1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "clang/Sema/Lookup.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclLookups.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Lex/ModuleLoader.h"
27#include "clang/Sema/DeclSpec.h"
28#include "clang/Sema/ExternalSemaSource.h"
29#include "clang/Sema/Overload.h"
30#include "clang/Sema/Scope.h"
31#include "clang/Sema/ScopeInfo.h"
32#include "clang/Sema/Sema.h"
33#include "clang/Sema/SemaInternal.h"
34#include "clang/Sema/TemplateDeduction.h"
35#include "clang/Sema/TypoCorrection.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/ADT/SetVector.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/StringMap.h"
40#include "llvm/ADT/TinyPtrVector.h"
41#include "llvm/ADT/edit_distance.h"
42#include "llvm/Support/ErrorHandling.h"
43#include <algorithm>
44#include <iterator>
45#include <limits>
46#include <list>
47#include <map>
48#include <set>
49#include <utility>
50#include <vector>
51
52using namespace clang;
53using namespace sema;
54
55namespace {
56  class UnqualUsingEntry {
57    const DeclContext *Nominated;
58    const DeclContext *CommonAncestor;
59
60  public:
61    UnqualUsingEntry(const DeclContext *Nominated,
62                     const DeclContext *CommonAncestor)
63      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
64    }
65
66    const DeclContext *getCommonAncestor() const {
67      return CommonAncestor;
68    }
69
70    const DeclContext *getNominatedNamespace() const {
71      return Nominated;
72    }
73
74    // Sort by the pointer value of the common ancestor.
75    struct Comparator {
76      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
77        return L.getCommonAncestor() < R.getCommonAncestor();
78      }
79
80      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
81        return E.getCommonAncestor() < DC;
82      }
83
84      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
85        return DC < E.getCommonAncestor();
86      }
87    };
88  };
89
90  /// A collection of using directives, as used by C++ unqualified
91  /// lookup.
92  class UnqualUsingDirectiveSet {
93    typedef SmallVector<UnqualUsingEntry, 8> ListTy;
94
95    ListTy list;
96    llvm::SmallPtrSet<DeclContext*, 8> visited;
97
98  public:
99    UnqualUsingDirectiveSet() {}
100
101    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
102      // C++ [namespace.udir]p1:
103      //   During unqualified name lookup, the names appear as if they
104      //   were declared in the nearest enclosing namespace which contains
105      //   both the using-directive and the nominated namespace.
106      DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
107      assert(InnermostFileDC && InnermostFileDC->isFileContext());
108
109      for (; S; S = S->getParent()) {
110        // C++ [namespace.udir]p1:
111        //   A using-directive shall not appear in class scope, but may
112        //   appear in namespace scope or in block scope.
113        DeclContext *Ctx = S->getEntity();
114        if (Ctx && Ctx->isFileContext()) {
115          visit(Ctx, Ctx);
116        } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117          for (auto *I : S->using_directives())
118            visit(I, InnermostFileDC);
119        }
120      }
121    }
122
123    // Visits a context and collect all of its using directives
124    // recursively.  Treats all using directives as if they were
125    // declared in the context.
126    //
127    // A given context is only every visited once, so it is important
128    // that contexts be visited from the inside out in order to get
129    // the effective DCs right.
130    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
131      if (!visited.insert(DC))
132        return;
133
134      addUsingDirectives(DC, EffectiveDC);
135    }
136
137    // Visits a using directive and collects all of its using
138    // directives recursively.  Treats all using directives as if they
139    // were declared in the effective DC.
140    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
141      DeclContext *NS = UD->getNominatedNamespace();
142      if (!visited.insert(NS))
143        return;
144
145      addUsingDirective(UD, EffectiveDC);
146      addUsingDirectives(NS, EffectiveDC);
147    }
148
149    // Adds all the using directives in a context (and those nominated
150    // by its using directives, transitively) as if they appeared in
151    // the given effective context.
152    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
153      SmallVector<DeclContext*,4> queue;
154      while (true) {
155        for (auto UD : DC->using_directives()) {
156          DeclContext *NS = UD->getNominatedNamespace();
157          if (visited.insert(NS)) {
158            addUsingDirective(UD, EffectiveDC);
159            queue.push_back(NS);
160          }
161        }
162
163        if (queue.empty())
164          return;
165
166        DC = queue.pop_back_val();
167      }
168    }
169
170    // Add a using directive as if it had been declared in the given
171    // context.  This helps implement C++ [namespace.udir]p3:
172    //   The using-directive is transitive: if a scope contains a
173    //   using-directive that nominates a second namespace that itself
174    //   contains using-directives, the effect is as if the
175    //   using-directives from the second namespace also appeared in
176    //   the first.
177    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
178      // Find the common ancestor between the effective context and
179      // the nominated namespace.
180      DeclContext *Common = UD->getNominatedNamespace();
181      while (!Common->Encloses(EffectiveDC))
182        Common = Common->getParent();
183      Common = Common->getPrimaryContext();
184
185      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
186    }
187
188    void done() {
189      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
190    }
191
192    typedef ListTy::const_iterator const_iterator;
193
194    const_iterator begin() const { return list.begin(); }
195    const_iterator end() const { return list.end(); }
196
197    std::pair<const_iterator,const_iterator>
198    getNamespacesFor(DeclContext *DC) const {
199      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
200                              UnqualUsingEntry::Comparator());
201    }
202  };
203}
204
205// Retrieve the set of identifier namespaces that correspond to a
206// specific kind of name lookup.
207static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
208                               bool CPlusPlus,
209                               bool Redeclaration) {
210  unsigned IDNS = 0;
211  switch (NameKind) {
212  case Sema::LookupObjCImplicitSelfParam:
213  case Sema::LookupOrdinaryName:
214  case Sema::LookupRedeclarationWithLinkage:
215  case Sema::LookupLocalFriendName:
216    IDNS = Decl::IDNS_Ordinary;
217    if (CPlusPlus) {
218      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
219      if (Redeclaration)
220        IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
221    }
222    if (Redeclaration)
223      IDNS |= Decl::IDNS_LocalExtern;
224    break;
225
226  case Sema::LookupOperatorName:
227    // Operator lookup is its own crazy thing;  it is not the same
228    // as (e.g.) looking up an operator name for redeclaration.
229    assert(!Redeclaration && "cannot do redeclaration operator lookup");
230    IDNS = Decl::IDNS_NonMemberOperator;
231    break;
232
233  case Sema::LookupTagName:
234    if (CPlusPlus) {
235      IDNS = Decl::IDNS_Type;
236
237      // When looking for a redeclaration of a tag name, we add:
238      // 1) TagFriend to find undeclared friend decls
239      // 2) Namespace because they can't "overload" with tag decls.
240      // 3) Tag because it includes class templates, which can't
241      //    "overload" with tag decls.
242      if (Redeclaration)
243        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
244    } else {
245      IDNS = Decl::IDNS_Tag;
246    }
247    break;
248
249  case Sema::LookupLabel:
250    IDNS = Decl::IDNS_Label;
251    break;
252
253  case Sema::LookupMemberName:
254    IDNS = Decl::IDNS_Member;
255    if (CPlusPlus)
256      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
257    break;
258
259  case Sema::LookupNestedNameSpecifierName:
260    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
261    break;
262
263  case Sema::LookupNamespaceName:
264    IDNS = Decl::IDNS_Namespace;
265    break;
266
267  case Sema::LookupUsingDeclName:
268    assert(Redeclaration && "should only be used for redecl lookup");
269    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
270           Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
271           Decl::IDNS_LocalExtern;
272    break;
273
274  case Sema::LookupObjCProtocolName:
275    IDNS = Decl::IDNS_ObjCProtocol;
276    break;
277
278  case Sema::LookupAnyName:
279    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
280      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
281      | Decl::IDNS_Type;
282    break;
283  }
284  return IDNS;
285}
286
287void LookupResult::configure() {
288  IDNS = getIDNS(LookupKind, SemaRef.getLangOpts().CPlusPlus,
289                 isForRedeclaration());
290
291  // If we're looking for one of the allocation or deallocation
292  // operators, make sure that the implicitly-declared new and delete
293  // operators can be found.
294  switch (NameInfo.getName().getCXXOverloadedOperator()) {
295  case OO_New:
296  case OO_Delete:
297  case OO_Array_New:
298  case OO_Array_Delete:
299    SemaRef.DeclareGlobalNewDelete();
300    break;
301
302  default:
303    break;
304  }
305
306  // Compiler builtins are always visible, regardless of where they end
307  // up being declared.
308  if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
309    if (unsigned BuiltinID = Id->getBuiltinID()) {
310      if (!SemaRef.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
311        AllowHidden = true;
312    }
313  }
314}
315
316bool LookupResult::sanity() const {
317  // This function is never called by NDEBUG builds.
318  assert(ResultKind != NotFound || Decls.size() == 0);
319  assert(ResultKind != Found || Decls.size() == 1);
320  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
321         (Decls.size() == 1 &&
322          isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
323  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
324  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
325         (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
326                                Ambiguity == AmbiguousBaseSubobjectTypes)));
327  assert((Paths != nullptr) == (ResultKind == Ambiguous &&
328                                (Ambiguity == AmbiguousBaseSubobjectTypes ||
329                                 Ambiguity == AmbiguousBaseSubobjects)));
330  return true;
331}
332
333// Necessary because CXXBasePaths is not complete in Sema.h
334void LookupResult::deletePaths(CXXBasePaths *Paths) {
335  delete Paths;
336}
337
338/// Get a representative context for a declaration such that two declarations
339/// will have the same context if they were found within the same scope.
340static DeclContext *getContextForScopeMatching(Decl *D) {
341  // For function-local declarations, use that function as the context. This
342  // doesn't account for scopes within the function; the caller must deal with
343  // those.
344  DeclContext *DC = D->getLexicalDeclContext();
345  if (DC->isFunctionOrMethod())
346    return DC;
347
348  // Otherwise, look at the semantic context of the declaration. The
349  // declaration must have been found there.
350  return D->getDeclContext()->getRedeclContext();
351}
352
353/// Resolves the result kind of this lookup.
354void LookupResult::resolveKind() {
355  unsigned N = Decls.size();
356
357  // Fast case: no possible ambiguity.
358  if (N == 0) {
359    assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
360    return;
361  }
362
363  // If there's a single decl, we need to examine it to decide what
364  // kind of lookup this is.
365  if (N == 1) {
366    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
367    if (isa<FunctionTemplateDecl>(D))
368      ResultKind = FoundOverloaded;
369    else if (isa<UnresolvedUsingValueDecl>(D))
370      ResultKind = FoundUnresolvedValue;
371    return;
372  }
373
374  // Don't do any extra resolution if we've already resolved as ambiguous.
375  if (ResultKind == Ambiguous) return;
376
377  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
378  llvm::SmallPtrSet<QualType, 16> UniqueTypes;
379
380  bool Ambiguous = false;
381  bool HasTag = false, HasFunction = false, HasNonFunction = false;
382  bool HasFunctionTemplate = false, HasUnresolved = false;
383
384  unsigned UniqueTagIndex = 0;
385
386  unsigned I = 0;
387  while (I < N) {
388    NamedDecl *D = Decls[I]->getUnderlyingDecl();
389    D = cast<NamedDecl>(D->getCanonicalDecl());
390
391    // Ignore an invalid declaration unless it's the only one left.
392    if (D->isInvalidDecl() && I < N-1) {
393      Decls[I] = Decls[--N];
394      continue;
395    }
396
397    // Redeclarations of types via typedef can occur both within a scope
398    // and, through using declarations and directives, across scopes. There is
399    // no ambiguity if they all refer to the same type, so unique based on the
400    // canonical type.
401    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
402      if (!TD->getDeclContext()->isRecord()) {
403        QualType T = SemaRef.Context.getTypeDeclType(TD);
404        if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
405          // The type is not unique; pull something off the back and continue
406          // at this index.
407          Decls[I] = Decls[--N];
408          continue;
409        }
410      }
411    }
412
413    if (!Unique.insert(D)) {
414      // If it's not unique, pull something off the back (and
415      // continue at this index).
416      Decls[I] = Decls[--N];
417      continue;
418    }
419
420    // Otherwise, do some decl type analysis and then continue.
421
422    if (isa<UnresolvedUsingValueDecl>(D)) {
423      HasUnresolved = true;
424    } else if (isa<TagDecl>(D)) {
425      if (HasTag)
426        Ambiguous = true;
427      UniqueTagIndex = I;
428      HasTag = true;
429    } else if (isa<FunctionTemplateDecl>(D)) {
430      HasFunction = true;
431      HasFunctionTemplate = true;
432    } else if (isa<FunctionDecl>(D)) {
433      HasFunction = true;
434    } else {
435      if (HasNonFunction)
436        Ambiguous = true;
437      HasNonFunction = true;
438    }
439    I++;
440  }
441
442  // C++ [basic.scope.hiding]p2:
443  //   A class name or enumeration name can be hidden by the name of
444  //   an object, function, or enumerator declared in the same
445  //   scope. If a class or enumeration name and an object, function,
446  //   or enumerator are declared in the same scope (in any order)
447  //   with the same name, the class or enumeration name is hidden
448  //   wherever the object, function, or enumerator name is visible.
449  // But it's still an error if there are distinct tag types found,
450  // even if they're not visible. (ref?)
451  if (HideTags && HasTag && !Ambiguous &&
452      (HasFunction || HasNonFunction || HasUnresolved)) {
453    if (getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
454            getContextForScopeMatching(Decls[UniqueTagIndex ? 0 : N - 1])))
455      Decls[UniqueTagIndex] = Decls[--N];
456    else
457      Ambiguous = true;
458  }
459
460  Decls.set_size(N);
461
462  if (HasNonFunction && (HasFunction || HasUnresolved))
463    Ambiguous = true;
464
465  if (Ambiguous)
466    setAmbiguous(LookupResult::AmbiguousReference);
467  else if (HasUnresolved)
468    ResultKind = LookupResult::FoundUnresolvedValue;
469  else if (N > 1 || HasFunctionTemplate)
470    ResultKind = LookupResult::FoundOverloaded;
471  else
472    ResultKind = LookupResult::Found;
473}
474
475void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
476  CXXBasePaths::const_paths_iterator I, E;
477  for (I = P.begin(), E = P.end(); I != E; ++I)
478    for (DeclContext::lookup_iterator DI = I->Decls.begin(),
479         DE = I->Decls.end(); DI != DE; ++DI)
480      addDecl(*DI);
481}
482
483void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
484  Paths = new CXXBasePaths;
485  Paths->swap(P);
486  addDeclsFromBasePaths(*Paths);
487  resolveKind();
488  setAmbiguous(AmbiguousBaseSubobjects);
489}
490
491void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
492  Paths = new CXXBasePaths;
493  Paths->swap(P);
494  addDeclsFromBasePaths(*Paths);
495  resolveKind();
496  setAmbiguous(AmbiguousBaseSubobjectTypes);
497}
498
499void LookupResult::print(raw_ostream &Out) {
500  Out << Decls.size() << " result(s)";
501  if (isAmbiguous()) Out << ", ambiguous";
502  if (Paths) Out << ", base paths present";
503
504  for (iterator I = begin(), E = end(); I != E; ++I) {
505    Out << "\n";
506    (*I)->print(Out, 2);
507  }
508}
509
510/// \brief Lookup a builtin function, when name lookup would otherwise
511/// fail.
512static bool LookupBuiltin(Sema &S, LookupResult &R) {
513  Sema::LookupNameKind NameKind = R.getLookupKind();
514
515  // If we didn't find a use of this identifier, and if the identifier
516  // corresponds to a compiler builtin, create the decl object for the builtin
517  // now, injecting it into translation unit scope, and return it.
518  if (NameKind == Sema::LookupOrdinaryName ||
519      NameKind == Sema::LookupRedeclarationWithLinkage) {
520    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
521    if (II) {
522      if (S.getLangOpts().CPlusPlus11 && S.getLangOpts().GNUMode &&
523          II == S.getFloat128Identifier()) {
524        // libstdc++4.7's type_traits expects type __float128 to exist, so
525        // insert a dummy type to make that header build in gnu++11 mode.
526        R.addDecl(S.getASTContext().getFloat128StubType());
527        return true;
528      }
529
530      // If this is a builtin on this (or all) targets, create the decl.
531      if (unsigned BuiltinID = II->getBuiltinID()) {
532        // In C++, we don't have any predefined library functions like
533        // 'malloc'. Instead, we'll just error.
534        if (S.getLangOpts().CPlusPlus &&
535            S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
536          return false;
537
538        if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
539                                                 BuiltinID, S.TUScope,
540                                                 R.isForRedeclaration(),
541                                                 R.getNameLoc())) {
542          R.addDecl(D);
543          return true;
544        }
545      }
546    }
547  }
548
549  return false;
550}
551
552/// \brief Determine whether we can declare a special member function within
553/// the class at this point.
554static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
555  // We need to have a definition for the class.
556  if (!Class->getDefinition() || Class->isDependentContext())
557    return false;
558
559  // We can't be in the middle of defining the class.
560  return !Class->isBeingDefined();
561}
562
563void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
564  if (!CanDeclareSpecialMemberFunction(Class))
565    return;
566
567  // If the default constructor has not yet been declared, do so now.
568  if (Class->needsImplicitDefaultConstructor())
569    DeclareImplicitDefaultConstructor(Class);
570
571  // If the copy constructor has not yet been declared, do so now.
572  if (Class->needsImplicitCopyConstructor())
573    DeclareImplicitCopyConstructor(Class);
574
575  // If the copy assignment operator has not yet been declared, do so now.
576  if (Class->needsImplicitCopyAssignment())
577    DeclareImplicitCopyAssignment(Class);
578
579  if (getLangOpts().CPlusPlus11) {
580    // If the move constructor has not yet been declared, do so now.
581    if (Class->needsImplicitMoveConstructor())
582      DeclareImplicitMoveConstructor(Class); // might not actually do it
583
584    // If the move assignment operator has not yet been declared, do so now.
585    if (Class->needsImplicitMoveAssignment())
586      DeclareImplicitMoveAssignment(Class); // might not actually do it
587  }
588
589  // If the destructor has not yet been declared, do so now.
590  if (Class->needsImplicitDestructor())
591    DeclareImplicitDestructor(Class);
592}
593
594/// \brief Determine whether this is the name of an implicitly-declared
595/// special member function.
596static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
597  switch (Name.getNameKind()) {
598  case DeclarationName::CXXConstructorName:
599  case DeclarationName::CXXDestructorName:
600    return true;
601
602  case DeclarationName::CXXOperatorName:
603    return Name.getCXXOverloadedOperator() == OO_Equal;
604
605  default:
606    break;
607  }
608
609  return false;
610}
611
612/// \brief If there are any implicit member functions with the given name
613/// that need to be declared in the given declaration context, do so.
614static void DeclareImplicitMemberFunctionsWithName(Sema &S,
615                                                   DeclarationName Name,
616                                                   const DeclContext *DC) {
617  if (!DC)
618    return;
619
620  switch (Name.getNameKind()) {
621  case DeclarationName::CXXConstructorName:
622    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
623      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
624        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
625        if (Record->needsImplicitDefaultConstructor())
626          S.DeclareImplicitDefaultConstructor(Class);
627        if (Record->needsImplicitCopyConstructor())
628          S.DeclareImplicitCopyConstructor(Class);
629        if (S.getLangOpts().CPlusPlus11 &&
630            Record->needsImplicitMoveConstructor())
631          S.DeclareImplicitMoveConstructor(Class);
632      }
633    break;
634
635  case DeclarationName::CXXDestructorName:
636    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
637      if (Record->getDefinition() && Record->needsImplicitDestructor() &&
638          CanDeclareSpecialMemberFunction(Record))
639        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
640    break;
641
642  case DeclarationName::CXXOperatorName:
643    if (Name.getCXXOverloadedOperator() != OO_Equal)
644      break;
645
646    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
647      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
648        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
649        if (Record->needsImplicitCopyAssignment())
650          S.DeclareImplicitCopyAssignment(Class);
651        if (S.getLangOpts().CPlusPlus11 &&
652            Record->needsImplicitMoveAssignment())
653          S.DeclareImplicitMoveAssignment(Class);
654      }
655    }
656    break;
657
658  default:
659    break;
660  }
661}
662
663// Adds all qualifying matches for a name within a decl context to the
664// given lookup result.  Returns true if any matches were found.
665static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
666  bool Found = false;
667
668  // Lazily declare C++ special member functions.
669  if (S.getLangOpts().CPlusPlus)
670    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
671
672  // Perform lookup into this declaration context.
673  DeclContext::lookup_const_result DR = DC->lookup(R.getLookupName());
674  for (DeclContext::lookup_const_iterator I = DR.begin(), E = DR.end(); I != E;
675       ++I) {
676    NamedDecl *D = *I;
677    if ((D = R.getAcceptableDecl(D))) {
678      R.addDecl(D);
679      Found = true;
680    }
681  }
682
683  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
684    return true;
685
686  if (R.getLookupName().getNameKind()
687        != DeclarationName::CXXConversionFunctionName ||
688      R.getLookupName().getCXXNameType()->isDependentType() ||
689      !isa<CXXRecordDecl>(DC))
690    return Found;
691
692  // C++ [temp.mem]p6:
693  //   A specialization of a conversion function template is not found by
694  //   name lookup. Instead, any conversion function templates visible in the
695  //   context of the use are considered. [...]
696  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
697  if (!Record->isCompleteDefinition())
698    return Found;
699
700  for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
701         UEnd = Record->conversion_end(); U != UEnd; ++U) {
702    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
703    if (!ConvTemplate)
704      continue;
705
706    // When we're performing lookup for the purposes of redeclaration, just
707    // add the conversion function template. When we deduce template
708    // arguments for specializations, we'll end up unifying the return
709    // type of the new declaration with the type of the function template.
710    if (R.isForRedeclaration()) {
711      R.addDecl(ConvTemplate);
712      Found = true;
713      continue;
714    }
715
716    // C++ [temp.mem]p6:
717    //   [...] For each such operator, if argument deduction succeeds
718    //   (14.9.2.3), the resulting specialization is used as if found by
719    //   name lookup.
720    //
721    // When referencing a conversion function for any purpose other than
722    // a redeclaration (such that we'll be building an expression with the
723    // result), perform template argument deduction and place the
724    // specialization into the result set. We do this to avoid forcing all
725    // callers to perform special deduction for conversion functions.
726    TemplateDeductionInfo Info(R.getNameLoc());
727    FunctionDecl *Specialization = nullptr;
728
729    const FunctionProtoType *ConvProto
730      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
731    assert(ConvProto && "Nonsensical conversion function template type");
732
733    // Compute the type of the function that we would expect the conversion
734    // function to have, if it were to match the name given.
735    // FIXME: Calling convention!
736    FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
737    EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
738    EPI.ExceptionSpecType = EST_None;
739    EPI.NumExceptions = 0;
740    QualType ExpectedType
741      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
742                                            None, EPI);
743
744    // Perform template argument deduction against the type that we would
745    // expect the function to have.
746    if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
747                                            Specialization, Info)
748          == Sema::TDK_Success) {
749      R.addDecl(Specialization);
750      Found = true;
751    }
752  }
753
754  return Found;
755}
756
757// Performs C++ unqualified lookup into the given file context.
758static bool
759CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
760                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
761
762  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
763
764  // Perform direct name lookup into the LookupCtx.
765  bool Found = LookupDirect(S, R, NS);
766
767  // Perform direct name lookup into the namespaces nominated by the
768  // using directives whose common ancestor is this namespace.
769  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
770  std::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
771
772  for (; UI != UEnd; ++UI)
773    if (LookupDirect(S, R, UI->getNominatedNamespace()))
774      Found = true;
775
776  R.resolveKind();
777
778  return Found;
779}
780
781static bool isNamespaceOrTranslationUnitScope(Scope *S) {
782  if (DeclContext *Ctx = S->getEntity())
783    return Ctx->isFileContext();
784  return false;
785}
786
787// Find the next outer declaration context from this scope. This
788// routine actually returns the semantic outer context, which may
789// differ from the lexical context (encoded directly in the Scope
790// stack) when we are parsing a member of a class template. In this
791// case, the second element of the pair will be true, to indicate that
792// name lookup should continue searching in this semantic context when
793// it leaves the current template parameter scope.
794static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
795  DeclContext *DC = S->getEntity();
796  DeclContext *Lexical = nullptr;
797  for (Scope *OuterS = S->getParent(); OuterS;
798       OuterS = OuterS->getParent()) {
799    if (OuterS->getEntity()) {
800      Lexical = OuterS->getEntity();
801      break;
802    }
803  }
804
805  // C++ [temp.local]p8:
806  //   In the definition of a member of a class template that appears
807  //   outside of the namespace containing the class template
808  //   definition, the name of a template-parameter hides the name of
809  //   a member of this namespace.
810  //
811  // Example:
812  //
813  //   namespace N {
814  //     class C { };
815  //
816  //     template<class T> class B {
817  //       void f(T);
818  //     };
819  //   }
820  //
821  //   template<class C> void N::B<C>::f(C) {
822  //     C b;  // C is the template parameter, not N::C
823  //   }
824  //
825  // In this example, the lexical context we return is the
826  // TranslationUnit, while the semantic context is the namespace N.
827  if (!Lexical || !DC || !S->getParent() ||
828      !S->getParent()->isTemplateParamScope())
829    return std::make_pair(Lexical, false);
830
831  // Find the outermost template parameter scope.
832  // For the example, this is the scope for the template parameters of
833  // template<class C>.
834  Scope *OutermostTemplateScope = S->getParent();
835  while (OutermostTemplateScope->getParent() &&
836         OutermostTemplateScope->getParent()->isTemplateParamScope())
837    OutermostTemplateScope = OutermostTemplateScope->getParent();
838
839  // Find the namespace context in which the original scope occurs. In
840  // the example, this is namespace N.
841  DeclContext *Semantic = DC;
842  while (!Semantic->isFileContext())
843    Semantic = Semantic->getParent();
844
845  // Find the declaration context just outside of the template
846  // parameter scope. This is the context in which the template is
847  // being lexically declaration (a namespace context). In the
848  // example, this is the global scope.
849  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
850      Lexical->Encloses(Semantic))
851    return std::make_pair(Semantic, true);
852
853  return std::make_pair(Lexical, false);
854}
855
856namespace {
857/// An RAII object to specify that we want to find block scope extern
858/// declarations.
859struct FindLocalExternScope {
860  FindLocalExternScope(LookupResult &R)
861      : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
862                                 Decl::IDNS_LocalExtern) {
863    R.setFindLocalExtern(R.getIdentifierNamespace() & Decl::IDNS_Ordinary);
864  }
865  void restore() {
866    R.setFindLocalExtern(OldFindLocalExtern);
867  }
868  ~FindLocalExternScope() {
869    restore();
870  }
871  LookupResult &R;
872  bool OldFindLocalExtern;
873};
874}
875
876bool Sema::CppLookupName(LookupResult &R, Scope *S) {
877  assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
878
879  DeclarationName Name = R.getLookupName();
880  Sema::LookupNameKind NameKind = R.getLookupKind();
881
882  // If this is the name of an implicitly-declared special member function,
883  // go through the scope stack to implicitly declare
884  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
885    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
886      if (DeclContext *DC = PreS->getEntity())
887        DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
888  }
889
890  // Implicitly declare member functions with the name we're looking for, if in
891  // fact we are in a scope where it matters.
892
893  Scope *Initial = S;
894  IdentifierResolver::iterator
895    I = IdResolver.begin(Name),
896    IEnd = IdResolver.end();
897
898  // First we lookup local scope.
899  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
900  // ...During unqualified name lookup (3.4.1), the names appear as if
901  // they were declared in the nearest enclosing namespace which contains
902  // both the using-directive and the nominated namespace.
903  // [Note: in this context, "contains" means "contains directly or
904  // indirectly".
905  //
906  // For example:
907  // namespace A { int i; }
908  // void foo() {
909  //   int i;
910  //   {
911  //     using namespace A;
912  //     ++i; // finds local 'i', A::i appears at global scope
913  //   }
914  // }
915  //
916  UnqualUsingDirectiveSet UDirs;
917  bool VisitedUsingDirectives = false;
918  bool LeftStartingScope = false;
919  DeclContext *OutsideOfTemplateParamDC = nullptr;
920
921  // When performing a scope lookup, we want to find local extern decls.
922  FindLocalExternScope FindLocals(R);
923
924  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
925    DeclContext *Ctx = S->getEntity();
926
927    // Check whether the IdResolver has anything in this scope.
928    bool Found = false;
929    for (; I != IEnd && S->isDeclScope(*I); ++I) {
930      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
931        if (NameKind == LookupRedeclarationWithLinkage) {
932          // Determine whether this (or a previous) declaration is
933          // out-of-scope.
934          if (!LeftStartingScope && !Initial->isDeclScope(*I))
935            LeftStartingScope = true;
936
937          // If we found something outside of our starting scope that
938          // does not have linkage, skip it. If it's a template parameter,
939          // we still find it, so we can diagnose the invalid redeclaration.
940          if (LeftStartingScope && !((*I)->hasLinkage()) &&
941              !(*I)->isTemplateParameter()) {
942            R.setShadowed();
943            continue;
944          }
945        }
946
947        Found = true;
948        R.addDecl(ND);
949      }
950    }
951    if (Found) {
952      R.resolveKind();
953      if (S->isClassScope())
954        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
955          R.setNamingClass(Record);
956      return true;
957    }
958
959    if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
960      // C++11 [class.friend]p11:
961      //   If a friend declaration appears in a local class and the name
962      //   specified is an unqualified name, a prior declaration is
963      //   looked up without considering scopes that are outside the
964      //   innermost enclosing non-class scope.
965      return false;
966    }
967
968    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
969        S->getParent() && !S->getParent()->isTemplateParamScope()) {
970      // We've just searched the last template parameter scope and
971      // found nothing, so look into the contexts between the
972      // lexical and semantic declaration contexts returned by
973      // findOuterContext(). This implements the name lookup behavior
974      // of C++ [temp.local]p8.
975      Ctx = OutsideOfTemplateParamDC;
976      OutsideOfTemplateParamDC = nullptr;
977    }
978
979    if (Ctx) {
980      DeclContext *OuterCtx;
981      bool SearchAfterTemplateScope;
982      std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
983      if (SearchAfterTemplateScope)
984        OutsideOfTemplateParamDC = OuterCtx;
985
986      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
987        // We do not directly look into transparent contexts, since
988        // those entities will be found in the nearest enclosing
989        // non-transparent context.
990        if (Ctx->isTransparentContext())
991          continue;
992
993        // We do not look directly into function or method contexts,
994        // since all of the local variables and parameters of the
995        // function/method are present within the Scope.
996        if (Ctx->isFunctionOrMethod()) {
997          // If we have an Objective-C instance method, look for ivars
998          // in the corresponding interface.
999          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1000            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1001              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1002                ObjCInterfaceDecl *ClassDeclared;
1003                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1004                                                 Name.getAsIdentifierInfo(),
1005                                                             ClassDeclared)) {
1006                  if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1007                    R.addDecl(ND);
1008                    R.resolveKind();
1009                    return true;
1010                  }
1011                }
1012              }
1013          }
1014
1015          continue;
1016        }
1017
1018        // If this is a file context, we need to perform unqualified name
1019        // lookup considering using directives.
1020        if (Ctx->isFileContext()) {
1021          // If we haven't handled using directives yet, do so now.
1022          if (!VisitedUsingDirectives) {
1023            // Add using directives from this context up to the top level.
1024            for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1025              if (UCtx->isTransparentContext())
1026                continue;
1027
1028              UDirs.visit(UCtx, UCtx);
1029            }
1030
1031            // Find the innermost file scope, so we can add using directives
1032            // from local scopes.
1033            Scope *InnermostFileScope = S;
1034            while (InnermostFileScope &&
1035                   !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1036              InnermostFileScope = InnermostFileScope->getParent();
1037            UDirs.visitScopeChain(Initial, InnermostFileScope);
1038
1039            UDirs.done();
1040
1041            VisitedUsingDirectives = true;
1042          }
1043
1044          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1045            R.resolveKind();
1046            return true;
1047          }
1048
1049          continue;
1050        }
1051
1052        // Perform qualified name lookup into this context.
1053        // FIXME: In some cases, we know that every name that could be found by
1054        // this qualified name lookup will also be on the identifier chain. For
1055        // example, inside a class without any base classes, we never need to
1056        // perform qualified lookup because all of the members are on top of the
1057        // identifier chain.
1058        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1059          return true;
1060      }
1061    }
1062  }
1063
1064  // Stop if we ran out of scopes.
1065  // FIXME:  This really, really shouldn't be happening.
1066  if (!S) return false;
1067
1068  // If we are looking for members, no need to look into global/namespace scope.
1069  if (NameKind == LookupMemberName)
1070    return false;
1071
1072  // Collect UsingDirectiveDecls in all scopes, and recursively all
1073  // nominated namespaces by those using-directives.
1074  //
1075  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1076  // don't build it for each lookup!
1077  if (!VisitedUsingDirectives) {
1078    UDirs.visitScopeChain(Initial, S);
1079    UDirs.done();
1080  }
1081
1082  // If we're not performing redeclaration lookup, do not look for local
1083  // extern declarations outside of a function scope.
1084  if (!R.isForRedeclaration())
1085    FindLocals.restore();
1086
1087  // Lookup namespace scope, and global scope.
1088  // Unqualified name lookup in C++ requires looking into scopes
1089  // that aren't strictly lexical, and therefore we walk through the
1090  // context as well as walking through the scopes.
1091  for (; S; S = S->getParent()) {
1092    // Check whether the IdResolver has anything in this scope.
1093    bool Found = false;
1094    for (; I != IEnd && S->isDeclScope(*I); ++I) {
1095      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1096        // We found something.  Look for anything else in our scope
1097        // with this same name and in an acceptable identifier
1098        // namespace, so that we can construct an overload set if we
1099        // need to.
1100        Found = true;
1101        R.addDecl(ND);
1102      }
1103    }
1104
1105    if (Found && S->isTemplateParamScope()) {
1106      R.resolveKind();
1107      return true;
1108    }
1109
1110    DeclContext *Ctx = S->getEntity();
1111    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1112        S->getParent() && !S->getParent()->isTemplateParamScope()) {
1113      // We've just searched the last template parameter scope and
1114      // found nothing, so look into the contexts between the
1115      // lexical and semantic declaration contexts returned by
1116      // findOuterContext(). This implements the name lookup behavior
1117      // of C++ [temp.local]p8.
1118      Ctx = OutsideOfTemplateParamDC;
1119      OutsideOfTemplateParamDC = nullptr;
1120    }
1121
1122    if (Ctx) {
1123      DeclContext *OuterCtx;
1124      bool SearchAfterTemplateScope;
1125      std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1126      if (SearchAfterTemplateScope)
1127        OutsideOfTemplateParamDC = OuterCtx;
1128
1129      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1130        // We do not directly look into transparent contexts, since
1131        // those entities will be found in the nearest enclosing
1132        // non-transparent context.
1133        if (Ctx->isTransparentContext())
1134          continue;
1135
1136        // If we have a context, and it's not a context stashed in the
1137        // template parameter scope for an out-of-line definition, also
1138        // look into that context.
1139        if (!(Found && S && S->isTemplateParamScope())) {
1140          assert(Ctx->isFileContext() &&
1141              "We should have been looking only at file context here already.");
1142
1143          // Look into context considering using-directives.
1144          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1145            Found = true;
1146        }
1147
1148        if (Found) {
1149          R.resolveKind();
1150          return true;
1151        }
1152
1153        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1154          return false;
1155      }
1156    }
1157
1158    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1159      return false;
1160  }
1161
1162  return !R.empty();
1163}
1164
1165/// \brief Find the declaration that a class temploid member specialization was
1166/// instantiated from, or the member itself if it is an explicit specialization.
1167static Decl *getInstantiatedFrom(Decl *D, MemberSpecializationInfo *MSInfo) {
1168  return MSInfo->isExplicitSpecialization() ? D : MSInfo->getInstantiatedFrom();
1169}
1170
1171/// \brief Find the module in which the given declaration was defined.
1172static Module *getDefiningModule(Decl *Entity) {
1173  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1174    // If this function was instantiated from a template, the defining module is
1175    // the module containing the pattern.
1176    if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1177      Entity = Pattern;
1178  } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1179    // If it's a class template specialization, find the template or partial
1180    // specialization from which it was instantiated.
1181    if (ClassTemplateSpecializationDecl *SpecRD =
1182            dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1183      llvm::PointerUnion<ClassTemplateDecl*,
1184                         ClassTemplatePartialSpecializationDecl*> From =
1185          SpecRD->getInstantiatedFrom();
1186      if (ClassTemplateDecl *FromTemplate = From.dyn_cast<ClassTemplateDecl*>())
1187        Entity = FromTemplate->getTemplatedDecl();
1188      else if (From)
1189        Entity = From.get<ClassTemplatePartialSpecializationDecl*>();
1190      // Otherwise, it's an explicit specialization.
1191    } else if (MemberSpecializationInfo *MSInfo =
1192                   RD->getMemberSpecializationInfo())
1193      Entity = getInstantiatedFrom(RD, MSInfo);
1194  } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1195    if (MemberSpecializationInfo *MSInfo = ED->getMemberSpecializationInfo())
1196      Entity = getInstantiatedFrom(ED, MSInfo);
1197  } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1198    // FIXME: Map from variable template specializations back to the template.
1199    if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo())
1200      Entity = getInstantiatedFrom(VD, MSInfo);
1201  }
1202
1203  // Walk up to the containing context. That might also have been instantiated
1204  // from a template.
1205  DeclContext *Context = Entity->getDeclContext();
1206  if (Context->isFileContext())
1207    return Entity->getOwningModule();
1208  return getDefiningModule(cast<Decl>(Context));
1209}
1210
1211llvm::DenseSet<Module*> &Sema::getLookupModules() {
1212  unsigned N = ActiveTemplateInstantiations.size();
1213  for (unsigned I = ActiveTemplateInstantiationLookupModules.size();
1214       I != N; ++I) {
1215    Module *M = getDefiningModule(ActiveTemplateInstantiations[I].Entity);
1216    if (M && !LookupModulesCache.insert(M).second)
1217      M = nullptr;
1218    ActiveTemplateInstantiationLookupModules.push_back(M);
1219  }
1220  return LookupModulesCache;
1221}
1222
1223/// \brief Determine whether a declaration is visible to name lookup.
1224///
1225/// This routine determines whether the declaration D is visible in the current
1226/// lookup context, taking into account the current template instantiation
1227/// stack. During template instantiation, a declaration is visible if it is
1228/// visible from a module containing any entity on the template instantiation
1229/// path (by instantiating a template, you allow it to see the declarations that
1230/// your module can see, including those later on in your module).
1231bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1232  assert(D->isHidden() && !SemaRef.ActiveTemplateInstantiations.empty() &&
1233         "should not call this: not in slow case");
1234  Module *DeclModule = D->getOwningModule();
1235  assert(DeclModule && "hidden decl not from a module");
1236
1237  // Find the extra places where we need to look.
1238  llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
1239  if (LookupModules.empty())
1240    return false;
1241
1242  // If our lookup set contains the decl's module, it's visible.
1243  if (LookupModules.count(DeclModule))
1244    return true;
1245
1246  // If the declaration isn't exported, it's not visible in any other module.
1247  if (D->isModulePrivate())
1248    return false;
1249
1250  // Check whether DeclModule is transitively exported to an import of
1251  // the lookup set.
1252  for (llvm::DenseSet<Module *>::iterator I = LookupModules.begin(),
1253                                          E = LookupModules.end();
1254       I != E; ++I)
1255    if ((*I)->isModuleVisible(DeclModule))
1256      return true;
1257  return false;
1258}
1259
1260/// \brief Retrieve the visible declaration corresponding to D, if any.
1261///
1262/// This routine determines whether the declaration D is visible in the current
1263/// module, with the current imports. If not, it checks whether any
1264/// redeclaration of D is visible, and if so, returns that declaration.
1265///
1266/// \returns D, or a visible previous declaration of D, whichever is more recent
1267/// and visible. If no declaration of D is visible, returns null.
1268static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
1269  assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1270
1271  for (auto RD : D->redecls()) {
1272    if (auto ND = dyn_cast<NamedDecl>(RD)) {
1273      if (LookupResult::isVisible(SemaRef, ND))
1274        return ND;
1275    }
1276  }
1277
1278  return nullptr;
1279}
1280
1281NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1282  return findAcceptableDecl(SemaRef, D);
1283}
1284
1285/// @brief Perform unqualified name lookup starting from a given
1286/// scope.
1287///
1288/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1289/// used to find names within the current scope. For example, 'x' in
1290/// @code
1291/// int x;
1292/// int f() {
1293///   return x; // unqualified name look finds 'x' in the global scope
1294/// }
1295/// @endcode
1296///
1297/// Different lookup criteria can find different names. For example, a
1298/// particular scope can have both a struct and a function of the same
1299/// name, and each can be found by certain lookup criteria. For more
1300/// information about lookup criteria, see the documentation for the
1301/// class LookupCriteria.
1302///
1303/// @param S        The scope from which unqualified name lookup will
1304/// begin. If the lookup criteria permits, name lookup may also search
1305/// in the parent scopes.
1306///
1307/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1308/// look up and the lookup kind), and is updated with the results of lookup
1309/// including zero or more declarations and possibly additional information
1310/// used to diagnose ambiguities.
1311///
1312/// @returns \c true if lookup succeeded and false otherwise.
1313bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1314  DeclarationName Name = R.getLookupName();
1315  if (!Name) return false;
1316
1317  LookupNameKind NameKind = R.getLookupKind();
1318
1319  if (!getLangOpts().CPlusPlus) {
1320    // Unqualified name lookup in C/Objective-C is purely lexical, so
1321    // search in the declarations attached to the name.
1322    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1323      // Find the nearest non-transparent declaration scope.
1324      while (!(S->getFlags() & Scope::DeclScope) ||
1325             (S->getEntity() && S->getEntity()->isTransparentContext()))
1326        S = S->getParent();
1327    }
1328
1329    // When performing a scope lookup, we want to find local extern decls.
1330    FindLocalExternScope FindLocals(R);
1331
1332    // Scan up the scope chain looking for a decl that matches this
1333    // identifier that is in the appropriate namespace.  This search
1334    // should not take long, as shadowing of names is uncommon, and
1335    // deep shadowing is extremely uncommon.
1336    bool LeftStartingScope = false;
1337
1338    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1339                                   IEnd = IdResolver.end();
1340         I != IEnd; ++I)
1341      if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1342        if (NameKind == LookupRedeclarationWithLinkage) {
1343          // Determine whether this (or a previous) declaration is
1344          // out-of-scope.
1345          if (!LeftStartingScope && !S->isDeclScope(*I))
1346            LeftStartingScope = true;
1347
1348          // If we found something outside of our starting scope that
1349          // does not have linkage, skip it.
1350          if (LeftStartingScope && !((*I)->hasLinkage())) {
1351            R.setShadowed();
1352            continue;
1353          }
1354        }
1355        else if (NameKind == LookupObjCImplicitSelfParam &&
1356                 !isa<ImplicitParamDecl>(*I))
1357          continue;
1358
1359        R.addDecl(D);
1360
1361        // Check whether there are any other declarations with the same name
1362        // and in the same scope.
1363        if (I != IEnd) {
1364          // Find the scope in which this declaration was declared (if it
1365          // actually exists in a Scope).
1366          while (S && !S->isDeclScope(D))
1367            S = S->getParent();
1368
1369          // If the scope containing the declaration is the translation unit,
1370          // then we'll need to perform our checks based on the matching
1371          // DeclContexts rather than matching scopes.
1372          if (S && isNamespaceOrTranslationUnitScope(S))
1373            S = nullptr;
1374
1375          // Compute the DeclContext, if we need it.
1376          DeclContext *DC = nullptr;
1377          if (!S)
1378            DC = (*I)->getDeclContext()->getRedeclContext();
1379
1380          IdentifierResolver::iterator LastI = I;
1381          for (++LastI; LastI != IEnd; ++LastI) {
1382            if (S) {
1383              // Match based on scope.
1384              if (!S->isDeclScope(*LastI))
1385                break;
1386            } else {
1387              // Match based on DeclContext.
1388              DeclContext *LastDC
1389                = (*LastI)->getDeclContext()->getRedeclContext();
1390              if (!LastDC->Equals(DC))
1391                break;
1392            }
1393
1394            // If the declaration is in the right namespace and visible, add it.
1395            if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1396              R.addDecl(LastD);
1397          }
1398
1399          R.resolveKind();
1400        }
1401
1402        return true;
1403      }
1404  } else {
1405    // Perform C++ unqualified name lookup.
1406    if (CppLookupName(R, S))
1407      return true;
1408  }
1409
1410  // If we didn't find a use of this identifier, and if the identifier
1411  // corresponds to a compiler builtin, create the decl object for the builtin
1412  // now, injecting it into translation unit scope, and return it.
1413  if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1414    return true;
1415
1416  // If we didn't find a use of this identifier, the ExternalSource
1417  // may be able to handle the situation.
1418  // Note: some lookup failures are expected!
1419  // See e.g. R.isForRedeclaration().
1420  return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1421}
1422
1423/// @brief Perform qualified name lookup in the namespaces nominated by
1424/// using directives by the given context.
1425///
1426/// C++98 [namespace.qual]p2:
1427///   Given X::m (where X is a user-declared namespace), or given \::m
1428///   (where X is the global namespace), let S be the set of all
1429///   declarations of m in X and in the transitive closure of all
1430///   namespaces nominated by using-directives in X and its used
1431///   namespaces, except that using-directives are ignored in any
1432///   namespace, including X, directly containing one or more
1433///   declarations of m. No namespace is searched more than once in
1434///   the lookup of a name. If S is the empty set, the program is
1435///   ill-formed. Otherwise, if S has exactly one member, or if the
1436///   context of the reference is a using-declaration
1437///   (namespace.udecl), S is the required set of declarations of
1438///   m. Otherwise if the use of m is not one that allows a unique
1439///   declaration to be chosen from S, the program is ill-formed.
1440///
1441/// C++98 [namespace.qual]p5:
1442///   During the lookup of a qualified namespace member name, if the
1443///   lookup finds more than one declaration of the member, and if one
1444///   declaration introduces a class name or enumeration name and the
1445///   other declarations either introduce the same object, the same
1446///   enumerator or a set of functions, the non-type name hides the
1447///   class or enumeration name if and only if the declarations are
1448///   from the same namespace; otherwise (the declarations are from
1449///   different namespaces), the program is ill-formed.
1450static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1451                                                 DeclContext *StartDC) {
1452  assert(StartDC->isFileContext() && "start context is not a file context");
1453
1454  DeclContext::udir_range UsingDirectives = StartDC->using_directives();
1455  if (UsingDirectives.begin() == UsingDirectives.end()) return false;
1456
1457  // We have at least added all these contexts to the queue.
1458  llvm::SmallPtrSet<DeclContext*, 8> Visited;
1459  Visited.insert(StartDC);
1460
1461  // We have not yet looked into these namespaces, much less added
1462  // their "using-children" to the queue.
1463  SmallVector<NamespaceDecl*, 8> Queue;
1464
1465  // We have already looked into the initial namespace; seed the queue
1466  // with its using-children.
1467  for (auto *I : UsingDirectives) {
1468    NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
1469    if (Visited.insert(ND))
1470      Queue.push_back(ND);
1471  }
1472
1473  // The easiest way to implement the restriction in [namespace.qual]p5
1474  // is to check whether any of the individual results found a tag
1475  // and, if so, to declare an ambiguity if the final result is not
1476  // a tag.
1477  bool FoundTag = false;
1478  bool FoundNonTag = false;
1479
1480  LookupResult LocalR(LookupResult::Temporary, R);
1481
1482  bool Found = false;
1483  while (!Queue.empty()) {
1484    NamespaceDecl *ND = Queue.pop_back_val();
1485
1486    // We go through some convolutions here to avoid copying results
1487    // between LookupResults.
1488    bool UseLocal = !R.empty();
1489    LookupResult &DirectR = UseLocal ? LocalR : R;
1490    bool FoundDirect = LookupDirect(S, DirectR, ND);
1491
1492    if (FoundDirect) {
1493      // First do any local hiding.
1494      DirectR.resolveKind();
1495
1496      // If the local result is a tag, remember that.
1497      if (DirectR.isSingleTagDecl())
1498        FoundTag = true;
1499      else
1500        FoundNonTag = true;
1501
1502      // Append the local results to the total results if necessary.
1503      if (UseLocal) {
1504        R.addAllDecls(LocalR);
1505        LocalR.clear();
1506      }
1507    }
1508
1509    // If we find names in this namespace, ignore its using directives.
1510    if (FoundDirect) {
1511      Found = true;
1512      continue;
1513    }
1514
1515    for (auto I : ND->using_directives()) {
1516      NamespaceDecl *Nom = I->getNominatedNamespace();
1517      if (Visited.insert(Nom))
1518        Queue.push_back(Nom);
1519    }
1520  }
1521
1522  if (Found) {
1523    if (FoundTag && FoundNonTag)
1524      R.setAmbiguousQualifiedTagHiding();
1525    else
1526      R.resolveKind();
1527  }
1528
1529  return Found;
1530}
1531
1532/// \brief Callback that looks for any member of a class with the given name.
1533static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1534                            CXXBasePath &Path,
1535                            void *Name) {
1536  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1537
1538  DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1539  Path.Decls = BaseRecord->lookup(N);
1540  return !Path.Decls.empty();
1541}
1542
1543/// \brief Determine whether the given set of member declarations contains only
1544/// static members, nested types, and enumerators.
1545template<typename InputIterator>
1546static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1547  Decl *D = (*First)->getUnderlyingDecl();
1548  if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1549    return true;
1550
1551  if (isa<CXXMethodDecl>(D)) {
1552    // Determine whether all of the methods are static.
1553    bool AllMethodsAreStatic = true;
1554    for(; First != Last; ++First) {
1555      D = (*First)->getUnderlyingDecl();
1556
1557      if (!isa<CXXMethodDecl>(D)) {
1558        assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1559        break;
1560      }
1561
1562      if (!cast<CXXMethodDecl>(D)->isStatic()) {
1563        AllMethodsAreStatic = false;
1564        break;
1565      }
1566    }
1567
1568    if (AllMethodsAreStatic)
1569      return true;
1570  }
1571
1572  return false;
1573}
1574
1575/// \brief Perform qualified name lookup into a given context.
1576///
1577/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1578/// names when the context of those names is explicit specified, e.g.,
1579/// "std::vector" or "x->member", or as part of unqualified name lookup.
1580///
1581/// Different lookup criteria can find different names. For example, a
1582/// particular scope can have both a struct and a function of the same
1583/// name, and each can be found by certain lookup criteria. For more
1584/// information about lookup criteria, see the documentation for the
1585/// class LookupCriteria.
1586///
1587/// \param R captures both the lookup criteria and any lookup results found.
1588///
1589/// \param LookupCtx The context in which qualified name lookup will
1590/// search. If the lookup criteria permits, name lookup may also search
1591/// in the parent contexts or (for C++ classes) base classes.
1592///
1593/// \param InUnqualifiedLookup true if this is qualified name lookup that
1594/// occurs as part of unqualified name lookup.
1595///
1596/// \returns true if lookup succeeded, false if it failed.
1597bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1598                               bool InUnqualifiedLookup) {
1599  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1600
1601  if (!R.getLookupName())
1602    return false;
1603
1604  // Make sure that the declaration context is complete.
1605  assert((!isa<TagDecl>(LookupCtx) ||
1606          LookupCtx->isDependentContext() ||
1607          cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
1608          cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
1609         "Declaration context must already be complete!");
1610
1611  // Perform qualified name lookup into the LookupCtx.
1612  if (LookupDirect(*this, R, LookupCtx)) {
1613    R.resolveKind();
1614    if (isa<CXXRecordDecl>(LookupCtx))
1615      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1616    return true;
1617  }
1618
1619  // Don't descend into implied contexts for redeclarations.
1620  // C++98 [namespace.qual]p6:
1621  //   In a declaration for a namespace member in which the
1622  //   declarator-id is a qualified-id, given that the qualified-id
1623  //   for the namespace member has the form
1624  //     nested-name-specifier unqualified-id
1625  //   the unqualified-id shall name a member of the namespace
1626  //   designated by the nested-name-specifier.
1627  // See also [class.mfct]p5 and [class.static.data]p2.
1628  if (R.isForRedeclaration())
1629    return false;
1630
1631  // If this is a namespace, look it up in the implied namespaces.
1632  if (LookupCtx->isFileContext())
1633    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1634
1635  // If this isn't a C++ class, we aren't allowed to look into base
1636  // classes, we're done.
1637  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1638  if (!LookupRec || !LookupRec->getDefinition())
1639    return false;
1640
1641  // If we're performing qualified name lookup into a dependent class,
1642  // then we are actually looking into a current instantiation. If we have any
1643  // dependent base classes, then we either have to delay lookup until
1644  // template instantiation time (at which point all bases will be available)
1645  // or we have to fail.
1646  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1647      LookupRec->hasAnyDependentBases()) {
1648    R.setNotFoundInCurrentInstantiation();
1649    return false;
1650  }
1651
1652  // Perform lookup into our base classes.
1653  CXXBasePaths Paths;
1654  Paths.setOrigin(LookupRec);
1655
1656  // Look for this member in our base classes
1657  CXXRecordDecl::BaseMatchesCallback *BaseCallback = nullptr;
1658  switch (R.getLookupKind()) {
1659    case LookupObjCImplicitSelfParam:
1660    case LookupOrdinaryName:
1661    case LookupMemberName:
1662    case LookupRedeclarationWithLinkage:
1663    case LookupLocalFriendName:
1664      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1665      break;
1666
1667    case LookupTagName:
1668      BaseCallback = &CXXRecordDecl::FindTagMember;
1669      break;
1670
1671    case LookupAnyName:
1672      BaseCallback = &LookupAnyMember;
1673      break;
1674
1675    case LookupUsingDeclName:
1676      // This lookup is for redeclarations only.
1677
1678    case LookupOperatorName:
1679    case LookupNamespaceName:
1680    case LookupObjCProtocolName:
1681    case LookupLabel:
1682      // These lookups will never find a member in a C++ class (or base class).
1683      return false;
1684
1685    case LookupNestedNameSpecifierName:
1686      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1687      break;
1688  }
1689
1690  if (!LookupRec->lookupInBases(BaseCallback,
1691                                R.getLookupName().getAsOpaquePtr(), Paths))
1692    return false;
1693
1694  R.setNamingClass(LookupRec);
1695
1696  // C++ [class.member.lookup]p2:
1697  //   [...] If the resulting set of declarations are not all from
1698  //   sub-objects of the same type, or the set has a nonstatic member
1699  //   and includes members from distinct sub-objects, there is an
1700  //   ambiguity and the program is ill-formed. Otherwise that set is
1701  //   the result of the lookup.
1702  QualType SubobjectType;
1703  int SubobjectNumber = 0;
1704  AccessSpecifier SubobjectAccess = AS_none;
1705
1706  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1707       Path != PathEnd; ++Path) {
1708    const CXXBasePathElement &PathElement = Path->back();
1709
1710    // Pick the best (i.e. most permissive i.e. numerically lowest) access
1711    // across all paths.
1712    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1713
1714    // Determine whether we're looking at a distinct sub-object or not.
1715    if (SubobjectType.isNull()) {
1716      // This is the first subobject we've looked at. Record its type.
1717      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1718      SubobjectNumber = PathElement.SubobjectNumber;
1719      continue;
1720    }
1721
1722    if (SubobjectType
1723                 != Context.getCanonicalType(PathElement.Base->getType())) {
1724      // We found members of the given name in two subobjects of
1725      // different types. If the declaration sets aren't the same, this
1726      // lookup is ambiguous.
1727      if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
1728        CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1729        DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
1730        DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
1731
1732        while (FirstD != FirstPath->Decls.end() &&
1733               CurrentD != Path->Decls.end()) {
1734         if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1735             (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1736           break;
1737
1738          ++FirstD;
1739          ++CurrentD;
1740        }
1741
1742        if (FirstD == FirstPath->Decls.end() &&
1743            CurrentD == Path->Decls.end())
1744          continue;
1745      }
1746
1747      R.setAmbiguousBaseSubobjectTypes(Paths);
1748      return true;
1749    }
1750
1751    if (SubobjectNumber != PathElement.SubobjectNumber) {
1752      // We have a different subobject of the same type.
1753
1754      // C++ [class.member.lookup]p5:
1755      //   A static member, a nested type or an enumerator defined in
1756      //   a base class T can unambiguously be found even if an object
1757      //   has more than one base class subobject of type T.
1758      if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
1759        continue;
1760
1761      // We have found a nonstatic member name in multiple, distinct
1762      // subobjects. Name lookup is ambiguous.
1763      R.setAmbiguousBaseSubobjects(Paths);
1764      return true;
1765    }
1766  }
1767
1768  // Lookup in a base class succeeded; return these results.
1769
1770  DeclContext::lookup_result DR = Paths.front().Decls;
1771  for (DeclContext::lookup_iterator I = DR.begin(), E = DR.end(); I != E; ++I) {
1772    NamedDecl *D = *I;
1773    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1774                                                    D->getAccess());
1775    R.addDecl(D, AS);
1776  }
1777  R.resolveKind();
1778  return true;
1779}
1780
1781/// @brief Performs name lookup for a name that was parsed in the
1782/// source code, and may contain a C++ scope specifier.
1783///
1784/// This routine is a convenience routine meant to be called from
1785/// contexts that receive a name and an optional C++ scope specifier
1786/// (e.g., "N::M::x"). It will then perform either qualified or
1787/// unqualified name lookup (with LookupQualifiedName or LookupName,
1788/// respectively) on the given name and return those results.
1789///
1790/// @param S        The scope from which unqualified name lookup will
1791/// begin.
1792///
1793/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1794///
1795/// @param EnteringContext Indicates whether we are going to enter the
1796/// context of the scope-specifier SS (if present).
1797///
1798/// @returns True if any decls were found (but possibly ambiguous)
1799bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1800                            bool AllowBuiltinCreation, bool EnteringContext) {
1801  if (SS && SS->isInvalid()) {
1802    // When the scope specifier is invalid, don't even look for
1803    // anything.
1804    return false;
1805  }
1806
1807  if (SS && SS->isSet()) {
1808    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1809      // We have resolved the scope specifier to a particular declaration
1810      // contex, and will perform name lookup in that context.
1811      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1812        return false;
1813
1814      R.setContextRange(SS->getRange());
1815      return LookupQualifiedName(R, DC);
1816    }
1817
1818    // We could not resolve the scope specified to a specific declaration
1819    // context, which means that SS refers to an unknown specialization.
1820    // Name lookup can't find anything in this case.
1821    R.setNotFoundInCurrentInstantiation();
1822    R.setContextRange(SS->getRange());
1823    return false;
1824  }
1825
1826  // Perform unqualified name lookup starting in the given scope.
1827  return LookupName(R, S, AllowBuiltinCreation);
1828}
1829
1830
1831/// \brief Produce a diagnostic describing the ambiguity that resulted
1832/// from name lookup.
1833///
1834/// \param Result The result of the ambiguous lookup to be diagnosed.
1835void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1836  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1837
1838  DeclarationName Name = Result.getLookupName();
1839  SourceLocation NameLoc = Result.getNameLoc();
1840  SourceRange LookupRange = Result.getContextRange();
1841
1842  switch (Result.getAmbiguityKind()) {
1843  case LookupResult::AmbiguousBaseSubobjects: {
1844    CXXBasePaths *Paths = Result.getBasePaths();
1845    QualType SubobjectType = Paths->front().back().Base->getType();
1846    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1847      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1848      << LookupRange;
1849
1850    DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
1851    while (isa<CXXMethodDecl>(*Found) &&
1852           cast<CXXMethodDecl>(*Found)->isStatic())
1853      ++Found;
1854
1855    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1856    break;
1857  }
1858
1859  case LookupResult::AmbiguousBaseSubobjectTypes: {
1860    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1861      << Name << LookupRange;
1862
1863    CXXBasePaths *Paths = Result.getBasePaths();
1864    std::set<Decl *> DeclsPrinted;
1865    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1866                                      PathEnd = Paths->end();
1867         Path != PathEnd; ++Path) {
1868      Decl *D = Path->Decls.front();
1869      if (DeclsPrinted.insert(D).second)
1870        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1871    }
1872    break;
1873  }
1874
1875  case LookupResult::AmbiguousTagHiding: {
1876    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1877
1878    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1879
1880    LookupResult::iterator DI, DE = Result.end();
1881    for (DI = Result.begin(); DI != DE; ++DI)
1882      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1883        TagDecls.insert(TD);
1884        Diag(TD->getLocation(), diag::note_hidden_tag);
1885      }
1886
1887    for (DI = Result.begin(); DI != DE; ++DI)
1888      if (!isa<TagDecl>(*DI))
1889        Diag((*DI)->getLocation(), diag::note_hiding_object);
1890
1891    // For recovery purposes, go ahead and implement the hiding.
1892    LookupResult::Filter F = Result.makeFilter();
1893    while (F.hasNext()) {
1894      if (TagDecls.count(F.next()))
1895        F.erase();
1896    }
1897    F.done();
1898    break;
1899  }
1900
1901  case LookupResult::AmbiguousReference: {
1902    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1903
1904    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1905    for (; DI != DE; ++DI)
1906      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1907    break;
1908  }
1909  }
1910}
1911
1912namespace {
1913  struct AssociatedLookup {
1914    AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
1915                     Sema::AssociatedNamespaceSet &Namespaces,
1916                     Sema::AssociatedClassSet &Classes)
1917      : S(S), Namespaces(Namespaces), Classes(Classes),
1918        InstantiationLoc(InstantiationLoc) {
1919    }
1920
1921    Sema &S;
1922    Sema::AssociatedNamespaceSet &Namespaces;
1923    Sema::AssociatedClassSet &Classes;
1924    SourceLocation InstantiationLoc;
1925  };
1926}
1927
1928static void
1929addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1930
1931static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1932                                      DeclContext *Ctx) {
1933  // Add the associated namespace for this class.
1934
1935  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1936  // be a locally scoped record.
1937
1938  // We skip out of inline namespaces. The innermost non-inline namespace
1939  // contains all names of all its nested inline namespaces anyway, so we can
1940  // replace the entire inline namespace tree with its root.
1941  while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1942         Ctx->isInlineNamespace())
1943    Ctx = Ctx->getParent();
1944
1945  if (Ctx->isFileContext())
1946    Namespaces.insert(Ctx->getPrimaryContext());
1947}
1948
1949// \brief Add the associated classes and namespaces for argument-dependent
1950// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1951static void
1952addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1953                                  const TemplateArgument &Arg) {
1954  // C++ [basic.lookup.koenig]p2, last bullet:
1955  //   -- [...] ;
1956  switch (Arg.getKind()) {
1957    case TemplateArgument::Null:
1958      break;
1959
1960    case TemplateArgument::Type:
1961      // [...] the namespaces and classes associated with the types of the
1962      // template arguments provided for template type parameters (excluding
1963      // template template parameters)
1964      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1965      break;
1966
1967    case TemplateArgument::Template:
1968    case TemplateArgument::TemplateExpansion: {
1969      // [...] the namespaces in which any template template arguments are
1970      // defined; and the classes in which any member templates used as
1971      // template template arguments are defined.
1972      TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
1973      if (ClassTemplateDecl *ClassTemplate
1974                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1975        DeclContext *Ctx = ClassTemplate->getDeclContext();
1976        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1977          Result.Classes.insert(EnclosingClass);
1978        // Add the associated namespace for this class.
1979        CollectEnclosingNamespace(Result.Namespaces, Ctx);
1980      }
1981      break;
1982    }
1983
1984    case TemplateArgument::Declaration:
1985    case TemplateArgument::Integral:
1986    case TemplateArgument::Expression:
1987    case TemplateArgument::NullPtr:
1988      // [Note: non-type template arguments do not contribute to the set of
1989      //  associated namespaces. ]
1990      break;
1991
1992    case TemplateArgument::Pack:
1993      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1994                                        PEnd = Arg.pack_end();
1995           P != PEnd; ++P)
1996        addAssociatedClassesAndNamespaces(Result, *P);
1997      break;
1998  }
1999}
2000
2001// \brief Add the associated classes and namespaces for
2002// argument-dependent lookup with an argument of class type
2003// (C++ [basic.lookup.koenig]p2).
2004static void
2005addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2006                                  CXXRecordDecl *Class) {
2007
2008  // Just silently ignore anything whose name is __va_list_tag.
2009  if (Class->getDeclName() == Result.S.VAListTagName)
2010    return;
2011
2012  // C++ [basic.lookup.koenig]p2:
2013  //   [...]
2014  //     -- If T is a class type (including unions), its associated
2015  //        classes are: the class itself; the class of which it is a
2016  //        member, if any; and its direct and indirect base
2017  //        classes. Its associated namespaces are the namespaces in
2018  //        which its associated classes are defined.
2019
2020  // Add the class of which it is a member, if any.
2021  DeclContext *Ctx = Class->getDeclContext();
2022  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2023    Result.Classes.insert(EnclosingClass);
2024  // Add the associated namespace for this class.
2025  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2026
2027  // Add the class itself. If we've already seen this class, we don't
2028  // need to visit base classes.
2029  //
2030  // FIXME: That's not correct, we may have added this class only because it
2031  // was the enclosing class of another class, and in that case we won't have
2032  // added its base classes yet.
2033  if (!Result.Classes.insert(Class))
2034    return;
2035
2036  // -- If T is a template-id, its associated namespaces and classes are
2037  //    the namespace in which the template is defined; for member
2038  //    templates, the member template's class; the namespaces and classes
2039  //    associated with the types of the template arguments provided for
2040  //    template type parameters (excluding template template parameters); the
2041  //    namespaces in which any template template arguments are defined; and
2042  //    the classes in which any member templates used as template template
2043  //    arguments are defined. [Note: non-type template arguments do not
2044  //    contribute to the set of associated namespaces. ]
2045  if (ClassTemplateSpecializationDecl *Spec
2046        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2047    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2048    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2049      Result.Classes.insert(EnclosingClass);
2050    // Add the associated namespace for this class.
2051    CollectEnclosingNamespace(Result.Namespaces, Ctx);
2052
2053    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2054    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2055      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2056  }
2057
2058  // Only recurse into base classes for complete types.
2059  if (!Class->hasDefinition())
2060    return;
2061
2062  // Add direct and indirect base classes along with their associated
2063  // namespaces.
2064  SmallVector<CXXRecordDecl *, 32> Bases;
2065  Bases.push_back(Class);
2066  while (!Bases.empty()) {
2067    // Pop this class off the stack.
2068    Class = Bases.pop_back_val();
2069
2070    // Visit the base classes.
2071    for (const auto &Base : Class->bases()) {
2072      const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2073      // In dependent contexts, we do ADL twice, and the first time around,
2074      // the base type might be a dependent TemplateSpecializationType, or a
2075      // TemplateTypeParmType. If that happens, simply ignore it.
2076      // FIXME: If we want to support export, we probably need to add the
2077      // namespace of the template in a TemplateSpecializationType, or even
2078      // the classes and namespaces of known non-dependent arguments.
2079      if (!BaseType)
2080        continue;
2081      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2082      if (Result.Classes.insert(BaseDecl)) {
2083        // Find the associated namespace for this base class.
2084        DeclContext *BaseCtx = BaseDecl->getDeclContext();
2085        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2086
2087        // Make sure we visit the bases of this base class.
2088        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2089          Bases.push_back(BaseDecl);
2090      }
2091    }
2092  }
2093}
2094
2095// \brief Add the associated classes and namespaces for
2096// argument-dependent lookup with an argument of type T
2097// (C++ [basic.lookup.koenig]p2).
2098static void
2099addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2100  // C++ [basic.lookup.koenig]p2:
2101  //
2102  //   For each argument type T in the function call, there is a set
2103  //   of zero or more associated namespaces and a set of zero or more
2104  //   associated classes to be considered. The sets of namespaces and
2105  //   classes is determined entirely by the types of the function
2106  //   arguments (and the namespace of any template template
2107  //   argument). Typedef names and using-declarations used to specify
2108  //   the types do not contribute to this set. The sets of namespaces
2109  //   and classes are determined in the following way:
2110
2111  SmallVector<const Type *, 16> Queue;
2112  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2113
2114  while (true) {
2115    switch (T->getTypeClass()) {
2116
2117#define TYPE(Class, Base)
2118#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2119#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2120#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2121#define ABSTRACT_TYPE(Class, Base)
2122#include "clang/AST/TypeNodes.def"
2123      // T is canonical.  We can also ignore dependent types because
2124      // we don't need to do ADL at the definition point, but if we
2125      // wanted to implement template export (or if we find some other
2126      // use for associated classes and namespaces...) this would be
2127      // wrong.
2128      break;
2129
2130    //    -- If T is a pointer to U or an array of U, its associated
2131    //       namespaces and classes are those associated with U.
2132    case Type::Pointer:
2133      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2134      continue;
2135    case Type::ConstantArray:
2136    case Type::IncompleteArray:
2137    case Type::VariableArray:
2138      T = cast<ArrayType>(T)->getElementType().getTypePtr();
2139      continue;
2140
2141    //     -- If T is a fundamental type, its associated sets of
2142    //        namespaces and classes are both empty.
2143    case Type::Builtin:
2144      break;
2145
2146    //     -- If T is a class type (including unions), its associated
2147    //        classes are: the class itself; the class of which it is a
2148    //        member, if any; and its direct and indirect base
2149    //        classes. Its associated namespaces are the namespaces in
2150    //        which its associated classes are defined.
2151    case Type::Record: {
2152      Result.S.RequireCompleteType(Result.InstantiationLoc, QualType(T, 0),
2153                                   /*no diagnostic*/ 0);
2154      CXXRecordDecl *Class
2155        = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2156      addAssociatedClassesAndNamespaces(Result, Class);
2157      break;
2158    }
2159
2160    //     -- If T is an enumeration type, its associated namespace is
2161    //        the namespace in which it is defined. If it is class
2162    //        member, its associated class is the member's class; else
2163    //        it has no associated class.
2164    case Type::Enum: {
2165      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2166
2167      DeclContext *Ctx = Enum->getDeclContext();
2168      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2169        Result.Classes.insert(EnclosingClass);
2170
2171      // Add the associated namespace for this class.
2172      CollectEnclosingNamespace(Result.Namespaces, Ctx);
2173
2174      break;
2175    }
2176
2177    //     -- If T is a function type, its associated namespaces and
2178    //        classes are those associated with the function parameter
2179    //        types and those associated with the return type.
2180    case Type::FunctionProto: {
2181      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2182      for (const auto &Arg : Proto->param_types())
2183        Queue.push_back(Arg.getTypePtr());
2184      // fallthrough
2185    }
2186    case Type::FunctionNoProto: {
2187      const FunctionType *FnType = cast<FunctionType>(T);
2188      T = FnType->getReturnType().getTypePtr();
2189      continue;
2190    }
2191
2192    //     -- If T is a pointer to a member function of a class X, its
2193    //        associated namespaces and classes are those associated
2194    //        with the function parameter types and return type,
2195    //        together with those associated with X.
2196    //
2197    //     -- If T is a pointer to a data member of class X, its
2198    //        associated namespaces and classes are those associated
2199    //        with the member type together with those associated with
2200    //        X.
2201    case Type::MemberPointer: {
2202      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2203
2204      // Queue up the class type into which this points.
2205      Queue.push_back(MemberPtr->getClass());
2206
2207      // And directly continue with the pointee type.
2208      T = MemberPtr->getPointeeType().getTypePtr();
2209      continue;
2210    }
2211
2212    // As an extension, treat this like a normal pointer.
2213    case Type::BlockPointer:
2214      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2215      continue;
2216
2217    // References aren't covered by the standard, but that's such an
2218    // obvious defect that we cover them anyway.
2219    case Type::LValueReference:
2220    case Type::RValueReference:
2221      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2222      continue;
2223
2224    // These are fundamental types.
2225    case Type::Vector:
2226    case Type::ExtVector:
2227    case Type::Complex:
2228      break;
2229
2230    // Non-deduced auto types only get here for error cases.
2231    case Type::Auto:
2232      break;
2233
2234    // If T is an Objective-C object or interface type, or a pointer to an
2235    // object or interface type, the associated namespace is the global
2236    // namespace.
2237    case Type::ObjCObject:
2238    case Type::ObjCInterface:
2239    case Type::ObjCObjectPointer:
2240      Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2241      break;
2242
2243    // Atomic types are just wrappers; use the associations of the
2244    // contained type.
2245    case Type::Atomic:
2246      T = cast<AtomicType>(T)->getValueType().getTypePtr();
2247      continue;
2248    }
2249
2250    if (Queue.empty())
2251      break;
2252    T = Queue.pop_back_val();
2253  }
2254}
2255
2256/// \brief Find the associated classes and namespaces for
2257/// argument-dependent lookup for a call with the given set of
2258/// arguments.
2259///
2260/// This routine computes the sets of associated classes and associated
2261/// namespaces searched by argument-dependent lookup
2262/// (C++ [basic.lookup.argdep]) for a given set of arguments.
2263void Sema::FindAssociatedClassesAndNamespaces(
2264    SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2265    AssociatedNamespaceSet &AssociatedNamespaces,
2266    AssociatedClassSet &AssociatedClasses) {
2267  AssociatedNamespaces.clear();
2268  AssociatedClasses.clear();
2269
2270  AssociatedLookup Result(*this, InstantiationLoc,
2271                          AssociatedNamespaces, AssociatedClasses);
2272
2273  // C++ [basic.lookup.koenig]p2:
2274  //   For each argument type T in the function call, there is a set
2275  //   of zero or more associated namespaces and a set of zero or more
2276  //   associated classes to be considered. The sets of namespaces and
2277  //   classes is determined entirely by the types of the function
2278  //   arguments (and the namespace of any template template
2279  //   argument).
2280  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2281    Expr *Arg = Args[ArgIdx];
2282
2283    if (Arg->getType() != Context.OverloadTy) {
2284      addAssociatedClassesAndNamespaces(Result, Arg->getType());
2285      continue;
2286    }
2287
2288    // [...] In addition, if the argument is the name or address of a
2289    // set of overloaded functions and/or function templates, its
2290    // associated classes and namespaces are the union of those
2291    // associated with each of the members of the set: the namespace
2292    // in which the function or function template is defined and the
2293    // classes and namespaces associated with its (non-dependent)
2294    // parameter types and return type.
2295    Arg = Arg->IgnoreParens();
2296    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2297      if (unaryOp->getOpcode() == UO_AddrOf)
2298        Arg = unaryOp->getSubExpr();
2299
2300    UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2301    if (!ULE) continue;
2302
2303    for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
2304           I != E; ++I) {
2305      // Look through any using declarations to find the underlying function.
2306      FunctionDecl *FDecl = (*I)->getUnderlyingDecl()->getAsFunction();
2307
2308      // Add the classes and namespaces associated with the parameter
2309      // types and return type of this function.
2310      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2311    }
2312  }
2313}
2314
2315NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2316                                  SourceLocation Loc,
2317                                  LookupNameKind NameKind,
2318                                  RedeclarationKind Redecl) {
2319  LookupResult R(*this, Name, Loc, NameKind, Redecl);
2320  LookupName(R, S);
2321  return R.getAsSingle<NamedDecl>();
2322}
2323
2324/// \brief Find the protocol with the given name, if any.
2325ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2326                                       SourceLocation IdLoc,
2327                                       RedeclarationKind Redecl) {
2328  Decl *D = LookupSingleName(TUScope, II, IdLoc,
2329                             LookupObjCProtocolName, Redecl);
2330  return cast_or_null<ObjCProtocolDecl>(D);
2331}
2332
2333void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2334                                        QualType T1, QualType T2,
2335                                        UnresolvedSetImpl &Functions) {
2336  // C++ [over.match.oper]p3:
2337  //     -- The set of non-member candidates is the result of the
2338  //        unqualified lookup of operator@ in the context of the
2339  //        expression according to the usual rules for name lookup in
2340  //        unqualified function calls (3.4.2) except that all member
2341  //        functions are ignored.
2342  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2343  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2344  LookupName(Operators, S);
2345
2346  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2347  Functions.append(Operators.begin(), Operators.end());
2348}
2349
2350Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
2351                                                            CXXSpecialMember SM,
2352                                                            bool ConstArg,
2353                                                            bool VolatileArg,
2354                                                            bool RValueThis,
2355                                                            bool ConstThis,
2356                                                            bool VolatileThis) {
2357  assert(CanDeclareSpecialMemberFunction(RD) &&
2358         "doing special member lookup into record that isn't fully complete");
2359  RD = RD->getDefinition();
2360  if (RValueThis || ConstThis || VolatileThis)
2361    assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2362           "constructors and destructors always have unqualified lvalue this");
2363  if (ConstArg || VolatileArg)
2364    assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2365           "parameter-less special members can't have qualified arguments");
2366
2367  llvm::FoldingSetNodeID ID;
2368  ID.AddPointer(RD);
2369  ID.AddInteger(SM);
2370  ID.AddInteger(ConstArg);
2371  ID.AddInteger(VolatileArg);
2372  ID.AddInteger(RValueThis);
2373  ID.AddInteger(ConstThis);
2374  ID.AddInteger(VolatileThis);
2375
2376  void *InsertPoint;
2377  SpecialMemberOverloadResult *Result =
2378    SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2379
2380  // This was already cached
2381  if (Result)
2382    return Result;
2383
2384  Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
2385  Result = new (Result) SpecialMemberOverloadResult(ID);
2386  SpecialMemberCache.InsertNode(Result, InsertPoint);
2387
2388  if (SM == CXXDestructor) {
2389    if (RD->needsImplicitDestructor())
2390      DeclareImplicitDestructor(RD);
2391    CXXDestructorDecl *DD = RD->getDestructor();
2392    assert(DD && "record without a destructor");
2393    Result->setMethod(DD);
2394    Result->setKind(DD->isDeleted() ?
2395                    SpecialMemberOverloadResult::NoMemberOrDeleted :
2396                    SpecialMemberOverloadResult::Success);
2397    return Result;
2398  }
2399
2400  // Prepare for overload resolution. Here we construct a synthetic argument
2401  // if necessary and make sure that implicit functions are declared.
2402  CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2403  DeclarationName Name;
2404  Expr *Arg = nullptr;
2405  unsigned NumArgs;
2406
2407  QualType ArgType = CanTy;
2408  ExprValueKind VK = VK_LValue;
2409
2410  if (SM == CXXDefaultConstructor) {
2411    Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2412    NumArgs = 0;
2413    if (RD->needsImplicitDefaultConstructor())
2414      DeclareImplicitDefaultConstructor(RD);
2415  } else {
2416    if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2417      Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2418      if (RD->needsImplicitCopyConstructor())
2419        DeclareImplicitCopyConstructor(RD);
2420      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2421        DeclareImplicitMoveConstructor(RD);
2422    } else {
2423      Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2424      if (RD->needsImplicitCopyAssignment())
2425        DeclareImplicitCopyAssignment(RD);
2426      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2427        DeclareImplicitMoveAssignment(RD);
2428    }
2429
2430    if (ConstArg)
2431      ArgType.addConst();
2432    if (VolatileArg)
2433      ArgType.addVolatile();
2434
2435    // This isn't /really/ specified by the standard, but it's implied
2436    // we should be working from an RValue in the case of move to ensure
2437    // that we prefer to bind to rvalue references, and an LValue in the
2438    // case of copy to ensure we don't bind to rvalue references.
2439    // Possibly an XValue is actually correct in the case of move, but
2440    // there is no semantic difference for class types in this restricted
2441    // case.
2442    if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2443      VK = VK_LValue;
2444    else
2445      VK = VK_RValue;
2446  }
2447
2448  OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
2449
2450  if (SM != CXXDefaultConstructor) {
2451    NumArgs = 1;
2452    Arg = &FakeArg;
2453  }
2454
2455  // Create the object argument
2456  QualType ThisTy = CanTy;
2457  if (ConstThis)
2458    ThisTy.addConst();
2459  if (VolatileThis)
2460    ThisTy.addVolatile();
2461  Expr::Classification Classification =
2462    OpaqueValueExpr(SourceLocation(), ThisTy,
2463                    RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2464
2465  // Now we perform lookup on the name we computed earlier and do overload
2466  // resolution. Lookup is only performed directly into the class since there
2467  // will always be a (possibly implicit) declaration to shadow any others.
2468  OverloadCandidateSet OCS(RD->getLocation(), OverloadCandidateSet::CSK_Normal);
2469  DeclContext::lookup_result R = RD->lookup(Name);
2470  assert(!R.empty() &&
2471         "lookup for a constructor or assignment operator was empty");
2472
2473  // Copy the candidates as our processing of them may load new declarations
2474  // from an external source and invalidate lookup_result.
2475  SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
2476
2477  for (SmallVectorImpl<NamedDecl *>::iterator I = Candidates.begin(),
2478                                              E = Candidates.end();
2479       I != E; ++I) {
2480    NamedDecl *Cand = *I;
2481
2482    if (Cand->isInvalidDecl())
2483      continue;
2484
2485    if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
2486      // FIXME: [namespace.udecl]p15 says that we should only consider a
2487      // using declaration here if it does not match a declaration in the
2488      // derived class. We do not implement this correctly in other cases
2489      // either.
2490      Cand = U->getTargetDecl();
2491
2492      if (Cand->isInvalidDecl())
2493        continue;
2494    }
2495
2496    if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
2497      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2498        AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
2499                           Classification, llvm::makeArrayRef(&Arg, NumArgs),
2500                           OCS, true);
2501      else
2502        AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
2503                             llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2504    } else if (FunctionTemplateDecl *Tmpl =
2505                 dyn_cast<FunctionTemplateDecl>(Cand)) {
2506      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2507        AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2508                                   RD, nullptr, ThisTy, Classification,
2509                                   llvm::makeArrayRef(&Arg, NumArgs),
2510                                   OCS, true);
2511      else
2512        AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2513                                     nullptr, llvm::makeArrayRef(&Arg, NumArgs),
2514                                     OCS, true);
2515    } else {
2516      assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
2517    }
2518  }
2519
2520  OverloadCandidateSet::iterator Best;
2521  switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
2522    case OR_Success:
2523      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2524      Result->setKind(SpecialMemberOverloadResult::Success);
2525      break;
2526
2527    case OR_Deleted:
2528      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2529      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2530      break;
2531
2532    case OR_Ambiguous:
2533      Result->setMethod(nullptr);
2534      Result->setKind(SpecialMemberOverloadResult::Ambiguous);
2535      break;
2536
2537    case OR_No_Viable_Function:
2538      Result->setMethod(nullptr);
2539      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2540      break;
2541  }
2542
2543  return Result;
2544}
2545
2546/// \brief Look up the default constructor for the given class.
2547CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
2548  SpecialMemberOverloadResult *Result =
2549    LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
2550                        false, false);
2551
2552  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2553}
2554
2555/// \brief Look up the copying constructor for the given class.
2556CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
2557                                                   unsigned Quals) {
2558  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2559         "non-const, non-volatile qualifiers for copy ctor arg");
2560  SpecialMemberOverloadResult *Result =
2561    LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
2562                        Quals & Qualifiers::Volatile, false, false, false);
2563
2564  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2565}
2566
2567/// \brief Look up the moving constructor for the given class.
2568CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
2569                                                  unsigned Quals) {
2570  SpecialMemberOverloadResult *Result =
2571    LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
2572                        Quals & Qualifiers::Volatile, false, false, false);
2573
2574  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2575}
2576
2577/// \brief Look up the constructors for the given class.
2578DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2579  // If the implicit constructors have not yet been declared, do so now.
2580  if (CanDeclareSpecialMemberFunction(Class)) {
2581    if (Class->needsImplicitDefaultConstructor())
2582      DeclareImplicitDefaultConstructor(Class);
2583    if (Class->needsImplicitCopyConstructor())
2584      DeclareImplicitCopyConstructor(Class);
2585    if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
2586      DeclareImplicitMoveConstructor(Class);
2587  }
2588
2589  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2590  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2591  return Class->lookup(Name);
2592}
2593
2594/// \brief Look up the copying assignment operator for the given class.
2595CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
2596                                             unsigned Quals, bool RValueThis,
2597                                             unsigned ThisQuals) {
2598  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2599         "non-const, non-volatile qualifiers for copy assignment arg");
2600  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2601         "non-const, non-volatile qualifiers for copy assignment this");
2602  SpecialMemberOverloadResult *Result =
2603    LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
2604                        Quals & Qualifiers::Volatile, RValueThis,
2605                        ThisQuals & Qualifiers::Const,
2606                        ThisQuals & Qualifiers::Volatile);
2607
2608  return Result->getMethod();
2609}
2610
2611/// \brief Look up the moving assignment operator for the given class.
2612CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
2613                                            unsigned Quals,
2614                                            bool RValueThis,
2615                                            unsigned ThisQuals) {
2616  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2617         "non-const, non-volatile qualifiers for copy assignment this");
2618  SpecialMemberOverloadResult *Result =
2619    LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
2620                        Quals & Qualifiers::Volatile, RValueThis,
2621                        ThisQuals & Qualifiers::Const,
2622                        ThisQuals & Qualifiers::Volatile);
2623
2624  return Result->getMethod();
2625}
2626
2627/// \brief Look for the destructor of the given class.
2628///
2629/// During semantic analysis, this routine should be used in lieu of
2630/// CXXRecordDecl::getDestructor().
2631///
2632/// \returns The destructor for this class.
2633CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2634  return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
2635                                                     false, false, false,
2636                                                     false, false)->getMethod());
2637}
2638
2639/// LookupLiteralOperator - Determine which literal operator should be used for
2640/// a user-defined literal, per C++11 [lex.ext].
2641///
2642/// Normal overload resolution is not used to select which literal operator to
2643/// call for a user-defined literal. Look up the provided literal operator name,
2644/// and filter the results to the appropriate set for the given argument types.
2645Sema::LiteralOperatorLookupResult
2646Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
2647                            ArrayRef<QualType> ArgTys,
2648                            bool AllowRaw, bool AllowTemplate,
2649                            bool AllowStringTemplate) {
2650  LookupName(R, S);
2651  assert(R.getResultKind() != LookupResult::Ambiguous &&
2652         "literal operator lookup can't be ambiguous");
2653
2654  // Filter the lookup results appropriately.
2655  LookupResult::Filter F = R.makeFilter();
2656
2657  bool FoundRaw = false;
2658  bool FoundTemplate = false;
2659  bool FoundStringTemplate = false;
2660  bool FoundExactMatch = false;
2661
2662  while (F.hasNext()) {
2663    Decl *D = F.next();
2664    if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2665      D = USD->getTargetDecl();
2666
2667    // If the declaration we found is invalid, skip it.
2668    if (D->isInvalidDecl()) {
2669      F.erase();
2670      continue;
2671    }
2672
2673    bool IsRaw = false;
2674    bool IsTemplate = false;
2675    bool IsStringTemplate = false;
2676    bool IsExactMatch = false;
2677
2678    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2679      if (FD->getNumParams() == 1 &&
2680          FD->getParamDecl(0)->getType()->getAs<PointerType>())
2681        IsRaw = true;
2682      else if (FD->getNumParams() == ArgTys.size()) {
2683        IsExactMatch = true;
2684        for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
2685          QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
2686          if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
2687            IsExactMatch = false;
2688            break;
2689          }
2690        }
2691      }
2692    }
2693    if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
2694      TemplateParameterList *Params = FD->getTemplateParameters();
2695      if (Params->size() == 1)
2696        IsTemplate = true;
2697      else
2698        IsStringTemplate = true;
2699    }
2700
2701    if (IsExactMatch) {
2702      FoundExactMatch = true;
2703      AllowRaw = false;
2704      AllowTemplate = false;
2705      AllowStringTemplate = false;
2706      if (FoundRaw || FoundTemplate || FoundStringTemplate) {
2707        // Go through again and remove the raw and template decls we've
2708        // already found.
2709        F.restart();
2710        FoundRaw = FoundTemplate = FoundStringTemplate = false;
2711      }
2712    } else if (AllowRaw && IsRaw) {
2713      FoundRaw = true;
2714    } else if (AllowTemplate && IsTemplate) {
2715      FoundTemplate = true;
2716    } else if (AllowStringTemplate && IsStringTemplate) {
2717      FoundStringTemplate = true;
2718    } else {
2719      F.erase();
2720    }
2721  }
2722
2723  F.done();
2724
2725  // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
2726  // parameter type, that is used in preference to a raw literal operator
2727  // or literal operator template.
2728  if (FoundExactMatch)
2729    return LOLR_Cooked;
2730
2731  // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
2732  // operator template, but not both.
2733  if (FoundRaw && FoundTemplate) {
2734    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
2735    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
2736      NoteOverloadCandidate((*I)->getUnderlyingDecl()->getAsFunction());
2737    return LOLR_Error;
2738  }
2739
2740  if (FoundRaw)
2741    return LOLR_Raw;
2742
2743  if (FoundTemplate)
2744    return LOLR_Template;
2745
2746  if (FoundStringTemplate)
2747    return LOLR_StringTemplate;
2748
2749  // Didn't find anything we could use.
2750  Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
2751    << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
2752    << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
2753    << (AllowTemplate || AllowStringTemplate);
2754  return LOLR_Error;
2755}
2756
2757void ADLResult::insert(NamedDecl *New) {
2758  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2759
2760  // If we haven't yet seen a decl for this key, or the last decl
2761  // was exactly this one, we're done.
2762  if (Old == nullptr || Old == New) {
2763    Old = New;
2764    return;
2765  }
2766
2767  // Otherwise, decide which is a more recent redeclaration.
2768  FunctionDecl *OldFD = Old->getAsFunction();
2769  FunctionDecl *NewFD = New->getAsFunction();
2770
2771  FunctionDecl *Cursor = NewFD;
2772  while (true) {
2773    Cursor = Cursor->getPreviousDecl();
2774
2775    // If we got to the end without finding OldFD, OldFD is the newer
2776    // declaration;  leave things as they are.
2777    if (!Cursor) return;
2778
2779    // If we do find OldFD, then NewFD is newer.
2780    if (Cursor == OldFD) break;
2781
2782    // Otherwise, keep looking.
2783  }
2784
2785  Old = New;
2786}
2787
2788void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
2789                                   ArrayRef<Expr *> Args, ADLResult &Result) {
2790  // Find all of the associated namespaces and classes based on the
2791  // arguments we have.
2792  AssociatedNamespaceSet AssociatedNamespaces;
2793  AssociatedClassSet AssociatedClasses;
2794  FindAssociatedClassesAndNamespaces(Loc, Args,
2795                                     AssociatedNamespaces,
2796                                     AssociatedClasses);
2797
2798  // C++ [basic.lookup.argdep]p3:
2799  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
2800  //   and let Y be the lookup set produced by argument dependent
2801  //   lookup (defined as follows). If X contains [...] then Y is
2802  //   empty. Otherwise Y is the set of declarations found in the
2803  //   namespaces associated with the argument types as described
2804  //   below. The set of declarations found by the lookup of the name
2805  //   is the union of X and Y.
2806  //
2807  // Here, we compute Y and add its members to the overloaded
2808  // candidate set.
2809  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2810                                     NSEnd = AssociatedNamespaces.end();
2811       NS != NSEnd; ++NS) {
2812    //   When considering an associated namespace, the lookup is the
2813    //   same as the lookup performed when the associated namespace is
2814    //   used as a qualifier (3.4.3.2) except that:
2815    //
2816    //     -- Any using-directives in the associated namespace are
2817    //        ignored.
2818    //
2819    //     -- Any namespace-scope friend functions declared in
2820    //        associated classes are visible within their respective
2821    //        namespaces even if they are not visible during an ordinary
2822    //        lookup (11.4).
2823    DeclContext::lookup_result R = (*NS)->lookup(Name);
2824    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
2825         ++I) {
2826      NamedDecl *D = *I;
2827      // If the only declaration here is an ordinary friend, consider
2828      // it only if it was declared in an associated classes.
2829      if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
2830        // If it's neither ordinarily visible nor a friend, we can't find it.
2831        if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
2832          continue;
2833
2834        bool DeclaredInAssociatedClass = false;
2835        for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
2836          DeclContext *LexDC = DI->getLexicalDeclContext();
2837          if (isa<CXXRecordDecl>(LexDC) &&
2838              AssociatedClasses.count(cast<CXXRecordDecl>(LexDC))) {
2839            DeclaredInAssociatedClass = true;
2840            break;
2841          }
2842        }
2843        if (!DeclaredInAssociatedClass)
2844          continue;
2845      }
2846
2847      if (isa<UsingShadowDecl>(D))
2848        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2849
2850      if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D))
2851        continue;
2852
2853      Result.insert(D);
2854    }
2855  }
2856}
2857
2858//----------------------------------------------------------------------------
2859// Search for all visible declarations.
2860//----------------------------------------------------------------------------
2861VisibleDeclConsumer::~VisibleDeclConsumer() { }
2862
2863bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
2864
2865namespace {
2866
2867class ShadowContextRAII;
2868
2869class VisibleDeclsRecord {
2870public:
2871  /// \brief An entry in the shadow map, which is optimized to store a
2872  /// single declaration (the common case) but can also store a list
2873  /// of declarations.
2874  typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
2875
2876private:
2877  /// \brief A mapping from declaration names to the declarations that have
2878  /// this name within a particular scope.
2879  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2880
2881  /// \brief A list of shadow maps, which is used to model name hiding.
2882  std::list<ShadowMap> ShadowMaps;
2883
2884  /// \brief The declaration contexts we have already visited.
2885  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2886
2887  friend class ShadowContextRAII;
2888
2889public:
2890  /// \brief Determine whether we have already visited this context
2891  /// (and, if not, note that we are going to visit that context now).
2892  bool visitedContext(DeclContext *Ctx) {
2893    return !VisitedContexts.insert(Ctx);
2894  }
2895
2896  bool alreadyVisitedContext(DeclContext *Ctx) {
2897    return VisitedContexts.count(Ctx);
2898  }
2899
2900  /// \brief Determine whether the given declaration is hidden in the
2901  /// current scope.
2902  ///
2903  /// \returns the declaration that hides the given declaration, or
2904  /// NULL if no such declaration exists.
2905  NamedDecl *checkHidden(NamedDecl *ND);
2906
2907  /// \brief Add a declaration to the current shadow map.
2908  void add(NamedDecl *ND) {
2909    ShadowMaps.back()[ND->getDeclName()].push_back(ND);
2910  }
2911};
2912
2913/// \brief RAII object that records when we've entered a shadow context.
2914class ShadowContextRAII {
2915  VisibleDeclsRecord &Visible;
2916
2917  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2918
2919public:
2920  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2921    Visible.ShadowMaps.push_back(ShadowMap());
2922  }
2923
2924  ~ShadowContextRAII() {
2925    Visible.ShadowMaps.pop_back();
2926  }
2927};
2928
2929} // end anonymous namespace
2930
2931NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2932  // Look through using declarations.
2933  ND = ND->getUnderlyingDecl();
2934
2935  unsigned IDNS = ND->getIdentifierNamespace();
2936  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2937  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2938       SM != SMEnd; ++SM) {
2939    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2940    if (Pos == SM->end())
2941      continue;
2942
2943    for (ShadowMapEntry::iterator I = Pos->second.begin(),
2944                               IEnd = Pos->second.end();
2945         I != IEnd; ++I) {
2946      // A tag declaration does not hide a non-tag declaration.
2947      if ((*I)->hasTagIdentifierNamespace() &&
2948          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2949                   Decl::IDNS_ObjCProtocol)))
2950        continue;
2951
2952      // Protocols are in distinct namespaces from everything else.
2953      if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2954           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2955          (*I)->getIdentifierNamespace() != IDNS)
2956        continue;
2957
2958      // Functions and function templates in the same scope overload
2959      // rather than hide.  FIXME: Look for hiding based on function
2960      // signatures!
2961      if ((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
2962          ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
2963          SM == ShadowMaps.rbegin())
2964        continue;
2965
2966      // We've found a declaration that hides this one.
2967      return *I;
2968    }
2969  }
2970
2971  return nullptr;
2972}
2973
2974static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2975                               bool QualifiedNameLookup,
2976                               bool InBaseClass,
2977                               VisibleDeclConsumer &Consumer,
2978                               VisibleDeclsRecord &Visited) {
2979  if (!Ctx)
2980    return;
2981
2982  // Make sure we don't visit the same context twice.
2983  if (Visited.visitedContext(Ctx->getPrimaryContext()))
2984    return;
2985
2986  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2987    Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2988
2989  // Enumerate all of the results in this context.
2990  for (const auto &R : Ctx->lookups()) {
2991    for (auto *I : R) {
2992      if (NamedDecl *ND = dyn_cast<NamedDecl>(I)) {
2993        if ((ND = Result.getAcceptableDecl(ND))) {
2994          Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
2995          Visited.add(ND);
2996        }
2997      }
2998    }
2999  }
3000
3001  // Traverse using directives for qualified name lookup.
3002  if (QualifiedNameLookup) {
3003    ShadowContextRAII Shadow(Visited);
3004    for (auto I : Ctx->using_directives()) {
3005      LookupVisibleDecls(I->getNominatedNamespace(), Result,
3006                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
3007    }
3008  }
3009
3010  // Traverse the contexts of inherited C++ classes.
3011  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3012    if (!Record->hasDefinition())
3013      return;
3014
3015    for (const auto &B : Record->bases()) {
3016      QualType BaseType = B.getType();
3017
3018      // Don't look into dependent bases, because name lookup can't look
3019      // there anyway.
3020      if (BaseType->isDependentType())
3021        continue;
3022
3023      const RecordType *Record = BaseType->getAs<RecordType>();
3024      if (!Record)
3025        continue;
3026
3027      // FIXME: It would be nice to be able to determine whether referencing
3028      // a particular member would be ambiguous. For example, given
3029      //
3030      //   struct A { int member; };
3031      //   struct B { int member; };
3032      //   struct C : A, B { };
3033      //
3034      //   void f(C *c) { c->### }
3035      //
3036      // accessing 'member' would result in an ambiguity. However, we
3037      // could be smart enough to qualify the member with the base
3038      // class, e.g.,
3039      //
3040      //   c->B::member
3041      //
3042      // or
3043      //
3044      //   c->A::member
3045
3046      // Find results in this base class (and its bases).
3047      ShadowContextRAII Shadow(Visited);
3048      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
3049                         true, Consumer, Visited);
3050    }
3051  }
3052
3053  // Traverse the contexts of Objective-C classes.
3054  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3055    // Traverse categories.
3056    for (auto *Cat : IFace->visible_categories()) {
3057      ShadowContextRAII Shadow(Visited);
3058      LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false,
3059                         Consumer, Visited);
3060    }
3061
3062    // Traverse protocols.
3063    for (auto *I : IFace->all_referenced_protocols()) {
3064      ShadowContextRAII Shadow(Visited);
3065      LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3066                         Visited);
3067    }
3068
3069    // Traverse the superclass.
3070    if (IFace->getSuperClass()) {
3071      ShadowContextRAII Shadow(Visited);
3072      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
3073                         true, Consumer, Visited);
3074    }
3075
3076    // If there is an implementation, traverse it. We do this to find
3077    // synthesized ivars.
3078    if (IFace->getImplementation()) {
3079      ShadowContextRAII Shadow(Visited);
3080      LookupVisibleDecls(IFace->getImplementation(), Result,
3081                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
3082    }
3083  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3084    for (auto *I : Protocol->protocols()) {
3085      ShadowContextRAII Shadow(Visited);
3086      LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3087                         Visited);
3088    }
3089  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3090    for (auto *I : Category->protocols()) {
3091      ShadowContextRAII Shadow(Visited);
3092      LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3093                         Visited);
3094    }
3095
3096    // If there is an implementation, traverse it.
3097    if (Category->getImplementation()) {
3098      ShadowContextRAII Shadow(Visited);
3099      LookupVisibleDecls(Category->getImplementation(), Result,
3100                         QualifiedNameLookup, true, Consumer, Visited);
3101    }
3102  }
3103}
3104
3105static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3106                               UnqualUsingDirectiveSet &UDirs,
3107                               VisibleDeclConsumer &Consumer,
3108                               VisibleDeclsRecord &Visited) {
3109  if (!S)
3110    return;
3111
3112  if (!S->getEntity() ||
3113      (!S->getParent() &&
3114       !Visited.alreadyVisitedContext(S->getEntity())) ||
3115      (S->getEntity())->isFunctionOrMethod()) {
3116    FindLocalExternScope FindLocals(Result);
3117    // Walk through the declarations in this Scope.
3118    for (auto *D : S->decls()) {
3119      if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3120        if ((ND = Result.getAcceptableDecl(ND))) {
3121          Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3122          Visited.add(ND);
3123        }
3124    }
3125  }
3126
3127  // FIXME: C++ [temp.local]p8
3128  DeclContext *Entity = nullptr;
3129  if (S->getEntity()) {
3130    // Look into this scope's declaration context, along with any of its
3131    // parent lookup contexts (e.g., enclosing classes), up to the point
3132    // where we hit the context stored in the next outer scope.
3133    Entity = S->getEntity();
3134    DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3135
3136    for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3137         Ctx = Ctx->getLookupParent()) {
3138      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3139        if (Method->isInstanceMethod()) {
3140          // For instance methods, look for ivars in the method's interface.
3141          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3142                                  Result.getNameLoc(), Sema::LookupMemberName);
3143          if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3144            LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3145                               /*InBaseClass=*/false, Consumer, Visited);
3146          }
3147        }
3148
3149        // We've already performed all of the name lookup that we need
3150        // to for Objective-C methods; the next context will be the
3151        // outer scope.
3152        break;
3153      }
3154
3155      if (Ctx->isFunctionOrMethod())
3156        continue;
3157
3158      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3159                         /*InBaseClass=*/false, Consumer, Visited);
3160    }
3161  } else if (!S->getParent()) {
3162    // Look into the translation unit scope. We walk through the translation
3163    // unit's declaration context, because the Scope itself won't have all of
3164    // the declarations if we loaded a precompiled header.
3165    // FIXME: We would like the translation unit's Scope object to point to the
3166    // translation unit, so we don't need this special "if" branch. However,
3167    // doing so would force the normal C++ name-lookup code to look into the
3168    // translation unit decl when the IdentifierInfo chains would suffice.
3169    // Once we fix that problem (which is part of a more general "don't look
3170    // in DeclContexts unless we have to" optimization), we can eliminate this.
3171    Entity = Result.getSema().Context.getTranslationUnitDecl();
3172    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3173                       /*InBaseClass=*/false, Consumer, Visited);
3174  }
3175
3176  if (Entity) {
3177    // Lookup visible declarations in any namespaces found by using
3178    // directives.
3179    UnqualUsingDirectiveSet::const_iterator UI, UEnd;
3180    std::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
3181    for (; UI != UEnd; ++UI)
3182      LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
3183                         Result, /*QualifiedNameLookup=*/false,
3184                         /*InBaseClass=*/false, Consumer, Visited);
3185  }
3186
3187  // Lookup names in the parent scope.
3188  ShadowContextRAII Shadow(Visited);
3189  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3190}
3191
3192void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3193                              VisibleDeclConsumer &Consumer,
3194                              bool IncludeGlobalScope) {
3195  // Determine the set of using directives available during
3196  // unqualified name lookup.
3197  Scope *Initial = S;
3198  UnqualUsingDirectiveSet UDirs;
3199  if (getLangOpts().CPlusPlus) {
3200    // Find the first namespace or translation-unit scope.
3201    while (S && !isNamespaceOrTranslationUnitScope(S))
3202      S = S->getParent();
3203
3204    UDirs.visitScopeChain(Initial, S);
3205  }
3206  UDirs.done();
3207
3208  // Look for visible declarations.
3209  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3210  Result.setAllowHidden(Consumer.includeHiddenDecls());
3211  VisibleDeclsRecord Visited;
3212  if (!IncludeGlobalScope)
3213    Visited.visitedContext(Context.getTranslationUnitDecl());
3214  ShadowContextRAII Shadow(Visited);
3215  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3216}
3217
3218void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3219                              VisibleDeclConsumer &Consumer,
3220                              bool IncludeGlobalScope) {
3221  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3222  Result.setAllowHidden(Consumer.includeHiddenDecls());
3223  VisibleDeclsRecord Visited;
3224  if (!IncludeGlobalScope)
3225    Visited.visitedContext(Context.getTranslationUnitDecl());
3226  ShadowContextRAII Shadow(Visited);
3227  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3228                       /*InBaseClass=*/false, Consumer, Visited);
3229}
3230
3231/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3232/// If GnuLabelLoc is a valid source location, then this is a definition
3233/// of an __label__ label name, otherwise it is a normal label definition
3234/// or use.
3235LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3236                                     SourceLocation GnuLabelLoc) {
3237  // Do a lookup to see if we have a label with this name already.
3238  NamedDecl *Res = nullptr;
3239
3240  if (GnuLabelLoc.isValid()) {
3241    // Local label definitions always shadow existing labels.
3242    Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3243    Scope *S = CurScope;
3244    PushOnScopeChains(Res, S, true);
3245    return cast<LabelDecl>(Res);
3246  }
3247
3248  // Not a GNU local label.
3249  Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3250  // If we found a label, check to see if it is in the same context as us.
3251  // When in a Block, we don't want to reuse a label in an enclosing function.
3252  if (Res && Res->getDeclContext() != CurContext)
3253    Res = nullptr;
3254  if (!Res) {
3255    // If not forward referenced or defined already, create the backing decl.
3256    Res = LabelDecl::Create(Context, CurContext, Loc, II);
3257    Scope *S = CurScope->getFnParent();
3258    assert(S && "Not in a function?");
3259    PushOnScopeChains(Res, S, true);
3260  }
3261  return cast<LabelDecl>(Res);
3262}
3263
3264//===----------------------------------------------------------------------===//
3265// Typo correction
3266//===----------------------------------------------------------------------===//
3267
3268static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3269                              TypoCorrection &Candidate) {
3270  Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3271  return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3272}
3273
3274static void LookupPotentialTypoResult(Sema &SemaRef,
3275                                      LookupResult &Res,
3276                                      IdentifierInfo *Name,
3277                                      Scope *S, CXXScopeSpec *SS,
3278                                      DeclContext *MemberContext,
3279                                      bool EnteringContext,
3280                                      bool isObjCIvarLookup,
3281                                      bool FindHidden);
3282
3283// Fill the supplied vector with the IdentifierInfo pointers for each piece of
3284// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3285// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
3286static void getNestedNameSpecifierIdentifiers(
3287    NestedNameSpecifier *NNS,
3288    SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3289  if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3290    getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3291  else
3292    Identifiers.clear();
3293
3294  const IdentifierInfo *II = nullptr;
3295
3296  switch (NNS->getKind()) {
3297  case NestedNameSpecifier::Identifier:
3298    II = NNS->getAsIdentifier();
3299    break;
3300
3301  case NestedNameSpecifier::Namespace:
3302    if (NNS->getAsNamespace()->isAnonymousNamespace())
3303      return;
3304    II = NNS->getAsNamespace()->getIdentifier();
3305    break;
3306
3307  case NestedNameSpecifier::NamespaceAlias:
3308    II = NNS->getAsNamespaceAlias()->getIdentifier();
3309    break;
3310
3311  case NestedNameSpecifier::TypeSpecWithTemplate:
3312  case NestedNameSpecifier::TypeSpec:
3313    II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3314    break;
3315
3316  case NestedNameSpecifier::Global:
3317    return;
3318  }
3319
3320  if (II)
3321    Identifiers.push_back(II);
3322}
3323
3324namespace {
3325
3326static const unsigned MaxTypoDistanceResultSets = 5;
3327
3328class TypoCorrectionConsumer : public VisibleDeclConsumer {
3329  typedef SmallVector<TypoCorrection, 1> TypoResultList;
3330  typedef llvm::StringMap<TypoResultList> TypoResultsMap;
3331  typedef std::map<unsigned, TypoResultsMap> TypoEditDistanceMap;
3332
3333public:
3334  explicit TypoCorrectionConsumer(Sema &SemaRef,
3335                                  const DeclarationNameInfo &TypoName,
3336                                  Sema::LookupNameKind LookupKind,
3337                                  Scope *S, CXXScopeSpec *SS,
3338                                  CorrectionCandidateCallback &CCC,
3339                                  DeclContext *MemberContext,
3340                                  bool EnteringContext)
3341      : Typo(TypoName.getName().getAsIdentifierInfo()), SemaRef(SemaRef), S(S),
3342        SS(SS), CorrectionValidator(CCC), MemberContext(MemberContext),
3343        Result(SemaRef, TypoName, LookupKind),
3344        Namespaces(SemaRef.Context, SemaRef.CurContext, SS),
3345        EnteringContext(EnteringContext), SearchNamespaces(false) {
3346    Result.suppressDiagnostics();
3347  }
3348
3349  bool includeHiddenDecls() const override { return true; }
3350
3351  // Methods for adding potential corrections to the consumer.
3352  void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx,
3353                 bool InBaseClass) override;
3354  void FoundName(StringRef Name);
3355  void addKeywordResult(StringRef Keyword);
3356  void addCorrection(TypoCorrection Correction);
3357
3358  bool empty() const { return CorrectionResults.empty(); }
3359
3360  /// \brief Return the list of TypoCorrections for the given identifier from
3361  /// the set of corrections that have the closest edit distance, if any.
3362  TypoResultList &operator[](StringRef Name) {
3363    return CorrectionResults.begin()->second[Name];
3364  }
3365
3366  /// \brief Return the edit distance of the corrections that have the
3367  /// closest/best edit distance from the original typop.
3368  unsigned getBestEditDistance(bool Normalized) {
3369    if (CorrectionResults.empty())
3370      return (std::numeric_limits<unsigned>::max)();
3371
3372    unsigned BestED = CorrectionResults.begin()->first;
3373    return Normalized ? TypoCorrection::NormalizeEditDistance(BestED) : BestED;
3374  }
3375
3376  /// \brief Set-up method to add to the consumer the set of namespaces to use
3377  /// in performing corrections to nested name specifiers. This method also
3378  /// implicitly adds all of the known classes in the current AST context to the
3379  /// to the consumer for correcting nested name specifiers.
3380  void
3381  addNamespaces(const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces);
3382
3383  /// \brief Return the next typo correction that passes all internal filters
3384  /// and is deemed valid by the consumer's CorrectionCandidateCallback,
3385  /// starting with the corrections that have the closest edit distance. An
3386  /// empty TypoCorrection is returned once no more viable corrections remain
3387  /// in the consumer.
3388  TypoCorrection getNextCorrection();
3389
3390private:
3391  class NamespaceSpecifierSet {
3392    struct SpecifierInfo {
3393      DeclContext* DeclCtx;
3394      NestedNameSpecifier* NameSpecifier;
3395      unsigned EditDistance;
3396    };
3397
3398    typedef SmallVector<DeclContext*, 4> DeclContextList;
3399    typedef SmallVector<SpecifierInfo, 16> SpecifierInfoList;
3400
3401    ASTContext &Context;
3402    DeclContextList CurContextChain;
3403    std::string CurNameSpecifier;
3404    SmallVector<const IdentifierInfo*, 4> CurContextIdentifiers;
3405    SmallVector<const IdentifierInfo*, 4> CurNameSpecifierIdentifiers;
3406    bool isSorted;
3407
3408    SpecifierInfoList Specifiers;
3409    llvm::SmallSetVector<unsigned, 4> Distances;
3410    llvm::DenseMap<unsigned, SpecifierInfoList> DistanceMap;
3411
3412    /// \brief Helper for building the list of DeclContexts between the current
3413    /// context and the top of the translation unit
3414    static DeclContextList buildContextChain(DeclContext *Start);
3415
3416    void sortNamespaces();
3417
3418    unsigned buildNestedNameSpecifier(DeclContextList &DeclChain,
3419                                      NestedNameSpecifier *&NNS);
3420
3421   public:
3422    NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext,
3423                          CXXScopeSpec *CurScopeSpec);
3424
3425    /// \brief Add the DeclContext (a namespace or record) to the set, computing
3426    /// the corresponding NestedNameSpecifier and its distance in the process.
3427    void addNameSpecifier(DeclContext *Ctx);
3428
3429    typedef SpecifierInfoList::iterator iterator;
3430    iterator begin() {
3431      if (!isSorted) sortNamespaces();
3432      return Specifiers.begin();
3433    }
3434    iterator end() { return Specifiers.end(); }
3435  };
3436
3437  void addName(StringRef Name, NamedDecl *ND,
3438               NestedNameSpecifier *NNS = nullptr, bool isKeyword = false);
3439
3440  /// \brief Find any visible decls for the given typo correction candidate.
3441  /// If none are found, it to the set of candidates for which qualified lookups
3442  /// will be performed to find possible nested name specifier changes.
3443  bool resolveCorrection(TypoCorrection &Candidate);
3444
3445  /// \brief Perform qualified lookups on the queued set of typo correction
3446  /// candidates and add the nested name specifier changes to each candidate if
3447  /// a lookup succeeds (at which point the candidate will be returned to the
3448  /// main pool of potential corrections).
3449  void performQualifiedLookups();
3450
3451  /// \brief The name written that is a typo in the source.
3452  IdentifierInfo *Typo;
3453
3454  /// \brief The results found that have the smallest edit distance
3455  /// found (so far) with the typo name.
3456  ///
3457  /// The pointer value being set to the current DeclContext indicates
3458  /// whether there is a keyword with this name.
3459  TypoEditDistanceMap CorrectionResults;
3460
3461  Sema &SemaRef;
3462  Scope *S;
3463  CXXScopeSpec *SS;
3464  CorrectionCandidateCallback &CorrectionValidator;
3465  DeclContext *MemberContext;
3466  LookupResult Result;
3467  NamespaceSpecifierSet Namespaces;
3468  SmallVector<TypoCorrection, 2> QualifiedResults;
3469  bool EnteringContext;
3470  bool SearchNamespaces;
3471};
3472
3473}
3474
3475void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3476                                       DeclContext *Ctx, bool InBaseClass) {
3477  // Don't consider hidden names for typo correction.
3478  if (Hiding)
3479    return;
3480
3481  // Only consider entities with identifiers for names, ignoring
3482  // special names (constructors, overloaded operators, selectors,
3483  // etc.).
3484  IdentifierInfo *Name = ND->getIdentifier();
3485  if (!Name)
3486    return;
3487
3488  // Only consider visible declarations and declarations from modules with
3489  // names that exactly match.
3490  if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo &&
3491      !findAcceptableDecl(SemaRef, ND))
3492    return;
3493
3494  FoundName(Name->getName());
3495}
3496
3497void TypoCorrectionConsumer::FoundName(StringRef Name) {
3498  // Compute the edit distance between the typo and the name of this
3499  // entity, and add the identifier to the list of results.
3500  addName(Name, nullptr);
3501}
3502
3503void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3504  // Compute the edit distance between the typo and this keyword,
3505  // and add the keyword to the list of results.
3506  addName(Keyword, nullptr, nullptr, true);
3507}
3508
3509void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
3510                                     NestedNameSpecifier *NNS, bool isKeyword) {
3511  // Use a simple length-based heuristic to determine the minimum possible
3512  // edit distance. If the minimum isn't good enough, bail out early.
3513  StringRef TypoStr = Typo->getName();
3514  unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
3515  if (MinED && TypoStr.size() / MinED < 3)
3516    return;
3517
3518  // Compute an upper bound on the allowable edit distance, so that the
3519  // edit-distance algorithm can short-circuit.
3520  unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
3521  unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
3522  if (ED >= UpperBound) return;
3523
3524  TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
3525  if (isKeyword) TC.makeKeyword();
3526  addCorrection(TC);
3527}
3528
3529void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3530  StringRef TypoStr = Typo->getName();
3531  StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3532
3533  // For very short typos, ignore potential corrections that have a different
3534  // base identifier from the typo or which have a normalized edit distance
3535  // longer than the typo itself.
3536  if (TypoStr.size() < 3 &&
3537      (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
3538    return;
3539
3540  // If the correction is resolved but is not viable, ignore it.
3541  if (Correction.isResolved() &&
3542      !isCandidateViable(CorrectionValidator, Correction))
3543    return;
3544
3545  TypoResultList &CList =
3546      CorrectionResults[Correction.getEditDistance(false)][Name];
3547
3548  if (!CList.empty() && !CList.back().isResolved())
3549    CList.pop_back();
3550  if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
3551    std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
3552    for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
3553         RI != RIEnd; ++RI) {
3554      // If the Correction refers to a decl already in the result list,
3555      // replace the existing result if the string representation of Correction
3556      // comes before the current result alphabetically, then stop as there is
3557      // nothing more to be done to add Correction to the candidate set.
3558      if (RI->getCorrectionDecl() == NewND) {
3559        if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
3560          *RI = Correction;
3561        return;
3562      }
3563    }
3564  }
3565  if (CList.empty() || Correction.isResolved())
3566    CList.push_back(Correction);
3567
3568  while (CorrectionResults.size() > MaxTypoDistanceResultSets)
3569    CorrectionResults.erase(std::prev(CorrectionResults.end()));
3570}
3571
3572void TypoCorrectionConsumer::addNamespaces(
3573    const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
3574  SearchNamespaces = true;
3575
3576  for (auto KNPair : KnownNamespaces)
3577    Namespaces.addNameSpecifier(KNPair.first);
3578
3579  bool SSIsTemplate = false;
3580  if (NestedNameSpecifier *NNS =
3581          (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
3582    if (const Type *T = NNS->getAsType())
3583      SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
3584  }
3585  for (const auto *TI : SemaRef.getASTContext().types()) {
3586    if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
3587      CD = CD->getCanonicalDecl();
3588      if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
3589          !CD->isUnion() && CD->getIdentifier() &&
3590          (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
3591          (CD->isBeingDefined() || CD->isCompleteDefinition()))
3592        Namespaces.addNameSpecifier(CD);
3593    }
3594  }
3595}
3596
3597TypoCorrection TypoCorrectionConsumer::getNextCorrection() {
3598  while (!CorrectionResults.empty()) {
3599    auto DI = CorrectionResults.begin();
3600    if (DI->second.empty()) {
3601      CorrectionResults.erase(DI);
3602      continue;
3603    }
3604
3605    auto RI = DI->second.begin();
3606    if (RI->second.empty()) {
3607      DI->second.erase(RI);
3608      performQualifiedLookups();
3609      continue;
3610    }
3611
3612    TypoCorrection TC = RI->second.pop_back_val();
3613    if (TC.isResolved() || resolveCorrection(TC))
3614      return TC;
3615  }
3616  return TypoCorrection();
3617}
3618
3619bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
3620  IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
3621  DeclContext *TempMemberContext = MemberContext;
3622  CXXScopeSpec *TempSS = SS;
3623retry_lookup:
3624  LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
3625                            EnteringContext,
3626                            CorrectionValidator.IsObjCIvarLookup,
3627                            Name == Typo && !Candidate.WillReplaceSpecifier());
3628  switch (Result.getResultKind()) {
3629  case LookupResult::NotFound:
3630  case LookupResult::NotFoundInCurrentInstantiation:
3631  case LookupResult::FoundUnresolvedValue:
3632    if (TempSS) {
3633      // Immediately retry the lookup without the given CXXScopeSpec
3634      TempSS = nullptr;
3635      Candidate.WillReplaceSpecifier(true);
3636      goto retry_lookup;
3637    }
3638    if (TempMemberContext) {
3639      if (SS && !TempSS)
3640        TempSS = SS;
3641      TempMemberContext = nullptr;
3642      goto retry_lookup;
3643    }
3644    if (SearchNamespaces)
3645      QualifiedResults.push_back(Candidate);
3646    break;
3647
3648  case LookupResult::Ambiguous:
3649    // We don't deal with ambiguities.
3650    break;
3651
3652  case LookupResult::Found:
3653  case LookupResult::FoundOverloaded:
3654    // Store all of the Decls for overloaded symbols
3655    for (auto *TRD : Result)
3656      Candidate.addCorrectionDecl(TRD);
3657    if (!isCandidateViable(CorrectionValidator, Candidate)) {
3658      if (SearchNamespaces)
3659        QualifiedResults.push_back(Candidate);
3660      break;
3661    }
3662    return true;
3663  }
3664  return false;
3665}
3666
3667void TypoCorrectionConsumer::performQualifiedLookups() {
3668  unsigned TypoLen = Typo->getName().size();
3669  for (auto QR : QualifiedResults) {
3670    for (auto NSI : Namespaces) {
3671      DeclContext *Ctx = NSI.DeclCtx;
3672      const Type *NSType = NSI.NameSpecifier->getAsType();
3673
3674      // If the current NestedNameSpecifier refers to a class and the
3675      // current correction candidate is the name of that class, then skip
3676      // it as it is unlikely a qualified version of the class' constructor
3677      // is an appropriate correction.
3678      if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : 0) {
3679        if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
3680          continue;
3681      }
3682
3683      TypoCorrection TC(QR);
3684      TC.ClearCorrectionDecls();
3685      TC.setCorrectionSpecifier(NSI.NameSpecifier);
3686      TC.setQualifierDistance(NSI.EditDistance);
3687      TC.setCallbackDistance(0); // Reset the callback distance
3688
3689      // If the current correction candidate and namespace combination are
3690      // too far away from the original typo based on the normalized edit
3691      // distance, then skip performing a qualified name lookup.
3692      unsigned TmpED = TC.getEditDistance(true);
3693      if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
3694          TypoLen / TmpED < 3)
3695        continue;
3696
3697      Result.clear();
3698      Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
3699      if (!SemaRef.LookupQualifiedName(Result, Ctx))
3700        continue;
3701
3702      // Any corrections added below will be validated in subsequent
3703      // iterations of the main while() loop over the Consumer's contents.
3704      switch (Result.getResultKind()) {
3705      case LookupResult::Found:
3706      case LookupResult::FoundOverloaded: {
3707        if (SS && SS->isValid()) {
3708          std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
3709          std::string OldQualified;
3710          llvm::raw_string_ostream OldOStream(OldQualified);
3711          SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
3712          OldOStream << Typo->getName();
3713          // If correction candidate would be an identical written qualified
3714          // identifer, then the existing CXXScopeSpec probably included a
3715          // typedef that didn't get accounted for properly.
3716          if (OldOStream.str() == NewQualified)
3717            break;
3718        }
3719        for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
3720             TRD != TRDEnd; ++TRD) {
3721          if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
3722                                        NSType ? NSType->getAsCXXRecordDecl()
3723                                               : nullptr,
3724                                        TRD.getPair()) == Sema::AR_accessible)
3725            TC.addCorrectionDecl(*TRD);
3726        }
3727        if (TC.isResolved())
3728          addCorrection(TC);
3729        break;
3730      }
3731      case LookupResult::NotFound:
3732      case LookupResult::NotFoundInCurrentInstantiation:
3733      case LookupResult::Ambiguous:
3734      case LookupResult::FoundUnresolvedValue:
3735        break;
3736      }
3737    }
3738  }
3739  QualifiedResults.clear();
3740}
3741
3742TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
3743    ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
3744    : Context(Context), CurContextChain(buildContextChain(CurContext)),
3745      isSorted(false) {
3746  if (NestedNameSpecifier *NNS =
3747          CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
3748    llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
3749    NNS->print(SpecifierOStream, Context.getPrintingPolicy());
3750
3751    getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
3752  }
3753  // Build the list of identifiers that would be used for an absolute
3754  // (from the global context) NestedNameSpecifier referring to the current
3755  // context.
3756  for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3757                                         CEnd = CurContextChain.rend();
3758       C != CEnd; ++C) {
3759    if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
3760      CurContextIdentifiers.push_back(ND->getIdentifier());
3761  }
3762
3763  // Add the global context as a NestedNameSpecifier
3764  Distances.insert(1);
3765  SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
3766                      NestedNameSpecifier::GlobalSpecifier(Context), 1};
3767  DistanceMap[1].push_back(SI);
3768}
3769
3770auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
3771    DeclContext *Start) -> DeclContextList {
3772  assert(Start && "Building a context chain from a null context");
3773  DeclContextList Chain;
3774  for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
3775       DC = DC->getLookupParent()) {
3776    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
3777    if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
3778        !(ND && ND->isAnonymousNamespace()))
3779      Chain.push_back(DC->getPrimaryContext());
3780  }
3781  return Chain;
3782}
3783
3784void TypoCorrectionConsumer::NamespaceSpecifierSet::sortNamespaces() {
3785  SmallVector<unsigned, 4> sortedDistances;
3786  sortedDistances.append(Distances.begin(), Distances.end());
3787
3788  if (sortedDistances.size() > 1)
3789    std::sort(sortedDistances.begin(), sortedDistances.end());
3790
3791  Specifiers.clear();
3792  for (SmallVectorImpl<unsigned>::iterator DI = sortedDistances.begin(),
3793                                        DIEnd = sortedDistances.end();
3794       DI != DIEnd; ++DI) {
3795    SpecifierInfoList &SpecList = DistanceMap[*DI];
3796    Specifiers.append(SpecList.begin(), SpecList.end());
3797  }
3798
3799  isSorted = true;
3800}
3801
3802unsigned
3803TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
3804    DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
3805  unsigned NumSpecifiers = 0;
3806  for (DeclContextList::reverse_iterator C = DeclChain.rbegin(),
3807                                      CEnd = DeclChain.rend();
3808       C != CEnd; ++C) {
3809    if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C)) {
3810      NNS = NestedNameSpecifier::Create(Context, NNS, ND);
3811      ++NumSpecifiers;
3812    } else if (RecordDecl *RD = dyn_cast_or_null<RecordDecl>(*C)) {
3813      NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
3814                                        RD->getTypeForDecl());
3815      ++NumSpecifiers;
3816    }
3817  }
3818  return NumSpecifiers;
3819}
3820
3821void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
3822    DeclContext *Ctx) {
3823  NestedNameSpecifier *NNS = nullptr;
3824  unsigned NumSpecifiers = 0;
3825  DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
3826  DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
3827
3828  // Eliminate common elements from the two DeclContext chains.
3829  for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3830                                      CEnd = CurContextChain.rend();
3831       C != CEnd && !NamespaceDeclChain.empty() &&
3832       NamespaceDeclChain.back() == *C; ++C) {
3833    NamespaceDeclChain.pop_back();
3834  }
3835
3836  // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
3837  NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
3838
3839  // Add an explicit leading '::' specifier if needed.
3840  if (NamespaceDeclChain.empty()) {
3841    // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
3842    NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3843    NumSpecifiers =
3844        buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
3845  } else if (NamedDecl *ND =
3846                 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
3847    IdentifierInfo *Name = ND->getIdentifier();
3848    bool SameNameSpecifier = false;
3849    if (std::find(CurNameSpecifierIdentifiers.begin(),
3850                  CurNameSpecifierIdentifiers.end(),
3851                  Name) != CurNameSpecifierIdentifiers.end()) {
3852      std::string NewNameSpecifier;
3853      llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
3854      SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
3855      getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3856      NNS->print(SpecifierOStream, Context.getPrintingPolicy());
3857      SpecifierOStream.flush();
3858      SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
3859    }
3860    if (SameNameSpecifier ||
3861        std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
3862                  Name) != CurContextIdentifiers.end()) {
3863      // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
3864      NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3865      NumSpecifiers =
3866          buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
3867    }
3868  }
3869
3870  // If the built NestedNameSpecifier would be replacing an existing
3871  // NestedNameSpecifier, use the number of component identifiers that
3872  // would need to be changed as the edit distance instead of the number
3873  // of components in the built NestedNameSpecifier.
3874  if (NNS && !CurNameSpecifierIdentifiers.empty()) {
3875    SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
3876    getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3877    NumSpecifiers = llvm::ComputeEditDistance(
3878        ArrayRef<const IdentifierInfo *>(CurNameSpecifierIdentifiers),
3879        ArrayRef<const IdentifierInfo *>(NewNameSpecifierIdentifiers));
3880  }
3881
3882  isSorted = false;
3883  Distances.insert(NumSpecifiers);
3884  SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
3885  DistanceMap[NumSpecifiers].push_back(SI);
3886}
3887
3888/// \brief Perform name lookup for a possible result for typo correction.
3889static void LookupPotentialTypoResult(Sema &SemaRef,
3890                                      LookupResult &Res,
3891                                      IdentifierInfo *Name,
3892                                      Scope *S, CXXScopeSpec *SS,
3893                                      DeclContext *MemberContext,
3894                                      bool EnteringContext,
3895                                      bool isObjCIvarLookup,
3896                                      bool FindHidden) {
3897  Res.suppressDiagnostics();
3898  Res.clear();
3899  Res.setLookupName(Name);
3900  Res.setAllowHidden(FindHidden);
3901  if (MemberContext) {
3902    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
3903      if (isObjCIvarLookup) {
3904        if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
3905          Res.addDecl(Ivar);
3906          Res.resolveKind();
3907          return;
3908        }
3909      }
3910
3911      if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
3912        Res.addDecl(Prop);
3913        Res.resolveKind();
3914        return;
3915      }
3916    }
3917
3918    SemaRef.LookupQualifiedName(Res, MemberContext);
3919    return;
3920  }
3921
3922  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
3923                           EnteringContext);
3924
3925  // Fake ivar lookup; this should really be part of
3926  // LookupParsedName.
3927  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
3928    if (Method->isInstanceMethod() && Method->getClassInterface() &&
3929        (Res.empty() ||
3930         (Res.isSingleResult() &&
3931          Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
3932       if (ObjCIvarDecl *IV
3933             = Method->getClassInterface()->lookupInstanceVariable(Name)) {
3934         Res.addDecl(IV);
3935         Res.resolveKind();
3936       }
3937     }
3938  }
3939}
3940
3941/// \brief Add keywords to the consumer as possible typo corrections.
3942static void AddKeywordsToConsumer(Sema &SemaRef,
3943                                  TypoCorrectionConsumer &Consumer,
3944                                  Scope *S, CorrectionCandidateCallback &CCC,
3945                                  bool AfterNestedNameSpecifier) {
3946  if (AfterNestedNameSpecifier) {
3947    // For 'X::', we know exactly which keywords can appear next.
3948    Consumer.addKeywordResult("template");
3949    if (CCC.WantExpressionKeywords)
3950      Consumer.addKeywordResult("operator");
3951    return;
3952  }
3953
3954  if (CCC.WantObjCSuper)
3955    Consumer.addKeywordResult("super");
3956
3957  if (CCC.WantTypeSpecifiers) {
3958    // Add type-specifier keywords to the set of results.
3959    static const char *const CTypeSpecs[] = {
3960      "char", "const", "double", "enum", "float", "int", "long", "short",
3961      "signed", "struct", "union", "unsigned", "void", "volatile",
3962      "_Complex", "_Imaginary",
3963      // storage-specifiers as well
3964      "extern", "inline", "static", "typedef"
3965    };
3966
3967    const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
3968    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3969      Consumer.addKeywordResult(CTypeSpecs[I]);
3970
3971    if (SemaRef.getLangOpts().C99)
3972      Consumer.addKeywordResult("restrict");
3973    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
3974      Consumer.addKeywordResult("bool");
3975    else if (SemaRef.getLangOpts().C99)
3976      Consumer.addKeywordResult("_Bool");
3977
3978    if (SemaRef.getLangOpts().CPlusPlus) {
3979      Consumer.addKeywordResult("class");
3980      Consumer.addKeywordResult("typename");
3981      Consumer.addKeywordResult("wchar_t");
3982
3983      if (SemaRef.getLangOpts().CPlusPlus11) {
3984        Consumer.addKeywordResult("char16_t");
3985        Consumer.addKeywordResult("char32_t");
3986        Consumer.addKeywordResult("constexpr");
3987        Consumer.addKeywordResult("decltype");
3988        Consumer.addKeywordResult("thread_local");
3989      }
3990    }
3991
3992    if (SemaRef.getLangOpts().GNUMode)
3993      Consumer.addKeywordResult("typeof");
3994  }
3995
3996  if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
3997    Consumer.addKeywordResult("const_cast");
3998    Consumer.addKeywordResult("dynamic_cast");
3999    Consumer.addKeywordResult("reinterpret_cast");
4000    Consumer.addKeywordResult("static_cast");
4001  }
4002
4003  if (CCC.WantExpressionKeywords) {
4004    Consumer.addKeywordResult("sizeof");
4005    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4006      Consumer.addKeywordResult("false");
4007      Consumer.addKeywordResult("true");
4008    }
4009
4010    if (SemaRef.getLangOpts().CPlusPlus) {
4011      static const char *const CXXExprs[] = {
4012        "delete", "new", "operator", "throw", "typeid"
4013      };
4014      const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4015      for (unsigned I = 0; I != NumCXXExprs; ++I)
4016        Consumer.addKeywordResult(CXXExprs[I]);
4017
4018      if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4019          cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4020        Consumer.addKeywordResult("this");
4021
4022      if (SemaRef.getLangOpts().CPlusPlus11) {
4023        Consumer.addKeywordResult("alignof");
4024        Consumer.addKeywordResult("nullptr");
4025      }
4026    }
4027
4028    if (SemaRef.getLangOpts().C11) {
4029      // FIXME: We should not suggest _Alignof if the alignof macro
4030      // is present.
4031      Consumer.addKeywordResult("_Alignof");
4032    }
4033  }
4034
4035  if (CCC.WantRemainingKeywords) {
4036    if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4037      // Statements.
4038      static const char *const CStmts[] = {
4039        "do", "else", "for", "goto", "if", "return", "switch", "while" };
4040      const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4041      for (unsigned I = 0; I != NumCStmts; ++I)
4042        Consumer.addKeywordResult(CStmts[I]);
4043
4044      if (SemaRef.getLangOpts().CPlusPlus) {
4045        Consumer.addKeywordResult("catch");
4046        Consumer.addKeywordResult("try");
4047      }
4048
4049      if (S && S->getBreakParent())
4050        Consumer.addKeywordResult("break");
4051
4052      if (S && S->getContinueParent())
4053        Consumer.addKeywordResult("continue");
4054
4055      if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
4056        Consumer.addKeywordResult("case");
4057        Consumer.addKeywordResult("default");
4058      }
4059    } else {
4060      if (SemaRef.getLangOpts().CPlusPlus) {
4061        Consumer.addKeywordResult("namespace");
4062        Consumer.addKeywordResult("template");
4063      }
4064
4065      if (S && S->isClassScope()) {
4066        Consumer.addKeywordResult("explicit");
4067        Consumer.addKeywordResult("friend");
4068        Consumer.addKeywordResult("mutable");
4069        Consumer.addKeywordResult("private");
4070        Consumer.addKeywordResult("protected");
4071        Consumer.addKeywordResult("public");
4072        Consumer.addKeywordResult("virtual");
4073      }
4074    }
4075
4076    if (SemaRef.getLangOpts().CPlusPlus) {
4077      Consumer.addKeywordResult("using");
4078
4079      if (SemaRef.getLangOpts().CPlusPlus11)
4080        Consumer.addKeywordResult("static_assert");
4081    }
4082  }
4083}
4084
4085/// \brief Check whether the declarations found for a typo correction are
4086/// visible, and if none of them are, convert the correction to an 'import
4087/// a module' correction.
4088static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4089  if (TC.begin() == TC.end())
4090    return;
4091
4092  TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4093
4094  for (/**/; DI != DE; ++DI)
4095    if (!LookupResult::isVisible(SemaRef, *DI))
4096      break;
4097  // Nothing to do if all decls are visible.
4098  if (DI == DE)
4099    return;
4100
4101  llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4102  bool AnyVisibleDecls = !NewDecls.empty();
4103
4104  for (/**/; DI != DE; ++DI) {
4105    NamedDecl *VisibleDecl = *DI;
4106    if (!LookupResult::isVisible(SemaRef, *DI))
4107      VisibleDecl = findAcceptableDecl(SemaRef, *DI);
4108
4109    if (VisibleDecl) {
4110      if (!AnyVisibleDecls) {
4111        // Found a visible decl, discard all hidden ones.
4112        AnyVisibleDecls = true;
4113        NewDecls.clear();
4114      }
4115      NewDecls.push_back(VisibleDecl);
4116    } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4117      NewDecls.push_back(*DI);
4118  }
4119
4120  if (NewDecls.empty())
4121    TC = TypoCorrection();
4122  else {
4123    TC.setCorrectionDecls(NewDecls);
4124    TC.setRequiresImport(!AnyVisibleDecls);
4125  }
4126}
4127
4128/// \brief Try to "correct" a typo in the source code by finding
4129/// visible declarations whose names are similar to the name that was
4130/// present in the source code.
4131///
4132/// \param TypoName the \c DeclarationNameInfo structure that contains
4133/// the name that was present in the source code along with its location.
4134///
4135/// \param LookupKind the name-lookup criteria used to search for the name.
4136///
4137/// \param S the scope in which name lookup occurs.
4138///
4139/// \param SS the nested-name-specifier that precedes the name we're
4140/// looking for, if present.
4141///
4142/// \param CCC A CorrectionCandidateCallback object that provides further
4143/// validation of typo correction candidates. It also provides flags for
4144/// determining the set of keywords permitted.
4145///
4146/// \param MemberContext if non-NULL, the context in which to look for
4147/// a member access expression.
4148///
4149/// \param EnteringContext whether we're entering the context described by
4150/// the nested-name-specifier SS.
4151///
4152/// \param OPT when non-NULL, the search for visible declarations will
4153/// also walk the protocols in the qualified interfaces of \p OPT.
4154///
4155/// \returns a \c TypoCorrection containing the corrected name if the typo
4156/// along with information such as the \c NamedDecl where the corrected name
4157/// was declared, and any additional \c NestedNameSpecifier needed to access
4158/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4159TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
4160                                 Sema::LookupNameKind LookupKind,
4161                                 Scope *S, CXXScopeSpec *SS,
4162                                 CorrectionCandidateCallback &CCC,
4163                                 CorrectTypoKind Mode,
4164                                 DeclContext *MemberContext,
4165                                 bool EnteringContext,
4166                                 const ObjCObjectPointerType *OPT,
4167                                 bool RecordFailure) {
4168  // Always let the ExternalSource have the first chance at correction, even
4169  // if we would otherwise have given up.
4170  if (ExternalSource) {
4171    if (TypoCorrection Correction = ExternalSource->CorrectTypo(
4172        TypoName, LookupKind, S, SS, CCC, MemberContext, EnteringContext, OPT))
4173      return Correction;
4174  }
4175
4176  if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4177      DisableTypoCorrection)
4178    return TypoCorrection();
4179
4180  // In Microsoft mode, don't perform typo correction in a template member
4181  // function dependent context because it interferes with the "lookup into
4182  // dependent bases of class templates" feature.
4183  if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4184      isa<CXXMethodDecl>(CurContext))
4185    return TypoCorrection();
4186
4187  // We only attempt to correct typos for identifiers.
4188  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4189  if (!Typo)
4190    return TypoCorrection();
4191
4192  // If the scope specifier itself was invalid, don't try to correct
4193  // typos.
4194  if (SS && SS->isInvalid())
4195    return TypoCorrection();
4196
4197  // Never try to correct typos during template deduction or
4198  // instantiation.
4199  if (!ActiveTemplateInstantiations.empty())
4200    return TypoCorrection();
4201
4202  // Don't try to correct 'super'.
4203  if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4204    return TypoCorrection();
4205
4206  // Abort if typo correction already failed for this specific typo.
4207  IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4208  if (locs != TypoCorrectionFailures.end() &&
4209      locs->second.count(TypoName.getLoc()))
4210    return TypoCorrection();
4211
4212  // Don't try to correct the identifier "vector" when in AltiVec mode.
4213  // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4214  // remove this workaround.
4215  if (getLangOpts().AltiVec && Typo->isStr("vector"))
4216    return TypoCorrection();
4217
4218  // If we're handling a missing symbol error, using modules, and the
4219  // special search all modules option is used, look for a missing import.
4220  if ((Mode == CTK_ErrorRecovery) &&  getLangOpts().Modules &&
4221      getLangOpts().ModulesSearchAll) {
4222    // The following has the side effect of loading the missing module.
4223    getModuleLoader().lookupMissingImports(Typo->getName(),
4224                                           TypoName.getLocStart());
4225  }
4226
4227  TypoCorrectionConsumer Consumer(*this, TypoName, LookupKind, S, SS, CCC,
4228                                  MemberContext, EnteringContext);
4229
4230  // If a callback object considers an empty typo correction candidate to be
4231  // viable, assume it does not do any actual validation of the candidates.
4232  TypoCorrection EmptyCorrection;
4233  bool ValidatingCallback = !isCandidateViable(CCC, EmptyCorrection);
4234
4235  // Perform name lookup to find visible, similarly-named entities.
4236  bool IsUnqualifiedLookup = false;
4237  DeclContext *QualifiedDC = MemberContext;
4238  if (MemberContext) {
4239    LookupVisibleDecls(MemberContext, LookupKind, Consumer);
4240
4241    // Look in qualified interfaces.
4242    if (OPT) {
4243      for (auto *I : OPT->quals())
4244        LookupVisibleDecls(I, LookupKind, Consumer);
4245    }
4246  } else if (SS && SS->isSet()) {
4247    QualifiedDC = computeDeclContext(*SS, EnteringContext);
4248    if (!QualifiedDC)
4249      return TypoCorrection();
4250
4251    // Provide a stop gap for files that are just seriously broken.  Trying
4252    // to correct all typos can turn into a HUGE performance penalty, causing
4253    // some files to take minutes to get rejected by the parser.
4254    if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
4255      return TypoCorrection();
4256    ++TyposCorrected;
4257
4258    LookupVisibleDecls(QualifiedDC, LookupKind, Consumer);
4259  } else {
4260    IsUnqualifiedLookup = true;
4261    UnqualifiedTyposCorrectedMap::iterator Cached
4262      = UnqualifiedTyposCorrected.find(Typo);
4263    if (Cached != UnqualifiedTyposCorrected.end()) {
4264      // Add the cached value, unless it's a keyword or fails validation. In the
4265      // keyword case, we'll end up adding the keyword below.
4266      if (Cached->second) {
4267        if (!Cached->second.isKeyword() &&
4268            isCandidateViable(CCC, Cached->second)) {
4269          // Do not use correction that is unaccessible in the given scope.
4270          NamedDecl *CorrectionDecl = Cached->second.getCorrectionDecl();
4271          DeclarationNameInfo NameInfo(CorrectionDecl->getDeclName(),
4272                                       CorrectionDecl->getLocation());
4273          LookupResult R(*this, NameInfo, LookupOrdinaryName);
4274          if (LookupName(R, S))
4275            Consumer.addCorrection(Cached->second);
4276        }
4277      } else {
4278        // Only honor no-correction cache hits when a callback that will validate
4279        // correction candidates is not being used.
4280        if (!ValidatingCallback)
4281          return TypoCorrection();
4282      }
4283    }
4284    if (Cached == UnqualifiedTyposCorrected.end()) {
4285      // Provide a stop gap for files that are just seriously broken.  Trying
4286      // to correct all typos can turn into a HUGE performance penalty, causing
4287      // some files to take minutes to get rejected by the parser.
4288      if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
4289        return TypoCorrection();
4290    }
4291  }
4292
4293  // Determine whether we are going to search in the various namespaces for
4294  // corrections.
4295  bool SearchNamespaces
4296    = getLangOpts().CPlusPlus &&
4297      (IsUnqualifiedLookup || (SS && SS->isSet()));
4298  // In a few cases we *only* want to search for corrections based on just
4299  // adding or changing the nested name specifier.
4300  unsigned TypoLen = Typo->getName().size();
4301  bool AllowOnlyNNSChanges = TypoLen < 3;
4302
4303  if (IsUnqualifiedLookup || SearchNamespaces) {
4304    // For unqualified lookup, look through all of the names that we have
4305    // seen in this translation unit.
4306    // FIXME: Re-add the ability to skip very unlikely potential corrections.
4307    for (IdentifierTable::iterator I = Context.Idents.begin(),
4308                                IEnd = Context.Idents.end();
4309         I != IEnd; ++I)
4310      Consumer.FoundName(I->getKey());
4311
4312    // Walk through identifiers in external identifier sources.
4313    // FIXME: Re-add the ability to skip very unlikely potential corrections.
4314    if (IdentifierInfoLookup *External
4315                            = Context.Idents.getExternalIdentifierLookup()) {
4316      std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4317      do {
4318        StringRef Name = Iter->Next();
4319        if (Name.empty())
4320          break;
4321
4322        Consumer.FoundName(Name);
4323      } while (true);
4324    }
4325  }
4326
4327  AddKeywordsToConsumer(*this, Consumer, S, CCC, SS && SS->isNotEmpty());
4328
4329  // If we haven't found anything, we're done.
4330  if (Consumer.empty())
4331    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure,
4332                            IsUnqualifiedLookup);
4333
4334  // Make sure the best edit distance (prior to adding any namespace qualifiers)
4335  // is not more that about a third of the length of the typo's identifier.
4336  unsigned ED = Consumer.getBestEditDistance(true);
4337  if (ED > 0 && TypoLen / ED < 3)
4338    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure,
4339                            IsUnqualifiedLookup);
4340
4341  // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4342  // to search those namespaces.
4343  if (SearchNamespaces) {
4344    // Load any externally-known namespaces.
4345    if (ExternalSource && !LoadedExternalKnownNamespaces) {
4346      SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4347      LoadedExternalKnownNamespaces = true;
4348      ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4349      for (unsigned I = 0, N = ExternalKnownNamespaces.size(); I != N; ++I)
4350        KnownNamespaces[ExternalKnownNamespaces[I]] = true;
4351    }
4352
4353    Consumer.addNamespaces(KnownNamespaces);
4354  }
4355
4356  TypoCorrection BestTC = Consumer.getNextCorrection();
4357  TypoCorrection SecondBestTC = Consumer.getNextCorrection();
4358  if (!BestTC)
4359    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4360
4361  ED = BestTC.getEditDistance();
4362
4363  if (!AllowOnlyNNSChanges && ED > 0 && TypoLen / ED < 3) {
4364    // If this was an unqualified lookup and we believe the callback
4365    // object wouldn't have filtered out possible corrections, note
4366    // that no correction was found.
4367    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure,
4368                            IsUnqualifiedLookup && !ValidatingCallback);
4369  }
4370
4371  // If only a single name remains, return that result.
4372  if (!SecondBestTC ||
4373      SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4374    const TypoCorrection &Result = BestTC;
4375
4376    // Don't correct to a keyword that's the same as the typo; the keyword
4377    // wasn't actually in scope.
4378    if (ED == 0 && Result.isKeyword())
4379      return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4380
4381    // Record the correction for unqualified lookup.
4382    if (IsUnqualifiedLookup)
4383      UnqualifiedTyposCorrected[Typo] = Result;
4384
4385    TypoCorrection TC = Result;
4386    TC.setCorrectionRange(SS, TypoName);
4387    checkCorrectionVisibility(*this, TC);
4388    return TC;
4389  }
4390  // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4391  // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4392  // some instances of CTC_Unknown, while WantRemainingKeywords is true
4393  // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4394  else if (SecondBestTC && CCC.WantObjCSuper && !CCC.WantRemainingKeywords) {
4395    // Prefer 'super' when we're completing in a message-receiver
4396    // context.
4397
4398    if (BestTC.getCorrection().getAsString() != "super") {
4399      if (SecondBestTC.getCorrection().getAsString() == "super")
4400        BestTC = SecondBestTC;
4401      else if (Consumer["super"].front().isKeyword())
4402        BestTC = Consumer["super"].front();
4403    }
4404    // Don't correct to a keyword that's the same as the typo; the keyword
4405    // wasn't actually in scope.
4406    if (BestTC.getEditDistance() == 0 ||
4407        BestTC.getCorrection().getAsString() != "super")
4408      return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4409
4410    // Record the correction for unqualified lookup.
4411    if (IsUnqualifiedLookup)
4412      UnqualifiedTyposCorrected[Typo] = BestTC;
4413
4414    BestTC.setCorrectionRange(SS, TypoName);
4415    return BestTC;
4416  }
4417
4418  // Record the failure's location if needed and return an empty correction. If
4419  // this was an unqualified lookup and we believe the callback object did not
4420  // filter out possible corrections, also cache the failure for the typo.
4421  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure,
4422                          IsUnqualifiedLookup && !ValidatingCallback);
4423}
4424
4425void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4426  if (!CDecl) return;
4427
4428  if (isKeyword())
4429    CorrectionDecls.clear();
4430
4431  CorrectionDecls.push_back(CDecl->getUnderlyingDecl());
4432
4433  if (!CorrectionName)
4434    CorrectionName = CDecl->getDeclName();
4435}
4436
4437std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4438  if (CorrectionNameSpec) {
4439    std::string tmpBuffer;
4440    llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4441    CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4442    PrefixOStream << CorrectionName;
4443    return PrefixOStream.str();
4444  }
4445
4446  return CorrectionName.getAsString();
4447}
4448
4449bool CorrectionCandidateCallback::ValidateCandidate(const TypoCorrection &candidate) {
4450  if (!candidate.isResolved())
4451    return true;
4452
4453  if (candidate.isKeyword())
4454    return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4455           WantRemainingKeywords || WantObjCSuper;
4456
4457  bool HasNonType = false;
4458  bool HasStaticMethod = false;
4459  bool HasNonStaticMethod = false;
4460  for (Decl *D : candidate) {
4461    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
4462      D = FTD->getTemplatedDecl();
4463    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4464      if (Method->isStatic())
4465        HasStaticMethod = true;
4466      else
4467        HasNonStaticMethod = true;
4468    }
4469    if (!isa<TypeDecl>(D))
4470      HasNonType = true;
4471  }
4472
4473  if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
4474      !candidate.getCorrectionSpecifier())
4475    return false;
4476
4477  return WantTypeSpecifiers || HasNonType;
4478}
4479
4480FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
4481                                             bool HasExplicitTemplateArgs,
4482                                             MemberExpr *ME)
4483    : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
4484      CurContext(SemaRef.CurContext), MemberFn(ME) {
4485  WantTypeSpecifiers = SemaRef.getLangOpts().CPlusPlus;
4486  WantRemainingKeywords = false;
4487}
4488
4489bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
4490  if (!candidate.getCorrectionDecl())
4491    return candidate.isKeyword();
4492
4493  for (TypoCorrection::const_decl_iterator DI = candidate.begin(),
4494                                           DIEnd = candidate.end();
4495       DI != DIEnd; ++DI) {
4496    FunctionDecl *FD = nullptr;
4497    NamedDecl *ND = (*DI)->getUnderlyingDecl();
4498    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4499      FD = FTD->getTemplatedDecl();
4500    if (!HasExplicitTemplateArgs && !FD) {
4501      if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
4502        // If the Decl is neither a function nor a template function,
4503        // determine if it is a pointer or reference to a function. If so,
4504        // check against the number of arguments expected for the pointee.
4505        QualType ValType = cast<ValueDecl>(ND)->getType();
4506        if (ValType->isAnyPointerType() || ValType->isReferenceType())
4507          ValType = ValType->getPointeeType();
4508        if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
4509          if (FPT->getNumParams() == NumArgs)
4510            return true;
4511      }
4512    }
4513
4514    // Skip the current candidate if it is not a FunctionDecl or does not accept
4515    // the current number of arguments.
4516    if (!FD || !(FD->getNumParams() >= NumArgs &&
4517                 FD->getMinRequiredArguments() <= NumArgs))
4518      continue;
4519
4520    // If the current candidate is a non-static C++ method, skip the candidate
4521    // unless the method being corrected--or the current DeclContext, if the
4522    // function being corrected is not a method--is a method in the same class
4523    // or a descendent class of the candidate's parent class.
4524    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4525      if (MemberFn || !MD->isStatic()) {
4526        CXXMethodDecl *CurMD =
4527            MemberFn
4528                ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
4529                : dyn_cast_or_null<CXXMethodDecl>(CurContext);
4530        CXXRecordDecl *CurRD =
4531            CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
4532        CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
4533        if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
4534          continue;
4535      }
4536    }
4537    return true;
4538  }
4539  return false;
4540}
4541
4542void Sema::diagnoseTypo(const TypoCorrection &Correction,
4543                        const PartialDiagnostic &TypoDiag,
4544                        bool ErrorRecovery) {
4545  diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
4546               ErrorRecovery);
4547}
4548
4549/// Find which declaration we should import to provide the definition of
4550/// the given declaration.
4551static const NamedDecl *getDefinitionToImport(const NamedDecl *D) {
4552  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4553    return VD->getDefinition();
4554  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
4555    return FD->isDefined(FD) ? FD : nullptr;
4556  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
4557    return TD->getDefinition();
4558  if (const ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
4559    return ID->getDefinition();
4560  if (const ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
4561    return PD->getDefinition();
4562  if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
4563    return getDefinitionToImport(TD->getTemplatedDecl());
4564  return nullptr;
4565}
4566
4567/// \brief Diagnose a successfully-corrected typo. Separated from the correction
4568/// itself to allow external validation of the result, etc.
4569///
4570/// \param Correction The result of performing typo correction.
4571/// \param TypoDiag The diagnostic to produce. This will have the corrected
4572///        string added to it (and usually also a fixit).
4573/// \param PrevNote A note to use when indicating the location of the entity to
4574///        which we are correcting. Will have the correction string added to it.
4575/// \param ErrorRecovery If \c true (the default), the caller is going to
4576///        recover from the typo as if the corrected string had been typed.
4577///        In this case, \c PDiag must be an error, and we will attach a fixit
4578///        to it.
4579void Sema::diagnoseTypo(const TypoCorrection &Correction,
4580                        const PartialDiagnostic &TypoDiag,
4581                        const PartialDiagnostic &PrevNote,
4582                        bool ErrorRecovery) {
4583  std::string CorrectedStr = Correction.getAsString(getLangOpts());
4584  std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
4585  FixItHint FixTypo = FixItHint::CreateReplacement(
4586      Correction.getCorrectionRange(), CorrectedStr);
4587
4588  // Maybe we're just missing a module import.
4589  if (Correction.requiresImport()) {
4590    NamedDecl *Decl = Correction.getCorrectionDecl();
4591    assert(Decl && "import required but no declaration to import");
4592
4593    // Suggest importing a module providing the definition of this entity, if
4594    // possible.
4595    const NamedDecl *Def = getDefinitionToImport(Decl);
4596    if (!Def)
4597      Def = Decl;
4598    Module *Owner = Def->getOwningModule();
4599    assert(Owner && "definition of hidden declaration is not in a module");
4600
4601    Diag(Correction.getCorrectionRange().getBegin(),
4602         diag::err_module_private_declaration)
4603      << Def << Owner->getFullModuleName();
4604    Diag(Def->getLocation(), diag::note_previous_declaration);
4605
4606    // Recover by implicitly importing this module.
4607    if (ErrorRecovery)
4608      createImplicitModuleImportForErrorRecovery(
4609          Correction.getCorrectionRange().getBegin(), Owner);
4610    return;
4611  }
4612
4613  Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
4614    << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
4615
4616  NamedDecl *ChosenDecl =
4617      Correction.isKeyword() ? nullptr : Correction.getCorrectionDecl();
4618  if (PrevNote.getDiagID() && ChosenDecl)
4619    Diag(ChosenDecl->getLocation(), PrevNote)
4620      << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
4621}
4622