SemaInit.cpp revision cd2c52736917f6a0abc8604413e0ddfd48fbe9b1
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14// This file also implements Sema::CheckInitializerTypes.
15//
16//===----------------------------------------------------------------------===//
17
18#include "Sema.h"
19#include "clang/Parse/Designator.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ExprObjC.h"
22#include <map>
23using namespace clang;
24
25//===----------------------------------------------------------------------===//
26// Sema Initialization Checking
27//===----------------------------------------------------------------------===//
28
29static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
30  const ArrayType *AT = Context.getAsArrayType(DeclType);
31  if (!AT) return 0;
32
33  // See if this is a string literal or @encode.
34  Init = Init->IgnoreParens();
35
36  // Handle @encode, which is a narrow string.
37  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
38    return Init;
39
40  // Otherwise we can only handle string literals.
41  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
42  if (SL == 0) return 0;
43
44  // char array can be initialized with a narrow string.
45  // Only allow char x[] = "foo";  not char x[] = L"foo";
46  if (!SL->isWide())
47    return AT->getElementType()->isCharType() ? Init : 0;
48
49  // wchar_t array can be initialized with a wide string: C99 6.7.8p15:
50  // "An array with element type compatible with wchar_t may be initialized by a
51  // wide string literal, optionally enclosed in braces."
52  if (Context.typesAreCompatible(Context.getWCharType(), AT->getElementType()))
53    // Only allow wchar_t x[] = L"foo";  not wchar_t x[] = "foo";
54    return Init;
55
56  return 0;
57}
58
59static bool CheckSingleInitializer(Expr *&Init, QualType DeclType,
60                                   bool DirectInit, Sema &S) {
61  // Get the type before calling CheckSingleAssignmentConstraints(), since
62  // it can promote the expression.
63  QualType InitType = Init->getType();
64
65  if (S.getLangOptions().CPlusPlus) {
66    // FIXME: I dislike this error message. A lot.
67    if (S.PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
68      return S.Diag(Init->getSourceRange().getBegin(),
69                    diag::err_typecheck_convert_incompatible)
70        << DeclType << Init->getType() << "initializing"
71        << Init->getSourceRange();
72    return false;
73  }
74
75  Sema::AssignConvertType ConvTy =
76    S.CheckSingleAssignmentConstraints(DeclType, Init);
77  return S.DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
78                                  InitType, Init, "initializing");
79}
80
81static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
82  // Get the length of the string as parsed.
83  uint64_t StrLength =
84    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
85
86
87  const ArrayType *AT = S.Context.getAsArrayType(DeclT);
88  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
89    // C99 6.7.8p14. We have an array of character type with unknown size
90    // being initialized to a string literal.
91    llvm::APSInt ConstVal(32);
92    ConstVal = StrLength;
93    // Return a new array type (C99 6.7.8p22).
94    DeclT = S.Context.getConstantArrayType(IAT->getElementType(), ConstVal,
95                                           ArrayType::Normal, 0);
96    return;
97  }
98
99  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
100
101  // C99 6.7.8p14. We have an array of character type with known size.  However,
102  // the size may be smaller or larger than the string we are initializing.
103  // FIXME: Avoid truncation for 64-bit length strings.
104  if (StrLength-1 > CAT->getSize().getZExtValue())
105    S.Diag(Str->getSourceRange().getBegin(),
106           diag::warn_initializer_string_for_char_array_too_long)
107      << Str->getSourceRange();
108
109  // Set the type to the actual size that we are initializing.  If we have
110  // something like:
111  //   char x[1] = "foo";
112  // then this will set the string literal's type to char[1].
113  Str->setType(DeclT);
114}
115
116bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
117                                 SourceLocation InitLoc,
118                                 DeclarationName InitEntity,
119                                 bool DirectInit) {
120  if (DeclType->isDependentType() || Init->isTypeDependent())
121    return false;
122
123  // C++ [dcl.init.ref]p1:
124  //   A variable declared to be a T& or T&&, that is "reference to type T"
125  //   (8.3.2), shall be initialized by an object, or function, of
126  //   type T or by an object that can be converted into a T.
127  if (DeclType->isReferenceType())
128    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
129
130  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
131  // of unknown size ("[]") or an object type that is not a variable array type.
132  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
133    return Diag(InitLoc,  diag::err_variable_object_no_init)
134    << VAT->getSizeExpr()->getSourceRange();
135
136  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
137  if (!InitList) {
138    // FIXME: Handle wide strings
139    if (Expr *Str = IsStringInit(Init, DeclType, Context)) {
140      CheckStringInit(Str, DeclType, *this);
141      return false;
142    }
143
144    // C++ [dcl.init]p14:
145    //   -- If the destination type is a (possibly cv-qualified) class
146    //      type:
147    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
148      QualType DeclTypeC = Context.getCanonicalType(DeclType);
149      QualType InitTypeC = Context.getCanonicalType(Init->getType());
150
151      //   -- If the initialization is direct-initialization, or if it is
152      //      copy-initialization where the cv-unqualified version of the
153      //      source type is the same class as, or a derived class of, the
154      //      class of the destination, constructors are considered.
155      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
156          IsDerivedFrom(InitTypeC, DeclTypeC)) {
157        CXXConstructorDecl *Constructor
158        = PerformInitializationByConstructor(DeclType, &Init, 1,
159                                             InitLoc, Init->getSourceRange(),
160                                             InitEntity,
161                                             DirectInit? IK_Direct : IK_Copy);
162        return Constructor == 0;
163      }
164
165      //   -- Otherwise (i.e., for the remaining copy-initialization
166      //      cases), user-defined conversion sequences that can
167      //      convert from the source type to the destination type or
168      //      (when a conversion function is used) to a derived class
169      //      thereof are enumerated as described in 13.3.1.4, and the
170      //      best one is chosen through overload resolution
171      //      (13.3). If the conversion cannot be done or is
172      //      ambiguous, the initialization is ill-formed. The
173      //      function selected is called with the initializer
174      //      expression as its argument; if the function is a
175      //      constructor, the call initializes a temporary of the
176      //      destination type.
177      // FIXME: We're pretending to do copy elision here; return to
178      // this when we have ASTs for such things.
179      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
180        return false;
181
182      if (InitEntity)
183        return Diag(InitLoc, diag::err_cannot_initialize_decl)
184        << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
185        << Init->getType() << Init->getSourceRange();
186      else
187        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
188        << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
189        << Init->getType() << Init->getSourceRange();
190    }
191
192    // C99 6.7.8p16.
193    if (DeclType->isArrayType())
194      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
195      << Init->getSourceRange();
196
197    return CheckSingleInitializer(Init, DeclType, DirectInit, *this);
198  }
199
200  bool hadError = CheckInitList(InitList, DeclType);
201  Init = InitList;
202  return hadError;
203}
204
205//===----------------------------------------------------------------------===//
206// Semantic checking for initializer lists.
207//===----------------------------------------------------------------------===//
208
209/// @brief Semantic checking for initializer lists.
210///
211/// The InitListChecker class contains a set of routines that each
212/// handle the initialization of a certain kind of entity, e.g.,
213/// arrays, vectors, struct/union types, scalars, etc. The
214/// InitListChecker itself performs a recursive walk of the subobject
215/// structure of the type to be initialized, while stepping through
216/// the initializer list one element at a time. The IList and Index
217/// parameters to each of the Check* routines contain the active
218/// (syntactic) initializer list and the index into that initializer
219/// list that represents the current initializer. Each routine is
220/// responsible for moving that Index forward as it consumes elements.
221///
222/// Each Check* routine also has a StructuredList/StructuredIndex
223/// arguments, which contains the current the "structured" (semantic)
224/// initializer list and the index into that initializer list where we
225/// are copying initializers as we map them over to the semantic
226/// list. Once we have completed our recursive walk of the subobject
227/// structure, we will have constructed a full semantic initializer
228/// list.
229///
230/// C99 designators cause changes in the initializer list traversal,
231/// because they make the initialization "jump" into a specific
232/// subobject and then continue the initialization from that
233/// point. CheckDesignatedInitializer() recursively steps into the
234/// designated subobject and manages backing out the recursion to
235/// initialize the subobjects after the one designated.
236namespace {
237class InitListChecker {
238  Sema &SemaRef;
239  bool hadError;
240  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
241  InitListExpr *FullyStructuredList;
242
243  void CheckImplicitInitList(InitListExpr *ParentIList, QualType T,
244                             unsigned &Index, InitListExpr *StructuredList,
245                             unsigned &StructuredIndex,
246                             bool TopLevelObject = false);
247  void CheckExplicitInitList(InitListExpr *IList, QualType &T,
248                             unsigned &Index, InitListExpr *StructuredList,
249                             unsigned &StructuredIndex,
250                             bool TopLevelObject = false);
251  void CheckListElementTypes(InitListExpr *IList, QualType &DeclType,
252                             bool SubobjectIsDesignatorContext,
253                             unsigned &Index,
254                             InitListExpr *StructuredList,
255                             unsigned &StructuredIndex,
256                             bool TopLevelObject = false);
257  void CheckSubElementType(InitListExpr *IList, QualType ElemType,
258                           unsigned &Index,
259                           InitListExpr *StructuredList,
260                           unsigned &StructuredIndex);
261  void CheckScalarType(InitListExpr *IList, QualType DeclType,
262                       unsigned &Index,
263                       InitListExpr *StructuredList,
264                       unsigned &StructuredIndex);
265  void CheckReferenceType(InitListExpr *IList, QualType DeclType,
266                          unsigned &Index,
267                          InitListExpr *StructuredList,
268                          unsigned &StructuredIndex);
269  void CheckVectorType(InitListExpr *IList, QualType DeclType, unsigned &Index,
270                       InitListExpr *StructuredList,
271                       unsigned &StructuredIndex);
272  void CheckStructUnionTypes(InitListExpr *IList, QualType DeclType,
273                             RecordDecl::field_iterator Field,
274                             bool SubobjectIsDesignatorContext, unsigned &Index,
275                             InitListExpr *StructuredList,
276                             unsigned &StructuredIndex,
277                             bool TopLevelObject = false);
278  void CheckArrayType(InitListExpr *IList, QualType &DeclType,
279                      llvm::APSInt elementIndex,
280                      bool SubobjectIsDesignatorContext, unsigned &Index,
281                      InitListExpr *StructuredList,
282                      unsigned &StructuredIndex);
283  bool CheckDesignatedInitializer(InitListExpr *IList, DesignatedInitExpr *DIE,
284                                  DesignatedInitExpr::designators_iterator D,
285                                  QualType &CurrentObjectType,
286                                  RecordDecl::field_iterator *NextField,
287                                  llvm::APSInt *NextElementIndex,
288                                  unsigned &Index,
289                                  InitListExpr *StructuredList,
290                                  unsigned &StructuredIndex,
291                                  bool FinishSubobjectInit,
292                                  bool TopLevelObject);
293  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
294                                           QualType CurrentObjectType,
295                                           InitListExpr *StructuredList,
296                                           unsigned StructuredIndex,
297                                           SourceRange InitRange);
298  void UpdateStructuredListElement(InitListExpr *StructuredList,
299                                   unsigned &StructuredIndex,
300                                   Expr *expr);
301  int numArrayElements(QualType DeclType);
302  int numStructUnionElements(QualType DeclType);
303
304  void FillInValueInitializations(InitListExpr *ILE);
305public:
306  InitListChecker(Sema &S, InitListExpr *IL, QualType &T);
307  bool HadError() { return hadError; }
308
309  // @brief Retrieves the fully-structured initializer list used for
310  // semantic analysis and code generation.
311  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
312};
313} // end anonymous namespace
314
315/// Recursively replaces NULL values within the given initializer list
316/// with expressions that perform value-initialization of the
317/// appropriate type.
318void InitListChecker::FillInValueInitializations(InitListExpr *ILE) {
319  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
320         "Should not have void type");
321  SourceLocation Loc = ILE->getSourceRange().getBegin();
322  if (ILE->getSyntacticForm())
323    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
324
325  if (const RecordType *RType = ILE->getType()->getAsRecordType()) {
326    unsigned Init = 0, NumInits = ILE->getNumInits();
327    for (RecordDecl::field_iterator Field = RType->getDecl()->field_begin(),
328                                 FieldEnd = RType->getDecl()->field_end();
329         Field != FieldEnd; ++Field) {
330      if (Field->isUnnamedBitfield())
331        continue;
332
333      if (Init >= NumInits || !ILE->getInit(Init)) {
334        if (Field->getType()->isReferenceType()) {
335          // C++ [dcl.init.aggr]p9:
336          //   If an incomplete or empty initializer-list leaves a
337          //   member of reference type uninitialized, the program is
338          //   ill-formed.
339          SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
340            << Field->getType()
341            << ILE->getSyntacticForm()->getSourceRange();
342          SemaRef.Diag(Field->getLocation(),
343                        diag::note_uninit_reference_member);
344          hadError = true;
345          return;
346        } else if (SemaRef.CheckValueInitialization(Field->getType(), Loc)) {
347          hadError = true;
348          return;
349        }
350
351        // FIXME: If value-initialization involves calling a
352        // constructor, should we make that call explicit in the
353        // representation (even when it means extending the
354        // initializer list)?
355        if (Init < NumInits && !hadError)
356          ILE->setInit(Init,
357              new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()));
358      } else if (InitListExpr *InnerILE
359                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
360        FillInValueInitializations(InnerILE);
361      ++Init;
362
363      // Only look at the first initialization of a union.
364      if (RType->getDecl()->isUnion())
365        break;
366    }
367
368    return;
369  }
370
371  QualType ElementType;
372
373  unsigned NumInits = ILE->getNumInits();
374  unsigned NumElements = NumInits;
375  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
376    ElementType = AType->getElementType();
377    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
378      NumElements = CAType->getSize().getZExtValue();
379  } else if (const VectorType *VType = ILE->getType()->getAsVectorType()) {
380    ElementType = VType->getElementType();
381    NumElements = VType->getNumElements();
382  } else
383    ElementType = ILE->getType();
384
385  for (unsigned Init = 0; Init != NumElements; ++Init) {
386    if (Init >= NumInits || !ILE->getInit(Init)) {
387      if (SemaRef.CheckValueInitialization(ElementType, Loc)) {
388        hadError = true;
389        return;
390      }
391
392      // FIXME: If value-initialization involves calling a
393      // constructor, should we make that call explicit in the
394      // representation (even when it means extending the
395      // initializer list)?
396      if (Init < NumInits && !hadError)
397        ILE->setInit(Init,
398                     new (SemaRef.Context) ImplicitValueInitExpr(ElementType));
399    }
400    else if (InitListExpr *InnerILE =dyn_cast<InitListExpr>(ILE->getInit(Init)))
401      FillInValueInitializations(InnerILE);
402  }
403}
404
405
406InitListChecker::InitListChecker(Sema &S, InitListExpr *IL, QualType &T)
407  : SemaRef(S) {
408  hadError = false;
409
410  unsigned newIndex = 0;
411  unsigned newStructuredIndex = 0;
412  FullyStructuredList
413    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
414  CheckExplicitInitList(IL, T, newIndex, FullyStructuredList, newStructuredIndex,
415                        /*TopLevelObject=*/true);
416
417  if (!hadError)
418    FillInValueInitializations(FullyStructuredList);
419}
420
421int InitListChecker::numArrayElements(QualType DeclType) {
422  // FIXME: use a proper constant
423  int maxElements = 0x7FFFFFFF;
424  if (const ConstantArrayType *CAT =
425        SemaRef.Context.getAsConstantArrayType(DeclType)) {
426    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
427  }
428  return maxElements;
429}
430
431int InitListChecker::numStructUnionElements(QualType DeclType) {
432  RecordDecl *structDecl = DeclType->getAsRecordType()->getDecl();
433  int InitializableMembers = 0;
434  for (RecordDecl::field_iterator Field = structDecl->field_begin(),
435                               FieldEnd = structDecl->field_end();
436       Field != FieldEnd; ++Field) {
437    if ((*Field)->getIdentifier() || !(*Field)->isBitField())
438      ++InitializableMembers;
439  }
440  if (structDecl->isUnion())
441    return std::min(InitializableMembers, 1);
442  return InitializableMembers - structDecl->hasFlexibleArrayMember();
443}
444
445void InitListChecker::CheckImplicitInitList(InitListExpr *ParentIList,
446                                            QualType T, unsigned &Index,
447                                            InitListExpr *StructuredList,
448                                            unsigned &StructuredIndex,
449                                            bool TopLevelObject) {
450  int maxElements = 0;
451
452  if (T->isArrayType())
453    maxElements = numArrayElements(T);
454  else if (T->isStructureType() || T->isUnionType())
455    maxElements = numStructUnionElements(T);
456  else if (T->isVectorType())
457    maxElements = T->getAsVectorType()->getNumElements();
458  else
459    assert(0 && "CheckImplicitInitList(): Illegal type");
460
461  if (maxElements == 0) {
462    SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
463                  diag::err_implicit_empty_initializer);
464    ++Index;
465    hadError = true;
466    return;
467  }
468
469  // Build a structured initializer list corresponding to this subobject.
470  InitListExpr *StructuredSubobjectInitList
471    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
472                                 StructuredIndex,
473          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
474                      ParentIList->getSourceRange().getEnd()));
475  unsigned StructuredSubobjectInitIndex = 0;
476
477  // Check the element types and build the structural subobject.
478  unsigned StartIndex = Index;
479  CheckListElementTypes(ParentIList, T, false, Index,
480                        StructuredSubobjectInitList,
481                        StructuredSubobjectInitIndex,
482                        TopLevelObject);
483  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
484  StructuredSubobjectInitList->setType(T);
485
486  // Update the structured sub-object initializer so that it's ending
487  // range corresponds with the end of the last initializer it used.
488  if (EndIndex < ParentIList->getNumInits()) {
489    SourceLocation EndLoc
490      = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
491    StructuredSubobjectInitList->setRBraceLoc(EndLoc);
492  }
493}
494
495void InitListChecker::CheckExplicitInitList(InitListExpr *IList, QualType &T,
496                                            unsigned &Index,
497                                            InitListExpr *StructuredList,
498                                            unsigned &StructuredIndex,
499                                            bool TopLevelObject) {
500  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
501  SyntacticToSemantic[IList] = StructuredList;
502  StructuredList->setSyntacticForm(IList);
503  CheckListElementTypes(IList, T, true, Index, StructuredList,
504                        StructuredIndex, TopLevelObject);
505  IList->setType(T);
506  StructuredList->setType(T);
507  if (hadError)
508    return;
509
510  if (Index < IList->getNumInits()) {
511    // We have leftover initializers
512    if (IList->getNumInits() > 0 &&
513        IsStringInit(IList->getInit(Index), T, SemaRef.Context)) {
514      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
515      if (SemaRef.getLangOptions().CPlusPlus)
516        DK = diag::err_excess_initializers_in_char_array_initializer;
517      // Special-case
518      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
519        << IList->getInit(Index)->getSourceRange();
520      hadError = true;
521    } else if (!T->isIncompleteType()) {
522      // Don't complain for incomplete types, since we'll get an error
523      // elsewhere
524      QualType CurrentObjectType = StructuredList->getType();
525      int initKind =
526        CurrentObjectType->isArrayType()? 0 :
527        CurrentObjectType->isVectorType()? 1 :
528        CurrentObjectType->isScalarType()? 2 :
529        CurrentObjectType->isUnionType()? 3 :
530        4;
531
532      unsigned DK = diag::warn_excess_initializers;
533      if (SemaRef.getLangOptions().CPlusPlus)
534          DK = diag::err_excess_initializers;
535
536      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
537        << initKind << IList->getInit(Index)->getSourceRange();
538    }
539  }
540
541  if (T->isScalarType())
542    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
543      << IList->getSourceRange();
544}
545
546void InitListChecker::CheckListElementTypes(InitListExpr *IList,
547                                            QualType &DeclType,
548                                            bool SubobjectIsDesignatorContext,
549                                            unsigned &Index,
550                                            InitListExpr *StructuredList,
551                                            unsigned &StructuredIndex,
552                                            bool TopLevelObject) {
553  if (DeclType->isScalarType()) {
554    CheckScalarType(IList, DeclType, Index, StructuredList, StructuredIndex);
555  } else if (DeclType->isVectorType()) {
556    CheckVectorType(IList, DeclType, Index, StructuredList, StructuredIndex);
557  } else if (DeclType->isAggregateType()) {
558    if (DeclType->isRecordType()) {
559      RecordDecl *RD = DeclType->getAsRecordType()->getDecl();
560      CheckStructUnionTypes(IList, DeclType, RD->field_begin(),
561                            SubobjectIsDesignatorContext, Index,
562                            StructuredList, StructuredIndex,
563                            TopLevelObject);
564    } else if (DeclType->isArrayType()) {
565      llvm::APSInt Zero(
566                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
567                      false);
568      CheckArrayType(IList, DeclType, Zero, SubobjectIsDesignatorContext, Index,
569                     StructuredList, StructuredIndex);
570    }
571    else
572      assert(0 && "Aggregate that isn't a structure or array?!");
573  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
574    // This type is invalid, issue a diagnostic.
575    ++Index;
576    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
577      << DeclType;
578    hadError = true;
579  } else if (DeclType->isRecordType()) {
580    // C++ [dcl.init]p14:
581    //   [...] If the class is an aggregate (8.5.1), and the initializer
582    //   is a brace-enclosed list, see 8.5.1.
583    //
584    // Note: 8.5.1 is handled below; here, we diagnose the case where
585    // we have an initializer list and a destination type that is not
586    // an aggregate.
587    // FIXME: In C++0x, this is yet another form of initialization.
588    SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
589      << DeclType << IList->getSourceRange();
590    hadError = true;
591  } else if (DeclType->isReferenceType()) {
592    CheckReferenceType(IList, DeclType, Index, StructuredList, StructuredIndex);
593  } else {
594    // In C, all types are either scalars or aggregates, but
595    // additional handling is needed here for C++ (and possibly others?).
596    assert(0 && "Unsupported initializer type");
597  }
598}
599
600void InitListChecker::CheckSubElementType(InitListExpr *IList,
601                                          QualType ElemType,
602                                          unsigned &Index,
603                                          InitListExpr *StructuredList,
604                                          unsigned &StructuredIndex) {
605  Expr *expr = IList->getInit(Index);
606  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
607    unsigned newIndex = 0;
608    unsigned newStructuredIndex = 0;
609    InitListExpr *newStructuredList
610      = getStructuredSubobjectInit(IList, Index, ElemType,
611                                   StructuredList, StructuredIndex,
612                                   SubInitList->getSourceRange());
613    CheckExplicitInitList(SubInitList, ElemType, newIndex,
614                          newStructuredList, newStructuredIndex);
615    ++StructuredIndex;
616    ++Index;
617  } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
618    CheckStringInit(Str, ElemType, SemaRef);
619    UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
620    ++Index;
621  } else if (ElemType->isScalarType()) {
622    CheckScalarType(IList, ElemType, Index, StructuredList, StructuredIndex);
623  } else if (ElemType->isReferenceType()) {
624    CheckReferenceType(IList, ElemType, Index, StructuredList, StructuredIndex);
625  } else {
626    if (SemaRef.getLangOptions().CPlusPlus) {
627      // C++ [dcl.init.aggr]p12:
628      //   All implicit type conversions (clause 4) are considered when
629      //   initializing the aggregate member with an ini- tializer from
630      //   an initializer-list. If the initializer can initialize a
631      //   member, the member is initialized. [...]
632      ImplicitConversionSequence ICS
633        = SemaRef.TryCopyInitialization(expr, ElemType);
634      if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion) {
635        if (SemaRef.PerformImplicitConversion(expr, ElemType, ICS,
636                                               "initializing"))
637          hadError = true;
638        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
639        ++Index;
640        return;
641      }
642
643      // Fall through for subaggregate initialization
644    } else {
645      // C99 6.7.8p13:
646      //
647      //   The initializer for a structure or union object that has
648      //   automatic storage duration shall be either an initializer
649      //   list as described below, or a single expression that has
650      //   compatible structure or union type. In the latter case, the
651      //   initial value of the object, including unnamed members, is
652      //   that of the expression.
653      QualType ExprType = SemaRef.Context.getCanonicalType(expr->getType());
654      QualType ElemTypeCanon = SemaRef.Context.getCanonicalType(ElemType);
655      if (SemaRef.Context.typesAreCompatible(ExprType.getUnqualifiedType(),
656                                          ElemTypeCanon.getUnqualifiedType())) {
657        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
658        ++Index;
659        return;
660      }
661
662      // Fall through for subaggregate initialization
663    }
664
665    // C++ [dcl.init.aggr]p12:
666    //
667    //   [...] Otherwise, if the member is itself a non-empty
668    //   subaggregate, brace elision is assumed and the initializer is
669    //   considered for the initialization of the first member of
670    //   the subaggregate.
671    if (ElemType->isAggregateType() || ElemType->isVectorType()) {
672      CheckImplicitInitList(IList, ElemType, Index, StructuredList,
673                            StructuredIndex);
674      ++StructuredIndex;
675    } else {
676      // We cannot initialize this element, so let
677      // PerformCopyInitialization produce the appropriate diagnostic.
678      SemaRef.PerformCopyInitialization(expr, ElemType, "initializing");
679      hadError = true;
680      ++Index;
681      ++StructuredIndex;
682    }
683  }
684}
685
686void InitListChecker::CheckScalarType(InitListExpr *IList, QualType DeclType,
687                                      unsigned &Index,
688                                      InitListExpr *StructuredList,
689                                      unsigned &StructuredIndex) {
690  if (Index < IList->getNumInits()) {
691    Expr *expr = IList->getInit(Index);
692    if (isa<InitListExpr>(expr)) {
693      SemaRef.Diag(IList->getLocStart(),
694                    diag::err_many_braces_around_scalar_init)
695        << IList->getSourceRange();
696      hadError = true;
697      ++Index;
698      ++StructuredIndex;
699      return;
700    } else if (isa<DesignatedInitExpr>(expr)) {
701      SemaRef.Diag(expr->getSourceRange().getBegin(),
702                    diag::err_designator_for_scalar_init)
703        << DeclType << expr->getSourceRange();
704      hadError = true;
705      ++Index;
706      ++StructuredIndex;
707      return;
708    }
709
710    Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
711    if (CheckSingleInitializer(expr, DeclType, false, SemaRef))
712      hadError = true; // types weren't compatible.
713    else if (savExpr != expr) {
714      // The type was promoted, update initializer list.
715      IList->setInit(Index, expr);
716    }
717    if (hadError)
718      ++StructuredIndex;
719    else
720      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
721    ++Index;
722  } else {
723    SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
724      << IList->getSourceRange();
725    hadError = true;
726    ++Index;
727    ++StructuredIndex;
728    return;
729  }
730}
731
732void InitListChecker::CheckReferenceType(InitListExpr *IList, QualType DeclType,
733                                         unsigned &Index,
734                                         InitListExpr *StructuredList,
735                                         unsigned &StructuredIndex) {
736  if (Index < IList->getNumInits()) {
737    Expr *expr = IList->getInit(Index);
738    if (isa<InitListExpr>(expr)) {
739      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
740        << DeclType << IList->getSourceRange();
741      hadError = true;
742      ++Index;
743      ++StructuredIndex;
744      return;
745    }
746
747    Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
748    if (SemaRef.CheckReferenceInit(expr, DeclType))
749      hadError = true;
750    else if (savExpr != expr) {
751      // The type was promoted, update initializer list.
752      IList->setInit(Index, expr);
753    }
754    if (hadError)
755      ++StructuredIndex;
756    else
757      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
758    ++Index;
759  } else {
760    // FIXME: It would be wonderful if we could point at the actual
761    // member. In general, it would be useful to pass location
762    // information down the stack, so that we know the location (or
763    // decl) of the "current object" being initialized.
764    SemaRef.Diag(IList->getLocStart(),
765                  diag::err_init_reference_member_uninitialized)
766      << DeclType
767      << IList->getSourceRange();
768    hadError = true;
769    ++Index;
770    ++StructuredIndex;
771    return;
772  }
773}
774
775void InitListChecker::CheckVectorType(InitListExpr *IList, QualType DeclType,
776                                      unsigned &Index,
777                                      InitListExpr *StructuredList,
778                                      unsigned &StructuredIndex) {
779  if (Index < IList->getNumInits()) {
780    const VectorType *VT = DeclType->getAsVectorType();
781    int maxElements = VT->getNumElements();
782    QualType elementType = VT->getElementType();
783
784    for (int i = 0; i < maxElements; ++i) {
785      // Don't attempt to go past the end of the init list
786      if (Index >= IList->getNumInits())
787        break;
788      CheckSubElementType(IList, elementType, Index,
789                          StructuredList, StructuredIndex);
790    }
791  }
792}
793
794void InitListChecker::CheckArrayType(InitListExpr *IList, QualType &DeclType,
795                                     llvm::APSInt elementIndex,
796                                     bool SubobjectIsDesignatorContext,
797                                     unsigned &Index,
798                                     InitListExpr *StructuredList,
799                                     unsigned &StructuredIndex) {
800  // Check for the special-case of initializing an array with a string.
801  if (Index < IList->getNumInits()) {
802    if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
803                                 SemaRef.Context)) {
804      CheckStringInit(Str, DeclType, SemaRef);
805      // We place the string literal directly into the resulting
806      // initializer list. This is the only place where the structure
807      // of the structured initializer list doesn't match exactly,
808      // because doing so would involve allocating one character
809      // constant for each string.
810      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
811      StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
812      ++Index;
813      return;
814    }
815  }
816  if (const VariableArrayType *VAT =
817        SemaRef.Context.getAsVariableArrayType(DeclType)) {
818    // Check for VLAs; in standard C it would be possible to check this
819    // earlier, but I don't know where clang accepts VLAs (gcc accepts
820    // them in all sorts of strange places).
821    SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
822                  diag::err_variable_object_no_init)
823      << VAT->getSizeExpr()->getSourceRange();
824    hadError = true;
825    ++Index;
826    ++StructuredIndex;
827    return;
828  }
829
830  // We might know the maximum number of elements in advance.
831  llvm::APSInt maxElements(elementIndex.getBitWidth(),
832                           elementIndex.isUnsigned());
833  bool maxElementsKnown = false;
834  if (const ConstantArrayType *CAT =
835        SemaRef.Context.getAsConstantArrayType(DeclType)) {
836    maxElements = CAT->getSize();
837    elementIndex.extOrTrunc(maxElements.getBitWidth());
838    elementIndex.setIsUnsigned(maxElements.isUnsigned());
839    maxElementsKnown = true;
840  }
841
842  QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
843                             ->getElementType();
844  while (Index < IList->getNumInits()) {
845    Expr *Init = IList->getInit(Index);
846    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
847      // If we're not the subobject that matches up with the '{' for
848      // the designator, we shouldn't be handling the
849      // designator. Return immediately.
850      if (!SubobjectIsDesignatorContext)
851        return;
852
853      // Handle this designated initializer. elementIndex will be
854      // updated to be the next array element we'll initialize.
855      if (CheckDesignatedInitializer(IList, DIE, DIE->designators_begin(),
856                                     DeclType, 0, &elementIndex, Index,
857                                     StructuredList, StructuredIndex, true,
858                                     false)) {
859        hadError = true;
860        continue;
861      }
862
863      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
864        maxElements.extend(elementIndex.getBitWidth());
865      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
866        elementIndex.extend(maxElements.getBitWidth());
867      elementIndex.setIsUnsigned(maxElements.isUnsigned());
868
869      // If the array is of incomplete type, keep track of the number of
870      // elements in the initializer.
871      if (!maxElementsKnown && elementIndex > maxElements)
872        maxElements = elementIndex;
873
874      continue;
875    }
876
877    // If we know the maximum number of elements, and we've already
878    // hit it, stop consuming elements in the initializer list.
879    if (maxElementsKnown && elementIndex == maxElements)
880      break;
881
882    // Check this element.
883    CheckSubElementType(IList, elementType, Index,
884                        StructuredList, StructuredIndex);
885    ++elementIndex;
886
887    // If the array is of incomplete type, keep track of the number of
888    // elements in the initializer.
889    if (!maxElementsKnown && elementIndex > maxElements)
890      maxElements = elementIndex;
891  }
892  if (DeclType->isIncompleteArrayType()) {
893    // If this is an incomplete array type, the actual type needs to
894    // be calculated here.
895    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
896    if (maxElements == Zero) {
897      // Sizing an array implicitly to zero is not allowed by ISO C,
898      // but is supported by GNU.
899      SemaRef.Diag(IList->getLocStart(),
900                    diag::ext_typecheck_zero_array_size);
901    }
902
903    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
904                                                     ArrayType::Normal, 0);
905  }
906}
907
908void InitListChecker::CheckStructUnionTypes(InitListExpr *IList,
909                                            QualType DeclType,
910                                            RecordDecl::field_iterator Field,
911                                            bool SubobjectIsDesignatorContext,
912                                            unsigned &Index,
913                                            InitListExpr *StructuredList,
914                                            unsigned &StructuredIndex,
915                                            bool TopLevelObject) {
916  RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl();
917
918  // If the record is invalid, some of it's members are invalid. To avoid
919  // confusion, we forgo checking the intializer for the entire record.
920  if (structDecl->isInvalidDecl()) {
921    hadError = true;
922    return;
923  }
924
925  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
926    // Value-initialize the first named member of the union.
927    RecordDecl *RD = DeclType->getAsRecordType()->getDecl();
928    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
929         Field != FieldEnd; ++Field) {
930      if (Field->getDeclName()) {
931        StructuredList->setInitializedFieldInUnion(*Field);
932        break;
933      }
934    }
935    return;
936  }
937
938  // If structDecl is a forward declaration, this loop won't do
939  // anything except look at designated initializers; That's okay,
940  // because an error should get printed out elsewhere. It might be
941  // worthwhile to skip over the rest of the initializer, though.
942  RecordDecl *RD = DeclType->getAsRecordType()->getDecl();
943  RecordDecl::field_iterator FieldEnd = RD->field_end();
944  bool InitializedSomething = false;
945  while (Index < IList->getNumInits()) {
946    Expr *Init = IList->getInit(Index);
947
948    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
949      // If we're not the subobject that matches up with the '{' for
950      // the designator, we shouldn't be handling the
951      // designator. Return immediately.
952      if (!SubobjectIsDesignatorContext)
953        return;
954
955      // Handle this designated initializer. Field will be updated to
956      // the next field that we'll be initializing.
957      if (CheckDesignatedInitializer(IList, DIE, DIE->designators_begin(),
958                                     DeclType, &Field, 0, Index,
959                                     StructuredList, StructuredIndex,
960                                     true, TopLevelObject))
961        hadError = true;
962
963      InitializedSomething = true;
964      continue;
965    }
966
967    if (Field == FieldEnd) {
968      // We've run out of fields. We're done.
969      break;
970    }
971
972    // We've already initialized a member of a union. We're done.
973    if (InitializedSomething && DeclType->isUnionType())
974      break;
975
976    // If we've hit the flexible array member at the end, we're done.
977    if (Field->getType()->isIncompleteArrayType())
978      break;
979
980    if (Field->isUnnamedBitfield()) {
981      // Don't initialize unnamed bitfields, e.g. "int : 20;"
982      ++Field;
983      continue;
984    }
985
986    CheckSubElementType(IList, Field->getType(), Index,
987                        StructuredList, StructuredIndex);
988    InitializedSomething = true;
989
990    if (DeclType->isUnionType()) {
991      // Initialize the first field within the union.
992      StructuredList->setInitializedFieldInUnion(*Field);
993    }
994
995    ++Field;
996  }
997
998  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
999      Index >= IList->getNumInits())
1000    return;
1001
1002  // Handle GNU flexible array initializers.
1003  if (!TopLevelObject &&
1004      (!isa<InitListExpr>(IList->getInit(Index)) ||
1005       cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1006    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1007                  diag::err_flexible_array_init_nonempty)
1008      << IList->getInit(Index)->getSourceRange().getBegin();
1009    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1010      << *Field;
1011    hadError = true;
1012    ++Index;
1013    return;
1014  } else {
1015    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1016                 diag::ext_flexible_array_init)
1017      << IList->getInit(Index)->getSourceRange().getBegin();
1018    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1019      << *Field;
1020  }
1021
1022  if (isa<InitListExpr>(IList->getInit(Index)))
1023    CheckSubElementType(IList, Field->getType(), Index, StructuredList,
1024                        StructuredIndex);
1025  else
1026    CheckImplicitInitList(IList, Field->getType(), Index, StructuredList,
1027                          StructuredIndex);
1028}
1029
1030/// @brief Check the well-formedness of a C99 designated initializer.
1031///
1032/// Determines whether the designated initializer @p DIE, which
1033/// resides at the given @p Index within the initializer list @p
1034/// IList, is well-formed for a current object of type @p DeclType
1035/// (C99 6.7.8). The actual subobject that this designator refers to
1036/// within the current subobject is returned in either
1037/// @p NextField or @p NextElementIndex (whichever is appropriate).
1038///
1039/// @param IList  The initializer list in which this designated
1040/// initializer occurs.
1041///
1042/// @param DIE  The designated initializer and its initialization
1043/// expression.
1044///
1045/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1046/// into which the designation in @p DIE should refer.
1047///
1048/// @param NextField  If non-NULL and the first designator in @p DIE is
1049/// a field, this will be set to the field declaration corresponding
1050/// to the field named by the designator.
1051///
1052/// @param NextElementIndex  If non-NULL and the first designator in @p
1053/// DIE is an array designator or GNU array-range designator, this
1054/// will be set to the last index initialized by this designator.
1055///
1056/// @param Index  Index into @p IList where the designated initializer
1057/// @p DIE occurs.
1058///
1059/// @param StructuredList  The initializer list expression that
1060/// describes all of the subobject initializers in the order they'll
1061/// actually be initialized.
1062///
1063/// @returns true if there was an error, false otherwise.
1064bool
1065InitListChecker::CheckDesignatedInitializer(InitListExpr *IList,
1066                                      DesignatedInitExpr *DIE,
1067                                     DesignatedInitExpr::designators_iterator D,
1068                                      QualType &CurrentObjectType,
1069                                      RecordDecl::field_iterator *NextField,
1070                                      llvm::APSInt *NextElementIndex,
1071                                      unsigned &Index,
1072                                      InitListExpr *StructuredList,
1073                                      unsigned &StructuredIndex,
1074                                            bool FinishSubobjectInit,
1075                                            bool TopLevelObject) {
1076  if (D == DIE->designators_end()) {
1077    // Check the actual initialization for the designated object type.
1078    bool prevHadError = hadError;
1079
1080    // Temporarily remove the designator expression from the
1081    // initializer list that the child calls see, so that we don't try
1082    // to re-process the designator.
1083    unsigned OldIndex = Index;
1084    IList->setInit(OldIndex, DIE->getInit());
1085
1086    CheckSubElementType(IList, CurrentObjectType, Index,
1087                        StructuredList, StructuredIndex);
1088
1089    // Restore the designated initializer expression in the syntactic
1090    // form of the initializer list.
1091    if (IList->getInit(OldIndex) != DIE->getInit())
1092      DIE->setInit(IList->getInit(OldIndex));
1093    IList->setInit(OldIndex, DIE);
1094
1095    return hadError && !prevHadError;
1096  }
1097
1098  bool IsFirstDesignator = (D == DIE->designators_begin());
1099  assert((IsFirstDesignator || StructuredList) &&
1100         "Need a non-designated initializer list to start from");
1101
1102  // Determine the structural initializer list that corresponds to the
1103  // current subobject.
1104  StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1105    : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1106                                 StructuredList, StructuredIndex,
1107                                 SourceRange(D->getStartLocation(),
1108                                             DIE->getSourceRange().getEnd()));
1109  assert(StructuredList && "Expected a structured initializer list");
1110
1111  if (D->isFieldDesignator()) {
1112    // C99 6.7.8p7:
1113    //
1114    //   If a designator has the form
1115    //
1116    //      . identifier
1117    //
1118    //   then the current object (defined below) shall have
1119    //   structure or union type and the identifier shall be the
1120    //   name of a member of that type.
1121    const RecordType *RT = CurrentObjectType->getAsRecordType();
1122    if (!RT) {
1123      SourceLocation Loc = D->getDotLoc();
1124      if (Loc.isInvalid())
1125        Loc = D->getFieldLoc();
1126      SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1127        << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1128      ++Index;
1129      return true;
1130    }
1131
1132    // Note: we perform a linear search of the fields here, despite
1133    // the fact that we have a faster lookup method, because we always
1134    // need to compute the field's index.
1135    IdentifierInfo *FieldName = D->getFieldName();
1136    unsigned FieldIndex = 0;
1137    RecordDecl::field_iterator Field = RT->getDecl()->field_begin(),
1138                            FieldEnd = RT->getDecl()->field_end();
1139    for (; Field != FieldEnd; ++Field) {
1140      if (Field->isUnnamedBitfield())
1141        continue;
1142
1143      if (Field->getIdentifier() == FieldName)
1144        break;
1145
1146      ++FieldIndex;
1147    }
1148
1149    if (Field == FieldEnd) {
1150      // We did not find the field we're looking for. Produce a
1151      // suitable diagnostic and return a failure.
1152      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1153      if (Lookup.first == Lookup.second) {
1154        // Name lookup didn't find anything.
1155        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1156          << FieldName << CurrentObjectType;
1157      } else {
1158        // Name lookup found something, but it wasn't a field.
1159        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1160          << FieldName;
1161        SemaRef.Diag((*Lookup.first)->getLocation(),
1162                      diag::note_field_designator_found);
1163      }
1164
1165      ++Index;
1166      return true;
1167    } else if (cast<RecordDecl>((*Field)->getDeclContext())
1168                 ->isAnonymousStructOrUnion()) {
1169      SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_anon_class)
1170        << FieldName
1171        << (cast<RecordDecl>((*Field)->getDeclContext())->isUnion()? 2 :
1172            (int)SemaRef.getLangOptions().CPlusPlus);
1173      SemaRef.Diag((*Field)->getLocation(), diag::note_field_designator_found);
1174      ++Index;
1175      return true;
1176    }
1177
1178    // All of the fields of a union are located at the same place in
1179    // the initializer list.
1180    if (RT->getDecl()->isUnion()) {
1181      FieldIndex = 0;
1182      StructuredList->setInitializedFieldInUnion(*Field);
1183    }
1184
1185    // Update the designator with the field declaration.
1186    D->setField(*Field);
1187
1188    // Make sure that our non-designated initializer list has space
1189    // for a subobject corresponding to this field.
1190    if (FieldIndex >= StructuredList->getNumInits())
1191      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1192
1193    // This designator names a flexible array member.
1194    if (Field->getType()->isIncompleteArrayType()) {
1195      bool Invalid = false;
1196      DesignatedInitExpr::designators_iterator NextD = D;
1197      ++NextD;
1198      if (NextD != DIE->designators_end()) {
1199        // We can't designate an object within the flexible array
1200        // member (because GCC doesn't allow it).
1201        SemaRef.Diag(NextD->getStartLocation(),
1202                      diag::err_designator_into_flexible_array_member)
1203          << SourceRange(NextD->getStartLocation(),
1204                         DIE->getSourceRange().getEnd());
1205        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1206          << *Field;
1207        Invalid = true;
1208      }
1209
1210      if (!hadError && !isa<InitListExpr>(DIE->getInit())) {
1211        // The initializer is not an initializer list.
1212        SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1213                      diag::err_flexible_array_init_needs_braces)
1214          << DIE->getInit()->getSourceRange();
1215        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1216          << *Field;
1217        Invalid = true;
1218      }
1219
1220      // Handle GNU flexible array initializers.
1221      if (!Invalid && !TopLevelObject &&
1222          cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1223        SemaRef.Diag(DIE->getSourceRange().getBegin(),
1224                      diag::err_flexible_array_init_nonempty)
1225          << DIE->getSourceRange().getBegin();
1226        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1227          << *Field;
1228        Invalid = true;
1229      }
1230
1231      if (Invalid) {
1232        ++Index;
1233        return true;
1234      }
1235
1236      // Initialize the array.
1237      bool prevHadError = hadError;
1238      unsigned newStructuredIndex = FieldIndex;
1239      unsigned OldIndex = Index;
1240      IList->setInit(Index, DIE->getInit());
1241      CheckSubElementType(IList, Field->getType(), Index,
1242                          StructuredList, newStructuredIndex);
1243      IList->setInit(OldIndex, DIE);
1244      if (hadError && !prevHadError) {
1245        ++Field;
1246        ++FieldIndex;
1247        if (NextField)
1248          *NextField = Field;
1249        StructuredIndex = FieldIndex;
1250        return true;
1251      }
1252    } else {
1253      // Recurse to check later designated subobjects.
1254      QualType FieldType = (*Field)->getType();
1255      unsigned newStructuredIndex = FieldIndex;
1256      if (CheckDesignatedInitializer(IList, DIE, ++D, FieldType, 0, 0, Index,
1257                                     StructuredList, newStructuredIndex,
1258                                     true, false))
1259        return true;
1260    }
1261
1262    // Find the position of the next field to be initialized in this
1263    // subobject.
1264    ++Field;
1265    ++FieldIndex;
1266
1267    // If this the first designator, our caller will continue checking
1268    // the rest of this struct/class/union subobject.
1269    if (IsFirstDesignator) {
1270      if (NextField)
1271        *NextField = Field;
1272      StructuredIndex = FieldIndex;
1273      return false;
1274    }
1275
1276    if (!FinishSubobjectInit)
1277      return false;
1278
1279    // Check the remaining fields within this class/struct/union subobject.
1280    bool prevHadError = hadError;
1281    CheckStructUnionTypes(IList, CurrentObjectType, Field, false, Index,
1282                          StructuredList, FieldIndex);
1283    return hadError && !prevHadError;
1284  }
1285
1286  // C99 6.7.8p6:
1287  //
1288  //   If a designator has the form
1289  //
1290  //      [ constant-expression ]
1291  //
1292  //   then the current object (defined below) shall have array
1293  //   type and the expression shall be an integer constant
1294  //   expression. If the array is of unknown size, any
1295  //   nonnegative value is valid.
1296  //
1297  // Additionally, cope with the GNU extension that permits
1298  // designators of the form
1299  //
1300  //      [ constant-expression ... constant-expression ]
1301  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1302  if (!AT) {
1303    SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1304      << CurrentObjectType;
1305    ++Index;
1306    return true;
1307  }
1308
1309  Expr *IndexExpr = 0;
1310  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1311  if (D->isArrayDesignator()) {
1312    IndexExpr = DIE->getArrayIndex(*D);
1313
1314    bool ConstExpr
1315      = IndexExpr->isIntegerConstantExpr(DesignatedStartIndex, SemaRef.Context);
1316    assert(ConstExpr && "Expression must be constant"); (void)ConstExpr;
1317
1318    DesignatedEndIndex = DesignatedStartIndex;
1319  } else {
1320    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1321
1322    bool StartConstExpr
1323      = DIE->getArrayRangeStart(*D)->isIntegerConstantExpr(DesignatedStartIndex,
1324                                                           SemaRef.Context);
1325    assert(StartConstExpr && "Expression must be constant"); (void)StartConstExpr;
1326
1327    bool EndConstExpr
1328      = DIE->getArrayRangeEnd(*D)->isIntegerConstantExpr(DesignatedEndIndex,
1329                                                         SemaRef.Context);
1330    assert(EndConstExpr && "Expression must be constant"); (void)EndConstExpr;
1331
1332    IndexExpr = DIE->getArrayRangeEnd(*D);
1333
1334    if (DesignatedStartIndex.getZExtValue() != DesignatedEndIndex.getZExtValue())
1335      FullyStructuredList->sawArrayRangeDesignator();
1336  }
1337
1338  if (isa<ConstantArrayType>(AT)) {
1339    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1340    DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1341    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1342    DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1343    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1344    if (DesignatedEndIndex >= MaxElements) {
1345      SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1346                    diag::err_array_designator_too_large)
1347        << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1348        << IndexExpr->getSourceRange();
1349      ++Index;
1350      return true;
1351    }
1352  } else {
1353    // Make sure the bit-widths and signedness match.
1354    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1355      DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1356    else if (DesignatedStartIndex.getBitWidth() < DesignatedEndIndex.getBitWidth())
1357      DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1358    DesignatedStartIndex.setIsUnsigned(true);
1359    DesignatedEndIndex.setIsUnsigned(true);
1360  }
1361
1362  // Make sure that our non-designated initializer list has space
1363  // for a subobject corresponding to this array element.
1364  if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1365    StructuredList->resizeInits(SemaRef.Context,
1366                                DesignatedEndIndex.getZExtValue() + 1);
1367
1368  // Repeatedly perform subobject initializations in the range
1369  // [DesignatedStartIndex, DesignatedEndIndex].
1370
1371  // Move to the next designator
1372  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1373  unsigned OldIndex = Index;
1374  ++D;
1375  while (DesignatedStartIndex <= DesignatedEndIndex) {
1376    // Recurse to check later designated subobjects.
1377    QualType ElementType = AT->getElementType();
1378    Index = OldIndex;
1379    if (CheckDesignatedInitializer(IList, DIE, D, ElementType, 0, 0, Index,
1380                                   StructuredList, ElementIndex,
1381                                   (DesignatedStartIndex == DesignatedEndIndex),
1382                                   false))
1383      return true;
1384
1385    // Move to the next index in the array that we'll be initializing.
1386    ++DesignatedStartIndex;
1387    ElementIndex = DesignatedStartIndex.getZExtValue();
1388  }
1389
1390  // If this the first designator, our caller will continue checking
1391  // the rest of this array subobject.
1392  if (IsFirstDesignator) {
1393    if (NextElementIndex)
1394      *NextElementIndex = DesignatedStartIndex;
1395    StructuredIndex = ElementIndex;
1396    return false;
1397  }
1398
1399  if (!FinishSubobjectInit)
1400    return false;
1401
1402  // Check the remaining elements within this array subobject.
1403  bool prevHadError = hadError;
1404  CheckArrayType(IList, CurrentObjectType, DesignatedStartIndex, false, Index,
1405                 StructuredList, ElementIndex);
1406  return hadError && !prevHadError;
1407}
1408
1409// Get the structured initializer list for a subobject of type
1410// @p CurrentObjectType.
1411InitListExpr *
1412InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1413                                            QualType CurrentObjectType,
1414                                            InitListExpr *StructuredList,
1415                                            unsigned StructuredIndex,
1416                                            SourceRange InitRange) {
1417  Expr *ExistingInit = 0;
1418  if (!StructuredList)
1419    ExistingInit = SyntacticToSemantic[IList];
1420  else if (StructuredIndex < StructuredList->getNumInits())
1421    ExistingInit = StructuredList->getInit(StructuredIndex);
1422
1423  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1424    return Result;
1425
1426  if (ExistingInit) {
1427    // We are creating an initializer list that initializes the
1428    // subobjects of the current object, but there was already an
1429    // initialization that completely initialized the current
1430    // subobject, e.g., by a compound literal:
1431    //
1432    // struct X { int a, b; };
1433    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1434    //
1435    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1436    // designated initializer re-initializes the whole
1437    // subobject [0], overwriting previous initializers.
1438    SemaRef.Diag(InitRange.getBegin(),
1439                 diag::warn_subobject_initializer_overrides)
1440      << InitRange;
1441    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1442                  diag::note_previous_initializer)
1443      << /*FIXME:has side effects=*/0
1444      << ExistingInit->getSourceRange();
1445  }
1446
1447  InitListExpr *Result
1448    = new (SemaRef.Context) InitListExpr(InitRange.getBegin(), 0, 0,
1449                                         InitRange.getEnd());
1450
1451  Result->setType(CurrentObjectType);
1452
1453  // Link this new initializer list into the structured initializer
1454  // lists.
1455  if (StructuredList)
1456    StructuredList->updateInit(StructuredIndex, Result);
1457  else {
1458    Result->setSyntacticForm(IList);
1459    SyntacticToSemantic[IList] = Result;
1460  }
1461
1462  return Result;
1463}
1464
1465/// Update the initializer at index @p StructuredIndex within the
1466/// structured initializer list to the value @p expr.
1467void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1468                                                  unsigned &StructuredIndex,
1469                                                  Expr *expr) {
1470  // No structured initializer list to update
1471  if (!StructuredList)
1472    return;
1473
1474  if (Expr *PrevInit = StructuredList->updateInit(StructuredIndex, expr)) {
1475    // This initializer overwrites a previous initializer. Warn.
1476    SemaRef.Diag(expr->getSourceRange().getBegin(),
1477                  diag::warn_initializer_overrides)
1478      << expr->getSourceRange();
1479    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1480                  diag::note_previous_initializer)
1481      << /*FIXME:has side effects=*/0
1482      << PrevInit->getSourceRange();
1483  }
1484
1485  ++StructuredIndex;
1486}
1487
1488/// Check that the given Index expression is a valid array designator
1489/// value. This is essentailly just a wrapper around
1490/// Expr::isIntegerConstantExpr that also checks for negative values
1491/// and produces a reasonable diagnostic if there is a
1492/// failure. Returns true if there was an error, false otherwise.  If
1493/// everything went okay, Value will receive the value of the constant
1494/// expression.
1495static bool
1496CheckArrayDesignatorExpr(Sema &Self, Expr *Index, llvm::APSInt &Value) {
1497  SourceLocation Loc = Index->getSourceRange().getBegin();
1498
1499  // Make sure this is an integer constant expression.
1500  if (!Index->isIntegerConstantExpr(Value, Self.Context, &Loc))
1501    return Self.Diag(Loc, diag::err_array_designator_nonconstant)
1502      << Index->getSourceRange();
1503
1504  // Make sure this constant expression is non-negative.
1505  llvm::APSInt Zero(llvm::APSInt::getNullValue(Value.getBitWidth()),
1506                    Value.isUnsigned());
1507  if (Value < Zero)
1508    return Self.Diag(Loc, diag::err_array_designator_negative)
1509      << Value.toString(10) << Index->getSourceRange();
1510
1511  Value.setIsUnsigned(true);
1512  return false;
1513}
1514
1515Sema::OwningExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1516                                                        SourceLocation Loc,
1517                                                        bool UsedColonSyntax,
1518                                                        OwningExprResult Init) {
1519  typedef DesignatedInitExpr::Designator ASTDesignator;
1520
1521  bool Invalid = false;
1522  llvm::SmallVector<ASTDesignator, 32> Designators;
1523  llvm::SmallVector<Expr *, 32> InitExpressions;
1524
1525  // Build designators and check array designator expressions.
1526  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1527    const Designator &D = Desig.getDesignator(Idx);
1528    switch (D.getKind()) {
1529    case Designator::FieldDesignator:
1530      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1531                                          D.getFieldLoc()));
1532      break;
1533
1534    case Designator::ArrayDesignator: {
1535      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1536      llvm::APSInt IndexValue;
1537      if (CheckArrayDesignatorExpr(*this, Index, IndexValue))
1538        Invalid = true;
1539      else {
1540        Designators.push_back(ASTDesignator(InitExpressions.size(),
1541                                            D.getLBracketLoc(),
1542                                            D.getRBracketLoc()));
1543        InitExpressions.push_back(Index);
1544      }
1545      break;
1546    }
1547
1548    case Designator::ArrayRangeDesignator: {
1549      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1550      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1551      llvm::APSInt StartValue;
1552      llvm::APSInt EndValue;
1553      if (CheckArrayDesignatorExpr(*this, StartIndex, StartValue) ||
1554          CheckArrayDesignatorExpr(*this, EndIndex, EndValue))
1555        Invalid = true;
1556      else {
1557        // Make sure we're comparing values with the same bit width.
1558        if (StartValue.getBitWidth() > EndValue.getBitWidth())
1559          EndValue.extend(StartValue.getBitWidth());
1560        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1561          StartValue.extend(EndValue.getBitWidth());
1562
1563        if (EndValue < StartValue) {
1564          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1565            << StartValue.toString(10) << EndValue.toString(10)
1566            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1567          Invalid = true;
1568        } else {
1569          Designators.push_back(ASTDesignator(InitExpressions.size(),
1570                                              D.getLBracketLoc(),
1571                                              D.getEllipsisLoc(),
1572                                              D.getRBracketLoc()));
1573          InitExpressions.push_back(StartIndex);
1574          InitExpressions.push_back(EndIndex);
1575        }
1576      }
1577      break;
1578    }
1579    }
1580  }
1581
1582  if (Invalid || Init.isInvalid())
1583    return ExprError();
1584
1585  // Clear out the expressions within the designation.
1586  Desig.ClearExprs(*this);
1587
1588  DesignatedInitExpr *DIE
1589    = DesignatedInitExpr::Create(Context, &Designators[0], Designators.size(),
1590                                 &InitExpressions[0], InitExpressions.size(),
1591                                 Loc, UsedColonSyntax,
1592                                 static_cast<Expr *>(Init.release()));
1593  return Owned(DIE);
1594}
1595
1596bool Sema::CheckInitList(InitListExpr *&InitList, QualType &DeclType) {
1597  InitListChecker CheckInitList(*this, InitList, DeclType);
1598  if (!CheckInitList.HadError())
1599    InitList = CheckInitList.getFullyStructuredList();
1600
1601  return CheckInitList.HadError();
1602}
1603
1604/// \brief Diagnose any semantic errors with value-initialization of
1605/// the given type.
1606///
1607/// Value-initialization effectively zero-initializes any types
1608/// without user-declared constructors, and calls the default
1609/// constructor for a for any type that has a user-declared
1610/// constructor (C++ [dcl.init]p5). Value-initialization can fail when
1611/// a type with a user-declared constructor does not have an
1612/// accessible, non-deleted default constructor. In C, everything can
1613/// be value-initialized, which corresponds to C's notion of
1614/// initializing objects with static storage duration when no
1615/// initializer is provided for that object.
1616///
1617/// \returns true if there was an error, false otherwise.
1618bool Sema::CheckValueInitialization(QualType Type, SourceLocation Loc) {
1619  // C++ [dcl.init]p5:
1620  //
1621  //   To value-initialize an object of type T means:
1622
1623  //     -- if T is an array type, then each element is value-initialized;
1624  if (const ArrayType *AT = Context.getAsArrayType(Type))
1625    return CheckValueInitialization(AT->getElementType(), Loc);
1626
1627  if (const RecordType *RT = Type->getAsRecordType()) {
1628    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1629      // -- if T is a class type (clause 9) with a user-declared
1630      //    constructor (12.1), then the default constructor for T is
1631      //    called (and the initialization is ill-formed if T has no
1632      //    accessible default constructor);
1633      if (ClassDecl->hasUserDeclaredConstructor())
1634        // FIXME: Eventually, we'll need to put the constructor decl
1635        // into the AST.
1636        return PerformInitializationByConstructor(Type, 0, 0, Loc,
1637                                                  SourceRange(Loc),
1638                                                  DeclarationName(),
1639                                                  IK_Direct);
1640    }
1641  }
1642
1643  if (Type->isReferenceType()) {
1644    // C++ [dcl.init]p5:
1645    //   [...] A program that calls for default-initialization or
1646    //   value-initialization of an entity of reference type is
1647    //   ill-formed. [...]
1648    // FIXME: Once we have code that goes through this path, add an
1649    // actual diagnostic :)
1650  }
1651
1652  return false;
1653}
1654