SemaInit.cpp revision f5200d6865fc5867ee022f876d2cdee94b48b1ee
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Initialization.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Sema/Designator.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/SemaInternal.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28#include <map>
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35/// \brief Check whether T is compatible with a wide character type (wchar_t,
36/// char16_t or char32_t).
37static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38  if (Context.typesAreCompatible(Context.getWideCharType(), T))
39    return true;
40  if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41    return Context.typesAreCompatible(Context.Char16Ty, T) ||
42           Context.typesAreCompatible(Context.Char32Ty, T);
43  }
44  return false;
45}
46
47enum StringInitFailureKind {
48  SIF_None,
49  SIF_NarrowStringIntoWideChar,
50  SIF_WideStringIntoChar,
51  SIF_IncompatWideStringIntoWideChar,
52  SIF_Other
53};
54
55/// \brief Check whether the array of type AT can be initialized by the Init
56/// expression by means of string initialization. Returns SIF_None if so,
57/// otherwise returns a StringInitFailureKind that describes why the
58/// initialization would not work.
59static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60                                          ASTContext &Context) {
61  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62    return SIF_Other;
63
64  // See if this is a string literal or @encode.
65  Init = Init->IgnoreParens();
66
67  // Handle @encode, which is a narrow string.
68  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69    return SIF_None;
70
71  // Otherwise we can only handle string literals.
72  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73  if (SL == 0)
74    return SIF_Other;
75
76  const QualType ElemTy =
77      Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78
79  switch (SL->getKind()) {
80  case StringLiteral::Ascii:
81  case StringLiteral::UTF8:
82    // char array can be initialized with a narrow string.
83    // Only allow char x[] = "foo";  not char x[] = L"foo";
84    if (ElemTy->isCharType())
85      return SIF_None;
86    if (IsWideCharCompatible(ElemTy, Context))
87      return SIF_NarrowStringIntoWideChar;
88    return SIF_Other;
89  // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90  // "An array with element type compatible with a qualified or unqualified
91  // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92  // string literal with the corresponding encoding prefix (L, u, or U,
93  // respectively), optionally enclosed in braces.
94  case StringLiteral::UTF16:
95    if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96      return SIF_None;
97    if (ElemTy->isCharType())
98      return SIF_WideStringIntoChar;
99    if (IsWideCharCompatible(ElemTy, Context))
100      return SIF_IncompatWideStringIntoWideChar;
101    return SIF_Other;
102  case StringLiteral::UTF32:
103    if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104      return SIF_None;
105    if (ElemTy->isCharType())
106      return SIF_WideStringIntoChar;
107    if (IsWideCharCompatible(ElemTy, Context))
108      return SIF_IncompatWideStringIntoWideChar;
109    return SIF_Other;
110  case StringLiteral::Wide:
111    if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112      return SIF_None;
113    if (ElemTy->isCharType())
114      return SIF_WideStringIntoChar;
115    if (IsWideCharCompatible(ElemTy, Context))
116      return SIF_IncompatWideStringIntoWideChar;
117    return SIF_Other;
118  }
119
120  llvm_unreachable("missed a StringLiteral kind?");
121}
122
123static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124                                          ASTContext &Context) {
125  const ArrayType *arrayType = Context.getAsArrayType(declType);
126  if (!arrayType)
127    return SIF_Other;
128  return IsStringInit(init, arrayType, Context);
129}
130
131/// Update the type of a string literal, including any surrounding parentheses,
132/// to match the type of the object which it is initializing.
133static void updateStringLiteralType(Expr *E, QualType Ty) {
134  while (true) {
135    E->setType(Ty);
136    if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137      break;
138    else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139      E = PE->getSubExpr();
140    else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141      E = UO->getSubExpr();
142    else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143      E = GSE->getResultExpr();
144    else
145      llvm_unreachable("unexpected expr in string literal init");
146  }
147}
148
149static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150                            Sema &S) {
151  // Get the length of the string as parsed.
152  uint64_t StrLength =
153    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
154
155
156  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157    // C99 6.7.8p14. We have an array of character type with unknown size
158    // being initialized to a string literal.
159    llvm::APInt ConstVal(32, StrLength);
160    // Return a new array type (C99 6.7.8p22).
161    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162                                           ConstVal,
163                                           ArrayType::Normal, 0);
164    updateStringLiteralType(Str, DeclT);
165    return;
166  }
167
168  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169
170  // We have an array of character type with known size.  However,
171  // the size may be smaller or larger than the string we are initializing.
172  // FIXME: Avoid truncation for 64-bit length strings.
173  if (S.getLangOpts().CPlusPlus) {
174    if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175      // For Pascal strings it's OK to strip off the terminating null character,
176      // so the example below is valid:
177      //
178      // unsigned char a[2] = "\pa";
179      if (SL->isPascal())
180        StrLength--;
181    }
182
183    // [dcl.init.string]p2
184    if (StrLength > CAT->getSize().getZExtValue())
185      S.Diag(Str->getLocStart(),
186             diag::err_initializer_string_for_char_array_too_long)
187        << Str->getSourceRange();
188  } else {
189    // C99 6.7.8p14.
190    if (StrLength-1 > CAT->getSize().getZExtValue())
191      S.Diag(Str->getLocStart(),
192             diag::warn_initializer_string_for_char_array_too_long)
193        << Str->getSourceRange();
194  }
195
196  // Set the type to the actual size that we are initializing.  If we have
197  // something like:
198  //   char x[1] = "foo";
199  // then this will set the string literal's type to char[1].
200  updateStringLiteralType(Str, DeclT);
201}
202
203//===----------------------------------------------------------------------===//
204// Semantic checking for initializer lists.
205//===----------------------------------------------------------------------===//
206
207/// @brief Semantic checking for initializer lists.
208///
209/// The InitListChecker class contains a set of routines that each
210/// handle the initialization of a certain kind of entity, e.g.,
211/// arrays, vectors, struct/union types, scalars, etc. The
212/// InitListChecker itself performs a recursive walk of the subobject
213/// structure of the type to be initialized, while stepping through
214/// the initializer list one element at a time. The IList and Index
215/// parameters to each of the Check* routines contain the active
216/// (syntactic) initializer list and the index into that initializer
217/// list that represents the current initializer. Each routine is
218/// responsible for moving that Index forward as it consumes elements.
219///
220/// Each Check* routine also has a StructuredList/StructuredIndex
221/// arguments, which contains the current "structured" (semantic)
222/// initializer list and the index into that initializer list where we
223/// are copying initializers as we map them over to the semantic
224/// list. Once we have completed our recursive walk of the subobject
225/// structure, we will have constructed a full semantic initializer
226/// list.
227///
228/// C99 designators cause changes in the initializer list traversal,
229/// because they make the initialization "jump" into a specific
230/// subobject and then continue the initialization from that
231/// point. CheckDesignatedInitializer() recursively steps into the
232/// designated subobject and manages backing out the recursion to
233/// initialize the subobjects after the one designated.
234namespace {
235class InitListChecker {
236  Sema &SemaRef;
237  bool hadError;
238  bool VerifyOnly; // no diagnostics, no structure building
239  llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
240  InitListExpr *FullyStructuredList;
241
242  void CheckImplicitInitList(const InitializedEntity &Entity,
243                             InitListExpr *ParentIList, QualType T,
244                             unsigned &Index, InitListExpr *StructuredList,
245                             unsigned &StructuredIndex);
246  void CheckExplicitInitList(const InitializedEntity &Entity,
247                             InitListExpr *IList, QualType &T,
248                             unsigned &Index, InitListExpr *StructuredList,
249                             unsigned &StructuredIndex,
250                             bool TopLevelObject = false);
251  void CheckListElementTypes(const InitializedEntity &Entity,
252                             InitListExpr *IList, QualType &DeclType,
253                             bool SubobjectIsDesignatorContext,
254                             unsigned &Index,
255                             InitListExpr *StructuredList,
256                             unsigned &StructuredIndex,
257                             bool TopLevelObject = false);
258  void CheckSubElementType(const InitializedEntity &Entity,
259                           InitListExpr *IList, QualType ElemType,
260                           unsigned &Index,
261                           InitListExpr *StructuredList,
262                           unsigned &StructuredIndex);
263  void CheckComplexType(const InitializedEntity &Entity,
264                        InitListExpr *IList, QualType DeclType,
265                        unsigned &Index,
266                        InitListExpr *StructuredList,
267                        unsigned &StructuredIndex);
268  void CheckScalarType(const InitializedEntity &Entity,
269                       InitListExpr *IList, QualType DeclType,
270                       unsigned &Index,
271                       InitListExpr *StructuredList,
272                       unsigned &StructuredIndex);
273  void CheckReferenceType(const InitializedEntity &Entity,
274                          InitListExpr *IList, QualType DeclType,
275                          unsigned &Index,
276                          InitListExpr *StructuredList,
277                          unsigned &StructuredIndex);
278  void CheckVectorType(const InitializedEntity &Entity,
279                       InitListExpr *IList, QualType DeclType, unsigned &Index,
280                       InitListExpr *StructuredList,
281                       unsigned &StructuredIndex);
282  void CheckStructUnionTypes(const InitializedEntity &Entity,
283                             InitListExpr *IList, QualType DeclType,
284                             RecordDecl::field_iterator Field,
285                             bool SubobjectIsDesignatorContext, unsigned &Index,
286                             InitListExpr *StructuredList,
287                             unsigned &StructuredIndex,
288                             bool TopLevelObject = false);
289  void CheckArrayType(const InitializedEntity &Entity,
290                      InitListExpr *IList, QualType &DeclType,
291                      llvm::APSInt elementIndex,
292                      bool SubobjectIsDesignatorContext, unsigned &Index,
293                      InitListExpr *StructuredList,
294                      unsigned &StructuredIndex);
295  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
296                                  InitListExpr *IList, DesignatedInitExpr *DIE,
297                                  unsigned DesigIdx,
298                                  QualType &CurrentObjectType,
299                                  RecordDecl::field_iterator *NextField,
300                                  llvm::APSInt *NextElementIndex,
301                                  unsigned &Index,
302                                  InitListExpr *StructuredList,
303                                  unsigned &StructuredIndex,
304                                  bool FinishSubobjectInit,
305                                  bool TopLevelObject);
306  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
307                                           QualType CurrentObjectType,
308                                           InitListExpr *StructuredList,
309                                           unsigned StructuredIndex,
310                                           SourceRange InitRange);
311  void UpdateStructuredListElement(InitListExpr *StructuredList,
312                                   unsigned &StructuredIndex,
313                                   Expr *expr);
314  int numArrayElements(QualType DeclType);
315  int numStructUnionElements(QualType DeclType);
316
317  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
318                               const InitializedEntity &ParentEntity,
319                               InitListExpr *ILE, bool &RequiresSecondPass);
320  void FillInValueInitializations(const InitializedEntity &Entity,
321                                  InitListExpr *ILE, bool &RequiresSecondPass);
322  bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
323                              Expr *InitExpr, FieldDecl *Field,
324                              bool TopLevelObject);
325  void CheckValueInitializable(const InitializedEntity &Entity);
326
327public:
328  InitListChecker(Sema &S, const InitializedEntity &Entity,
329                  InitListExpr *IL, QualType &T, bool VerifyOnly);
330  bool HadError() { return hadError; }
331
332  // @brief Retrieves the fully-structured initializer list used for
333  // semantic analysis and code generation.
334  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
335};
336} // end anonymous namespace
337
338void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
339  assert(VerifyOnly &&
340         "CheckValueInitializable is only inteded for verification mode.");
341
342  SourceLocation Loc;
343  InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
344                                                            true);
345  InitializationSequence InitSeq(SemaRef, Entity, Kind, None);
346  if (InitSeq.Failed())
347    hadError = true;
348}
349
350void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
351                                        const InitializedEntity &ParentEntity,
352                                              InitListExpr *ILE,
353                                              bool &RequiresSecondPass) {
354  SourceLocation Loc = ILE->getLocStart();
355  unsigned NumInits = ILE->getNumInits();
356  InitializedEntity MemberEntity
357    = InitializedEntity::InitializeMember(Field, &ParentEntity);
358  if (Init >= NumInits || !ILE->getInit(Init)) {
359    // If there's no explicit initializer but we have a default initializer, use
360    // that. This only happens in C++1y, since classes with default
361    // initializers are not aggregates in C++11.
362    if (Field->hasInClassInitializer()) {
363      Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
364                                             ILE->getRBraceLoc(), Field);
365      if (Init < NumInits)
366        ILE->setInit(Init, DIE);
367      else {
368        ILE->updateInit(SemaRef.Context, Init, DIE);
369        RequiresSecondPass = true;
370      }
371      return;
372    }
373
374    // FIXME: We probably don't need to handle references
375    // specially here, since value-initialization of references is
376    // handled in InitializationSequence.
377    if (Field->getType()->isReferenceType()) {
378      // C++ [dcl.init.aggr]p9:
379      //   If an incomplete or empty initializer-list leaves a
380      //   member of reference type uninitialized, the program is
381      //   ill-formed.
382      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
383        << Field->getType()
384        << ILE->getSyntacticForm()->getSourceRange();
385      SemaRef.Diag(Field->getLocation(),
386                   diag::note_uninit_reference_member);
387      hadError = true;
388      return;
389    }
390
391    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
392                                                              true);
393    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, None);
394    if (!InitSeq) {
395      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, None);
396      hadError = true;
397      return;
398    }
399
400    ExprResult MemberInit
401      = InitSeq.Perform(SemaRef, MemberEntity, Kind, None);
402    if (MemberInit.isInvalid()) {
403      hadError = true;
404      return;
405    }
406
407    if (hadError) {
408      // Do nothing
409    } else if (Init < NumInits) {
410      ILE->setInit(Init, MemberInit.takeAs<Expr>());
411    } else if (InitSeq.isConstructorInitialization()) {
412      // Value-initialization requires a constructor call, so
413      // extend the initializer list to include the constructor
414      // call and make a note that we'll need to take another pass
415      // through the initializer list.
416      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
417      RequiresSecondPass = true;
418    }
419  } else if (InitListExpr *InnerILE
420               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
421    FillInValueInitializations(MemberEntity, InnerILE,
422                               RequiresSecondPass);
423}
424
425/// Recursively replaces NULL values within the given initializer list
426/// with expressions that perform value-initialization of the
427/// appropriate type.
428void
429InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
430                                            InitListExpr *ILE,
431                                            bool &RequiresSecondPass) {
432  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
433         "Should not have void type");
434  SourceLocation Loc = ILE->getLocStart();
435  if (ILE->getSyntacticForm())
436    Loc = ILE->getSyntacticForm()->getLocStart();
437
438  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
439    const RecordDecl *RDecl = RType->getDecl();
440    if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
441      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
442                              Entity, ILE, RequiresSecondPass);
443    else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
444             cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
445      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
446                                      FieldEnd = RDecl->field_end();
447           Field != FieldEnd; ++Field) {
448        if (Field->hasInClassInitializer()) {
449          FillInValueInitForField(0, *Field, Entity, ILE, RequiresSecondPass);
450          break;
451        }
452      }
453    } else {
454      unsigned Init = 0;
455      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
456                                      FieldEnd = RDecl->field_end();
457           Field != FieldEnd; ++Field) {
458        if (Field->isUnnamedBitfield())
459          continue;
460
461        if (hadError)
462          return;
463
464        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
465        if (hadError)
466          return;
467
468        ++Init;
469
470        // Only look at the first initialization of a union.
471        if (RDecl->isUnion())
472          break;
473      }
474    }
475
476    return;
477  }
478
479  QualType ElementType;
480
481  InitializedEntity ElementEntity = Entity;
482  unsigned NumInits = ILE->getNumInits();
483  unsigned NumElements = NumInits;
484  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
485    ElementType = AType->getElementType();
486    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
487      NumElements = CAType->getSize().getZExtValue();
488    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
489                                                         0, Entity);
490  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
491    ElementType = VType->getElementType();
492    NumElements = VType->getNumElements();
493    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
494                                                         0, Entity);
495  } else
496    ElementType = ILE->getType();
497
498
499  for (unsigned Init = 0; Init != NumElements; ++Init) {
500    if (hadError)
501      return;
502
503    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
504        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
505      ElementEntity.setElementIndex(Init);
506
507    Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
508    if (!InitExpr && !ILE->hasArrayFiller()) {
509      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
510                                                                true);
511      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, None);
512      if (!InitSeq) {
513        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, None);
514        hadError = true;
515        return;
516      }
517
518      ExprResult ElementInit
519        = InitSeq.Perform(SemaRef, ElementEntity, Kind, None);
520      if (ElementInit.isInvalid()) {
521        hadError = true;
522        return;
523      }
524
525      if (hadError) {
526        // Do nothing
527      } else if (Init < NumInits) {
528        // For arrays, just set the expression used for value-initialization
529        // of the "holes" in the array.
530        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
531          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
532        else
533          ILE->setInit(Init, ElementInit.takeAs<Expr>());
534      } else {
535        // For arrays, just set the expression used for value-initialization
536        // of the rest of elements and exit.
537        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
538          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
539          return;
540        }
541
542        if (InitSeq.isConstructorInitialization()) {
543          // Value-initialization requires a constructor call, so
544          // extend the initializer list to include the constructor
545          // call and make a note that we'll need to take another pass
546          // through the initializer list.
547          ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
548          RequiresSecondPass = true;
549        }
550      }
551    } else if (InitListExpr *InnerILE
552                 = dyn_cast_or_null<InitListExpr>(InitExpr))
553      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
554  }
555}
556
557
558InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
559                                 InitListExpr *IL, QualType &T,
560                                 bool VerifyOnly)
561  : SemaRef(S), VerifyOnly(VerifyOnly) {
562  hadError = false;
563
564  unsigned newIndex = 0;
565  unsigned newStructuredIndex = 0;
566  FullyStructuredList
567    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
568  CheckExplicitInitList(Entity, IL, T, newIndex,
569                        FullyStructuredList, newStructuredIndex,
570                        /*TopLevelObject=*/true);
571
572  if (!hadError && !VerifyOnly) {
573    bool RequiresSecondPass = false;
574    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
575    if (RequiresSecondPass && !hadError)
576      FillInValueInitializations(Entity, FullyStructuredList,
577                                 RequiresSecondPass);
578  }
579}
580
581int InitListChecker::numArrayElements(QualType DeclType) {
582  // FIXME: use a proper constant
583  int maxElements = 0x7FFFFFFF;
584  if (const ConstantArrayType *CAT =
585        SemaRef.Context.getAsConstantArrayType(DeclType)) {
586    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
587  }
588  return maxElements;
589}
590
591int InitListChecker::numStructUnionElements(QualType DeclType) {
592  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
593  int InitializableMembers = 0;
594  for (RecordDecl::field_iterator
595         Field = structDecl->field_begin(),
596         FieldEnd = structDecl->field_end();
597       Field != FieldEnd; ++Field) {
598    if (!Field->isUnnamedBitfield())
599      ++InitializableMembers;
600  }
601  if (structDecl->isUnion())
602    return std::min(InitializableMembers, 1);
603  return InitializableMembers - structDecl->hasFlexibleArrayMember();
604}
605
606void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
607                                            InitListExpr *ParentIList,
608                                            QualType T, unsigned &Index,
609                                            InitListExpr *StructuredList,
610                                            unsigned &StructuredIndex) {
611  int maxElements = 0;
612
613  if (T->isArrayType())
614    maxElements = numArrayElements(T);
615  else if (T->isRecordType())
616    maxElements = numStructUnionElements(T);
617  else if (T->isVectorType())
618    maxElements = T->getAs<VectorType>()->getNumElements();
619  else
620    llvm_unreachable("CheckImplicitInitList(): Illegal type");
621
622  if (maxElements == 0) {
623    if (!VerifyOnly)
624      SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
625                   diag::err_implicit_empty_initializer);
626    ++Index;
627    hadError = true;
628    return;
629  }
630
631  // Build a structured initializer list corresponding to this subobject.
632  InitListExpr *StructuredSubobjectInitList
633    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
634                                 StructuredIndex,
635          SourceRange(ParentIList->getInit(Index)->getLocStart(),
636                      ParentIList->getSourceRange().getEnd()));
637  unsigned StructuredSubobjectInitIndex = 0;
638
639  // Check the element types and build the structural subobject.
640  unsigned StartIndex = Index;
641  CheckListElementTypes(Entity, ParentIList, T,
642                        /*SubobjectIsDesignatorContext=*/false, Index,
643                        StructuredSubobjectInitList,
644                        StructuredSubobjectInitIndex);
645
646  if (!VerifyOnly) {
647    StructuredSubobjectInitList->setType(T);
648
649    unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
650    // Update the structured sub-object initializer so that it's ending
651    // range corresponds with the end of the last initializer it used.
652    if (EndIndex < ParentIList->getNumInits()) {
653      SourceLocation EndLoc
654        = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
655      StructuredSubobjectInitList->setRBraceLoc(EndLoc);
656    }
657
658    // Complain about missing braces.
659    if (T->isArrayType() || T->isRecordType()) {
660      SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
661                   diag::warn_missing_braces)
662        << StructuredSubobjectInitList->getSourceRange()
663        << FixItHint::CreateInsertion(
664              StructuredSubobjectInitList->getLocStart(), "{")
665        << FixItHint::CreateInsertion(
666              SemaRef.PP.getLocForEndOfToken(
667                                      StructuredSubobjectInitList->getLocEnd()),
668              "}");
669    }
670  }
671}
672
673void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
674                                            InitListExpr *IList, QualType &T,
675                                            unsigned &Index,
676                                            InitListExpr *StructuredList,
677                                            unsigned &StructuredIndex,
678                                            bool TopLevelObject) {
679  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
680  if (!VerifyOnly) {
681    SyntacticToSemantic[IList] = StructuredList;
682    StructuredList->setSyntacticForm(IList);
683  }
684  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
685                        Index, StructuredList, StructuredIndex, TopLevelObject);
686  if (!VerifyOnly) {
687    QualType ExprTy = T;
688    if (!ExprTy->isArrayType())
689      ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
690    IList->setType(ExprTy);
691    StructuredList->setType(ExprTy);
692  }
693  if (hadError)
694    return;
695
696  if (Index < IList->getNumInits()) {
697    // We have leftover initializers
698    if (VerifyOnly) {
699      if (SemaRef.getLangOpts().CPlusPlus ||
700          (SemaRef.getLangOpts().OpenCL &&
701           IList->getType()->isVectorType())) {
702        hadError = true;
703      }
704      return;
705    }
706
707    if (StructuredIndex == 1 &&
708        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
709            SIF_None) {
710      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
711      if (SemaRef.getLangOpts().CPlusPlus) {
712        DK = diag::err_excess_initializers_in_char_array_initializer;
713        hadError = true;
714      }
715      // Special-case
716      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
717        << IList->getInit(Index)->getSourceRange();
718    } else if (!T->isIncompleteType()) {
719      // Don't complain for incomplete types, since we'll get an error
720      // elsewhere
721      QualType CurrentObjectType = StructuredList->getType();
722      int initKind =
723        CurrentObjectType->isArrayType()? 0 :
724        CurrentObjectType->isVectorType()? 1 :
725        CurrentObjectType->isScalarType()? 2 :
726        CurrentObjectType->isUnionType()? 3 :
727        4;
728
729      unsigned DK = diag::warn_excess_initializers;
730      if (SemaRef.getLangOpts().CPlusPlus) {
731        DK = diag::err_excess_initializers;
732        hadError = true;
733      }
734      if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
735        DK = diag::err_excess_initializers;
736        hadError = true;
737      }
738
739      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
740        << initKind << IList->getInit(Index)->getSourceRange();
741    }
742  }
743
744  if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
745      !TopLevelObject)
746    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
747      << IList->getSourceRange()
748      << FixItHint::CreateRemoval(IList->getLocStart())
749      << FixItHint::CreateRemoval(IList->getLocEnd());
750}
751
752void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
753                                            InitListExpr *IList,
754                                            QualType &DeclType,
755                                            bool SubobjectIsDesignatorContext,
756                                            unsigned &Index,
757                                            InitListExpr *StructuredList,
758                                            unsigned &StructuredIndex,
759                                            bool TopLevelObject) {
760  if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
761    // Explicitly braced initializer for complex type can be real+imaginary
762    // parts.
763    CheckComplexType(Entity, IList, DeclType, Index,
764                     StructuredList, StructuredIndex);
765  } else if (DeclType->isScalarType()) {
766    CheckScalarType(Entity, IList, DeclType, Index,
767                    StructuredList, StructuredIndex);
768  } else if (DeclType->isVectorType()) {
769    CheckVectorType(Entity, IList, DeclType, Index,
770                    StructuredList, StructuredIndex);
771  } else if (DeclType->isRecordType()) {
772    assert(DeclType->isAggregateType() &&
773           "non-aggregate records should be handed in CheckSubElementType");
774    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
775    CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
776                          SubobjectIsDesignatorContext, Index,
777                          StructuredList, StructuredIndex,
778                          TopLevelObject);
779  } else if (DeclType->isArrayType()) {
780    llvm::APSInt Zero(
781                    SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
782                    false);
783    CheckArrayType(Entity, IList, DeclType, Zero,
784                   SubobjectIsDesignatorContext, Index,
785                   StructuredList, StructuredIndex);
786  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
787    // This type is invalid, issue a diagnostic.
788    ++Index;
789    if (!VerifyOnly)
790      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
791        << DeclType;
792    hadError = true;
793  } else if (DeclType->isReferenceType()) {
794    CheckReferenceType(Entity, IList, DeclType, Index,
795                       StructuredList, StructuredIndex);
796  } else if (DeclType->isObjCObjectType()) {
797    if (!VerifyOnly)
798      SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
799        << DeclType;
800    hadError = true;
801  } else {
802    if (!VerifyOnly)
803      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
804        << DeclType;
805    hadError = true;
806  }
807}
808
809void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
810                                          InitListExpr *IList,
811                                          QualType ElemType,
812                                          unsigned &Index,
813                                          InitListExpr *StructuredList,
814                                          unsigned &StructuredIndex) {
815  Expr *expr = IList->getInit(Index);
816
817  if (ElemType->isReferenceType())
818    return CheckReferenceType(Entity, IList, ElemType, Index,
819                              StructuredList, StructuredIndex);
820
821  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
822    if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
823      unsigned newIndex = 0;
824      unsigned newStructuredIndex = 0;
825      InitListExpr *newStructuredList
826        = getStructuredSubobjectInit(IList, Index, ElemType,
827                                     StructuredList, StructuredIndex,
828                                     SubInitList->getSourceRange());
829      CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
830                            newStructuredList, newStructuredIndex);
831      ++StructuredIndex;
832      ++Index;
833      return;
834    }
835    assert(SemaRef.getLangOpts().CPlusPlus &&
836           "non-aggregate records are only possible in C++");
837    // C++ initialization is handled later.
838  }
839
840  if (ElemType->isScalarType())
841    return CheckScalarType(Entity, IList, ElemType, Index,
842                           StructuredList, StructuredIndex);
843
844  if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
845    // arrayType can be incomplete if we're initializing a flexible
846    // array member.  There's nothing we can do with the completed
847    // type here, though.
848
849    if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
850      if (!VerifyOnly) {
851        CheckStringInit(expr, ElemType, arrayType, SemaRef);
852        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
853      }
854      ++Index;
855      return;
856    }
857
858    // Fall through for subaggregate initialization.
859
860  } else if (SemaRef.getLangOpts().CPlusPlus) {
861    // C++ [dcl.init.aggr]p12:
862    //   All implicit type conversions (clause 4) are considered when
863    //   initializing the aggregate member with an initializer from
864    //   an initializer-list. If the initializer can initialize a
865    //   member, the member is initialized. [...]
866
867    // FIXME: Better EqualLoc?
868    InitializationKind Kind =
869      InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
870    InitializationSequence Seq(SemaRef, Entity, Kind, expr);
871
872    if (Seq) {
873      if (!VerifyOnly) {
874        ExprResult Result =
875          Seq.Perform(SemaRef, Entity, Kind, expr);
876        if (Result.isInvalid())
877          hadError = true;
878
879        UpdateStructuredListElement(StructuredList, StructuredIndex,
880                                    Result.takeAs<Expr>());
881      }
882      ++Index;
883      return;
884    }
885
886    // Fall through for subaggregate initialization
887  } else {
888    // C99 6.7.8p13:
889    //
890    //   The initializer for a structure or union object that has
891    //   automatic storage duration shall be either an initializer
892    //   list as described below, or a single expression that has
893    //   compatible structure or union type. In the latter case, the
894    //   initial value of the object, including unnamed members, is
895    //   that of the expression.
896    ExprResult ExprRes = SemaRef.Owned(expr);
897    if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
898        SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
899                                                 !VerifyOnly)
900          == Sema::Compatible) {
901      if (ExprRes.isInvalid())
902        hadError = true;
903      else {
904        ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
905          if (ExprRes.isInvalid())
906            hadError = true;
907      }
908      UpdateStructuredListElement(StructuredList, StructuredIndex,
909                                  ExprRes.takeAs<Expr>());
910      ++Index;
911      return;
912    }
913    ExprRes.release();
914    // Fall through for subaggregate initialization
915  }
916
917  // C++ [dcl.init.aggr]p12:
918  //
919  //   [...] Otherwise, if the member is itself a non-empty
920  //   subaggregate, brace elision is assumed and the initializer is
921  //   considered for the initialization of the first member of
922  //   the subaggregate.
923  if (!SemaRef.getLangOpts().OpenCL &&
924      (ElemType->isAggregateType() || ElemType->isVectorType())) {
925    CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
926                          StructuredIndex);
927    ++StructuredIndex;
928  } else {
929    if (!VerifyOnly) {
930      // We cannot initialize this element, so let
931      // PerformCopyInitialization produce the appropriate diagnostic.
932      SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
933                                        SemaRef.Owned(expr),
934                                        /*TopLevelOfInitList=*/true);
935    }
936    hadError = true;
937    ++Index;
938    ++StructuredIndex;
939  }
940}
941
942void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
943                                       InitListExpr *IList, QualType DeclType,
944                                       unsigned &Index,
945                                       InitListExpr *StructuredList,
946                                       unsigned &StructuredIndex) {
947  assert(Index == 0 && "Index in explicit init list must be zero");
948
949  // As an extension, clang supports complex initializers, which initialize
950  // a complex number component-wise.  When an explicit initializer list for
951  // a complex number contains two two initializers, this extension kicks in:
952  // it exepcts the initializer list to contain two elements convertible to
953  // the element type of the complex type. The first element initializes
954  // the real part, and the second element intitializes the imaginary part.
955
956  if (IList->getNumInits() != 2)
957    return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
958                           StructuredIndex);
959
960  // This is an extension in C.  (The builtin _Complex type does not exist
961  // in the C++ standard.)
962  if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
963    SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
964      << IList->getSourceRange();
965
966  // Initialize the complex number.
967  QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
968  InitializedEntity ElementEntity =
969    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
970
971  for (unsigned i = 0; i < 2; ++i) {
972    ElementEntity.setElementIndex(Index);
973    CheckSubElementType(ElementEntity, IList, elementType, Index,
974                        StructuredList, StructuredIndex);
975  }
976}
977
978
979void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
980                                      InitListExpr *IList, QualType DeclType,
981                                      unsigned &Index,
982                                      InitListExpr *StructuredList,
983                                      unsigned &StructuredIndex) {
984  if (Index >= IList->getNumInits()) {
985    if (!VerifyOnly)
986      SemaRef.Diag(IList->getLocStart(),
987                   SemaRef.getLangOpts().CPlusPlus11 ?
988                     diag::warn_cxx98_compat_empty_scalar_initializer :
989                     diag::err_empty_scalar_initializer)
990        << IList->getSourceRange();
991    hadError = !SemaRef.getLangOpts().CPlusPlus11;
992    ++Index;
993    ++StructuredIndex;
994    return;
995  }
996
997  Expr *expr = IList->getInit(Index);
998  if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
999    if (!VerifyOnly)
1000      SemaRef.Diag(SubIList->getLocStart(),
1001                   diag::warn_many_braces_around_scalar_init)
1002        << SubIList->getSourceRange();
1003
1004    CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1005                    StructuredIndex);
1006    return;
1007  } else if (isa<DesignatedInitExpr>(expr)) {
1008    if (!VerifyOnly)
1009      SemaRef.Diag(expr->getLocStart(),
1010                   diag::err_designator_for_scalar_init)
1011        << DeclType << expr->getSourceRange();
1012    hadError = true;
1013    ++Index;
1014    ++StructuredIndex;
1015    return;
1016  }
1017
1018  if (VerifyOnly) {
1019    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1020      hadError = true;
1021    ++Index;
1022    return;
1023  }
1024
1025  ExprResult Result =
1026    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1027                                      SemaRef.Owned(expr),
1028                                      /*TopLevelOfInitList=*/true);
1029
1030  Expr *ResultExpr = 0;
1031
1032  if (Result.isInvalid())
1033    hadError = true; // types weren't compatible.
1034  else {
1035    ResultExpr = Result.takeAs<Expr>();
1036
1037    if (ResultExpr != expr) {
1038      // The type was promoted, update initializer list.
1039      IList->setInit(Index, ResultExpr);
1040    }
1041  }
1042  if (hadError)
1043    ++StructuredIndex;
1044  else
1045    UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1046  ++Index;
1047}
1048
1049void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1050                                         InitListExpr *IList, QualType DeclType,
1051                                         unsigned &Index,
1052                                         InitListExpr *StructuredList,
1053                                         unsigned &StructuredIndex) {
1054  if (Index >= IList->getNumInits()) {
1055    // FIXME: It would be wonderful if we could point at the actual member. In
1056    // general, it would be useful to pass location information down the stack,
1057    // so that we know the location (or decl) of the "current object" being
1058    // initialized.
1059    if (!VerifyOnly)
1060      SemaRef.Diag(IList->getLocStart(),
1061                    diag::err_init_reference_member_uninitialized)
1062        << DeclType
1063        << IList->getSourceRange();
1064    hadError = true;
1065    ++Index;
1066    ++StructuredIndex;
1067    return;
1068  }
1069
1070  Expr *expr = IList->getInit(Index);
1071  if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1072    if (!VerifyOnly)
1073      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1074        << DeclType << IList->getSourceRange();
1075    hadError = true;
1076    ++Index;
1077    ++StructuredIndex;
1078    return;
1079  }
1080
1081  if (VerifyOnly) {
1082    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1083      hadError = true;
1084    ++Index;
1085    return;
1086  }
1087
1088  ExprResult Result =
1089    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1090                                      SemaRef.Owned(expr),
1091                                      /*TopLevelOfInitList=*/true);
1092
1093  if (Result.isInvalid())
1094    hadError = true;
1095
1096  expr = Result.takeAs<Expr>();
1097  IList->setInit(Index, expr);
1098
1099  if (hadError)
1100    ++StructuredIndex;
1101  else
1102    UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1103  ++Index;
1104}
1105
1106void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1107                                      InitListExpr *IList, QualType DeclType,
1108                                      unsigned &Index,
1109                                      InitListExpr *StructuredList,
1110                                      unsigned &StructuredIndex) {
1111  const VectorType *VT = DeclType->getAs<VectorType>();
1112  unsigned maxElements = VT->getNumElements();
1113  unsigned numEltsInit = 0;
1114  QualType elementType = VT->getElementType();
1115
1116  if (Index >= IList->getNumInits()) {
1117    // Make sure the element type can be value-initialized.
1118    if (VerifyOnly)
1119      CheckValueInitializable(
1120          InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1121    return;
1122  }
1123
1124  if (!SemaRef.getLangOpts().OpenCL) {
1125    // If the initializing element is a vector, try to copy-initialize
1126    // instead of breaking it apart (which is doomed to failure anyway).
1127    Expr *Init = IList->getInit(Index);
1128    if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1129      if (VerifyOnly) {
1130        if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1131          hadError = true;
1132        ++Index;
1133        return;
1134      }
1135
1136      ExprResult Result =
1137        SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1138                                          SemaRef.Owned(Init),
1139                                          /*TopLevelOfInitList=*/true);
1140
1141      Expr *ResultExpr = 0;
1142      if (Result.isInvalid())
1143        hadError = true; // types weren't compatible.
1144      else {
1145        ResultExpr = Result.takeAs<Expr>();
1146
1147        if (ResultExpr != Init) {
1148          // The type was promoted, update initializer list.
1149          IList->setInit(Index, ResultExpr);
1150        }
1151      }
1152      if (hadError)
1153        ++StructuredIndex;
1154      else
1155        UpdateStructuredListElement(StructuredList, StructuredIndex,
1156                                    ResultExpr);
1157      ++Index;
1158      return;
1159    }
1160
1161    InitializedEntity ElementEntity =
1162      InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1163
1164    for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1165      // Don't attempt to go past the end of the init list
1166      if (Index >= IList->getNumInits()) {
1167        if (VerifyOnly)
1168          CheckValueInitializable(ElementEntity);
1169        break;
1170      }
1171
1172      ElementEntity.setElementIndex(Index);
1173      CheckSubElementType(ElementEntity, IList, elementType, Index,
1174                          StructuredList, StructuredIndex);
1175    }
1176    return;
1177  }
1178
1179  InitializedEntity ElementEntity =
1180    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1181
1182  // OpenCL initializers allows vectors to be constructed from vectors.
1183  for (unsigned i = 0; i < maxElements; ++i) {
1184    // Don't attempt to go past the end of the init list
1185    if (Index >= IList->getNumInits())
1186      break;
1187
1188    ElementEntity.setElementIndex(Index);
1189
1190    QualType IType = IList->getInit(Index)->getType();
1191    if (!IType->isVectorType()) {
1192      CheckSubElementType(ElementEntity, IList, elementType, Index,
1193                          StructuredList, StructuredIndex);
1194      ++numEltsInit;
1195    } else {
1196      QualType VecType;
1197      const VectorType *IVT = IType->getAs<VectorType>();
1198      unsigned numIElts = IVT->getNumElements();
1199
1200      if (IType->isExtVectorType())
1201        VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1202      else
1203        VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1204                                                IVT->getVectorKind());
1205      CheckSubElementType(ElementEntity, IList, VecType, Index,
1206                          StructuredList, StructuredIndex);
1207      numEltsInit += numIElts;
1208    }
1209  }
1210
1211  // OpenCL requires all elements to be initialized.
1212  if (numEltsInit != maxElements) {
1213    if (!VerifyOnly)
1214      SemaRef.Diag(IList->getLocStart(),
1215                   diag::err_vector_incorrect_num_initializers)
1216        << (numEltsInit < maxElements) << maxElements << numEltsInit;
1217    hadError = true;
1218  }
1219}
1220
1221void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1222                                     InitListExpr *IList, QualType &DeclType,
1223                                     llvm::APSInt elementIndex,
1224                                     bool SubobjectIsDesignatorContext,
1225                                     unsigned &Index,
1226                                     InitListExpr *StructuredList,
1227                                     unsigned &StructuredIndex) {
1228  const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1229
1230  // Check for the special-case of initializing an array with a string.
1231  if (Index < IList->getNumInits()) {
1232    if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1233        SIF_None) {
1234      // We place the string literal directly into the resulting
1235      // initializer list. This is the only place where the structure
1236      // of the structured initializer list doesn't match exactly,
1237      // because doing so would involve allocating one character
1238      // constant for each string.
1239      if (!VerifyOnly) {
1240        CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1241        UpdateStructuredListElement(StructuredList, StructuredIndex,
1242                                    IList->getInit(Index));
1243        StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1244      }
1245      ++Index;
1246      return;
1247    }
1248  }
1249  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1250    // Check for VLAs; in standard C it would be possible to check this
1251    // earlier, but I don't know where clang accepts VLAs (gcc accepts
1252    // them in all sorts of strange places).
1253    if (!VerifyOnly)
1254      SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1255                    diag::err_variable_object_no_init)
1256        << VAT->getSizeExpr()->getSourceRange();
1257    hadError = true;
1258    ++Index;
1259    ++StructuredIndex;
1260    return;
1261  }
1262
1263  // We might know the maximum number of elements in advance.
1264  llvm::APSInt maxElements(elementIndex.getBitWidth(),
1265                           elementIndex.isUnsigned());
1266  bool maxElementsKnown = false;
1267  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1268    maxElements = CAT->getSize();
1269    elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1270    elementIndex.setIsUnsigned(maxElements.isUnsigned());
1271    maxElementsKnown = true;
1272  }
1273
1274  QualType elementType = arrayType->getElementType();
1275  while (Index < IList->getNumInits()) {
1276    Expr *Init = IList->getInit(Index);
1277    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1278      // If we're not the subobject that matches up with the '{' for
1279      // the designator, we shouldn't be handling the
1280      // designator. Return immediately.
1281      if (!SubobjectIsDesignatorContext)
1282        return;
1283
1284      // Handle this designated initializer. elementIndex will be
1285      // updated to be the next array element we'll initialize.
1286      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1287                                     DeclType, 0, &elementIndex, Index,
1288                                     StructuredList, StructuredIndex, true,
1289                                     false)) {
1290        hadError = true;
1291        continue;
1292      }
1293
1294      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1295        maxElements = maxElements.extend(elementIndex.getBitWidth());
1296      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1297        elementIndex = elementIndex.extend(maxElements.getBitWidth());
1298      elementIndex.setIsUnsigned(maxElements.isUnsigned());
1299
1300      // If the array is of incomplete type, keep track of the number of
1301      // elements in the initializer.
1302      if (!maxElementsKnown && elementIndex > maxElements)
1303        maxElements = elementIndex;
1304
1305      continue;
1306    }
1307
1308    // If we know the maximum number of elements, and we've already
1309    // hit it, stop consuming elements in the initializer list.
1310    if (maxElementsKnown && elementIndex == maxElements)
1311      break;
1312
1313    InitializedEntity ElementEntity =
1314      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1315                                           Entity);
1316    // Check this element.
1317    CheckSubElementType(ElementEntity, IList, elementType, Index,
1318                        StructuredList, StructuredIndex);
1319    ++elementIndex;
1320
1321    // If the array is of incomplete type, keep track of the number of
1322    // elements in the initializer.
1323    if (!maxElementsKnown && elementIndex > maxElements)
1324      maxElements = elementIndex;
1325  }
1326  if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1327    // If this is an incomplete array type, the actual type needs to
1328    // be calculated here.
1329    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1330    if (maxElements == Zero) {
1331      // Sizing an array implicitly to zero is not allowed by ISO C,
1332      // but is supported by GNU.
1333      SemaRef.Diag(IList->getLocStart(),
1334                    diag::ext_typecheck_zero_array_size);
1335    }
1336
1337    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1338                                                     ArrayType::Normal, 0);
1339  }
1340  if (!hadError && VerifyOnly) {
1341    // Check if there are any members of the array that get value-initialized.
1342    // If so, check if doing that is possible.
1343    // FIXME: This needs to detect holes left by designated initializers too.
1344    if (maxElementsKnown && elementIndex < maxElements)
1345      CheckValueInitializable(InitializedEntity::InitializeElement(
1346                                                  SemaRef.Context, 0, Entity));
1347  }
1348}
1349
1350bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1351                                             Expr *InitExpr,
1352                                             FieldDecl *Field,
1353                                             bool TopLevelObject) {
1354  // Handle GNU flexible array initializers.
1355  unsigned FlexArrayDiag;
1356  if (isa<InitListExpr>(InitExpr) &&
1357      cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1358    // Empty flexible array init always allowed as an extension
1359    FlexArrayDiag = diag::ext_flexible_array_init;
1360  } else if (SemaRef.getLangOpts().CPlusPlus) {
1361    // Disallow flexible array init in C++; it is not required for gcc
1362    // compatibility, and it needs work to IRGen correctly in general.
1363    FlexArrayDiag = diag::err_flexible_array_init;
1364  } else if (!TopLevelObject) {
1365    // Disallow flexible array init on non-top-level object
1366    FlexArrayDiag = diag::err_flexible_array_init;
1367  } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1368    // Disallow flexible array init on anything which is not a variable.
1369    FlexArrayDiag = diag::err_flexible_array_init;
1370  } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1371    // Disallow flexible array init on local variables.
1372    FlexArrayDiag = diag::err_flexible_array_init;
1373  } else {
1374    // Allow other cases.
1375    FlexArrayDiag = diag::ext_flexible_array_init;
1376  }
1377
1378  if (!VerifyOnly) {
1379    SemaRef.Diag(InitExpr->getLocStart(),
1380                 FlexArrayDiag)
1381      << InitExpr->getLocStart();
1382    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1383      << Field;
1384  }
1385
1386  return FlexArrayDiag != diag::ext_flexible_array_init;
1387}
1388
1389void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1390                                            InitListExpr *IList,
1391                                            QualType DeclType,
1392                                            RecordDecl::field_iterator Field,
1393                                            bool SubobjectIsDesignatorContext,
1394                                            unsigned &Index,
1395                                            InitListExpr *StructuredList,
1396                                            unsigned &StructuredIndex,
1397                                            bool TopLevelObject) {
1398  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1399
1400  // If the record is invalid, some of it's members are invalid. To avoid
1401  // confusion, we forgo checking the intializer for the entire record.
1402  if (structDecl->isInvalidDecl()) {
1403    // Assume it was supposed to consume a single initializer.
1404    ++Index;
1405    hadError = true;
1406    return;
1407  }
1408
1409  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1410    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1411
1412    // If there's a default initializer, use it.
1413    if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1414      if (VerifyOnly)
1415        return;
1416      for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1417           Field != FieldEnd; ++Field) {
1418        if (Field->hasInClassInitializer()) {
1419          StructuredList->setInitializedFieldInUnion(*Field);
1420          // FIXME: Actually build a CXXDefaultInitExpr?
1421          return;
1422        }
1423      }
1424    }
1425
1426    // Value-initialize the first named member of the union.
1427    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1428         Field != FieldEnd; ++Field) {
1429      if (Field->getDeclName()) {
1430        if (VerifyOnly)
1431          CheckValueInitializable(
1432              InitializedEntity::InitializeMember(*Field, &Entity));
1433        else
1434          StructuredList->setInitializedFieldInUnion(*Field);
1435        break;
1436      }
1437    }
1438    return;
1439  }
1440
1441  // If structDecl is a forward declaration, this loop won't do
1442  // anything except look at designated initializers; That's okay,
1443  // because an error should get printed out elsewhere. It might be
1444  // worthwhile to skip over the rest of the initializer, though.
1445  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1446  RecordDecl::field_iterator FieldEnd = RD->field_end();
1447  bool InitializedSomething = false;
1448  bool CheckForMissingFields = true;
1449  while (Index < IList->getNumInits()) {
1450    Expr *Init = IList->getInit(Index);
1451
1452    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1453      // If we're not the subobject that matches up with the '{' for
1454      // the designator, we shouldn't be handling the
1455      // designator. Return immediately.
1456      if (!SubobjectIsDesignatorContext)
1457        return;
1458
1459      // Handle this designated initializer. Field will be updated to
1460      // the next field that we'll be initializing.
1461      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1462                                     DeclType, &Field, 0, Index,
1463                                     StructuredList, StructuredIndex,
1464                                     true, TopLevelObject))
1465        hadError = true;
1466
1467      InitializedSomething = true;
1468
1469      // Disable check for missing fields when designators are used.
1470      // This matches gcc behaviour.
1471      CheckForMissingFields = false;
1472      continue;
1473    }
1474
1475    if (Field == FieldEnd) {
1476      // We've run out of fields. We're done.
1477      break;
1478    }
1479
1480    // We've already initialized a member of a union. We're done.
1481    if (InitializedSomething && DeclType->isUnionType())
1482      break;
1483
1484    // If we've hit the flexible array member at the end, we're done.
1485    if (Field->getType()->isIncompleteArrayType())
1486      break;
1487
1488    if (Field->isUnnamedBitfield()) {
1489      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1490      ++Field;
1491      continue;
1492    }
1493
1494    // Make sure we can use this declaration.
1495    bool InvalidUse;
1496    if (VerifyOnly)
1497      InvalidUse = !SemaRef.CanUseDecl(*Field);
1498    else
1499      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1500                                          IList->getInit(Index)->getLocStart());
1501    if (InvalidUse) {
1502      ++Index;
1503      ++Field;
1504      hadError = true;
1505      continue;
1506    }
1507
1508    InitializedEntity MemberEntity =
1509      InitializedEntity::InitializeMember(*Field, &Entity);
1510    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1511                        StructuredList, StructuredIndex);
1512    InitializedSomething = true;
1513
1514    if (DeclType->isUnionType() && !VerifyOnly) {
1515      // Initialize the first field within the union.
1516      StructuredList->setInitializedFieldInUnion(*Field);
1517    }
1518
1519    ++Field;
1520  }
1521
1522  // Emit warnings for missing struct field initializers.
1523  if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1524      Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1525      !DeclType->isUnionType()) {
1526    // It is possible we have one or more unnamed bitfields remaining.
1527    // Find first (if any) named field and emit warning.
1528    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1529         it != end; ++it) {
1530      if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1531        SemaRef.Diag(IList->getSourceRange().getEnd(),
1532                     diag::warn_missing_field_initializers) << it->getName();
1533        break;
1534      }
1535    }
1536  }
1537
1538  // Check that any remaining fields can be value-initialized.
1539  if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1540      !Field->getType()->isIncompleteArrayType()) {
1541    // FIXME: Should check for holes left by designated initializers too.
1542    for (; Field != FieldEnd && !hadError; ++Field) {
1543      if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1544        CheckValueInitializable(
1545            InitializedEntity::InitializeMember(*Field, &Entity));
1546    }
1547  }
1548
1549  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1550      Index >= IList->getNumInits())
1551    return;
1552
1553  if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1554                             TopLevelObject)) {
1555    hadError = true;
1556    ++Index;
1557    return;
1558  }
1559
1560  InitializedEntity MemberEntity =
1561    InitializedEntity::InitializeMember(*Field, &Entity);
1562
1563  if (isa<InitListExpr>(IList->getInit(Index)))
1564    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1565                        StructuredList, StructuredIndex);
1566  else
1567    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1568                          StructuredList, StructuredIndex);
1569}
1570
1571/// \brief Expand a field designator that refers to a member of an
1572/// anonymous struct or union into a series of field designators that
1573/// refers to the field within the appropriate subobject.
1574///
1575static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1576                                           DesignatedInitExpr *DIE,
1577                                           unsigned DesigIdx,
1578                                           IndirectFieldDecl *IndirectField) {
1579  typedef DesignatedInitExpr::Designator Designator;
1580
1581  // Build the replacement designators.
1582  SmallVector<Designator, 4> Replacements;
1583  for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1584       PE = IndirectField->chain_end(); PI != PE; ++PI) {
1585    if (PI + 1 == PE)
1586      Replacements.push_back(Designator((IdentifierInfo *)0,
1587                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1588                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1589    else
1590      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1591                                        SourceLocation()));
1592    assert(isa<FieldDecl>(*PI));
1593    Replacements.back().setField(cast<FieldDecl>(*PI));
1594  }
1595
1596  // Expand the current designator into the set of replacement
1597  // designators, so we have a full subobject path down to where the
1598  // member of the anonymous struct/union is actually stored.
1599  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1600                        &Replacements[0] + Replacements.size());
1601}
1602
1603/// \brief Given an implicit anonymous field, search the IndirectField that
1604///  corresponds to FieldName.
1605static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1606                                                 IdentifierInfo *FieldName) {
1607  if (!FieldName)
1608    return 0;
1609
1610  assert(AnonField->isAnonymousStructOrUnion());
1611  Decl *NextDecl = AnonField->getNextDeclInContext();
1612  while (IndirectFieldDecl *IF =
1613          dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1614    if (FieldName == IF->getAnonField()->getIdentifier())
1615      return IF;
1616    NextDecl = NextDecl->getNextDeclInContext();
1617  }
1618  return 0;
1619}
1620
1621static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1622                                                   DesignatedInitExpr *DIE) {
1623  unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1624  SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1625  for (unsigned I = 0; I < NumIndexExprs; ++I)
1626    IndexExprs[I] = DIE->getSubExpr(I + 1);
1627  return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1628                                    DIE->size(), IndexExprs,
1629                                    DIE->getEqualOrColonLoc(),
1630                                    DIE->usesGNUSyntax(), DIE->getInit());
1631}
1632
1633namespace {
1634
1635// Callback to only accept typo corrections that are for field members of
1636// the given struct or union.
1637class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1638 public:
1639  explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1640      : Record(RD) {}
1641
1642  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1643    FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1644    return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1645  }
1646
1647 private:
1648  RecordDecl *Record;
1649};
1650
1651}
1652
1653/// @brief Check the well-formedness of a C99 designated initializer.
1654///
1655/// Determines whether the designated initializer @p DIE, which
1656/// resides at the given @p Index within the initializer list @p
1657/// IList, is well-formed for a current object of type @p DeclType
1658/// (C99 6.7.8). The actual subobject that this designator refers to
1659/// within the current subobject is returned in either
1660/// @p NextField or @p NextElementIndex (whichever is appropriate).
1661///
1662/// @param IList  The initializer list in which this designated
1663/// initializer occurs.
1664///
1665/// @param DIE The designated initializer expression.
1666///
1667/// @param DesigIdx  The index of the current designator.
1668///
1669/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1670/// into which the designation in @p DIE should refer.
1671///
1672/// @param NextField  If non-NULL and the first designator in @p DIE is
1673/// a field, this will be set to the field declaration corresponding
1674/// to the field named by the designator.
1675///
1676/// @param NextElementIndex  If non-NULL and the first designator in @p
1677/// DIE is an array designator or GNU array-range designator, this
1678/// will be set to the last index initialized by this designator.
1679///
1680/// @param Index  Index into @p IList where the designated initializer
1681/// @p DIE occurs.
1682///
1683/// @param StructuredList  The initializer list expression that
1684/// describes all of the subobject initializers in the order they'll
1685/// actually be initialized.
1686///
1687/// @returns true if there was an error, false otherwise.
1688bool
1689InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1690                                            InitListExpr *IList,
1691                                            DesignatedInitExpr *DIE,
1692                                            unsigned DesigIdx,
1693                                            QualType &CurrentObjectType,
1694                                          RecordDecl::field_iterator *NextField,
1695                                            llvm::APSInt *NextElementIndex,
1696                                            unsigned &Index,
1697                                            InitListExpr *StructuredList,
1698                                            unsigned &StructuredIndex,
1699                                            bool FinishSubobjectInit,
1700                                            bool TopLevelObject) {
1701  if (DesigIdx == DIE->size()) {
1702    // Check the actual initialization for the designated object type.
1703    bool prevHadError = hadError;
1704
1705    // Temporarily remove the designator expression from the
1706    // initializer list that the child calls see, so that we don't try
1707    // to re-process the designator.
1708    unsigned OldIndex = Index;
1709    IList->setInit(OldIndex, DIE->getInit());
1710
1711    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1712                        StructuredList, StructuredIndex);
1713
1714    // Restore the designated initializer expression in the syntactic
1715    // form of the initializer list.
1716    if (IList->getInit(OldIndex) != DIE->getInit())
1717      DIE->setInit(IList->getInit(OldIndex));
1718    IList->setInit(OldIndex, DIE);
1719
1720    return hadError && !prevHadError;
1721  }
1722
1723  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1724  bool IsFirstDesignator = (DesigIdx == 0);
1725  if (!VerifyOnly) {
1726    assert((IsFirstDesignator || StructuredList) &&
1727           "Need a non-designated initializer list to start from");
1728
1729    // Determine the structural initializer list that corresponds to the
1730    // current subobject.
1731    StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1732      : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1733                                   StructuredList, StructuredIndex,
1734                                   SourceRange(D->getLocStart(),
1735                                               DIE->getLocEnd()));
1736    assert(StructuredList && "Expected a structured initializer list");
1737  }
1738
1739  if (D->isFieldDesignator()) {
1740    // C99 6.7.8p7:
1741    //
1742    //   If a designator has the form
1743    //
1744    //      . identifier
1745    //
1746    //   then the current object (defined below) shall have
1747    //   structure or union type and the identifier shall be the
1748    //   name of a member of that type.
1749    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1750    if (!RT) {
1751      SourceLocation Loc = D->getDotLoc();
1752      if (Loc.isInvalid())
1753        Loc = D->getFieldLoc();
1754      if (!VerifyOnly)
1755        SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1756          << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1757      ++Index;
1758      return true;
1759    }
1760
1761    // Note: we perform a linear search of the fields here, despite
1762    // the fact that we have a faster lookup method, because we always
1763    // need to compute the field's index.
1764    FieldDecl *KnownField = D->getField();
1765    IdentifierInfo *FieldName = D->getFieldName();
1766    unsigned FieldIndex = 0;
1767    RecordDecl::field_iterator
1768      Field = RT->getDecl()->field_begin(),
1769      FieldEnd = RT->getDecl()->field_end();
1770    for (; Field != FieldEnd; ++Field) {
1771      if (Field->isUnnamedBitfield())
1772        continue;
1773
1774      // If we find a field representing an anonymous field, look in the
1775      // IndirectFieldDecl that follow for the designated initializer.
1776      if (!KnownField && Field->isAnonymousStructOrUnion()) {
1777        if (IndirectFieldDecl *IF =
1778            FindIndirectFieldDesignator(*Field, FieldName)) {
1779          // In verify mode, don't modify the original.
1780          if (VerifyOnly)
1781            DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1782          ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1783          D = DIE->getDesignator(DesigIdx);
1784          break;
1785        }
1786      }
1787      if (KnownField && KnownField == *Field)
1788        break;
1789      if (FieldName && FieldName == Field->getIdentifier())
1790        break;
1791
1792      ++FieldIndex;
1793    }
1794
1795    if (Field == FieldEnd) {
1796      if (VerifyOnly) {
1797        ++Index;
1798        return true; // No typo correction when just trying this out.
1799      }
1800
1801      // There was no normal field in the struct with the designated
1802      // name. Perform another lookup for this name, which may find
1803      // something that we can't designate (e.g., a member function),
1804      // may find nothing, or may find a member of an anonymous
1805      // struct/union.
1806      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1807      FieldDecl *ReplacementField = 0;
1808      if (Lookup.empty()) {
1809        // Name lookup didn't find anything. Determine whether this
1810        // was a typo for another field name.
1811        FieldInitializerValidatorCCC Validator(RT->getDecl());
1812        TypoCorrection Corrected = SemaRef.CorrectTypo(
1813            DeclarationNameInfo(FieldName, D->getFieldLoc()),
1814            Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator,
1815            RT->getDecl());
1816        if (Corrected) {
1817          std::string CorrectedStr(
1818              Corrected.getAsString(SemaRef.getLangOpts()));
1819          std::string CorrectedQuotedStr(
1820              Corrected.getQuoted(SemaRef.getLangOpts()));
1821          ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1822          SemaRef.Diag(D->getFieldLoc(),
1823                       diag::err_field_designator_unknown_suggest)
1824            << FieldName << CurrentObjectType << CorrectedQuotedStr
1825            << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1826          SemaRef.Diag(ReplacementField->getLocation(),
1827                       diag::note_previous_decl) << CorrectedQuotedStr;
1828          hadError = true;
1829        } else {
1830          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1831            << FieldName << CurrentObjectType;
1832          ++Index;
1833          return true;
1834        }
1835      }
1836
1837      if (!ReplacementField) {
1838        // Name lookup found something, but it wasn't a field.
1839        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1840          << FieldName;
1841        SemaRef.Diag(Lookup.front()->getLocation(),
1842                      diag::note_field_designator_found);
1843        ++Index;
1844        return true;
1845      }
1846
1847      if (!KnownField) {
1848        // The replacement field comes from typo correction; find it
1849        // in the list of fields.
1850        FieldIndex = 0;
1851        Field = RT->getDecl()->field_begin();
1852        for (; Field != FieldEnd; ++Field) {
1853          if (Field->isUnnamedBitfield())
1854            continue;
1855
1856          if (ReplacementField == *Field ||
1857              Field->getIdentifier() == ReplacementField->getIdentifier())
1858            break;
1859
1860          ++FieldIndex;
1861        }
1862      }
1863    }
1864
1865    // All of the fields of a union are located at the same place in
1866    // the initializer list.
1867    if (RT->getDecl()->isUnion()) {
1868      FieldIndex = 0;
1869      if (!VerifyOnly)
1870        StructuredList->setInitializedFieldInUnion(*Field);
1871    }
1872
1873    // Make sure we can use this declaration.
1874    bool InvalidUse;
1875    if (VerifyOnly)
1876      InvalidUse = !SemaRef.CanUseDecl(*Field);
1877    else
1878      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1879    if (InvalidUse) {
1880      ++Index;
1881      return true;
1882    }
1883
1884    if (!VerifyOnly) {
1885      // Update the designator with the field declaration.
1886      D->setField(*Field);
1887
1888      // Make sure that our non-designated initializer list has space
1889      // for a subobject corresponding to this field.
1890      if (FieldIndex >= StructuredList->getNumInits())
1891        StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1892    }
1893
1894    // This designator names a flexible array member.
1895    if (Field->getType()->isIncompleteArrayType()) {
1896      bool Invalid = false;
1897      if ((DesigIdx + 1) != DIE->size()) {
1898        // We can't designate an object within the flexible array
1899        // member (because GCC doesn't allow it).
1900        if (!VerifyOnly) {
1901          DesignatedInitExpr::Designator *NextD
1902            = DIE->getDesignator(DesigIdx + 1);
1903          SemaRef.Diag(NextD->getLocStart(),
1904                        diag::err_designator_into_flexible_array_member)
1905            << SourceRange(NextD->getLocStart(),
1906                           DIE->getLocEnd());
1907          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1908            << *Field;
1909        }
1910        Invalid = true;
1911      }
1912
1913      if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1914          !isa<StringLiteral>(DIE->getInit())) {
1915        // The initializer is not an initializer list.
1916        if (!VerifyOnly) {
1917          SemaRef.Diag(DIE->getInit()->getLocStart(),
1918                        diag::err_flexible_array_init_needs_braces)
1919            << DIE->getInit()->getSourceRange();
1920          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1921            << *Field;
1922        }
1923        Invalid = true;
1924      }
1925
1926      // Check GNU flexible array initializer.
1927      if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1928                                             TopLevelObject))
1929        Invalid = true;
1930
1931      if (Invalid) {
1932        ++Index;
1933        return true;
1934      }
1935
1936      // Initialize the array.
1937      bool prevHadError = hadError;
1938      unsigned newStructuredIndex = FieldIndex;
1939      unsigned OldIndex = Index;
1940      IList->setInit(Index, DIE->getInit());
1941
1942      InitializedEntity MemberEntity =
1943        InitializedEntity::InitializeMember(*Field, &Entity);
1944      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1945                          StructuredList, newStructuredIndex);
1946
1947      IList->setInit(OldIndex, DIE);
1948      if (hadError && !prevHadError) {
1949        ++Field;
1950        ++FieldIndex;
1951        if (NextField)
1952          *NextField = Field;
1953        StructuredIndex = FieldIndex;
1954        return true;
1955      }
1956    } else {
1957      // Recurse to check later designated subobjects.
1958      QualType FieldType = Field->getType();
1959      unsigned newStructuredIndex = FieldIndex;
1960
1961      InitializedEntity MemberEntity =
1962        InitializedEntity::InitializeMember(*Field, &Entity);
1963      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1964                                     FieldType, 0, 0, Index,
1965                                     StructuredList, newStructuredIndex,
1966                                     true, false))
1967        return true;
1968    }
1969
1970    // Find the position of the next field to be initialized in this
1971    // subobject.
1972    ++Field;
1973    ++FieldIndex;
1974
1975    // If this the first designator, our caller will continue checking
1976    // the rest of this struct/class/union subobject.
1977    if (IsFirstDesignator) {
1978      if (NextField)
1979        *NextField = Field;
1980      StructuredIndex = FieldIndex;
1981      return false;
1982    }
1983
1984    if (!FinishSubobjectInit)
1985      return false;
1986
1987    // We've already initialized something in the union; we're done.
1988    if (RT->getDecl()->isUnion())
1989      return hadError;
1990
1991    // Check the remaining fields within this class/struct/union subobject.
1992    bool prevHadError = hadError;
1993
1994    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1995                          StructuredList, FieldIndex);
1996    return hadError && !prevHadError;
1997  }
1998
1999  // C99 6.7.8p6:
2000  //
2001  //   If a designator has the form
2002  //
2003  //      [ constant-expression ]
2004  //
2005  //   then the current object (defined below) shall have array
2006  //   type and the expression shall be an integer constant
2007  //   expression. If the array is of unknown size, any
2008  //   nonnegative value is valid.
2009  //
2010  // Additionally, cope with the GNU extension that permits
2011  // designators of the form
2012  //
2013  //      [ constant-expression ... constant-expression ]
2014  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2015  if (!AT) {
2016    if (!VerifyOnly)
2017      SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2018        << CurrentObjectType;
2019    ++Index;
2020    return true;
2021  }
2022
2023  Expr *IndexExpr = 0;
2024  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2025  if (D->isArrayDesignator()) {
2026    IndexExpr = DIE->getArrayIndex(*D);
2027    DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2028    DesignatedEndIndex = DesignatedStartIndex;
2029  } else {
2030    assert(D->isArrayRangeDesignator() && "Need array-range designator");
2031
2032    DesignatedStartIndex =
2033      DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2034    DesignatedEndIndex =
2035      DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2036    IndexExpr = DIE->getArrayRangeEnd(*D);
2037
2038    // Codegen can't handle evaluating array range designators that have side
2039    // effects, because we replicate the AST value for each initialized element.
2040    // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2041    // elements with something that has a side effect, so codegen can emit an
2042    // "error unsupported" error instead of miscompiling the app.
2043    if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2044        DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2045      FullyStructuredList->sawArrayRangeDesignator();
2046  }
2047
2048  if (isa<ConstantArrayType>(AT)) {
2049    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2050    DesignatedStartIndex
2051      = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2052    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2053    DesignatedEndIndex
2054      = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2055    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2056    if (DesignatedEndIndex >= MaxElements) {
2057      if (!VerifyOnly)
2058        SemaRef.Diag(IndexExpr->getLocStart(),
2059                      diag::err_array_designator_too_large)
2060          << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2061          << IndexExpr->getSourceRange();
2062      ++Index;
2063      return true;
2064    }
2065  } else {
2066    // Make sure the bit-widths and signedness match.
2067    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
2068      DesignatedEndIndex
2069        = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
2070    else if (DesignatedStartIndex.getBitWidth() <
2071             DesignatedEndIndex.getBitWidth())
2072      DesignatedStartIndex
2073        = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
2074    DesignatedStartIndex.setIsUnsigned(true);
2075    DesignatedEndIndex.setIsUnsigned(true);
2076  }
2077
2078  if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2079    // We're modifying a string literal init; we have to decompose the string
2080    // so we can modify the individual characters.
2081    ASTContext &Context = SemaRef.Context;
2082    Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2083
2084    // Compute the character type
2085    QualType CharTy = AT->getElementType();
2086
2087    // Compute the type of the integer literals.
2088    QualType PromotedCharTy = CharTy;
2089    if (CharTy->isPromotableIntegerType())
2090      PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2091    unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2092
2093    if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2094      // Get the length of the string.
2095      uint64_t StrLen = SL->getLength();
2096      if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2097        StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2098      StructuredList->resizeInits(Context, StrLen);
2099
2100      // Build a literal for each character in the string, and put them into
2101      // the init list.
2102      for (unsigned i = 0, e = StrLen; i != e; ++i) {
2103        llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2104        Expr *Init = new (Context) IntegerLiteral(
2105            Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2106        if (CharTy != PromotedCharTy)
2107          Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2108                                          Init, 0, VK_RValue);
2109        StructuredList->updateInit(Context, i, Init);
2110      }
2111    } else {
2112      ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2113      std::string Str;
2114      Context.getObjCEncodingForType(E->getEncodedType(), Str);
2115
2116      // Get the length of the string.
2117      uint64_t StrLen = Str.size();
2118      if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2119        StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2120      StructuredList->resizeInits(Context, StrLen);
2121
2122      // Build a literal for each character in the string, and put them into
2123      // the init list.
2124      for (unsigned i = 0, e = StrLen; i != e; ++i) {
2125        llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2126        Expr *Init = new (Context) IntegerLiteral(
2127            Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2128        if (CharTy != PromotedCharTy)
2129          Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2130                                          Init, 0, VK_RValue);
2131        StructuredList->updateInit(Context, i, Init);
2132      }
2133    }
2134  }
2135
2136  // Make sure that our non-designated initializer list has space
2137  // for a subobject corresponding to this array element.
2138  if (!VerifyOnly &&
2139      DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2140    StructuredList->resizeInits(SemaRef.Context,
2141                                DesignatedEndIndex.getZExtValue() + 1);
2142
2143  // Repeatedly perform subobject initializations in the range
2144  // [DesignatedStartIndex, DesignatedEndIndex].
2145
2146  // Move to the next designator
2147  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2148  unsigned OldIndex = Index;
2149
2150  InitializedEntity ElementEntity =
2151    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2152
2153  while (DesignatedStartIndex <= DesignatedEndIndex) {
2154    // Recurse to check later designated subobjects.
2155    QualType ElementType = AT->getElementType();
2156    Index = OldIndex;
2157
2158    ElementEntity.setElementIndex(ElementIndex);
2159    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2160                                   ElementType, 0, 0, Index,
2161                                   StructuredList, ElementIndex,
2162                                   (DesignatedStartIndex == DesignatedEndIndex),
2163                                   false))
2164      return true;
2165
2166    // Move to the next index in the array that we'll be initializing.
2167    ++DesignatedStartIndex;
2168    ElementIndex = DesignatedStartIndex.getZExtValue();
2169  }
2170
2171  // If this the first designator, our caller will continue checking
2172  // the rest of this array subobject.
2173  if (IsFirstDesignator) {
2174    if (NextElementIndex)
2175      *NextElementIndex = DesignatedStartIndex;
2176    StructuredIndex = ElementIndex;
2177    return false;
2178  }
2179
2180  if (!FinishSubobjectInit)
2181    return false;
2182
2183  // Check the remaining elements within this array subobject.
2184  bool prevHadError = hadError;
2185  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2186                 /*SubobjectIsDesignatorContext=*/false, Index,
2187                 StructuredList, ElementIndex);
2188  return hadError && !prevHadError;
2189}
2190
2191// Get the structured initializer list for a subobject of type
2192// @p CurrentObjectType.
2193InitListExpr *
2194InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2195                                            QualType CurrentObjectType,
2196                                            InitListExpr *StructuredList,
2197                                            unsigned StructuredIndex,
2198                                            SourceRange InitRange) {
2199  if (VerifyOnly)
2200    return 0; // No structured list in verification-only mode.
2201  Expr *ExistingInit = 0;
2202  if (!StructuredList)
2203    ExistingInit = SyntacticToSemantic.lookup(IList);
2204  else if (StructuredIndex < StructuredList->getNumInits())
2205    ExistingInit = StructuredList->getInit(StructuredIndex);
2206
2207  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2208    return Result;
2209
2210  if (ExistingInit) {
2211    // We are creating an initializer list that initializes the
2212    // subobjects of the current object, but there was already an
2213    // initialization that completely initialized the current
2214    // subobject, e.g., by a compound literal:
2215    //
2216    // struct X { int a, b; };
2217    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2218    //
2219    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2220    // designated initializer re-initializes the whole
2221    // subobject [0], overwriting previous initializers.
2222    SemaRef.Diag(InitRange.getBegin(),
2223                 diag::warn_subobject_initializer_overrides)
2224      << InitRange;
2225    SemaRef.Diag(ExistingInit->getLocStart(),
2226                  diag::note_previous_initializer)
2227      << /*FIXME:has side effects=*/0
2228      << ExistingInit->getSourceRange();
2229  }
2230
2231  InitListExpr *Result
2232    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2233                                         InitRange.getBegin(), None,
2234                                         InitRange.getEnd());
2235
2236  QualType ResultType = CurrentObjectType;
2237  if (!ResultType->isArrayType())
2238    ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2239  Result->setType(ResultType);
2240
2241  // Pre-allocate storage for the structured initializer list.
2242  unsigned NumElements = 0;
2243  unsigned NumInits = 0;
2244  bool GotNumInits = false;
2245  if (!StructuredList) {
2246    NumInits = IList->getNumInits();
2247    GotNumInits = true;
2248  } else if (Index < IList->getNumInits()) {
2249    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2250      NumInits = SubList->getNumInits();
2251      GotNumInits = true;
2252    }
2253  }
2254
2255  if (const ArrayType *AType
2256      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2257    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2258      NumElements = CAType->getSize().getZExtValue();
2259      // Simple heuristic so that we don't allocate a very large
2260      // initializer with many empty entries at the end.
2261      if (GotNumInits && NumElements > NumInits)
2262        NumElements = 0;
2263    }
2264  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2265    NumElements = VType->getNumElements();
2266  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2267    RecordDecl *RDecl = RType->getDecl();
2268    if (RDecl->isUnion())
2269      NumElements = 1;
2270    else
2271      NumElements = std::distance(RDecl->field_begin(),
2272                                  RDecl->field_end());
2273  }
2274
2275  Result->reserveInits(SemaRef.Context, NumElements);
2276
2277  // Link this new initializer list into the structured initializer
2278  // lists.
2279  if (StructuredList)
2280    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2281  else {
2282    Result->setSyntacticForm(IList);
2283    SyntacticToSemantic[IList] = Result;
2284  }
2285
2286  return Result;
2287}
2288
2289/// Update the initializer at index @p StructuredIndex within the
2290/// structured initializer list to the value @p expr.
2291void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2292                                                  unsigned &StructuredIndex,
2293                                                  Expr *expr) {
2294  // No structured initializer list to update
2295  if (!StructuredList)
2296    return;
2297
2298  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2299                                                  StructuredIndex, expr)) {
2300    // This initializer overwrites a previous initializer. Warn.
2301    SemaRef.Diag(expr->getLocStart(),
2302                  diag::warn_initializer_overrides)
2303      << expr->getSourceRange();
2304    SemaRef.Diag(PrevInit->getLocStart(),
2305                  diag::note_previous_initializer)
2306      << /*FIXME:has side effects=*/0
2307      << PrevInit->getSourceRange();
2308  }
2309
2310  ++StructuredIndex;
2311}
2312
2313/// Check that the given Index expression is a valid array designator
2314/// value. This is essentially just a wrapper around
2315/// VerifyIntegerConstantExpression that also checks for negative values
2316/// and produces a reasonable diagnostic if there is a
2317/// failure. Returns the index expression, possibly with an implicit cast
2318/// added, on success.  If everything went okay, Value will receive the
2319/// value of the constant expression.
2320static ExprResult
2321CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2322  SourceLocation Loc = Index->getLocStart();
2323
2324  // Make sure this is an integer constant expression.
2325  ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2326  if (Result.isInvalid())
2327    return Result;
2328
2329  if (Value.isSigned() && Value.isNegative())
2330    return S.Diag(Loc, diag::err_array_designator_negative)
2331      << Value.toString(10) << Index->getSourceRange();
2332
2333  Value.setIsUnsigned(true);
2334  return Result;
2335}
2336
2337ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2338                                            SourceLocation Loc,
2339                                            bool GNUSyntax,
2340                                            ExprResult Init) {
2341  typedef DesignatedInitExpr::Designator ASTDesignator;
2342
2343  bool Invalid = false;
2344  SmallVector<ASTDesignator, 32> Designators;
2345  SmallVector<Expr *, 32> InitExpressions;
2346
2347  // Build designators and check array designator expressions.
2348  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2349    const Designator &D = Desig.getDesignator(Idx);
2350    switch (D.getKind()) {
2351    case Designator::FieldDesignator:
2352      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2353                                          D.getFieldLoc()));
2354      break;
2355
2356    case Designator::ArrayDesignator: {
2357      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2358      llvm::APSInt IndexValue;
2359      if (!Index->isTypeDependent() && !Index->isValueDependent())
2360        Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2361      if (!Index)
2362        Invalid = true;
2363      else {
2364        Designators.push_back(ASTDesignator(InitExpressions.size(),
2365                                            D.getLBracketLoc(),
2366                                            D.getRBracketLoc()));
2367        InitExpressions.push_back(Index);
2368      }
2369      break;
2370    }
2371
2372    case Designator::ArrayRangeDesignator: {
2373      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2374      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2375      llvm::APSInt StartValue;
2376      llvm::APSInt EndValue;
2377      bool StartDependent = StartIndex->isTypeDependent() ||
2378                            StartIndex->isValueDependent();
2379      bool EndDependent = EndIndex->isTypeDependent() ||
2380                          EndIndex->isValueDependent();
2381      if (!StartDependent)
2382        StartIndex =
2383            CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2384      if (!EndDependent)
2385        EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2386
2387      if (!StartIndex || !EndIndex)
2388        Invalid = true;
2389      else {
2390        // Make sure we're comparing values with the same bit width.
2391        if (StartDependent || EndDependent) {
2392          // Nothing to compute.
2393        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2394          EndValue = EndValue.extend(StartValue.getBitWidth());
2395        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2396          StartValue = StartValue.extend(EndValue.getBitWidth());
2397
2398        if (!StartDependent && !EndDependent && EndValue < StartValue) {
2399          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2400            << StartValue.toString(10) << EndValue.toString(10)
2401            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2402          Invalid = true;
2403        } else {
2404          Designators.push_back(ASTDesignator(InitExpressions.size(),
2405                                              D.getLBracketLoc(),
2406                                              D.getEllipsisLoc(),
2407                                              D.getRBracketLoc()));
2408          InitExpressions.push_back(StartIndex);
2409          InitExpressions.push_back(EndIndex);
2410        }
2411      }
2412      break;
2413    }
2414    }
2415  }
2416
2417  if (Invalid || Init.isInvalid())
2418    return ExprError();
2419
2420  // Clear out the expressions within the designation.
2421  Desig.ClearExprs(*this);
2422
2423  DesignatedInitExpr *DIE
2424    = DesignatedInitExpr::Create(Context,
2425                                 Designators.data(), Designators.size(),
2426                                 InitExpressions, Loc, GNUSyntax,
2427                                 Init.takeAs<Expr>());
2428
2429  if (!getLangOpts().C99)
2430    Diag(DIE->getLocStart(), diag::ext_designated_init)
2431      << DIE->getSourceRange();
2432
2433  return Owned(DIE);
2434}
2435
2436//===----------------------------------------------------------------------===//
2437// Initialization entity
2438//===----------------------------------------------------------------------===//
2439
2440InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2441                                     const InitializedEntity &Parent)
2442  : Parent(&Parent), Index(Index)
2443{
2444  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2445    Kind = EK_ArrayElement;
2446    Type = AT->getElementType();
2447  } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2448    Kind = EK_VectorElement;
2449    Type = VT->getElementType();
2450  } else {
2451    const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2452    assert(CT && "Unexpected type");
2453    Kind = EK_ComplexElement;
2454    Type = CT->getElementType();
2455  }
2456}
2457
2458InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2459                                                    CXXBaseSpecifier *Base,
2460                                                    bool IsInheritedVirtualBase)
2461{
2462  InitializedEntity Result;
2463  Result.Kind = EK_Base;
2464  Result.Parent = 0;
2465  Result.Base = reinterpret_cast<uintptr_t>(Base);
2466  if (IsInheritedVirtualBase)
2467    Result.Base |= 0x01;
2468
2469  Result.Type = Base->getType();
2470  return Result;
2471}
2472
2473DeclarationName InitializedEntity::getName() const {
2474  switch (getKind()) {
2475  case EK_Parameter: {
2476    ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2477    return (D ? D->getDeclName() : DeclarationName());
2478  }
2479
2480  case EK_Variable:
2481  case EK_Member:
2482    return VariableOrMember->getDeclName();
2483
2484  case EK_LambdaCapture:
2485    return Capture.Var->getDeclName();
2486
2487  case EK_Result:
2488  case EK_Exception:
2489  case EK_New:
2490  case EK_Temporary:
2491  case EK_Base:
2492  case EK_Delegating:
2493  case EK_ArrayElement:
2494  case EK_VectorElement:
2495  case EK_ComplexElement:
2496  case EK_BlockElement:
2497  case EK_CompoundLiteralInit:
2498  case EK_RelatedResult:
2499    return DeclarationName();
2500  }
2501
2502  llvm_unreachable("Invalid EntityKind!");
2503}
2504
2505DeclaratorDecl *InitializedEntity::getDecl() const {
2506  switch (getKind()) {
2507  case EK_Variable:
2508  case EK_Member:
2509    return VariableOrMember;
2510
2511  case EK_Parameter:
2512    return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2513
2514  case EK_Result:
2515  case EK_Exception:
2516  case EK_New:
2517  case EK_Temporary:
2518  case EK_Base:
2519  case EK_Delegating:
2520  case EK_ArrayElement:
2521  case EK_VectorElement:
2522  case EK_ComplexElement:
2523  case EK_BlockElement:
2524  case EK_LambdaCapture:
2525  case EK_CompoundLiteralInit:
2526  case EK_RelatedResult:
2527    return 0;
2528  }
2529
2530  llvm_unreachable("Invalid EntityKind!");
2531}
2532
2533bool InitializedEntity::allowsNRVO() const {
2534  switch (getKind()) {
2535  case EK_Result:
2536  case EK_Exception:
2537    return LocAndNRVO.NRVO;
2538
2539  case EK_Variable:
2540  case EK_Parameter:
2541  case EK_Member:
2542  case EK_New:
2543  case EK_Temporary:
2544  case EK_CompoundLiteralInit:
2545  case EK_Base:
2546  case EK_Delegating:
2547  case EK_ArrayElement:
2548  case EK_VectorElement:
2549  case EK_ComplexElement:
2550  case EK_BlockElement:
2551  case EK_LambdaCapture:
2552  case EK_RelatedResult:
2553    break;
2554  }
2555
2556  return false;
2557}
2558
2559unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
2560  assert(getParent() != this);
2561  unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
2562  for (unsigned I = 0; I != Depth; ++I)
2563    OS << "`-";
2564
2565  switch (getKind()) {
2566  case EK_Variable: OS << "Variable"; break;
2567  case EK_Parameter: OS << "Parameter"; break;
2568  case EK_Result: OS << "Result"; break;
2569  case EK_Exception: OS << "Exception"; break;
2570  case EK_Member: OS << "Member"; break;
2571  case EK_New: OS << "New"; break;
2572  case EK_Temporary: OS << "Temporary"; break;
2573  case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
2574  case EK_RelatedResult: OS << "RelatedResult"; break;
2575  case EK_Base: OS << "Base"; break;
2576  case EK_Delegating: OS << "Delegating"; break;
2577  case EK_ArrayElement: OS << "ArrayElement " << Index; break;
2578  case EK_VectorElement: OS << "VectorElement " << Index; break;
2579  case EK_ComplexElement: OS << "ComplexElement " << Index; break;
2580  case EK_BlockElement: OS << "Block"; break;
2581  case EK_LambdaCapture:
2582    OS << "LambdaCapture ";
2583    getCapturedVar()->printName(OS);
2584    break;
2585  }
2586
2587  if (Decl *D = getDecl()) {
2588    OS << " ";
2589    cast<NamedDecl>(D)->printQualifiedName(OS);
2590  }
2591
2592  OS << " '" << getType().getAsString() << "'\n";
2593
2594  return Depth + 1;
2595}
2596
2597void InitializedEntity::dump() const {
2598  dumpImpl(llvm::errs());
2599}
2600
2601//===----------------------------------------------------------------------===//
2602// Initialization sequence
2603//===----------------------------------------------------------------------===//
2604
2605void InitializationSequence::Step::Destroy() {
2606  switch (Kind) {
2607  case SK_ResolveAddressOfOverloadedFunction:
2608  case SK_CastDerivedToBaseRValue:
2609  case SK_CastDerivedToBaseXValue:
2610  case SK_CastDerivedToBaseLValue:
2611  case SK_BindReference:
2612  case SK_BindReferenceToTemporary:
2613  case SK_ExtraneousCopyToTemporary:
2614  case SK_UserConversion:
2615  case SK_QualificationConversionRValue:
2616  case SK_QualificationConversionXValue:
2617  case SK_QualificationConversionLValue:
2618  case SK_LValueToRValue:
2619  case SK_ListInitialization:
2620  case SK_ListConstructorCall:
2621  case SK_UnwrapInitList:
2622  case SK_RewrapInitList:
2623  case SK_ConstructorInitialization:
2624  case SK_ZeroInitialization:
2625  case SK_CAssignment:
2626  case SK_StringInit:
2627  case SK_ObjCObjectConversion:
2628  case SK_ArrayInit:
2629  case SK_ParenthesizedArrayInit:
2630  case SK_PassByIndirectCopyRestore:
2631  case SK_PassByIndirectRestore:
2632  case SK_ProduceObjCObject:
2633  case SK_StdInitializerList:
2634  case SK_OCLSamplerInit:
2635  case SK_OCLZeroEvent:
2636    break;
2637
2638  case SK_ConversionSequence:
2639    delete ICS;
2640  }
2641}
2642
2643bool InitializationSequence::isDirectReferenceBinding() const {
2644  return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2645}
2646
2647bool InitializationSequence::isAmbiguous() const {
2648  if (!Failed())
2649    return false;
2650
2651  switch (getFailureKind()) {
2652  case FK_TooManyInitsForReference:
2653  case FK_ArrayNeedsInitList:
2654  case FK_ArrayNeedsInitListOrStringLiteral:
2655  case FK_ArrayNeedsInitListOrWideStringLiteral:
2656  case FK_NarrowStringIntoWideCharArray:
2657  case FK_WideStringIntoCharArray:
2658  case FK_IncompatWideStringIntoWideChar:
2659  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2660  case FK_NonConstLValueReferenceBindingToTemporary:
2661  case FK_NonConstLValueReferenceBindingToUnrelated:
2662  case FK_RValueReferenceBindingToLValue:
2663  case FK_ReferenceInitDropsQualifiers:
2664  case FK_ReferenceInitFailed:
2665  case FK_ConversionFailed:
2666  case FK_ConversionFromPropertyFailed:
2667  case FK_TooManyInitsForScalar:
2668  case FK_ReferenceBindingToInitList:
2669  case FK_InitListBadDestinationType:
2670  case FK_DefaultInitOfConst:
2671  case FK_Incomplete:
2672  case FK_ArrayTypeMismatch:
2673  case FK_NonConstantArrayInit:
2674  case FK_ListInitializationFailed:
2675  case FK_VariableLengthArrayHasInitializer:
2676  case FK_PlaceholderType:
2677  case FK_ExplicitConstructor:
2678    return false;
2679
2680  case FK_ReferenceInitOverloadFailed:
2681  case FK_UserConversionOverloadFailed:
2682  case FK_ConstructorOverloadFailed:
2683  case FK_ListConstructorOverloadFailed:
2684    return FailedOverloadResult == OR_Ambiguous;
2685  }
2686
2687  llvm_unreachable("Invalid EntityKind!");
2688}
2689
2690bool InitializationSequence::isConstructorInitialization() const {
2691  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2692}
2693
2694void
2695InitializationSequence
2696::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2697                                   DeclAccessPair Found,
2698                                   bool HadMultipleCandidates) {
2699  Step S;
2700  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2701  S.Type = Function->getType();
2702  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2703  S.Function.Function = Function;
2704  S.Function.FoundDecl = Found;
2705  Steps.push_back(S);
2706}
2707
2708void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2709                                                      ExprValueKind VK) {
2710  Step S;
2711  switch (VK) {
2712  case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2713  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2714  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2715  }
2716  S.Type = BaseType;
2717  Steps.push_back(S);
2718}
2719
2720void InitializationSequence::AddReferenceBindingStep(QualType T,
2721                                                     bool BindingTemporary) {
2722  Step S;
2723  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2724  S.Type = T;
2725  Steps.push_back(S);
2726}
2727
2728void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2729  Step S;
2730  S.Kind = SK_ExtraneousCopyToTemporary;
2731  S.Type = T;
2732  Steps.push_back(S);
2733}
2734
2735void
2736InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2737                                              DeclAccessPair FoundDecl,
2738                                              QualType T,
2739                                              bool HadMultipleCandidates) {
2740  Step S;
2741  S.Kind = SK_UserConversion;
2742  S.Type = T;
2743  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2744  S.Function.Function = Function;
2745  S.Function.FoundDecl = FoundDecl;
2746  Steps.push_back(S);
2747}
2748
2749void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2750                                                            ExprValueKind VK) {
2751  Step S;
2752  S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2753  switch (VK) {
2754  case VK_RValue:
2755    S.Kind = SK_QualificationConversionRValue;
2756    break;
2757  case VK_XValue:
2758    S.Kind = SK_QualificationConversionXValue;
2759    break;
2760  case VK_LValue:
2761    S.Kind = SK_QualificationConversionLValue;
2762    break;
2763  }
2764  S.Type = Ty;
2765  Steps.push_back(S);
2766}
2767
2768void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
2769  assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
2770
2771  Step S;
2772  S.Kind = SK_LValueToRValue;
2773  S.Type = Ty;
2774  Steps.push_back(S);
2775}
2776
2777void InitializationSequence::AddConversionSequenceStep(
2778                                       const ImplicitConversionSequence &ICS,
2779                                                       QualType T) {
2780  Step S;
2781  S.Kind = SK_ConversionSequence;
2782  S.Type = T;
2783  S.ICS = new ImplicitConversionSequence(ICS);
2784  Steps.push_back(S);
2785}
2786
2787void InitializationSequence::AddListInitializationStep(QualType T) {
2788  Step S;
2789  S.Kind = SK_ListInitialization;
2790  S.Type = T;
2791  Steps.push_back(S);
2792}
2793
2794void
2795InitializationSequence
2796::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2797                                   AccessSpecifier Access,
2798                                   QualType T,
2799                                   bool HadMultipleCandidates,
2800                                   bool FromInitList, bool AsInitList) {
2801  Step S;
2802  S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2803                                       : SK_ConstructorInitialization;
2804  S.Type = T;
2805  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2806  S.Function.Function = Constructor;
2807  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2808  Steps.push_back(S);
2809}
2810
2811void InitializationSequence::AddZeroInitializationStep(QualType T) {
2812  Step S;
2813  S.Kind = SK_ZeroInitialization;
2814  S.Type = T;
2815  Steps.push_back(S);
2816}
2817
2818void InitializationSequence::AddCAssignmentStep(QualType T) {
2819  Step S;
2820  S.Kind = SK_CAssignment;
2821  S.Type = T;
2822  Steps.push_back(S);
2823}
2824
2825void InitializationSequence::AddStringInitStep(QualType T) {
2826  Step S;
2827  S.Kind = SK_StringInit;
2828  S.Type = T;
2829  Steps.push_back(S);
2830}
2831
2832void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2833  Step S;
2834  S.Kind = SK_ObjCObjectConversion;
2835  S.Type = T;
2836  Steps.push_back(S);
2837}
2838
2839void InitializationSequence::AddArrayInitStep(QualType T) {
2840  Step S;
2841  S.Kind = SK_ArrayInit;
2842  S.Type = T;
2843  Steps.push_back(S);
2844}
2845
2846void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2847  Step S;
2848  S.Kind = SK_ParenthesizedArrayInit;
2849  S.Type = T;
2850  Steps.push_back(S);
2851}
2852
2853void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2854                                                              bool shouldCopy) {
2855  Step s;
2856  s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2857                       : SK_PassByIndirectRestore);
2858  s.Type = type;
2859  Steps.push_back(s);
2860}
2861
2862void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2863  Step S;
2864  S.Kind = SK_ProduceObjCObject;
2865  S.Type = T;
2866  Steps.push_back(S);
2867}
2868
2869void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2870  Step S;
2871  S.Kind = SK_StdInitializerList;
2872  S.Type = T;
2873  Steps.push_back(S);
2874}
2875
2876void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
2877  Step S;
2878  S.Kind = SK_OCLSamplerInit;
2879  S.Type = T;
2880  Steps.push_back(S);
2881}
2882
2883void InitializationSequence::AddOCLZeroEventStep(QualType T) {
2884  Step S;
2885  S.Kind = SK_OCLZeroEvent;
2886  S.Type = T;
2887  Steps.push_back(S);
2888}
2889
2890void InitializationSequence::RewrapReferenceInitList(QualType T,
2891                                                     InitListExpr *Syntactic) {
2892  assert(Syntactic->getNumInits() == 1 &&
2893         "Can only rewrap trivial init lists.");
2894  Step S;
2895  S.Kind = SK_UnwrapInitList;
2896  S.Type = Syntactic->getInit(0)->getType();
2897  Steps.insert(Steps.begin(), S);
2898
2899  S.Kind = SK_RewrapInitList;
2900  S.Type = T;
2901  S.WrappingSyntacticList = Syntactic;
2902  Steps.push_back(S);
2903}
2904
2905void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2906                                                OverloadingResult Result) {
2907  setSequenceKind(FailedSequence);
2908  this->Failure = Failure;
2909  this->FailedOverloadResult = Result;
2910}
2911
2912//===----------------------------------------------------------------------===//
2913// Attempt initialization
2914//===----------------------------------------------------------------------===//
2915
2916static void MaybeProduceObjCObject(Sema &S,
2917                                   InitializationSequence &Sequence,
2918                                   const InitializedEntity &Entity) {
2919  if (!S.getLangOpts().ObjCAutoRefCount) return;
2920
2921  /// When initializing a parameter, produce the value if it's marked
2922  /// __attribute__((ns_consumed)).
2923  if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2924    if (!Entity.isParameterConsumed())
2925      return;
2926
2927    assert(Entity.getType()->isObjCRetainableType() &&
2928           "consuming an object of unretainable type?");
2929    Sequence.AddProduceObjCObjectStep(Entity.getType());
2930
2931  /// When initializing a return value, if the return type is a
2932  /// retainable type, then returns need to immediately retain the
2933  /// object.  If an autorelease is required, it will be done at the
2934  /// last instant.
2935  } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2936    if (!Entity.getType()->isObjCRetainableType())
2937      return;
2938
2939    Sequence.AddProduceObjCObjectStep(Entity.getType());
2940  }
2941}
2942
2943static void TryListInitialization(Sema &S,
2944                                  const InitializedEntity &Entity,
2945                                  const InitializationKind &Kind,
2946                                  InitListExpr *InitList,
2947                                  InitializationSequence &Sequence);
2948
2949/// \brief When initializing from init list via constructor, handle
2950/// initialization of an object of type std::initializer_list<T>.
2951///
2952/// \return true if we have handled initialization of an object of type
2953/// std::initializer_list<T>, false otherwise.
2954static bool TryInitializerListConstruction(Sema &S,
2955                                           InitListExpr *List,
2956                                           QualType DestType,
2957                                           InitializationSequence &Sequence) {
2958  QualType E;
2959  if (!S.isStdInitializerList(DestType, &E))
2960    return false;
2961
2962  if (S.RequireCompleteType(List->getExprLoc(), E, 0)) {
2963    Sequence.setIncompleteTypeFailure(E);
2964    return true;
2965  }
2966
2967  // Try initializing a temporary array from the init list.
2968  QualType ArrayType = S.Context.getConstantArrayType(
2969      E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2970                                 List->getNumInits()),
2971      clang::ArrayType::Normal, 0);
2972  InitializedEntity HiddenArray =
2973      InitializedEntity::InitializeTemporary(ArrayType);
2974  InitializationKind Kind =
2975      InitializationKind::CreateDirectList(List->getExprLoc());
2976  TryListInitialization(S, HiddenArray, Kind, List, Sequence);
2977  if (Sequence)
2978    Sequence.AddStdInitializerListConstructionStep(DestType);
2979  return true;
2980}
2981
2982static OverloadingResult
2983ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
2984                           MultiExprArg Args,
2985                           OverloadCandidateSet &CandidateSet,
2986                           ArrayRef<NamedDecl *> Ctors,
2987                           OverloadCandidateSet::iterator &Best,
2988                           bool CopyInitializing, bool AllowExplicit,
2989                           bool OnlyListConstructors, bool InitListSyntax) {
2990  CandidateSet.clear();
2991
2992  for (ArrayRef<NamedDecl *>::iterator
2993         Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) {
2994    NamedDecl *D = *Con;
2995    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2996    bool SuppressUserConversions = false;
2997
2998    // Find the constructor (which may be a template).
2999    CXXConstructorDecl *Constructor = 0;
3000    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3001    if (ConstructorTmpl)
3002      Constructor = cast<CXXConstructorDecl>(
3003                                           ConstructorTmpl->getTemplatedDecl());
3004    else {
3005      Constructor = cast<CXXConstructorDecl>(D);
3006
3007      // If we're performing copy initialization using a copy constructor, we
3008      // suppress user-defined conversions on the arguments. We do the same for
3009      // move constructors.
3010      if ((CopyInitializing || (InitListSyntax && Args.size() == 1)) &&
3011          Constructor->isCopyOrMoveConstructor())
3012        SuppressUserConversions = true;
3013    }
3014
3015    if (!Constructor->isInvalidDecl() &&
3016        (AllowExplicit || !Constructor->isExplicit()) &&
3017        (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
3018      if (ConstructorTmpl)
3019        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3020                                       /*ExplicitArgs*/ 0, Args,
3021                                       CandidateSet, SuppressUserConversions);
3022      else {
3023        // C++ [over.match.copy]p1:
3024        //   - When initializing a temporary to be bound to the first parameter
3025        //     of a constructor that takes a reference to possibly cv-qualified
3026        //     T as its first argument, called with a single argument in the
3027        //     context of direct-initialization, explicit conversion functions
3028        //     are also considered.
3029        bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3030                                 Args.size() == 1 &&
3031                                 Constructor->isCopyOrMoveConstructor();
3032        S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
3033                               SuppressUserConversions,
3034                               /*PartialOverloading=*/false,
3035                               /*AllowExplicit=*/AllowExplicitConv);
3036      }
3037    }
3038  }
3039
3040  // Perform overload resolution and return the result.
3041  return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3042}
3043
3044/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3045/// enumerates the constructors of the initialized entity and performs overload
3046/// resolution to select the best.
3047/// If InitListSyntax is true, this is list-initialization of a non-aggregate
3048/// class type.
3049static void TryConstructorInitialization(Sema &S,
3050                                         const InitializedEntity &Entity,
3051                                         const InitializationKind &Kind,
3052                                         MultiExprArg Args, QualType DestType,
3053                                         InitializationSequence &Sequence,
3054                                         bool InitListSyntax = false) {
3055  assert((!InitListSyntax || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3056         "InitListSyntax must come with a single initializer list argument.");
3057
3058  // The type we're constructing needs to be complete.
3059  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3060    Sequence.setIncompleteTypeFailure(DestType);
3061    return;
3062  }
3063
3064  const RecordType *DestRecordType = DestType->getAs<RecordType>();
3065  assert(DestRecordType && "Constructor initialization requires record type");
3066  CXXRecordDecl *DestRecordDecl
3067    = cast<CXXRecordDecl>(DestRecordType->getDecl());
3068
3069  // Build the candidate set directly in the initialization sequence
3070  // structure, so that it will persist if we fail.
3071  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3072
3073  // Determine whether we are allowed to call explicit constructors or
3074  // explicit conversion operators.
3075  bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
3076  bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3077
3078  //   - Otherwise, if T is a class type, constructors are considered. The
3079  //     applicable constructors are enumerated, and the best one is chosen
3080  //     through overload resolution.
3081  DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
3082  // The container holding the constructors can under certain conditions
3083  // be changed while iterating (e.g. because of deserialization).
3084  // To be safe we copy the lookup results to a new container.
3085  SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3086
3087  OverloadingResult Result = OR_No_Viable_Function;
3088  OverloadCandidateSet::iterator Best;
3089  bool AsInitializerList = false;
3090
3091  // C++11 [over.match.list]p1:
3092  //   When objects of non-aggregate type T are list-initialized, overload
3093  //   resolution selects the constructor in two phases:
3094  //   - Initially, the candidate functions are the initializer-list
3095  //     constructors of the class T and the argument list consists of the
3096  //     initializer list as a single argument.
3097  if (InitListSyntax) {
3098    InitListExpr *ILE = cast<InitListExpr>(Args[0]);
3099    AsInitializerList = true;
3100
3101    // If the initializer list has no elements and T has a default constructor,
3102    // the first phase is omitted.
3103    if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
3104      Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3105                                          CandidateSet, Ctors, Best,
3106                                          CopyInitialization, AllowExplicit,
3107                                          /*OnlyListConstructor=*/true,
3108                                          InitListSyntax);
3109
3110    // Time to unwrap the init list.
3111    Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
3112  }
3113
3114  // C++11 [over.match.list]p1:
3115  //   - If no viable initializer-list constructor is found, overload resolution
3116  //     is performed again, where the candidate functions are all the
3117  //     constructors of the class T and the argument list consists of the
3118  //     elements of the initializer list.
3119  if (Result == OR_No_Viable_Function) {
3120    AsInitializerList = false;
3121    Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3122                                        CandidateSet, Ctors, Best,
3123                                        CopyInitialization, AllowExplicit,
3124                                        /*OnlyListConstructors=*/false,
3125                                        InitListSyntax);
3126  }
3127  if (Result) {
3128    Sequence.SetOverloadFailure(InitListSyntax ?
3129                      InitializationSequence::FK_ListConstructorOverloadFailed :
3130                      InitializationSequence::FK_ConstructorOverloadFailed,
3131                                Result);
3132    return;
3133  }
3134
3135  // C++11 [dcl.init]p6:
3136  //   If a program calls for the default initialization of an object
3137  //   of a const-qualified type T, T shall be a class type with a
3138  //   user-provided default constructor.
3139  if (Kind.getKind() == InitializationKind::IK_Default &&
3140      Entity.getType().isConstQualified() &&
3141      !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
3142    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3143    return;
3144  }
3145
3146  // C++11 [over.match.list]p1:
3147  //   In copy-list-initialization, if an explicit constructor is chosen, the
3148  //   initializer is ill-formed.
3149  CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3150  if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3151    Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3152    return;
3153  }
3154
3155  // Add the constructor initialization step. Any cv-qualification conversion is
3156  // subsumed by the initialization.
3157  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3158  Sequence.AddConstructorInitializationStep(CtorDecl,
3159                                            Best->FoundDecl.getAccess(),
3160                                            DestType, HadMultipleCandidates,
3161                                            InitListSyntax, AsInitializerList);
3162}
3163
3164static bool
3165ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3166                                             Expr *Initializer,
3167                                             QualType &SourceType,
3168                                             QualType &UnqualifiedSourceType,
3169                                             QualType UnqualifiedTargetType,
3170                                             InitializationSequence &Sequence) {
3171  if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3172        S.Context.OverloadTy) {
3173    DeclAccessPair Found;
3174    bool HadMultipleCandidates = false;
3175    if (FunctionDecl *Fn
3176        = S.ResolveAddressOfOverloadedFunction(Initializer,
3177                                               UnqualifiedTargetType,
3178                                               false, Found,
3179                                               &HadMultipleCandidates)) {
3180      Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3181                                                HadMultipleCandidates);
3182      SourceType = Fn->getType();
3183      UnqualifiedSourceType = SourceType.getUnqualifiedType();
3184    } else if (!UnqualifiedTargetType->isRecordType()) {
3185      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3186      return true;
3187    }
3188  }
3189  return false;
3190}
3191
3192static void TryReferenceInitializationCore(Sema &S,
3193                                           const InitializedEntity &Entity,
3194                                           const InitializationKind &Kind,
3195                                           Expr *Initializer,
3196                                           QualType cv1T1, QualType T1,
3197                                           Qualifiers T1Quals,
3198                                           QualType cv2T2, QualType T2,
3199                                           Qualifiers T2Quals,
3200                                           InitializationSequence &Sequence);
3201
3202static void TryValueInitialization(Sema &S,
3203                                   const InitializedEntity &Entity,
3204                                   const InitializationKind &Kind,
3205                                   InitializationSequence &Sequence,
3206                                   InitListExpr *InitList = 0);
3207
3208/// \brief Attempt list initialization of a reference.
3209static void TryReferenceListInitialization(Sema &S,
3210                                           const InitializedEntity &Entity,
3211                                           const InitializationKind &Kind,
3212                                           InitListExpr *InitList,
3213                                           InitializationSequence &Sequence) {
3214  // First, catch C++03 where this isn't possible.
3215  if (!S.getLangOpts().CPlusPlus11) {
3216    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3217    return;
3218  }
3219
3220  QualType DestType = Entity.getType();
3221  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3222  Qualifiers T1Quals;
3223  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3224
3225  // Reference initialization via an initializer list works thus:
3226  // If the initializer list consists of a single element that is
3227  // reference-related to the referenced type, bind directly to that element
3228  // (possibly creating temporaries).
3229  // Otherwise, initialize a temporary with the initializer list and
3230  // bind to that.
3231  if (InitList->getNumInits() == 1) {
3232    Expr *Initializer = InitList->getInit(0);
3233    QualType cv2T2 = Initializer->getType();
3234    Qualifiers T2Quals;
3235    QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3236
3237    // If this fails, creating a temporary wouldn't work either.
3238    if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3239                                                     T1, Sequence))
3240      return;
3241
3242    SourceLocation DeclLoc = Initializer->getLocStart();
3243    bool dummy1, dummy2, dummy3;
3244    Sema::ReferenceCompareResult RefRelationship
3245      = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3246                                       dummy2, dummy3);
3247    if (RefRelationship >= Sema::Ref_Related) {
3248      // Try to bind the reference here.
3249      TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3250                                     T1Quals, cv2T2, T2, T2Quals, Sequence);
3251      if (Sequence)
3252        Sequence.RewrapReferenceInitList(cv1T1, InitList);
3253      return;
3254    }
3255
3256    // Update the initializer if we've resolved an overloaded function.
3257    if (Sequence.step_begin() != Sequence.step_end())
3258      Sequence.RewrapReferenceInitList(cv1T1, InitList);
3259  }
3260
3261  // Not reference-related. Create a temporary and bind to that.
3262  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3263
3264  TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3265  if (Sequence) {
3266    if (DestType->isRValueReferenceType() ||
3267        (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3268      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3269    else
3270      Sequence.SetFailed(
3271          InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3272  }
3273}
3274
3275/// \brief Attempt list initialization (C++0x [dcl.init.list])
3276static void TryListInitialization(Sema &S,
3277                                  const InitializedEntity &Entity,
3278                                  const InitializationKind &Kind,
3279                                  InitListExpr *InitList,
3280                                  InitializationSequence &Sequence) {
3281  QualType DestType = Entity.getType();
3282
3283  // C++ doesn't allow scalar initialization with more than one argument.
3284  // But C99 complex numbers are scalars and it makes sense there.
3285  if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3286      !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3287    Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3288    return;
3289  }
3290  if (DestType->isReferenceType()) {
3291    TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3292    return;
3293  }
3294  if (DestType->isRecordType()) {
3295    if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3296      Sequence.setIncompleteTypeFailure(DestType);
3297      return;
3298    }
3299
3300    // C++11 [dcl.init.list]p3:
3301    //   - If T is an aggregate, aggregate initialization is performed.
3302    if (!DestType->isAggregateType()) {
3303      if (S.getLangOpts().CPlusPlus11) {
3304        //   - Otherwise, if the initializer list has no elements and T is a
3305        //     class type with a default constructor, the object is
3306        //     value-initialized.
3307        if (InitList->getNumInits() == 0) {
3308          CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3309          if (RD->hasDefaultConstructor()) {
3310            TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3311            return;
3312          }
3313        }
3314
3315        //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3316        //     an initializer_list object constructed [...]
3317        if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3318          return;
3319
3320        //   - Otherwise, if T is a class type, constructors are considered.
3321        Expr *InitListAsExpr = InitList;
3322        TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3323                                     Sequence, /*InitListSyntax*/true);
3324      } else
3325        Sequence.SetFailed(
3326            InitializationSequence::FK_InitListBadDestinationType);
3327      return;
3328    }
3329  }
3330
3331  InitListChecker CheckInitList(S, Entity, InitList,
3332          DestType, /*VerifyOnly=*/true);
3333  if (CheckInitList.HadError()) {
3334    Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3335    return;
3336  }
3337
3338  // Add the list initialization step with the built init list.
3339  Sequence.AddListInitializationStep(DestType);
3340}
3341
3342/// \brief Try a reference initialization that involves calling a conversion
3343/// function.
3344static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3345                                             const InitializedEntity &Entity,
3346                                             const InitializationKind &Kind,
3347                                             Expr *Initializer,
3348                                             bool AllowRValues,
3349                                             InitializationSequence &Sequence) {
3350  QualType DestType = Entity.getType();
3351  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3352  QualType T1 = cv1T1.getUnqualifiedType();
3353  QualType cv2T2 = Initializer->getType();
3354  QualType T2 = cv2T2.getUnqualifiedType();
3355
3356  bool DerivedToBase;
3357  bool ObjCConversion;
3358  bool ObjCLifetimeConversion;
3359  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3360                                         T1, T2, DerivedToBase,
3361                                         ObjCConversion,
3362                                         ObjCLifetimeConversion) &&
3363         "Must have incompatible references when binding via conversion");
3364  (void)DerivedToBase;
3365  (void)ObjCConversion;
3366  (void)ObjCLifetimeConversion;
3367
3368  // Build the candidate set directly in the initialization sequence
3369  // structure, so that it will persist if we fail.
3370  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3371  CandidateSet.clear();
3372
3373  // Determine whether we are allowed to call explicit constructors or
3374  // explicit conversion operators.
3375  bool AllowExplicit = Kind.AllowExplicit();
3376  bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
3377
3378  const RecordType *T1RecordType = 0;
3379  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3380      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3381    // The type we're converting to is a class type. Enumerate its constructors
3382    // to see if there is a suitable conversion.
3383    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3384
3385    DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl);
3386    // The container holding the constructors can under certain conditions
3387    // be changed while iterating (e.g. because of deserialization).
3388    // To be safe we copy the lookup results to a new container.
3389    SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3390    for (SmallVectorImpl<NamedDecl *>::iterator
3391           CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
3392      NamedDecl *D = *CI;
3393      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3394
3395      // Find the constructor (which may be a template).
3396      CXXConstructorDecl *Constructor = 0;
3397      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3398      if (ConstructorTmpl)
3399        Constructor = cast<CXXConstructorDecl>(
3400                                         ConstructorTmpl->getTemplatedDecl());
3401      else
3402        Constructor = cast<CXXConstructorDecl>(D);
3403
3404      if (!Constructor->isInvalidDecl() &&
3405          Constructor->isConvertingConstructor(AllowExplicit)) {
3406        if (ConstructorTmpl)
3407          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3408                                         /*ExplicitArgs*/ 0,
3409                                         Initializer, CandidateSet,
3410                                         /*SuppressUserConversions=*/true);
3411        else
3412          S.AddOverloadCandidate(Constructor, FoundDecl,
3413                                 Initializer, CandidateSet,
3414                                 /*SuppressUserConversions=*/true);
3415      }
3416    }
3417  }
3418  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3419    return OR_No_Viable_Function;
3420
3421  const RecordType *T2RecordType = 0;
3422  if ((T2RecordType = T2->getAs<RecordType>()) &&
3423      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3424    // The type we're converting from is a class type, enumerate its conversion
3425    // functions.
3426    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3427
3428    std::pair<CXXRecordDecl::conversion_iterator,
3429              CXXRecordDecl::conversion_iterator>
3430      Conversions = T2RecordDecl->getVisibleConversionFunctions();
3431    for (CXXRecordDecl::conversion_iterator
3432           I = Conversions.first, E = Conversions.second; I != E; ++I) {
3433      NamedDecl *D = *I;
3434      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3435      if (isa<UsingShadowDecl>(D))
3436        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3437
3438      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3439      CXXConversionDecl *Conv;
3440      if (ConvTemplate)
3441        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3442      else
3443        Conv = cast<CXXConversionDecl>(D);
3444
3445      // If the conversion function doesn't return a reference type,
3446      // it can't be considered for this conversion unless we're allowed to
3447      // consider rvalues.
3448      // FIXME: Do we need to make sure that we only consider conversion
3449      // candidates with reference-compatible results? That might be needed to
3450      // break recursion.
3451      if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3452          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3453        if (ConvTemplate)
3454          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3455                                           ActingDC, Initializer,
3456                                           DestType, CandidateSet);
3457        else
3458          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3459                                   Initializer, DestType, CandidateSet);
3460      }
3461    }
3462  }
3463  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3464    return OR_No_Viable_Function;
3465
3466  SourceLocation DeclLoc = Initializer->getLocStart();
3467
3468  // Perform overload resolution. If it fails, return the failed result.
3469  OverloadCandidateSet::iterator Best;
3470  if (OverloadingResult Result
3471        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3472    return Result;
3473
3474  FunctionDecl *Function = Best->Function;
3475  // This is the overload that will be used for this initialization step if we
3476  // use this initialization. Mark it as referenced.
3477  Function->setReferenced();
3478
3479  // Compute the returned type of the conversion.
3480  if (isa<CXXConversionDecl>(Function))
3481    T2 = Function->getResultType();
3482  else
3483    T2 = cv1T1;
3484
3485  // Add the user-defined conversion step.
3486  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3487  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3488                                 T2.getNonLValueExprType(S.Context),
3489                                 HadMultipleCandidates);
3490
3491  // Determine whether we need to perform derived-to-base or
3492  // cv-qualification adjustments.
3493  ExprValueKind VK = VK_RValue;
3494  if (T2->isLValueReferenceType())
3495    VK = VK_LValue;
3496  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3497    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3498
3499  bool NewDerivedToBase = false;
3500  bool NewObjCConversion = false;
3501  bool NewObjCLifetimeConversion = false;
3502  Sema::ReferenceCompareResult NewRefRelationship
3503    = S.CompareReferenceRelationship(DeclLoc, T1,
3504                                     T2.getNonLValueExprType(S.Context),
3505                                     NewDerivedToBase, NewObjCConversion,
3506                                     NewObjCLifetimeConversion);
3507  if (NewRefRelationship == Sema::Ref_Incompatible) {
3508    // If the type we've converted to is not reference-related to the
3509    // type we're looking for, then there is another conversion step
3510    // we need to perform to produce a temporary of the right type
3511    // that we'll be binding to.
3512    ImplicitConversionSequence ICS;
3513    ICS.setStandard();
3514    ICS.Standard = Best->FinalConversion;
3515    T2 = ICS.Standard.getToType(2);
3516    Sequence.AddConversionSequenceStep(ICS, T2);
3517  } else if (NewDerivedToBase)
3518    Sequence.AddDerivedToBaseCastStep(
3519                                S.Context.getQualifiedType(T1,
3520                                  T2.getNonReferenceType().getQualifiers()),
3521                                      VK);
3522  else if (NewObjCConversion)
3523    Sequence.AddObjCObjectConversionStep(
3524                                S.Context.getQualifiedType(T1,
3525                                  T2.getNonReferenceType().getQualifiers()));
3526
3527  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3528    Sequence.AddQualificationConversionStep(cv1T1, VK);
3529
3530  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3531  return OR_Success;
3532}
3533
3534static void CheckCXX98CompatAccessibleCopy(Sema &S,
3535                                           const InitializedEntity &Entity,
3536                                           Expr *CurInitExpr);
3537
3538/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3539static void TryReferenceInitialization(Sema &S,
3540                                       const InitializedEntity &Entity,
3541                                       const InitializationKind &Kind,
3542                                       Expr *Initializer,
3543                                       InitializationSequence &Sequence) {
3544  QualType DestType = Entity.getType();
3545  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3546  Qualifiers T1Quals;
3547  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3548  QualType cv2T2 = Initializer->getType();
3549  Qualifiers T2Quals;
3550  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3551
3552  // If the initializer is the address of an overloaded function, try
3553  // to resolve the overloaded function. If all goes well, T2 is the
3554  // type of the resulting function.
3555  if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3556                                                   T1, Sequence))
3557    return;
3558
3559  // Delegate everything else to a subfunction.
3560  TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3561                                 T1Quals, cv2T2, T2, T2Quals, Sequence);
3562}
3563
3564/// Converts the target of reference initialization so that it has the
3565/// appropriate qualifiers and value kind.
3566///
3567/// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
3568/// \code
3569///   int x;
3570///   const int &r = x;
3571/// \endcode
3572///
3573/// In this case the reference is binding to a bitfield lvalue, which isn't
3574/// valid. Perform a load to create a lifetime-extended temporary instead.
3575/// \code
3576///   const int &r = someStruct.bitfield;
3577/// \endcode
3578static ExprValueKind
3579convertQualifiersAndValueKindIfNecessary(Sema &S,
3580                                         InitializationSequence &Sequence,
3581                                         Expr *Initializer,
3582                                         QualType cv1T1,
3583                                         Qualifiers T1Quals,
3584                                         Qualifiers T2Quals,
3585                                         bool IsLValueRef) {
3586  bool IsNonAddressableType = Initializer->refersToBitField() ||
3587                              Initializer->refersToVectorElement();
3588
3589  if (IsNonAddressableType) {
3590    // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
3591    // lvalue reference to a non-volatile const type, or the reference shall be
3592    // an rvalue reference.
3593    //
3594    // If not, we can't make a temporary and bind to that. Give up and allow the
3595    // error to be diagnosed later.
3596    if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
3597      assert(Initializer->isGLValue());
3598      return Initializer->getValueKind();
3599    }
3600
3601    // Force a load so we can materialize a temporary.
3602    Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
3603    return VK_RValue;
3604  }
3605
3606  if (T1Quals != T2Quals) {
3607    Sequence.AddQualificationConversionStep(cv1T1,
3608                                            Initializer->getValueKind());
3609  }
3610
3611  return Initializer->getValueKind();
3612}
3613
3614
3615/// \brief Reference initialization without resolving overloaded functions.
3616static void TryReferenceInitializationCore(Sema &S,
3617                                           const InitializedEntity &Entity,
3618                                           const InitializationKind &Kind,
3619                                           Expr *Initializer,
3620                                           QualType cv1T1, QualType T1,
3621                                           Qualifiers T1Quals,
3622                                           QualType cv2T2, QualType T2,
3623                                           Qualifiers T2Quals,
3624                                           InitializationSequence &Sequence) {
3625  QualType DestType = Entity.getType();
3626  SourceLocation DeclLoc = Initializer->getLocStart();
3627  // Compute some basic properties of the types and the initializer.
3628  bool isLValueRef = DestType->isLValueReferenceType();
3629  bool isRValueRef = !isLValueRef;
3630  bool DerivedToBase = false;
3631  bool ObjCConversion = false;
3632  bool ObjCLifetimeConversion = false;
3633  Expr::Classification InitCategory = Initializer->Classify(S.Context);
3634  Sema::ReferenceCompareResult RefRelationship
3635    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3636                                     ObjCConversion, ObjCLifetimeConversion);
3637
3638  // C++0x [dcl.init.ref]p5:
3639  //   A reference to type "cv1 T1" is initialized by an expression of type
3640  //   "cv2 T2" as follows:
3641  //
3642  //     - If the reference is an lvalue reference and the initializer
3643  //       expression
3644  // Note the analogous bullet points for rvlaue refs to functions. Because
3645  // there are no function rvalues in C++, rvalue refs to functions are treated
3646  // like lvalue refs.
3647  OverloadingResult ConvOvlResult = OR_Success;
3648  bool T1Function = T1->isFunctionType();
3649  if (isLValueRef || T1Function) {
3650    if (InitCategory.isLValue() &&
3651        (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3652         (Kind.isCStyleOrFunctionalCast() &&
3653          RefRelationship == Sema::Ref_Related))) {
3654      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3655      //     reference-compatible with "cv2 T2," or
3656      //
3657      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3658      // bit-field when we're determining whether the reference initialization
3659      // can occur. However, we do pay attention to whether it is a bit-field
3660      // to decide whether we're actually binding to a temporary created from
3661      // the bit-field.
3662      if (DerivedToBase)
3663        Sequence.AddDerivedToBaseCastStep(
3664                         S.Context.getQualifiedType(T1, T2Quals),
3665                         VK_LValue);
3666      else if (ObjCConversion)
3667        Sequence.AddObjCObjectConversionStep(
3668                                     S.Context.getQualifiedType(T1, T2Quals));
3669
3670      ExprValueKind ValueKind =
3671        convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
3672                                                 cv1T1, T1Quals, T2Quals,
3673                                                 isLValueRef);
3674      Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3675      return;
3676    }
3677
3678    //     - has a class type (i.e., T2 is a class type), where T1 is not
3679    //       reference-related to T2, and can be implicitly converted to an
3680    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3681    //       with "cv3 T3" (this conversion is selected by enumerating the
3682    //       applicable conversion functions (13.3.1.6) and choosing the best
3683    //       one through overload resolution (13.3)),
3684    // If we have an rvalue ref to function type here, the rhs must be
3685    // an rvalue.
3686    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3687        (isLValueRef || InitCategory.isRValue())) {
3688      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3689                                                       Initializer,
3690                                                   /*AllowRValues=*/isRValueRef,
3691                                                       Sequence);
3692      if (ConvOvlResult == OR_Success)
3693        return;
3694      if (ConvOvlResult != OR_No_Viable_Function) {
3695        Sequence.SetOverloadFailure(
3696                      InitializationSequence::FK_ReferenceInitOverloadFailed,
3697                                    ConvOvlResult);
3698      }
3699    }
3700  }
3701
3702  //     - Otherwise, the reference shall be an lvalue reference to a
3703  //       non-volatile const type (i.e., cv1 shall be const), or the reference
3704  //       shall be an rvalue reference.
3705  if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3706    if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3707      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3708    else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3709      Sequence.SetOverloadFailure(
3710                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3711                                  ConvOvlResult);
3712    else
3713      Sequence.SetFailed(InitCategory.isLValue()
3714        ? (RefRelationship == Sema::Ref_Related
3715             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3716             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3717        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3718
3719    return;
3720  }
3721
3722  //    - If the initializer expression
3723  //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3724  //        "cv1 T1" is reference-compatible with "cv2 T2"
3725  // Note: functions are handled below.
3726  if (!T1Function &&
3727      (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3728       (Kind.isCStyleOrFunctionalCast() &&
3729        RefRelationship == Sema::Ref_Related)) &&
3730      (InitCategory.isXValue() ||
3731       (InitCategory.isPRValue() && T2->isRecordType()) ||
3732       (InitCategory.isPRValue() && T2->isArrayType()))) {
3733    ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3734    if (InitCategory.isPRValue() && T2->isRecordType()) {
3735      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3736      // compiler the freedom to perform a copy here or bind to the
3737      // object, while C++0x requires that we bind directly to the
3738      // object. Hence, we always bind to the object without making an
3739      // extra copy. However, in C++03 requires that we check for the
3740      // presence of a suitable copy constructor:
3741      //
3742      //   The constructor that would be used to make the copy shall
3743      //   be callable whether or not the copy is actually done.
3744      if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
3745        Sequence.AddExtraneousCopyToTemporary(cv2T2);
3746      else if (S.getLangOpts().CPlusPlus11)
3747        CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3748    }
3749
3750    if (DerivedToBase)
3751      Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3752                                        ValueKind);
3753    else if (ObjCConversion)
3754      Sequence.AddObjCObjectConversionStep(
3755                                       S.Context.getQualifiedType(T1, T2Quals));
3756
3757    ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
3758                                                         Initializer, cv1T1,
3759                                                         T1Quals, T2Quals,
3760                                                         isLValueRef);
3761
3762    Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3763    return;
3764  }
3765
3766  //       - has a class type (i.e., T2 is a class type), where T1 is not
3767  //         reference-related to T2, and can be implicitly converted to an
3768  //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3769  //         where "cv1 T1" is reference-compatible with "cv3 T3",
3770  if (T2->isRecordType()) {
3771    if (RefRelationship == Sema::Ref_Incompatible) {
3772      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3773                                                       Kind, Initializer,
3774                                                       /*AllowRValues=*/true,
3775                                                       Sequence);
3776      if (ConvOvlResult)
3777        Sequence.SetOverloadFailure(
3778                      InitializationSequence::FK_ReferenceInitOverloadFailed,
3779                                    ConvOvlResult);
3780
3781      return;
3782    }
3783
3784    if ((RefRelationship == Sema::Ref_Compatible ||
3785         RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
3786        isRValueRef && InitCategory.isLValue()) {
3787      Sequence.SetFailed(
3788        InitializationSequence::FK_RValueReferenceBindingToLValue);
3789      return;
3790    }
3791
3792    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3793    return;
3794  }
3795
3796  //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3797  //        from the initializer expression using the rules for a non-reference
3798  //        copy-initialization (8.5). The reference is then bound to the
3799  //        temporary. [...]
3800
3801  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3802
3803  // FIXME: Why do we use an implicit conversion here rather than trying
3804  // copy-initialization?
3805  ImplicitConversionSequence ICS
3806    = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3807                              /*SuppressUserConversions=*/false,
3808                              /*AllowExplicit=*/false,
3809                              /*FIXME:InOverloadResolution=*/false,
3810                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3811                              /*AllowObjCWritebackConversion=*/false);
3812
3813  if (ICS.isBad()) {
3814    // FIXME: Use the conversion function set stored in ICS to turn
3815    // this into an overloading ambiguity diagnostic. However, we need
3816    // to keep that set as an OverloadCandidateSet rather than as some
3817    // other kind of set.
3818    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3819      Sequence.SetOverloadFailure(
3820                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3821                                  ConvOvlResult);
3822    else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3823      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3824    else
3825      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3826    return;
3827  } else {
3828    Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3829  }
3830
3831  //        [...] If T1 is reference-related to T2, cv1 must be the
3832  //        same cv-qualification as, or greater cv-qualification
3833  //        than, cv2; otherwise, the program is ill-formed.
3834  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3835  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3836  if (RefRelationship == Sema::Ref_Related &&
3837      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3838    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3839    return;
3840  }
3841
3842  //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3843  //   reference, the initializer expression shall not be an lvalue.
3844  if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3845      InitCategory.isLValue()) {
3846    Sequence.SetFailed(
3847                    InitializationSequence::FK_RValueReferenceBindingToLValue);
3848    return;
3849  }
3850
3851  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3852  return;
3853}
3854
3855/// \brief Attempt character array initialization from a string literal
3856/// (C++ [dcl.init.string], C99 6.7.8).
3857static void TryStringLiteralInitialization(Sema &S,
3858                                           const InitializedEntity &Entity,
3859                                           const InitializationKind &Kind,
3860                                           Expr *Initializer,
3861                                       InitializationSequence &Sequence) {
3862  Sequence.AddStringInitStep(Entity.getType());
3863}
3864
3865/// \brief Attempt value initialization (C++ [dcl.init]p7).
3866static void TryValueInitialization(Sema &S,
3867                                   const InitializedEntity &Entity,
3868                                   const InitializationKind &Kind,
3869                                   InitializationSequence &Sequence,
3870                                   InitListExpr *InitList) {
3871  assert((!InitList || InitList->getNumInits() == 0) &&
3872         "Shouldn't use value-init for non-empty init lists");
3873
3874  // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3875  //
3876  //   To value-initialize an object of type T means:
3877  QualType T = Entity.getType();
3878
3879  //     -- if T is an array type, then each element is value-initialized;
3880  T = S.Context.getBaseElementType(T);
3881
3882  if (const RecordType *RT = T->getAs<RecordType>()) {
3883    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3884      bool NeedZeroInitialization = true;
3885      if (!S.getLangOpts().CPlusPlus11) {
3886        // C++98:
3887        // -- if T is a class type (clause 9) with a user-declared constructor
3888        //    (12.1), then the default constructor for T is called (and the
3889        //    initialization is ill-formed if T has no accessible default
3890        //    constructor);
3891        if (ClassDecl->hasUserDeclaredConstructor())
3892          NeedZeroInitialization = false;
3893      } else {
3894        // C++11:
3895        // -- if T is a class type (clause 9) with either no default constructor
3896        //    (12.1 [class.ctor]) or a default constructor that is user-provided
3897        //    or deleted, then the object is default-initialized;
3898        CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3899        if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3900          NeedZeroInitialization = false;
3901      }
3902
3903      // -- if T is a (possibly cv-qualified) non-union class type without a
3904      //    user-provided or deleted default constructor, then the object is
3905      //    zero-initialized and, if T has a non-trivial default constructor,
3906      //    default-initialized;
3907      // The 'non-union' here was removed by DR1502. The 'non-trivial default
3908      // constructor' part was removed by DR1507.
3909      if (NeedZeroInitialization)
3910        Sequence.AddZeroInitializationStep(Entity.getType());
3911
3912      // C++03:
3913      // -- if T is a non-union class type without a user-declared constructor,
3914      //    then every non-static data member and base class component of T is
3915      //    value-initialized;
3916      // [...] A program that calls for [...] value-initialization of an
3917      // entity of reference type is ill-formed.
3918      //
3919      // C++11 doesn't need this handling, because value-initialization does not
3920      // occur recursively there, and the implicit default constructor is
3921      // defined as deleted in the problematic cases.
3922      if (!S.getLangOpts().CPlusPlus11 &&
3923          ClassDecl->hasUninitializedReferenceMember()) {
3924        Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
3925        return;
3926      }
3927
3928      // If this is list-value-initialization, pass the empty init list on when
3929      // building the constructor call. This affects the semantics of a few
3930      // things (such as whether an explicit default constructor can be called).
3931      Expr *InitListAsExpr = InitList;
3932      MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
3933      bool InitListSyntax = InitList;
3934
3935      return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
3936                                          InitListSyntax);
3937    }
3938  }
3939
3940  Sequence.AddZeroInitializationStep(Entity.getType());
3941}
3942
3943/// \brief Attempt default initialization (C++ [dcl.init]p6).
3944static void TryDefaultInitialization(Sema &S,
3945                                     const InitializedEntity &Entity,
3946                                     const InitializationKind &Kind,
3947                                     InitializationSequence &Sequence) {
3948  assert(Kind.getKind() == InitializationKind::IK_Default);
3949
3950  // C++ [dcl.init]p6:
3951  //   To default-initialize an object of type T means:
3952  //     - if T is an array type, each element is default-initialized;
3953  QualType DestType = S.Context.getBaseElementType(Entity.getType());
3954
3955  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3956  //       constructor for T is called (and the initialization is ill-formed if
3957  //       T has no accessible default constructor);
3958  if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
3959    TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
3960    return;
3961  }
3962
3963  //     - otherwise, no initialization is performed.
3964
3965  //   If a program calls for the default initialization of an object of
3966  //   a const-qualified type T, T shall be a class type with a user-provided
3967  //   default constructor.
3968  if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
3969    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3970    return;
3971  }
3972
3973  // If the destination type has a lifetime property, zero-initialize it.
3974  if (DestType.getQualifiers().hasObjCLifetime()) {
3975    Sequence.AddZeroInitializationStep(Entity.getType());
3976    return;
3977  }
3978}
3979
3980/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3981/// which enumerates all conversion functions and performs overload resolution
3982/// to select the best.
3983static void TryUserDefinedConversion(Sema &S,
3984                                     const InitializedEntity &Entity,
3985                                     const InitializationKind &Kind,
3986                                     Expr *Initializer,
3987                                     InitializationSequence &Sequence) {
3988  QualType DestType = Entity.getType();
3989  assert(!DestType->isReferenceType() && "References are handled elsewhere");
3990  QualType SourceType = Initializer->getType();
3991  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3992         "Must have a class type to perform a user-defined conversion");
3993
3994  // Build the candidate set directly in the initialization sequence
3995  // structure, so that it will persist if we fail.
3996  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3997  CandidateSet.clear();
3998
3999  // Determine whether we are allowed to call explicit constructors or
4000  // explicit conversion operators.
4001  bool AllowExplicit = Kind.AllowExplicit();
4002
4003  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4004    // The type we're converting to is a class type. Enumerate its constructors
4005    // to see if there is a suitable conversion.
4006    CXXRecordDecl *DestRecordDecl
4007      = cast<CXXRecordDecl>(DestRecordType->getDecl());
4008
4009    // Try to complete the type we're converting to.
4010    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
4011      DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
4012      // The container holding the constructors can under certain conditions
4013      // be changed while iterating. To be safe we copy the lookup results
4014      // to a new container.
4015      SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
4016      for (SmallVectorImpl<NamedDecl *>::iterator
4017             Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
4018           Con != ConEnd; ++Con) {
4019        NamedDecl *D = *Con;
4020        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
4021
4022        // Find the constructor (which may be a template).
4023        CXXConstructorDecl *Constructor = 0;
4024        FunctionTemplateDecl *ConstructorTmpl
4025          = dyn_cast<FunctionTemplateDecl>(D);
4026        if (ConstructorTmpl)
4027          Constructor = cast<CXXConstructorDecl>(
4028                                           ConstructorTmpl->getTemplatedDecl());
4029        else
4030          Constructor = cast<CXXConstructorDecl>(D);
4031
4032        if (!Constructor->isInvalidDecl() &&
4033            Constructor->isConvertingConstructor(AllowExplicit)) {
4034          if (ConstructorTmpl)
4035            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4036                                           /*ExplicitArgs*/ 0,
4037                                           Initializer, CandidateSet,
4038                                           /*SuppressUserConversions=*/true);
4039          else
4040            S.AddOverloadCandidate(Constructor, FoundDecl,
4041                                   Initializer, CandidateSet,
4042                                   /*SuppressUserConversions=*/true);
4043        }
4044      }
4045    }
4046  }
4047
4048  SourceLocation DeclLoc = Initializer->getLocStart();
4049
4050  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4051    // The type we're converting from is a class type, enumerate its conversion
4052    // functions.
4053
4054    // We can only enumerate the conversion functions for a complete type; if
4055    // the type isn't complete, simply skip this step.
4056    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
4057      CXXRecordDecl *SourceRecordDecl
4058        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4059
4060      std::pair<CXXRecordDecl::conversion_iterator,
4061                CXXRecordDecl::conversion_iterator>
4062        Conversions = SourceRecordDecl->getVisibleConversionFunctions();
4063      for (CXXRecordDecl::conversion_iterator
4064             I = Conversions.first, E = Conversions.second; I != E; ++I) {
4065        NamedDecl *D = *I;
4066        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4067        if (isa<UsingShadowDecl>(D))
4068          D = cast<UsingShadowDecl>(D)->getTargetDecl();
4069
4070        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4071        CXXConversionDecl *Conv;
4072        if (ConvTemplate)
4073          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4074        else
4075          Conv = cast<CXXConversionDecl>(D);
4076
4077        if (AllowExplicit || !Conv->isExplicit()) {
4078          if (ConvTemplate)
4079            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4080                                             ActingDC, Initializer, DestType,
4081                                             CandidateSet);
4082          else
4083            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4084                                     Initializer, DestType, CandidateSet);
4085        }
4086      }
4087    }
4088  }
4089
4090  // Perform overload resolution. If it fails, return the failed result.
4091  OverloadCandidateSet::iterator Best;
4092  if (OverloadingResult Result
4093        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4094    Sequence.SetOverloadFailure(
4095                        InitializationSequence::FK_UserConversionOverloadFailed,
4096                                Result);
4097    return;
4098  }
4099
4100  FunctionDecl *Function = Best->Function;
4101  Function->setReferenced();
4102  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4103
4104  if (isa<CXXConstructorDecl>(Function)) {
4105    // Add the user-defined conversion step. Any cv-qualification conversion is
4106    // subsumed by the initialization. Per DR5, the created temporary is of the
4107    // cv-unqualified type of the destination.
4108    Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4109                                   DestType.getUnqualifiedType(),
4110                                   HadMultipleCandidates);
4111    return;
4112  }
4113
4114  // Add the user-defined conversion step that calls the conversion function.
4115  QualType ConvType = Function->getCallResultType();
4116  if (ConvType->getAs<RecordType>()) {
4117    // If we're converting to a class type, there may be an copy of
4118    // the resulting temporary object (possible to create an object of
4119    // a base class type). That copy is not a separate conversion, so
4120    // we just make a note of the actual destination type (possibly a
4121    // base class of the type returned by the conversion function) and
4122    // let the user-defined conversion step handle the conversion.
4123    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
4124                                   HadMultipleCandidates);
4125    return;
4126  }
4127
4128  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4129                                 HadMultipleCandidates);
4130
4131  // If the conversion following the call to the conversion function
4132  // is interesting, add it as a separate step.
4133  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4134      Best->FinalConversion.Third) {
4135    ImplicitConversionSequence ICS;
4136    ICS.setStandard();
4137    ICS.Standard = Best->FinalConversion;
4138    Sequence.AddConversionSequenceStep(ICS, DestType);
4139  }
4140}
4141
4142/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4143/// a function with a pointer return type contains a 'return false;' statement.
4144/// In C++11, 'false' is not a null pointer, so this breaks the build of any
4145/// code using that header.
4146///
4147/// Work around this by treating 'return false;' as zero-initializing the result
4148/// if it's used in a pointer-returning function in a system header.
4149static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4150                                              const InitializedEntity &Entity,
4151                                              const Expr *Init) {
4152  return S.getLangOpts().CPlusPlus11 &&
4153         Entity.getKind() == InitializedEntity::EK_Result &&
4154         Entity.getType()->isPointerType() &&
4155         isa<CXXBoolLiteralExpr>(Init) &&
4156         !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4157         S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4158}
4159
4160/// The non-zero enum values here are indexes into diagnostic alternatives.
4161enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4162
4163/// Determines whether this expression is an acceptable ICR source.
4164static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4165                                         bool isAddressOf, bool &isWeakAccess) {
4166  // Skip parens.
4167  e = e->IgnoreParens();
4168
4169  // Skip address-of nodes.
4170  if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4171    if (op->getOpcode() == UO_AddrOf)
4172      return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4173                                isWeakAccess);
4174
4175  // Skip certain casts.
4176  } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4177    switch (ce->getCastKind()) {
4178    case CK_Dependent:
4179    case CK_BitCast:
4180    case CK_LValueBitCast:
4181    case CK_NoOp:
4182      return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4183
4184    case CK_ArrayToPointerDecay:
4185      return IIK_nonscalar;
4186
4187    case CK_NullToPointer:
4188      return IIK_okay;
4189
4190    default:
4191      break;
4192    }
4193
4194  // If we have a declaration reference, it had better be a local variable.
4195  } else if (isa<DeclRefExpr>(e)) {
4196    // set isWeakAccess to true, to mean that there will be an implicit
4197    // load which requires a cleanup.
4198    if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4199      isWeakAccess = true;
4200
4201    if (!isAddressOf) return IIK_nonlocal;
4202
4203    VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4204    if (!var) return IIK_nonlocal;
4205
4206    return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4207
4208  // If we have a conditional operator, check both sides.
4209  } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4210    if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4211                                                isWeakAccess))
4212      return iik;
4213
4214    return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4215
4216  // These are never scalar.
4217  } else if (isa<ArraySubscriptExpr>(e)) {
4218    return IIK_nonscalar;
4219
4220  // Otherwise, it needs to be a null pointer constant.
4221  } else {
4222    return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4223            ? IIK_okay : IIK_nonlocal);
4224  }
4225
4226  return IIK_nonlocal;
4227}
4228
4229/// Check whether the given expression is a valid operand for an
4230/// indirect copy/restore.
4231static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4232  assert(src->isRValue());
4233  bool isWeakAccess = false;
4234  InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4235  // If isWeakAccess to true, there will be an implicit
4236  // load which requires a cleanup.
4237  if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4238    S.ExprNeedsCleanups = true;
4239
4240  if (iik == IIK_okay) return;
4241
4242  S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4243    << ((unsigned) iik - 1)  // shift index into diagnostic explanations
4244    << src->getSourceRange();
4245}
4246
4247/// \brief Determine whether we have compatible array types for the
4248/// purposes of GNU by-copy array initialization.
4249static bool hasCompatibleArrayTypes(ASTContext &Context,
4250                                    const ArrayType *Dest,
4251                                    const ArrayType *Source) {
4252  // If the source and destination array types are equivalent, we're
4253  // done.
4254  if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4255    return true;
4256
4257  // Make sure that the element types are the same.
4258  if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4259    return false;
4260
4261  // The only mismatch we allow is when the destination is an
4262  // incomplete array type and the source is a constant array type.
4263  return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4264}
4265
4266static bool tryObjCWritebackConversion(Sema &S,
4267                                       InitializationSequence &Sequence,
4268                                       const InitializedEntity &Entity,
4269                                       Expr *Initializer) {
4270  bool ArrayDecay = false;
4271  QualType ArgType = Initializer->getType();
4272  QualType ArgPointee;
4273  if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4274    ArrayDecay = true;
4275    ArgPointee = ArgArrayType->getElementType();
4276    ArgType = S.Context.getPointerType(ArgPointee);
4277  }
4278
4279  // Handle write-back conversion.
4280  QualType ConvertedArgType;
4281  if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4282                                   ConvertedArgType))
4283    return false;
4284
4285  // We should copy unless we're passing to an argument explicitly
4286  // marked 'out'.
4287  bool ShouldCopy = true;
4288  if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4289    ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4290
4291  // Do we need an lvalue conversion?
4292  if (ArrayDecay || Initializer->isGLValue()) {
4293    ImplicitConversionSequence ICS;
4294    ICS.setStandard();
4295    ICS.Standard.setAsIdentityConversion();
4296
4297    QualType ResultType;
4298    if (ArrayDecay) {
4299      ICS.Standard.First = ICK_Array_To_Pointer;
4300      ResultType = S.Context.getPointerType(ArgPointee);
4301    } else {
4302      ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4303      ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4304    }
4305
4306    Sequence.AddConversionSequenceStep(ICS, ResultType);
4307  }
4308
4309  Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4310  return true;
4311}
4312
4313static bool TryOCLSamplerInitialization(Sema &S,
4314                                        InitializationSequence &Sequence,
4315                                        QualType DestType,
4316                                        Expr *Initializer) {
4317  if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4318    !Initializer->isIntegerConstantExpr(S.getASTContext()))
4319    return false;
4320
4321  Sequence.AddOCLSamplerInitStep(DestType);
4322  return true;
4323}
4324
4325//
4326// OpenCL 1.2 spec, s6.12.10
4327//
4328// The event argument can also be used to associate the
4329// async_work_group_copy with a previous async copy allowing
4330// an event to be shared by multiple async copies; otherwise
4331// event should be zero.
4332//
4333static bool TryOCLZeroEventInitialization(Sema &S,
4334                                          InitializationSequence &Sequence,
4335                                          QualType DestType,
4336                                          Expr *Initializer) {
4337  if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4338      !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4339      (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4340    return false;
4341
4342  Sequence.AddOCLZeroEventStep(DestType);
4343  return true;
4344}
4345
4346InitializationSequence::InitializationSequence(Sema &S,
4347                                               const InitializedEntity &Entity,
4348                                               const InitializationKind &Kind,
4349                                               MultiExprArg Args)
4350    : FailedCandidateSet(Kind.getLocation()) {
4351  ASTContext &Context = S.Context;
4352
4353  // Eliminate non-overload placeholder types in the arguments.  We
4354  // need to do this before checking whether types are dependent
4355  // because lowering a pseudo-object expression might well give us
4356  // something of dependent type.
4357  for (unsigned I = 0, E = Args.size(); I != E; ++I)
4358    if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4359      // FIXME: should we be doing this here?
4360      ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4361      if (result.isInvalid()) {
4362        SetFailed(FK_PlaceholderType);
4363        return;
4364      }
4365      Args[I] = result.take();
4366    }
4367
4368  // C++0x [dcl.init]p16:
4369  //   The semantics of initializers are as follows. The destination type is
4370  //   the type of the object or reference being initialized and the source
4371  //   type is the type of the initializer expression. The source type is not
4372  //   defined when the initializer is a braced-init-list or when it is a
4373  //   parenthesized list of expressions.
4374  QualType DestType = Entity.getType();
4375
4376  if (DestType->isDependentType() ||
4377      Expr::hasAnyTypeDependentArguments(Args)) {
4378    SequenceKind = DependentSequence;
4379    return;
4380  }
4381
4382  // Almost everything is a normal sequence.
4383  setSequenceKind(NormalSequence);
4384
4385  QualType SourceType;
4386  Expr *Initializer = 0;
4387  if (Args.size() == 1) {
4388    Initializer = Args[0];
4389    if (!isa<InitListExpr>(Initializer))
4390      SourceType = Initializer->getType();
4391  }
4392
4393  //     - If the initializer is a (non-parenthesized) braced-init-list, the
4394  //       object is list-initialized (8.5.4).
4395  if (Kind.getKind() != InitializationKind::IK_Direct) {
4396    if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4397      TryListInitialization(S, Entity, Kind, InitList, *this);
4398      return;
4399    }
4400  }
4401
4402  //     - If the destination type is a reference type, see 8.5.3.
4403  if (DestType->isReferenceType()) {
4404    // C++0x [dcl.init.ref]p1:
4405    //   A variable declared to be a T& or T&&, that is, "reference to type T"
4406    //   (8.3.2), shall be initialized by an object, or function, of type T or
4407    //   by an object that can be converted into a T.
4408    // (Therefore, multiple arguments are not permitted.)
4409    if (Args.size() != 1)
4410      SetFailed(FK_TooManyInitsForReference);
4411    else
4412      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4413    return;
4414  }
4415
4416  //     - If the initializer is (), the object is value-initialized.
4417  if (Kind.getKind() == InitializationKind::IK_Value ||
4418      (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
4419    TryValueInitialization(S, Entity, Kind, *this);
4420    return;
4421  }
4422
4423  // Handle default initialization.
4424  if (Kind.getKind() == InitializationKind::IK_Default) {
4425    TryDefaultInitialization(S, Entity, Kind, *this);
4426    return;
4427  }
4428
4429  //     - If the destination type is an array of characters, an array of
4430  //       char16_t, an array of char32_t, or an array of wchar_t, and the
4431  //       initializer is a string literal, see 8.5.2.
4432  //     - Otherwise, if the destination type is an array, the program is
4433  //       ill-formed.
4434  if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4435    if (Initializer && isa<VariableArrayType>(DestAT)) {
4436      SetFailed(FK_VariableLengthArrayHasInitializer);
4437      return;
4438    }
4439
4440    if (Initializer) {
4441      switch (IsStringInit(Initializer, DestAT, Context)) {
4442      case SIF_None:
4443        TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4444        return;
4445      case SIF_NarrowStringIntoWideChar:
4446        SetFailed(FK_NarrowStringIntoWideCharArray);
4447        return;
4448      case SIF_WideStringIntoChar:
4449        SetFailed(FK_WideStringIntoCharArray);
4450        return;
4451      case SIF_IncompatWideStringIntoWideChar:
4452        SetFailed(FK_IncompatWideStringIntoWideChar);
4453        return;
4454      case SIF_Other:
4455        break;
4456      }
4457    }
4458
4459    // Note: as an GNU C extension, we allow initialization of an
4460    // array from a compound literal that creates an array of the same
4461    // type, so long as the initializer has no side effects.
4462    if (!S.getLangOpts().CPlusPlus && Initializer &&
4463        isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4464        Initializer->getType()->isArrayType()) {
4465      const ArrayType *SourceAT
4466        = Context.getAsArrayType(Initializer->getType());
4467      if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4468        SetFailed(FK_ArrayTypeMismatch);
4469      else if (Initializer->HasSideEffects(S.Context))
4470        SetFailed(FK_NonConstantArrayInit);
4471      else {
4472        AddArrayInitStep(DestType);
4473      }
4474    }
4475    // Note: as a GNU C++ extension, we allow list-initialization of a
4476    // class member of array type from a parenthesized initializer list.
4477    else if (S.getLangOpts().CPlusPlus &&
4478             Entity.getKind() == InitializedEntity::EK_Member &&
4479             Initializer && isa<InitListExpr>(Initializer)) {
4480      TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4481                            *this);
4482      AddParenthesizedArrayInitStep(DestType);
4483    } else if (DestAT->getElementType()->isCharType())
4484      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4485    else if (IsWideCharCompatible(DestAT->getElementType(), Context))
4486      SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
4487    else
4488      SetFailed(FK_ArrayNeedsInitList);
4489
4490    return;
4491  }
4492
4493  // Determine whether we should consider writeback conversions for
4494  // Objective-C ARC.
4495  bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4496    Entity.getKind() == InitializedEntity::EK_Parameter;
4497
4498  // We're at the end of the line for C: it's either a write-back conversion
4499  // or it's a C assignment. There's no need to check anything else.
4500  if (!S.getLangOpts().CPlusPlus) {
4501    // If allowed, check whether this is an Objective-C writeback conversion.
4502    if (allowObjCWritebackConversion &&
4503        tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4504      return;
4505    }
4506
4507    if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4508      return;
4509
4510    if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4511      return;
4512
4513    // Handle initialization in C
4514    AddCAssignmentStep(DestType);
4515    MaybeProduceObjCObject(S, *this, Entity);
4516    return;
4517  }
4518
4519  assert(S.getLangOpts().CPlusPlus);
4520
4521  //     - If the destination type is a (possibly cv-qualified) class type:
4522  if (DestType->isRecordType()) {
4523    //     - If the initialization is direct-initialization, or if it is
4524    //       copy-initialization where the cv-unqualified version of the
4525    //       source type is the same class as, or a derived class of, the
4526    //       class of the destination, constructors are considered. [...]
4527    if (Kind.getKind() == InitializationKind::IK_Direct ||
4528        (Kind.getKind() == InitializationKind::IK_Copy &&
4529         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4530          S.IsDerivedFrom(SourceType, DestType))))
4531      TryConstructorInitialization(S, Entity, Kind, Args,
4532                                   Entity.getType(), *this);
4533    //     - Otherwise (i.e., for the remaining copy-initialization cases),
4534    //       user-defined conversion sequences that can convert from the source
4535    //       type to the destination type or (when a conversion function is
4536    //       used) to a derived class thereof are enumerated as described in
4537    //       13.3.1.4, and the best one is chosen through overload resolution
4538    //       (13.3).
4539    else
4540      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4541    return;
4542  }
4543
4544  if (Args.size() > 1) {
4545    SetFailed(FK_TooManyInitsForScalar);
4546    return;
4547  }
4548  assert(Args.size() == 1 && "Zero-argument case handled above");
4549
4550  //    - Otherwise, if the source type is a (possibly cv-qualified) class
4551  //      type, conversion functions are considered.
4552  if (!SourceType.isNull() && SourceType->isRecordType()) {
4553    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4554    MaybeProduceObjCObject(S, *this, Entity);
4555    return;
4556  }
4557
4558  //    - Otherwise, the initial value of the object being initialized is the
4559  //      (possibly converted) value of the initializer expression. Standard
4560  //      conversions (Clause 4) will be used, if necessary, to convert the
4561  //      initializer expression to the cv-unqualified version of the
4562  //      destination type; no user-defined conversions are considered.
4563
4564  ImplicitConversionSequence ICS
4565    = S.TryImplicitConversion(Initializer, Entity.getType(),
4566                              /*SuppressUserConversions*/true,
4567                              /*AllowExplicitConversions*/ false,
4568                              /*InOverloadResolution*/ false,
4569                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4570                              allowObjCWritebackConversion);
4571
4572  if (ICS.isStandard() &&
4573      ICS.Standard.Second == ICK_Writeback_Conversion) {
4574    // Objective-C ARC writeback conversion.
4575
4576    // We should copy unless we're passing to an argument explicitly
4577    // marked 'out'.
4578    bool ShouldCopy = true;
4579    if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4580      ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4581
4582    // If there was an lvalue adjustment, add it as a separate conversion.
4583    if (ICS.Standard.First == ICK_Array_To_Pointer ||
4584        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4585      ImplicitConversionSequence LvalueICS;
4586      LvalueICS.setStandard();
4587      LvalueICS.Standard.setAsIdentityConversion();
4588      LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4589      LvalueICS.Standard.First = ICS.Standard.First;
4590      AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4591    }
4592
4593    AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4594  } else if (ICS.isBad()) {
4595    DeclAccessPair dap;
4596    if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
4597      AddZeroInitializationStep(Entity.getType());
4598    } else if (Initializer->getType() == Context.OverloadTy &&
4599               !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
4600                                                     false, dap))
4601      SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4602    else
4603      SetFailed(InitializationSequence::FK_ConversionFailed);
4604  } else {
4605    AddConversionSequenceStep(ICS, Entity.getType());
4606
4607    MaybeProduceObjCObject(S, *this, Entity);
4608  }
4609}
4610
4611InitializationSequence::~InitializationSequence() {
4612  for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4613                                          StepEnd = Steps.end();
4614       Step != StepEnd; ++Step)
4615    Step->Destroy();
4616}
4617
4618//===----------------------------------------------------------------------===//
4619// Perform initialization
4620//===----------------------------------------------------------------------===//
4621static Sema::AssignmentAction
4622getAssignmentAction(const InitializedEntity &Entity) {
4623  switch(Entity.getKind()) {
4624  case InitializedEntity::EK_Variable:
4625  case InitializedEntity::EK_New:
4626  case InitializedEntity::EK_Exception:
4627  case InitializedEntity::EK_Base:
4628  case InitializedEntity::EK_Delegating:
4629    return Sema::AA_Initializing;
4630
4631  case InitializedEntity::EK_Parameter:
4632    if (Entity.getDecl() &&
4633        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4634      return Sema::AA_Sending;
4635
4636    return Sema::AA_Passing;
4637
4638  case InitializedEntity::EK_Result:
4639    return Sema::AA_Returning;
4640
4641  case InitializedEntity::EK_Temporary:
4642  case InitializedEntity::EK_RelatedResult:
4643    // FIXME: Can we tell apart casting vs. converting?
4644    return Sema::AA_Casting;
4645
4646  case InitializedEntity::EK_Member:
4647  case InitializedEntity::EK_ArrayElement:
4648  case InitializedEntity::EK_VectorElement:
4649  case InitializedEntity::EK_ComplexElement:
4650  case InitializedEntity::EK_BlockElement:
4651  case InitializedEntity::EK_LambdaCapture:
4652  case InitializedEntity::EK_CompoundLiteralInit:
4653    return Sema::AA_Initializing;
4654  }
4655
4656  llvm_unreachable("Invalid EntityKind!");
4657}
4658
4659/// \brief Whether we should bind a created object as a temporary when
4660/// initializing the given entity.
4661static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4662  switch (Entity.getKind()) {
4663  case InitializedEntity::EK_ArrayElement:
4664  case InitializedEntity::EK_Member:
4665  case InitializedEntity::EK_Result:
4666  case InitializedEntity::EK_New:
4667  case InitializedEntity::EK_Variable:
4668  case InitializedEntity::EK_Base:
4669  case InitializedEntity::EK_Delegating:
4670  case InitializedEntity::EK_VectorElement:
4671  case InitializedEntity::EK_ComplexElement:
4672  case InitializedEntity::EK_Exception:
4673  case InitializedEntity::EK_BlockElement:
4674  case InitializedEntity::EK_LambdaCapture:
4675  case InitializedEntity::EK_CompoundLiteralInit:
4676    return false;
4677
4678  case InitializedEntity::EK_Parameter:
4679  case InitializedEntity::EK_Temporary:
4680  case InitializedEntity::EK_RelatedResult:
4681    return true;
4682  }
4683
4684  llvm_unreachable("missed an InitializedEntity kind?");
4685}
4686
4687/// \brief Whether the given entity, when initialized with an object
4688/// created for that initialization, requires destruction.
4689static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4690  switch (Entity.getKind()) {
4691    case InitializedEntity::EK_Result:
4692    case InitializedEntity::EK_New:
4693    case InitializedEntity::EK_Base:
4694    case InitializedEntity::EK_Delegating:
4695    case InitializedEntity::EK_VectorElement:
4696    case InitializedEntity::EK_ComplexElement:
4697    case InitializedEntity::EK_BlockElement:
4698    case InitializedEntity::EK_LambdaCapture:
4699      return false;
4700
4701    case InitializedEntity::EK_Member:
4702    case InitializedEntity::EK_Variable:
4703    case InitializedEntity::EK_Parameter:
4704    case InitializedEntity::EK_Temporary:
4705    case InitializedEntity::EK_ArrayElement:
4706    case InitializedEntity::EK_Exception:
4707    case InitializedEntity::EK_CompoundLiteralInit:
4708    case InitializedEntity::EK_RelatedResult:
4709      return true;
4710  }
4711
4712  llvm_unreachable("missed an InitializedEntity kind?");
4713}
4714
4715/// \brief Look for copy and move constructors and constructor templates, for
4716/// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4717static void LookupCopyAndMoveConstructors(Sema &S,
4718                                          OverloadCandidateSet &CandidateSet,
4719                                          CXXRecordDecl *Class,
4720                                          Expr *CurInitExpr) {
4721  DeclContext::lookup_result R = S.LookupConstructors(Class);
4722  // The container holding the constructors can under certain conditions
4723  // be changed while iterating (e.g. because of deserialization).
4724  // To be safe we copy the lookup results to a new container.
4725  SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
4726  for (SmallVectorImpl<NamedDecl *>::iterator
4727         CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
4728    NamedDecl *D = *CI;
4729    CXXConstructorDecl *Constructor = 0;
4730
4731    if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
4732      // Handle copy/moveconstructors, only.
4733      if (!Constructor || Constructor->isInvalidDecl() ||
4734          !Constructor->isCopyOrMoveConstructor() ||
4735          !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4736        continue;
4737
4738      DeclAccessPair FoundDecl
4739        = DeclAccessPair::make(Constructor, Constructor->getAccess());
4740      S.AddOverloadCandidate(Constructor, FoundDecl,
4741                             CurInitExpr, CandidateSet);
4742      continue;
4743    }
4744
4745    // Handle constructor templates.
4746    FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
4747    if (ConstructorTmpl->isInvalidDecl())
4748      continue;
4749
4750    Constructor = cast<CXXConstructorDecl>(
4751                                         ConstructorTmpl->getTemplatedDecl());
4752    if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4753      continue;
4754
4755    // FIXME: Do we need to limit this to copy-constructor-like
4756    // candidates?
4757    DeclAccessPair FoundDecl
4758      = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4759    S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4760                                   CurInitExpr, CandidateSet, true);
4761  }
4762}
4763
4764/// \brief Get the location at which initialization diagnostics should appear.
4765static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4766                                           Expr *Initializer) {
4767  switch (Entity.getKind()) {
4768  case InitializedEntity::EK_Result:
4769    return Entity.getReturnLoc();
4770
4771  case InitializedEntity::EK_Exception:
4772    return Entity.getThrowLoc();
4773
4774  case InitializedEntity::EK_Variable:
4775    return Entity.getDecl()->getLocation();
4776
4777  case InitializedEntity::EK_LambdaCapture:
4778    return Entity.getCaptureLoc();
4779
4780  case InitializedEntity::EK_ArrayElement:
4781  case InitializedEntity::EK_Member:
4782  case InitializedEntity::EK_Parameter:
4783  case InitializedEntity::EK_Temporary:
4784  case InitializedEntity::EK_New:
4785  case InitializedEntity::EK_Base:
4786  case InitializedEntity::EK_Delegating:
4787  case InitializedEntity::EK_VectorElement:
4788  case InitializedEntity::EK_ComplexElement:
4789  case InitializedEntity::EK_BlockElement:
4790  case InitializedEntity::EK_CompoundLiteralInit:
4791  case InitializedEntity::EK_RelatedResult:
4792    return Initializer->getLocStart();
4793  }
4794  llvm_unreachable("missed an InitializedEntity kind?");
4795}
4796
4797/// \brief Make a (potentially elidable) temporary copy of the object
4798/// provided by the given initializer by calling the appropriate copy
4799/// constructor.
4800///
4801/// \param S The Sema object used for type-checking.
4802///
4803/// \param T The type of the temporary object, which must either be
4804/// the type of the initializer expression or a superclass thereof.
4805///
4806/// \param Entity The entity being initialized.
4807///
4808/// \param CurInit The initializer expression.
4809///
4810/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4811/// is permitted in C++03 (but not C++0x) when binding a reference to
4812/// an rvalue.
4813///
4814/// \returns An expression that copies the initializer expression into
4815/// a temporary object, or an error expression if a copy could not be
4816/// created.
4817static ExprResult CopyObject(Sema &S,
4818                             QualType T,
4819                             const InitializedEntity &Entity,
4820                             ExprResult CurInit,
4821                             bool IsExtraneousCopy) {
4822  // Determine which class type we're copying to.
4823  Expr *CurInitExpr = (Expr *)CurInit.get();
4824  CXXRecordDecl *Class = 0;
4825  if (const RecordType *Record = T->getAs<RecordType>())
4826    Class = cast<CXXRecordDecl>(Record->getDecl());
4827  if (!Class)
4828    return CurInit;
4829
4830  // C++0x [class.copy]p32:
4831  //   When certain criteria are met, an implementation is allowed to
4832  //   omit the copy/move construction of a class object, even if the
4833  //   copy/move constructor and/or destructor for the object have
4834  //   side effects. [...]
4835  //     - when a temporary class object that has not been bound to a
4836  //       reference (12.2) would be copied/moved to a class object
4837  //       with the same cv-unqualified type, the copy/move operation
4838  //       can be omitted by constructing the temporary object
4839  //       directly into the target of the omitted copy/move
4840  //
4841  // Note that the other three bullets are handled elsewhere. Copy
4842  // elision for return statements and throw expressions are handled as part
4843  // of constructor initialization, while copy elision for exception handlers
4844  // is handled by the run-time.
4845  bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4846  SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4847
4848  // Make sure that the type we are copying is complete.
4849  if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
4850    return CurInit;
4851
4852  // Perform overload resolution using the class's copy/move constructors.
4853  // Only consider constructors and constructor templates. Per
4854  // C++0x [dcl.init]p16, second bullet to class types, this initialization
4855  // is direct-initialization.
4856  OverloadCandidateSet CandidateSet(Loc);
4857  LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4858
4859  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4860
4861  OverloadCandidateSet::iterator Best;
4862  switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4863  case OR_Success:
4864    break;
4865
4866  case OR_No_Viable_Function:
4867    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4868           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4869           : diag::err_temp_copy_no_viable)
4870      << (int)Entity.getKind() << CurInitExpr->getType()
4871      << CurInitExpr->getSourceRange();
4872    CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4873    if (!IsExtraneousCopy || S.isSFINAEContext())
4874      return ExprError();
4875    return CurInit;
4876
4877  case OR_Ambiguous:
4878    S.Diag(Loc, diag::err_temp_copy_ambiguous)
4879      << (int)Entity.getKind() << CurInitExpr->getType()
4880      << CurInitExpr->getSourceRange();
4881    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4882    return ExprError();
4883
4884  case OR_Deleted:
4885    S.Diag(Loc, diag::err_temp_copy_deleted)
4886      << (int)Entity.getKind() << CurInitExpr->getType()
4887      << CurInitExpr->getSourceRange();
4888    S.NoteDeletedFunction(Best->Function);
4889    return ExprError();
4890  }
4891
4892  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4893  SmallVector<Expr*, 8> ConstructorArgs;
4894  CurInit.release(); // Ownership transferred into MultiExprArg, below.
4895
4896  S.CheckConstructorAccess(Loc, Constructor, Entity,
4897                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
4898
4899  if (IsExtraneousCopy) {
4900    // If this is a totally extraneous copy for C++03 reference
4901    // binding purposes, just return the original initialization
4902    // expression. We don't generate an (elided) copy operation here
4903    // because doing so would require us to pass down a flag to avoid
4904    // infinite recursion, where each step adds another extraneous,
4905    // elidable copy.
4906
4907    // Instantiate the default arguments of any extra parameters in
4908    // the selected copy constructor, as if we were going to create a
4909    // proper call to the copy constructor.
4910    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4911      ParmVarDecl *Parm = Constructor->getParamDecl(I);
4912      if (S.RequireCompleteType(Loc, Parm->getType(),
4913                                diag::err_call_incomplete_argument))
4914        break;
4915
4916      // Build the default argument expression; we don't actually care
4917      // if this succeeds or not, because this routine will complain
4918      // if there was a problem.
4919      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4920    }
4921
4922    return S.Owned(CurInitExpr);
4923  }
4924
4925  // Determine the arguments required to actually perform the
4926  // constructor call (we might have derived-to-base conversions, or
4927  // the copy constructor may have default arguments).
4928  if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
4929    return ExprError();
4930
4931  // Actually perform the constructor call.
4932  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4933                                    ConstructorArgs,
4934                                    HadMultipleCandidates,
4935                                    /*ListInit*/ false,
4936                                    /*ZeroInit*/ false,
4937                                    CXXConstructExpr::CK_Complete,
4938                                    SourceRange());
4939
4940  // If we're supposed to bind temporaries, do so.
4941  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4942    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4943  return CurInit;
4944}
4945
4946/// \brief Check whether elidable copy construction for binding a reference to
4947/// a temporary would have succeeded if we were building in C++98 mode, for
4948/// -Wc++98-compat.
4949static void CheckCXX98CompatAccessibleCopy(Sema &S,
4950                                           const InitializedEntity &Entity,
4951                                           Expr *CurInitExpr) {
4952  assert(S.getLangOpts().CPlusPlus11);
4953
4954  const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4955  if (!Record)
4956    return;
4957
4958  SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4959  if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4960        == DiagnosticsEngine::Ignored)
4961    return;
4962
4963  // Find constructors which would have been considered.
4964  OverloadCandidateSet CandidateSet(Loc);
4965  LookupCopyAndMoveConstructors(
4966      S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4967
4968  // Perform overload resolution.
4969  OverloadCandidateSet::iterator Best;
4970  OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4971
4972  PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4973    << OR << (int)Entity.getKind() << CurInitExpr->getType()
4974    << CurInitExpr->getSourceRange();
4975
4976  switch (OR) {
4977  case OR_Success:
4978    S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4979                             Entity, Best->FoundDecl.getAccess(), Diag);
4980    // FIXME: Check default arguments as far as that's possible.
4981    break;
4982
4983  case OR_No_Viable_Function:
4984    S.Diag(Loc, Diag);
4985    CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4986    break;
4987
4988  case OR_Ambiguous:
4989    S.Diag(Loc, Diag);
4990    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4991    break;
4992
4993  case OR_Deleted:
4994    S.Diag(Loc, Diag);
4995    S.NoteDeletedFunction(Best->Function);
4996    break;
4997  }
4998}
4999
5000void InitializationSequence::PrintInitLocationNote(Sema &S,
5001                                              const InitializedEntity &Entity) {
5002  if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
5003    if (Entity.getDecl()->getLocation().isInvalid())
5004      return;
5005
5006    if (Entity.getDecl()->getDeclName())
5007      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5008        << Entity.getDecl()->getDeclName();
5009    else
5010      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5011  }
5012  else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5013           Entity.getMethodDecl())
5014    S.Diag(Entity.getMethodDecl()->getLocation(),
5015           diag::note_method_return_type_change)
5016      << Entity.getMethodDecl()->getDeclName();
5017}
5018
5019static bool isReferenceBinding(const InitializationSequence::Step &s) {
5020  return s.Kind == InitializationSequence::SK_BindReference ||
5021         s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
5022}
5023
5024/// Returns true if the parameters describe a constructor initialization of
5025/// an explicit temporary object, e.g. "Point(x, y)".
5026static bool isExplicitTemporary(const InitializedEntity &Entity,
5027                                const InitializationKind &Kind,
5028                                unsigned NumArgs) {
5029  switch (Entity.getKind()) {
5030  case InitializedEntity::EK_Temporary:
5031  case InitializedEntity::EK_CompoundLiteralInit:
5032  case InitializedEntity::EK_RelatedResult:
5033    break;
5034  default:
5035    return false;
5036  }
5037
5038  switch (Kind.getKind()) {
5039  case InitializationKind::IK_DirectList:
5040    return true;
5041  // FIXME: Hack to work around cast weirdness.
5042  case InitializationKind::IK_Direct:
5043  case InitializationKind::IK_Value:
5044    return NumArgs != 1;
5045  default:
5046    return false;
5047  }
5048}
5049
5050static ExprResult
5051PerformConstructorInitialization(Sema &S,
5052                                 const InitializedEntity &Entity,
5053                                 const InitializationKind &Kind,
5054                                 MultiExprArg Args,
5055                                 const InitializationSequence::Step& Step,
5056                                 bool &ConstructorInitRequiresZeroInit,
5057                                 bool IsListInitialization) {
5058  unsigned NumArgs = Args.size();
5059  CXXConstructorDecl *Constructor
5060    = cast<CXXConstructorDecl>(Step.Function.Function);
5061  bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5062
5063  // Build a call to the selected constructor.
5064  SmallVector<Expr*, 8> ConstructorArgs;
5065  SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5066                         ? Kind.getEqualLoc()
5067                         : Kind.getLocation();
5068
5069  if (Kind.getKind() == InitializationKind::IK_Default) {
5070    // Force even a trivial, implicit default constructor to be
5071    // semantically checked. We do this explicitly because we don't build
5072    // the definition for completely trivial constructors.
5073    assert(Constructor->getParent() && "No parent class for constructor.");
5074    if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5075        Constructor->isTrivial() && !Constructor->isUsed(false))
5076      S.DefineImplicitDefaultConstructor(Loc, Constructor);
5077  }
5078
5079  ExprResult CurInit = S.Owned((Expr *)0);
5080
5081  // C++ [over.match.copy]p1:
5082  //   - When initializing a temporary to be bound to the first parameter
5083  //     of a constructor that takes a reference to possibly cv-qualified
5084  //     T as its first argument, called with a single argument in the
5085  //     context of direct-initialization, explicit conversion functions
5086  //     are also considered.
5087  bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
5088                           Args.size() == 1 &&
5089                           Constructor->isCopyOrMoveConstructor();
5090
5091  // Determine the arguments required to actually perform the constructor
5092  // call.
5093  if (S.CompleteConstructorCall(Constructor, Args,
5094                                Loc, ConstructorArgs,
5095                                AllowExplicitConv,
5096                                IsListInitialization))
5097    return ExprError();
5098
5099
5100  if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5101    // An explicitly-constructed temporary, e.g., X(1, 2).
5102    S.MarkFunctionReferenced(Loc, Constructor);
5103    if (S.DiagnoseUseOfDecl(Constructor, Loc))
5104      return ExprError();
5105
5106    TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5107    if (!TSInfo)
5108      TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5109    SourceRange ParenRange;
5110    if (Kind.getKind() != InitializationKind::IK_DirectList)
5111      ParenRange = Kind.getParenRange();
5112
5113    CurInit = S.Owned(
5114      new (S.Context) CXXTemporaryObjectExpr(S.Context, Constructor,
5115                                             TSInfo, ConstructorArgs,
5116                                             ParenRange, IsListInitialization,
5117                                             HadMultipleCandidates,
5118                                             ConstructorInitRequiresZeroInit));
5119  } else {
5120    CXXConstructExpr::ConstructionKind ConstructKind =
5121      CXXConstructExpr::CK_Complete;
5122
5123    if (Entity.getKind() == InitializedEntity::EK_Base) {
5124      ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5125        CXXConstructExpr::CK_VirtualBase :
5126        CXXConstructExpr::CK_NonVirtualBase;
5127    } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5128      ConstructKind = CXXConstructExpr::CK_Delegating;
5129    }
5130
5131    // Only get the parenthesis range if it is a direct construction.
5132    SourceRange parenRange =
5133        Kind.getKind() == InitializationKind::IK_Direct ?
5134        Kind.getParenRange() : SourceRange();
5135
5136    // If the entity allows NRVO, mark the construction as elidable
5137    // unconditionally.
5138    if (Entity.allowsNRVO())
5139      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5140                                        Constructor, /*Elidable=*/true,
5141                                        ConstructorArgs,
5142                                        HadMultipleCandidates,
5143                                        IsListInitialization,
5144                                        ConstructorInitRequiresZeroInit,
5145                                        ConstructKind,
5146                                        parenRange);
5147    else
5148      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5149                                        Constructor,
5150                                        ConstructorArgs,
5151                                        HadMultipleCandidates,
5152                                        IsListInitialization,
5153                                        ConstructorInitRequiresZeroInit,
5154                                        ConstructKind,
5155                                        parenRange);
5156  }
5157  if (CurInit.isInvalid())
5158    return ExprError();
5159
5160  // Only check access if all of that succeeded.
5161  S.CheckConstructorAccess(Loc, Constructor, Entity,
5162                           Step.Function.FoundDecl.getAccess());
5163  if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5164    return ExprError();
5165
5166  if (shouldBindAsTemporary(Entity))
5167    CurInit = S.MaybeBindToTemporary(CurInit.take());
5168
5169  return CurInit;
5170}
5171
5172/// Determine whether the specified InitializedEntity definitely has a lifetime
5173/// longer than the current full-expression. Conservatively returns false if
5174/// it's unclear.
5175static bool
5176InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5177  const InitializedEntity *Top = &Entity;
5178  while (Top->getParent())
5179    Top = Top->getParent();
5180
5181  switch (Top->getKind()) {
5182  case InitializedEntity::EK_Variable:
5183  case InitializedEntity::EK_Result:
5184  case InitializedEntity::EK_Exception:
5185  case InitializedEntity::EK_Member:
5186  case InitializedEntity::EK_New:
5187  case InitializedEntity::EK_Base:
5188  case InitializedEntity::EK_Delegating:
5189    return true;
5190
5191  case InitializedEntity::EK_ArrayElement:
5192  case InitializedEntity::EK_VectorElement:
5193  case InitializedEntity::EK_BlockElement:
5194  case InitializedEntity::EK_ComplexElement:
5195    // Could not determine what the full initialization is. Assume it might not
5196    // outlive the full-expression.
5197    return false;
5198
5199  case InitializedEntity::EK_Parameter:
5200  case InitializedEntity::EK_Temporary:
5201  case InitializedEntity::EK_LambdaCapture:
5202  case InitializedEntity::EK_CompoundLiteralInit:
5203  case InitializedEntity::EK_RelatedResult:
5204    // The entity being initialized might not outlive the full-expression.
5205    return false;
5206  }
5207
5208  llvm_unreachable("unknown entity kind");
5209}
5210
5211/// Determine the declaration which an initialized entity ultimately refers to,
5212/// for the purpose of lifetime-extending a temporary bound to a reference in
5213/// the initialization of \p Entity.
5214static const ValueDecl *
5215getDeclForTemporaryLifetimeExtension(const InitializedEntity &Entity,
5216                                     const ValueDecl *FallbackDecl = 0) {
5217  // C++11 [class.temporary]p5:
5218  switch (Entity.getKind()) {
5219  case InitializedEntity::EK_Variable:
5220    //   The temporary [...] persists for the lifetime of the reference
5221    return Entity.getDecl();
5222
5223  case InitializedEntity::EK_Member:
5224    // For subobjects, we look at the complete object.
5225    if (Entity.getParent())
5226      return getDeclForTemporaryLifetimeExtension(*Entity.getParent(),
5227                                                  Entity.getDecl());
5228
5229    //   except:
5230    //   -- A temporary bound to a reference member in a constructor's
5231    //      ctor-initializer persists until the constructor exits.
5232    return Entity.getDecl();
5233
5234  case InitializedEntity::EK_Parameter:
5235    //   -- A temporary bound to a reference parameter in a function call
5236    //      persists until the completion of the full-expression containing
5237    //      the call.
5238  case InitializedEntity::EK_Result:
5239    //   -- The lifetime of a temporary bound to the returned value in a
5240    //      function return statement is not extended; the temporary is
5241    //      destroyed at the end of the full-expression in the return statement.
5242  case InitializedEntity::EK_New:
5243    //   -- A temporary bound to a reference in a new-initializer persists
5244    //      until the completion of the full-expression containing the
5245    //      new-initializer.
5246    return 0;
5247
5248  case InitializedEntity::EK_Temporary:
5249  case InitializedEntity::EK_CompoundLiteralInit:
5250  case InitializedEntity::EK_RelatedResult:
5251    // We don't yet know the storage duration of the surrounding temporary.
5252    // Assume it's got full-expression duration for now, it will patch up our
5253    // storage duration if that's not correct.
5254    return 0;
5255
5256  case InitializedEntity::EK_ArrayElement:
5257    // For subobjects, we look at the complete object.
5258    return getDeclForTemporaryLifetimeExtension(*Entity.getParent(),
5259                                                FallbackDecl);
5260
5261  case InitializedEntity::EK_Base:
5262  case InitializedEntity::EK_Delegating:
5263    // We can reach this case for aggregate initialization in a constructor:
5264    //   struct A { int &&r; };
5265    //   struct B : A { B() : A{0} {} };
5266    // In this case, use the innermost field decl as the context.
5267    return FallbackDecl;
5268
5269  case InitializedEntity::EK_BlockElement:
5270  case InitializedEntity::EK_LambdaCapture:
5271  case InitializedEntity::EK_Exception:
5272  case InitializedEntity::EK_VectorElement:
5273  case InitializedEntity::EK_ComplexElement:
5274    return 0;
5275  }
5276  llvm_unreachable("unknown entity kind");
5277}
5278
5279static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD);
5280
5281/// Update a glvalue expression that is used as the initializer of a reference
5282/// to note that its lifetime is extended.
5283/// \return \c true if any temporary had its lifetime extended.
5284static bool performReferenceExtension(Expr *Init, const ValueDecl *ExtendingD) {
5285  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5286    if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
5287      // This is just redundant braces around an initializer. Step over it.
5288      Init = ILE->getInit(0);
5289    }
5290  }
5291
5292  // Walk past any constructs which we can lifetime-extend across.
5293  Expr *Old;
5294  do {
5295    Old = Init;
5296
5297    // Step over any subobject adjustments; we may have a materialized
5298    // temporary inside them.
5299    SmallVector<const Expr *, 2> CommaLHSs;
5300    SmallVector<SubobjectAdjustment, 2> Adjustments;
5301    Init = const_cast<Expr *>(
5302        Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5303
5304    // Per current approach for DR1376, look through casts to reference type
5305    // when performing lifetime extension.
5306    if (CastExpr *CE = dyn_cast<CastExpr>(Init))
5307      if (CE->getSubExpr()->isGLValue())
5308        Init = CE->getSubExpr();
5309
5310    // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue.
5311    // It's unclear if binding a reference to that xvalue extends the array
5312    // temporary.
5313  } while (Init != Old);
5314
5315  if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
5316    // Update the storage duration of the materialized temporary.
5317    // FIXME: Rebuild the expression instead of mutating it.
5318    ME->setExtendingDecl(ExtendingD);
5319    performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingD);
5320    return true;
5321  }
5322
5323  return false;
5324}
5325
5326/// Update a prvalue expression that is going to be materialized as a
5327/// lifetime-extended temporary.
5328static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD) {
5329  // Dig out the expression which constructs the extended temporary.
5330  SmallVector<const Expr *, 2> CommaLHSs;
5331  SmallVector<SubobjectAdjustment, 2> Adjustments;
5332  Init = const_cast<Expr *>(
5333      Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5334
5335  if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
5336    Init = BTE->getSubExpr();
5337
5338  if (CXXStdInitializerListExpr *ILE =
5339          dyn_cast<CXXStdInitializerListExpr>(Init)) {
5340    performReferenceExtension(ILE->getSubExpr(), ExtendingD);
5341    return;
5342  }
5343
5344  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5345    if (ILE->getType()->isArrayType()) {
5346      for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
5347        performLifetimeExtension(ILE->getInit(I), ExtendingD);
5348      return;
5349    }
5350
5351    if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
5352      assert(RD->isAggregate() && "aggregate init on non-aggregate");
5353
5354      // If we lifetime-extend a braced initializer which is initializing an
5355      // aggregate, and that aggregate contains reference members which are
5356      // bound to temporaries, those temporaries are also lifetime-extended.
5357      if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
5358          ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
5359        performReferenceExtension(ILE->getInit(0), ExtendingD);
5360      else {
5361        unsigned Index = 0;
5362        for (RecordDecl::field_iterator I = RD->field_begin(),
5363                                        E = RD->field_end();
5364             I != E; ++I) {
5365          if (Index >= ILE->getNumInits())
5366            break;
5367          if (I->isUnnamedBitfield())
5368            continue;
5369          Expr *SubInit = ILE->getInit(Index);
5370          if (I->getType()->isReferenceType())
5371            performReferenceExtension(SubInit, ExtendingD);
5372          else if (isa<InitListExpr>(SubInit) ||
5373                   isa<CXXStdInitializerListExpr>(SubInit))
5374            // This may be either aggregate-initialization of a member or
5375            // initialization of a std::initializer_list object. Either way,
5376            // we should recursively lifetime-extend that initializer.
5377            performLifetimeExtension(SubInit, ExtendingD);
5378          ++Index;
5379        }
5380      }
5381    }
5382  }
5383}
5384
5385static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
5386                                    const Expr *Init, bool IsInitializerList,
5387                                    const ValueDecl *ExtendingDecl) {
5388  // Warn if a field lifetime-extends a temporary.
5389  if (isa<FieldDecl>(ExtendingDecl)) {
5390    if (IsInitializerList) {
5391      S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
5392        << /*at end of constructor*/true;
5393      return;
5394    }
5395
5396    bool IsSubobjectMember = false;
5397    for (const InitializedEntity *Ent = Entity.getParent(); Ent;
5398         Ent = Ent->getParent()) {
5399      if (Ent->getKind() != InitializedEntity::EK_Base) {
5400        IsSubobjectMember = true;
5401        break;
5402      }
5403    }
5404    S.Diag(Init->getExprLoc(),
5405           diag::warn_bind_ref_member_to_temporary)
5406      << ExtendingDecl << Init->getSourceRange()
5407      << IsSubobjectMember << IsInitializerList;
5408    if (IsSubobjectMember)
5409      S.Diag(ExtendingDecl->getLocation(),
5410             diag::note_ref_subobject_of_member_declared_here);
5411    else
5412      S.Diag(ExtendingDecl->getLocation(),
5413             diag::note_ref_or_ptr_member_declared_here)
5414        << /*is pointer*/false;
5415  }
5416}
5417
5418ExprResult
5419InitializationSequence::Perform(Sema &S,
5420                                const InitializedEntity &Entity,
5421                                const InitializationKind &Kind,
5422                                MultiExprArg Args,
5423                                QualType *ResultType) {
5424  if (Failed()) {
5425    Diagnose(S, Entity, Kind, Args);
5426    return ExprError();
5427  }
5428
5429  if (getKind() == DependentSequence) {
5430    // If the declaration is a non-dependent, incomplete array type
5431    // that has an initializer, then its type will be completed once
5432    // the initializer is instantiated.
5433    if (ResultType && !Entity.getType()->isDependentType() &&
5434        Args.size() == 1) {
5435      QualType DeclType = Entity.getType();
5436      if (const IncompleteArrayType *ArrayT
5437                           = S.Context.getAsIncompleteArrayType(DeclType)) {
5438        // FIXME: We don't currently have the ability to accurately
5439        // compute the length of an initializer list without
5440        // performing full type-checking of the initializer list
5441        // (since we have to determine where braces are implicitly
5442        // introduced and such).  So, we fall back to making the array
5443        // type a dependently-sized array type with no specified
5444        // bound.
5445        if (isa<InitListExpr>((Expr *)Args[0])) {
5446          SourceRange Brackets;
5447
5448          // Scavange the location of the brackets from the entity, if we can.
5449          if (DeclaratorDecl *DD = Entity.getDecl()) {
5450            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
5451              TypeLoc TL = TInfo->getTypeLoc();
5452              if (IncompleteArrayTypeLoc ArrayLoc =
5453                      TL.getAs<IncompleteArrayTypeLoc>())
5454                Brackets = ArrayLoc.getBracketsRange();
5455            }
5456          }
5457
5458          *ResultType
5459            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
5460                                                   /*NumElts=*/0,
5461                                                   ArrayT->getSizeModifier(),
5462                                       ArrayT->getIndexTypeCVRQualifiers(),
5463                                                   Brackets);
5464        }
5465
5466      }
5467    }
5468    if (Kind.getKind() == InitializationKind::IK_Direct &&
5469        !Kind.isExplicitCast()) {
5470      // Rebuild the ParenListExpr.
5471      SourceRange ParenRange = Kind.getParenRange();
5472      return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
5473                                  Args);
5474    }
5475    assert(Kind.getKind() == InitializationKind::IK_Copy ||
5476           Kind.isExplicitCast() ||
5477           Kind.getKind() == InitializationKind::IK_DirectList);
5478    return ExprResult(Args[0]);
5479  }
5480
5481  // No steps means no initialization.
5482  if (Steps.empty())
5483    return S.Owned((Expr *)0);
5484
5485  if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
5486      Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
5487      Entity.getKind() != InitializedEntity::EK_Parameter) {
5488    // Produce a C++98 compatibility warning if we are initializing a reference
5489    // from an initializer list. For parameters, we produce a better warning
5490    // elsewhere.
5491    Expr *Init = Args[0];
5492    S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
5493      << Init->getSourceRange();
5494  }
5495
5496  // Diagnose cases where we initialize a pointer to an array temporary, and the
5497  // pointer obviously outlives the temporary.
5498  if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
5499      Entity.getType()->isPointerType() &&
5500      InitializedEntityOutlivesFullExpression(Entity)) {
5501    Expr *Init = Args[0];
5502    Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
5503    if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
5504      S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
5505        << Init->getSourceRange();
5506  }
5507
5508  QualType DestType = Entity.getType().getNonReferenceType();
5509  // FIXME: Ugly hack around the fact that Entity.getType() is not
5510  // the same as Entity.getDecl()->getType() in cases involving type merging,
5511  //  and we want latter when it makes sense.
5512  if (ResultType)
5513    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
5514                                     Entity.getType();
5515
5516  ExprResult CurInit = S.Owned((Expr *)0);
5517
5518  // For initialization steps that start with a single initializer,
5519  // grab the only argument out the Args and place it into the "current"
5520  // initializer.
5521  switch (Steps.front().Kind) {
5522  case SK_ResolveAddressOfOverloadedFunction:
5523  case SK_CastDerivedToBaseRValue:
5524  case SK_CastDerivedToBaseXValue:
5525  case SK_CastDerivedToBaseLValue:
5526  case SK_BindReference:
5527  case SK_BindReferenceToTemporary:
5528  case SK_ExtraneousCopyToTemporary:
5529  case SK_UserConversion:
5530  case SK_QualificationConversionLValue:
5531  case SK_QualificationConversionXValue:
5532  case SK_QualificationConversionRValue:
5533  case SK_LValueToRValue:
5534  case SK_ConversionSequence:
5535  case SK_ListInitialization:
5536  case SK_UnwrapInitList:
5537  case SK_RewrapInitList:
5538  case SK_CAssignment:
5539  case SK_StringInit:
5540  case SK_ObjCObjectConversion:
5541  case SK_ArrayInit:
5542  case SK_ParenthesizedArrayInit:
5543  case SK_PassByIndirectCopyRestore:
5544  case SK_PassByIndirectRestore:
5545  case SK_ProduceObjCObject:
5546  case SK_StdInitializerList:
5547  case SK_OCLSamplerInit:
5548  case SK_OCLZeroEvent: {
5549    assert(Args.size() == 1);
5550    CurInit = Args[0];
5551    if (!CurInit.get()) return ExprError();
5552    break;
5553  }
5554
5555  case SK_ConstructorInitialization:
5556  case SK_ListConstructorCall:
5557  case SK_ZeroInitialization:
5558    break;
5559  }
5560
5561  // Walk through the computed steps for the initialization sequence,
5562  // performing the specified conversions along the way.
5563  bool ConstructorInitRequiresZeroInit = false;
5564  for (step_iterator Step = step_begin(), StepEnd = step_end();
5565       Step != StepEnd; ++Step) {
5566    if (CurInit.isInvalid())
5567      return ExprError();
5568
5569    QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
5570
5571    switch (Step->Kind) {
5572    case SK_ResolveAddressOfOverloadedFunction:
5573      // Overload resolution determined which function invoke; update the
5574      // initializer to reflect that choice.
5575      S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
5576      if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
5577        return ExprError();
5578      CurInit = S.FixOverloadedFunctionReference(CurInit,
5579                                                 Step->Function.FoundDecl,
5580                                                 Step->Function.Function);
5581      break;
5582
5583    case SK_CastDerivedToBaseRValue:
5584    case SK_CastDerivedToBaseXValue:
5585    case SK_CastDerivedToBaseLValue: {
5586      // We have a derived-to-base cast that produces either an rvalue or an
5587      // lvalue. Perform that cast.
5588
5589      CXXCastPath BasePath;
5590
5591      // Casts to inaccessible base classes are allowed with C-style casts.
5592      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
5593      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
5594                                         CurInit.get()->getLocStart(),
5595                                         CurInit.get()->getSourceRange(),
5596                                         &BasePath, IgnoreBaseAccess))
5597        return ExprError();
5598
5599      if (S.BasePathInvolvesVirtualBase(BasePath)) {
5600        QualType T = SourceType;
5601        if (const PointerType *Pointer = T->getAs<PointerType>())
5602          T = Pointer->getPointeeType();
5603        if (const RecordType *RecordTy = T->getAs<RecordType>())
5604          S.MarkVTableUsed(CurInit.get()->getLocStart(),
5605                           cast<CXXRecordDecl>(RecordTy->getDecl()));
5606      }
5607
5608      ExprValueKind VK =
5609          Step->Kind == SK_CastDerivedToBaseLValue ?
5610              VK_LValue :
5611              (Step->Kind == SK_CastDerivedToBaseXValue ?
5612                   VK_XValue :
5613                   VK_RValue);
5614      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5615                                                 Step->Type,
5616                                                 CK_DerivedToBase,
5617                                                 CurInit.get(),
5618                                                 &BasePath, VK));
5619      break;
5620    }
5621
5622    case SK_BindReference:
5623      // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
5624      if (CurInit.get()->refersToBitField()) {
5625        // We don't necessarily have an unambiguous source bit-field.
5626        FieldDecl *BitField = CurInit.get()->getSourceBitField();
5627        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
5628          << Entity.getType().isVolatileQualified()
5629          << (BitField ? BitField->getDeclName() : DeclarationName())
5630          << (BitField != NULL)
5631          << CurInit.get()->getSourceRange();
5632        if (BitField)
5633          S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
5634
5635        return ExprError();
5636      }
5637
5638      if (CurInit.get()->refersToVectorElement()) {
5639        // References cannot bind to vector elements.
5640        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
5641          << Entity.getType().isVolatileQualified()
5642          << CurInit.get()->getSourceRange();
5643        PrintInitLocationNote(S, Entity);
5644        return ExprError();
5645      }
5646
5647      // Reference binding does not have any corresponding ASTs.
5648
5649      // Check exception specifications
5650      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5651        return ExprError();
5652
5653      // Even though we didn't materialize a temporary, the binding may still
5654      // extend the lifetime of a temporary. This happens if we bind a reference
5655      // to the result of a cast to reference type.
5656      if (const ValueDecl *ExtendingDecl =
5657              getDeclForTemporaryLifetimeExtension(Entity)) {
5658        if (performReferenceExtension(CurInit.get(), ExtendingDecl))
5659          warnOnLifetimeExtension(S, Entity, CurInit.get(), false,
5660                                  ExtendingDecl);
5661      }
5662
5663      break;
5664
5665    case SK_BindReferenceToTemporary: {
5666      // Make sure the "temporary" is actually an rvalue.
5667      assert(CurInit.get()->isRValue() && "not a temporary");
5668
5669      // Check exception specifications
5670      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5671        return ExprError();
5672
5673      // Maybe lifetime-extend the temporary's subobjects to match the
5674      // entity's lifetime.
5675      const ValueDecl *ExtendingDecl =
5676          getDeclForTemporaryLifetimeExtension(Entity);
5677      if (ExtendingDecl) {
5678        performLifetimeExtension(CurInit.get(), ExtendingDecl);
5679        warnOnLifetimeExtension(S, Entity, CurInit.get(), false, ExtendingDecl);
5680      }
5681
5682      // Materialize the temporary into memory.
5683      MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr(
5684          Entity.getType().getNonReferenceType(), CurInit.get(),
5685          Entity.getType()->isLValueReferenceType(), ExtendingDecl);
5686
5687      // If we're binding to an Objective-C object that has lifetime, we
5688      // need cleanups. Likewise if we're extending this temporary to automatic
5689      // storage duration -- we need to register its cleanup during the
5690      // full-expression's cleanups.
5691      if ((S.getLangOpts().ObjCAutoRefCount &&
5692           MTE->getType()->isObjCLifetimeType()) ||
5693          (MTE->getStorageDuration() == SD_Automatic &&
5694           MTE->getType().isDestructedType()))
5695        S.ExprNeedsCleanups = true;
5696
5697      CurInit = S.Owned(MTE);
5698      break;
5699    }
5700
5701    case SK_ExtraneousCopyToTemporary:
5702      CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5703                           /*IsExtraneousCopy=*/true);
5704      break;
5705
5706    case SK_UserConversion: {
5707      // We have a user-defined conversion that invokes either a constructor
5708      // or a conversion function.
5709      CastKind CastKind;
5710      bool IsCopy = false;
5711      FunctionDecl *Fn = Step->Function.Function;
5712      DeclAccessPair FoundFn = Step->Function.FoundDecl;
5713      bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5714      bool CreatedObject = false;
5715      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5716        // Build a call to the selected constructor.
5717        SmallVector<Expr*, 8> ConstructorArgs;
5718        SourceLocation Loc = CurInit.get()->getLocStart();
5719        CurInit.release(); // Ownership transferred into MultiExprArg, below.
5720
5721        // Determine the arguments required to actually perform the constructor
5722        // call.
5723        Expr *Arg = CurInit.get();
5724        if (S.CompleteConstructorCall(Constructor,
5725                                      MultiExprArg(&Arg, 1),
5726                                      Loc, ConstructorArgs))
5727          return ExprError();
5728
5729        // Build an expression that constructs a temporary.
5730        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5731                                          ConstructorArgs,
5732                                          HadMultipleCandidates,
5733                                          /*ListInit*/ false,
5734                                          /*ZeroInit*/ false,
5735                                          CXXConstructExpr::CK_Complete,
5736                                          SourceRange());
5737        if (CurInit.isInvalid())
5738          return ExprError();
5739
5740        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5741                                 FoundFn.getAccess());
5742        if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5743          return ExprError();
5744
5745        CastKind = CK_ConstructorConversion;
5746        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5747        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5748            S.IsDerivedFrom(SourceType, Class))
5749          IsCopy = true;
5750
5751        CreatedObject = true;
5752      } else {
5753        // Build a call to the conversion function.
5754        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5755        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5756                                    FoundFn);
5757        if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5758          return ExprError();
5759
5760        // FIXME: Should we move this initialization into a separate
5761        // derived-to-base conversion? I believe the answer is "no", because
5762        // we don't want to turn off access control here for c-style casts.
5763        ExprResult CurInitExprRes =
5764          S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5765                                                FoundFn, Conversion);
5766        if(CurInitExprRes.isInvalid())
5767          return ExprError();
5768        CurInit = CurInitExprRes;
5769
5770        // Build the actual call to the conversion function.
5771        CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5772                                           HadMultipleCandidates);
5773        if (CurInit.isInvalid() || !CurInit.get())
5774          return ExprError();
5775
5776        CastKind = CK_UserDefinedConversion;
5777
5778        CreatedObject = Conversion->getResultType()->isRecordType();
5779      }
5780
5781      bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5782      bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5783
5784      if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5785        QualType T = CurInit.get()->getType();
5786        if (const RecordType *Record = T->getAs<RecordType>()) {
5787          CXXDestructorDecl *Destructor
5788            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5789          S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5790                                  S.PDiag(diag::err_access_dtor_temp) << T);
5791          S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5792          if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
5793            return ExprError();
5794        }
5795      }
5796
5797      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5798                                                 CurInit.get()->getType(),
5799                                                 CastKind, CurInit.get(), 0,
5800                                                CurInit.get()->getValueKind()));
5801      if (MaybeBindToTemp)
5802        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5803      if (RequiresCopy)
5804        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5805                             CurInit, /*IsExtraneousCopy=*/false);
5806      break;
5807    }
5808
5809    case SK_QualificationConversionLValue:
5810    case SK_QualificationConversionXValue:
5811    case SK_QualificationConversionRValue: {
5812      // Perform a qualification conversion; these can never go wrong.
5813      ExprValueKind VK =
5814          Step->Kind == SK_QualificationConversionLValue ?
5815              VK_LValue :
5816              (Step->Kind == SK_QualificationConversionXValue ?
5817                   VK_XValue :
5818                   VK_RValue);
5819      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5820      break;
5821    }
5822
5823    case SK_LValueToRValue: {
5824      assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
5825      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5826                                                 CK_LValueToRValue,
5827                                                 CurInit.take(),
5828                                                 /*BasePath=*/0,
5829                                                 VK_RValue));
5830      break;
5831    }
5832
5833    case SK_ConversionSequence: {
5834      Sema::CheckedConversionKind CCK
5835        = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5836        : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5837        : Kind.isExplicitCast()? Sema::CCK_OtherCast
5838        : Sema::CCK_ImplicitConversion;
5839      ExprResult CurInitExprRes =
5840        S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5841                                    getAssignmentAction(Entity), CCK);
5842      if (CurInitExprRes.isInvalid())
5843        return ExprError();
5844      CurInit = CurInitExprRes;
5845      break;
5846    }
5847
5848    case SK_ListInitialization: {
5849      InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5850      // If we're not initializing the top-level entity, we need to create an
5851      // InitializeTemporary entity for our target type.
5852      QualType Ty = Step->Type;
5853      bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
5854      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5855      InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
5856      InitListChecker PerformInitList(S, InitEntity,
5857          InitList, Ty, /*VerifyOnly=*/false);
5858      if (PerformInitList.HadError())
5859        return ExprError();
5860
5861      // Hack: We must update *ResultType if available in order to set the
5862      // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5863      // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5864      if (ResultType &&
5865          ResultType->getNonReferenceType()->isIncompleteArrayType()) {
5866        if ((*ResultType)->isRValueReferenceType())
5867          Ty = S.Context.getRValueReferenceType(Ty);
5868        else if ((*ResultType)->isLValueReferenceType())
5869          Ty = S.Context.getLValueReferenceType(Ty,
5870            (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5871        *ResultType = Ty;
5872      }
5873
5874      InitListExpr *StructuredInitList =
5875          PerformInitList.getFullyStructuredList();
5876      CurInit.release();
5877      CurInit = shouldBindAsTemporary(InitEntity)
5878          ? S.MaybeBindToTemporary(StructuredInitList)
5879          : S.Owned(StructuredInitList);
5880      break;
5881    }
5882
5883    case SK_ListConstructorCall: {
5884      // When an initializer list is passed for a parameter of type "reference
5885      // to object", we don't get an EK_Temporary entity, but instead an
5886      // EK_Parameter entity with reference type.
5887      // FIXME: This is a hack. What we really should do is create a user
5888      // conversion step for this case, but this makes it considerably more
5889      // complicated. For now, this will do.
5890      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5891                                        Entity.getType().getNonReferenceType());
5892      bool UseTemporary = Entity.getType()->isReferenceType();
5893      assert(Args.size() == 1 && "expected a single argument for list init");
5894      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5895      S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
5896        << InitList->getSourceRange();
5897      MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5898      CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
5899                                                                   Entity,
5900                                                 Kind, Arg, *Step,
5901                                               ConstructorInitRequiresZeroInit,
5902                                               /*IsListInitialization*/ true);
5903      break;
5904    }
5905
5906    case SK_UnwrapInitList:
5907      CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5908      break;
5909
5910    case SK_RewrapInitList: {
5911      Expr *E = CurInit.take();
5912      InitListExpr *Syntactic = Step->WrappingSyntacticList;
5913      InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5914          Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
5915      ILE->setSyntacticForm(Syntactic);
5916      ILE->setType(E->getType());
5917      ILE->setValueKind(E->getValueKind());
5918      CurInit = S.Owned(ILE);
5919      break;
5920    }
5921
5922    case SK_ConstructorInitialization: {
5923      // When an initializer list is passed for a parameter of type "reference
5924      // to object", we don't get an EK_Temporary entity, but instead an
5925      // EK_Parameter entity with reference type.
5926      // FIXME: This is a hack. What we really should do is create a user
5927      // conversion step for this case, but this makes it considerably more
5928      // complicated. For now, this will do.
5929      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5930                                        Entity.getType().getNonReferenceType());
5931      bool UseTemporary = Entity.getType()->isReferenceType();
5932      CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
5933                                                                 : Entity,
5934                                                 Kind, Args, *Step,
5935                                               ConstructorInitRequiresZeroInit,
5936                                               /*IsListInitialization*/ false);
5937      break;
5938    }
5939
5940    case SK_ZeroInitialization: {
5941      step_iterator NextStep = Step;
5942      ++NextStep;
5943      if (NextStep != StepEnd &&
5944          (NextStep->Kind == SK_ConstructorInitialization ||
5945           NextStep->Kind == SK_ListConstructorCall)) {
5946        // The need for zero-initialization is recorded directly into
5947        // the call to the object's constructor within the next step.
5948        ConstructorInitRequiresZeroInit = true;
5949      } else if (Kind.getKind() == InitializationKind::IK_Value &&
5950                 S.getLangOpts().CPlusPlus &&
5951                 !Kind.isImplicitValueInit()) {
5952        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5953        if (!TSInfo)
5954          TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5955                                                    Kind.getRange().getBegin());
5956
5957        CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5958                              TSInfo->getType().getNonLValueExprType(S.Context),
5959                                                                 TSInfo,
5960                                                    Kind.getRange().getEnd()));
5961      } else {
5962        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5963      }
5964      break;
5965    }
5966
5967    case SK_CAssignment: {
5968      QualType SourceType = CurInit.get()->getType();
5969      ExprResult Result = CurInit;
5970      Sema::AssignConvertType ConvTy =
5971        S.CheckSingleAssignmentConstraints(Step->Type, Result);
5972      if (Result.isInvalid())
5973        return ExprError();
5974      CurInit = Result;
5975
5976      // If this is a call, allow conversion to a transparent union.
5977      ExprResult CurInitExprRes = CurInit;
5978      if (ConvTy != Sema::Compatible &&
5979          Entity.getKind() == InitializedEntity::EK_Parameter &&
5980          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
5981            == Sema::Compatible)
5982        ConvTy = Sema::Compatible;
5983      if (CurInitExprRes.isInvalid())
5984        return ExprError();
5985      CurInit = CurInitExprRes;
5986
5987      bool Complained;
5988      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
5989                                     Step->Type, SourceType,
5990                                     CurInit.get(),
5991                                     getAssignmentAction(Entity),
5992                                     &Complained)) {
5993        PrintInitLocationNote(S, Entity);
5994        return ExprError();
5995      } else if (Complained)
5996        PrintInitLocationNote(S, Entity);
5997      break;
5998    }
5999
6000    case SK_StringInit: {
6001      QualType Ty = Step->Type;
6002      CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
6003                      S.Context.getAsArrayType(Ty), S);
6004      break;
6005    }
6006
6007    case SK_ObjCObjectConversion:
6008      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
6009                          CK_ObjCObjectLValueCast,
6010                          CurInit.get()->getValueKind());
6011      break;
6012
6013    case SK_ArrayInit:
6014      // Okay: we checked everything before creating this step. Note that
6015      // this is a GNU extension.
6016      S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
6017        << Step->Type << CurInit.get()->getType()
6018        << CurInit.get()->getSourceRange();
6019
6020      // If the destination type is an incomplete array type, update the
6021      // type accordingly.
6022      if (ResultType) {
6023        if (const IncompleteArrayType *IncompleteDest
6024                           = S.Context.getAsIncompleteArrayType(Step->Type)) {
6025          if (const ConstantArrayType *ConstantSource
6026                 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
6027            *ResultType = S.Context.getConstantArrayType(
6028                                             IncompleteDest->getElementType(),
6029                                             ConstantSource->getSize(),
6030                                             ArrayType::Normal, 0);
6031          }
6032        }
6033      }
6034      break;
6035
6036    case SK_ParenthesizedArrayInit:
6037      // Okay: we checked everything before creating this step. Note that
6038      // this is a GNU extension.
6039      S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
6040        << CurInit.get()->getSourceRange();
6041      break;
6042
6043    case SK_PassByIndirectCopyRestore:
6044    case SK_PassByIndirectRestore:
6045      checkIndirectCopyRestoreSource(S, CurInit.get());
6046      CurInit = S.Owned(new (S.Context)
6047                        ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
6048                                Step->Kind == SK_PassByIndirectCopyRestore));
6049      break;
6050
6051    case SK_ProduceObjCObject:
6052      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
6053                                                 CK_ARCProduceObject,
6054                                                 CurInit.take(), 0, VK_RValue));
6055      break;
6056
6057    case SK_StdInitializerList: {
6058      S.Diag(CurInit.get()->getExprLoc(),
6059             diag::warn_cxx98_compat_initializer_list_init)
6060        << CurInit.get()->getSourceRange();
6061
6062      // Maybe lifetime-extend the array temporary's subobjects to match the
6063      // entity's lifetime.
6064      const ValueDecl *ExtendingDecl =
6065          getDeclForTemporaryLifetimeExtension(Entity);
6066      if (ExtendingDecl) {
6067        performLifetimeExtension(CurInit.get(), ExtendingDecl);
6068        warnOnLifetimeExtension(S, Entity, CurInit.get(), true, ExtendingDecl);
6069      }
6070
6071      // Materialize the temporary into memory.
6072      MaterializeTemporaryExpr *MTE = new (S.Context)
6073          MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(),
6074                                   /*lvalue reference*/ false, ExtendingDecl);
6075
6076      // Wrap it in a construction of a std::initializer_list<T>.
6077      CurInit = S.Owned(
6078          new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE));
6079
6080      // Bind the result, in case the library has given initializer_list a
6081      // non-trivial destructor.
6082      if (shouldBindAsTemporary(Entity))
6083        CurInit = S.MaybeBindToTemporary(CurInit.take());
6084      break;
6085    }
6086
6087    case SK_OCLSamplerInit: {
6088      assert(Step->Type->isSamplerT() &&
6089             "Sampler initialization on non sampler type.");
6090
6091      QualType SourceType = CurInit.get()->getType();
6092      InitializedEntity::EntityKind EntityKind = Entity.getKind();
6093
6094      if (EntityKind == InitializedEntity::EK_Parameter) {
6095        if (!SourceType->isSamplerT())
6096          S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
6097            << SourceType;
6098      } else if (EntityKind != InitializedEntity::EK_Variable) {
6099        llvm_unreachable("Invalid EntityKind!");
6100      }
6101
6102      break;
6103    }
6104    case SK_OCLZeroEvent: {
6105      assert(Step->Type->isEventT() &&
6106             "Event initialization on non event type.");
6107
6108      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
6109                                    CK_ZeroToOCLEvent,
6110                                    CurInit.get()->getValueKind());
6111      break;
6112    }
6113    }
6114  }
6115
6116  // Diagnose non-fatal problems with the completed initialization.
6117  if (Entity.getKind() == InitializedEntity::EK_Member &&
6118      cast<FieldDecl>(Entity.getDecl())->isBitField())
6119    S.CheckBitFieldInitialization(Kind.getLocation(),
6120                                  cast<FieldDecl>(Entity.getDecl()),
6121                                  CurInit.get());
6122
6123  return CurInit;
6124}
6125
6126/// Somewhere within T there is an uninitialized reference subobject.
6127/// Dig it out and diagnose it.
6128static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
6129                                           QualType T) {
6130  if (T->isReferenceType()) {
6131    S.Diag(Loc, diag::err_reference_without_init)
6132      << T.getNonReferenceType();
6133    return true;
6134  }
6135
6136  CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6137  if (!RD || !RD->hasUninitializedReferenceMember())
6138    return false;
6139
6140  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
6141                                     FE = RD->field_end(); FI != FE; ++FI) {
6142    if (FI->isUnnamedBitfield())
6143      continue;
6144
6145    if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
6146      S.Diag(Loc, diag::note_value_initialization_here) << RD;
6147      return true;
6148    }
6149  }
6150
6151  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
6152                                          BE = RD->bases_end();
6153       BI != BE; ++BI) {
6154    if (DiagnoseUninitializedReference(S, BI->getLocStart(), BI->getType())) {
6155      S.Diag(Loc, diag::note_value_initialization_here) << RD;
6156      return true;
6157    }
6158  }
6159
6160  return false;
6161}
6162
6163
6164//===----------------------------------------------------------------------===//
6165// Diagnose initialization failures
6166//===----------------------------------------------------------------------===//
6167
6168/// Emit notes associated with an initialization that failed due to a
6169/// "simple" conversion failure.
6170static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
6171                                   Expr *op) {
6172  QualType destType = entity.getType();
6173  if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
6174      op->getType()->isObjCObjectPointerType()) {
6175
6176    // Emit a possible note about the conversion failing because the
6177    // operand is a message send with a related result type.
6178    S.EmitRelatedResultTypeNote(op);
6179
6180    // Emit a possible note about a return failing because we're
6181    // expecting a related result type.
6182    if (entity.getKind() == InitializedEntity::EK_Result)
6183      S.EmitRelatedResultTypeNoteForReturn(destType);
6184  }
6185}
6186
6187bool InitializationSequence::Diagnose(Sema &S,
6188                                      const InitializedEntity &Entity,
6189                                      const InitializationKind &Kind,
6190                                      ArrayRef<Expr *> Args) {
6191  if (!Failed())
6192    return false;
6193
6194  QualType DestType = Entity.getType();
6195  switch (Failure) {
6196  case FK_TooManyInitsForReference:
6197    // FIXME: Customize for the initialized entity?
6198    if (Args.empty()) {
6199      // Dig out the reference subobject which is uninitialized and diagnose it.
6200      // If this is value-initialization, this could be nested some way within
6201      // the target type.
6202      assert(Kind.getKind() == InitializationKind::IK_Value ||
6203             DestType->isReferenceType());
6204      bool Diagnosed =
6205        DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
6206      assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
6207      (void)Diagnosed;
6208    } else  // FIXME: diagnostic below could be better!
6209      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
6210        << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
6211    break;
6212
6213  case FK_ArrayNeedsInitList:
6214    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
6215    break;
6216  case FK_ArrayNeedsInitListOrStringLiteral:
6217    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
6218    break;
6219  case FK_ArrayNeedsInitListOrWideStringLiteral:
6220    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
6221    break;
6222  case FK_NarrowStringIntoWideCharArray:
6223    S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
6224    break;
6225  case FK_WideStringIntoCharArray:
6226    S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
6227    break;
6228  case FK_IncompatWideStringIntoWideChar:
6229    S.Diag(Kind.getLocation(),
6230           diag::err_array_init_incompat_wide_string_into_wchar);
6231    break;
6232  case FK_ArrayTypeMismatch:
6233  case FK_NonConstantArrayInit:
6234    S.Diag(Kind.getLocation(),
6235           (Failure == FK_ArrayTypeMismatch
6236              ? diag::err_array_init_different_type
6237              : diag::err_array_init_non_constant_array))
6238      << DestType.getNonReferenceType()
6239      << Args[0]->getType()
6240      << Args[0]->getSourceRange();
6241    break;
6242
6243  case FK_VariableLengthArrayHasInitializer:
6244    S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
6245      << Args[0]->getSourceRange();
6246    break;
6247
6248  case FK_AddressOfOverloadFailed: {
6249    DeclAccessPair Found;
6250    S.ResolveAddressOfOverloadedFunction(Args[0],
6251                                         DestType.getNonReferenceType(),
6252                                         true,
6253                                         Found);
6254    break;
6255  }
6256
6257  case FK_ReferenceInitOverloadFailed:
6258  case FK_UserConversionOverloadFailed:
6259    switch (FailedOverloadResult) {
6260    case OR_Ambiguous:
6261      if (Failure == FK_UserConversionOverloadFailed)
6262        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
6263          << Args[0]->getType() << DestType
6264          << Args[0]->getSourceRange();
6265      else
6266        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
6267          << DestType << Args[0]->getType()
6268          << Args[0]->getSourceRange();
6269
6270      FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6271      break;
6272
6273    case OR_No_Viable_Function:
6274      if (!S.RequireCompleteType(Kind.getLocation(),
6275                                 DestType.getNonReferenceType(),
6276                          diag::err_typecheck_nonviable_condition_incomplete,
6277                               Args[0]->getType(), Args[0]->getSourceRange()))
6278        S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
6279          << Args[0]->getType() << Args[0]->getSourceRange()
6280          << DestType.getNonReferenceType();
6281
6282      FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6283      break;
6284
6285    case OR_Deleted: {
6286      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
6287        << Args[0]->getType() << DestType.getNonReferenceType()
6288        << Args[0]->getSourceRange();
6289      OverloadCandidateSet::iterator Best;
6290      OverloadingResult Ovl
6291        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
6292                                                true);
6293      if (Ovl == OR_Deleted) {
6294        S.NoteDeletedFunction(Best->Function);
6295      } else {
6296        llvm_unreachable("Inconsistent overload resolution?");
6297      }
6298      break;
6299    }
6300
6301    case OR_Success:
6302      llvm_unreachable("Conversion did not fail!");
6303    }
6304    break;
6305
6306  case FK_NonConstLValueReferenceBindingToTemporary:
6307    if (isa<InitListExpr>(Args[0])) {
6308      S.Diag(Kind.getLocation(),
6309             diag::err_lvalue_reference_bind_to_initlist)
6310      << DestType.getNonReferenceType().isVolatileQualified()
6311      << DestType.getNonReferenceType()
6312      << Args[0]->getSourceRange();
6313      break;
6314    }
6315    // Intentional fallthrough
6316
6317  case FK_NonConstLValueReferenceBindingToUnrelated:
6318    S.Diag(Kind.getLocation(),
6319           Failure == FK_NonConstLValueReferenceBindingToTemporary
6320             ? diag::err_lvalue_reference_bind_to_temporary
6321             : diag::err_lvalue_reference_bind_to_unrelated)
6322      << DestType.getNonReferenceType().isVolatileQualified()
6323      << DestType.getNonReferenceType()
6324      << Args[0]->getType()
6325      << Args[0]->getSourceRange();
6326    break;
6327
6328  case FK_RValueReferenceBindingToLValue:
6329    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
6330      << DestType.getNonReferenceType() << Args[0]->getType()
6331      << Args[0]->getSourceRange();
6332    break;
6333
6334  case FK_ReferenceInitDropsQualifiers:
6335    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
6336      << DestType.getNonReferenceType()
6337      << Args[0]->getType()
6338      << Args[0]->getSourceRange();
6339    break;
6340
6341  case FK_ReferenceInitFailed:
6342    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
6343      << DestType.getNonReferenceType()
6344      << Args[0]->isLValue()
6345      << Args[0]->getType()
6346      << Args[0]->getSourceRange();
6347    emitBadConversionNotes(S, Entity, Args[0]);
6348    break;
6349
6350  case FK_ConversionFailed: {
6351    QualType FromType = Args[0]->getType();
6352    PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
6353      << (int)Entity.getKind()
6354      << DestType
6355      << Args[0]->isLValue()
6356      << FromType
6357      << Args[0]->getSourceRange();
6358    S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
6359    S.Diag(Kind.getLocation(), PDiag);
6360    emitBadConversionNotes(S, Entity, Args[0]);
6361    break;
6362  }
6363
6364  case FK_ConversionFromPropertyFailed:
6365    // No-op. This error has already been reported.
6366    break;
6367
6368  case FK_TooManyInitsForScalar: {
6369    SourceRange R;
6370
6371    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
6372      R = SourceRange(InitList->getInit(0)->getLocEnd(),
6373                      InitList->getLocEnd());
6374    else
6375      R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
6376
6377    R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
6378    if (Kind.isCStyleOrFunctionalCast())
6379      S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
6380        << R;
6381    else
6382      S.Diag(Kind.getLocation(), diag::err_excess_initializers)
6383        << /*scalar=*/2 << R;
6384    break;
6385  }
6386
6387  case FK_ReferenceBindingToInitList:
6388    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
6389      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
6390    break;
6391
6392  case FK_InitListBadDestinationType:
6393    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
6394      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
6395    break;
6396
6397  case FK_ListConstructorOverloadFailed:
6398  case FK_ConstructorOverloadFailed: {
6399    SourceRange ArgsRange;
6400    if (Args.size())
6401      ArgsRange = SourceRange(Args.front()->getLocStart(),
6402                              Args.back()->getLocEnd());
6403
6404    if (Failure == FK_ListConstructorOverloadFailed) {
6405      assert(Args.size() == 1 && "List construction from other than 1 argument.");
6406      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6407      Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
6408    }
6409
6410    // FIXME: Using "DestType" for the entity we're printing is probably
6411    // bad.
6412    switch (FailedOverloadResult) {
6413      case OR_Ambiguous:
6414        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
6415          << DestType << ArgsRange;
6416        FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6417        break;
6418
6419      case OR_No_Viable_Function:
6420        if (Kind.getKind() == InitializationKind::IK_Default &&
6421            (Entity.getKind() == InitializedEntity::EK_Base ||
6422             Entity.getKind() == InitializedEntity::EK_Member) &&
6423            isa<CXXConstructorDecl>(S.CurContext)) {
6424          // This is implicit default initialization of a member or
6425          // base within a constructor. If no viable function was
6426          // found, notify the user that she needs to explicitly
6427          // initialize this base/member.
6428          CXXConstructorDecl *Constructor
6429            = cast<CXXConstructorDecl>(S.CurContext);
6430          if (Entity.getKind() == InitializedEntity::EK_Base) {
6431            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6432              << (Constructor->getInheritedConstructor() ? 2 :
6433                  Constructor->isImplicit() ? 1 : 0)
6434              << S.Context.getTypeDeclType(Constructor->getParent())
6435              << /*base=*/0
6436              << Entity.getType();
6437
6438            RecordDecl *BaseDecl
6439              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
6440                                                                  ->getDecl();
6441            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
6442              << S.Context.getTagDeclType(BaseDecl);
6443          } else {
6444            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6445              << (Constructor->getInheritedConstructor() ? 2 :
6446                  Constructor->isImplicit() ? 1 : 0)
6447              << S.Context.getTypeDeclType(Constructor->getParent())
6448              << /*member=*/1
6449              << Entity.getName();
6450            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
6451
6452            if (const RecordType *Record
6453                                 = Entity.getType()->getAs<RecordType>())
6454              S.Diag(Record->getDecl()->getLocation(),
6455                     diag::note_previous_decl)
6456                << S.Context.getTagDeclType(Record->getDecl());
6457          }
6458          break;
6459        }
6460
6461        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
6462          << DestType << ArgsRange;
6463        FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6464        break;
6465
6466      case OR_Deleted: {
6467        OverloadCandidateSet::iterator Best;
6468        OverloadingResult Ovl
6469          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6470        if (Ovl != OR_Deleted) {
6471          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6472            << true << DestType << ArgsRange;
6473          llvm_unreachable("Inconsistent overload resolution?");
6474          break;
6475        }
6476
6477        // If this is a defaulted or implicitly-declared function, then
6478        // it was implicitly deleted. Make it clear that the deletion was
6479        // implicit.
6480        if (S.isImplicitlyDeleted(Best->Function))
6481          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
6482            << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
6483            << DestType << ArgsRange;
6484        else
6485          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6486            << true << DestType << ArgsRange;
6487
6488        S.NoteDeletedFunction(Best->Function);
6489        break;
6490      }
6491
6492      case OR_Success:
6493        llvm_unreachable("Conversion did not fail!");
6494    }
6495  }
6496  break;
6497
6498  case FK_DefaultInitOfConst:
6499    if (Entity.getKind() == InitializedEntity::EK_Member &&
6500        isa<CXXConstructorDecl>(S.CurContext)) {
6501      // This is implicit default-initialization of a const member in
6502      // a constructor. Complain that it needs to be explicitly
6503      // initialized.
6504      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
6505      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
6506        << (Constructor->getInheritedConstructor() ? 2 :
6507            Constructor->isImplicit() ? 1 : 0)
6508        << S.Context.getTypeDeclType(Constructor->getParent())
6509        << /*const=*/1
6510        << Entity.getName();
6511      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
6512        << Entity.getName();
6513    } else {
6514      S.Diag(Kind.getLocation(), diag::err_default_init_const)
6515        << DestType << (bool)DestType->getAs<RecordType>();
6516    }
6517    break;
6518
6519  case FK_Incomplete:
6520    S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
6521                          diag::err_init_incomplete_type);
6522    break;
6523
6524  case FK_ListInitializationFailed: {
6525    // Run the init list checker again to emit diagnostics.
6526    InitListExpr* InitList = cast<InitListExpr>(Args[0]);
6527    QualType DestType = Entity.getType();
6528    InitListChecker DiagnoseInitList(S, Entity, InitList,
6529            DestType, /*VerifyOnly=*/false);
6530    assert(DiagnoseInitList.HadError() &&
6531           "Inconsistent init list check result.");
6532    break;
6533  }
6534
6535  case FK_PlaceholderType: {
6536    // FIXME: Already diagnosed!
6537    break;
6538  }
6539
6540  case FK_ExplicitConstructor: {
6541    S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
6542      << Args[0]->getSourceRange();
6543    OverloadCandidateSet::iterator Best;
6544    OverloadingResult Ovl
6545      = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6546    (void)Ovl;
6547    assert(Ovl == OR_Success && "Inconsistent overload resolution");
6548    CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
6549    S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
6550    break;
6551  }
6552  }
6553
6554  PrintInitLocationNote(S, Entity);
6555  return true;
6556}
6557
6558void InitializationSequence::dump(raw_ostream &OS) const {
6559  switch (SequenceKind) {
6560  case FailedSequence: {
6561    OS << "Failed sequence: ";
6562    switch (Failure) {
6563    case FK_TooManyInitsForReference:
6564      OS << "too many initializers for reference";
6565      break;
6566
6567    case FK_ArrayNeedsInitList:
6568      OS << "array requires initializer list";
6569      break;
6570
6571    case FK_ArrayNeedsInitListOrStringLiteral:
6572      OS << "array requires initializer list or string literal";
6573      break;
6574
6575    case FK_ArrayNeedsInitListOrWideStringLiteral:
6576      OS << "array requires initializer list or wide string literal";
6577      break;
6578
6579    case FK_NarrowStringIntoWideCharArray:
6580      OS << "narrow string into wide char array";
6581      break;
6582
6583    case FK_WideStringIntoCharArray:
6584      OS << "wide string into char array";
6585      break;
6586
6587    case FK_IncompatWideStringIntoWideChar:
6588      OS << "incompatible wide string into wide char array";
6589      break;
6590
6591    case FK_ArrayTypeMismatch:
6592      OS << "array type mismatch";
6593      break;
6594
6595    case FK_NonConstantArrayInit:
6596      OS << "non-constant array initializer";
6597      break;
6598
6599    case FK_AddressOfOverloadFailed:
6600      OS << "address of overloaded function failed";
6601      break;
6602
6603    case FK_ReferenceInitOverloadFailed:
6604      OS << "overload resolution for reference initialization failed";
6605      break;
6606
6607    case FK_NonConstLValueReferenceBindingToTemporary:
6608      OS << "non-const lvalue reference bound to temporary";
6609      break;
6610
6611    case FK_NonConstLValueReferenceBindingToUnrelated:
6612      OS << "non-const lvalue reference bound to unrelated type";
6613      break;
6614
6615    case FK_RValueReferenceBindingToLValue:
6616      OS << "rvalue reference bound to an lvalue";
6617      break;
6618
6619    case FK_ReferenceInitDropsQualifiers:
6620      OS << "reference initialization drops qualifiers";
6621      break;
6622
6623    case FK_ReferenceInitFailed:
6624      OS << "reference initialization failed";
6625      break;
6626
6627    case FK_ConversionFailed:
6628      OS << "conversion failed";
6629      break;
6630
6631    case FK_ConversionFromPropertyFailed:
6632      OS << "conversion from property failed";
6633      break;
6634
6635    case FK_TooManyInitsForScalar:
6636      OS << "too many initializers for scalar";
6637      break;
6638
6639    case FK_ReferenceBindingToInitList:
6640      OS << "referencing binding to initializer list";
6641      break;
6642
6643    case FK_InitListBadDestinationType:
6644      OS << "initializer list for non-aggregate, non-scalar type";
6645      break;
6646
6647    case FK_UserConversionOverloadFailed:
6648      OS << "overloading failed for user-defined conversion";
6649      break;
6650
6651    case FK_ConstructorOverloadFailed:
6652      OS << "constructor overloading failed";
6653      break;
6654
6655    case FK_DefaultInitOfConst:
6656      OS << "default initialization of a const variable";
6657      break;
6658
6659    case FK_Incomplete:
6660      OS << "initialization of incomplete type";
6661      break;
6662
6663    case FK_ListInitializationFailed:
6664      OS << "list initialization checker failure";
6665      break;
6666
6667    case FK_VariableLengthArrayHasInitializer:
6668      OS << "variable length array has an initializer";
6669      break;
6670
6671    case FK_PlaceholderType:
6672      OS << "initializer expression isn't contextually valid";
6673      break;
6674
6675    case FK_ListConstructorOverloadFailed:
6676      OS << "list constructor overloading failed";
6677      break;
6678
6679    case FK_ExplicitConstructor:
6680      OS << "list copy initialization chose explicit constructor";
6681      break;
6682    }
6683    OS << '\n';
6684    return;
6685  }
6686
6687  case DependentSequence:
6688    OS << "Dependent sequence\n";
6689    return;
6690
6691  case NormalSequence:
6692    OS << "Normal sequence: ";
6693    break;
6694  }
6695
6696  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
6697    if (S != step_begin()) {
6698      OS << " -> ";
6699    }
6700
6701    switch (S->Kind) {
6702    case SK_ResolveAddressOfOverloadedFunction:
6703      OS << "resolve address of overloaded function";
6704      break;
6705
6706    case SK_CastDerivedToBaseRValue:
6707      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
6708      break;
6709
6710    case SK_CastDerivedToBaseXValue:
6711      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
6712      break;
6713
6714    case SK_CastDerivedToBaseLValue:
6715      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
6716      break;
6717
6718    case SK_BindReference:
6719      OS << "bind reference to lvalue";
6720      break;
6721
6722    case SK_BindReferenceToTemporary:
6723      OS << "bind reference to a temporary";
6724      break;
6725
6726    case SK_ExtraneousCopyToTemporary:
6727      OS << "extraneous C++03 copy to temporary";
6728      break;
6729
6730    case SK_UserConversion:
6731      OS << "user-defined conversion via " << *S->Function.Function;
6732      break;
6733
6734    case SK_QualificationConversionRValue:
6735      OS << "qualification conversion (rvalue)";
6736      break;
6737
6738    case SK_QualificationConversionXValue:
6739      OS << "qualification conversion (xvalue)";
6740      break;
6741
6742    case SK_QualificationConversionLValue:
6743      OS << "qualification conversion (lvalue)";
6744      break;
6745
6746    case SK_LValueToRValue:
6747      OS << "load (lvalue to rvalue)";
6748      break;
6749
6750    case SK_ConversionSequence:
6751      OS << "implicit conversion sequence (";
6752      S->ICS->DebugPrint(); // FIXME: use OS
6753      OS << ")";
6754      break;
6755
6756    case SK_ListInitialization:
6757      OS << "list aggregate initialization";
6758      break;
6759
6760    case SK_ListConstructorCall:
6761      OS << "list initialization via constructor";
6762      break;
6763
6764    case SK_UnwrapInitList:
6765      OS << "unwrap reference initializer list";
6766      break;
6767
6768    case SK_RewrapInitList:
6769      OS << "rewrap reference initializer list";
6770      break;
6771
6772    case SK_ConstructorInitialization:
6773      OS << "constructor initialization";
6774      break;
6775
6776    case SK_ZeroInitialization:
6777      OS << "zero initialization";
6778      break;
6779
6780    case SK_CAssignment:
6781      OS << "C assignment";
6782      break;
6783
6784    case SK_StringInit:
6785      OS << "string initialization";
6786      break;
6787
6788    case SK_ObjCObjectConversion:
6789      OS << "Objective-C object conversion";
6790      break;
6791
6792    case SK_ArrayInit:
6793      OS << "array initialization";
6794      break;
6795
6796    case SK_ParenthesizedArrayInit:
6797      OS << "parenthesized array initialization";
6798      break;
6799
6800    case SK_PassByIndirectCopyRestore:
6801      OS << "pass by indirect copy and restore";
6802      break;
6803
6804    case SK_PassByIndirectRestore:
6805      OS << "pass by indirect restore";
6806      break;
6807
6808    case SK_ProduceObjCObject:
6809      OS << "Objective-C object retension";
6810      break;
6811
6812    case SK_StdInitializerList:
6813      OS << "std::initializer_list from initializer list";
6814      break;
6815
6816    case SK_OCLSamplerInit:
6817      OS << "OpenCL sampler_t from integer constant";
6818      break;
6819
6820    case SK_OCLZeroEvent:
6821      OS << "OpenCL event_t from zero";
6822      break;
6823    }
6824
6825    OS << " [" << S->Type.getAsString() << ']';
6826  }
6827
6828  OS << '\n';
6829}
6830
6831void InitializationSequence::dump() const {
6832  dump(llvm::errs());
6833}
6834
6835static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
6836                                        QualType EntityType,
6837                                        const Expr *PreInit,
6838                                        const Expr *PostInit) {
6839  if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
6840    return;
6841
6842  // A narrowing conversion can only appear as the final implicit conversion in
6843  // an initialization sequence.
6844  const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
6845  if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
6846    return;
6847
6848  const ImplicitConversionSequence &ICS = *LastStep.ICS;
6849  const StandardConversionSequence *SCS = 0;
6850  switch (ICS.getKind()) {
6851  case ImplicitConversionSequence::StandardConversion:
6852    SCS = &ICS.Standard;
6853    break;
6854  case ImplicitConversionSequence::UserDefinedConversion:
6855    SCS = &ICS.UserDefined.After;
6856    break;
6857  case ImplicitConversionSequence::AmbiguousConversion:
6858  case ImplicitConversionSequence::EllipsisConversion:
6859  case ImplicitConversionSequence::BadConversion:
6860    return;
6861  }
6862
6863  // Determine the type prior to the narrowing conversion. If a conversion
6864  // operator was used, this may be different from both the type of the entity
6865  // and of the pre-initialization expression.
6866  QualType PreNarrowingType = PreInit->getType();
6867  if (Seq.step_begin() + 1 != Seq.step_end())
6868    PreNarrowingType = Seq.step_end()[-2].Type;
6869
6870  // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6871  APValue ConstantValue;
6872  QualType ConstantType;
6873  switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6874                                ConstantType)) {
6875  case NK_Not_Narrowing:
6876    // No narrowing occurred.
6877    return;
6878
6879  case NK_Type_Narrowing:
6880    // This was a floating-to-integer conversion, which is always considered a
6881    // narrowing conversion even if the value is a constant and can be
6882    // represented exactly as an integer.
6883    S.Diag(PostInit->getLocStart(),
6884           S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6885             diag::warn_init_list_type_narrowing
6886           : S.isSFINAEContext()?
6887             diag::err_init_list_type_narrowing_sfinae
6888           : diag::err_init_list_type_narrowing)
6889      << PostInit->getSourceRange()
6890      << PreNarrowingType.getLocalUnqualifiedType()
6891      << EntityType.getLocalUnqualifiedType();
6892    break;
6893
6894  case NK_Constant_Narrowing:
6895    // A constant value was narrowed.
6896    S.Diag(PostInit->getLocStart(),
6897           S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6898             diag::warn_init_list_constant_narrowing
6899           : S.isSFINAEContext()?
6900             diag::err_init_list_constant_narrowing_sfinae
6901           : diag::err_init_list_constant_narrowing)
6902      << PostInit->getSourceRange()
6903      << ConstantValue.getAsString(S.getASTContext(), ConstantType)
6904      << EntityType.getLocalUnqualifiedType();
6905    break;
6906
6907  case NK_Variable_Narrowing:
6908    // A variable's value may have been narrowed.
6909    S.Diag(PostInit->getLocStart(),
6910           S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6911             diag::warn_init_list_variable_narrowing
6912           : S.isSFINAEContext()?
6913             diag::err_init_list_variable_narrowing_sfinae
6914           : diag::err_init_list_variable_narrowing)
6915      << PostInit->getSourceRange()
6916      << PreNarrowingType.getLocalUnqualifiedType()
6917      << EntityType.getLocalUnqualifiedType();
6918    break;
6919  }
6920
6921  SmallString<128> StaticCast;
6922  llvm::raw_svector_ostream OS(StaticCast);
6923  OS << "static_cast<";
6924  if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
6925    // It's important to use the typedef's name if there is one so that the
6926    // fixit doesn't break code using types like int64_t.
6927    //
6928    // FIXME: This will break if the typedef requires qualification.  But
6929    // getQualifiedNameAsString() includes non-machine-parsable components.
6930    OS << *TT->getDecl();
6931  } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
6932    OS << BT->getName(S.getLangOpts());
6933  else {
6934    // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
6935    // with a broken cast.
6936    return;
6937  }
6938  OS << ">(";
6939  S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
6940    << PostInit->getSourceRange()
6941    << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
6942    << FixItHint::CreateInsertion(
6943      S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
6944}
6945
6946//===----------------------------------------------------------------------===//
6947// Initialization helper functions
6948//===----------------------------------------------------------------------===//
6949bool
6950Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
6951                                   ExprResult Init) {
6952  if (Init.isInvalid())
6953    return false;
6954
6955  Expr *InitE = Init.get();
6956  assert(InitE && "No initialization expression");
6957
6958  InitializationKind Kind
6959    = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
6960  InitializationSequence Seq(*this, Entity, Kind, InitE);
6961  return !Seq.Failed();
6962}
6963
6964ExprResult
6965Sema::PerformCopyInitialization(const InitializedEntity &Entity,
6966                                SourceLocation EqualLoc,
6967                                ExprResult Init,
6968                                bool TopLevelOfInitList,
6969                                bool AllowExplicit) {
6970  if (Init.isInvalid())
6971    return ExprError();
6972
6973  Expr *InitE = Init.get();
6974  assert(InitE && "No initialization expression?");
6975
6976  if (EqualLoc.isInvalid())
6977    EqualLoc = InitE->getLocStart();
6978
6979  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
6980                                                           EqualLoc,
6981                                                           AllowExplicit);
6982  InitializationSequence Seq(*this, Entity, Kind, InitE);
6983  Init.release();
6984
6985  ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
6986
6987  if (!Result.isInvalid() && TopLevelOfInitList)
6988    DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
6989                                InitE, Result.get());
6990
6991  return Result;
6992}
6993