SemaInit.cpp revision e75208a31edf92f979fc2a75bf4887ae0b599357
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14// This file also implements Sema::CheckInitializerTypes.
15//
16//===----------------------------------------------------------------------===//
17
18#include "SemaInit.h"
19#include "Lookup.h"
20#include "Sema.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/Designator.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "llvm/Support/ErrorHandling.h"
28#include <map>
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
36  const ArrayType *AT = Context.getAsArrayType(DeclType);
37  if (!AT) return 0;
38
39  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
40    return 0;
41
42  // See if this is a string literal or @encode.
43  Init = Init->IgnoreParens();
44
45  // Handle @encode, which is a narrow string.
46  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
47    return Init;
48
49  // Otherwise we can only handle string literals.
50  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
51  if (SL == 0) return 0;
52
53  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
54  // char array can be initialized with a narrow string.
55  // Only allow char x[] = "foo";  not char x[] = L"foo";
56  if (!SL->isWide())
57    return ElemTy->isCharType() ? Init : 0;
58
59  // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
60  // correction from DR343): "An array with element type compatible with a
61  // qualified or unqualified version of wchar_t may be initialized by a wide
62  // string literal, optionally enclosed in braces."
63  if (Context.typesAreCompatible(Context.getWCharType(),
64                                 ElemTy.getUnqualifiedType()))
65    return Init;
66
67  return 0;
68}
69
70static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
71  // Get the length of the string as parsed.
72  uint64_t StrLength =
73    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
74
75
76  const ArrayType *AT = S.Context.getAsArrayType(DeclT);
77  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
78    // C99 6.7.8p14. We have an array of character type with unknown size
79    // being initialized to a string literal.
80    llvm::APSInt ConstVal(32);
81    ConstVal = StrLength;
82    // Return a new array type (C99 6.7.8p22).
83    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
84                                           ConstVal,
85                                           ArrayType::Normal, 0);
86    return;
87  }
88
89  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
90
91  // C99 6.7.8p14. We have an array of character type with known size.  However,
92  // the size may be smaller or larger than the string we are initializing.
93  // FIXME: Avoid truncation for 64-bit length strings.
94  if (StrLength-1 > CAT->getSize().getZExtValue())
95    S.Diag(Str->getSourceRange().getBegin(),
96           diag::warn_initializer_string_for_char_array_too_long)
97      << Str->getSourceRange();
98
99  // Set the type to the actual size that we are initializing.  If we have
100  // something like:
101  //   char x[1] = "foo";
102  // then this will set the string literal's type to char[1].
103  Str->setType(DeclT);
104}
105
106//===----------------------------------------------------------------------===//
107// Semantic checking for initializer lists.
108//===----------------------------------------------------------------------===//
109
110/// @brief Semantic checking for initializer lists.
111///
112/// The InitListChecker class contains a set of routines that each
113/// handle the initialization of a certain kind of entity, e.g.,
114/// arrays, vectors, struct/union types, scalars, etc. The
115/// InitListChecker itself performs a recursive walk of the subobject
116/// structure of the type to be initialized, while stepping through
117/// the initializer list one element at a time. The IList and Index
118/// parameters to each of the Check* routines contain the active
119/// (syntactic) initializer list and the index into that initializer
120/// list that represents the current initializer. Each routine is
121/// responsible for moving that Index forward as it consumes elements.
122///
123/// Each Check* routine also has a StructuredList/StructuredIndex
124/// arguments, which contains the current the "structured" (semantic)
125/// initializer list and the index into that initializer list where we
126/// are copying initializers as we map them over to the semantic
127/// list. Once we have completed our recursive walk of the subobject
128/// structure, we will have constructed a full semantic initializer
129/// list.
130///
131/// C99 designators cause changes in the initializer list traversal,
132/// because they make the initialization "jump" into a specific
133/// subobject and then continue the initialization from that
134/// point. CheckDesignatedInitializer() recursively steps into the
135/// designated subobject and manages backing out the recursion to
136/// initialize the subobjects after the one designated.
137namespace {
138class InitListChecker {
139  Sema &SemaRef;
140  bool hadError;
141  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
142  InitListExpr *FullyStructuredList;
143
144  void CheckImplicitInitList(const InitializedEntity &Entity,
145                             InitListExpr *ParentIList, QualType T,
146                             unsigned &Index, InitListExpr *StructuredList,
147                             unsigned &StructuredIndex,
148                             bool TopLevelObject = false);
149  void CheckExplicitInitList(const InitializedEntity &Entity,
150                             InitListExpr *IList, QualType &T,
151                             unsigned &Index, InitListExpr *StructuredList,
152                             unsigned &StructuredIndex,
153                             bool TopLevelObject = false);
154  void CheckListElementTypes(const InitializedEntity &Entity,
155                             InitListExpr *IList, QualType &DeclType,
156                             bool SubobjectIsDesignatorContext,
157                             unsigned &Index,
158                             InitListExpr *StructuredList,
159                             unsigned &StructuredIndex,
160                             bool TopLevelObject = false);
161  void CheckSubElementType(const InitializedEntity &Entity,
162                           InitListExpr *IList, QualType ElemType,
163                           unsigned &Index,
164                           InitListExpr *StructuredList,
165                           unsigned &StructuredIndex);
166  void CheckScalarType(const InitializedEntity &Entity,
167                       InitListExpr *IList, QualType DeclType,
168                       unsigned &Index,
169                       InitListExpr *StructuredList,
170                       unsigned &StructuredIndex);
171  void CheckReferenceType(const InitializedEntity &Entity,
172                          InitListExpr *IList, QualType DeclType,
173                          unsigned &Index,
174                          InitListExpr *StructuredList,
175                          unsigned &StructuredIndex);
176  void CheckVectorType(const InitializedEntity &Entity,
177                       InitListExpr *IList, QualType DeclType, unsigned &Index,
178                       InitListExpr *StructuredList,
179                       unsigned &StructuredIndex);
180  void CheckStructUnionTypes(const InitializedEntity &Entity,
181                             InitListExpr *IList, QualType DeclType,
182                             RecordDecl::field_iterator Field,
183                             bool SubobjectIsDesignatorContext, unsigned &Index,
184                             InitListExpr *StructuredList,
185                             unsigned &StructuredIndex,
186                             bool TopLevelObject = false);
187  void CheckArrayType(const InitializedEntity &Entity,
188                      InitListExpr *IList, QualType &DeclType,
189                      llvm::APSInt elementIndex,
190                      bool SubobjectIsDesignatorContext, unsigned &Index,
191                      InitListExpr *StructuredList,
192                      unsigned &StructuredIndex);
193  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
194                                  InitListExpr *IList, DesignatedInitExpr *DIE,
195                                  unsigned DesigIdx,
196                                  QualType &CurrentObjectType,
197                                  RecordDecl::field_iterator *NextField,
198                                  llvm::APSInt *NextElementIndex,
199                                  unsigned &Index,
200                                  InitListExpr *StructuredList,
201                                  unsigned &StructuredIndex,
202                                  bool FinishSubobjectInit,
203                                  bool TopLevelObject);
204  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
205                                           QualType CurrentObjectType,
206                                           InitListExpr *StructuredList,
207                                           unsigned StructuredIndex,
208                                           SourceRange InitRange);
209  void UpdateStructuredListElement(InitListExpr *StructuredList,
210                                   unsigned &StructuredIndex,
211                                   Expr *expr);
212  int numArrayElements(QualType DeclType);
213  int numStructUnionElements(QualType DeclType);
214
215  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
216                               const InitializedEntity &ParentEntity,
217                               InitListExpr *ILE, bool &RequiresSecondPass);
218  void FillInValueInitializations(const InitializedEntity &Entity,
219                                  InitListExpr *ILE, bool &RequiresSecondPass);
220public:
221  InitListChecker(Sema &S, const InitializedEntity &Entity,
222                  InitListExpr *IL, QualType &T);
223  bool HadError() { return hadError; }
224
225  // @brief Retrieves the fully-structured initializer list used for
226  // semantic analysis and code generation.
227  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
228};
229} // end anonymous namespace
230
231void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
232                                        const InitializedEntity &ParentEntity,
233                                              InitListExpr *ILE,
234                                              bool &RequiresSecondPass) {
235  SourceLocation Loc = ILE->getSourceRange().getBegin();
236  unsigned NumInits = ILE->getNumInits();
237  InitializedEntity MemberEntity
238    = InitializedEntity::InitializeMember(Field, &ParentEntity);
239  if (Init >= NumInits || !ILE->getInit(Init)) {
240    // FIXME: We probably don't need to handle references
241    // specially here, since value-initialization of references is
242    // handled in InitializationSequence.
243    if (Field->getType()->isReferenceType()) {
244      // C++ [dcl.init.aggr]p9:
245      //   If an incomplete or empty initializer-list leaves a
246      //   member of reference type uninitialized, the program is
247      //   ill-formed.
248      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
249        << Field->getType()
250        << ILE->getSyntacticForm()->getSourceRange();
251      SemaRef.Diag(Field->getLocation(),
252                   diag::note_uninit_reference_member);
253      hadError = true;
254      return;
255    }
256
257    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
258                                                              true);
259    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
260    if (!InitSeq) {
261      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
262      hadError = true;
263      return;
264    }
265
266    Sema::OwningExprResult MemberInit
267      = InitSeq.Perform(SemaRef, MemberEntity, Kind,
268                        Sema::MultiExprArg(SemaRef, 0, 0));
269    if (MemberInit.isInvalid()) {
270      hadError = true;
271      return;
272    }
273
274    if (hadError) {
275      // Do nothing
276    } else if (Init < NumInits) {
277      ILE->setInit(Init, MemberInit.takeAs<Expr>());
278    } else if (InitSeq.getKind()
279                 == InitializationSequence::ConstructorInitialization) {
280      // Value-initialization requires a constructor call, so
281      // extend the initializer list to include the constructor
282      // call and make a note that we'll need to take another pass
283      // through the initializer list.
284      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
285      RequiresSecondPass = true;
286    }
287  } else if (InitListExpr *InnerILE
288               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
289    FillInValueInitializations(MemberEntity, InnerILE,
290                               RequiresSecondPass);
291}
292
293/// Recursively replaces NULL values within the given initializer list
294/// with expressions that perform value-initialization of the
295/// appropriate type.
296void
297InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
298                                            InitListExpr *ILE,
299                                            bool &RequiresSecondPass) {
300  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
301         "Should not have void type");
302  SourceLocation Loc = ILE->getSourceRange().getBegin();
303  if (ILE->getSyntacticForm())
304    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
305
306  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
307    if (RType->getDecl()->isUnion() &&
308        ILE->getInitializedFieldInUnion())
309      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
310                              Entity, ILE, RequiresSecondPass);
311    else {
312      unsigned Init = 0;
313      for (RecordDecl::field_iterator
314             Field = RType->getDecl()->field_begin(),
315             FieldEnd = RType->getDecl()->field_end();
316           Field != FieldEnd; ++Field) {
317        if (Field->isUnnamedBitfield())
318          continue;
319
320        if (hadError)
321          return;
322
323        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
324        if (hadError)
325          return;
326
327        ++Init;
328
329        // Only look at the first initialization of a union.
330        if (RType->getDecl()->isUnion())
331          break;
332      }
333    }
334
335    return;
336  }
337
338  QualType ElementType;
339
340  InitializedEntity ElementEntity = Entity;
341  unsigned NumInits = ILE->getNumInits();
342  unsigned NumElements = NumInits;
343  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
344    ElementType = AType->getElementType();
345    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
346      NumElements = CAType->getSize().getZExtValue();
347    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
348                                                         0, Entity);
349  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
350    ElementType = VType->getElementType();
351    NumElements = VType->getNumElements();
352    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
353                                                         0, Entity);
354  } else
355    ElementType = ILE->getType();
356
357
358  for (unsigned Init = 0; Init != NumElements; ++Init) {
359    if (hadError)
360      return;
361
362    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
363        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
364      ElementEntity.setElementIndex(Init);
365
366    if (Init >= NumInits || !ILE->getInit(Init)) {
367      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
368                                                                true);
369      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
370      if (!InitSeq) {
371        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
372        hadError = true;
373        return;
374      }
375
376      Sema::OwningExprResult ElementInit
377        = InitSeq.Perform(SemaRef, ElementEntity, Kind,
378                          Sema::MultiExprArg(SemaRef, 0, 0));
379      if (ElementInit.isInvalid()) {
380        hadError = true;
381        return;
382      }
383
384      if (hadError) {
385        // Do nothing
386      } else if (Init < NumInits) {
387        ILE->setInit(Init, ElementInit.takeAs<Expr>());
388      } else if (InitSeq.getKind()
389                   == InitializationSequence::ConstructorInitialization) {
390        // Value-initialization requires a constructor call, so
391        // extend the initializer list to include the constructor
392        // call and make a note that we'll need to take another pass
393        // through the initializer list.
394        ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
395        RequiresSecondPass = true;
396      }
397    } else if (InitListExpr *InnerILE
398                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
399      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
400  }
401}
402
403
404InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
405                                 InitListExpr *IL, QualType &T)
406  : SemaRef(S) {
407  hadError = false;
408
409  unsigned newIndex = 0;
410  unsigned newStructuredIndex = 0;
411  FullyStructuredList
412    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
413  CheckExplicitInitList(Entity, IL, T, newIndex,
414                        FullyStructuredList, newStructuredIndex,
415                        /*TopLevelObject=*/true);
416
417  if (!hadError) {
418    bool RequiresSecondPass = false;
419    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
420    if (RequiresSecondPass && !hadError)
421      FillInValueInitializations(Entity, FullyStructuredList,
422                                 RequiresSecondPass);
423  }
424}
425
426int InitListChecker::numArrayElements(QualType DeclType) {
427  // FIXME: use a proper constant
428  int maxElements = 0x7FFFFFFF;
429  if (const ConstantArrayType *CAT =
430        SemaRef.Context.getAsConstantArrayType(DeclType)) {
431    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
432  }
433  return maxElements;
434}
435
436int InitListChecker::numStructUnionElements(QualType DeclType) {
437  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
438  int InitializableMembers = 0;
439  for (RecordDecl::field_iterator
440         Field = structDecl->field_begin(),
441         FieldEnd = structDecl->field_end();
442       Field != FieldEnd; ++Field) {
443    if ((*Field)->getIdentifier() || !(*Field)->isBitField())
444      ++InitializableMembers;
445  }
446  if (structDecl->isUnion())
447    return std::min(InitializableMembers, 1);
448  return InitializableMembers - structDecl->hasFlexibleArrayMember();
449}
450
451void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
452                                            InitListExpr *ParentIList,
453                                            QualType T, unsigned &Index,
454                                            InitListExpr *StructuredList,
455                                            unsigned &StructuredIndex,
456                                            bool TopLevelObject) {
457  int maxElements = 0;
458
459  if (T->isArrayType())
460    maxElements = numArrayElements(T);
461  else if (T->isRecordType())
462    maxElements = numStructUnionElements(T);
463  else if (T->isVectorType())
464    maxElements = T->getAs<VectorType>()->getNumElements();
465  else
466    assert(0 && "CheckImplicitInitList(): Illegal type");
467
468  if (maxElements == 0) {
469    SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
470                  diag::err_implicit_empty_initializer);
471    ++Index;
472    hadError = true;
473    return;
474  }
475
476  // Build a structured initializer list corresponding to this subobject.
477  InitListExpr *StructuredSubobjectInitList
478    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
479                                 StructuredIndex,
480          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
481                      ParentIList->getSourceRange().getEnd()));
482  unsigned StructuredSubobjectInitIndex = 0;
483
484  // Check the element types and build the structural subobject.
485  unsigned StartIndex = Index;
486  CheckListElementTypes(Entity, ParentIList, T,
487                        /*SubobjectIsDesignatorContext=*/false, Index,
488                        StructuredSubobjectInitList,
489                        StructuredSubobjectInitIndex,
490                        TopLevelObject);
491  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
492  StructuredSubobjectInitList->setType(T);
493
494  // Update the structured sub-object initializer so that it's ending
495  // range corresponds with the end of the last initializer it used.
496  if (EndIndex < ParentIList->getNumInits()) {
497    SourceLocation EndLoc
498      = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
499    StructuredSubobjectInitList->setRBraceLoc(EndLoc);
500  }
501
502  // Warn about missing braces.
503  if (T->isArrayType() || T->isRecordType()) {
504    SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
505                 diag::warn_missing_braces)
506    << StructuredSubobjectInitList->getSourceRange()
507    << FixItHint::CreateInsertion(StructuredSubobjectInitList->getLocStart(),
508                                  "{")
509    << FixItHint::CreateInsertion(SemaRef.PP.getLocForEndOfToken(
510                                      StructuredSubobjectInitList->getLocEnd()),
511                                  "}");
512  }
513}
514
515void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
516                                            InitListExpr *IList, QualType &T,
517                                            unsigned &Index,
518                                            InitListExpr *StructuredList,
519                                            unsigned &StructuredIndex,
520                                            bool TopLevelObject) {
521  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
522  SyntacticToSemantic[IList] = StructuredList;
523  StructuredList->setSyntacticForm(IList);
524  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
525                        Index, StructuredList, StructuredIndex, TopLevelObject);
526  IList->setType(T.getNonReferenceType());
527  StructuredList->setType(T.getNonReferenceType());
528  if (hadError)
529    return;
530
531  if (Index < IList->getNumInits()) {
532    // We have leftover initializers
533    if (StructuredIndex == 1 &&
534        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
535      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
536      if (SemaRef.getLangOptions().CPlusPlus) {
537        DK = diag::err_excess_initializers_in_char_array_initializer;
538        hadError = true;
539      }
540      // Special-case
541      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
542        << IList->getInit(Index)->getSourceRange();
543    } else if (!T->isIncompleteType()) {
544      // Don't complain for incomplete types, since we'll get an error
545      // elsewhere
546      QualType CurrentObjectType = StructuredList->getType();
547      int initKind =
548        CurrentObjectType->isArrayType()? 0 :
549        CurrentObjectType->isVectorType()? 1 :
550        CurrentObjectType->isScalarType()? 2 :
551        CurrentObjectType->isUnionType()? 3 :
552        4;
553
554      unsigned DK = diag::warn_excess_initializers;
555      if (SemaRef.getLangOptions().CPlusPlus) {
556        DK = diag::err_excess_initializers;
557        hadError = true;
558      }
559      if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
560        DK = diag::err_excess_initializers;
561        hadError = true;
562      }
563
564      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
565        << initKind << IList->getInit(Index)->getSourceRange();
566    }
567  }
568
569  if (T->isScalarType() && !TopLevelObject)
570    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
571      << IList->getSourceRange()
572      << FixItHint::CreateRemoval(IList->getLocStart())
573      << FixItHint::CreateRemoval(IList->getLocEnd());
574}
575
576void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
577                                            InitListExpr *IList,
578                                            QualType &DeclType,
579                                            bool SubobjectIsDesignatorContext,
580                                            unsigned &Index,
581                                            InitListExpr *StructuredList,
582                                            unsigned &StructuredIndex,
583                                            bool TopLevelObject) {
584  if (DeclType->isScalarType()) {
585    CheckScalarType(Entity, IList, DeclType, Index,
586                    StructuredList, StructuredIndex);
587  } else if (DeclType->isVectorType()) {
588    CheckVectorType(Entity, IList, DeclType, Index,
589                    StructuredList, StructuredIndex);
590  } else if (DeclType->isAggregateType()) {
591    if (DeclType->isRecordType()) {
592      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
593      CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
594                            SubobjectIsDesignatorContext, Index,
595                            StructuredList, StructuredIndex,
596                            TopLevelObject);
597    } else if (DeclType->isArrayType()) {
598      llvm::APSInt Zero(
599                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
600                      false);
601      CheckArrayType(Entity, IList, DeclType, Zero,
602                     SubobjectIsDesignatorContext, Index,
603                     StructuredList, StructuredIndex);
604    } else
605      assert(0 && "Aggregate that isn't a structure or array?!");
606  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
607    // This type is invalid, issue a diagnostic.
608    ++Index;
609    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
610      << DeclType;
611    hadError = true;
612  } else if (DeclType->isRecordType()) {
613    // C++ [dcl.init]p14:
614    //   [...] If the class is an aggregate (8.5.1), and the initializer
615    //   is a brace-enclosed list, see 8.5.1.
616    //
617    // Note: 8.5.1 is handled below; here, we diagnose the case where
618    // we have an initializer list and a destination type that is not
619    // an aggregate.
620    // FIXME: In C++0x, this is yet another form of initialization.
621    SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
622      << DeclType << IList->getSourceRange();
623    hadError = true;
624  } else if (DeclType->isReferenceType()) {
625    CheckReferenceType(Entity, IList, DeclType, Index,
626                       StructuredList, StructuredIndex);
627  } else if (DeclType->isObjCObjectType()) {
628    SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
629      << DeclType;
630    hadError = true;
631  } else {
632    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
633      << DeclType;
634    hadError = true;
635  }
636}
637
638void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
639                                          InitListExpr *IList,
640                                          QualType ElemType,
641                                          unsigned &Index,
642                                          InitListExpr *StructuredList,
643                                          unsigned &StructuredIndex) {
644  Expr *expr = IList->getInit(Index);
645  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
646    unsigned newIndex = 0;
647    unsigned newStructuredIndex = 0;
648    InitListExpr *newStructuredList
649      = getStructuredSubobjectInit(IList, Index, ElemType,
650                                   StructuredList, StructuredIndex,
651                                   SubInitList->getSourceRange());
652    CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
653                          newStructuredList, newStructuredIndex);
654    ++StructuredIndex;
655    ++Index;
656  } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
657    CheckStringInit(Str, ElemType, SemaRef);
658    UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
659    ++Index;
660  } else if (ElemType->isScalarType()) {
661    CheckScalarType(Entity, IList, ElemType, Index,
662                    StructuredList, StructuredIndex);
663  } else if (ElemType->isReferenceType()) {
664    CheckReferenceType(Entity, IList, ElemType, Index,
665                       StructuredList, StructuredIndex);
666  } else {
667    if (SemaRef.getLangOptions().CPlusPlus) {
668      // C++ [dcl.init.aggr]p12:
669      //   All implicit type conversions (clause 4) are considered when
670      //   initializing the aggregate member with an ini- tializer from
671      //   an initializer-list. If the initializer can initialize a
672      //   member, the member is initialized. [...]
673
674      // FIXME: Better EqualLoc?
675      InitializationKind Kind =
676        InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
677      InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
678
679      if (Seq) {
680        Sema::OwningExprResult Result =
681          Seq.Perform(SemaRef, Entity, Kind,
682                      Sema::MultiExprArg(SemaRef, (void **)&expr, 1));
683        if (Result.isInvalid())
684          hadError = true;
685
686        UpdateStructuredListElement(StructuredList, StructuredIndex,
687                                    Result.takeAs<Expr>());
688        ++Index;
689        return;
690      }
691
692      // Fall through for subaggregate initialization
693    } else {
694      // C99 6.7.8p13:
695      //
696      //   The initializer for a structure or union object that has
697      //   automatic storage duration shall be either an initializer
698      //   list as described below, or a single expression that has
699      //   compatible structure or union type. In the latter case, the
700      //   initial value of the object, including unnamed members, is
701      //   that of the expression.
702      if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
703          SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) {
704        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
705        ++Index;
706        return;
707      }
708
709      // Fall through for subaggregate initialization
710    }
711
712    // C++ [dcl.init.aggr]p12:
713    //
714    //   [...] Otherwise, if the member is itself a non-empty
715    //   subaggregate, brace elision is assumed and the initializer is
716    //   considered for the initialization of the first member of
717    //   the subaggregate.
718    if (ElemType->isAggregateType() || ElemType->isVectorType()) {
719      CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
720                            StructuredIndex);
721      ++StructuredIndex;
722    } else {
723      // We cannot initialize this element, so let
724      // PerformCopyInitialization produce the appropriate diagnostic.
725      SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
726                                        SemaRef.Owned(expr));
727      IList->setInit(Index, 0);
728      hadError = true;
729      ++Index;
730      ++StructuredIndex;
731    }
732  }
733}
734
735void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
736                                      InitListExpr *IList, QualType DeclType,
737                                      unsigned &Index,
738                                      InitListExpr *StructuredList,
739                                      unsigned &StructuredIndex) {
740  if (Index < IList->getNumInits()) {
741    Expr *expr = IList->getInit(Index);
742    if (isa<InitListExpr>(expr)) {
743      SemaRef.Diag(IList->getLocStart(),
744                    diag::err_many_braces_around_scalar_init)
745        << IList->getSourceRange();
746      hadError = true;
747      ++Index;
748      ++StructuredIndex;
749      return;
750    } else if (isa<DesignatedInitExpr>(expr)) {
751      SemaRef.Diag(expr->getSourceRange().getBegin(),
752                    diag::err_designator_for_scalar_init)
753        << DeclType << expr->getSourceRange();
754      hadError = true;
755      ++Index;
756      ++StructuredIndex;
757      return;
758    }
759
760    Sema::OwningExprResult Result =
761      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
762                                        SemaRef.Owned(expr));
763
764    Expr *ResultExpr = 0;
765
766    if (Result.isInvalid())
767      hadError = true; // types weren't compatible.
768    else {
769      ResultExpr = Result.takeAs<Expr>();
770
771      if (ResultExpr != expr) {
772        // The type was promoted, update initializer list.
773        IList->setInit(Index, ResultExpr);
774      }
775    }
776    if (hadError)
777      ++StructuredIndex;
778    else
779      UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
780    ++Index;
781  } else {
782    SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
783      << IList->getSourceRange();
784    hadError = true;
785    ++Index;
786    ++StructuredIndex;
787    return;
788  }
789}
790
791void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
792                                         InitListExpr *IList, QualType DeclType,
793                                         unsigned &Index,
794                                         InitListExpr *StructuredList,
795                                         unsigned &StructuredIndex) {
796  if (Index < IList->getNumInits()) {
797    Expr *expr = IList->getInit(Index);
798    if (isa<InitListExpr>(expr)) {
799      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
800        << DeclType << IList->getSourceRange();
801      hadError = true;
802      ++Index;
803      ++StructuredIndex;
804      return;
805    }
806
807    Sema::OwningExprResult Result =
808      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
809                                        SemaRef.Owned(expr));
810
811    if (Result.isInvalid())
812      hadError = true;
813
814    expr = Result.takeAs<Expr>();
815    IList->setInit(Index, expr);
816
817    if (hadError)
818      ++StructuredIndex;
819    else
820      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
821    ++Index;
822  } else {
823    // FIXME: It would be wonderful if we could point at the actual member. In
824    // general, it would be useful to pass location information down the stack,
825    // so that we know the location (or decl) of the "current object" being
826    // initialized.
827    SemaRef.Diag(IList->getLocStart(),
828                  diag::err_init_reference_member_uninitialized)
829      << DeclType
830      << IList->getSourceRange();
831    hadError = true;
832    ++Index;
833    ++StructuredIndex;
834    return;
835  }
836}
837
838void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
839                                      InitListExpr *IList, QualType DeclType,
840                                      unsigned &Index,
841                                      InitListExpr *StructuredList,
842                                      unsigned &StructuredIndex) {
843  if (Index < IList->getNumInits()) {
844    const VectorType *VT = DeclType->getAs<VectorType>();
845    unsigned maxElements = VT->getNumElements();
846    unsigned numEltsInit = 0;
847    QualType elementType = VT->getElementType();
848
849    if (!SemaRef.getLangOptions().OpenCL) {
850      InitializedEntity ElementEntity =
851        InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
852
853      for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
854        // Don't attempt to go past the end of the init list
855        if (Index >= IList->getNumInits())
856          break;
857
858        ElementEntity.setElementIndex(Index);
859        CheckSubElementType(ElementEntity, IList, elementType, Index,
860                            StructuredList, StructuredIndex);
861      }
862    } else {
863      InitializedEntity ElementEntity =
864        InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
865
866      // OpenCL initializers allows vectors to be constructed from vectors.
867      for (unsigned i = 0; i < maxElements; ++i) {
868        // Don't attempt to go past the end of the init list
869        if (Index >= IList->getNumInits())
870          break;
871
872        ElementEntity.setElementIndex(Index);
873
874        QualType IType = IList->getInit(Index)->getType();
875        if (!IType->isVectorType()) {
876          CheckSubElementType(ElementEntity, IList, elementType, Index,
877                              StructuredList, StructuredIndex);
878          ++numEltsInit;
879        } else {
880          const VectorType *IVT = IType->getAs<VectorType>();
881          unsigned numIElts = IVT->getNumElements();
882          QualType VecType = SemaRef.Context.getExtVectorType(elementType,
883                                                              numIElts);
884          CheckSubElementType(ElementEntity, IList, VecType, Index,
885                              StructuredList, StructuredIndex);
886          numEltsInit += numIElts;
887        }
888      }
889    }
890
891    // OpenCL requires all elements to be initialized.
892    if (numEltsInit != maxElements)
893      if (SemaRef.getLangOptions().OpenCL)
894        SemaRef.Diag(IList->getSourceRange().getBegin(),
895                     diag::err_vector_incorrect_num_initializers)
896          << (numEltsInit < maxElements) << maxElements << numEltsInit;
897  }
898}
899
900void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
901                                     InitListExpr *IList, QualType &DeclType,
902                                     llvm::APSInt elementIndex,
903                                     bool SubobjectIsDesignatorContext,
904                                     unsigned &Index,
905                                     InitListExpr *StructuredList,
906                                     unsigned &StructuredIndex) {
907  // Check for the special-case of initializing an array with a string.
908  if (Index < IList->getNumInits()) {
909    if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
910                                 SemaRef.Context)) {
911      CheckStringInit(Str, DeclType, SemaRef);
912      // We place the string literal directly into the resulting
913      // initializer list. This is the only place where the structure
914      // of the structured initializer list doesn't match exactly,
915      // because doing so would involve allocating one character
916      // constant for each string.
917      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
918      StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
919      ++Index;
920      return;
921    }
922  }
923  if (const VariableArrayType *VAT =
924        SemaRef.Context.getAsVariableArrayType(DeclType)) {
925    // Check for VLAs; in standard C it would be possible to check this
926    // earlier, but I don't know where clang accepts VLAs (gcc accepts
927    // them in all sorts of strange places).
928    SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
929                  diag::err_variable_object_no_init)
930      << VAT->getSizeExpr()->getSourceRange();
931    hadError = true;
932    ++Index;
933    ++StructuredIndex;
934    return;
935  }
936
937  // We might know the maximum number of elements in advance.
938  llvm::APSInt maxElements(elementIndex.getBitWidth(),
939                           elementIndex.isUnsigned());
940  bool maxElementsKnown = false;
941  if (const ConstantArrayType *CAT =
942        SemaRef.Context.getAsConstantArrayType(DeclType)) {
943    maxElements = CAT->getSize();
944    elementIndex.extOrTrunc(maxElements.getBitWidth());
945    elementIndex.setIsUnsigned(maxElements.isUnsigned());
946    maxElementsKnown = true;
947  }
948
949  QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
950                             ->getElementType();
951  while (Index < IList->getNumInits()) {
952    Expr *Init = IList->getInit(Index);
953    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
954      // If we're not the subobject that matches up with the '{' for
955      // the designator, we shouldn't be handling the
956      // designator. Return immediately.
957      if (!SubobjectIsDesignatorContext)
958        return;
959
960      // Handle this designated initializer. elementIndex will be
961      // updated to be the next array element we'll initialize.
962      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
963                                     DeclType, 0, &elementIndex, Index,
964                                     StructuredList, StructuredIndex, true,
965                                     false)) {
966        hadError = true;
967        continue;
968      }
969
970      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
971        maxElements.extend(elementIndex.getBitWidth());
972      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
973        elementIndex.extend(maxElements.getBitWidth());
974      elementIndex.setIsUnsigned(maxElements.isUnsigned());
975
976      // If the array is of incomplete type, keep track of the number of
977      // elements in the initializer.
978      if (!maxElementsKnown && elementIndex > maxElements)
979        maxElements = elementIndex;
980
981      continue;
982    }
983
984    // If we know the maximum number of elements, and we've already
985    // hit it, stop consuming elements in the initializer list.
986    if (maxElementsKnown && elementIndex == maxElements)
987      break;
988
989    InitializedEntity ElementEntity =
990      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
991                                           Entity);
992    // Check this element.
993    CheckSubElementType(ElementEntity, IList, elementType, Index,
994                        StructuredList, StructuredIndex);
995    ++elementIndex;
996
997    // If the array is of incomplete type, keep track of the number of
998    // elements in the initializer.
999    if (!maxElementsKnown && elementIndex > maxElements)
1000      maxElements = elementIndex;
1001  }
1002  if (!hadError && DeclType->isIncompleteArrayType()) {
1003    // If this is an incomplete array type, the actual type needs to
1004    // be calculated here.
1005    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1006    if (maxElements == Zero) {
1007      // Sizing an array implicitly to zero is not allowed by ISO C,
1008      // but is supported by GNU.
1009      SemaRef.Diag(IList->getLocStart(),
1010                    diag::ext_typecheck_zero_array_size);
1011    }
1012
1013    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1014                                                     ArrayType::Normal, 0);
1015  }
1016}
1017
1018void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1019                                            InitListExpr *IList,
1020                                            QualType DeclType,
1021                                            RecordDecl::field_iterator Field,
1022                                            bool SubobjectIsDesignatorContext,
1023                                            unsigned &Index,
1024                                            InitListExpr *StructuredList,
1025                                            unsigned &StructuredIndex,
1026                                            bool TopLevelObject) {
1027  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1028
1029  // If the record is invalid, some of it's members are invalid. To avoid
1030  // confusion, we forgo checking the intializer for the entire record.
1031  if (structDecl->isInvalidDecl()) {
1032    hadError = true;
1033    return;
1034  }
1035
1036  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1037    // Value-initialize the first named member of the union.
1038    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1039    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1040         Field != FieldEnd; ++Field) {
1041      if (Field->getDeclName()) {
1042        StructuredList->setInitializedFieldInUnion(*Field);
1043        break;
1044      }
1045    }
1046    return;
1047  }
1048
1049  // If structDecl is a forward declaration, this loop won't do
1050  // anything except look at designated initializers; That's okay,
1051  // because an error should get printed out elsewhere. It might be
1052  // worthwhile to skip over the rest of the initializer, though.
1053  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1054  RecordDecl::field_iterator FieldEnd = RD->field_end();
1055  bool InitializedSomething = false;
1056  bool CheckForMissingFields = true;
1057  while (Index < IList->getNumInits()) {
1058    Expr *Init = IList->getInit(Index);
1059
1060    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1061      // If we're not the subobject that matches up with the '{' for
1062      // the designator, we shouldn't be handling the
1063      // designator. Return immediately.
1064      if (!SubobjectIsDesignatorContext)
1065        return;
1066
1067      // Handle this designated initializer. Field will be updated to
1068      // the next field that we'll be initializing.
1069      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1070                                     DeclType, &Field, 0, Index,
1071                                     StructuredList, StructuredIndex,
1072                                     true, TopLevelObject))
1073        hadError = true;
1074
1075      InitializedSomething = true;
1076
1077      // Disable check for missing fields when designators are used.
1078      // This matches gcc behaviour.
1079      CheckForMissingFields = false;
1080      continue;
1081    }
1082
1083    if (Field == FieldEnd) {
1084      // We've run out of fields. We're done.
1085      break;
1086    }
1087
1088    // We've already initialized a member of a union. We're done.
1089    if (InitializedSomething && DeclType->isUnionType())
1090      break;
1091
1092    // If we've hit the flexible array member at the end, we're done.
1093    if (Field->getType()->isIncompleteArrayType())
1094      break;
1095
1096    if (Field->isUnnamedBitfield()) {
1097      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1098      ++Field;
1099      continue;
1100    }
1101
1102    InitializedEntity MemberEntity =
1103      InitializedEntity::InitializeMember(*Field, &Entity);
1104    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1105                        StructuredList, StructuredIndex);
1106    InitializedSomething = true;
1107
1108    if (DeclType->isUnionType()) {
1109      // Initialize the first field within the union.
1110      StructuredList->setInitializedFieldInUnion(*Field);
1111    }
1112
1113    ++Field;
1114  }
1115
1116  // Emit warnings for missing struct field initializers.
1117  if (CheckForMissingFields && Field != FieldEnd &&
1118      !Field->getType()->isIncompleteArrayType() && !DeclType->isUnionType()) {
1119    // It is possible we have one or more unnamed bitfields remaining.
1120    // Find first (if any) named field and emit warning.
1121    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1122         it != end; ++it) {
1123      if (!it->isUnnamedBitfield()) {
1124        SemaRef.Diag(IList->getSourceRange().getEnd(),
1125                     diag::warn_missing_field_initializers) << it->getName();
1126        break;
1127      }
1128    }
1129  }
1130
1131  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1132      Index >= IList->getNumInits())
1133    return;
1134
1135  // Handle GNU flexible array initializers.
1136  if (!TopLevelObject &&
1137      (!isa<InitListExpr>(IList->getInit(Index)) ||
1138       cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1139    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1140                  diag::err_flexible_array_init_nonempty)
1141      << IList->getInit(Index)->getSourceRange().getBegin();
1142    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1143      << *Field;
1144    hadError = true;
1145    ++Index;
1146    return;
1147  } else {
1148    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1149                 diag::ext_flexible_array_init)
1150      << IList->getInit(Index)->getSourceRange().getBegin();
1151    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1152      << *Field;
1153  }
1154
1155  InitializedEntity MemberEntity =
1156    InitializedEntity::InitializeMember(*Field, &Entity);
1157
1158  if (isa<InitListExpr>(IList->getInit(Index)))
1159    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1160                        StructuredList, StructuredIndex);
1161  else
1162    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1163                          StructuredList, StructuredIndex);
1164}
1165
1166/// \brief Expand a field designator that refers to a member of an
1167/// anonymous struct or union into a series of field designators that
1168/// refers to the field within the appropriate subobject.
1169///
1170/// Field/FieldIndex will be updated to point to the (new)
1171/// currently-designated field.
1172static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1173                                           DesignatedInitExpr *DIE,
1174                                           unsigned DesigIdx,
1175                                           FieldDecl *Field,
1176                                        RecordDecl::field_iterator &FieldIter,
1177                                           unsigned &FieldIndex) {
1178  typedef DesignatedInitExpr::Designator Designator;
1179
1180  // Build the path from the current object to the member of the
1181  // anonymous struct/union (backwards).
1182  llvm::SmallVector<FieldDecl *, 4> Path;
1183  SemaRef.BuildAnonymousStructUnionMemberPath(Field, Path);
1184
1185  // Build the replacement designators.
1186  llvm::SmallVector<Designator, 4> Replacements;
1187  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
1188         FI = Path.rbegin(), FIEnd = Path.rend();
1189       FI != FIEnd; ++FI) {
1190    if (FI + 1 == FIEnd)
1191      Replacements.push_back(Designator((IdentifierInfo *)0,
1192                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1193                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1194    else
1195      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1196                                        SourceLocation()));
1197    Replacements.back().setField(*FI);
1198  }
1199
1200  // Expand the current designator into the set of replacement
1201  // designators, so we have a full subobject path down to where the
1202  // member of the anonymous struct/union is actually stored.
1203  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1204                        &Replacements[0] + Replacements.size());
1205
1206  // Update FieldIter/FieldIndex;
1207  RecordDecl *Record = cast<RecordDecl>(Path.back()->getDeclContext());
1208  FieldIter = Record->field_begin();
1209  FieldIndex = 0;
1210  for (RecordDecl::field_iterator FEnd = Record->field_end();
1211       FieldIter != FEnd; ++FieldIter) {
1212    if (FieldIter->isUnnamedBitfield())
1213        continue;
1214
1215    if (*FieldIter == Path.back())
1216      return;
1217
1218    ++FieldIndex;
1219  }
1220
1221  assert(false && "Unable to find anonymous struct/union field");
1222}
1223
1224/// @brief Check the well-formedness of a C99 designated initializer.
1225///
1226/// Determines whether the designated initializer @p DIE, which
1227/// resides at the given @p Index within the initializer list @p
1228/// IList, is well-formed for a current object of type @p DeclType
1229/// (C99 6.7.8). The actual subobject that this designator refers to
1230/// within the current subobject is returned in either
1231/// @p NextField or @p NextElementIndex (whichever is appropriate).
1232///
1233/// @param IList  The initializer list in which this designated
1234/// initializer occurs.
1235///
1236/// @param DIE The designated initializer expression.
1237///
1238/// @param DesigIdx  The index of the current designator.
1239///
1240/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1241/// into which the designation in @p DIE should refer.
1242///
1243/// @param NextField  If non-NULL and the first designator in @p DIE is
1244/// a field, this will be set to the field declaration corresponding
1245/// to the field named by the designator.
1246///
1247/// @param NextElementIndex  If non-NULL and the first designator in @p
1248/// DIE is an array designator or GNU array-range designator, this
1249/// will be set to the last index initialized by this designator.
1250///
1251/// @param Index  Index into @p IList where the designated initializer
1252/// @p DIE occurs.
1253///
1254/// @param StructuredList  The initializer list expression that
1255/// describes all of the subobject initializers in the order they'll
1256/// actually be initialized.
1257///
1258/// @returns true if there was an error, false otherwise.
1259bool
1260InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1261                                            InitListExpr *IList,
1262                                      DesignatedInitExpr *DIE,
1263                                      unsigned DesigIdx,
1264                                      QualType &CurrentObjectType,
1265                                      RecordDecl::field_iterator *NextField,
1266                                      llvm::APSInt *NextElementIndex,
1267                                      unsigned &Index,
1268                                      InitListExpr *StructuredList,
1269                                      unsigned &StructuredIndex,
1270                                            bool FinishSubobjectInit,
1271                                            bool TopLevelObject) {
1272  if (DesigIdx == DIE->size()) {
1273    // Check the actual initialization for the designated object type.
1274    bool prevHadError = hadError;
1275
1276    // Temporarily remove the designator expression from the
1277    // initializer list that the child calls see, so that we don't try
1278    // to re-process the designator.
1279    unsigned OldIndex = Index;
1280    IList->setInit(OldIndex, DIE->getInit());
1281
1282    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1283                        StructuredList, StructuredIndex);
1284
1285    // Restore the designated initializer expression in the syntactic
1286    // form of the initializer list.
1287    if (IList->getInit(OldIndex) != DIE->getInit())
1288      DIE->setInit(IList->getInit(OldIndex));
1289    IList->setInit(OldIndex, DIE);
1290
1291    return hadError && !prevHadError;
1292  }
1293
1294  bool IsFirstDesignator = (DesigIdx == 0);
1295  assert((IsFirstDesignator || StructuredList) &&
1296         "Need a non-designated initializer list to start from");
1297
1298  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1299  // Determine the structural initializer list that corresponds to the
1300  // current subobject.
1301  StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1302    : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1303                                 StructuredList, StructuredIndex,
1304                                 SourceRange(D->getStartLocation(),
1305                                             DIE->getSourceRange().getEnd()));
1306  assert(StructuredList && "Expected a structured initializer list");
1307
1308  if (D->isFieldDesignator()) {
1309    // C99 6.7.8p7:
1310    //
1311    //   If a designator has the form
1312    //
1313    //      . identifier
1314    //
1315    //   then the current object (defined below) shall have
1316    //   structure or union type and the identifier shall be the
1317    //   name of a member of that type.
1318    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1319    if (!RT) {
1320      SourceLocation Loc = D->getDotLoc();
1321      if (Loc.isInvalid())
1322        Loc = D->getFieldLoc();
1323      SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1324        << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1325      ++Index;
1326      return true;
1327    }
1328
1329    // Note: we perform a linear search of the fields here, despite
1330    // the fact that we have a faster lookup method, because we always
1331    // need to compute the field's index.
1332    FieldDecl *KnownField = D->getField();
1333    IdentifierInfo *FieldName = D->getFieldName();
1334    unsigned FieldIndex = 0;
1335    RecordDecl::field_iterator
1336      Field = RT->getDecl()->field_begin(),
1337      FieldEnd = RT->getDecl()->field_end();
1338    for (; Field != FieldEnd; ++Field) {
1339      if (Field->isUnnamedBitfield())
1340        continue;
1341
1342      if (KnownField == *Field || Field->getIdentifier() == FieldName)
1343        break;
1344
1345      ++FieldIndex;
1346    }
1347
1348    if (Field == FieldEnd) {
1349      // There was no normal field in the struct with the designated
1350      // name. Perform another lookup for this name, which may find
1351      // something that we can't designate (e.g., a member function),
1352      // may find nothing, or may find a member of an anonymous
1353      // struct/union.
1354      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1355      FieldDecl *ReplacementField = 0;
1356      if (Lookup.first == Lookup.second) {
1357        // Name lookup didn't find anything. Determine whether this
1358        // was a typo for another field name.
1359        LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
1360                       Sema::LookupMemberName);
1361        if (SemaRef.CorrectTypo(R, /*Scope=*/0, /*SS=*/0, RT->getDecl(), false,
1362                                Sema::CTC_NoKeywords) &&
1363            (ReplacementField = R.getAsSingle<FieldDecl>()) &&
1364            ReplacementField->getDeclContext()->getLookupContext()
1365                                                      ->Equals(RT->getDecl())) {
1366          SemaRef.Diag(D->getFieldLoc(),
1367                       diag::err_field_designator_unknown_suggest)
1368            << FieldName << CurrentObjectType << R.getLookupName()
1369            << FixItHint::CreateReplacement(D->getFieldLoc(),
1370                                            R.getLookupName().getAsString());
1371          SemaRef.Diag(ReplacementField->getLocation(),
1372                       diag::note_previous_decl)
1373            << ReplacementField->getDeclName();
1374        } else {
1375          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1376            << FieldName << CurrentObjectType;
1377          ++Index;
1378          return true;
1379        }
1380      } else if (!KnownField) {
1381        // Determine whether we found a field at all.
1382        ReplacementField = dyn_cast<FieldDecl>(*Lookup.first);
1383      }
1384
1385      if (!ReplacementField) {
1386        // Name lookup found something, but it wasn't a field.
1387        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1388          << FieldName;
1389        SemaRef.Diag((*Lookup.first)->getLocation(),
1390                      diag::note_field_designator_found);
1391        ++Index;
1392        return true;
1393      }
1394
1395      if (!KnownField &&
1396          cast<RecordDecl>((ReplacementField)->getDeclContext())
1397                                                 ->isAnonymousStructOrUnion()) {
1398        // Handle an field designator that refers to a member of an
1399        // anonymous struct or union.
1400        ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx,
1401                                       ReplacementField,
1402                                       Field, FieldIndex);
1403        D = DIE->getDesignator(DesigIdx);
1404      } else if (!KnownField) {
1405        // The replacement field comes from typo correction; find it
1406        // in the list of fields.
1407        FieldIndex = 0;
1408        Field = RT->getDecl()->field_begin();
1409        for (; Field != FieldEnd; ++Field) {
1410          if (Field->isUnnamedBitfield())
1411            continue;
1412
1413          if (ReplacementField == *Field ||
1414              Field->getIdentifier() == ReplacementField->getIdentifier())
1415            break;
1416
1417          ++FieldIndex;
1418        }
1419      }
1420    } else if (!KnownField &&
1421               cast<RecordDecl>((*Field)->getDeclContext())
1422                 ->isAnonymousStructOrUnion()) {
1423      ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, *Field,
1424                                     Field, FieldIndex);
1425      D = DIE->getDesignator(DesigIdx);
1426    }
1427
1428    // All of the fields of a union are located at the same place in
1429    // the initializer list.
1430    if (RT->getDecl()->isUnion()) {
1431      FieldIndex = 0;
1432      StructuredList->setInitializedFieldInUnion(*Field);
1433    }
1434
1435    // Update the designator with the field declaration.
1436    D->setField(*Field);
1437
1438    // Make sure that our non-designated initializer list has space
1439    // for a subobject corresponding to this field.
1440    if (FieldIndex >= StructuredList->getNumInits())
1441      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1442
1443    // This designator names a flexible array member.
1444    if (Field->getType()->isIncompleteArrayType()) {
1445      bool Invalid = false;
1446      if ((DesigIdx + 1) != DIE->size()) {
1447        // We can't designate an object within the flexible array
1448        // member (because GCC doesn't allow it).
1449        DesignatedInitExpr::Designator *NextD
1450          = DIE->getDesignator(DesigIdx + 1);
1451        SemaRef.Diag(NextD->getStartLocation(),
1452                      diag::err_designator_into_flexible_array_member)
1453          << SourceRange(NextD->getStartLocation(),
1454                         DIE->getSourceRange().getEnd());
1455        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1456          << *Field;
1457        Invalid = true;
1458      }
1459
1460      if (!hadError && !isa<InitListExpr>(DIE->getInit())) {
1461        // The initializer is not an initializer list.
1462        SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1463                      diag::err_flexible_array_init_needs_braces)
1464          << DIE->getInit()->getSourceRange();
1465        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1466          << *Field;
1467        Invalid = true;
1468      }
1469
1470      // Handle GNU flexible array initializers.
1471      if (!Invalid && !TopLevelObject &&
1472          cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1473        SemaRef.Diag(DIE->getSourceRange().getBegin(),
1474                      diag::err_flexible_array_init_nonempty)
1475          << DIE->getSourceRange().getBegin();
1476        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1477          << *Field;
1478        Invalid = true;
1479      }
1480
1481      if (Invalid) {
1482        ++Index;
1483        return true;
1484      }
1485
1486      // Initialize the array.
1487      bool prevHadError = hadError;
1488      unsigned newStructuredIndex = FieldIndex;
1489      unsigned OldIndex = Index;
1490      IList->setInit(Index, DIE->getInit());
1491
1492      InitializedEntity MemberEntity =
1493        InitializedEntity::InitializeMember(*Field, &Entity);
1494      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1495                          StructuredList, newStructuredIndex);
1496
1497      IList->setInit(OldIndex, DIE);
1498      if (hadError && !prevHadError) {
1499        ++Field;
1500        ++FieldIndex;
1501        if (NextField)
1502          *NextField = Field;
1503        StructuredIndex = FieldIndex;
1504        return true;
1505      }
1506    } else {
1507      // Recurse to check later designated subobjects.
1508      QualType FieldType = (*Field)->getType();
1509      unsigned newStructuredIndex = FieldIndex;
1510
1511      InitializedEntity MemberEntity =
1512        InitializedEntity::InitializeMember(*Field, &Entity);
1513      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1514                                     FieldType, 0, 0, Index,
1515                                     StructuredList, newStructuredIndex,
1516                                     true, false))
1517        return true;
1518    }
1519
1520    // Find the position of the next field to be initialized in this
1521    // subobject.
1522    ++Field;
1523    ++FieldIndex;
1524
1525    // If this the first designator, our caller will continue checking
1526    // the rest of this struct/class/union subobject.
1527    if (IsFirstDesignator) {
1528      if (NextField)
1529        *NextField = Field;
1530      StructuredIndex = FieldIndex;
1531      return false;
1532    }
1533
1534    if (!FinishSubobjectInit)
1535      return false;
1536
1537    // We've already initialized something in the union; we're done.
1538    if (RT->getDecl()->isUnion())
1539      return hadError;
1540
1541    // Check the remaining fields within this class/struct/union subobject.
1542    bool prevHadError = hadError;
1543
1544    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1545                          StructuredList, FieldIndex);
1546    return hadError && !prevHadError;
1547  }
1548
1549  // C99 6.7.8p6:
1550  //
1551  //   If a designator has the form
1552  //
1553  //      [ constant-expression ]
1554  //
1555  //   then the current object (defined below) shall have array
1556  //   type and the expression shall be an integer constant
1557  //   expression. If the array is of unknown size, any
1558  //   nonnegative value is valid.
1559  //
1560  // Additionally, cope with the GNU extension that permits
1561  // designators of the form
1562  //
1563  //      [ constant-expression ... constant-expression ]
1564  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1565  if (!AT) {
1566    SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1567      << CurrentObjectType;
1568    ++Index;
1569    return true;
1570  }
1571
1572  Expr *IndexExpr = 0;
1573  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1574  if (D->isArrayDesignator()) {
1575    IndexExpr = DIE->getArrayIndex(*D);
1576    DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1577    DesignatedEndIndex = DesignatedStartIndex;
1578  } else {
1579    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1580
1581
1582    DesignatedStartIndex =
1583      DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1584    DesignatedEndIndex =
1585      DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1586    IndexExpr = DIE->getArrayRangeEnd(*D);
1587
1588    if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
1589      FullyStructuredList->sawArrayRangeDesignator();
1590  }
1591
1592  if (isa<ConstantArrayType>(AT)) {
1593    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1594    DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1595    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1596    DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1597    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1598    if (DesignatedEndIndex >= MaxElements) {
1599      SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1600                    diag::err_array_designator_too_large)
1601        << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1602        << IndexExpr->getSourceRange();
1603      ++Index;
1604      return true;
1605    }
1606  } else {
1607    // Make sure the bit-widths and signedness match.
1608    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1609      DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1610    else if (DesignatedStartIndex.getBitWidth() <
1611             DesignatedEndIndex.getBitWidth())
1612      DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1613    DesignatedStartIndex.setIsUnsigned(true);
1614    DesignatedEndIndex.setIsUnsigned(true);
1615  }
1616
1617  // Make sure that our non-designated initializer list has space
1618  // for a subobject corresponding to this array element.
1619  if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1620    StructuredList->resizeInits(SemaRef.Context,
1621                                DesignatedEndIndex.getZExtValue() + 1);
1622
1623  // Repeatedly perform subobject initializations in the range
1624  // [DesignatedStartIndex, DesignatedEndIndex].
1625
1626  // Move to the next designator
1627  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1628  unsigned OldIndex = Index;
1629
1630  InitializedEntity ElementEntity =
1631    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1632
1633  while (DesignatedStartIndex <= DesignatedEndIndex) {
1634    // Recurse to check later designated subobjects.
1635    QualType ElementType = AT->getElementType();
1636    Index = OldIndex;
1637
1638    ElementEntity.setElementIndex(ElementIndex);
1639    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
1640                                   ElementType, 0, 0, Index,
1641                                   StructuredList, ElementIndex,
1642                                   (DesignatedStartIndex == DesignatedEndIndex),
1643                                   false))
1644      return true;
1645
1646    // Move to the next index in the array that we'll be initializing.
1647    ++DesignatedStartIndex;
1648    ElementIndex = DesignatedStartIndex.getZExtValue();
1649  }
1650
1651  // If this the first designator, our caller will continue checking
1652  // the rest of this array subobject.
1653  if (IsFirstDesignator) {
1654    if (NextElementIndex)
1655      *NextElementIndex = DesignatedStartIndex;
1656    StructuredIndex = ElementIndex;
1657    return false;
1658  }
1659
1660  if (!FinishSubobjectInit)
1661    return false;
1662
1663  // Check the remaining elements within this array subobject.
1664  bool prevHadError = hadError;
1665  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
1666                 /*SubobjectIsDesignatorContext=*/false, Index,
1667                 StructuredList, ElementIndex);
1668  return hadError && !prevHadError;
1669}
1670
1671// Get the structured initializer list for a subobject of type
1672// @p CurrentObjectType.
1673InitListExpr *
1674InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1675                                            QualType CurrentObjectType,
1676                                            InitListExpr *StructuredList,
1677                                            unsigned StructuredIndex,
1678                                            SourceRange InitRange) {
1679  Expr *ExistingInit = 0;
1680  if (!StructuredList)
1681    ExistingInit = SyntacticToSemantic[IList];
1682  else if (StructuredIndex < StructuredList->getNumInits())
1683    ExistingInit = StructuredList->getInit(StructuredIndex);
1684
1685  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1686    return Result;
1687
1688  if (ExistingInit) {
1689    // We are creating an initializer list that initializes the
1690    // subobjects of the current object, but there was already an
1691    // initialization that completely initialized the current
1692    // subobject, e.g., by a compound literal:
1693    //
1694    // struct X { int a, b; };
1695    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1696    //
1697    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1698    // designated initializer re-initializes the whole
1699    // subobject [0], overwriting previous initializers.
1700    SemaRef.Diag(InitRange.getBegin(),
1701                 diag::warn_subobject_initializer_overrides)
1702      << InitRange;
1703    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1704                  diag::note_previous_initializer)
1705      << /*FIXME:has side effects=*/0
1706      << ExistingInit->getSourceRange();
1707  }
1708
1709  InitListExpr *Result
1710    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
1711                                         InitRange.getBegin(), 0, 0,
1712                                         InitRange.getEnd());
1713
1714  Result->setType(CurrentObjectType.getNonReferenceType());
1715
1716  // Pre-allocate storage for the structured initializer list.
1717  unsigned NumElements = 0;
1718  unsigned NumInits = 0;
1719  if (!StructuredList)
1720    NumInits = IList->getNumInits();
1721  else if (Index < IList->getNumInits()) {
1722    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1723      NumInits = SubList->getNumInits();
1724  }
1725
1726  if (const ArrayType *AType
1727      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1728    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1729      NumElements = CAType->getSize().getZExtValue();
1730      // Simple heuristic so that we don't allocate a very large
1731      // initializer with many empty entries at the end.
1732      if (NumInits && NumElements > NumInits)
1733        NumElements = 0;
1734    }
1735  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
1736    NumElements = VType->getNumElements();
1737  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
1738    RecordDecl *RDecl = RType->getDecl();
1739    if (RDecl->isUnion())
1740      NumElements = 1;
1741    else
1742      NumElements = std::distance(RDecl->field_begin(),
1743                                  RDecl->field_end());
1744  }
1745
1746  if (NumElements < NumInits)
1747    NumElements = IList->getNumInits();
1748
1749  Result->reserveInits(SemaRef.Context, NumElements);
1750
1751  // Link this new initializer list into the structured initializer
1752  // lists.
1753  if (StructuredList)
1754    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
1755  else {
1756    Result->setSyntacticForm(IList);
1757    SyntacticToSemantic[IList] = Result;
1758  }
1759
1760  return Result;
1761}
1762
1763/// Update the initializer at index @p StructuredIndex within the
1764/// structured initializer list to the value @p expr.
1765void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1766                                                  unsigned &StructuredIndex,
1767                                                  Expr *expr) {
1768  // No structured initializer list to update
1769  if (!StructuredList)
1770    return;
1771
1772  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
1773                                                  StructuredIndex, expr)) {
1774    // This initializer overwrites a previous initializer. Warn.
1775    SemaRef.Diag(expr->getSourceRange().getBegin(),
1776                  diag::warn_initializer_overrides)
1777      << expr->getSourceRange();
1778    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1779                  diag::note_previous_initializer)
1780      << /*FIXME:has side effects=*/0
1781      << PrevInit->getSourceRange();
1782  }
1783
1784  ++StructuredIndex;
1785}
1786
1787/// Check that the given Index expression is a valid array designator
1788/// value. This is essentailly just a wrapper around
1789/// VerifyIntegerConstantExpression that also checks for negative values
1790/// and produces a reasonable diagnostic if there is a
1791/// failure. Returns true if there was an error, false otherwise.  If
1792/// everything went okay, Value will receive the value of the constant
1793/// expression.
1794static bool
1795CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1796  SourceLocation Loc = Index->getSourceRange().getBegin();
1797
1798  // Make sure this is an integer constant expression.
1799  if (S.VerifyIntegerConstantExpression(Index, &Value))
1800    return true;
1801
1802  if (Value.isSigned() && Value.isNegative())
1803    return S.Diag(Loc, diag::err_array_designator_negative)
1804      << Value.toString(10) << Index->getSourceRange();
1805
1806  Value.setIsUnsigned(true);
1807  return false;
1808}
1809
1810Sema::OwningExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1811                                                        SourceLocation Loc,
1812                                                        bool GNUSyntax,
1813                                                        OwningExprResult Init) {
1814  typedef DesignatedInitExpr::Designator ASTDesignator;
1815
1816  bool Invalid = false;
1817  llvm::SmallVector<ASTDesignator, 32> Designators;
1818  llvm::SmallVector<Expr *, 32> InitExpressions;
1819
1820  // Build designators and check array designator expressions.
1821  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1822    const Designator &D = Desig.getDesignator(Idx);
1823    switch (D.getKind()) {
1824    case Designator::FieldDesignator:
1825      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1826                                          D.getFieldLoc()));
1827      break;
1828
1829    case Designator::ArrayDesignator: {
1830      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1831      llvm::APSInt IndexValue;
1832      if (!Index->isTypeDependent() &&
1833          !Index->isValueDependent() &&
1834          CheckArrayDesignatorExpr(*this, Index, IndexValue))
1835        Invalid = true;
1836      else {
1837        Designators.push_back(ASTDesignator(InitExpressions.size(),
1838                                            D.getLBracketLoc(),
1839                                            D.getRBracketLoc()));
1840        InitExpressions.push_back(Index);
1841      }
1842      break;
1843    }
1844
1845    case Designator::ArrayRangeDesignator: {
1846      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1847      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1848      llvm::APSInt StartValue;
1849      llvm::APSInt EndValue;
1850      bool StartDependent = StartIndex->isTypeDependent() ||
1851                            StartIndex->isValueDependent();
1852      bool EndDependent = EndIndex->isTypeDependent() ||
1853                          EndIndex->isValueDependent();
1854      if ((!StartDependent &&
1855           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1856          (!EndDependent &&
1857           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1858        Invalid = true;
1859      else {
1860        // Make sure we're comparing values with the same bit width.
1861        if (StartDependent || EndDependent) {
1862          // Nothing to compute.
1863        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1864          EndValue.extend(StartValue.getBitWidth());
1865        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1866          StartValue.extend(EndValue.getBitWidth());
1867
1868        if (!StartDependent && !EndDependent && EndValue < StartValue) {
1869          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1870            << StartValue.toString(10) << EndValue.toString(10)
1871            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1872          Invalid = true;
1873        } else {
1874          Designators.push_back(ASTDesignator(InitExpressions.size(),
1875                                              D.getLBracketLoc(),
1876                                              D.getEllipsisLoc(),
1877                                              D.getRBracketLoc()));
1878          InitExpressions.push_back(StartIndex);
1879          InitExpressions.push_back(EndIndex);
1880        }
1881      }
1882      break;
1883    }
1884    }
1885  }
1886
1887  if (Invalid || Init.isInvalid())
1888    return ExprError();
1889
1890  // Clear out the expressions within the designation.
1891  Desig.ClearExprs(*this);
1892
1893  DesignatedInitExpr *DIE
1894    = DesignatedInitExpr::Create(Context,
1895                                 Designators.data(), Designators.size(),
1896                                 InitExpressions.data(), InitExpressions.size(),
1897                                 Loc, GNUSyntax, Init.takeAs<Expr>());
1898  return Owned(DIE);
1899}
1900
1901bool Sema::CheckInitList(const InitializedEntity &Entity,
1902                         InitListExpr *&InitList, QualType &DeclType) {
1903  InitListChecker CheckInitList(*this, Entity, InitList, DeclType);
1904  if (!CheckInitList.HadError())
1905    InitList = CheckInitList.getFullyStructuredList();
1906
1907  return CheckInitList.HadError();
1908}
1909
1910//===----------------------------------------------------------------------===//
1911// Initialization entity
1912//===----------------------------------------------------------------------===//
1913
1914InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
1915                                     const InitializedEntity &Parent)
1916  : Parent(&Parent), Index(Index)
1917{
1918  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
1919    Kind = EK_ArrayElement;
1920    Type = AT->getElementType();
1921  } else {
1922    Kind = EK_VectorElement;
1923    Type = Parent.getType()->getAs<VectorType>()->getElementType();
1924  }
1925}
1926
1927InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
1928                                                    CXXBaseSpecifier *Base,
1929                                                    bool IsInheritedVirtualBase)
1930{
1931  InitializedEntity Result;
1932  Result.Kind = EK_Base;
1933  Result.Base = reinterpret_cast<uintptr_t>(Base);
1934  if (IsInheritedVirtualBase)
1935    Result.Base |= 0x01;
1936
1937  Result.Type = Base->getType();
1938  return Result;
1939}
1940
1941DeclarationName InitializedEntity::getName() const {
1942  switch (getKind()) {
1943  case EK_Parameter:
1944    if (!VariableOrMember)
1945      return DeclarationName();
1946    // Fall through
1947
1948  case EK_Variable:
1949  case EK_Member:
1950    return VariableOrMember->getDeclName();
1951
1952  case EK_Result:
1953  case EK_Exception:
1954  case EK_New:
1955  case EK_Temporary:
1956  case EK_Base:
1957  case EK_ArrayElement:
1958  case EK_VectorElement:
1959    return DeclarationName();
1960  }
1961
1962  // Silence GCC warning
1963  return DeclarationName();
1964}
1965
1966DeclaratorDecl *InitializedEntity::getDecl() const {
1967  switch (getKind()) {
1968  case EK_Variable:
1969  case EK_Parameter:
1970  case EK_Member:
1971    return VariableOrMember;
1972
1973  case EK_Result:
1974  case EK_Exception:
1975  case EK_New:
1976  case EK_Temporary:
1977  case EK_Base:
1978  case EK_ArrayElement:
1979  case EK_VectorElement:
1980    return 0;
1981  }
1982
1983  // Silence GCC warning
1984  return 0;
1985}
1986
1987bool InitializedEntity::allowsNRVO() const {
1988  switch (getKind()) {
1989  case EK_Result:
1990  case EK_Exception:
1991    return LocAndNRVO.NRVO;
1992
1993  case EK_Variable:
1994  case EK_Parameter:
1995  case EK_Member:
1996  case EK_New:
1997  case EK_Temporary:
1998  case EK_Base:
1999  case EK_ArrayElement:
2000  case EK_VectorElement:
2001    break;
2002  }
2003
2004  return false;
2005}
2006
2007//===----------------------------------------------------------------------===//
2008// Initialization sequence
2009//===----------------------------------------------------------------------===//
2010
2011void InitializationSequence::Step::Destroy() {
2012  switch (Kind) {
2013  case SK_ResolveAddressOfOverloadedFunction:
2014  case SK_CastDerivedToBaseRValue:
2015  case SK_CastDerivedToBaseLValue:
2016  case SK_BindReference:
2017  case SK_BindReferenceToTemporary:
2018  case SK_ExtraneousCopyToTemporary:
2019  case SK_UserConversion:
2020  case SK_QualificationConversionRValue:
2021  case SK_QualificationConversionLValue:
2022  case SK_ListInitialization:
2023  case SK_ConstructorInitialization:
2024  case SK_ZeroInitialization:
2025  case SK_CAssignment:
2026  case SK_StringInit:
2027    break;
2028
2029  case SK_ConversionSequence:
2030    delete ICS;
2031  }
2032}
2033
2034bool InitializationSequence::isDirectReferenceBinding() const {
2035  return getKind() == ReferenceBinding && Steps.back().Kind == SK_BindReference;
2036}
2037
2038bool InitializationSequence::isAmbiguous() const {
2039  if (getKind() != FailedSequence)
2040    return false;
2041
2042  switch (getFailureKind()) {
2043  case FK_TooManyInitsForReference:
2044  case FK_ArrayNeedsInitList:
2045  case FK_ArrayNeedsInitListOrStringLiteral:
2046  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2047  case FK_NonConstLValueReferenceBindingToTemporary:
2048  case FK_NonConstLValueReferenceBindingToUnrelated:
2049  case FK_RValueReferenceBindingToLValue:
2050  case FK_ReferenceInitDropsQualifiers:
2051  case FK_ReferenceInitFailed:
2052  case FK_ConversionFailed:
2053  case FK_TooManyInitsForScalar:
2054  case FK_ReferenceBindingToInitList:
2055  case FK_InitListBadDestinationType:
2056  case FK_DefaultInitOfConst:
2057  case FK_Incomplete:
2058    return false;
2059
2060  case FK_ReferenceInitOverloadFailed:
2061  case FK_UserConversionOverloadFailed:
2062  case FK_ConstructorOverloadFailed:
2063    return FailedOverloadResult == OR_Ambiguous;
2064  }
2065
2066  return false;
2067}
2068
2069bool InitializationSequence::isConstructorInitialization() const {
2070  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2071}
2072
2073void InitializationSequence::AddAddressOverloadResolutionStep(
2074                                                      FunctionDecl *Function,
2075                                                      DeclAccessPair Found) {
2076  Step S;
2077  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2078  S.Type = Function->getType();
2079  S.Function.Function = Function;
2080  S.Function.FoundDecl = Found;
2081  Steps.push_back(S);
2082}
2083
2084void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2085                                                      bool IsLValue) {
2086  Step S;
2087  S.Kind = IsLValue? SK_CastDerivedToBaseLValue : SK_CastDerivedToBaseRValue;
2088  S.Type = BaseType;
2089  Steps.push_back(S);
2090}
2091
2092void InitializationSequence::AddReferenceBindingStep(QualType T,
2093                                                     bool BindingTemporary) {
2094  Step S;
2095  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2096  S.Type = T;
2097  Steps.push_back(S);
2098}
2099
2100void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2101  Step S;
2102  S.Kind = SK_ExtraneousCopyToTemporary;
2103  S.Type = T;
2104  Steps.push_back(S);
2105}
2106
2107void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2108                                                   DeclAccessPair FoundDecl,
2109                                                   QualType T) {
2110  Step S;
2111  S.Kind = SK_UserConversion;
2112  S.Type = T;
2113  S.Function.Function = Function;
2114  S.Function.FoundDecl = FoundDecl;
2115  Steps.push_back(S);
2116}
2117
2118void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2119                                                            bool IsLValue) {
2120  Step S;
2121  S.Kind = IsLValue? SK_QualificationConversionLValue
2122                   : SK_QualificationConversionRValue;
2123  S.Type = Ty;
2124  Steps.push_back(S);
2125}
2126
2127void InitializationSequence::AddConversionSequenceStep(
2128                                       const ImplicitConversionSequence &ICS,
2129                                                       QualType T) {
2130  Step S;
2131  S.Kind = SK_ConversionSequence;
2132  S.Type = T;
2133  S.ICS = new ImplicitConversionSequence(ICS);
2134  Steps.push_back(S);
2135}
2136
2137void InitializationSequence::AddListInitializationStep(QualType T) {
2138  Step S;
2139  S.Kind = SK_ListInitialization;
2140  S.Type = T;
2141  Steps.push_back(S);
2142}
2143
2144void
2145InitializationSequence::AddConstructorInitializationStep(
2146                                              CXXConstructorDecl *Constructor,
2147                                                       AccessSpecifier Access,
2148                                                         QualType T) {
2149  Step S;
2150  S.Kind = SK_ConstructorInitialization;
2151  S.Type = T;
2152  S.Function.Function = Constructor;
2153  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2154  Steps.push_back(S);
2155}
2156
2157void InitializationSequence::AddZeroInitializationStep(QualType T) {
2158  Step S;
2159  S.Kind = SK_ZeroInitialization;
2160  S.Type = T;
2161  Steps.push_back(S);
2162}
2163
2164void InitializationSequence::AddCAssignmentStep(QualType T) {
2165  Step S;
2166  S.Kind = SK_CAssignment;
2167  S.Type = T;
2168  Steps.push_back(S);
2169}
2170
2171void InitializationSequence::AddStringInitStep(QualType T) {
2172  Step S;
2173  S.Kind = SK_StringInit;
2174  S.Type = T;
2175  Steps.push_back(S);
2176}
2177
2178void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2179                                                OverloadingResult Result) {
2180  SequenceKind = FailedSequence;
2181  this->Failure = Failure;
2182  this->FailedOverloadResult = Result;
2183}
2184
2185//===----------------------------------------------------------------------===//
2186// Attempt initialization
2187//===----------------------------------------------------------------------===//
2188
2189/// \brief Attempt list initialization (C++0x [dcl.init.list])
2190static void TryListInitialization(Sema &S,
2191                                  const InitializedEntity &Entity,
2192                                  const InitializationKind &Kind,
2193                                  InitListExpr *InitList,
2194                                  InitializationSequence &Sequence) {
2195  // FIXME: We only perform rudimentary checking of list
2196  // initializations at this point, then assume that any list
2197  // initialization of an array, aggregate, or scalar will be
2198  // well-formed. We we actually "perform" list initialization, we'll
2199  // do all of the necessary checking.  C++0x initializer lists will
2200  // force us to perform more checking here.
2201  Sequence.setSequenceKind(InitializationSequence::ListInitialization);
2202
2203  QualType DestType = Entity.getType();
2204
2205  // C++ [dcl.init]p13:
2206  //   If T is a scalar type, then a declaration of the form
2207  //
2208  //     T x = { a };
2209  //
2210  //   is equivalent to
2211  //
2212  //     T x = a;
2213  if (DestType->isScalarType()) {
2214    if (InitList->getNumInits() > 1 && S.getLangOptions().CPlusPlus) {
2215      Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
2216      return;
2217    }
2218
2219    // Assume scalar initialization from a single value works.
2220  } else if (DestType->isAggregateType()) {
2221    // Assume aggregate initialization works.
2222  } else if (DestType->isVectorType()) {
2223    // Assume vector initialization works.
2224  } else if (DestType->isReferenceType()) {
2225    // FIXME: C++0x defines behavior for this.
2226    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2227    return;
2228  } else if (DestType->isRecordType()) {
2229    // FIXME: C++0x defines behavior for this
2230    Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
2231  }
2232
2233  // Add a general "list initialization" step.
2234  Sequence.AddListInitializationStep(DestType);
2235}
2236
2237/// \brief Try a reference initialization that involves calling a conversion
2238/// function.
2239///
2240/// FIXME: look intos DRs 656, 896
2241static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
2242                                             const InitializedEntity &Entity,
2243                                             const InitializationKind &Kind,
2244                                                          Expr *Initializer,
2245                                                          bool AllowRValues,
2246                                             InitializationSequence &Sequence) {
2247  QualType DestType = Entity.getType();
2248  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2249  QualType T1 = cv1T1.getUnqualifiedType();
2250  QualType cv2T2 = Initializer->getType();
2251  QualType T2 = cv2T2.getUnqualifiedType();
2252
2253  bool DerivedToBase;
2254  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
2255                                         T1, T2, DerivedToBase) &&
2256         "Must have incompatible references when binding via conversion");
2257  (void)DerivedToBase;
2258
2259  // Build the candidate set directly in the initialization sequence
2260  // structure, so that it will persist if we fail.
2261  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2262  CandidateSet.clear();
2263
2264  // Determine whether we are allowed to call explicit constructors or
2265  // explicit conversion operators.
2266  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2267
2268  const RecordType *T1RecordType = 0;
2269  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
2270      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
2271    // The type we're converting to is a class type. Enumerate its constructors
2272    // to see if there is a suitable conversion.
2273    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
2274    DeclarationName ConstructorName
2275      = S.Context.DeclarationNames.getCXXConstructorName(
2276                           S.Context.getCanonicalType(T1).getUnqualifiedType());
2277    DeclContext::lookup_iterator Con, ConEnd;
2278    for (llvm::tie(Con, ConEnd) = T1RecordDecl->lookup(ConstructorName);
2279         Con != ConEnd; ++Con) {
2280      NamedDecl *D = *Con;
2281      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2282
2283      // Find the constructor (which may be a template).
2284      CXXConstructorDecl *Constructor = 0;
2285      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2286      if (ConstructorTmpl)
2287        Constructor = cast<CXXConstructorDecl>(
2288                                         ConstructorTmpl->getTemplatedDecl());
2289      else
2290        Constructor = cast<CXXConstructorDecl>(D);
2291
2292      if (!Constructor->isInvalidDecl() &&
2293          Constructor->isConvertingConstructor(AllowExplicit)) {
2294        if (ConstructorTmpl)
2295          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2296                                         /*ExplicitArgs*/ 0,
2297                                         &Initializer, 1, CandidateSet);
2298        else
2299          S.AddOverloadCandidate(Constructor, FoundDecl,
2300                                 &Initializer, 1, CandidateSet);
2301      }
2302    }
2303  }
2304
2305  const RecordType *T2RecordType = 0;
2306  if ((T2RecordType = T2->getAs<RecordType>()) &&
2307      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
2308    // The type we're converting from is a class type, enumerate its conversion
2309    // functions.
2310    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
2311
2312    // Determine the type we are converting to. If we are allowed to
2313    // convert to an rvalue, take the type that the destination type
2314    // refers to.
2315    QualType ToType = AllowRValues? cv1T1 : DestType;
2316
2317    const UnresolvedSetImpl *Conversions
2318      = T2RecordDecl->getVisibleConversionFunctions();
2319    for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2320           E = Conversions->end(); I != E; ++I) {
2321      NamedDecl *D = *I;
2322      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2323      if (isa<UsingShadowDecl>(D))
2324        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2325
2326      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2327      CXXConversionDecl *Conv;
2328      if (ConvTemplate)
2329        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2330      else
2331        Conv = cast<CXXConversionDecl>(*I);
2332
2333      // If the conversion function doesn't return a reference type,
2334      // it can't be considered for this conversion unless we're allowed to
2335      // consider rvalues.
2336      // FIXME: Do we need to make sure that we only consider conversion
2337      // candidates with reference-compatible results? That might be needed to
2338      // break recursion.
2339      if ((AllowExplicit || !Conv->isExplicit()) &&
2340          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
2341        if (ConvTemplate)
2342          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2343                                           ActingDC, Initializer,
2344                                           ToType, CandidateSet);
2345        else
2346          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2347                                   Initializer, ToType, CandidateSet);
2348      }
2349    }
2350  }
2351
2352  SourceLocation DeclLoc = Initializer->getLocStart();
2353
2354  // Perform overload resolution. If it fails, return the failed result.
2355  OverloadCandidateSet::iterator Best;
2356  if (OverloadingResult Result
2357        = S.BestViableFunction(CandidateSet, DeclLoc, Best))
2358    return Result;
2359
2360  FunctionDecl *Function = Best->Function;
2361
2362  // Compute the returned type of the conversion.
2363  if (isa<CXXConversionDecl>(Function))
2364    T2 = Function->getResultType();
2365  else
2366    T2 = cv1T1;
2367
2368  // Add the user-defined conversion step.
2369  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
2370                                 T2.getNonReferenceType());
2371
2372  // Determine whether we need to perform derived-to-base or
2373  // cv-qualification adjustments.
2374  bool NewDerivedToBase = false;
2375  Sema::ReferenceCompareResult NewRefRelationship
2376    = S.CompareReferenceRelationship(DeclLoc, T1, T2.getNonReferenceType(),
2377                                     NewDerivedToBase);
2378  if (NewRefRelationship == Sema::Ref_Incompatible) {
2379    // If the type we've converted to is not reference-related to the
2380    // type we're looking for, then there is another conversion step
2381    // we need to perform to produce a temporary of the right type
2382    // that we'll be binding to.
2383    ImplicitConversionSequence ICS;
2384    ICS.setStandard();
2385    ICS.Standard = Best->FinalConversion;
2386    T2 = ICS.Standard.getToType(2);
2387    Sequence.AddConversionSequenceStep(ICS, T2);
2388  } else if (NewDerivedToBase)
2389    Sequence.AddDerivedToBaseCastStep(
2390                                S.Context.getQualifiedType(T1,
2391                                  T2.getNonReferenceType().getQualifiers()),
2392                                  /*isLValue=*/true);
2393
2394  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
2395    Sequence.AddQualificationConversionStep(cv1T1, T2->isReferenceType());
2396
2397  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
2398  return OR_Success;
2399}
2400
2401/// \brief Attempt reference initialization (C++0x [dcl.init.list])
2402static void TryReferenceInitialization(Sema &S,
2403                                       const InitializedEntity &Entity,
2404                                       const InitializationKind &Kind,
2405                                       Expr *Initializer,
2406                                       InitializationSequence &Sequence) {
2407  Sequence.setSequenceKind(InitializationSequence::ReferenceBinding);
2408
2409  QualType DestType = Entity.getType();
2410  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2411  Qualifiers T1Quals;
2412  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2413  QualType cv2T2 = Initializer->getType();
2414  Qualifiers T2Quals;
2415  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
2416  SourceLocation DeclLoc = Initializer->getLocStart();
2417
2418  // If the initializer is the address of an overloaded function, try
2419  // to resolve the overloaded function. If all goes well, T2 is the
2420  // type of the resulting function.
2421  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2422    DeclAccessPair Found;
2423    FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
2424                                                            T1,
2425                                                            false,
2426                                                            Found);
2427    if (!Fn) {
2428      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2429      return;
2430    }
2431
2432    Sequence.AddAddressOverloadResolutionStep(Fn, Found);
2433    cv2T2 = Fn->getType();
2434    T2 = cv2T2.getUnqualifiedType();
2435  }
2436
2437  // Compute some basic properties of the types and the initializer.
2438  bool isLValueRef = DestType->isLValueReferenceType();
2439  bool isRValueRef = !isLValueRef;
2440  bool DerivedToBase = false;
2441  Expr::isLvalueResult InitLvalue = Initializer->isLvalue(S.Context);
2442  Sema::ReferenceCompareResult RefRelationship
2443    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase);
2444
2445  // C++0x [dcl.init.ref]p5:
2446  //   A reference to type "cv1 T1" is initialized by an expression of type
2447  //   "cv2 T2" as follows:
2448  //
2449  //     - If the reference is an lvalue reference and the initializer
2450  //       expression
2451  OverloadingResult ConvOvlResult = OR_Success;
2452  if (isLValueRef) {
2453    if (InitLvalue == Expr::LV_Valid &&
2454        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2455      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
2456      //     reference-compatible with "cv2 T2," or
2457      //
2458      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
2459      // bit-field when we're determining whether the reference initialization
2460      // can occur. However, we do pay attention to whether it is a bit-field
2461      // to decide whether we're actually binding to a temporary created from
2462      // the bit-field.
2463      if (DerivedToBase)
2464        Sequence.AddDerivedToBaseCastStep(
2465                         S.Context.getQualifiedType(T1, T2Quals),
2466                         /*isLValue=*/true);
2467      if (T1Quals != T2Quals)
2468        Sequence.AddQualificationConversionStep(cv1T1, /*IsLValue=*/true);
2469      bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
2470        (Initializer->getBitField() || Initializer->refersToVectorElement());
2471      Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
2472      return;
2473    }
2474
2475    //     - has a class type (i.e., T2 is a class type), where T1 is not
2476    //       reference-related to T2, and can be implicitly converted to an
2477    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
2478    //       with "cv3 T3" (this conversion is selected by enumerating the
2479    //       applicable conversion functions (13.3.1.6) and choosing the best
2480    //       one through overload resolution (13.3)),
2481    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType()) {
2482      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
2483                                                       Initializer,
2484                                                       /*AllowRValues=*/false,
2485                                                       Sequence);
2486      if (ConvOvlResult == OR_Success)
2487        return;
2488      if (ConvOvlResult != OR_No_Viable_Function) {
2489        Sequence.SetOverloadFailure(
2490                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2491                                    ConvOvlResult);
2492      }
2493    }
2494  }
2495
2496  //     - Otherwise, the reference shall be an lvalue reference to a
2497  //       non-volatile const type (i.e., cv1 shall be const), or the reference
2498  //       shall be an rvalue reference and the initializer expression shall
2499  //       be an rvalue.
2500  if (!((isLValueRef && T1Quals.hasConst() && !T1Quals.hasVolatile()) ||
2501        (isRValueRef && InitLvalue != Expr::LV_Valid))) {
2502    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2503      Sequence.SetOverloadFailure(
2504                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2505                                  ConvOvlResult);
2506    else if (isLValueRef)
2507      Sequence.SetFailed(InitLvalue == Expr::LV_Valid
2508        ? (RefRelationship == Sema::Ref_Related
2509             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
2510             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
2511        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
2512    else
2513      Sequence.SetFailed(
2514                    InitializationSequence::FK_RValueReferenceBindingToLValue);
2515
2516    return;
2517  }
2518
2519  //       - If T1 and T2 are class types and
2520  if (T1->isRecordType() && T2->isRecordType()) {
2521    //       - the initializer expression is an rvalue and "cv1 T1" is
2522    //         reference-compatible with "cv2 T2", or
2523    if (InitLvalue != Expr::LV_Valid &&
2524        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2525      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
2526      // compiler the freedom to perform a copy here or bind to the
2527      // object, while C++0x requires that we bind directly to the
2528      // object. Hence, we always bind to the object without making an
2529      // extra copy. However, in C++03 requires that we check for the
2530      // presence of a suitable copy constructor:
2531      //
2532      //   The constructor that would be used to make the copy shall
2533      //   be callable whether or not the copy is actually done.
2534      if (!S.getLangOptions().CPlusPlus0x)
2535        Sequence.AddExtraneousCopyToTemporary(cv2T2);
2536
2537      if (DerivedToBase)
2538        Sequence.AddDerivedToBaseCastStep(
2539                         S.Context.getQualifiedType(T1, T2Quals),
2540                         /*isLValue=*/false);
2541      if (T1Quals != T2Quals)
2542        Sequence.AddQualificationConversionStep(cv1T1, /*IsLValue=*/false);
2543      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2544      return;
2545    }
2546
2547    //       - T1 is not reference-related to T2 and the initializer expression
2548    //         can be implicitly converted to an rvalue of type "cv3 T3" (this
2549    //         conversion is selected by enumerating the applicable conversion
2550    //         functions (13.3.1.6) and choosing the best one through overload
2551    //         resolution (13.3)),
2552    if (RefRelationship == Sema::Ref_Incompatible) {
2553      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
2554                                                       Kind, Initializer,
2555                                                       /*AllowRValues=*/true,
2556                                                       Sequence);
2557      if (ConvOvlResult)
2558        Sequence.SetOverloadFailure(
2559                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2560                                    ConvOvlResult);
2561
2562      return;
2563    }
2564
2565    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2566    return;
2567  }
2568
2569  //      - If the initializer expression is an rvalue, with T2 an array type,
2570  //        and "cv1 T1" is reference-compatible with "cv2 T2," the reference
2571  //        is bound to the object represented by the rvalue (see 3.10).
2572  // FIXME: How can an array type be reference-compatible with anything?
2573  // Don't we mean the element types of T1 and T2?
2574
2575  //      - Otherwise, a temporary of type “cv1 T1” is created and initialized
2576  //        from the initializer expression using the rules for a non-reference
2577  //        copy initialization (8.5). The reference is then bound to the
2578  //        temporary. [...]
2579
2580  // Determine whether we are allowed to call explicit constructors or
2581  // explicit conversion operators.
2582  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
2583
2584  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
2585
2586  if (S.TryImplicitConversion(Sequence, TempEntity, Initializer,
2587                              /*SuppressUserConversions*/ false,
2588                              AllowExplicit,
2589                              /*FIXME:InOverloadResolution=*/false)) {
2590    // FIXME: Use the conversion function set stored in ICS to turn
2591    // this into an overloading ambiguity diagnostic. However, we need
2592    // to keep that set as an OverloadCandidateSet rather than as some
2593    // other kind of set.
2594    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2595      Sequence.SetOverloadFailure(
2596                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2597                                  ConvOvlResult);
2598    else
2599      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
2600    return;
2601  }
2602
2603  //        [...] If T1 is reference-related to T2, cv1 must be the
2604  //        same cv-qualification as, or greater cv-qualification
2605  //        than, cv2; otherwise, the program is ill-formed.
2606  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
2607  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
2608  if (RefRelationship == Sema::Ref_Related &&
2609      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
2610    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2611    return;
2612  }
2613
2614  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2615  return;
2616}
2617
2618/// \brief Attempt character array initialization from a string literal
2619/// (C++ [dcl.init.string], C99 6.7.8).
2620static void TryStringLiteralInitialization(Sema &S,
2621                                           const InitializedEntity &Entity,
2622                                           const InitializationKind &Kind,
2623                                           Expr *Initializer,
2624                                       InitializationSequence &Sequence) {
2625  Sequence.setSequenceKind(InitializationSequence::StringInit);
2626  Sequence.AddStringInitStep(Entity.getType());
2627}
2628
2629/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2630/// enumerates the constructors of the initialized entity and performs overload
2631/// resolution to select the best.
2632static void TryConstructorInitialization(Sema &S,
2633                                         const InitializedEntity &Entity,
2634                                         const InitializationKind &Kind,
2635                                         Expr **Args, unsigned NumArgs,
2636                                         QualType DestType,
2637                                         InitializationSequence &Sequence) {
2638  Sequence.setSequenceKind(InitializationSequence::ConstructorInitialization);
2639
2640  // Build the candidate set directly in the initialization sequence
2641  // structure, so that it will persist if we fail.
2642  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2643  CandidateSet.clear();
2644
2645  // Determine whether we are allowed to call explicit constructors or
2646  // explicit conversion operators.
2647  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
2648                        Kind.getKind() == InitializationKind::IK_Value ||
2649                        Kind.getKind() == InitializationKind::IK_Default);
2650
2651  // The type we're constructing needs to be complete.
2652  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2653    Sequence.SetFailed(InitializationSequence::FK_Incomplete);
2654    return;
2655  }
2656
2657  // The type we're converting to is a class type. Enumerate its constructors
2658  // to see if one is suitable.
2659  const RecordType *DestRecordType = DestType->getAs<RecordType>();
2660  assert(DestRecordType && "Constructor initialization requires record type");
2661  CXXRecordDecl *DestRecordDecl
2662    = cast<CXXRecordDecl>(DestRecordType->getDecl());
2663
2664  DeclarationName ConstructorName
2665    = S.Context.DeclarationNames.getCXXConstructorName(
2666                     S.Context.getCanonicalType(DestType).getUnqualifiedType());
2667  DeclContext::lookup_iterator Con, ConEnd;
2668  for (llvm::tie(Con, ConEnd) = DestRecordDecl->lookup(ConstructorName);
2669       Con != ConEnd; ++Con) {
2670    NamedDecl *D = *Con;
2671    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2672    bool SuppressUserConversions = false;
2673
2674    // Find the constructor (which may be a template).
2675    CXXConstructorDecl *Constructor = 0;
2676    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2677    if (ConstructorTmpl)
2678      Constructor = cast<CXXConstructorDecl>(
2679                                           ConstructorTmpl->getTemplatedDecl());
2680    else {
2681      Constructor = cast<CXXConstructorDecl>(D);
2682
2683      // If we're performing copy initialization using a copy constructor, we
2684      // suppress user-defined conversions on the arguments.
2685      // FIXME: Move constructors?
2686      if (Kind.getKind() == InitializationKind::IK_Copy &&
2687          Constructor->isCopyConstructor())
2688        SuppressUserConversions = true;
2689    }
2690
2691    if (!Constructor->isInvalidDecl() &&
2692        (AllowExplicit || !Constructor->isExplicit())) {
2693      if (ConstructorTmpl)
2694        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2695                                       /*ExplicitArgs*/ 0,
2696                                       Args, NumArgs, CandidateSet,
2697                                       SuppressUserConversions);
2698      else
2699        S.AddOverloadCandidate(Constructor, FoundDecl,
2700                               Args, NumArgs, CandidateSet,
2701                               SuppressUserConversions);
2702    }
2703  }
2704
2705  SourceLocation DeclLoc = Kind.getLocation();
2706
2707  // Perform overload resolution. If it fails, return the failed result.
2708  OverloadCandidateSet::iterator Best;
2709  if (OverloadingResult Result
2710        = S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2711    Sequence.SetOverloadFailure(
2712                          InitializationSequence::FK_ConstructorOverloadFailed,
2713                                Result);
2714    return;
2715  }
2716
2717  // C++0x [dcl.init]p6:
2718  //   If a program calls for the default initialization of an object
2719  //   of a const-qualified type T, T shall be a class type with a
2720  //   user-provided default constructor.
2721  if (Kind.getKind() == InitializationKind::IK_Default &&
2722      Entity.getType().isConstQualified() &&
2723      cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
2724    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2725    return;
2726  }
2727
2728  // Add the constructor initialization step. Any cv-qualification conversion is
2729  // subsumed by the initialization.
2730  Sequence.AddConstructorInitializationStep(
2731                                      cast<CXXConstructorDecl>(Best->Function),
2732                                      Best->FoundDecl.getAccess(),
2733                                      DestType);
2734}
2735
2736/// \brief Attempt value initialization (C++ [dcl.init]p7).
2737static void TryValueInitialization(Sema &S,
2738                                   const InitializedEntity &Entity,
2739                                   const InitializationKind &Kind,
2740                                   InitializationSequence &Sequence) {
2741  // C++ [dcl.init]p5:
2742  //
2743  //   To value-initialize an object of type T means:
2744  QualType T = Entity.getType();
2745
2746  //     -- if T is an array type, then each element is value-initialized;
2747  while (const ArrayType *AT = S.Context.getAsArrayType(T))
2748    T = AT->getElementType();
2749
2750  if (const RecordType *RT = T->getAs<RecordType>()) {
2751    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2752      // -- if T is a class type (clause 9) with a user-declared
2753      //    constructor (12.1), then the default constructor for T is
2754      //    called (and the initialization is ill-formed if T has no
2755      //    accessible default constructor);
2756      //
2757      // FIXME: we really want to refer to a single subobject of the array,
2758      // but Entity doesn't have a way to capture that (yet).
2759      if (ClassDecl->hasUserDeclaredConstructor())
2760        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2761
2762      // -- if T is a (possibly cv-qualified) non-union class type
2763      //    without a user-provided constructor, then the object is
2764      //    zero-initialized and, if T’s implicitly-declared default
2765      //    constructor is non-trivial, that constructor is called.
2766      if ((ClassDecl->getTagKind() == TTK_Class ||
2767           ClassDecl->getTagKind() == TTK_Struct) &&
2768          !ClassDecl->hasTrivialConstructor()) {
2769        Sequence.AddZeroInitializationStep(Entity.getType());
2770        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2771      }
2772    }
2773  }
2774
2775  Sequence.AddZeroInitializationStep(Entity.getType());
2776  Sequence.setSequenceKind(InitializationSequence::ZeroInitialization);
2777}
2778
2779/// \brief Attempt default initialization (C++ [dcl.init]p6).
2780static void TryDefaultInitialization(Sema &S,
2781                                     const InitializedEntity &Entity,
2782                                     const InitializationKind &Kind,
2783                                     InitializationSequence &Sequence) {
2784  assert(Kind.getKind() == InitializationKind::IK_Default);
2785
2786  // C++ [dcl.init]p6:
2787  //   To default-initialize an object of type T means:
2788  //     - if T is an array type, each element is default-initialized;
2789  QualType DestType = Entity.getType();
2790  while (const ArrayType *Array = S.Context.getAsArrayType(DestType))
2791    DestType = Array->getElementType();
2792
2793  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
2794  //       constructor for T is called (and the initialization is ill-formed if
2795  //       T has no accessible default constructor);
2796  if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
2797    return TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType,
2798                                        Sequence);
2799  }
2800
2801  //     - otherwise, no initialization is performed.
2802  Sequence.setSequenceKind(InitializationSequence::NoInitialization);
2803
2804  //   If a program calls for the default initialization of an object of
2805  //   a const-qualified type T, T shall be a class type with a user-provided
2806  //   default constructor.
2807  if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus)
2808    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2809}
2810
2811/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
2812/// which enumerates all conversion functions and performs overload resolution
2813/// to select the best.
2814static void TryUserDefinedConversion(Sema &S,
2815                                     const InitializedEntity &Entity,
2816                                     const InitializationKind &Kind,
2817                                     Expr *Initializer,
2818                                     InitializationSequence &Sequence) {
2819  Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
2820
2821  QualType DestType = Entity.getType();
2822  assert(!DestType->isReferenceType() && "References are handled elsewhere");
2823  QualType SourceType = Initializer->getType();
2824  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
2825         "Must have a class type to perform a user-defined conversion");
2826
2827  // Build the candidate set directly in the initialization sequence
2828  // structure, so that it will persist if we fail.
2829  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2830  CandidateSet.clear();
2831
2832  // Determine whether we are allowed to call explicit constructors or
2833  // explicit conversion operators.
2834  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2835
2836  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
2837    // The type we're converting to is a class type. Enumerate its constructors
2838    // to see if there is a suitable conversion.
2839    CXXRecordDecl *DestRecordDecl
2840      = cast<CXXRecordDecl>(DestRecordType->getDecl());
2841
2842    // Try to complete the type we're converting to.
2843    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2844      DeclarationName ConstructorName
2845        = S.Context.DeclarationNames.getCXXConstructorName(
2846                     S.Context.getCanonicalType(DestType).getUnqualifiedType());
2847      DeclContext::lookup_iterator Con, ConEnd;
2848      for (llvm::tie(Con, ConEnd) = DestRecordDecl->lookup(ConstructorName);
2849           Con != ConEnd; ++Con) {
2850        NamedDecl *D = *Con;
2851        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2852        bool SuppressUserConversions = false;
2853
2854        // Find the constructor (which may be a template).
2855        CXXConstructorDecl *Constructor = 0;
2856        FunctionTemplateDecl *ConstructorTmpl
2857          = dyn_cast<FunctionTemplateDecl>(D);
2858        if (ConstructorTmpl)
2859          Constructor = cast<CXXConstructorDecl>(
2860                                           ConstructorTmpl->getTemplatedDecl());
2861        else {
2862          Constructor = cast<CXXConstructorDecl>(D);
2863
2864          // If we're performing copy initialization using a copy constructor,
2865          // we suppress user-defined conversions on the arguments.
2866          // FIXME: Move constructors?
2867          if (Kind.getKind() == InitializationKind::IK_Copy &&
2868              Constructor->isCopyConstructor())
2869            SuppressUserConversions = true;
2870
2871        }
2872
2873        if (!Constructor->isInvalidDecl() &&
2874            Constructor->isConvertingConstructor(AllowExplicit)) {
2875          if (ConstructorTmpl)
2876            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2877                                           /*ExplicitArgs*/ 0,
2878                                           &Initializer, 1, CandidateSet,
2879                                           SuppressUserConversions);
2880          else
2881            S.AddOverloadCandidate(Constructor, FoundDecl,
2882                                   &Initializer, 1, CandidateSet,
2883                                   SuppressUserConversions);
2884        }
2885      }
2886    }
2887  }
2888
2889  SourceLocation DeclLoc = Initializer->getLocStart();
2890
2891  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
2892    // The type we're converting from is a class type, enumerate its conversion
2893    // functions.
2894
2895    // We can only enumerate the conversion functions for a complete type; if
2896    // the type isn't complete, simply skip this step.
2897    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
2898      CXXRecordDecl *SourceRecordDecl
2899        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
2900
2901      const UnresolvedSetImpl *Conversions
2902        = SourceRecordDecl->getVisibleConversionFunctions();
2903      for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2904           E = Conversions->end();
2905           I != E; ++I) {
2906        NamedDecl *D = *I;
2907        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2908        if (isa<UsingShadowDecl>(D))
2909          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2910
2911        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2912        CXXConversionDecl *Conv;
2913        if (ConvTemplate)
2914          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2915        else
2916          Conv = cast<CXXConversionDecl>(D);
2917
2918        if (AllowExplicit || !Conv->isExplicit()) {
2919          if (ConvTemplate)
2920            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2921                                             ActingDC, Initializer, DestType,
2922                                             CandidateSet);
2923          else
2924            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2925                                     Initializer, DestType, CandidateSet);
2926        }
2927      }
2928    }
2929  }
2930
2931  // Perform overload resolution. If it fails, return the failed result.
2932  OverloadCandidateSet::iterator Best;
2933  if (OverloadingResult Result
2934        = S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2935    Sequence.SetOverloadFailure(
2936                        InitializationSequence::FK_UserConversionOverloadFailed,
2937                                Result);
2938    return;
2939  }
2940
2941  FunctionDecl *Function = Best->Function;
2942
2943  if (isa<CXXConstructorDecl>(Function)) {
2944    // Add the user-defined conversion step. Any cv-qualification conversion is
2945    // subsumed by the initialization.
2946    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
2947    return;
2948  }
2949
2950  // Add the user-defined conversion step that calls the conversion function.
2951  QualType ConvType = Function->getResultType().getNonReferenceType();
2952  if (ConvType->getAs<RecordType>()) {
2953    // If we're converting to a class type, there may be an copy if
2954    // the resulting temporary object (possible to create an object of
2955    // a base class type). That copy is not a separate conversion, so
2956    // we just make a note of the actual destination type (possibly a
2957    // base class of the type returned by the conversion function) and
2958    // let the user-defined conversion step handle the conversion.
2959    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
2960    return;
2961  }
2962
2963  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType);
2964
2965  // If the conversion following the call to the conversion function
2966  // is interesting, add it as a separate step.
2967  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
2968      Best->FinalConversion.Third) {
2969    ImplicitConversionSequence ICS;
2970    ICS.setStandard();
2971    ICS.Standard = Best->FinalConversion;
2972    Sequence.AddConversionSequenceStep(ICS, DestType);
2973  }
2974}
2975
2976bool Sema::TryImplicitConversion(InitializationSequence &Sequence,
2977                                 const InitializedEntity &Entity,
2978                                 Expr *Initializer,
2979                                 bool SuppressUserConversions,
2980                                 bool AllowExplicitConversions,
2981                                 bool InOverloadResolution) {
2982  ImplicitConversionSequence ICS
2983    = TryImplicitConversion(Initializer, Entity.getType(),
2984                            SuppressUserConversions,
2985                            AllowExplicitConversions,
2986                            InOverloadResolution);
2987  if (ICS.isBad()) return true;
2988
2989  // Perform the actual conversion.
2990  Sequence.AddConversionSequenceStep(ICS, Entity.getType());
2991  return false;
2992}
2993
2994InitializationSequence::InitializationSequence(Sema &S,
2995                                               const InitializedEntity &Entity,
2996                                               const InitializationKind &Kind,
2997                                               Expr **Args,
2998                                               unsigned NumArgs)
2999    : FailedCandidateSet(Kind.getLocation()) {
3000  ASTContext &Context = S.Context;
3001
3002  // C++0x [dcl.init]p16:
3003  //   The semantics of initializers are as follows. The destination type is
3004  //   the type of the object or reference being initialized and the source
3005  //   type is the type of the initializer expression. The source type is not
3006  //   defined when the initializer is a braced-init-list or when it is a
3007  //   parenthesized list of expressions.
3008  QualType DestType = Entity.getType();
3009
3010  if (DestType->isDependentType() ||
3011      Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
3012    SequenceKind = DependentSequence;
3013    return;
3014  }
3015
3016  QualType SourceType;
3017  Expr *Initializer = 0;
3018  if (NumArgs == 1) {
3019    Initializer = Args[0];
3020    if (!isa<InitListExpr>(Initializer))
3021      SourceType = Initializer->getType();
3022  }
3023
3024  //     - If the initializer is a braced-init-list, the object is
3025  //       list-initialized (8.5.4).
3026  if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
3027    TryListInitialization(S, Entity, Kind, InitList, *this);
3028    return;
3029  }
3030
3031  //     - If the destination type is a reference type, see 8.5.3.
3032  if (DestType->isReferenceType()) {
3033    // C++0x [dcl.init.ref]p1:
3034    //   A variable declared to be a T& or T&&, that is, "reference to type T"
3035    //   (8.3.2), shall be initialized by an object, or function, of type T or
3036    //   by an object that can be converted into a T.
3037    // (Therefore, multiple arguments are not permitted.)
3038    if (NumArgs != 1)
3039      SetFailed(FK_TooManyInitsForReference);
3040    else
3041      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
3042    return;
3043  }
3044
3045  //     - If the destination type is an array of characters, an array of
3046  //       char16_t, an array of char32_t, or an array of wchar_t, and the
3047  //       initializer is a string literal, see 8.5.2.
3048  if (Initializer && IsStringInit(Initializer, DestType, Context)) {
3049    TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
3050    return;
3051  }
3052
3053  //     - If the initializer is (), the object is value-initialized.
3054  if (Kind.getKind() == InitializationKind::IK_Value ||
3055      (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
3056    TryValueInitialization(S, Entity, Kind, *this);
3057    return;
3058  }
3059
3060  // Handle default initialization.
3061  if (Kind.getKind() == InitializationKind::IK_Default){
3062    TryDefaultInitialization(S, Entity, Kind, *this);
3063    return;
3064  }
3065
3066  //     - Otherwise, if the destination type is an array, the program is
3067  //       ill-formed.
3068  if (const ArrayType *AT = Context.getAsArrayType(DestType)) {
3069    if (AT->getElementType()->isAnyCharacterType())
3070      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
3071    else
3072      SetFailed(FK_ArrayNeedsInitList);
3073
3074    return;
3075  }
3076
3077  // Handle initialization in C
3078  if (!S.getLangOptions().CPlusPlus) {
3079    setSequenceKind(CAssignment);
3080    AddCAssignmentStep(DestType);
3081    return;
3082  }
3083
3084  //     - If the destination type is a (possibly cv-qualified) class type:
3085  if (DestType->isRecordType()) {
3086    //     - If the initialization is direct-initialization, or if it is
3087    //       copy-initialization where the cv-unqualified version of the
3088    //       source type is the same class as, or a derived class of, the
3089    //       class of the destination, constructors are considered. [...]
3090    if (Kind.getKind() == InitializationKind::IK_Direct ||
3091        (Kind.getKind() == InitializationKind::IK_Copy &&
3092         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
3093          S.IsDerivedFrom(SourceType, DestType))))
3094      TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
3095                                   Entity.getType(), *this);
3096    //     - Otherwise (i.e., for the remaining copy-initialization cases),
3097    //       user-defined conversion sequences that can convert from the source
3098    //       type to the destination type or (when a conversion function is
3099    //       used) to a derived class thereof are enumerated as described in
3100    //       13.3.1.4, and the best one is chosen through overload resolution
3101    //       (13.3).
3102    else
3103      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3104    return;
3105  }
3106
3107  if (NumArgs > 1) {
3108    SetFailed(FK_TooManyInitsForScalar);
3109    return;
3110  }
3111  assert(NumArgs == 1 && "Zero-argument case handled above");
3112
3113  //    - Otherwise, if the source type is a (possibly cv-qualified) class
3114  //      type, conversion functions are considered.
3115  if (!SourceType.isNull() && SourceType->isRecordType()) {
3116    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3117    return;
3118  }
3119
3120  //    - Otherwise, the initial value of the object being initialized is the
3121  //      (possibly converted) value of the initializer expression. Standard
3122  //      conversions (Clause 4) will be used, if necessary, to convert the
3123  //      initializer expression to the cv-unqualified version of the
3124  //      destination type; no user-defined conversions are considered.
3125  if (S.TryImplicitConversion(*this, Entity, Initializer,
3126                              /*SuppressUserConversions*/ true,
3127                              /*AllowExplicitConversions*/ false,
3128                              /*InOverloadResolution*/ false))
3129    SetFailed(InitializationSequence::FK_ConversionFailed);
3130  else
3131    setSequenceKind(StandardConversion);
3132}
3133
3134InitializationSequence::~InitializationSequence() {
3135  for (llvm::SmallVectorImpl<Step>::iterator Step = Steps.begin(),
3136                                          StepEnd = Steps.end();
3137       Step != StepEnd; ++Step)
3138    Step->Destroy();
3139}
3140
3141//===----------------------------------------------------------------------===//
3142// Perform initialization
3143//===----------------------------------------------------------------------===//
3144static Sema::AssignmentAction
3145getAssignmentAction(const InitializedEntity &Entity) {
3146  switch(Entity.getKind()) {
3147  case InitializedEntity::EK_Variable:
3148  case InitializedEntity::EK_New:
3149    return Sema::AA_Initializing;
3150
3151  case InitializedEntity::EK_Parameter:
3152    if (Entity.getDecl() &&
3153        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
3154      return Sema::AA_Sending;
3155
3156    return Sema::AA_Passing;
3157
3158  case InitializedEntity::EK_Result:
3159    return Sema::AA_Returning;
3160
3161  case InitializedEntity::EK_Exception:
3162  case InitializedEntity::EK_Base:
3163    llvm_unreachable("No assignment action for C++-specific initialization");
3164    break;
3165
3166  case InitializedEntity::EK_Temporary:
3167    // FIXME: Can we tell apart casting vs. converting?
3168    return Sema::AA_Casting;
3169
3170  case InitializedEntity::EK_Member:
3171  case InitializedEntity::EK_ArrayElement:
3172  case InitializedEntity::EK_VectorElement:
3173    return Sema::AA_Initializing;
3174  }
3175
3176  return Sema::AA_Converting;
3177}
3178
3179/// \brief Whether we should binding a created object as a temporary when
3180/// initializing the given entity.
3181static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
3182  switch (Entity.getKind()) {
3183  case InitializedEntity::EK_ArrayElement:
3184  case InitializedEntity::EK_Member:
3185  case InitializedEntity::EK_Result:
3186  case InitializedEntity::EK_New:
3187  case InitializedEntity::EK_Variable:
3188  case InitializedEntity::EK_Base:
3189  case InitializedEntity::EK_VectorElement:
3190  case InitializedEntity::EK_Exception:
3191    return false;
3192
3193  case InitializedEntity::EK_Parameter:
3194  case InitializedEntity::EK_Temporary:
3195    return true;
3196  }
3197
3198  llvm_unreachable("missed an InitializedEntity kind?");
3199}
3200
3201/// \brief Whether the given entity, when initialized with an object
3202/// created for that initialization, requires destruction.
3203static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
3204  switch (Entity.getKind()) {
3205    case InitializedEntity::EK_Member:
3206    case InitializedEntity::EK_Result:
3207    case InitializedEntity::EK_New:
3208    case InitializedEntity::EK_Base:
3209    case InitializedEntity::EK_VectorElement:
3210      return false;
3211
3212    case InitializedEntity::EK_Variable:
3213    case InitializedEntity::EK_Parameter:
3214    case InitializedEntity::EK_Temporary:
3215    case InitializedEntity::EK_ArrayElement:
3216    case InitializedEntity::EK_Exception:
3217      return true;
3218  }
3219
3220  llvm_unreachable("missed an InitializedEntity kind?");
3221}
3222
3223/// \brief Make a (potentially elidable) temporary copy of the object
3224/// provided by the given initializer by calling the appropriate copy
3225/// constructor.
3226///
3227/// \param S The Sema object used for type-checking.
3228///
3229/// \param T The type of the temporary object, which must either by
3230/// the type of the initializer expression or a superclass thereof.
3231///
3232/// \param Enter The entity being initialized.
3233///
3234/// \param CurInit The initializer expression.
3235///
3236/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
3237/// is permitted in C++03 (but not C++0x) when binding a reference to
3238/// an rvalue.
3239///
3240/// \returns An expression that copies the initializer expression into
3241/// a temporary object, or an error expression if a copy could not be
3242/// created.
3243static Sema::OwningExprResult CopyObject(Sema &S,
3244                                         QualType T,
3245                                         const InitializedEntity &Entity,
3246                                         Sema::OwningExprResult CurInit,
3247                                         bool IsExtraneousCopy) {
3248  // Determine which class type we're copying to.
3249  Expr *CurInitExpr = (Expr *)CurInit.get();
3250  CXXRecordDecl *Class = 0;
3251  if (const RecordType *Record = T->getAs<RecordType>())
3252    Class = cast<CXXRecordDecl>(Record->getDecl());
3253  if (!Class)
3254    return move(CurInit);
3255
3256  // C++0x [class.copy]p34:
3257  //   When certain criteria are met, an implementation is allowed to
3258  //   omit the copy/move construction of a class object, even if the
3259  //   copy/move constructor and/or destructor for the object have
3260  //   side effects. [...]
3261  //     - when a temporary class object that has not been bound to a
3262  //       reference (12.2) would be copied/moved to a class object
3263  //       with the same cv-unqualified type, the copy/move operation
3264  //       can be omitted by constructing the temporary object
3265  //       directly into the target of the omitted copy/move
3266  //
3267  // Note that the other three bullets are handled elsewhere. Copy
3268  // elision for return statements and throw expressions are handled as part
3269  // of constructor initialization, while copy elision for exception handlers
3270  // is handled by the run-time.
3271  bool Elidable = CurInitExpr->isTemporaryObject() &&
3272     S.Context.hasSameUnqualifiedType(T, CurInitExpr->getType());
3273  SourceLocation Loc;
3274  switch (Entity.getKind()) {
3275  case InitializedEntity::EK_Result:
3276    Loc = Entity.getReturnLoc();
3277    break;
3278
3279  case InitializedEntity::EK_Exception:
3280    Loc = Entity.getThrowLoc();
3281    break;
3282
3283  case InitializedEntity::EK_Variable:
3284    Loc = Entity.getDecl()->getLocation();
3285    break;
3286
3287  case InitializedEntity::EK_ArrayElement:
3288  case InitializedEntity::EK_Member:
3289  case InitializedEntity::EK_Parameter:
3290  case InitializedEntity::EK_Temporary:
3291  case InitializedEntity::EK_New:
3292  case InitializedEntity::EK_Base:
3293  case InitializedEntity::EK_VectorElement:
3294    Loc = CurInitExpr->getLocStart();
3295    break;
3296  }
3297
3298  // Make sure that the type we are copying is complete.
3299  if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
3300    return move(CurInit);
3301
3302  // Perform overload resolution using the class's copy constructors.
3303  DeclarationName ConstructorName
3304    = S.Context.DeclarationNames.getCXXConstructorName(
3305                  S.Context.getCanonicalType(S.Context.getTypeDeclType(Class)));
3306  DeclContext::lookup_iterator Con, ConEnd;
3307  OverloadCandidateSet CandidateSet(Loc);
3308  for (llvm::tie(Con, ConEnd) = Class->lookup(ConstructorName);
3309       Con != ConEnd; ++Con) {
3310    // Only consider copy constructors.
3311    CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(*Con);
3312    if (!Constructor || Constructor->isInvalidDecl() ||
3313        !Constructor->isCopyConstructor() ||
3314        !Constructor->isConvertingConstructor(/*AllowExplicit=*/false))
3315      continue;
3316
3317    DeclAccessPair FoundDecl
3318      = DeclAccessPair::make(Constructor, Constructor->getAccess());
3319    S.AddOverloadCandidate(Constructor, FoundDecl,
3320                           &CurInitExpr, 1, CandidateSet);
3321  }
3322
3323  OverloadCandidateSet::iterator Best;
3324  switch (S.BestViableFunction(CandidateSet, Loc, Best)) {
3325  case OR_Success:
3326    break;
3327
3328  case OR_No_Viable_Function:
3329    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
3330           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
3331           : diag::err_temp_copy_no_viable)
3332      << (int)Entity.getKind() << CurInitExpr->getType()
3333      << CurInitExpr->getSourceRange();
3334    S.PrintOverloadCandidates(CandidateSet, Sema::OCD_AllCandidates,
3335                              &CurInitExpr, 1);
3336    if (!IsExtraneousCopy || S.isSFINAEContext())
3337      return S.ExprError();
3338    return move(CurInit);
3339
3340  case OR_Ambiguous:
3341    S.Diag(Loc, diag::err_temp_copy_ambiguous)
3342      << (int)Entity.getKind() << CurInitExpr->getType()
3343      << CurInitExpr->getSourceRange();
3344    S.PrintOverloadCandidates(CandidateSet, Sema::OCD_ViableCandidates,
3345                              &CurInitExpr, 1);
3346    return S.ExprError();
3347
3348  case OR_Deleted:
3349    S.Diag(Loc, diag::err_temp_copy_deleted)
3350      << (int)Entity.getKind() << CurInitExpr->getType()
3351      << CurInitExpr->getSourceRange();
3352    S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3353      << Best->Function->isDeleted();
3354    return S.ExprError();
3355  }
3356
3357  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3358  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3359  CurInit.release(); // Ownership transferred into MultiExprArg, below.
3360
3361  S.CheckConstructorAccess(Loc, Constructor, Entity,
3362                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
3363
3364  if (IsExtraneousCopy) {
3365    // If this is a totally extraneous copy for C++03 reference
3366    // binding purposes, just return the original initialization
3367    // expression. We don't generate an (elided) copy operation here
3368    // because doing so would require us to pass down a flag to avoid
3369    // infinite recursion, where each step adds another extraneous,
3370    // elidable copy.
3371
3372    // Instantiate the default arguments of any extra parameters in
3373    // the selected copy constructor, as if we were going to create a
3374    // proper call to the copy constructor.
3375    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
3376      ParmVarDecl *Parm = Constructor->getParamDecl(I);
3377      if (S.RequireCompleteType(Loc, Parm->getType(),
3378                                S.PDiag(diag::err_call_incomplete_argument)))
3379        break;
3380
3381      // Build the default argument expression; we don't actually care
3382      // if this succeeds or not, because this routine will complain
3383      // if there was a problem.
3384      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
3385    }
3386
3387    return S.Owned(CurInitExpr);
3388  }
3389
3390  // Determine the arguments required to actually perform the
3391  // constructor call (we might have derived-to-base conversions, or
3392  // the copy constructor may have default arguments).
3393  if (S.CompleteConstructorCall(Constructor,
3394                                Sema::MultiExprArg(S,
3395                                                   (void **)&CurInitExpr,
3396                                                   1),
3397                                Loc, ConstructorArgs))
3398    return S.ExprError();
3399
3400  // Actually perform the constructor call.
3401  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
3402                                    move_arg(ConstructorArgs));
3403
3404  // If we're supposed to bind temporaries, do so.
3405  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
3406    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3407  return move(CurInit);
3408}
3409
3410void InitializationSequence::PrintInitLocationNote(Sema &S,
3411                                              const InitializedEntity &Entity) {
3412  if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
3413    if (Entity.getDecl()->getLocation().isInvalid())
3414      return;
3415
3416    if (Entity.getDecl()->getDeclName())
3417      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
3418        << Entity.getDecl()->getDeclName();
3419    else
3420      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
3421  }
3422}
3423
3424Action::OwningExprResult
3425InitializationSequence::Perform(Sema &S,
3426                                const InitializedEntity &Entity,
3427                                const InitializationKind &Kind,
3428                                Action::MultiExprArg Args,
3429                                QualType *ResultType) {
3430  if (SequenceKind == FailedSequence) {
3431    unsigned NumArgs = Args.size();
3432    Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
3433    return S.ExprError();
3434  }
3435
3436  if (SequenceKind == DependentSequence) {
3437    // If the declaration is a non-dependent, incomplete array type
3438    // that has an initializer, then its type will be completed once
3439    // the initializer is instantiated.
3440    if (ResultType && !Entity.getType()->isDependentType() &&
3441        Args.size() == 1) {
3442      QualType DeclType = Entity.getType();
3443      if (const IncompleteArrayType *ArrayT
3444                           = S.Context.getAsIncompleteArrayType(DeclType)) {
3445        // FIXME: We don't currently have the ability to accurately
3446        // compute the length of an initializer list without
3447        // performing full type-checking of the initializer list
3448        // (since we have to determine where braces are implicitly
3449        // introduced and such).  So, we fall back to making the array
3450        // type a dependently-sized array type with no specified
3451        // bound.
3452        if (isa<InitListExpr>((Expr *)Args.get()[0])) {
3453          SourceRange Brackets;
3454
3455          // Scavange the location of the brackets from the entity, if we can.
3456          if (DeclaratorDecl *DD = Entity.getDecl()) {
3457            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
3458              TypeLoc TL = TInfo->getTypeLoc();
3459              if (IncompleteArrayTypeLoc *ArrayLoc
3460                                      = dyn_cast<IncompleteArrayTypeLoc>(&TL))
3461              Brackets = ArrayLoc->getBracketsRange();
3462            }
3463          }
3464
3465          *ResultType
3466            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
3467                                                   /*NumElts=*/0,
3468                                                   ArrayT->getSizeModifier(),
3469                                       ArrayT->getIndexTypeCVRQualifiers(),
3470                                                   Brackets);
3471        }
3472
3473      }
3474    }
3475
3476    if (Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast())
3477      return Sema::OwningExprResult(S, Args.release()[0]);
3478
3479    if (Args.size() == 0)
3480      return S.Owned((Expr *)0);
3481
3482    unsigned NumArgs = Args.size();
3483    return S.Owned(new (S.Context) ParenListExpr(S.Context,
3484                                                 SourceLocation(),
3485                                                 (Expr **)Args.release(),
3486                                                 NumArgs,
3487                                                 SourceLocation()));
3488  }
3489
3490  if (SequenceKind == NoInitialization)
3491    return S.Owned((Expr *)0);
3492
3493  QualType DestType = Entity.getType().getNonReferenceType();
3494  // FIXME: Ugly hack around the fact that Entity.getType() is not
3495  // the same as Entity.getDecl()->getType() in cases involving type merging,
3496  //  and we want latter when it makes sense.
3497  if (ResultType)
3498    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
3499                                     Entity.getType();
3500
3501  Sema::OwningExprResult CurInit = S.Owned((Expr *)0);
3502
3503  assert(!Steps.empty() && "Cannot have an empty initialization sequence");
3504
3505  // For initialization steps that start with a single initializer,
3506  // grab the only argument out the Args and place it into the "current"
3507  // initializer.
3508  switch (Steps.front().Kind) {
3509  case SK_ResolveAddressOfOverloadedFunction:
3510  case SK_CastDerivedToBaseRValue:
3511  case SK_CastDerivedToBaseLValue:
3512  case SK_BindReference:
3513  case SK_BindReferenceToTemporary:
3514  case SK_ExtraneousCopyToTemporary:
3515  case SK_UserConversion:
3516  case SK_QualificationConversionLValue:
3517  case SK_QualificationConversionRValue:
3518  case SK_ConversionSequence:
3519  case SK_ListInitialization:
3520  case SK_CAssignment:
3521  case SK_StringInit:
3522    assert(Args.size() == 1);
3523    CurInit = Sema::OwningExprResult(S, ((Expr **)(Args.get()))[0]->Retain());
3524    if (CurInit.isInvalid())
3525      return S.ExprError();
3526    break;
3527
3528  case SK_ConstructorInitialization:
3529  case SK_ZeroInitialization:
3530    break;
3531  }
3532
3533  // Walk through the computed steps for the initialization sequence,
3534  // performing the specified conversions along the way.
3535  bool ConstructorInitRequiresZeroInit = false;
3536  for (step_iterator Step = step_begin(), StepEnd = step_end();
3537       Step != StepEnd; ++Step) {
3538    if (CurInit.isInvalid())
3539      return S.ExprError();
3540
3541    Expr *CurInitExpr = (Expr *)CurInit.get();
3542    QualType SourceType = CurInitExpr? CurInitExpr->getType() : QualType();
3543
3544    switch (Step->Kind) {
3545    case SK_ResolveAddressOfOverloadedFunction:
3546      // Overload resolution determined which function invoke; update the
3547      // initializer to reflect that choice.
3548      S.CheckAddressOfMemberAccess(CurInitExpr, Step->Function.FoundDecl);
3549      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
3550      CurInit = S.FixOverloadedFunctionReference(move(CurInit),
3551                                                 Step->Function.FoundDecl,
3552                                                 Step->Function.Function);
3553      break;
3554
3555    case SK_CastDerivedToBaseRValue:
3556    case SK_CastDerivedToBaseLValue: {
3557      // We have a derived-to-base cast that produces either an rvalue or an
3558      // lvalue. Perform that cast.
3559
3560      CXXBaseSpecifierArray BasePath;
3561
3562      // Casts to inaccessible base classes are allowed with C-style casts.
3563      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3564      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
3565                                         CurInitExpr->getLocStart(),
3566                                         CurInitExpr->getSourceRange(),
3567                                         &BasePath, IgnoreBaseAccess))
3568        return S.ExprError();
3569
3570      if (S.BasePathInvolvesVirtualBase(BasePath)) {
3571        QualType T = SourceType;
3572        if (const PointerType *Pointer = T->getAs<PointerType>())
3573          T = Pointer->getPointeeType();
3574        if (const RecordType *RecordTy = T->getAs<RecordType>())
3575          S.MarkVTableUsed(CurInitExpr->getLocStart(),
3576                           cast<CXXRecordDecl>(RecordTy->getDecl()));
3577      }
3578
3579      CurInit = S.Owned(new (S.Context) ImplicitCastExpr(Step->Type,
3580                                                    CastExpr::CK_DerivedToBase,
3581                                                    (Expr*)CurInit.release(),
3582                                                    BasePath,
3583                                     Step->Kind == SK_CastDerivedToBaseLValue));
3584      break;
3585    }
3586
3587    case SK_BindReference:
3588      if (FieldDecl *BitField = CurInitExpr->getBitField()) {
3589        // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
3590        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
3591          << Entity.getType().isVolatileQualified()
3592          << BitField->getDeclName()
3593          << CurInitExpr->getSourceRange();
3594        S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
3595        return S.ExprError();
3596      }
3597
3598      if (CurInitExpr->refersToVectorElement()) {
3599        // References cannot bind to vector elements.
3600        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
3601          << Entity.getType().isVolatileQualified()
3602          << CurInitExpr->getSourceRange();
3603        PrintInitLocationNote(S, Entity);
3604        return S.ExprError();
3605      }
3606
3607      // Reference binding does not have any corresponding ASTs.
3608
3609      // Check exception specifications
3610      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3611        return S.ExprError();
3612
3613      break;
3614
3615    case SK_BindReferenceToTemporary:
3616      // Reference binding does not have any corresponding ASTs.
3617
3618      // Check exception specifications
3619      if (S.CheckExceptionSpecCompatibility(CurInitExpr, DestType))
3620        return S.ExprError();
3621
3622      break;
3623
3624    case SK_ExtraneousCopyToTemporary:
3625      CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
3626                           /*IsExtraneousCopy=*/true);
3627      break;
3628
3629    case SK_UserConversion: {
3630      // We have a user-defined conversion that invokes either a constructor
3631      // or a conversion function.
3632      CastExpr::CastKind CastKind = CastExpr::CK_Unknown;
3633      bool IsCopy = false;
3634      FunctionDecl *Fn = Step->Function.Function;
3635      DeclAccessPair FoundFn = Step->Function.FoundDecl;
3636      bool CreatedObject = false;
3637      bool IsLvalue = false;
3638      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
3639        // Build a call to the selected constructor.
3640        ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3641        SourceLocation Loc = CurInitExpr->getLocStart();
3642        CurInit.release(); // Ownership transferred into MultiExprArg, below.
3643
3644        // Determine the arguments required to actually perform the constructor
3645        // call.
3646        if (S.CompleteConstructorCall(Constructor,
3647                                      Sema::MultiExprArg(S,
3648                                                         (void **)&CurInitExpr,
3649                                                         1),
3650                                      Loc, ConstructorArgs))
3651          return S.ExprError();
3652
3653        // Build the an expression that constructs a temporary.
3654        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
3655                                          move_arg(ConstructorArgs));
3656        if (CurInit.isInvalid())
3657          return S.ExprError();
3658
3659        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
3660                                 FoundFn.getAccess());
3661        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
3662
3663        CastKind = CastExpr::CK_ConstructorConversion;
3664        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
3665        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
3666            S.IsDerivedFrom(SourceType, Class))
3667          IsCopy = true;
3668
3669        CreatedObject = true;
3670      } else {
3671        // Build a call to the conversion function.
3672        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
3673        IsLvalue = Conversion->getResultType()->isLValueReferenceType();
3674        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInitExpr, 0,
3675                                    FoundFn);
3676        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
3677
3678        // FIXME: Should we move this initialization into a separate
3679        // derived-to-base conversion? I believe the answer is "no", because
3680        // we don't want to turn off access control here for c-style casts.
3681        if (S.PerformObjectArgumentInitialization(CurInitExpr, /*Qualifier=*/0,
3682                                                  FoundFn, Conversion))
3683          return S.ExprError();
3684
3685        // Do a little dance to make sure that CurInit has the proper
3686        // pointer.
3687        CurInit.release();
3688
3689        // Build the actual call to the conversion function.
3690        CurInit = S.Owned(S.BuildCXXMemberCallExpr(CurInitExpr, FoundFn,
3691                                                   Conversion));
3692        if (CurInit.isInvalid() || !CurInit.get())
3693          return S.ExprError();
3694
3695        CastKind = CastExpr::CK_UserDefinedConversion;
3696
3697        CreatedObject = Conversion->getResultType()->isRecordType();
3698      }
3699
3700      bool RequiresCopy = !IsCopy &&
3701        getKind() != InitializationSequence::ReferenceBinding;
3702      if (RequiresCopy || shouldBindAsTemporary(Entity))
3703        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3704      else if (CreatedObject && shouldDestroyTemporary(Entity)) {
3705        CurInitExpr = static_cast<Expr *>(CurInit.get());
3706        QualType T = CurInitExpr->getType();
3707        if (const RecordType *Record = T->getAs<RecordType>()) {
3708          CXXDestructorDecl *Destructor
3709            = cast<CXXRecordDecl>(Record->getDecl())->getDestructor(S.Context);
3710          S.CheckDestructorAccess(CurInitExpr->getLocStart(), Destructor,
3711                                  S.PDiag(diag::err_access_dtor_temp) << T);
3712          S.MarkDeclarationReferenced(CurInitExpr->getLocStart(), Destructor);
3713        }
3714      }
3715
3716      CurInitExpr = CurInit.takeAs<Expr>();
3717      CurInit = S.Owned(new (S.Context) ImplicitCastExpr(CurInitExpr->getType(),
3718                                                         CastKind,
3719                                                         CurInitExpr,
3720                                                        CXXBaseSpecifierArray(),
3721                                                         IsLvalue));
3722
3723      if (RequiresCopy)
3724        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
3725                             move(CurInit), /*IsExtraneousCopy=*/false);
3726
3727      break;
3728    }
3729
3730    case SK_QualificationConversionLValue:
3731    case SK_QualificationConversionRValue:
3732      // Perform a qualification conversion; these can never go wrong.
3733      S.ImpCastExprToType(CurInitExpr, Step->Type,
3734                          CastExpr::CK_NoOp,
3735                          Step->Kind == SK_QualificationConversionLValue);
3736      CurInit.release();
3737      CurInit = S.Owned(CurInitExpr);
3738      break;
3739
3740    case SK_ConversionSequence: {
3741      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3742
3743      if (S.PerformImplicitConversion(CurInitExpr, Step->Type, *Step->ICS,
3744                                      Sema::AA_Converting, IgnoreBaseAccess))
3745        return S.ExprError();
3746
3747      CurInit.release();
3748      CurInit = S.Owned(CurInitExpr);
3749      break;
3750    }
3751
3752    case SK_ListInitialization: {
3753      InitListExpr *InitList = cast<InitListExpr>(CurInitExpr);
3754      QualType Ty = Step->Type;
3755      if (S.CheckInitList(Entity, InitList, ResultType? *ResultType : Ty))
3756        return S.ExprError();
3757
3758      CurInit.release();
3759      CurInit = S.Owned(InitList);
3760      break;
3761    }
3762
3763    case SK_ConstructorInitialization: {
3764      unsigned NumArgs = Args.size();
3765      CXXConstructorDecl *Constructor
3766        = cast<CXXConstructorDecl>(Step->Function.Function);
3767
3768      // Build a call to the selected constructor.
3769      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(S);
3770      SourceLocation Loc = Kind.getLocation();
3771
3772      // Determine the arguments required to actually perform the constructor
3773      // call.
3774      if (S.CompleteConstructorCall(Constructor, move(Args),
3775                                    Loc, ConstructorArgs))
3776        return S.ExprError();
3777
3778      // Build the expression that constructs a temporary.
3779      if (Entity.getKind() == InitializedEntity::EK_Temporary &&
3780          NumArgs != 1 && // FIXME: Hack to work around cast weirdness
3781          (Kind.getKind() == InitializationKind::IK_Direct ||
3782           Kind.getKind() == InitializationKind::IK_Value)) {
3783        // An explicitly-constructed temporary, e.g., X(1, 2).
3784        unsigned NumExprs = ConstructorArgs.size();
3785        Expr **Exprs = (Expr **)ConstructorArgs.take();
3786        S.MarkDeclarationReferenced(Kind.getLocation(), Constructor);
3787        CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
3788                                                                 Constructor,
3789                                                              Entity.getType(),
3790                                                            Kind.getLocation(),
3791                                                                 Exprs,
3792                                                                 NumExprs,
3793                                                Kind.getParenRange().getEnd(),
3794                                             ConstructorInitRequiresZeroInit));
3795      } else {
3796        CXXConstructExpr::ConstructionKind ConstructKind =
3797          CXXConstructExpr::CK_Complete;
3798
3799        if (Entity.getKind() == InitializedEntity::EK_Base) {
3800          ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
3801            CXXConstructExpr::CK_VirtualBase :
3802            CXXConstructExpr::CK_NonVirtualBase;
3803        }
3804
3805        // If the entity allows NRVO, mark the construction as elidable
3806        // unconditionally.
3807        if (Entity.allowsNRVO())
3808          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3809                                            Constructor, /*Elidable=*/true,
3810                                            move_arg(ConstructorArgs),
3811                                            ConstructorInitRequiresZeroInit,
3812                                            ConstructKind);
3813        else
3814          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
3815                                            Constructor,
3816                                            move_arg(ConstructorArgs),
3817                                            ConstructorInitRequiresZeroInit,
3818                                            ConstructKind);
3819      }
3820      if (CurInit.isInvalid())
3821        return S.ExprError();
3822
3823      // Only check access if all of that succeeded.
3824      S.CheckConstructorAccess(Loc, Constructor, Entity,
3825                               Step->Function.FoundDecl.getAccess());
3826      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Loc);
3827
3828      if (shouldBindAsTemporary(Entity))
3829        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3830
3831      break;
3832    }
3833
3834    case SK_ZeroInitialization: {
3835      step_iterator NextStep = Step;
3836      ++NextStep;
3837      if (NextStep != StepEnd &&
3838          NextStep->Kind == SK_ConstructorInitialization) {
3839        // The need for zero-initialization is recorded directly into
3840        // the call to the object's constructor within the next step.
3841        ConstructorInitRequiresZeroInit = true;
3842      } else if (Kind.getKind() == InitializationKind::IK_Value &&
3843                 S.getLangOptions().CPlusPlus &&
3844                 !Kind.isImplicitValueInit()) {
3845        CurInit = S.Owned(new (S.Context) CXXZeroInitValueExpr(Step->Type,
3846                                                   Kind.getRange().getBegin(),
3847                                                    Kind.getRange().getEnd()));
3848      } else {
3849        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
3850      }
3851      break;
3852    }
3853
3854    case SK_CAssignment: {
3855      QualType SourceType = CurInitExpr->getType();
3856      Sema::AssignConvertType ConvTy =
3857        S.CheckSingleAssignmentConstraints(Step->Type, CurInitExpr);
3858
3859      // If this is a call, allow conversion to a transparent union.
3860      if (ConvTy != Sema::Compatible &&
3861          Entity.getKind() == InitializedEntity::EK_Parameter &&
3862          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExpr)
3863            == Sema::Compatible)
3864        ConvTy = Sema::Compatible;
3865
3866      bool Complained;
3867      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
3868                                     Step->Type, SourceType,
3869                                     CurInitExpr,
3870                                     getAssignmentAction(Entity),
3871                                     &Complained)) {
3872        PrintInitLocationNote(S, Entity);
3873        return S.ExprError();
3874      } else if (Complained)
3875        PrintInitLocationNote(S, Entity);
3876
3877      CurInit.release();
3878      CurInit = S.Owned(CurInitExpr);
3879      break;
3880    }
3881
3882    case SK_StringInit: {
3883      QualType Ty = Step->Type;
3884      CheckStringInit(CurInitExpr, ResultType ? *ResultType : Ty, S);
3885      break;
3886    }
3887    }
3888  }
3889
3890  return move(CurInit);
3891}
3892
3893//===----------------------------------------------------------------------===//
3894// Diagnose initialization failures
3895//===----------------------------------------------------------------------===//
3896bool InitializationSequence::Diagnose(Sema &S,
3897                                      const InitializedEntity &Entity,
3898                                      const InitializationKind &Kind,
3899                                      Expr **Args, unsigned NumArgs) {
3900  if (SequenceKind != FailedSequence)
3901    return false;
3902
3903  QualType DestType = Entity.getType();
3904  switch (Failure) {
3905  case FK_TooManyInitsForReference:
3906    // FIXME: Customize for the initialized entity?
3907    if (NumArgs == 0)
3908      S.Diag(Kind.getLocation(), diag::err_reference_without_init)
3909        << DestType.getNonReferenceType();
3910    else  // FIXME: diagnostic below could be better!
3911      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
3912        << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
3913    break;
3914
3915  case FK_ArrayNeedsInitList:
3916  case FK_ArrayNeedsInitListOrStringLiteral:
3917    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
3918      << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
3919    break;
3920
3921  case FK_AddressOfOverloadFailed: {
3922    DeclAccessPair Found;
3923    S.ResolveAddressOfOverloadedFunction(Args[0],
3924                                         DestType.getNonReferenceType(),
3925                                         true,
3926                                         Found);
3927    break;
3928  }
3929
3930  case FK_ReferenceInitOverloadFailed:
3931  case FK_UserConversionOverloadFailed:
3932    switch (FailedOverloadResult) {
3933    case OR_Ambiguous:
3934      if (Failure == FK_UserConversionOverloadFailed)
3935        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
3936          << Args[0]->getType() << DestType
3937          << Args[0]->getSourceRange();
3938      else
3939        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
3940          << DestType << Args[0]->getType()
3941          << Args[0]->getSourceRange();
3942
3943      S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_ViableCandidates,
3944                                Args, NumArgs);
3945      break;
3946
3947    case OR_No_Viable_Function:
3948      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
3949        << Args[0]->getType() << DestType.getNonReferenceType()
3950        << Args[0]->getSourceRange();
3951      S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_AllCandidates,
3952                                Args, NumArgs);
3953      break;
3954
3955    case OR_Deleted: {
3956      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
3957        << Args[0]->getType() << DestType.getNonReferenceType()
3958        << Args[0]->getSourceRange();
3959      OverloadCandidateSet::iterator Best;
3960      OverloadingResult Ovl = S.BestViableFunction(FailedCandidateSet,
3961                                                   Kind.getLocation(),
3962                                                   Best);
3963      if (Ovl == OR_Deleted) {
3964        S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3965          << Best->Function->isDeleted();
3966      } else {
3967        llvm_unreachable("Inconsistent overload resolution?");
3968      }
3969      break;
3970    }
3971
3972    case OR_Success:
3973      llvm_unreachable("Conversion did not fail!");
3974      break;
3975    }
3976    break;
3977
3978  case FK_NonConstLValueReferenceBindingToTemporary:
3979  case FK_NonConstLValueReferenceBindingToUnrelated:
3980    S.Diag(Kind.getLocation(),
3981           Failure == FK_NonConstLValueReferenceBindingToTemporary
3982             ? diag::err_lvalue_reference_bind_to_temporary
3983             : diag::err_lvalue_reference_bind_to_unrelated)
3984      << DestType.getNonReferenceType().isVolatileQualified()
3985      << DestType.getNonReferenceType()
3986      << Args[0]->getType()
3987      << Args[0]->getSourceRange();
3988    break;
3989
3990  case FK_RValueReferenceBindingToLValue:
3991    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
3992      << Args[0]->getSourceRange();
3993    break;
3994
3995  case FK_ReferenceInitDropsQualifiers:
3996    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
3997      << DestType.getNonReferenceType()
3998      << Args[0]->getType()
3999      << Args[0]->getSourceRange();
4000    break;
4001
4002  case FK_ReferenceInitFailed:
4003    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
4004      << DestType.getNonReferenceType()
4005      << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
4006      << Args[0]->getType()
4007      << Args[0]->getSourceRange();
4008    break;
4009
4010  case FK_ConversionFailed:
4011    S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
4012      << (int)Entity.getKind()
4013      << DestType
4014      << (Args[0]->isLvalue(S.Context) == Expr::LV_Valid)
4015      << Args[0]->getType()
4016      << Args[0]->getSourceRange();
4017    break;
4018
4019  case FK_TooManyInitsForScalar: {
4020    SourceRange R;
4021
4022    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
4023      R = SourceRange(InitList->getInit(1)->getLocStart(),
4024                      InitList->getLocEnd());
4025    else
4026      R = SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
4027
4028    S.Diag(Kind.getLocation(), diag::err_excess_initializers)
4029      << /*scalar=*/2 << R;
4030    break;
4031  }
4032
4033  case FK_ReferenceBindingToInitList:
4034    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
4035      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
4036    break;
4037
4038  case FK_InitListBadDestinationType:
4039    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
4040      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
4041    break;
4042
4043  case FK_ConstructorOverloadFailed: {
4044    SourceRange ArgsRange;
4045    if (NumArgs)
4046      ArgsRange = SourceRange(Args[0]->getLocStart(),
4047                              Args[NumArgs - 1]->getLocEnd());
4048
4049    // FIXME: Using "DestType" for the entity we're printing is probably
4050    // bad.
4051    switch (FailedOverloadResult) {
4052      case OR_Ambiguous:
4053        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
4054          << DestType << ArgsRange;
4055        S.PrintOverloadCandidates(FailedCandidateSet,
4056                                  Sema::OCD_ViableCandidates, Args, NumArgs);
4057        break;
4058
4059      case OR_No_Viable_Function:
4060        if (Kind.getKind() == InitializationKind::IK_Default &&
4061            (Entity.getKind() == InitializedEntity::EK_Base ||
4062             Entity.getKind() == InitializedEntity::EK_Member) &&
4063            isa<CXXConstructorDecl>(S.CurContext)) {
4064          // This is implicit default initialization of a member or
4065          // base within a constructor. If no viable function was
4066          // found, notify the user that she needs to explicitly
4067          // initialize this base/member.
4068          CXXConstructorDecl *Constructor
4069            = cast<CXXConstructorDecl>(S.CurContext);
4070          if (Entity.getKind() == InitializedEntity::EK_Base) {
4071            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4072              << Constructor->isImplicit()
4073              << S.Context.getTypeDeclType(Constructor->getParent())
4074              << /*base=*/0
4075              << Entity.getType();
4076
4077            RecordDecl *BaseDecl
4078              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
4079                                                                  ->getDecl();
4080            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
4081              << S.Context.getTagDeclType(BaseDecl);
4082          } else {
4083            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4084              << Constructor->isImplicit()
4085              << S.Context.getTypeDeclType(Constructor->getParent())
4086              << /*member=*/1
4087              << Entity.getName();
4088            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
4089
4090            if (const RecordType *Record
4091                                 = Entity.getType()->getAs<RecordType>())
4092              S.Diag(Record->getDecl()->getLocation(),
4093                     diag::note_previous_decl)
4094                << S.Context.getTagDeclType(Record->getDecl());
4095          }
4096          break;
4097        }
4098
4099        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
4100          << DestType << ArgsRange;
4101        S.PrintOverloadCandidates(FailedCandidateSet, Sema::OCD_AllCandidates,
4102                                  Args, NumArgs);
4103        break;
4104
4105      case OR_Deleted: {
4106        S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
4107          << true << DestType << ArgsRange;
4108        OverloadCandidateSet::iterator Best;
4109        OverloadingResult Ovl = S.BestViableFunction(FailedCandidateSet,
4110                                                     Kind.getLocation(),
4111                                                     Best);
4112        if (Ovl == OR_Deleted) {
4113          S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4114            << Best->Function->isDeleted();
4115        } else {
4116          llvm_unreachable("Inconsistent overload resolution?");
4117        }
4118        break;
4119      }
4120
4121      case OR_Success:
4122        llvm_unreachable("Conversion did not fail!");
4123        break;
4124    }
4125    break;
4126  }
4127
4128  case FK_DefaultInitOfConst:
4129    if (Entity.getKind() == InitializedEntity::EK_Member &&
4130        isa<CXXConstructorDecl>(S.CurContext)) {
4131      // This is implicit default-initialization of a const member in
4132      // a constructor. Complain that it needs to be explicitly
4133      // initialized.
4134      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
4135      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
4136        << Constructor->isImplicit()
4137        << S.Context.getTypeDeclType(Constructor->getParent())
4138        << /*const=*/1
4139        << Entity.getName();
4140      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
4141        << Entity.getName();
4142    } else {
4143      S.Diag(Kind.getLocation(), diag::err_default_init_const)
4144        << DestType << (bool)DestType->getAs<RecordType>();
4145    }
4146    break;
4147
4148    case FK_Incomplete:
4149      S.RequireCompleteType(Kind.getLocation(), DestType,
4150                            diag::err_init_incomplete_type);
4151      break;
4152  }
4153
4154  PrintInitLocationNote(S, Entity);
4155  return true;
4156}
4157
4158void InitializationSequence::dump(llvm::raw_ostream &OS) const {
4159  switch (SequenceKind) {
4160  case FailedSequence: {
4161    OS << "Failed sequence: ";
4162    switch (Failure) {
4163    case FK_TooManyInitsForReference:
4164      OS << "too many initializers for reference";
4165      break;
4166
4167    case FK_ArrayNeedsInitList:
4168      OS << "array requires initializer list";
4169      break;
4170
4171    case FK_ArrayNeedsInitListOrStringLiteral:
4172      OS << "array requires initializer list or string literal";
4173      break;
4174
4175    case FK_AddressOfOverloadFailed:
4176      OS << "address of overloaded function failed";
4177      break;
4178
4179    case FK_ReferenceInitOverloadFailed:
4180      OS << "overload resolution for reference initialization failed";
4181      break;
4182
4183    case FK_NonConstLValueReferenceBindingToTemporary:
4184      OS << "non-const lvalue reference bound to temporary";
4185      break;
4186
4187    case FK_NonConstLValueReferenceBindingToUnrelated:
4188      OS << "non-const lvalue reference bound to unrelated type";
4189      break;
4190
4191    case FK_RValueReferenceBindingToLValue:
4192      OS << "rvalue reference bound to an lvalue";
4193      break;
4194
4195    case FK_ReferenceInitDropsQualifiers:
4196      OS << "reference initialization drops qualifiers";
4197      break;
4198
4199    case FK_ReferenceInitFailed:
4200      OS << "reference initialization failed";
4201      break;
4202
4203    case FK_ConversionFailed:
4204      OS << "conversion failed";
4205      break;
4206
4207    case FK_TooManyInitsForScalar:
4208      OS << "too many initializers for scalar";
4209      break;
4210
4211    case FK_ReferenceBindingToInitList:
4212      OS << "referencing binding to initializer list";
4213      break;
4214
4215    case FK_InitListBadDestinationType:
4216      OS << "initializer list for non-aggregate, non-scalar type";
4217      break;
4218
4219    case FK_UserConversionOverloadFailed:
4220      OS << "overloading failed for user-defined conversion";
4221      break;
4222
4223    case FK_ConstructorOverloadFailed:
4224      OS << "constructor overloading failed";
4225      break;
4226
4227    case FK_DefaultInitOfConst:
4228      OS << "default initialization of a const variable";
4229      break;
4230
4231    case FK_Incomplete:
4232      OS << "initialization of incomplete type";
4233      break;
4234    }
4235    OS << '\n';
4236    return;
4237  }
4238
4239  case DependentSequence:
4240    OS << "Dependent sequence: ";
4241    return;
4242
4243  case UserDefinedConversion:
4244    OS << "User-defined conversion sequence: ";
4245    break;
4246
4247  case ConstructorInitialization:
4248    OS << "Constructor initialization sequence: ";
4249    break;
4250
4251  case ReferenceBinding:
4252    OS << "Reference binding: ";
4253    break;
4254
4255  case ListInitialization:
4256    OS << "List initialization: ";
4257    break;
4258
4259  case ZeroInitialization:
4260    OS << "Zero initialization\n";
4261    return;
4262
4263  case NoInitialization:
4264    OS << "No initialization\n";
4265    return;
4266
4267  case StandardConversion:
4268    OS << "Standard conversion: ";
4269    break;
4270
4271  case CAssignment:
4272    OS << "C assignment: ";
4273    break;
4274
4275  case StringInit:
4276    OS << "String initialization: ";
4277    break;
4278  }
4279
4280  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
4281    if (S != step_begin()) {
4282      OS << " -> ";
4283    }
4284
4285    switch (S->Kind) {
4286    case SK_ResolveAddressOfOverloadedFunction:
4287      OS << "resolve address of overloaded function";
4288      break;
4289
4290    case SK_CastDerivedToBaseRValue:
4291      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
4292      break;
4293
4294    case SK_CastDerivedToBaseLValue:
4295      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
4296      break;
4297
4298    case SK_BindReference:
4299      OS << "bind reference to lvalue";
4300      break;
4301
4302    case SK_BindReferenceToTemporary:
4303      OS << "bind reference to a temporary";
4304      break;
4305
4306    case SK_ExtraneousCopyToTemporary:
4307      OS << "extraneous C++03 copy to temporary";
4308      break;
4309
4310    case SK_UserConversion:
4311      OS << "user-defined conversion via " << S->Function.Function;
4312      break;
4313
4314    case SK_QualificationConversionRValue:
4315      OS << "qualification conversion (rvalue)";
4316
4317    case SK_QualificationConversionLValue:
4318      OS << "qualification conversion (lvalue)";
4319      break;
4320
4321    case SK_ConversionSequence:
4322      OS << "implicit conversion sequence (";
4323      S->ICS->DebugPrint(); // FIXME: use OS
4324      OS << ")";
4325      break;
4326
4327    case SK_ListInitialization:
4328      OS << "list initialization";
4329      break;
4330
4331    case SK_ConstructorInitialization:
4332      OS << "constructor initialization";
4333      break;
4334
4335    case SK_ZeroInitialization:
4336      OS << "zero initialization";
4337      break;
4338
4339    case SK_CAssignment:
4340      OS << "C assignment";
4341      break;
4342
4343    case SK_StringInit:
4344      OS << "string initialization";
4345      break;
4346    }
4347  }
4348}
4349
4350void InitializationSequence::dump() const {
4351  dump(llvm::errs());
4352}
4353
4354//===----------------------------------------------------------------------===//
4355// Initialization helper functions
4356//===----------------------------------------------------------------------===//
4357Sema::OwningExprResult
4358Sema::PerformCopyInitialization(const InitializedEntity &Entity,
4359                                SourceLocation EqualLoc,
4360                                OwningExprResult Init) {
4361  if (Init.isInvalid())
4362    return ExprError();
4363
4364  Expr *InitE = (Expr *)Init.get();
4365  assert(InitE && "No initialization expression?");
4366
4367  if (EqualLoc.isInvalid())
4368    EqualLoc = InitE->getLocStart();
4369
4370  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
4371                                                           EqualLoc);
4372  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
4373  Init.release();
4374  return Seq.Perform(*this, Entity, Kind,
4375                     MultiExprArg(*this, (void**)&InitE, 1));
4376}
4377