2799                          InitializationSequence::FK_ConstructorOverloadFailed,
2800                                Result);
2801    return;
2802  }
2803
2804  // C++0x [dcl.init]p6:
2805  //   If a program calls for the default initialization of an object
2806  //   of a const-qualified type T, T shall be a class type with a
2807  //   user-provided default constructor.
2808  if (Kind.getKind() == InitializationKind::IK_Default &&
2809      Entity.getType().isConstQualified() &&
2810      cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
2811    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2812    return;
2813  }
2814
2815  // Add the constructor initialization step. Any cv-qualification conversion is
2816  // subsumed by the initialization.
2817  Sequence.AddConstructorInitializationStep(
2818                                      cast<CXXConstructorDecl>(Best->Function),
2819                                      Best->FoundDecl.getAccess(),
2820                                      DestType);
2821}
2822
2823/// \brief Attempt value initialization (C++ [dcl.init]p7).
2824static void TryValueInitialization(Sema &S,
2825                                   const InitializedEntity &Entity,
2826                                   const InitializationKind &Kind,
2827                                   InitializationSequence &Sequence) {
2828  // C++ [dcl.init]p5:
2829  //
2830  //   To value-initialize an object of type T means:
2831  QualType T = Entity.getType();
2832
2833  //     -- if T is an array type, then each element is value-initialized;
2834  while (const ArrayType *AT = S.Context.getAsArrayType(T))
2835    T = AT->getElementType();
2836
2837  if (const RecordType *RT = T->getAs<RecordType>()) {
2838    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2839      // -- if T is a class type (clause 9) with a user-declared
2840      //    constructor (12.1), then the default constructor for T is
2841      //    called (and the initialization is ill-formed if T has no
2842      //    accessible default constructor);
2843      //
2844      // FIXME: we really want to refer to a single subobject of the array,
2845      // but Entity doesn't have a way to capture that (yet).
2846      if (ClassDecl->hasUserDeclaredConstructor())
2847        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2848
2849      // -- if T is a (possibly cv-qualified) non-union class type
2850      //    without a user-provided constructor, then the object is
2851      //    zero-initialized and, if T’s implicitly-declared default
2852      //    constructor is non-trivial, that constructor is called.
2853      if ((ClassDecl->getTagKind() == TTK_Class ||
2854           ClassDecl->getTagKind() == TTK_Struct)) {
2855        Sequence.AddZeroInitializationStep(Entity.getType());
2856        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2857      }
2858    }
2859  }
2860
2861  Sequence.AddZeroInitializationStep(Entity.getType());
2862  Sequence.setSequenceKind(InitializationSequence::ZeroInitialization);
2863}
2864
2865/// \brief Attempt default initialization (C++ [dcl.init]p6).
2866static void TryDefaultInitialization(Sema &S,
2867                                     const InitializedEntity &Entity,
2868                                     const InitializationKind &Kind,
2869                                     InitializationSequence &Sequence) {
2870  assert(Kind.getKind() == InitializationKind::IK_Default);
2871
2872  // C++ [dcl.init]p6:
2873  //   To default-initialize an object of type T means:
2874  //     - if T is an array type, each element is default-initialized;
2875  QualType DestType = Entity.getType();
2876  while (const ArrayType *Array = S.Context.getAsArrayType(DestType))
2877    DestType = Array->getElementType();
2878
2879  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
2880  //       constructor for T is called (and the initialization is ill-formed if
2881  //       T has no accessible default constructor);
2882  if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
2883    TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
2884    return;
2885  }
2886
2887  //     - otherwise, no initialization is performed.
2888  Sequence.setSequenceKind(InitializationSequence::NoInitialization);
2889
2890  //   If a program calls for the default initialization of an object of
2891  //   a const-qualified type T, T shall be a class type with a user-provided
2892  //   default constructor.
2893  if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus)
2894    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2895}
2896
2897/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
2898/// which enumerates all conversion functions and performs overload resolution
2899/// to select the best.
2900static void TryUserDefinedConversion(Sema &S,
2901                                     const InitializedEntity &Entity,
2902                                     const InitializationKind &Kind,
2903                                     Expr *Initializer,
2904                                     InitializationSequence &Sequence) {
2905  Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
2906
2907  QualType DestType = Entity.getType();
2908  assert(!DestType->isReferenceType() && "References are handled elsewhere");
2909  QualType SourceType = Initializer->getType();
2910  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
2911         "Must have a class type to perform a user-defined conversion");
2912
2913  // Build the candidate set directly in the initialization sequence
2914  // structure, so that it will persist if we fail.
2915  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2916  CandidateSet.clear();
2917
2918  // Determine whether we are allowed to call explicit constructors or
2919  // explicit conversion operators.
2920  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2921
2922  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
2923    // The type we're converting to is a class type. Enumerate its constructors
2924    // to see if there is a suitable conversion.
2925    CXXRecordDecl *DestRecordDecl
2926      = cast<CXXRecordDecl>(DestRecordType->getDecl());
2927
2928    // Try to complete the type we're converting to.
2929    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2930      DeclContext::lookup_iterator Con, ConEnd;
2931      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
2932           Con != ConEnd; ++Con) {
2933        NamedDecl *D = *Con;
2934        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2935
2936        // Find the constructor (which may be a template).
2937        CXXConstructorDecl *Constructor = 0;
2938        FunctionTemplateDecl *ConstructorTmpl
2939          = dyn_cast<FunctionTemplateDecl>(D);
2940        if (ConstructorTmpl)
2941          Constructor = cast<CXXConstructorDecl>(
2942                                           ConstructorTmpl->getTemplatedDecl());
2943        else
2944          Constructor = cast<CXXConstructorDecl>(D);
2945
2946        if (!Constructor->isInvalidDecl() &&
2947            Constructor->isConvertingConstructor(AllowExplicit)) {
2948          if (ConstructorTmpl)
2949            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2950                                           /*ExplicitArgs*/ 0,
2951                                           &Initializer, 1, CandidateSet,
2952                                           /*SuppressUserConversions=*/true);
2953          else
2954            S.AddOverloadCandidate(Constructor, FoundDecl,
2955                                   &Initializer, 1, CandidateSet,
2956                                   /*SuppressUserConversions=*/true);
2957        }
2958      }
2959    }
2960  }
2961
2962  SourceLocation DeclLoc = Initializer->getLocStart();
2963
2964  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
2965    // The type we're converting from is a class type, enumerate its conversion
2966    // functions.
2967
2968    // We can only enumerate the conversion functions for a complete type; if
2969    // the type isn't complete, simply skip this step.
2970    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
2971      CXXRecordDecl *SourceRecordDecl
2972        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
2973
2974      const UnresolvedSetImpl *Conversions
2975        = SourceRecordDecl->getVisibleConversionFunctions();
2976      for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2977           E = Conversions->end();
2978           I != E; ++I) {
2979        NamedDecl *D = *I;
2980        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2981        if (isa<UsingShadowDecl>(D))
2982          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2983
2984        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2985        CXXConversionDecl *Conv;
2986        if (ConvTemplate)
2987          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2988        else
2989          Conv = cast<CXXConversionDecl>(D);
2990
2991        if (AllowExplicit || !Conv->isExplicit()) {
2992          if (ConvTemplate)
2993            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2994                                             ActingDC, Initializer, DestType,
2995                                             CandidateSet);
2996          else
2997            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2998                                     Initializer, DestType, CandidateSet);
2999        }
3000      }
3001    }
3002  }
3003
3004  // Perform overload resolution. If it fails, return the failed result.
3005  OverloadCandidateSet::iterator Best;
3006  if (OverloadingResult Result
3007        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3008    Sequence.SetOverloadFailure(
3009                        InitializationSequence::FK_UserConversionOverloadFailed,
3010                                Result);
3011    return;
3012  }
3013
3014  FunctionDecl *Function = Best->Function;
3015
3016  if (isa<CXXConstructorDecl>(Function)) {
3017    // Add the user-defined conversion step. Any cv-qualification conversion is
3018    // subsumed by the initialization.
3019    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3020    return;
3021  }
3022
3023  // Add the user-defined conversion step that calls the conversion function.
3024  QualType ConvType = Function->getCallResultType();
3025  if (ConvType->getAs<RecordType>()) {
3026    // If we're converting to a class type, there may be an copy if
3027    // the resulting temporary object (possible to create an object of
3028    // a base class type). That copy is not a separate conversion, so
3029    // we just make a note of the actual destination type (possibly a
3030    // base class of the type returned by the conversion function) and
3031    // let the user-defined conversion step handle the conversion.
3032    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3033    return;
3034  }
3035
3036  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType);
3037
3038  // If the conversion following the call to the conversion function
3039  // is interesting, add it as a separate step.
3040  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3041      Best->FinalConversion.Third) {
3042    ImplicitConversionSequence ICS;
3043    ICS.setStandard();
3044    ICS.Standard = Best->FinalConversion;
3045    Sequence.AddConversionSequenceStep(ICS, DestType);
3046  }
3047}
3048
3049InitializationSequence::InitializationSequence(Sema &S,
3050                                               const InitializedEntity &Entity,
3051                                               const InitializationKind &Kind,
3052                                               Expr **Args,
3053                                               unsigned NumArgs)
3054    : FailedCandidateSet(Kind.getLocation()) {
3055  ASTContext &Context = S.Context;
3056
3057  // C++0x [dcl.init]p16:
3058  //   The semantics of initializers are as follows. The destination type is
3059  //   the type of the object or reference being initialized and the source
3060  //   type is the type of the initializer expression. The source type is not
3061  //   defined when the initializer is a braced-init-list or when it is a
3062  //   parenthesized list of expressions.
3063  QualType DestType = Entity.getType();
3064
3065  if (DestType->isDependentType() ||
3066      Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
3067    SequenceKind = DependentSequence;
3068    return;
3069  }
3070
3071  for (unsigned I = 0; I != NumArgs; ++I)
3072    if (Args[I]->getObjectKind() == OK_ObjCProperty)
3073      S.ConvertPropertyForRValue(Args[I]);
3074
3075  QualType SourceType;
3076  Expr *Initializer = 0;
3077  if (NumArgs == 1) {
3078    Initializer = Args[0];
3079    if (!isa<InitListExpr>(Initializer))
3080      SourceType = Initializer->getType();
3081  }
3082
3083  //     - If the initializer is a braced-init-list, the object is
3084  //       list-initialized (8.5.4).
3085  if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
3086    TryListInitialization(S, Entity, Kind, InitList, *this);
3087    return;
3088  }
3089
3090  //     - If the destination type is a reference type, see 8.5.3.
3091  if (DestType->isReferenceType()) {
3092    // C++0x [dcl.init.ref]p1:
3093    //   A variable declared to be a T& or T&&, that is, "reference to type T"
3094    //   (8.3.2), shall be initialized by an object, or function, of type T or
3095    //   by an object that can be converted into a T.
3096    // (Therefore, multiple arguments are not permitted.)
3097    if (NumArgs != 1)
3098      SetFailed(FK_TooManyInitsForReference);
3099    else
3100      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
3101    return;
3102  }
3103
3104  //     - If the destination type is an array of characters, an array of
3105  //       char16_t, an array of char32_t, or an array of wchar_t, and the
3106  //       initializer is a string literal, see 8.5.2.
3107  if (Initializer && IsStringInit(Initializer, DestType, Context)) {
3108    TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
3109    return;
3110  }
3111
3112  //     - If the initializer is (), the object is value-initialized.
3113  if (Kind.getKind() == InitializationKind::IK_Value ||
3114      (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
3115    TryValueInitialization(S, Entity, Kind, *this);
3116    return;
3117  }
3118
3119  // Handle default initialization.
3120  if (Kind.getKind() == InitializationKind::IK_Default) {
3121    TryDefaultInitialization(S, Entity, Kind, *this);
3122    return;
3123  }
3124
3125  //     - Otherwise, if the destination type is an array, the program is
3126  //       ill-formed.
3127  if (const ArrayType *AT = Context.getAsArrayType(DestType)) {
3128    if (AT->getElementType()->isAnyCharacterType())
3129      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
3130    else
3131      SetFailed(FK_ArrayNeedsInitList);
3132
3133    return;
3134  }
3135
3136  // Handle initialization in C
3137  if (!S.getLangOptions().CPlusPlus) {
3138    setSequenceKind(CAssignment);
3139    AddCAssignmentStep(DestType);
3140    return;
3141  }
3142
3143  //     - If the destination type is a (possibly cv-qualified) class type:
3144  if (DestType->isRecordType()) {
3145    //     - If the initialization is direct-initialization, or if it is
3146    //       copy-initialization where the cv-unqualified version of the
3147    //       source type is the same class as, or a derived class of, the
3148    //       class of the destination, constructors are considered. [...]
3149    if (Kind.getKind() == InitializationKind::IK_Direct ||
3150        (Kind.getKind() == InitializationKind::IK_Copy &&
3151         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
3152          S.IsDerivedFrom(SourceType, DestType))))
3153      TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
3154                                   Entity.getType(), *this);
3155    //     - Otherwise (i.e., for the remaining copy-initialization cases),
3156    //       user-defined conversion sequences that can convert from the source
3157    //       type to the destination type or (when a conversion function is
3158    //       used) to a derived class thereof are enumerated as described in
3159    //       13.3.1.4, and the best one is chosen through overload resolution
3160    //       (13.3).
3161    else
3162      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3163    return;
3164  }
3165
3166  if (NumArgs > 1) {
3167    SetFailed(FK_TooManyInitsForScalar);
3168    return;
3169  }
3170  assert(NumArgs == 1 && "Zero-argument case handled above");
3171
3172  //    - Otherwise, if the source type is a (possibly cv-qualified) class
3173  //      type, conversion functions are considered.
3174  if (!SourceType.isNull() && SourceType->isRecordType()) {
3175    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3176    return;
3177  }
3178
3179  //    - Otherwise, the initial value of the object being initialized is the
3180  //      (possibly converted) value of the initializer expression. Standard
3181  //      conversions (Clause 4) will be used, if necessary, to convert the
3182  //      initializer expression to the cv-unqualified version of the
3183  //      destination type; no user-defined conversions are considered.
3184  if (S.TryImplicitConversion(*this, Entity, Initializer,
3185                              /*SuppressUserConversions*/ true,
3186                              /*AllowExplicitConversions*/ false,
3187                              /*InOverloadResolution*/ false))
3188  {
3189    if (Initializer->getType() == Context.OverloadTy)
3190      SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3191    else
3192      SetFailed(InitializationSequence::FK_ConversionFailed);
3193  }
3194  else
3195    setSequenceKind(StandardConversion);
3196}
3197
3198InitializationSequence::~InitializationSequence() {
3199  for (llvm::SmallVectorImpl<Step>::iterator Step = Steps.begin(),
3200                                          StepEnd = Steps.end();
3201       Step != StepEnd; ++Step)
3202    Step->Destroy();
3203}
3204
3205//===----------------------------------------------------------------------===//
3206// Perform initialization
3207//===----------------------------------------------------------------------===//
3208static Sema::AssignmentAction
3209getAssignmentAction(const InitializedEntity &Entity) {
3210  switch(Entity.getKind()) {
3211  case InitializedEntity::EK_Variable:
3212  case InitializedEntity::EK_New:
3213  case InitializedEntity::EK_Exception:
3214  case InitializedEntity::EK_Base:
3215    return Sema::AA_Initializing;
3216
3217  case InitializedEntity::EK_Parameter:
3218    if (Entity.getDecl() &&
3219        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
3220      return Sema::AA_Sending;
3221
3222    return Sema::AA_Passing;
3223
3224  case InitializedEntity::EK_Result:
3225    return Sema::AA_Returning;
3226
3227  case InitializedEntity::EK_Temporary:
3228    // FIXME: Can we tell apart casting vs. converting?
3229    return Sema::AA_Casting;
3230
3231  case InitializedEntity::EK_Member:
3232  case InitializedEntity::EK_ArrayElement:
3233  case InitializedEntity::EK_VectorElement:
3234  case InitializedEntity::EK_BlockElement:
3235    return Sema::AA_Initializing;
3236  }
3237
3238  return Sema::AA_Converting;
3239}
3240
3241/// \brief Whether we should binding a created object as a temporary when
3242/// initializing the given entity.
3243static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
3244  switch (Entity.getKind()) {
3245  case InitializedEntity::EK_ArrayElement:
3246  case InitializedEntity::EK_Member:
3247  case InitializedEntity::EK_Result:
3248  case InitializedEntity::EK_New:
3249  case InitializedEntity::EK_Variable:
3250  case InitializedEntity::EK_Base:
3251  case InitializedEntity::EK_VectorElement:
3252  case InitializedEntity::EK_Exception:
3253  case InitializedEntity::EK_BlockElement:
3254    return false;
3255
3256  case InitializedEntity::EK_Parameter:
3257  case InitializedEntity::EK_Temporary:
3258    return true;
3259  }
3260
3261  llvm_unreachable("missed an InitializedEntity kind?");
3262}
3263
3264/// \brief Whether the given entity, when initialized with an object
3265/// created for that initialization, requires destruction.
3266static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
3267  switch (Entity.getKind()) {
3268    case InitializedEntity::EK_Member:
3269    case InitializedEntity::EK_Result:
3270    case InitializedEntity::EK_New:
3271    case InitializedEntity::EK_Base:
3272    case InitializedEntity::EK_VectorElement:
3273    case InitializedEntity::EK_BlockElement:
3274      return false;
3275
3276    case InitializedEntity::EK_Variable:
3277    case InitializedEntity::EK_Parameter:
3278    case InitializedEntity::EK_Temporary:
3279    case InitializedEntity::EK_ArrayElement:
3280    case InitializedEntity::EK_Exception:
3281      return true;
3282  }
3283
3284  llvm_unreachable("missed an InitializedEntity kind?");
3285}
3286
3287/// \brief Make a (potentially elidable) temporary copy of the object
3288/// provided by the given initializer by calling the appropriate copy
3289/// constructor.
3290///
3291/// \param S The Sema object used for type-checking.
3292///
3293/// \param T The type of the temporary object, which must either by
3294/// the type of the initializer expression or a superclass thereof.
3295///
3296/// \param Enter The entity being initialized.
3297///
3298/// \param CurInit The initializer expression.
3299///
3300/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
3301/// is permitted in C++03 (but not C++0x) when binding a reference to
3302/// an rvalue.
3303///
3304/// \returns An expression that copies the initializer expression into
3305/// a temporary object, or an error expression if a copy could not be
3306/// created.
3307static ExprResult CopyObject(Sema &S,
3308                             QualType T,
3309                             const InitializedEntity &Entity,
3310                             ExprResult CurInit,
3311                             bool IsExtraneousCopy) {
3312  // Determine which class type we're copying to.
3313  Expr *CurInitExpr = (Expr *)CurInit.get();
3314  CXXRecordDecl *Class = 0;
3315  if (const RecordType *Record = T->getAs<RecordType>())
3316    Class = cast<CXXRecordDecl>(Record->getDecl());
3317  if (!Class)
3318    return move(CurInit);
3319
3320  // C++0x [class.copy]p34:
3321  //   When certain criteria are met, an implementation is allowed to
3322  //   omit the copy/move construction of a class object, even if the
3323  //   copy/move constructor and/or destructor for the object have
3324  //   side effects. [...]
3325  //     - when a temporary class object that has not been bound to a
3326  //       reference (12.2) would be copied/moved to a class object
3327  //       with the same cv-unqualified type, the copy/move operation
3328  //       can be omitted by constructing the temporary object
3329  //       directly into the target of the omitted copy/move
3330  //
3331  // Note that the other three bullets are handled elsewhere. Copy
3332  // elision for return statements and throw expressions are handled as part
3333  // of constructor initialization, while copy elision for exception handlers
3334  // is handled by the run-time.
3335  bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
3336  SourceLocation Loc;
3337  switch (Entity.getKind()) {
3338  case InitializedEntity::EK_Result:
3339    Loc = Entity.getReturnLoc();
3340    break;
3341
3342  case InitializedEntity::EK_Exception:
3343    Loc = Entity.getThrowLoc();
3344    break;
3345
3346  case InitializedEntity::EK_Variable:
3347    Loc = Entity.getDecl()->getLocation();
3348    break;
3349
3350  case InitializedEntity::EK_ArrayElement:
3351  case InitializedEntity::EK_Member:
3352  case InitializedEntity::EK_Parameter:
3353  case InitializedEntity::EK_Temporary:
3354  case InitializedEntity::EK_New:
3355  case InitializedEntity::EK_Base:
3356  case InitializedEntity::EK_VectorElement:
3357  case InitializedEntity::EK_BlockElement:
3358    Loc = CurInitExpr->getLocStart();
3359    break;
3360  }
3361
3362  // Make sure that the type we are copying is complete.
3363  if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
3364    return move(CurInit);
3365
3366  // Perform overload resolution using the class's copy constructors.
3367  DeclContext::lookup_iterator Con, ConEnd;
3368  OverloadCandidateSet CandidateSet(Loc);
3369  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
3370       Con != ConEnd; ++Con) {
3371    // Only consider copy constructors and constructor templates. Per
3372    // C++0x [dcl.init]p16, second bullet to class types, this
3373    // initialization is direct-initialization.
3374    CXXConstructorDecl *Constructor = 0;
3375
3376    if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
3377      // Handle copy constructors, only.
3378      if (!Constructor || Constructor->isInvalidDecl() ||
3379          !Constructor->isCopyConstructor() ||
3380          !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
3381        continue;
3382
3383      DeclAccessPair FoundDecl
3384        = DeclAccessPair::make(Constructor, Constructor->getAccess());
3385      S.AddOverloadCandidate(Constructor, FoundDecl,
3386                             &CurInitExpr, 1, CandidateSet);
3387      continue;
3388    }
3389
3390    // Handle constructor templates.
3391    FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
3392    if (ConstructorTmpl->isInvalidDecl())
3393      continue;
3394
3395    Constructor = cast<CXXConstructorDecl>(
3396                                         ConstructorTmpl->getTemplatedDecl());
3397    if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
3398      continue;
3399
3400    // FIXME: Do we need to limit this to copy-constructor-like
3401    // candidates?
3402    DeclAccessPair FoundDecl
3403      = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
3404    S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
3405                                   &CurInitExpr, 1, CandidateSet, true);
3406  }
3407
3408  OverloadCandidateSet::iterator Best;
3409  switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
3410  case OR_Success:
3411    break;
3412
3413  case OR_No_Viable_Function:
3414    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
3415           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
3416           : diag::err_temp_copy_no_viable)
3417      << (int)Entity.getKind() << CurInitExpr->getType()
3418      << CurInitExpr->getSourceRange();
3419    CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1);
3420    if (!IsExtraneousCopy || S.isSFINAEContext())
3421      return ExprError();
3422    return move(CurInit);
3423
3424  case OR_Ambiguous:
3425    S.Diag(Loc, diag::err_temp_copy_ambiguous)
3426      << (int)Entity.getKind() << CurInitExpr->getType()
3427      << CurInitExpr->getSourceRange();
3428    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1);
3429    return ExprError();
3430
3431  case OR_Deleted:
3432    S.Diag(Loc, diag::err_temp_copy_deleted)
3433      << (int)Entity.getKind() << CurInitExpr->getType()
3434      << CurInitExpr->getSourceRange();
3435    S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3436      << Best->Function->isDeleted();
3437    return ExprError();
3438  }
3439
3440  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3441  ASTOwningVector<Expr*> ConstructorArgs(S);
3442  CurInit.release(); // Ownership transferred into MultiExprArg, below.
3443
3444  S.CheckConstructorAccess(Loc, Constructor, Entity,
3445                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
3446
3447  if (IsExtraneousCopy) {
3448    // If this is a totally extraneous copy for C++03 reference
3449    // binding purposes, just return the original initialization
3450    // expression. We don't generate an (elided) copy operation here
3451    // because doing so would require us to pass down a flag to avoid
3452    // infinite recursion, where each step adds another extraneous,
3453    // elidable copy.
3454
3455    // Instantiate the default arguments of any extra parameters in
3456    // the selected copy constructor, as if we were going to create a
3457    // proper call to the copy constructor.
3458    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
3459      ParmVarDecl *Parm = Constructor->getParamDecl(I);
3460      if (S.RequireCompleteType(Loc, Parm->getType(),
3461                                S.PDiag(diag::err_call_incomplete_argument)))
3462        break;
3463
3464      // Build the default argument expression; we don't actually care
3465      // if this succeeds or not, because this routine will complain
3466      // if there was a problem.
3467      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
3468    }
3469
3470    return S.Owned(CurInitExpr);
3471  }
3472
3473  // Determine the arguments required to actually perform the
3474  // constructor call (we might have derived-to-base conversions, or
3475  // the copy constructor may have default arguments).
3476  if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
3477                                Loc, ConstructorArgs))
3478    return ExprError();
3479
3480  // Actually perform the constructor call.
3481  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
3482                                    move_arg(ConstructorArgs),
3483                                    /*ZeroInit*/ false,
3484                                    CXXConstructExpr::CK_Complete,
3485                                    SourceRange());
3486
3487  // If we're supposed to bind temporaries, do so.
3488  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
3489    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3490  return move(CurInit);
3491}
3492
3493void InitializationSequence::PrintInitLocationNote(Sema &S,
3494                                              const InitializedEntity &Entity) {
3495  if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
3496    if (Entity.getDecl()->getLocation().isInvalid())
3497      return;
3498
3499    if (Entity.getDecl()->getDeclName())
3500      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
3501        << Entity.getDecl()->getDeclName();
3502    else
3503      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
3504  }
3505}
3506
3507ExprResult
3508InitializationSequence::Perform(Sema &S,
3509                                const InitializedEntity &Entity,
3510                                const InitializationKind &Kind,
3511                                MultiExprArg Args,
3512                                QualType *ResultType) {
3513  if (SequenceKind == FailedSequence) {
3514    unsigned NumArgs = Args.size();
3515    Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
3516    return ExprError();
3517  }
3518
3519  if (SequenceKind == DependentSequence) {
3520    // If the declaration is a non-dependent, incomplete array type
3521    // that has an initializer, then its type will be completed once
3522    // the initializer is instantiated.
3523    if (ResultType && !Entity.getType()->isDependentType() &&
3524        Args.size() == 1) {
3525      QualType DeclType = Entity.getType();
3526      if (const IncompleteArrayType *ArrayT
3527                           = S.Context.getAsIncompleteArrayType(DeclType)) {
3528        // FIXME: We don't currently have the ability to accurately
3529        // compute the length of an initializer list without
3530        // performing full type-checking of the initializer list
3531        // (since we have to determine where braces are implicitly
3532        // introduced and such).  So, we fall back to making the array
3533        // type a dependently-sized array type with no specified
3534        // bound.
3535        if (isa<InitListExpr>((Expr *)Args.get()[0])) {
3536          SourceRange Brackets;
3537
3538          // Scavange the location of the brackets from the entity, if we can.
3539          if (DeclaratorDecl *DD = Entity.getDecl()) {
3540            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
3541              TypeLoc TL = TInfo->getTypeLoc();
3542              if (IncompleteArrayTypeLoc *ArrayLoc
3543                                      = dyn_cast<IncompleteArrayTypeLoc>(&TL))
3544              Brackets = ArrayLoc->getBracketsRange();
3545            }
3546          }
3547
3548          *ResultType
3549            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
3550                                                   /*NumElts=*/0,
3551                                                   ArrayT->getSizeModifier(),
3552                                       ArrayT->getIndexTypeCVRQualifiers(),
3553                                                   Brackets);
3554        }
3555
3556      }
3557    }
3558
3559    if (Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast())
3560      return ExprResult(Args.release()[0]);
3561
3562    if (Args.size() == 0)
3563      return S.Owned((Expr *)0);
3564
3565    unsigned NumArgs = Args.size();
3566    return S.Owned(new (S.Context) ParenListExpr(S.Context,
3567                                                 SourceLocation(),
3568                                                 (Expr **)Args.release(),
3569                                                 NumArgs,
3570                                                 SourceLocation()));
3571  }
3572
3573  if (SequenceKind == NoInitialization)
3574    return S.Owned((Expr *)0);
3575
3576  QualType DestType = Entity.getType().getNonReferenceType();
3577  // FIXME: Ugly hack around the fact that Entity.getType() is not
3578  // the same as Entity.getDecl()->getType() in cases involving type merging,
3579  //  and we want latter when it makes sense.
3580  if (ResultType)
3581    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
3582                                     Entity.getType();
3583
3584  ExprResult CurInit = S.Owned((Expr *)0);
3585
3586  assert(!Steps.empty() && "Cannot have an empty initialization sequence");
3587
3588  // For initialization steps that start with a single initializer,
3589  // grab the only argument out the Args and place it into the "current"
3590  // initializer.
3591  switch (Steps.front().Kind) {
3592  case SK_ResolveAddressOfOverloadedFunction:
3593  case SK_CastDerivedToBaseRValue:
3594  case SK_CastDerivedToBaseXValue:
3595  case SK_CastDerivedToBaseLValue:
3596  case SK_BindReference:
3597  case SK_BindReferenceToTemporary:
3598  case SK_ExtraneousCopyToTemporary:
3599  case SK_UserConversion:
3600  case SK_QualificationConversionLValue:
3601  case SK_QualificationConversionXValue:
3602  case SK_QualificationConversionRValue:
3603  case SK_ConversionSequence:
3604  case SK_ListInitialization:
3605  case SK_CAssignment:
3606  case SK_StringInit:
3607  case SK_ObjCObjectConversion: {
3608    assert(Args.size() == 1);
3609    Expr *CurInitExpr = Args.get()[0];
3610    if (!CurInitExpr) return ExprError();
3611
3612    // Read from a property when initializing something with it.
3613    if (CurInitExpr->getObjectKind() == OK_ObjCProperty)
3614      S.ConvertPropertyForRValue(CurInitExpr);
3615
3616    CurInit = ExprResult(CurInitExpr);
3617    break;
3618  }
3619
3620  case SK_ConstructorInitialization:
3621  case SK_ZeroInitialization:
3622    break;
3623  }
3624
3625  // Walk through the computed steps for the initialization sequence,
3626  // performing the specified conversions along the way.
3627  bool ConstructorInitRequiresZeroInit = false;
3628  for (step_iterator Step = step_begin(), StepEnd = step_end();
3629       Step != StepEnd; ++Step) {
3630    if (CurInit.isInvalid())
3631      return ExprError();
3632
3633    Expr *CurInitExpr = CurInit.get();
3634    QualType SourceType = CurInitExpr? CurInitExpr->getType() : QualType();
3635
3636    switch (Step->Kind) {
3637    case SK_ResolveAddressOfOverloadedFunction:
3638      // Overload resolution determined which function invoke; update the
3639      // initializer to reflect that choice.
3640      S.CheckAddressOfMemberAccess(CurInitExpr, Step->Function.FoundDecl);
3641      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
3642      CurInit = S.FixOverloadedFunctionReference(move(CurInit),
3643                                                 Step->Function.FoundDecl,
3644                                                 Step->Function.Function);
3645      break;
3646
3647    case SK_CastDerivedToBaseRValue:
3648    case SK_CastDerivedToBaseXValue:
3649    case SK_CastDerivedToBaseLValue: {
3650      // We have a derived-to-base cast that produces either an rvalue or an
3651      // lvalue. Perform that cast.
3652
3653      CXXCastPath BasePath;
3654
3655      // Casts to inaccessible base classes are allowed with C-style casts.
3656      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3657      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
3658                                         CurInitExpr->getLocStart(),
3659                                         CurInitExpr->getSourceRange(),
3660                                         &BasePath, IgnoreBaseAccess))
3661        return ExprError();
3662
3663      if (S.BasePathInvolvesVirtualBase(BasePath)) {
3664        QualType T = SourceType;
3665        if (const PointerType *Pointer = T->getAs<PointerType>())
3666          T = Pointer->getPointeeType();
3667        if (const RecordType *RecordTy = T->getAs<RecordType>())
3668          S.MarkVTableUsed(CurInitExpr->getLocStart(),
3669                           cast<CXXRecordDecl>(RecordTy->getDecl()));
3670      }
3671
3672      ExprValueKind VK =
3673          Step->Kind == SK_CastDerivedToBaseLValue ?
3674              VK_LValue :
3675              (Step->Kind == SK_CastDerivedToBaseXValue ?
3676                   VK_XValue :
3677                   VK_RValue);
3678      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
3679                                                 Step->Type,
3680                                                 CK_DerivedToBase,
3681                                                 CurInit.get(),
3682                                                 &BasePath, VK));
3683      break;
3684    }
3685
3686    case SK_BindReference:
3687      if (FieldDecl *BitField = CurInitExpr->getBitField()) {
3688        // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
3689        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
3690          << Entity.getType().isVolatileQualified()
3691          << BitField->getDeclName()
3692          << CurInitExpr->getSourceRange();
3693        S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
3694        return ExprError();
3695      }
3696
3697      if (CurInitExpr->refersToVectorElement()) {
3698        // References cannot bind to vector elements.
3699        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
3700          << Entity.getType().isVolatileQualified()
3701          << CurInitExpr->getSourceRange();
3702        PrintInitLocationNote(S, Entity);
3703        return ExprError();
3704      }
3705
3706      // Reference binding does not have any corresponding ASTs.
3707
3708      // Check exception specifications
3709      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3710        return ExprError();
3711
3712      break;
3713
3714    case SK_BindReferenceToTemporary:
3715      // Reference binding does not have any corresponding ASTs.
3716
3717      // Check exception specifications
3718      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3719        return ExprError();
3720
3721      break;
3722
3723    case SK_ExtraneousCopyToTemporary:
3724      CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
3725                           /*IsExtraneousCopy=*/true);
3726      break;
3727
3728    case SK_UserConversion: {
3729      // We have a user-defined conversion that invokes either a constructor
3730      // or a conversion function.
3731      CastKind CastKind;
3732      bool IsCopy = false;
3733      FunctionDecl *Fn = Step->Function.Function;
3734      DeclAccessPair FoundFn = Step->Function.FoundDecl;
3735      bool CreatedObject = false;
3736      bool IsLvalue = false;
3737      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
3738        // Build a call to the selected constructor.
3739        ASTOwningVector<Expr*> ConstructorArgs(S);
3740        SourceLocation Loc = CurInitExpr->getLocStart();
3741        CurInit.release(); // Ownership transferred into MultiExprArg, below.
3742
3743        // Determine the arguments required to actually perform the constructor
3744        // call.
3745        if (S.CompleteConstructorCall(Constructor,
3746                                      MultiExprArg(&CurInitExpr, 1),
3747                                      Loc, ConstructorArgs))
3748          return ExprError();
3749
3750        // Build the an expression that constructs a temporary.
3751        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
3752                                          move_arg(ConstructorArgs),
3753                                          /*ZeroInit*/ false,
3754                                          CXXConstructExpr::CK_Complete,
3755                                          SourceRange());
3756        if (CurInit.isInvalid())
3757          return ExprError();
3758
3759        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
3760                                 FoundFn.getAccess());
3761        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
3762
3763        CastKind = CK_ConstructorConversion;
3764        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
3765        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
3766            S.IsDerivedFrom(SourceType, Class))
3767          IsCopy = true;
3768
3769        CreatedObject = true;
3770      } else {
3771        // Build a call to the conversion function.
3772        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
3773        IsLvalue = Conversion->getResultType()->isLValueReferenceType();
3774        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInitExpr, 0,
3775                                    FoundFn);
3776        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
3777
3778        // FIXME: Should we move this initialization into a separate
3779        // derived-to-base conversion? I believe the answer is "no", because
3780        // we don't want to turn off access control here for c-style casts.
3781        if (S.PerformObjectArgumentInitialization(CurInitExpr, /*Qualifier=*/0,
3782                                                  FoundFn, Conversion))
3783          return ExprError();
3784
3785        // Do a little dance to make sure that CurInit has the proper
3786        // pointer.
3787        CurInit.release();
3788
3789        // Build the actual call to the conversion function.
3790        CurInit = S.BuildCXXMemberCallExpr(CurInitExpr, FoundFn, Conversion);
3791        if (CurInit.isInvalid() || !CurInit.get())
3792          return ExprError();
3793
3794        CastKind = CK_UserDefinedConversion;
3795
3796        CreatedObject = Conversion->getResultType()->isRecordType();
3797      }
3798
3799      bool RequiresCopy = !IsCopy &&
3800        getKind() != InitializationSequence::ReferenceBinding;
3801      if (RequiresCopy || shouldBindAsTemporary(Entity))
3802        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3803      else if (CreatedObject && shouldDestroyTemporary(Entity)) {
3804        CurInitExpr = static_cast<Expr *>(CurInit.get());
3805        QualType T = CurInitExpr->getType();
3806        if (const RecordType *Record = T->getAs<RecordType>()) {
3807          CXXDestructorDecl *Destructor
3808            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
3809          S.CheckDestructorAccess(CurInitExpr->getLocStart(), Destructor,
3810                                  S.PDiag(diag::err_access_dtor_temp) << T);
3811          S.MarkDeclarationReferenced(CurInitExpr->getLocStart(), Destructor);
3812          S.DiagnoseUseOfDecl(Destructor, CurInitExpr->getLocStart());
3813        }
3814      }
3815
3816      CurInitExpr = CurInit.takeAs<Expr>();
3817      // FIXME: xvalues
3818      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
3819                                                 CurInitExpr->getType(),
3820                                                 CastKind, CurInitExpr, 0,
3821                                           IsLvalue ? VK_LValue : VK_RValue));
3822
3823      if (RequiresCopy)
3824        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
3825                             move(CurInit), /*IsExtraneousCopy=*/false);
3826
3827      break;
3828    }
3829
3830    case SK_QualificationConversionLValue:
3831    case SK_QualificationConversionXValue:
3832    case SK_QualificationConversionRValue: {
3833      // Perform a qualification conversion; these can never go wrong.
3834      ExprValueKind VK =
3835          Step->Kind == SK_QualificationConversionLValue ?
3836              VK_LValue :
3837              (Step->Kind == SK_QualificationConversionXValue ?
3838                   VK_XValue :
3839                   VK_RValue);
3840      S.ImpCastExprToType(CurInitExpr, Step->Type, CK_NoOp, VK);
3841      CurInit.release();
3842      CurInit = S.Owned(CurInitExpr);
3843      break;
3844    }
3845
3846    case SK_ConversionSequence: {
3847      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3848
3849      if (S.PerformImplicitConversion(CurInitExpr, Step->Type, *Step->ICS,
3850                                      getAssignmentAction(Entity),
3851                                      IgnoreBaseAccess))
3852        return ExprError();
3853
3854      CurInit.release();
3855      CurInit = S.Owned(CurInitExpr);
3856      break;
3857    }
3858
3859    case SK_ListInitialization: {
3860      InitListExpr *InitList = cast<InitListExpr>(CurInitExpr);
3861      QualType Ty = Step->Type;
3862      if (S.CheckInitList(Entity, InitList, ResultType? *ResultType : Ty))
3863        return ExprError();
3864
3865      CurInit.release();
3866      CurInit = S.Owned(InitList);
3867      break;
3868    }
3869
3870    case SK_ConstructorInitialization: {
3871      unsigned NumArgs = Args.size();
3872      CXXConstructorDecl *Constructor
3873        = cast<CXXConstructorDecl>(Step->Function.Function);
3874
3875      // Build a call to the selected constructor.
3876      ASTOwningVector<Expr*> ConstructorArgs(S);
3877      SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
3878                             ? Kind.getEqualLoc()
3879                             : Kind.getLocation();
3880
3881      if (Kind.getKind() == InitializationKind::IK_Default) {
3882        // Force even a trivial, implicit default constructor to be
3883        // semantically checked. We do this explicitly because we don't build
3884        // the definition for completely trivial constructors.
3885        CXXRecordDecl *ClassDecl = Constructor->getParent();
3886        assert(ClassDecl && "No parent class for constructor.");
3887        if (Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3888            ClassDecl->hasTrivialConstructor() && !Constructor->isUsed(false))
3889          S.DefineImplicitDefaultConstructor(Loc, Constructor);
3890      }
3891
3892      // Determine the arguments required to actually perform the constructor
3893      // call.
3894      if (S.CompleteConstructorCall(Constructor, move(Args),
3895                                    Loc, ConstructorArgs))
3896        return ExprError();
3897
3898
3899      if (Entity.getKind() == InitializedEntity::EK_Temporary &&
3900          NumArgs != 1 && // FIXME: Hack to work around cast weirdness
3901          (Kind.getKind() == InitializationKind::IK_Direct ||
3902           Kind.getKind() == InitializationKind::IK_Value)) {
3903        // An explicitly-constructed temporary, e.g., X(1, 2).
3904        unsigned NumExprs = ConstructorArgs.size();
3905        Expr **Exprs = (Expr **)ConstructorArgs.take();
3906        S.MarkDeclarationReferenced(Loc, Constructor);
3907        S.DiagnoseUseOfDecl(Constructor, Loc);
3908
3909        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
3910        if (!TSInfo)
3911          TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
3912
3913        CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
3914                                                                 Constructor,
3915                                                                 TSInfo,
3916                                                                 Exprs,
3917                                                                 NumExprs,
3918                                                         Kind.getParenRange(),
3919                                             ConstructorInitRequiresZeroInit));
3920      } else {
3921        CXXConstructExpr::ConstructionKind ConstructKind =
3922          CXXConstructExpr::CK_Complete;
3923
3924        if (Entity.getKind() == InitializedEntity::EK_Base) {
3925          ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
3926            CXXConstructExpr::CK_VirtualBase :
3927            CXXConstructExpr::CK_NonVirtualBase;
3928        }
3929
3930        // Only get the parenthesis range if it is a direct construction.
3931        SourceRange parenRange =
3932            Kind.getKind() == InitializationKind::IK_Direct ?
3933            Kind.getParenRange() : SourceRange();
3934
3935        // If the entity allows NRVO, mark the construction as elidable
3936        // unconditionally.
3937        if (Entity.allowsNRVO())
3938          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3939                                            Constructor, /*Elidable=*/true,
3940                                            move_arg(ConstructorArgs),
3941                                            ConstructorInitRequiresZeroInit,
3942                                            ConstructKind,
3943                                            parenRange);
3944        else
3945          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3946                                            Constructor,
3947                                            move_arg(ConstructorArgs),
3948                                            ConstructorInitRequiresZeroInit,
3949                                            ConstructKind,
3950                                            parenRange);
3951      }
3952      if (CurInit.isInvalid())
3953        return ExprError();
3954
3955      // Only check access if all of that succeeded.
3956      S.CheckConstructorAccess(Loc, Constructor, Entity,
3957                               Step->Function.FoundDecl.getAccess());
3958      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Loc);
3959
3960      if (shouldBindAsTemporary(Entity))
3961        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3962
3963      break;
3964    }
3965
3966    case SK_ZeroInitialization: {
3967      step_iterator NextStep = Step;
3968      ++NextStep;
3969      if (NextStep != StepEnd &&
3970          NextStep->Kind == SK_ConstructorInitialization) {
3971        // The need for zero-initialization is recorded directly into
3972        // the call to the object's constructor within the next step.
3973        ConstructorInitRequiresZeroInit = true;
3974      } else if (Kind.getKind() == InitializationKind::IK_Value &&
3975                 S.getLangOptions().CPlusPlus &&
3976                 !Kind.isImplicitValueInit()) {
3977        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
3978        if (!TSInfo)
3979          TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
3980                                                    Kind.getRange().getBegin());
3981
3982        CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
3983                              TSInfo->getType().getNonLValueExprType(S.Context),
3984                                                                 TSInfo,
3985                                                    Kind.getRange().getEnd()));
3986      } else {
3987        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
3988      }
3989      break;
3990    }
3991
3992    case SK_CAssignment: {
3993      QualType SourceType = CurInitExpr->getType();
3994      Sema::AssignConvertType ConvTy =
3995        S.CheckSingleAssignmentConstraints(Step->Type, CurInitExpr);
3996
3997      // If this is a call, allow conversion to a transparent union.
3998      if (ConvTy != Sema::Compatible &&
3999          Entity.getKind() == InitializedEntity::EK_Parameter &&
4000          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExpr)
4001            == Sema::Compatible)
4002        ConvTy = Sema::Compatible;
4003
4004      bool Complained;
4005      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
4006                                     Step->Type, SourceType,
4007                                     CurInitExpr,
4008                                     getAssignmentAction(Entity),
4009                                     &Complained)) {
4010        PrintInitLocationNote(S, Entity);
4011        return ExprError();
4012      } else if (Complained)
4013        PrintInitLocationNote(S, Entity);
4014
4015      CurInit.release();
4016      CurInit = S.Owned(CurInitExpr);
4017      break;
4018    }
4019
4020    case SK_StringInit: {
4021      QualType Ty = Step->Type;
4022      CheckStringInit(CurInitExpr, ResultType ? *ResultType : Ty, S);
4023      break;
4024    }
4025
4026    case SK_ObjCObjectConversion:
4027      S.ImpCastExprToType(CurInitExpr, Step->Type,
4028                          CK_ObjCObjectLValueCast,
4029                          S.CastCategory(CurInitExpr));
4030      CurInit.release();
4031      CurInit = S.Owned(CurInitExpr);
4032      break;
4033    }
4034  }
4035
4036  // Diagnose non-fatal problems with the completed initialization.
4037  if (Entity.getKind() == InitializedEntity::EK_Member &&
4038      cast<FieldDecl>(Entity.getDecl())->isBitField())
4039    S.CheckBitFieldInitialization(Kind.getLocation(),
4040                                  cast<FieldDecl>(Entity.getDecl()),
4041                                  CurInit.get());
4042
4043  return move(CurInit);
4044}
4045
4046//===----------------------------------------------------------------------===//
4047// Diagnose initialization failures
4048//===----------------------------------------------------------------------===//
4049bool InitializationSequence::Diagnose(Sema &S,
4050                                      const InitializedEntity &Entity,
4051                                      const InitializationKind &Kind,
4052                                      Expr **Args, unsigned NumArgs) {
4053  if (SequenceKind != FailedSequence)
4054    return false;
4055
4056  QualType DestType = Entity.getType();
4057  switch (Failure) {
4058  case FK_TooManyInitsForReference:
4059    // FIXME: Customize for the initialized entity?
4060    if (NumArgs == 0)
4061      S.Diag(Kind.getLocation(), diag::err_reference_without_init)
4062        << DestType.getNonReferenceType();
4063    else  // FIXME: diagnostic below could be better!
4064      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
4065        << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
4066    break;
4067
4068  case FK_ArrayNeedsInitList:
4069  case FK_ArrayNeedsInitListOrStringLiteral:
4070    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
4071      << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
4072    break;
4073
4074  case FK_AddressOfOverloadFailed: {
4075    DeclAccessPair Found;
4076    S.ResolveAddressOfOverloadedFunction(Args[0],
4077                                         DestType.getNonReferenceType(),
4078                                         true,
4079                                         Found);
4080    break;
4081  }
4082
4083  case FK_ReferenceInitOverloadFailed:
4084  case FK_UserConversionOverloadFailed:
4085    switch (FailedOverloadResult) {
4086    case OR_Ambiguous:
4087      if (Failure == FK_UserConversionOverloadFailed)
4088        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
4089          << Args[0]->getType() << DestType
4090          << Args[0]->getSourceRange();
4091      else
4092        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
4093          << DestType << Args[0]->getType()
4094          << Args[0]->getSourceRange();
4095
4096      FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args, NumArgs);
4097      break;
4098
4099    case OR_No_Viable_Function:
4100      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
4101        << Args[0]->getType() << DestType.getNonReferenceType()
4102        << Args[0]->getSourceRange();
4103      FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
4104      break;
4105
4106    case OR_Deleted: {
4107      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
4108        << Args[0]->getType() << DestType.getNonReferenceType()
4109        << Args[0]->getSourceRange();
4110      OverloadCandidateSet::iterator Best;
4111      OverloadingResult Ovl
4112        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
4113                                                true);
4114      if (Ovl == OR_Deleted) {
4115        S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4116          << Best->Function->isDeleted();
4117      } else {
4118        llvm_unreachable("Inconsistent overload resolution?");
4119      }
4120      break;
4121    }
4122
4123    case OR_Success:
4124      llvm_unreachable("Conversion did not fail!");
4125      break;
4126    }
4127    break;
4128
4129  case FK_NonConstLValueReferenceBindingToTemporary:
4130  case FK_NonConstLValueReferenceBindingToUnrelated:
4131    S.Diag(Kind.getLocation(),
4132           Failure == FK_NonConstLValueReferenceBindingToTemporary
4133             ? diag::err_lvalue_reference_bind_to_temporary
4134             : diag::err_lvalue_reference_bind_to_unrelated)
4135      << DestType.getNonReferenceType().isVolatileQualified()
4136      << DestType.getNonReferenceType()
4137      << Args[0]->getType()
4138      << Args[0]->getSourceRange();
4139    break;
4140
4141  case FK_RValueReferenceBindingToLValue:
4142    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
4143      << Args[0]->getSourceRange();
4144    break;
4145
4146  case FK_ReferenceInitDropsQualifiers:
4147    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
4148      << DestType.getNonReferenceType()
4149      << Args[0]->getType()
4150      << Args[0]->getSourceRange();
4151    break;
4152
4153  case FK_ReferenceInitFailed:
4154    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
4155      << DestType.getNonReferenceType()
4156      << Args[0]->isLValue()
4157      << Args[0]->getType()
4158      << Args[0]->getSourceRange();
4159    break;
4160
4161  case FK_ConversionFailed:
4162    S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
4163      << (int)Entity.getKind()
4164      << DestType
4165      << Args[0]->isLValue()
4166      << Args[0]->getType()
4167      << Args[0]->getSourceRange();
4168    break;
4169
4170  case FK_TooManyInitsForScalar: {
4171    SourceRange R;
4172
4173    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
4174      R = SourceRange(InitList->getInit(0)->getLocEnd(),
4175                      InitList->getLocEnd());
4176    else
4177      R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
4178
4179    R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
4180    if (Kind.isCStyleOrFunctionalCast())
4181      S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
4182        << R;
4183    else
4184      S.Diag(Kind.getLocation(), diag::err_excess_initializers)
4185        << /*scalar=*/2 << R;
4186    break;
4187  }
4188
4189  case FK_ReferenceBindingToInitList:
4190    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
4191      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
4192    break;
4193
4194  case FK_InitListBadDestinationType:
4195    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
4196      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
4197    break;
4198
4199  case FK_ConstructorOverloadFailed: {
4200    SourceRange ArgsRange;
4201    if (NumArgs)
4202      ArgsRange = SourceRange(Args[0]->getLocStart(),
4203                              Args[NumArgs - 1]->getLocEnd());
4204
4205    // FIXME: Using "DestType" for the entity we're printing is probably
4206    // bad.
4207    switch (FailedOverloadResult) {
4208      case OR_Ambiguous:
4209        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
4210          << DestType << ArgsRange;
4211        FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
4212                                          Args, NumArgs);
4213        break;
4214
4215      case OR_No_Viable_Function:
4216        if (Kind.getKind() == InitializationKind::IK_Default &&
4217            (Entity.getKind() == InitializedEntity::EK_Base ||
4218             Entity.getKind() == InitializedEntity::EK_Member) &&
4219            isa<CXXConstructorDecl>(S.CurContext)) {
4220          // This is implicit default initialization of a member or
4221          // base within a constructor. If no viable function was
4222          // found, notify the user that she needs to explicitly
4223          // initialize this base/member.
4224          CXXConstructorDecl *Constructor
4225            = cast<CXXConstructorDecl>(S.CurContext);
4226          if (Entity.getKind() == InitializedEntity::EK_Base) {
4227            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4228              << Constructor->isImplicit()
4229              << S.Context.getTypeDeclType(Constructor->getParent())
4230              << /*base=*/0
4231              << Entity.getType();
4232
4233            RecordDecl *BaseDecl
4234              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
4235                                                                  ->getDecl();
4236            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
4237              << S.Context.getTagDeclType(BaseDecl);
4238          } else {
4239            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4240              << Constructor->isImplicit()
4241              << S.Context.getTypeDeclType(Constructor->getParent())
4242              << /*member=*/1
4243              << Entity.getName();
4244            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
4245
4246            if (const RecordType *Record
4247                                 = Entity.getType()->getAs<RecordType>())
4248              S.Diag(Record->getDecl()->getLocation(),
4249                     diag::note_previous_decl)
4250                << S.Context.getTagDeclType(Record->getDecl());
4251          }
4252          break;
4253        }
4254
4255        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
4256          << DestType << ArgsRange;
4257        FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
4258        break;
4259
4260      case OR_Deleted: {
4261        S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
4262          << true << DestType << ArgsRange;
4263        OverloadCandidateSet::iterator Best;
4264        OverloadingResult Ovl
4265          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
4266        if (Ovl == OR_Deleted) {
4267          S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4268            << Best->Function->isDeleted();
4269        } else {
4270          llvm_unreachable("Inconsistent overload resolution?");
4271        }
4272        break;
4273      }
4274
4275      case OR_Success:
4276        llvm_unreachable("Conversion did not fail!");
4277        break;
4278    }
4279    break;
4280  }
4281
4282  case FK_DefaultInitOfConst:
4283    if (Entity.getKind() == InitializedEntity::EK_Member &&
4284        isa<CXXConstructorDecl>(S.CurContext)) {
4285      // This is implicit default-initialization of a const member in
4286      // a constructor. Complain that it needs to be explicitly
4287      // initialized.
4288      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
4289      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
4290        << Constructor->isImplicit()
4291        << S.Context.getTypeDeclType(Constructor->getParent())
4292        << /*const=*/1
4293        << Entity.getName();
4294      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
4295        << Entity.getName();
4296    } else {
4297      S.Diag(Kind.getLocation(), diag::err_default_init_const)
4298        << DestType << (bool)DestType->getAs<RecordType>();
4299    }
4300    break;
4301
4302    case FK_Incomplete:
4303      S.RequireCompleteType(Kind.getLocation(), DestType,
4304                            diag::err_init_incomplete_type);
4305      break;
4306  }
4307
4308  PrintInitLocationNote(S, Entity);
4309  return true;
4310}
4311
4312void InitializationSequence::dump(llvm::raw_ostream &OS) const {
4313  switch (SequenceKind) {
4314  case FailedSequence: {
4315    OS << "Failed sequence: ";
4316    switch (Failure) {
4317    case FK_TooManyInitsForReference:
4318      OS << "too many initializers for reference";
4319      break;
4320
4321    case FK_ArrayNeedsInitList:
4322      OS << "array requires initializer list";
4323      break;
4324
4325    case FK_ArrayNeedsInitListOrStringLiteral:
4326      OS << "array requires initializer list or string literal";
4327      break;
4328
4329    case FK_AddressOfOverloadFailed:
4330      OS << "address of overloaded function failed";
4331      break;
4332
4333    case FK_ReferenceInitOverloadFailed:
4334      OS << "overload resolution for reference initialization failed";
4335      break;
4336
4337    case FK_NonConstLValueReferenceBindingToTemporary:
4338      OS << "non-const lvalue reference bound to temporary";
4339      break;
4340
4341    case FK_NonConstLValueReferenceBindingToUnrelated:
4342      OS << "non-const lvalue reference bound to unrelated type";
4343      break;
4344
4345    case FK_RValueReferenceBindingToLValue:
4346      OS << "rvalue reference bound to an lvalue";
4347      break;
4348
4349    case FK_ReferenceInitDropsQualifiers:
4350      OS << "reference initialization drops qualifiers";
4351      break;
4352
4353    case FK_ReferenceInitFailed:
4354      OS << "reference initialization failed";
4355      break;
4356
4357    case FK_ConversionFailed:
4358      OS << "conversion failed";
4359      break;
4360
4361    case FK_TooManyInitsForScalar:
4362      OS << "too many initializers for scalar";
4363      break;
4364
4365    case FK_ReferenceBindingToInitList:
4366      OS << "referencing binding to initializer list";
4367      break;
4368
4369    case FK_InitListBadDestinationType:
4370      OS << "initializer list for non-aggregate, non-scalar type";
4371      break;
4372
4373    case FK_UserConversionOverloadFailed:
4374      OS << "overloading failed for user-defined conversion";
4375      break;
4376
4377    case FK_ConstructorOverloadFailed:
4378      OS << "constructor overloading failed";
4379      break;
4380
4381    case FK_DefaultInitOfConst:
4382      OS << "default initialization of a const variable";
4383      break;
4384
4385    case FK_Incomplete:
4386      OS << "initialization of incomplete type";
4387      break;
4388    }
4389    OS << '\n';
4390    return;
4391  }
4392
4393  case DependentSequence:
4394    OS << "Dependent sequence: ";
4395    return;
4396
4397  case UserDefinedConversion:
4398    OS << "User-defined conversion sequence: ";
4399    break;
4400
4401  case ConstructorInitialization:
4402    OS << "Constructor initialization sequence: ";
4403    break;
4404
4405  case ReferenceBinding:
4406    OS << "Reference binding: ";
4407    break;
4408
4409  case ListInitialization:
4410    OS << "List initialization: ";
4411    break;
4412
4413  case ZeroInitialization:
4414    OS << "Zero initialization\n";
4415    return;
4416
4417  case NoInitialization:
4418    OS << "No initialization\n";
4419    return;
4420
4421  case StandardConversion:
4422    OS << "Standard conversion: ";
4423    break;
4424
4425  case CAssignment:
4426    OS << "C assignment: ";
4427    break;
4428
4429  case StringInit:
4430    OS << "String initialization: ";
4431    break;
4432  }
4433
4434  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
4435    if (S != step_begin()) {
4436      OS << " -> ";
4437    }
4438
4439    switch (S->Kind) {
4440    case SK_ResolveAddressOfOverloadedFunction:
4441      OS << "resolve address of overloaded function";
4442      break;
4443
4444    case SK_CastDerivedToBaseRValue:
4445      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
4446      break;
4447
4448    case SK_CastDerivedToBaseXValue:
4449      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
4450      break;
4451
4452    case SK_CastDerivedToBaseLValue:
4453      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
4454      break;
4455
4456    case SK_BindReference:
4457      OS << "bind reference to lvalue";
4458      break;
4459
4460    case SK_BindReferenceToTemporary:
4461      OS << "bind reference to a temporary";
4462      break;
4463
4464    case SK_ExtraneousCopyToTemporary:
4465      OS << "extraneous C++03 copy to temporary";
4466      break;
4467
4468    case SK_UserConversion:
4469      OS << "user-defined conversion via " << S->Function.Function;
4470      break;
4471
4472    case SK_QualificationConversionRValue:
4473      OS << "qualification conversion (rvalue)";
4474
4475    case SK_QualificationConversionXValue:
4476      OS << "qualification conversion (xvalue)";
4477
4478    case SK_QualificationConversionLValue:
4479      OS << "qualification conversion (lvalue)";
4480      break;
4481
4482    case SK_ConversionSequence:
4483      OS << "implicit conversion sequence (";
4484      S->ICS->DebugPrint(); // FIXME: use OS
4485      OS << ")";
4486      break;
4487
4488    case SK_ListInitialization:
4489      OS << "list initialization";
4490      break;
4491
4492    case SK_ConstructorInitialization:
4493      OS << "constructor initialization";
4494      break;
4495
4496    case SK_ZeroInitialization:
4497      OS << "zero initialization";
4498      break;
4499
4500    case SK_CAssignment:
4501      OS << "C assignment";
4502      break;
4503
4504    case SK_StringInit:
4505      OS << "string initialization";
4506      break;
4507
4508    case SK_ObjCObjectConversion:
4509      OS << "Objective-C object conversion";
4510      break;
4511    }
4512  }
4513}
4514
4515void InitializationSequence::dump() const {
4516  dump(llvm::errs());
4517}
4518
4519//===----------------------------------------------------------------------===//
4520// Initialization helper functions
4521//===----------------------------------------------------------------------===//
4522ExprResult
4523Sema::PerformCopyInitialization(const InitializedEntity &Entity,
4524                                SourceLocation EqualLoc,
4525                                ExprResult Init) {
4526  if (Init.isInvalid())
4527    return ExprError();
4528
4529  Expr *InitE = Init.get();
4530  assert(InitE && "No initialization expression?");
4531
4532  if (EqualLoc.isInvalid())
4533    EqualLoc = InitE->getLocStart();
4534
4535  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
4536                                                           EqualLoc);
4537  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
4538  Init.release();
4539  return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
4540}
4541