SemaInit.cpp revision e85f43d31101a875a6621e43bde21dcc13d860ff
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14// This file also implements Sema::CheckInitializerTypes.
15//
16//===----------------------------------------------------------------------===//
17
18#include "Sema.h"
19#include "clang/Parse/Designator.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include <map>
24using namespace clang;
25
26//===----------------------------------------------------------------------===//
27// Sema Initialization Checking
28//===----------------------------------------------------------------------===//
29
30static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
31  const ArrayType *AT = Context.getAsArrayType(DeclType);
32  if (!AT) return 0;
33
34  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
35    return 0;
36
37  // See if this is a string literal or @encode.
38  Init = Init->IgnoreParens();
39
40  // Handle @encode, which is a narrow string.
41  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
42    return Init;
43
44  // Otherwise we can only handle string literals.
45  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
46  if (SL == 0) return 0;
47
48  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
49  // char array can be initialized with a narrow string.
50  // Only allow char x[] = "foo";  not char x[] = L"foo";
51  if (!SL->isWide())
52    return ElemTy->isCharType() ? Init : 0;
53
54  // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
55  // correction from DR343): "An array with element type compatible with a
56  // qualified or unqualified version of wchar_t may be initialized by a wide
57  // string literal, optionally enclosed in braces."
58  if (Context.typesAreCompatible(Context.getWCharType(),
59                                 ElemTy.getUnqualifiedType()))
60    return Init;
61
62  return 0;
63}
64
65static bool CheckSingleInitializer(Expr *&Init, QualType DeclType,
66                                   bool DirectInit, Sema &S) {
67  // Get the type before calling CheckSingleAssignmentConstraints(), since
68  // it can promote the expression.
69  QualType InitType = Init->getType();
70
71  if (S.getLangOptions().CPlusPlus) {
72    // FIXME: I dislike this error message. A lot.
73    if (S.PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
74      return S.Diag(Init->getSourceRange().getBegin(),
75                    diag::err_typecheck_convert_incompatible)
76        << DeclType << Init->getType() << "initializing"
77        << Init->getSourceRange();
78    return false;
79  }
80
81  Sema::AssignConvertType ConvTy =
82    S.CheckSingleAssignmentConstraints(DeclType, Init);
83  return S.DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
84                                  InitType, Init, "initializing");
85}
86
87static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
88  // Get the length of the string as parsed.
89  uint64_t StrLength =
90    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
91
92
93  const ArrayType *AT = S.Context.getAsArrayType(DeclT);
94  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
95    // C99 6.7.8p14. We have an array of character type with unknown size
96    // being initialized to a string literal.
97    llvm::APSInt ConstVal(32);
98    ConstVal = StrLength;
99    // Return a new array type (C99 6.7.8p22).
100    DeclT = S.Context.getConstantArrayWithoutExprType(IAT->getElementType(),
101                                                      ConstVal,
102                                                      ArrayType::Normal, 0);
103    return;
104  }
105
106  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
107
108  // C99 6.7.8p14. We have an array of character type with known size.  However,
109  // the size may be smaller or larger than the string we are initializing.
110  // FIXME: Avoid truncation for 64-bit length strings.
111  if (StrLength-1 > CAT->getSize().getZExtValue())
112    S.Diag(Str->getSourceRange().getBegin(),
113           diag::warn_initializer_string_for_char_array_too_long)
114      << Str->getSourceRange();
115
116  // Set the type to the actual size that we are initializing.  If we have
117  // something like:
118  //   char x[1] = "foo";
119  // then this will set the string literal's type to char[1].
120  Str->setType(DeclT);
121}
122
123bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
124                                 SourceLocation InitLoc,
125                                 DeclarationName InitEntity, bool DirectInit) {
126  if (DeclType->isDependentType() ||
127      Init->isTypeDependent() || Init->isValueDependent())
128    return false;
129
130  // C++ [dcl.init.ref]p1:
131  //   A variable declared to be a T& or T&&, that is "reference to type T"
132  //   (8.3.2), shall be initialized by an object, or function, of
133  //   type T or by an object that can be converted into a T.
134  if (DeclType->isReferenceType())
135    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
136
137  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
138  // of unknown size ("[]") or an object type that is not a variable array type.
139  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
140    return Diag(InitLoc,  diag::err_variable_object_no_init)
141    << VAT->getSizeExpr()->getSourceRange();
142
143  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
144  if (!InitList) {
145    // FIXME: Handle wide strings
146    if (Expr *Str = IsStringInit(Init, DeclType, Context)) {
147      CheckStringInit(Str, DeclType, *this);
148      return false;
149    }
150
151    // C++ [dcl.init]p14:
152    //   -- If the destination type is a (possibly cv-qualified) class
153    //      type:
154    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
155      QualType DeclTypeC = Context.getCanonicalType(DeclType);
156      QualType InitTypeC = Context.getCanonicalType(Init->getType());
157
158      //   -- If the initialization is direct-initialization, or if it is
159      //      copy-initialization where the cv-unqualified version of the
160      //      source type is the same class as, or a derived class of, the
161      //      class of the destination, constructors are considered.
162      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
163          IsDerivedFrom(InitTypeC, DeclTypeC)) {
164        const CXXRecordDecl *RD =
165          cast<CXXRecordDecl>(DeclType->getAs<RecordType>()->getDecl());
166
167        // No need to make a CXXConstructExpr if both the ctor and dtor are
168        // trivial.
169        if (RD->hasTrivialConstructor() && RD->hasTrivialDestructor())
170          return false;
171
172        CXXConstructorDecl *Constructor
173        = PerformInitializationByConstructor(DeclType, &Init, 1,
174                                             InitLoc, Init->getSourceRange(),
175                                             InitEntity,
176                                             DirectInit? IK_Direct : IK_Copy);
177        if (!Constructor)
178          return true;
179        bool Elidable = (isa<CallExpr>(Init) ||
180                         isa<CXXTemporaryObjectExpr>(Init));
181        Init = BuildCXXConstructExpr(Context,
182                                     DeclType, Constructor, Elidable, &Init, 1);
183        Init = MaybeCreateCXXExprWithTemporaries(Init, /*DestroyTemps=*/true);
184        return false;
185      }
186
187      //   -- Otherwise (i.e., for the remaining copy-initialization
188      //      cases), user-defined conversion sequences that can
189      //      convert from the source type to the destination type or
190      //      (when a conversion function is used) to a derived class
191      //      thereof are enumerated as described in 13.3.1.4, and the
192      //      best one is chosen through overload resolution
193      //      (13.3). If the conversion cannot be done or is
194      //      ambiguous, the initialization is ill-formed. The
195      //      function selected is called with the initializer
196      //      expression as its argument; if the function is a
197      //      constructor, the call initializes a temporary of the
198      //      destination type.
199      // FIXME: We're pretending to do copy elision here; return to this when we
200      // have ASTs for such things.
201      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
202        return false;
203
204      if (InitEntity)
205        return Diag(InitLoc, diag::err_cannot_initialize_decl)
206          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
207          << Init->getType() << Init->getSourceRange();
208      return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
209        << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
210        << Init->getType() << Init->getSourceRange();
211    }
212
213    // C99 6.7.8p16.
214    if (DeclType->isArrayType())
215      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
216        << Init->getSourceRange();
217
218    return CheckSingleInitializer(Init, DeclType, DirectInit, *this);
219  }
220
221  bool hadError = CheckInitList(InitList, DeclType);
222  Init = InitList;
223  return hadError;
224}
225
226//===----------------------------------------------------------------------===//
227// Semantic checking for initializer lists.
228//===----------------------------------------------------------------------===//
229
230/// @brief Semantic checking for initializer lists.
231///
232/// The InitListChecker class contains a set of routines that each
233/// handle the initialization of a certain kind of entity, e.g.,
234/// arrays, vectors, struct/union types, scalars, etc. The
235/// InitListChecker itself performs a recursive walk of the subobject
236/// structure of the type to be initialized, while stepping through
237/// the initializer list one element at a time. The IList and Index
238/// parameters to each of the Check* routines contain the active
239/// (syntactic) initializer list and the index into that initializer
240/// list that represents the current initializer. Each routine is
241/// responsible for moving that Index forward as it consumes elements.
242///
243/// Each Check* routine also has a StructuredList/StructuredIndex
244/// arguments, which contains the current the "structured" (semantic)
245/// initializer list and the index into that initializer list where we
246/// are copying initializers as we map them over to the semantic
247/// list. Once we have completed our recursive walk of the subobject
248/// structure, we will have constructed a full semantic initializer
249/// list.
250///
251/// C99 designators cause changes in the initializer list traversal,
252/// because they make the initialization "jump" into a specific
253/// subobject and then continue the initialization from that
254/// point. CheckDesignatedInitializer() recursively steps into the
255/// designated subobject and manages backing out the recursion to
256/// initialize the subobjects after the one designated.
257namespace {
258class InitListChecker {
259  Sema &SemaRef;
260  bool hadError;
261  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
262  InitListExpr *FullyStructuredList;
263
264  void CheckImplicitInitList(InitListExpr *ParentIList, QualType T,
265                             unsigned &Index, InitListExpr *StructuredList,
266                             unsigned &StructuredIndex,
267                             bool TopLevelObject = false);
268  void CheckExplicitInitList(InitListExpr *IList, QualType &T,
269                             unsigned &Index, InitListExpr *StructuredList,
270                             unsigned &StructuredIndex,
271                             bool TopLevelObject = false);
272  void CheckListElementTypes(InitListExpr *IList, QualType &DeclType,
273                             bool SubobjectIsDesignatorContext,
274                             unsigned &Index,
275                             InitListExpr *StructuredList,
276                             unsigned &StructuredIndex,
277                             bool TopLevelObject = false);
278  void CheckSubElementType(InitListExpr *IList, QualType ElemType,
279                           unsigned &Index,
280                           InitListExpr *StructuredList,
281                           unsigned &StructuredIndex);
282  void CheckScalarType(InitListExpr *IList, QualType DeclType,
283                       unsigned &Index,
284                       InitListExpr *StructuredList,
285                       unsigned &StructuredIndex);
286  void CheckReferenceType(InitListExpr *IList, QualType DeclType,
287                          unsigned &Index,
288                          InitListExpr *StructuredList,
289                          unsigned &StructuredIndex);
290  void CheckVectorType(InitListExpr *IList, QualType DeclType, unsigned &Index,
291                       InitListExpr *StructuredList,
292                       unsigned &StructuredIndex);
293  void CheckStructUnionTypes(InitListExpr *IList, QualType DeclType,
294                             RecordDecl::field_iterator Field,
295                             bool SubobjectIsDesignatorContext, unsigned &Index,
296                             InitListExpr *StructuredList,
297                             unsigned &StructuredIndex,
298                             bool TopLevelObject = false);
299  void CheckArrayType(InitListExpr *IList, QualType &DeclType,
300                      llvm::APSInt elementIndex,
301                      bool SubobjectIsDesignatorContext, unsigned &Index,
302                      InitListExpr *StructuredList,
303                      unsigned &StructuredIndex);
304  bool CheckDesignatedInitializer(InitListExpr *IList, DesignatedInitExpr *DIE,
305                                  unsigned DesigIdx,
306                                  QualType &CurrentObjectType,
307                                  RecordDecl::field_iterator *NextField,
308                                  llvm::APSInt *NextElementIndex,
309                                  unsigned &Index,
310                                  InitListExpr *StructuredList,
311                                  unsigned &StructuredIndex,
312                                  bool FinishSubobjectInit,
313                                  bool TopLevelObject);
314  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
315                                           QualType CurrentObjectType,
316                                           InitListExpr *StructuredList,
317                                           unsigned StructuredIndex,
318                                           SourceRange InitRange);
319  void UpdateStructuredListElement(InitListExpr *StructuredList,
320                                   unsigned &StructuredIndex,
321                                   Expr *expr);
322  int numArrayElements(QualType DeclType);
323  int numStructUnionElements(QualType DeclType);
324
325  void FillInValueInitializations(InitListExpr *ILE);
326public:
327  InitListChecker(Sema &S, InitListExpr *IL, QualType &T);
328  bool HadError() { return hadError; }
329
330  // @brief Retrieves the fully-structured initializer list used for
331  // semantic analysis and code generation.
332  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
333};
334} // end anonymous namespace
335
336/// Recursively replaces NULL values within the given initializer list
337/// with expressions that perform value-initialization of the
338/// appropriate type.
339void InitListChecker::FillInValueInitializations(InitListExpr *ILE) {
340  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
341         "Should not have void type");
342  SourceLocation Loc = ILE->getSourceRange().getBegin();
343  if (ILE->getSyntacticForm())
344    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
345
346  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
347    unsigned Init = 0, NumInits = ILE->getNumInits();
348    for (RecordDecl::field_iterator
349           Field = RType->getDecl()->field_begin(),
350           FieldEnd = RType->getDecl()->field_end();
351         Field != FieldEnd; ++Field) {
352      if (Field->isUnnamedBitfield())
353        continue;
354
355      if (Init >= NumInits || !ILE->getInit(Init)) {
356        if (Field->getType()->isReferenceType()) {
357          // C++ [dcl.init.aggr]p9:
358          //   If an incomplete or empty initializer-list leaves a
359          //   member of reference type uninitialized, the program is
360          //   ill-formed.
361          SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
362            << Field->getType()
363            << ILE->getSyntacticForm()->getSourceRange();
364          SemaRef.Diag(Field->getLocation(),
365                        diag::note_uninit_reference_member);
366          hadError = true;
367          return;
368        } else if (SemaRef.CheckValueInitialization(Field->getType(), Loc)) {
369          hadError = true;
370          return;
371        }
372
373        // FIXME: If value-initialization involves calling a constructor, should
374        // we make that call explicit in the representation (even when it means
375        // extending the initializer list)?
376        if (Init < NumInits && !hadError)
377          ILE->setInit(Init,
378              new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()));
379      } else if (InitListExpr *InnerILE
380                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
381        FillInValueInitializations(InnerILE);
382      ++Init;
383
384      // Only look at the first initialization of a union.
385      if (RType->getDecl()->isUnion())
386        break;
387    }
388
389    return;
390  }
391
392  QualType ElementType;
393
394  unsigned NumInits = ILE->getNumInits();
395  unsigned NumElements = NumInits;
396  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
397    ElementType = AType->getElementType();
398    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
399      NumElements = CAType->getSize().getZExtValue();
400  } else if (const VectorType *VType = ILE->getType()->getAsVectorType()) {
401    ElementType = VType->getElementType();
402    NumElements = VType->getNumElements();
403  } else
404    ElementType = ILE->getType();
405
406  for (unsigned Init = 0; Init != NumElements; ++Init) {
407    if (Init >= NumInits || !ILE->getInit(Init)) {
408      if (SemaRef.CheckValueInitialization(ElementType, Loc)) {
409        hadError = true;
410        return;
411      }
412
413      // FIXME: If value-initialization involves calling a constructor, should
414      // we make that call explicit in the representation (even when it means
415      // extending the initializer list)?
416      if (Init < NumInits && !hadError)
417        ILE->setInit(Init,
418                     new (SemaRef.Context) ImplicitValueInitExpr(ElementType));
419    } else if (InitListExpr *InnerILE
420               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
421      FillInValueInitializations(InnerILE);
422  }
423}
424
425
426InitListChecker::InitListChecker(Sema &S, InitListExpr *IL, QualType &T)
427  : SemaRef(S) {
428  hadError = false;
429
430  unsigned newIndex = 0;
431  unsigned newStructuredIndex = 0;
432  FullyStructuredList
433    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
434  CheckExplicitInitList(IL, T, newIndex, FullyStructuredList, newStructuredIndex,
435                        /*TopLevelObject=*/true);
436
437  if (!hadError)
438    FillInValueInitializations(FullyStructuredList);
439}
440
441int InitListChecker::numArrayElements(QualType DeclType) {
442  // FIXME: use a proper constant
443  int maxElements = 0x7FFFFFFF;
444  if (const ConstantArrayType *CAT =
445        SemaRef.Context.getAsConstantArrayType(DeclType)) {
446    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
447  }
448  return maxElements;
449}
450
451int InitListChecker::numStructUnionElements(QualType DeclType) {
452  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
453  int InitializableMembers = 0;
454  for (RecordDecl::field_iterator
455         Field = structDecl->field_begin(),
456         FieldEnd = structDecl->field_end();
457       Field != FieldEnd; ++Field) {
458    if ((*Field)->getIdentifier() || !(*Field)->isBitField())
459      ++InitializableMembers;
460  }
461  if (structDecl->isUnion())
462    return std::min(InitializableMembers, 1);
463  return InitializableMembers - structDecl->hasFlexibleArrayMember();
464}
465
466void InitListChecker::CheckImplicitInitList(InitListExpr *ParentIList,
467                                            QualType T, unsigned &Index,
468                                            InitListExpr *StructuredList,
469                                            unsigned &StructuredIndex,
470                                            bool TopLevelObject) {
471  int maxElements = 0;
472
473  if (T->isArrayType())
474    maxElements = numArrayElements(T);
475  else if (T->isStructureType() || T->isUnionType())
476    maxElements = numStructUnionElements(T);
477  else if (T->isVectorType())
478    maxElements = T->getAsVectorType()->getNumElements();
479  else
480    assert(0 && "CheckImplicitInitList(): Illegal type");
481
482  if (maxElements == 0) {
483    SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
484                  diag::err_implicit_empty_initializer);
485    ++Index;
486    hadError = true;
487    return;
488  }
489
490  // Build a structured initializer list corresponding to this subobject.
491  InitListExpr *StructuredSubobjectInitList
492    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
493                                 StructuredIndex,
494          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
495                      ParentIList->getSourceRange().getEnd()));
496  unsigned StructuredSubobjectInitIndex = 0;
497
498  // Check the element types and build the structural subobject.
499  unsigned StartIndex = Index;
500  CheckListElementTypes(ParentIList, T, false, Index,
501                        StructuredSubobjectInitList,
502                        StructuredSubobjectInitIndex,
503                        TopLevelObject);
504  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
505  StructuredSubobjectInitList->setType(T);
506
507  // Update the structured sub-object initializer so that it's ending
508  // range corresponds with the end of the last initializer it used.
509  if (EndIndex < ParentIList->getNumInits()) {
510    SourceLocation EndLoc
511      = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
512    StructuredSubobjectInitList->setRBraceLoc(EndLoc);
513  }
514}
515
516void InitListChecker::CheckExplicitInitList(InitListExpr *IList, QualType &T,
517                                            unsigned &Index,
518                                            InitListExpr *StructuredList,
519                                            unsigned &StructuredIndex,
520                                            bool TopLevelObject) {
521  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
522  SyntacticToSemantic[IList] = StructuredList;
523  StructuredList->setSyntacticForm(IList);
524  CheckListElementTypes(IList, T, true, Index, StructuredList,
525                        StructuredIndex, TopLevelObject);
526  IList->setType(T);
527  StructuredList->setType(T);
528  if (hadError)
529    return;
530
531  if (Index < IList->getNumInits()) {
532    // We have leftover initializers
533    if (StructuredIndex == 1 &&
534        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
535      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
536      if (SemaRef.getLangOptions().CPlusPlus) {
537        DK = diag::err_excess_initializers_in_char_array_initializer;
538        hadError = true;
539      }
540      // Special-case
541      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
542        << IList->getInit(Index)->getSourceRange();
543    } else if (!T->isIncompleteType()) {
544      // Don't complain for incomplete types, since we'll get an error
545      // elsewhere
546      QualType CurrentObjectType = StructuredList->getType();
547      int initKind =
548        CurrentObjectType->isArrayType()? 0 :
549        CurrentObjectType->isVectorType()? 1 :
550        CurrentObjectType->isScalarType()? 2 :
551        CurrentObjectType->isUnionType()? 3 :
552        4;
553
554      unsigned DK = diag::warn_excess_initializers;
555      if (SemaRef.getLangOptions().CPlusPlus) {
556        DK = diag::err_excess_initializers;
557        hadError = true;
558      }
559      if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
560        DK = diag::err_excess_initializers;
561        hadError = true;
562      }
563
564      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
565        << initKind << IList->getInit(Index)->getSourceRange();
566    }
567  }
568
569  if (T->isScalarType() && !TopLevelObject)
570    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
571      << IList->getSourceRange()
572      << CodeModificationHint::CreateRemoval(SourceRange(IList->getLocStart()))
573      << CodeModificationHint::CreateRemoval(SourceRange(IList->getLocEnd()));
574}
575
576void InitListChecker::CheckListElementTypes(InitListExpr *IList,
577                                            QualType &DeclType,
578                                            bool SubobjectIsDesignatorContext,
579                                            unsigned &Index,
580                                            InitListExpr *StructuredList,
581                                            unsigned &StructuredIndex,
582                                            bool TopLevelObject) {
583  if (DeclType->isScalarType()) {
584    CheckScalarType(IList, DeclType, Index, StructuredList, StructuredIndex);
585  } else if (DeclType->isVectorType()) {
586    CheckVectorType(IList, DeclType, Index, StructuredList, StructuredIndex);
587  } else if (DeclType->isAggregateType()) {
588    if (DeclType->isRecordType()) {
589      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
590      CheckStructUnionTypes(IList, DeclType, RD->field_begin(),
591                            SubobjectIsDesignatorContext, Index,
592                            StructuredList, StructuredIndex,
593                            TopLevelObject);
594    } else if (DeclType->isArrayType()) {
595      llvm::APSInt Zero(
596                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
597                      false);
598      CheckArrayType(IList, DeclType, Zero, SubobjectIsDesignatorContext, Index,
599                     StructuredList, StructuredIndex);
600    } else
601      assert(0 && "Aggregate that isn't a structure or array?!");
602  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
603    // This type is invalid, issue a diagnostic.
604    ++Index;
605    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
606      << DeclType;
607    hadError = true;
608  } else if (DeclType->isRecordType()) {
609    // C++ [dcl.init]p14:
610    //   [...] If the class is an aggregate (8.5.1), and the initializer
611    //   is a brace-enclosed list, see 8.5.1.
612    //
613    // Note: 8.5.1 is handled below; here, we diagnose the case where
614    // we have an initializer list and a destination type that is not
615    // an aggregate.
616    // FIXME: In C++0x, this is yet another form of initialization.
617    SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
618      << DeclType << IList->getSourceRange();
619    hadError = true;
620  } else if (DeclType->isReferenceType()) {
621    CheckReferenceType(IList, DeclType, Index, StructuredList, StructuredIndex);
622  } else {
623    // In C, all types are either scalars or aggregates, but
624    // additional handling is needed here for C++ (and possibly others?).
625    assert(0 && "Unsupported initializer type");
626  }
627}
628
629void InitListChecker::CheckSubElementType(InitListExpr *IList,
630                                          QualType ElemType,
631                                          unsigned &Index,
632                                          InitListExpr *StructuredList,
633                                          unsigned &StructuredIndex) {
634  Expr *expr = IList->getInit(Index);
635  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
636    unsigned newIndex = 0;
637    unsigned newStructuredIndex = 0;
638    InitListExpr *newStructuredList
639      = getStructuredSubobjectInit(IList, Index, ElemType,
640                                   StructuredList, StructuredIndex,
641                                   SubInitList->getSourceRange());
642    CheckExplicitInitList(SubInitList, ElemType, newIndex,
643                          newStructuredList, newStructuredIndex);
644    ++StructuredIndex;
645    ++Index;
646  } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
647    CheckStringInit(Str, ElemType, SemaRef);
648    UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
649    ++Index;
650  } else if (ElemType->isScalarType()) {
651    CheckScalarType(IList, ElemType, Index, StructuredList, StructuredIndex);
652  } else if (ElemType->isReferenceType()) {
653    CheckReferenceType(IList, ElemType, Index, StructuredList, StructuredIndex);
654  } else {
655    if (SemaRef.getLangOptions().CPlusPlus) {
656      // C++ [dcl.init.aggr]p12:
657      //   All implicit type conversions (clause 4) are considered when
658      //   initializing the aggregate member with an ini- tializer from
659      //   an initializer-list. If the initializer can initialize a
660      //   member, the member is initialized. [...]
661      ImplicitConversionSequence ICS
662        = SemaRef.TryCopyInitialization(expr, ElemType);
663      if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion) {
664        if (SemaRef.PerformImplicitConversion(expr, ElemType, ICS,
665                                               "initializing"))
666          hadError = true;
667        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
668        ++Index;
669        return;
670      }
671
672      // Fall through for subaggregate initialization
673    } else {
674      // C99 6.7.8p13:
675      //
676      //   The initializer for a structure or union object that has
677      //   automatic storage duration shall be either an initializer
678      //   list as described below, or a single expression that has
679      //   compatible structure or union type. In the latter case, the
680      //   initial value of the object, including unnamed members, is
681      //   that of the expression.
682      if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
683          SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) {
684        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
685        ++Index;
686        return;
687      }
688
689      // Fall through for subaggregate initialization
690    }
691
692    // C++ [dcl.init.aggr]p12:
693    //
694    //   [...] Otherwise, if the member is itself a non-empty
695    //   subaggregate, brace elision is assumed and the initializer is
696    //   considered for the initialization of the first member of
697    //   the subaggregate.
698    if (ElemType->isAggregateType() || ElemType->isVectorType()) {
699      CheckImplicitInitList(IList, ElemType, Index, StructuredList,
700                            StructuredIndex);
701      ++StructuredIndex;
702    } else {
703      // We cannot initialize this element, so let
704      // PerformCopyInitialization produce the appropriate diagnostic.
705      SemaRef.PerformCopyInitialization(expr, ElemType, "initializing");
706      hadError = true;
707      ++Index;
708      ++StructuredIndex;
709    }
710  }
711}
712
713void InitListChecker::CheckScalarType(InitListExpr *IList, QualType DeclType,
714                                      unsigned &Index,
715                                      InitListExpr *StructuredList,
716                                      unsigned &StructuredIndex) {
717  if (Index < IList->getNumInits()) {
718    Expr *expr = IList->getInit(Index);
719    if (isa<InitListExpr>(expr)) {
720      SemaRef.Diag(IList->getLocStart(),
721                    diag::err_many_braces_around_scalar_init)
722        << IList->getSourceRange();
723      hadError = true;
724      ++Index;
725      ++StructuredIndex;
726      return;
727    } else if (isa<DesignatedInitExpr>(expr)) {
728      SemaRef.Diag(expr->getSourceRange().getBegin(),
729                    diag::err_designator_for_scalar_init)
730        << DeclType << expr->getSourceRange();
731      hadError = true;
732      ++Index;
733      ++StructuredIndex;
734      return;
735    }
736
737    Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
738    if (CheckSingleInitializer(expr, DeclType, false, SemaRef))
739      hadError = true; // types weren't compatible.
740    else if (savExpr != expr) {
741      // The type was promoted, update initializer list.
742      IList->setInit(Index, expr);
743    }
744    if (hadError)
745      ++StructuredIndex;
746    else
747      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
748    ++Index;
749  } else {
750    SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
751      << IList->getSourceRange();
752    hadError = true;
753    ++Index;
754    ++StructuredIndex;
755    return;
756  }
757}
758
759void InitListChecker::CheckReferenceType(InitListExpr *IList, QualType DeclType,
760                                         unsigned &Index,
761                                         InitListExpr *StructuredList,
762                                         unsigned &StructuredIndex) {
763  if (Index < IList->getNumInits()) {
764    Expr *expr = IList->getInit(Index);
765    if (isa<InitListExpr>(expr)) {
766      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
767        << DeclType << IList->getSourceRange();
768      hadError = true;
769      ++Index;
770      ++StructuredIndex;
771      return;
772    }
773
774    Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
775    if (SemaRef.CheckReferenceInit(expr, DeclType))
776      hadError = true;
777    else if (savExpr != expr) {
778      // The type was promoted, update initializer list.
779      IList->setInit(Index, expr);
780    }
781    if (hadError)
782      ++StructuredIndex;
783    else
784      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
785    ++Index;
786  } else {
787    // FIXME: It would be wonderful if we could point at the actual member. In
788    // general, it would be useful to pass location information down the stack,
789    // so that we know the location (or decl) of the "current object" being
790    // initialized.
791    SemaRef.Diag(IList->getLocStart(),
792                  diag::err_init_reference_member_uninitialized)
793      << DeclType
794      << IList->getSourceRange();
795    hadError = true;
796    ++Index;
797    ++StructuredIndex;
798    return;
799  }
800}
801
802void InitListChecker::CheckVectorType(InitListExpr *IList, QualType DeclType,
803                                      unsigned &Index,
804                                      InitListExpr *StructuredList,
805                                      unsigned &StructuredIndex) {
806  if (Index < IList->getNumInits()) {
807    const VectorType *VT = DeclType->getAsVectorType();
808    unsigned maxElements = VT->getNumElements();
809    unsigned numEltsInit = 0;
810    QualType elementType = VT->getElementType();
811
812    if (!SemaRef.getLangOptions().OpenCL) {
813      for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
814        // Don't attempt to go past the end of the init list
815        if (Index >= IList->getNumInits())
816          break;
817        CheckSubElementType(IList, elementType, Index,
818                            StructuredList, StructuredIndex);
819      }
820    } else {
821      // OpenCL initializers allows vectors to be constructed from vectors.
822      for (unsigned i = 0; i < maxElements; ++i) {
823        // Don't attempt to go past the end of the init list
824        if (Index >= IList->getNumInits())
825          break;
826        QualType IType = IList->getInit(Index)->getType();
827        if (!IType->isVectorType()) {
828          CheckSubElementType(IList, elementType, Index,
829                              StructuredList, StructuredIndex);
830          ++numEltsInit;
831        } else {
832          const VectorType *IVT = IType->getAsVectorType();
833          unsigned numIElts = IVT->getNumElements();
834          QualType VecType = SemaRef.Context.getExtVectorType(elementType,
835                                                              numIElts);
836          CheckSubElementType(IList, VecType, Index,
837                              StructuredList, StructuredIndex);
838          numEltsInit += numIElts;
839        }
840      }
841    }
842
843    // OpenCL & AltiVec require all elements to be initialized.
844    if (numEltsInit != maxElements)
845      if (SemaRef.getLangOptions().OpenCL || SemaRef.getLangOptions().AltiVec)
846        SemaRef.Diag(IList->getSourceRange().getBegin(),
847                     diag::err_vector_incorrect_num_initializers)
848          << (numEltsInit < maxElements) << maxElements << numEltsInit;
849  }
850}
851
852void InitListChecker::CheckArrayType(InitListExpr *IList, QualType &DeclType,
853                                     llvm::APSInt elementIndex,
854                                     bool SubobjectIsDesignatorContext,
855                                     unsigned &Index,
856                                     InitListExpr *StructuredList,
857                                     unsigned &StructuredIndex) {
858  // Check for the special-case of initializing an array with a string.
859  if (Index < IList->getNumInits()) {
860    if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
861                                 SemaRef.Context)) {
862      CheckStringInit(Str, DeclType, SemaRef);
863      // We place the string literal directly into the resulting
864      // initializer list. This is the only place where the structure
865      // of the structured initializer list doesn't match exactly,
866      // because doing so would involve allocating one character
867      // constant for each string.
868      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
869      StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
870      ++Index;
871      return;
872    }
873  }
874  if (const VariableArrayType *VAT =
875        SemaRef.Context.getAsVariableArrayType(DeclType)) {
876    // Check for VLAs; in standard C it would be possible to check this
877    // earlier, but I don't know where clang accepts VLAs (gcc accepts
878    // them in all sorts of strange places).
879    SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
880                  diag::err_variable_object_no_init)
881      << VAT->getSizeExpr()->getSourceRange();
882    hadError = true;
883    ++Index;
884    ++StructuredIndex;
885    return;
886  }
887
888  // We might know the maximum number of elements in advance.
889  llvm::APSInt maxElements(elementIndex.getBitWidth(),
890                           elementIndex.isUnsigned());
891  bool maxElementsKnown = false;
892  if (const ConstantArrayType *CAT =
893        SemaRef.Context.getAsConstantArrayType(DeclType)) {
894    maxElements = CAT->getSize();
895    elementIndex.extOrTrunc(maxElements.getBitWidth());
896    elementIndex.setIsUnsigned(maxElements.isUnsigned());
897    maxElementsKnown = true;
898  }
899
900  QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
901                             ->getElementType();
902  while (Index < IList->getNumInits()) {
903    Expr *Init = IList->getInit(Index);
904    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
905      // If we're not the subobject that matches up with the '{' for
906      // the designator, we shouldn't be handling the
907      // designator. Return immediately.
908      if (!SubobjectIsDesignatorContext)
909        return;
910
911      // Handle this designated initializer. elementIndex will be
912      // updated to be the next array element we'll initialize.
913      if (CheckDesignatedInitializer(IList, DIE, 0,
914                                     DeclType, 0, &elementIndex, Index,
915                                     StructuredList, StructuredIndex, true,
916                                     false)) {
917        hadError = true;
918        continue;
919      }
920
921      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
922        maxElements.extend(elementIndex.getBitWidth());
923      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
924        elementIndex.extend(maxElements.getBitWidth());
925      elementIndex.setIsUnsigned(maxElements.isUnsigned());
926
927      // If the array is of incomplete type, keep track of the number of
928      // elements in the initializer.
929      if (!maxElementsKnown && elementIndex > maxElements)
930        maxElements = elementIndex;
931
932      continue;
933    }
934
935    // If we know the maximum number of elements, and we've already
936    // hit it, stop consuming elements in the initializer list.
937    if (maxElementsKnown && elementIndex == maxElements)
938      break;
939
940    // Check this element.
941    CheckSubElementType(IList, elementType, Index,
942                        StructuredList, StructuredIndex);
943    ++elementIndex;
944
945    // If the array is of incomplete type, keep track of the number of
946    // elements in the initializer.
947    if (!maxElementsKnown && elementIndex > maxElements)
948      maxElements = elementIndex;
949  }
950  if (!hadError && DeclType->isIncompleteArrayType()) {
951    // If this is an incomplete array type, the actual type needs to
952    // be calculated here.
953    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
954    if (maxElements == Zero) {
955      // Sizing an array implicitly to zero is not allowed by ISO C,
956      // but is supported by GNU.
957      SemaRef.Diag(IList->getLocStart(),
958                    diag::ext_typecheck_zero_array_size);
959    }
960
961    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
962                                                     ArrayType::Normal, 0);
963  }
964}
965
966void InitListChecker::CheckStructUnionTypes(InitListExpr *IList,
967                                            QualType DeclType,
968                                            RecordDecl::field_iterator Field,
969                                            bool SubobjectIsDesignatorContext,
970                                            unsigned &Index,
971                                            InitListExpr *StructuredList,
972                                            unsigned &StructuredIndex,
973                                            bool TopLevelObject) {
974  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
975
976  // If the record is invalid, some of it's members are invalid. To avoid
977  // confusion, we forgo checking the intializer for the entire record.
978  if (structDecl->isInvalidDecl()) {
979    hadError = true;
980    return;
981  }
982
983  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
984    // Value-initialize the first named member of the union.
985    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
986    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
987         Field != FieldEnd; ++Field) {
988      if (Field->getDeclName()) {
989        StructuredList->setInitializedFieldInUnion(*Field);
990        break;
991      }
992    }
993    return;
994  }
995
996  // If structDecl is a forward declaration, this loop won't do
997  // anything except look at designated initializers; That's okay,
998  // because an error should get printed out elsewhere. It might be
999  // worthwhile to skip over the rest of the initializer, though.
1000  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1001  RecordDecl::field_iterator FieldEnd = RD->field_end();
1002  bool InitializedSomething = false;
1003  while (Index < IList->getNumInits()) {
1004    Expr *Init = IList->getInit(Index);
1005
1006    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1007      // If we're not the subobject that matches up with the '{' for
1008      // the designator, we shouldn't be handling the
1009      // designator. Return immediately.
1010      if (!SubobjectIsDesignatorContext)
1011        return;
1012
1013      // Handle this designated initializer. Field will be updated to
1014      // the next field that we'll be initializing.
1015      if (CheckDesignatedInitializer(IList, DIE, 0,
1016                                     DeclType, &Field, 0, Index,
1017                                     StructuredList, StructuredIndex,
1018                                     true, TopLevelObject))
1019        hadError = true;
1020
1021      InitializedSomething = true;
1022      continue;
1023    }
1024
1025    if (Field == FieldEnd) {
1026      // We've run out of fields. We're done.
1027      break;
1028    }
1029
1030    // We've already initialized a member of a union. We're done.
1031    if (InitializedSomething && DeclType->isUnionType())
1032      break;
1033
1034    // If we've hit the flexible array member at the end, we're done.
1035    if (Field->getType()->isIncompleteArrayType())
1036      break;
1037
1038    if (Field->isUnnamedBitfield()) {
1039      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1040      ++Field;
1041      continue;
1042    }
1043
1044    CheckSubElementType(IList, Field->getType(), Index,
1045                        StructuredList, StructuredIndex);
1046    InitializedSomething = true;
1047
1048    if (DeclType->isUnionType()) {
1049      // Initialize the first field within the union.
1050      StructuredList->setInitializedFieldInUnion(*Field);
1051    }
1052
1053    ++Field;
1054  }
1055
1056  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1057      Index >= IList->getNumInits())
1058    return;
1059
1060  // Handle GNU flexible array initializers.
1061  if (!TopLevelObject &&
1062      (!isa<InitListExpr>(IList->getInit(Index)) ||
1063       cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1064    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1065                  diag::err_flexible_array_init_nonempty)
1066      << IList->getInit(Index)->getSourceRange().getBegin();
1067    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1068      << *Field;
1069    hadError = true;
1070    ++Index;
1071    return;
1072  } else {
1073    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1074                 diag::ext_flexible_array_init)
1075      << IList->getInit(Index)->getSourceRange().getBegin();
1076    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1077      << *Field;
1078  }
1079
1080  if (isa<InitListExpr>(IList->getInit(Index)))
1081    CheckSubElementType(IList, Field->getType(), Index, StructuredList,
1082                        StructuredIndex);
1083  else
1084    CheckImplicitInitList(IList, Field->getType(), Index, StructuredList,
1085                          StructuredIndex);
1086}
1087
1088/// \brief Expand a field designator that refers to a member of an
1089/// anonymous struct or union into a series of field designators that
1090/// refers to the field within the appropriate subobject.
1091///
1092/// Field/FieldIndex will be updated to point to the (new)
1093/// currently-designated field.
1094static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1095                                           DesignatedInitExpr *DIE,
1096                                           unsigned DesigIdx,
1097                                           FieldDecl *Field,
1098                                        RecordDecl::field_iterator &FieldIter,
1099                                           unsigned &FieldIndex) {
1100  typedef DesignatedInitExpr::Designator Designator;
1101
1102  // Build the path from the current object to the member of the
1103  // anonymous struct/union (backwards).
1104  llvm::SmallVector<FieldDecl *, 4> Path;
1105  SemaRef.BuildAnonymousStructUnionMemberPath(Field, Path);
1106
1107  // Build the replacement designators.
1108  llvm::SmallVector<Designator, 4> Replacements;
1109  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
1110         FI = Path.rbegin(), FIEnd = Path.rend();
1111       FI != FIEnd; ++FI) {
1112    if (FI + 1 == FIEnd)
1113      Replacements.push_back(Designator((IdentifierInfo *)0,
1114                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1115                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1116    else
1117      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1118                                        SourceLocation()));
1119    Replacements.back().setField(*FI);
1120  }
1121
1122  // Expand the current designator into the set of replacement
1123  // designators, so we have a full subobject path down to where the
1124  // member of the anonymous struct/union is actually stored.
1125  DIE->ExpandDesignator(DesigIdx, &Replacements[0],
1126                        &Replacements[0] + Replacements.size());
1127
1128  // Update FieldIter/FieldIndex;
1129  RecordDecl *Record = cast<RecordDecl>(Path.back()->getDeclContext());
1130  FieldIter = Record->field_begin();
1131  FieldIndex = 0;
1132  for (RecordDecl::field_iterator FEnd = Record->field_end();
1133       FieldIter != FEnd; ++FieldIter) {
1134    if (FieldIter->isUnnamedBitfield())
1135        continue;
1136
1137    if (*FieldIter == Path.back())
1138      return;
1139
1140    ++FieldIndex;
1141  }
1142
1143  assert(false && "Unable to find anonymous struct/union field");
1144}
1145
1146/// @brief Check the well-formedness of a C99 designated initializer.
1147///
1148/// Determines whether the designated initializer @p DIE, which
1149/// resides at the given @p Index within the initializer list @p
1150/// IList, is well-formed for a current object of type @p DeclType
1151/// (C99 6.7.8). The actual subobject that this designator refers to
1152/// within the current subobject is returned in either
1153/// @p NextField or @p NextElementIndex (whichever is appropriate).
1154///
1155/// @param IList  The initializer list in which this designated
1156/// initializer occurs.
1157///
1158/// @param DIE The designated initializer expression.
1159///
1160/// @param DesigIdx  The index of the current designator.
1161///
1162/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1163/// into which the designation in @p DIE should refer.
1164///
1165/// @param NextField  If non-NULL and the first designator in @p DIE is
1166/// a field, this will be set to the field declaration corresponding
1167/// to the field named by the designator.
1168///
1169/// @param NextElementIndex  If non-NULL and the first designator in @p
1170/// DIE is an array designator or GNU array-range designator, this
1171/// will be set to the last index initialized by this designator.
1172///
1173/// @param Index  Index into @p IList where the designated initializer
1174/// @p DIE occurs.
1175///
1176/// @param StructuredList  The initializer list expression that
1177/// describes all of the subobject initializers in the order they'll
1178/// actually be initialized.
1179///
1180/// @returns true if there was an error, false otherwise.
1181bool
1182InitListChecker::CheckDesignatedInitializer(InitListExpr *IList,
1183                                      DesignatedInitExpr *DIE,
1184                                      unsigned DesigIdx,
1185                                      QualType &CurrentObjectType,
1186                                      RecordDecl::field_iterator *NextField,
1187                                      llvm::APSInt *NextElementIndex,
1188                                      unsigned &Index,
1189                                      InitListExpr *StructuredList,
1190                                      unsigned &StructuredIndex,
1191                                            bool FinishSubobjectInit,
1192                                            bool TopLevelObject) {
1193  if (DesigIdx == DIE->size()) {
1194    // Check the actual initialization for the designated object type.
1195    bool prevHadError = hadError;
1196
1197    // Temporarily remove the designator expression from the
1198    // initializer list that the child calls see, so that we don't try
1199    // to re-process the designator.
1200    unsigned OldIndex = Index;
1201    IList->setInit(OldIndex, DIE->getInit());
1202
1203    CheckSubElementType(IList, CurrentObjectType, Index,
1204                        StructuredList, StructuredIndex);
1205
1206    // Restore the designated initializer expression in the syntactic
1207    // form of the initializer list.
1208    if (IList->getInit(OldIndex) != DIE->getInit())
1209      DIE->setInit(IList->getInit(OldIndex));
1210    IList->setInit(OldIndex, DIE);
1211
1212    return hadError && !prevHadError;
1213  }
1214
1215  bool IsFirstDesignator = (DesigIdx == 0);
1216  assert((IsFirstDesignator || StructuredList) &&
1217         "Need a non-designated initializer list to start from");
1218
1219  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1220  // Determine the structural initializer list that corresponds to the
1221  // current subobject.
1222  StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1223    : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1224                                 StructuredList, StructuredIndex,
1225                                 SourceRange(D->getStartLocation(),
1226                                             DIE->getSourceRange().getEnd()));
1227  assert(StructuredList && "Expected a structured initializer list");
1228
1229  if (D->isFieldDesignator()) {
1230    // C99 6.7.8p7:
1231    //
1232    //   If a designator has the form
1233    //
1234    //      . identifier
1235    //
1236    //   then the current object (defined below) shall have
1237    //   structure or union type and the identifier shall be the
1238    //   name of a member of that type.
1239    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1240    if (!RT) {
1241      SourceLocation Loc = D->getDotLoc();
1242      if (Loc.isInvalid())
1243        Loc = D->getFieldLoc();
1244      SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1245        << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1246      ++Index;
1247      return true;
1248    }
1249
1250    // Note: we perform a linear search of the fields here, despite
1251    // the fact that we have a faster lookup method, because we always
1252    // need to compute the field's index.
1253    FieldDecl *KnownField = D->getField();
1254    IdentifierInfo *FieldName = D->getFieldName();
1255    unsigned FieldIndex = 0;
1256    RecordDecl::field_iterator
1257      Field = RT->getDecl()->field_begin(),
1258      FieldEnd = RT->getDecl()->field_end();
1259    for (; Field != FieldEnd; ++Field) {
1260      if (Field->isUnnamedBitfield())
1261        continue;
1262
1263      if (KnownField == *Field || Field->getIdentifier() == FieldName)
1264        break;
1265
1266      ++FieldIndex;
1267    }
1268
1269    if (Field == FieldEnd) {
1270      // There was no normal field in the struct with the designated
1271      // name. Perform another lookup for this name, which may find
1272      // something that we can't designate (e.g., a member function),
1273      // may find nothing, or may find a member of an anonymous
1274      // struct/union.
1275      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1276      if (Lookup.first == Lookup.second) {
1277        // Name lookup didn't find anything.
1278        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1279          << FieldName << CurrentObjectType;
1280        ++Index;
1281        return true;
1282      } else if (!KnownField && isa<FieldDecl>(*Lookup.first) &&
1283                 cast<RecordDecl>((*Lookup.first)->getDeclContext())
1284                   ->isAnonymousStructOrUnion()) {
1285        // Handle an field designator that refers to a member of an
1286        // anonymous struct or union.
1287        ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx,
1288                                       cast<FieldDecl>(*Lookup.first),
1289                                       Field, FieldIndex);
1290        D = DIE->getDesignator(DesigIdx);
1291      } else {
1292        // Name lookup found something, but it wasn't a field.
1293        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1294          << FieldName;
1295        SemaRef.Diag((*Lookup.first)->getLocation(),
1296                      diag::note_field_designator_found);
1297        ++Index;
1298        return true;
1299      }
1300    } else if (!KnownField &&
1301               cast<RecordDecl>((*Field)->getDeclContext())
1302                 ->isAnonymousStructOrUnion()) {
1303      ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, *Field,
1304                                     Field, FieldIndex);
1305      D = DIE->getDesignator(DesigIdx);
1306    }
1307
1308    // All of the fields of a union are located at the same place in
1309    // the initializer list.
1310    if (RT->getDecl()->isUnion()) {
1311      FieldIndex = 0;
1312      StructuredList->setInitializedFieldInUnion(*Field);
1313    }
1314
1315    // Update the designator with the field declaration.
1316    D->setField(*Field);
1317
1318    // Make sure that our non-designated initializer list has space
1319    // for a subobject corresponding to this field.
1320    if (FieldIndex >= StructuredList->getNumInits())
1321      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1322
1323    // This designator names a flexible array member.
1324    if (Field->getType()->isIncompleteArrayType()) {
1325      bool Invalid = false;
1326      if ((DesigIdx + 1) != DIE->size()) {
1327        // We can't designate an object within the flexible array
1328        // member (because GCC doesn't allow it).
1329        DesignatedInitExpr::Designator *NextD
1330          = DIE->getDesignator(DesigIdx + 1);
1331        SemaRef.Diag(NextD->getStartLocation(),
1332                      diag::err_designator_into_flexible_array_member)
1333          << SourceRange(NextD->getStartLocation(),
1334                         DIE->getSourceRange().getEnd());
1335        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1336          << *Field;
1337        Invalid = true;
1338      }
1339
1340      if (!hadError && !isa<InitListExpr>(DIE->getInit())) {
1341        // The initializer is not an initializer list.
1342        SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1343                      diag::err_flexible_array_init_needs_braces)
1344          << DIE->getInit()->getSourceRange();
1345        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1346          << *Field;
1347        Invalid = true;
1348      }
1349
1350      // Handle GNU flexible array initializers.
1351      if (!Invalid && !TopLevelObject &&
1352          cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1353        SemaRef.Diag(DIE->getSourceRange().getBegin(),
1354                      diag::err_flexible_array_init_nonempty)
1355          << DIE->getSourceRange().getBegin();
1356        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1357          << *Field;
1358        Invalid = true;
1359      }
1360
1361      if (Invalid) {
1362        ++Index;
1363        return true;
1364      }
1365
1366      // Initialize the array.
1367      bool prevHadError = hadError;
1368      unsigned newStructuredIndex = FieldIndex;
1369      unsigned OldIndex = Index;
1370      IList->setInit(Index, DIE->getInit());
1371      CheckSubElementType(IList, Field->getType(), Index,
1372                          StructuredList, newStructuredIndex);
1373      IList->setInit(OldIndex, DIE);
1374      if (hadError && !prevHadError) {
1375        ++Field;
1376        ++FieldIndex;
1377        if (NextField)
1378          *NextField = Field;
1379        StructuredIndex = FieldIndex;
1380        return true;
1381      }
1382    } else {
1383      // Recurse to check later designated subobjects.
1384      QualType FieldType = (*Field)->getType();
1385      unsigned newStructuredIndex = FieldIndex;
1386      if (CheckDesignatedInitializer(IList, DIE, DesigIdx + 1, FieldType, 0, 0,
1387                                     Index, StructuredList, newStructuredIndex,
1388                                     true, false))
1389        return true;
1390    }
1391
1392    // Find the position of the next field to be initialized in this
1393    // subobject.
1394    ++Field;
1395    ++FieldIndex;
1396
1397    // If this the first designator, our caller will continue checking
1398    // the rest of this struct/class/union subobject.
1399    if (IsFirstDesignator) {
1400      if (NextField)
1401        *NextField = Field;
1402      StructuredIndex = FieldIndex;
1403      return false;
1404    }
1405
1406    if (!FinishSubobjectInit)
1407      return false;
1408
1409    // We've already initialized something in the union; we're done.
1410    if (RT->getDecl()->isUnion())
1411      return hadError;
1412
1413    // Check the remaining fields within this class/struct/union subobject.
1414    bool prevHadError = hadError;
1415    CheckStructUnionTypes(IList, CurrentObjectType, Field, false, Index,
1416                          StructuredList, FieldIndex);
1417    return hadError && !prevHadError;
1418  }
1419
1420  // C99 6.7.8p6:
1421  //
1422  //   If a designator has the form
1423  //
1424  //      [ constant-expression ]
1425  //
1426  //   then the current object (defined below) shall have array
1427  //   type and the expression shall be an integer constant
1428  //   expression. If the array is of unknown size, any
1429  //   nonnegative value is valid.
1430  //
1431  // Additionally, cope with the GNU extension that permits
1432  // designators of the form
1433  //
1434  //      [ constant-expression ... constant-expression ]
1435  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1436  if (!AT) {
1437    SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1438      << CurrentObjectType;
1439    ++Index;
1440    return true;
1441  }
1442
1443  Expr *IndexExpr = 0;
1444  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1445  if (D->isArrayDesignator()) {
1446    IndexExpr = DIE->getArrayIndex(*D);
1447    DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1448    DesignatedEndIndex = DesignatedStartIndex;
1449  } else {
1450    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1451
1452
1453    DesignatedStartIndex =
1454      DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1455    DesignatedEndIndex =
1456      DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1457    IndexExpr = DIE->getArrayRangeEnd(*D);
1458
1459    if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
1460      FullyStructuredList->sawArrayRangeDesignator();
1461  }
1462
1463  if (isa<ConstantArrayType>(AT)) {
1464    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1465    DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1466    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1467    DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1468    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1469    if (DesignatedEndIndex >= MaxElements) {
1470      SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1471                    diag::err_array_designator_too_large)
1472        << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1473        << IndexExpr->getSourceRange();
1474      ++Index;
1475      return true;
1476    }
1477  } else {
1478    // Make sure the bit-widths and signedness match.
1479    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1480      DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1481    else if (DesignatedStartIndex.getBitWidth() <
1482             DesignatedEndIndex.getBitWidth())
1483      DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1484    DesignatedStartIndex.setIsUnsigned(true);
1485    DesignatedEndIndex.setIsUnsigned(true);
1486  }
1487
1488  // Make sure that our non-designated initializer list has space
1489  // for a subobject corresponding to this array element.
1490  if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1491    StructuredList->resizeInits(SemaRef.Context,
1492                                DesignatedEndIndex.getZExtValue() + 1);
1493
1494  // Repeatedly perform subobject initializations in the range
1495  // [DesignatedStartIndex, DesignatedEndIndex].
1496
1497  // Move to the next designator
1498  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1499  unsigned OldIndex = Index;
1500  while (DesignatedStartIndex <= DesignatedEndIndex) {
1501    // Recurse to check later designated subobjects.
1502    QualType ElementType = AT->getElementType();
1503    Index = OldIndex;
1504    if (CheckDesignatedInitializer(IList, DIE, DesigIdx + 1, ElementType, 0, 0,
1505                                   Index, StructuredList, ElementIndex,
1506                                   (DesignatedStartIndex == DesignatedEndIndex),
1507                                   false))
1508      return true;
1509
1510    // Move to the next index in the array that we'll be initializing.
1511    ++DesignatedStartIndex;
1512    ElementIndex = DesignatedStartIndex.getZExtValue();
1513  }
1514
1515  // If this the first designator, our caller will continue checking
1516  // the rest of this array subobject.
1517  if (IsFirstDesignator) {
1518    if (NextElementIndex)
1519      *NextElementIndex = DesignatedStartIndex;
1520    StructuredIndex = ElementIndex;
1521    return false;
1522  }
1523
1524  if (!FinishSubobjectInit)
1525    return false;
1526
1527  // Check the remaining elements within this array subobject.
1528  bool prevHadError = hadError;
1529  CheckArrayType(IList, CurrentObjectType, DesignatedStartIndex, false, Index,
1530                 StructuredList, ElementIndex);
1531  return hadError && !prevHadError;
1532}
1533
1534// Get the structured initializer list for a subobject of type
1535// @p CurrentObjectType.
1536InitListExpr *
1537InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1538                                            QualType CurrentObjectType,
1539                                            InitListExpr *StructuredList,
1540                                            unsigned StructuredIndex,
1541                                            SourceRange InitRange) {
1542  Expr *ExistingInit = 0;
1543  if (!StructuredList)
1544    ExistingInit = SyntacticToSemantic[IList];
1545  else if (StructuredIndex < StructuredList->getNumInits())
1546    ExistingInit = StructuredList->getInit(StructuredIndex);
1547
1548  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1549    return Result;
1550
1551  if (ExistingInit) {
1552    // We are creating an initializer list that initializes the
1553    // subobjects of the current object, but there was already an
1554    // initialization that completely initialized the current
1555    // subobject, e.g., by a compound literal:
1556    //
1557    // struct X { int a, b; };
1558    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1559    //
1560    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1561    // designated initializer re-initializes the whole
1562    // subobject [0], overwriting previous initializers.
1563    SemaRef.Diag(InitRange.getBegin(),
1564                 diag::warn_subobject_initializer_overrides)
1565      << InitRange;
1566    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1567                  diag::note_previous_initializer)
1568      << /*FIXME:has side effects=*/0
1569      << ExistingInit->getSourceRange();
1570  }
1571
1572  InitListExpr *Result
1573    = new (SemaRef.Context) InitListExpr(InitRange.getBegin(), 0, 0,
1574                                         InitRange.getEnd());
1575
1576  Result->setType(CurrentObjectType);
1577
1578  // Pre-allocate storage for the structured initializer list.
1579  unsigned NumElements = 0;
1580  unsigned NumInits = 0;
1581  if (!StructuredList)
1582    NumInits = IList->getNumInits();
1583  else if (Index < IList->getNumInits()) {
1584    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1585      NumInits = SubList->getNumInits();
1586  }
1587
1588  if (const ArrayType *AType
1589      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1590    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1591      NumElements = CAType->getSize().getZExtValue();
1592      // Simple heuristic so that we don't allocate a very large
1593      // initializer with many empty entries at the end.
1594      if (NumInits && NumElements > NumInits)
1595        NumElements = 0;
1596    }
1597  } else if (const VectorType *VType = CurrentObjectType->getAsVectorType())
1598    NumElements = VType->getNumElements();
1599  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
1600    RecordDecl *RDecl = RType->getDecl();
1601    if (RDecl->isUnion())
1602      NumElements = 1;
1603    else
1604      NumElements = std::distance(RDecl->field_begin(),
1605                                  RDecl->field_end());
1606  }
1607
1608  if (NumElements < NumInits)
1609    NumElements = IList->getNumInits();
1610
1611  Result->reserveInits(NumElements);
1612
1613  // Link this new initializer list into the structured initializer
1614  // lists.
1615  if (StructuredList)
1616    StructuredList->updateInit(StructuredIndex, Result);
1617  else {
1618    Result->setSyntacticForm(IList);
1619    SyntacticToSemantic[IList] = Result;
1620  }
1621
1622  return Result;
1623}
1624
1625/// Update the initializer at index @p StructuredIndex within the
1626/// structured initializer list to the value @p expr.
1627void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1628                                                  unsigned &StructuredIndex,
1629                                                  Expr *expr) {
1630  // No structured initializer list to update
1631  if (!StructuredList)
1632    return;
1633
1634  if (Expr *PrevInit = StructuredList->updateInit(StructuredIndex, expr)) {
1635    // This initializer overwrites a previous initializer. Warn.
1636    SemaRef.Diag(expr->getSourceRange().getBegin(),
1637                  diag::warn_initializer_overrides)
1638      << expr->getSourceRange();
1639    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1640                  diag::note_previous_initializer)
1641      << /*FIXME:has side effects=*/0
1642      << PrevInit->getSourceRange();
1643  }
1644
1645  ++StructuredIndex;
1646}
1647
1648/// Check that the given Index expression is a valid array designator
1649/// value. This is essentailly just a wrapper around
1650/// VerifyIntegerConstantExpression that also checks for negative values
1651/// and produces a reasonable diagnostic if there is a
1652/// failure. Returns true if there was an error, false otherwise.  If
1653/// everything went okay, Value will receive the value of the constant
1654/// expression.
1655static bool
1656CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1657  SourceLocation Loc = Index->getSourceRange().getBegin();
1658
1659  // Make sure this is an integer constant expression.
1660  if (S.VerifyIntegerConstantExpression(Index, &Value))
1661    return true;
1662
1663  if (Value.isSigned() && Value.isNegative())
1664    return S.Diag(Loc, diag::err_array_designator_negative)
1665      << Value.toString(10) << Index->getSourceRange();
1666
1667  Value.setIsUnsigned(true);
1668  return false;
1669}
1670
1671Sema::OwningExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1672                                                        SourceLocation Loc,
1673                                                        bool GNUSyntax,
1674                                                        OwningExprResult Init) {
1675  typedef DesignatedInitExpr::Designator ASTDesignator;
1676
1677  bool Invalid = false;
1678  llvm::SmallVector<ASTDesignator, 32> Designators;
1679  llvm::SmallVector<Expr *, 32> InitExpressions;
1680
1681  // Build designators and check array designator expressions.
1682  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1683    const Designator &D = Desig.getDesignator(Idx);
1684    switch (D.getKind()) {
1685    case Designator::FieldDesignator:
1686      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1687                                          D.getFieldLoc()));
1688      break;
1689
1690    case Designator::ArrayDesignator: {
1691      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1692      llvm::APSInt IndexValue;
1693      if (!Index->isTypeDependent() &&
1694          !Index->isValueDependent() &&
1695          CheckArrayDesignatorExpr(*this, Index, IndexValue))
1696        Invalid = true;
1697      else {
1698        Designators.push_back(ASTDesignator(InitExpressions.size(),
1699                                            D.getLBracketLoc(),
1700                                            D.getRBracketLoc()));
1701        InitExpressions.push_back(Index);
1702      }
1703      break;
1704    }
1705
1706    case Designator::ArrayRangeDesignator: {
1707      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1708      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1709      llvm::APSInt StartValue;
1710      llvm::APSInt EndValue;
1711      bool StartDependent = StartIndex->isTypeDependent() ||
1712                            StartIndex->isValueDependent();
1713      bool EndDependent = EndIndex->isTypeDependent() ||
1714                          EndIndex->isValueDependent();
1715      if ((!StartDependent &&
1716           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1717          (!EndDependent &&
1718           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1719        Invalid = true;
1720      else {
1721        // Make sure we're comparing values with the same bit width.
1722        if (StartDependent || EndDependent) {
1723          // Nothing to compute.
1724        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1725          EndValue.extend(StartValue.getBitWidth());
1726        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1727          StartValue.extend(EndValue.getBitWidth());
1728
1729        if (!StartDependent && !EndDependent && EndValue < StartValue) {
1730          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1731            << StartValue.toString(10) << EndValue.toString(10)
1732            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1733          Invalid = true;
1734        } else {
1735          Designators.push_back(ASTDesignator(InitExpressions.size(),
1736                                              D.getLBracketLoc(),
1737                                              D.getEllipsisLoc(),
1738                                              D.getRBracketLoc()));
1739          InitExpressions.push_back(StartIndex);
1740          InitExpressions.push_back(EndIndex);
1741        }
1742      }
1743      break;
1744    }
1745    }
1746  }
1747
1748  if (Invalid || Init.isInvalid())
1749    return ExprError();
1750
1751  // Clear out the expressions within the designation.
1752  Desig.ClearExprs(*this);
1753
1754  DesignatedInitExpr *DIE
1755    = DesignatedInitExpr::Create(Context,
1756                                 Designators.data(), Designators.size(),
1757                                 InitExpressions.data(), InitExpressions.size(),
1758                                 Loc, GNUSyntax, Init.takeAs<Expr>());
1759  return Owned(DIE);
1760}
1761
1762bool Sema::CheckInitList(InitListExpr *&InitList, QualType &DeclType) {
1763  InitListChecker CheckInitList(*this, InitList, DeclType);
1764  if (!CheckInitList.HadError())
1765    InitList = CheckInitList.getFullyStructuredList();
1766
1767  return CheckInitList.HadError();
1768}
1769
1770/// \brief Diagnose any semantic errors with value-initialization of
1771/// the given type.
1772///
1773/// Value-initialization effectively zero-initializes any types
1774/// without user-declared constructors, and calls the default
1775/// constructor for a for any type that has a user-declared
1776/// constructor (C++ [dcl.init]p5). Value-initialization can fail when
1777/// a type with a user-declared constructor does not have an
1778/// accessible, non-deleted default constructor. In C, everything can
1779/// be value-initialized, which corresponds to C's notion of
1780/// initializing objects with static storage duration when no
1781/// initializer is provided for that object.
1782///
1783/// \returns true if there was an error, false otherwise.
1784bool Sema::CheckValueInitialization(QualType Type, SourceLocation Loc) {
1785  // C++ [dcl.init]p5:
1786  //
1787  //   To value-initialize an object of type T means:
1788
1789  //     -- if T is an array type, then each element is value-initialized;
1790  if (const ArrayType *AT = Context.getAsArrayType(Type))
1791    return CheckValueInitialization(AT->getElementType(), Loc);
1792
1793  if (const RecordType *RT = Type->getAs<RecordType>()) {
1794    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1795      // -- if T is a class type (clause 9) with a user-declared
1796      //    constructor (12.1), then the default constructor for T is
1797      //    called (and the initialization is ill-formed if T has no
1798      //    accessible default constructor);
1799      if (ClassDecl->hasUserDeclaredConstructor())
1800        // FIXME: Eventually, we'll need to put the constructor decl into the
1801        // AST.
1802        return PerformInitializationByConstructor(Type, 0, 0, Loc,
1803                                                  SourceRange(Loc),
1804                                                  DeclarationName(),
1805                                                  IK_Direct);
1806    }
1807  }
1808
1809  if (Type->isReferenceType()) {
1810    // C++ [dcl.init]p5:
1811    //   [...] A program that calls for default-initialization or
1812    //   value-initialization of an entity of reference type is
1813    //   ill-formed. [...]
1814    // FIXME: Once we have code that goes through this path, add an actual
1815    // diagnostic :)
1816  }
1817
1818  return false;
1819}
1820