SemaOverload.cpp revision 0ca4c58cba09ea4cb45348ea223227234a363e94
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Complex_Real_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  DeprecatedStringLiteralToCharPtr = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType(1)->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType(1);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << '\'' << ConversionFunction << '\'';
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278namespace {
279  // Structure used by OverloadCandidate::DeductionFailureInfo to store
280  // template parameter and template argument information.
281  struct DFIParamWithArguments {
282    TemplateParameter Param;
283    TemplateArgument FirstArg;
284    TemplateArgument SecondArg;
285  };
286}
287
288/// \brief Convert from Sema's representation of template deduction information
289/// to the form used in overload-candidate information.
290OverloadCandidate::DeductionFailureInfo
291static MakeDeductionFailureInfo(Sema::TemplateDeductionResult TDK,
292                                const Sema::TemplateDeductionInfo &Info) {
293  OverloadCandidate::DeductionFailureInfo Result;
294  Result.Result = static_cast<unsigned>(TDK);
295  Result.Data = 0;
296  switch (TDK) {
297  case Sema::TDK_Success:
298  case Sema::TDK_InstantiationDepth:
299  case Sema::TDK_TooManyArguments:
300  case Sema::TDK_TooFewArguments:
301    break;
302
303  case Sema::TDK_Incomplete:
304    Result.Data = Info.Param.getOpaqueValue();
305    break;
306
307  case Sema::TDK_Inconsistent:
308  case Sema::TDK_InconsistentQuals: {
309    DFIParamWithArguments *Saved = new DFIParamWithArguments;
310    Saved->Param = Info.Param;
311    Saved->FirstArg = Info.FirstArg;
312    Saved->SecondArg = Info.SecondArg;
313    Result.Data = Saved;
314    break;
315  }
316
317  case Sema::TDK_SubstitutionFailure:
318  case Sema::TDK_NonDeducedMismatch:
319  case Sema::TDK_InvalidExplicitArguments:
320  case Sema::TDK_FailedOverloadResolution:
321    break;
322  }
323
324  return Result;
325}
326
327void OverloadCandidate::DeductionFailureInfo::Destroy() {
328  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
329  case Sema::TDK_Success:
330  case Sema::TDK_InstantiationDepth:
331  case Sema::TDK_Incomplete:
332  case Sema::TDK_TooManyArguments:
333  case Sema::TDK_TooFewArguments:
334    break;
335
336  case Sema::TDK_Inconsistent:
337  case Sema::TDK_InconsistentQuals:
338    delete static_cast<DFIParamWithArguments*>(Data);
339    Data = 0;
340    break;
341
342  // Unhandled
343  case Sema::TDK_SubstitutionFailure:
344  case Sema::TDK_NonDeducedMismatch:
345  case Sema::TDK_InvalidExplicitArguments:
346  case Sema::TDK_FailedOverloadResolution:
347    break;
348  }
349}
350
351TemplateParameter
352OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
353  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
354  case Sema::TDK_Success:
355  case Sema::TDK_InstantiationDepth:
356  case Sema::TDK_TooManyArguments:
357  case Sema::TDK_TooFewArguments:
358    return TemplateParameter();
359
360  case Sema::TDK_Incomplete:
361    return TemplateParameter::getFromOpaqueValue(Data);
362
363  case Sema::TDK_Inconsistent:
364  case Sema::TDK_InconsistentQuals:
365    return static_cast<DFIParamWithArguments*>(Data)->Param;
366
367  // Unhandled
368  case Sema::TDK_SubstitutionFailure:
369  case Sema::TDK_NonDeducedMismatch:
370  case Sema::TDK_InvalidExplicitArguments:
371  case Sema::TDK_FailedOverloadResolution:
372    break;
373  }
374
375  return TemplateParameter();
376}
377
378const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
379  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
380  case Sema::TDK_Success:
381  case Sema::TDK_InstantiationDepth:
382  case Sema::TDK_Incomplete:
383  case Sema::TDK_TooManyArguments:
384  case Sema::TDK_TooFewArguments:
385    return 0;
386
387  case Sema::TDK_Inconsistent:
388  case Sema::TDK_InconsistentQuals:
389    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
390
391  // Unhandled
392  case Sema::TDK_SubstitutionFailure:
393  case Sema::TDK_NonDeducedMismatch:
394  case Sema::TDK_InvalidExplicitArguments:
395  case Sema::TDK_FailedOverloadResolution:
396    break;
397  }
398
399  return 0;
400}
401
402const TemplateArgument *
403OverloadCandidate::DeductionFailureInfo::getSecondArg() {
404  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
405  case Sema::TDK_Success:
406  case Sema::TDK_InstantiationDepth:
407  case Sema::TDK_Incomplete:
408  case Sema::TDK_TooManyArguments:
409  case Sema::TDK_TooFewArguments:
410    return 0;
411
412  case Sema::TDK_Inconsistent:
413  case Sema::TDK_InconsistentQuals:
414    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
415
416  // Unhandled
417  case Sema::TDK_SubstitutionFailure:
418  case Sema::TDK_NonDeducedMismatch:
419  case Sema::TDK_InvalidExplicitArguments:
420  case Sema::TDK_FailedOverloadResolution:
421    break;
422  }
423
424  return 0;
425}
426
427void OverloadCandidateSet::clear() {
428  for (iterator C = begin(), CEnd = end(); C != CEnd; ++C) {
429    if (C->FailureKind == ovl_fail_bad_deduction)
430      C->DeductionFailure.Destroy();
431  }
432
433  inherited::clear();
434  Functions.clear();
435}
436
437// IsOverload - Determine whether the given New declaration is an
438// overload of the declarations in Old. This routine returns false if
439// New and Old cannot be overloaded, e.g., if New has the same
440// signature as some function in Old (C++ 1.3.10) or if the Old
441// declarations aren't functions (or function templates) at all. When
442// it does return false, MatchedDecl will point to the decl that New
443// cannot be overloaded with.  This decl may be a UsingShadowDecl on
444// top of the underlying declaration.
445//
446// Example: Given the following input:
447//
448//   void f(int, float); // #1
449//   void f(int, int); // #2
450//   int f(int, int); // #3
451//
452// When we process #1, there is no previous declaration of "f",
453// so IsOverload will not be used.
454//
455// When we process #2, Old contains only the FunctionDecl for #1.  By
456// comparing the parameter types, we see that #1 and #2 are overloaded
457// (since they have different signatures), so this routine returns
458// false; MatchedDecl is unchanged.
459//
460// When we process #3, Old is an overload set containing #1 and #2. We
461// compare the signatures of #3 to #1 (they're overloaded, so we do
462// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
463// identical (return types of functions are not part of the
464// signature), IsOverload returns false and MatchedDecl will be set to
465// point to the FunctionDecl for #2.
466Sema::OverloadKind
467Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
468                    NamedDecl *&Match) {
469  for (LookupResult::iterator I = Old.begin(), E = Old.end();
470         I != E; ++I) {
471    NamedDecl *OldD = (*I)->getUnderlyingDecl();
472    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
473      if (!IsOverload(New, OldT->getTemplatedDecl())) {
474        Match = *I;
475        return Ovl_Match;
476      }
477    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
478      if (!IsOverload(New, OldF)) {
479        Match = *I;
480        return Ovl_Match;
481      }
482    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
483      // We can overload with these, which can show up when doing
484      // redeclaration checks for UsingDecls.
485      assert(Old.getLookupKind() == LookupUsingDeclName);
486    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
487      // Optimistically assume that an unresolved using decl will
488      // overload; if it doesn't, we'll have to diagnose during
489      // template instantiation.
490    } else {
491      // (C++ 13p1):
492      //   Only function declarations can be overloaded; object and type
493      //   declarations cannot be overloaded.
494      Match = *I;
495      return Ovl_NonFunction;
496    }
497  }
498
499  return Ovl_Overload;
500}
501
502bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
503  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
504  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
505
506  // C++ [temp.fct]p2:
507  //   A function template can be overloaded with other function templates
508  //   and with normal (non-template) functions.
509  if ((OldTemplate == 0) != (NewTemplate == 0))
510    return true;
511
512  // Is the function New an overload of the function Old?
513  QualType OldQType = Context.getCanonicalType(Old->getType());
514  QualType NewQType = Context.getCanonicalType(New->getType());
515
516  // Compare the signatures (C++ 1.3.10) of the two functions to
517  // determine whether they are overloads. If we find any mismatch
518  // in the signature, they are overloads.
519
520  // If either of these functions is a K&R-style function (no
521  // prototype), then we consider them to have matching signatures.
522  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
523      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
524    return false;
525
526  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
527  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
528
529  // The signature of a function includes the types of its
530  // parameters (C++ 1.3.10), which includes the presence or absence
531  // of the ellipsis; see C++ DR 357).
532  if (OldQType != NewQType &&
533      (OldType->getNumArgs() != NewType->getNumArgs() ||
534       OldType->isVariadic() != NewType->isVariadic() ||
535       !FunctionArgTypesAreEqual(OldType, NewType)))
536    return true;
537
538  // C++ [temp.over.link]p4:
539  //   The signature of a function template consists of its function
540  //   signature, its return type and its template parameter list. The names
541  //   of the template parameters are significant only for establishing the
542  //   relationship between the template parameters and the rest of the
543  //   signature.
544  //
545  // We check the return type and template parameter lists for function
546  // templates first; the remaining checks follow.
547  if (NewTemplate &&
548      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
549                                       OldTemplate->getTemplateParameters(),
550                                       false, TPL_TemplateMatch) ||
551       OldType->getResultType() != NewType->getResultType()))
552    return true;
553
554  // If the function is a class member, its signature includes the
555  // cv-qualifiers (if any) on the function itself.
556  //
557  // As part of this, also check whether one of the member functions
558  // is static, in which case they are not overloads (C++
559  // 13.1p2). While not part of the definition of the signature,
560  // this check is important to determine whether these functions
561  // can be overloaded.
562  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
563  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
564  if (OldMethod && NewMethod &&
565      !OldMethod->isStatic() && !NewMethod->isStatic() &&
566      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
567    return true;
568
569  // The signatures match; this is not an overload.
570  return false;
571}
572
573/// TryImplicitConversion - Attempt to perform an implicit conversion
574/// from the given expression (Expr) to the given type (ToType). This
575/// function returns an implicit conversion sequence that can be used
576/// to perform the initialization. Given
577///
578///   void f(float f);
579///   void g(int i) { f(i); }
580///
581/// this routine would produce an implicit conversion sequence to
582/// describe the initialization of f from i, which will be a standard
583/// conversion sequence containing an lvalue-to-rvalue conversion (C++
584/// 4.1) followed by a floating-integral conversion (C++ 4.9).
585//
586/// Note that this routine only determines how the conversion can be
587/// performed; it does not actually perform the conversion. As such,
588/// it will not produce any diagnostics if no conversion is available,
589/// but will instead return an implicit conversion sequence of kind
590/// "BadConversion".
591///
592/// If @p SuppressUserConversions, then user-defined conversions are
593/// not permitted.
594/// If @p AllowExplicit, then explicit user-defined conversions are
595/// permitted.
596ImplicitConversionSequence
597Sema::TryImplicitConversion(Expr* From, QualType ToType,
598                            bool SuppressUserConversions,
599                            bool AllowExplicit,
600                            bool InOverloadResolution) {
601  ImplicitConversionSequence ICS;
602  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
603    ICS.setStandard();
604    return ICS;
605  }
606
607  if (!getLangOptions().CPlusPlus) {
608    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
609    return ICS;
610  }
611
612  if (SuppressUserConversions) {
613    // C++ [over.ics.user]p4:
614    //   A conversion of an expression of class type to the same class
615    //   type is given Exact Match rank, and a conversion of an
616    //   expression of class type to a base class of that type is
617    //   given Conversion rank, in spite of the fact that a copy/move
618    //   constructor (i.e., a user-defined conversion function) is
619    //   called for those cases.
620    QualType FromType = From->getType();
621    if (!ToType->getAs<RecordType>() || !FromType->getAs<RecordType>() ||
622        !(Context.hasSameUnqualifiedType(FromType, ToType) ||
623          IsDerivedFrom(FromType, ToType))) {
624      // We're not in the case above, so there is no conversion that
625      // we can perform.
626      ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
627      return ICS;
628    }
629
630    ICS.setStandard();
631    ICS.Standard.setAsIdentityConversion();
632    ICS.Standard.setFromType(FromType);
633    ICS.Standard.setAllToTypes(ToType);
634
635    // We don't actually check at this point whether there is a valid
636    // copy/move constructor, since overloading just assumes that it
637    // exists. When we actually perform initialization, we'll find the
638    // appropriate constructor to copy the returned object, if needed.
639    ICS.Standard.CopyConstructor = 0;
640
641    // Determine whether this is considered a derived-to-base conversion.
642    if (!Context.hasSameUnqualifiedType(FromType, ToType))
643      ICS.Standard.Second = ICK_Derived_To_Base;
644
645    return ICS;
646  }
647
648  // Attempt user-defined conversion.
649  OverloadCandidateSet Conversions(From->getExprLoc());
650  OverloadingResult UserDefResult
651    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
652                              AllowExplicit);
653
654  if (UserDefResult == OR_Success) {
655    ICS.setUserDefined();
656    // C++ [over.ics.user]p4:
657    //   A conversion of an expression of class type to the same class
658    //   type is given Exact Match rank, and a conversion of an
659    //   expression of class type to a base class of that type is
660    //   given Conversion rank, in spite of the fact that a copy
661    //   constructor (i.e., a user-defined conversion function) is
662    //   called for those cases.
663    if (CXXConstructorDecl *Constructor
664          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
665      QualType FromCanon
666        = Context.getCanonicalType(From->getType().getUnqualifiedType());
667      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
668      if (Constructor->isCopyConstructor() &&
669          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
670        // Turn this into a "standard" conversion sequence, so that it
671        // gets ranked with standard conversion sequences.
672        ICS.setStandard();
673        ICS.Standard.setAsIdentityConversion();
674        ICS.Standard.setFromType(From->getType());
675        ICS.Standard.setAllToTypes(ToType);
676        ICS.Standard.CopyConstructor = Constructor;
677        if (ToCanon != FromCanon)
678          ICS.Standard.Second = ICK_Derived_To_Base;
679      }
680    }
681
682    // C++ [over.best.ics]p4:
683    //   However, when considering the argument of a user-defined
684    //   conversion function that is a candidate by 13.3.1.3 when
685    //   invoked for the copying of the temporary in the second step
686    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
687    //   13.3.1.6 in all cases, only standard conversion sequences and
688    //   ellipsis conversion sequences are allowed.
689    if (SuppressUserConversions && ICS.isUserDefined()) {
690      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
691    }
692  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
693    ICS.setAmbiguous();
694    ICS.Ambiguous.setFromType(From->getType());
695    ICS.Ambiguous.setToType(ToType);
696    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
697         Cand != Conversions.end(); ++Cand)
698      if (Cand->Viable)
699        ICS.Ambiguous.addConversion(Cand->Function);
700  } else {
701    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
702  }
703
704  return ICS;
705}
706
707/// PerformImplicitConversion - Perform an implicit conversion of the
708/// expression From to the type ToType. Returns true if there was an
709/// error, false otherwise. The expression From is replaced with the
710/// converted expression. Flavor is the kind of conversion we're
711/// performing, used in the error message. If @p AllowExplicit,
712/// explicit user-defined conversions are permitted.
713bool
714Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
715                                AssignmentAction Action, bool AllowExplicit) {
716  ImplicitConversionSequence ICS;
717  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
718}
719
720bool
721Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
722                                AssignmentAction Action, bool AllowExplicit,
723                                ImplicitConversionSequence& ICS) {
724  ICS = TryImplicitConversion(From, ToType,
725                              /*SuppressUserConversions=*/false,
726                              AllowExplicit,
727                              /*InOverloadResolution=*/false);
728  return PerformImplicitConversion(From, ToType, ICS, Action);
729}
730
731/// \brief Determine whether the conversion from FromType to ToType is a valid
732/// conversion that strips "noreturn" off the nested function type.
733static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
734                                 QualType ToType, QualType &ResultTy) {
735  if (Context.hasSameUnqualifiedType(FromType, ToType))
736    return false;
737
738  // Strip the noreturn off the type we're converting from; noreturn can
739  // safely be removed.
740  FromType = Context.getNoReturnType(FromType, false);
741  if (!Context.hasSameUnqualifiedType(FromType, ToType))
742    return false;
743
744  ResultTy = FromType;
745  return true;
746}
747
748/// IsStandardConversion - Determines whether there is a standard
749/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
750/// expression From to the type ToType. Standard conversion sequences
751/// only consider non-class types; for conversions that involve class
752/// types, use TryImplicitConversion. If a conversion exists, SCS will
753/// contain the standard conversion sequence required to perform this
754/// conversion and this routine will return true. Otherwise, this
755/// routine will return false and the value of SCS is unspecified.
756bool
757Sema::IsStandardConversion(Expr* From, QualType ToType,
758                           bool InOverloadResolution,
759                           StandardConversionSequence &SCS) {
760  QualType FromType = From->getType();
761
762  // Standard conversions (C++ [conv])
763  SCS.setAsIdentityConversion();
764  SCS.DeprecatedStringLiteralToCharPtr = false;
765  SCS.IncompatibleObjC = false;
766  SCS.setFromType(FromType);
767  SCS.CopyConstructor = 0;
768
769  // There are no standard conversions for class types in C++, so
770  // abort early. When overloading in C, however, we do permit
771  if (FromType->isRecordType() || ToType->isRecordType()) {
772    if (getLangOptions().CPlusPlus)
773      return false;
774
775    // When we're overloading in C, we allow, as standard conversions,
776  }
777
778  // The first conversion can be an lvalue-to-rvalue conversion,
779  // array-to-pointer conversion, or function-to-pointer conversion
780  // (C++ 4p1).
781
782  if (FromType == Context.OverloadTy) {
783    DeclAccessPair AccessPair;
784    if (FunctionDecl *Fn
785          = ResolveAddressOfOverloadedFunction(From, ToType, false,
786                                               AccessPair)) {
787      // We were able to resolve the address of the overloaded function,
788      // so we can convert to the type of that function.
789      FromType = Fn->getType();
790      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
791        if (!Method->isStatic()) {
792          Type *ClassType
793            = Context.getTypeDeclType(Method->getParent()).getTypePtr();
794          FromType = Context.getMemberPointerType(FromType, ClassType);
795        }
796      }
797
798      // If the "from" expression takes the address of the overloaded
799      // function, update the type of the resulting expression accordingly.
800      if (FromType->getAs<FunctionType>())
801        if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens()))
802          if (UnOp->getOpcode() == UnaryOperator::AddrOf)
803            FromType = Context.getPointerType(FromType);
804
805      // Check that we've computed the proper type after overload resolution.
806      assert(Context.hasSameType(FromType,
807              FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
808    } else {
809      return false;
810    }
811  }
812  // Lvalue-to-rvalue conversion (C++ 4.1):
813  //   An lvalue (3.10) of a non-function, non-array type T can be
814  //   converted to an rvalue.
815  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
816  if (argIsLvalue == Expr::LV_Valid &&
817      !FromType->isFunctionType() && !FromType->isArrayType() &&
818      Context.getCanonicalType(FromType) != Context.OverloadTy) {
819    SCS.First = ICK_Lvalue_To_Rvalue;
820
821    // If T is a non-class type, the type of the rvalue is the
822    // cv-unqualified version of T. Otherwise, the type of the rvalue
823    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
824    // just strip the qualifiers because they don't matter.
825    FromType = FromType.getUnqualifiedType();
826  } else if (FromType->isArrayType()) {
827    // Array-to-pointer conversion (C++ 4.2)
828    SCS.First = ICK_Array_To_Pointer;
829
830    // An lvalue or rvalue of type "array of N T" or "array of unknown
831    // bound of T" can be converted to an rvalue of type "pointer to
832    // T" (C++ 4.2p1).
833    FromType = Context.getArrayDecayedType(FromType);
834
835    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
836      // This conversion is deprecated. (C++ D.4).
837      SCS.DeprecatedStringLiteralToCharPtr = true;
838
839      // For the purpose of ranking in overload resolution
840      // (13.3.3.1.1), this conversion is considered an
841      // array-to-pointer conversion followed by a qualification
842      // conversion (4.4). (C++ 4.2p2)
843      SCS.Second = ICK_Identity;
844      SCS.Third = ICK_Qualification;
845      SCS.setAllToTypes(FromType);
846      return true;
847    }
848  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
849    // Function-to-pointer conversion (C++ 4.3).
850    SCS.First = ICK_Function_To_Pointer;
851
852    // An lvalue of function type T can be converted to an rvalue of
853    // type "pointer to T." The result is a pointer to the
854    // function. (C++ 4.3p1).
855    FromType = Context.getPointerType(FromType);
856  } else {
857    // We don't require any conversions for the first step.
858    SCS.First = ICK_Identity;
859  }
860  SCS.setToType(0, FromType);
861
862  // The second conversion can be an integral promotion, floating
863  // point promotion, integral conversion, floating point conversion,
864  // floating-integral conversion, pointer conversion,
865  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
866  // For overloading in C, this can also be a "compatible-type"
867  // conversion.
868  bool IncompatibleObjC = false;
869  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
870    // The unqualified versions of the types are the same: there's no
871    // conversion to do.
872    SCS.Second = ICK_Identity;
873  } else if (IsIntegralPromotion(From, FromType, ToType)) {
874    // Integral promotion (C++ 4.5).
875    SCS.Second = ICK_Integral_Promotion;
876    FromType = ToType.getUnqualifiedType();
877  } else if (IsFloatingPointPromotion(FromType, ToType)) {
878    // Floating point promotion (C++ 4.6).
879    SCS.Second = ICK_Floating_Promotion;
880    FromType = ToType.getUnqualifiedType();
881  } else if (IsComplexPromotion(FromType, ToType)) {
882    // Complex promotion (Clang extension)
883    SCS.Second = ICK_Complex_Promotion;
884    FromType = ToType.getUnqualifiedType();
885  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
886           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
887    // Integral conversions (C++ 4.7).
888    SCS.Second = ICK_Integral_Conversion;
889    FromType = ToType.getUnqualifiedType();
890  } else if (FromType->isComplexType() && ToType->isComplexType()) {
891    // Complex conversions (C99 6.3.1.6)
892    SCS.Second = ICK_Complex_Conversion;
893    FromType = ToType.getUnqualifiedType();
894  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
895             (ToType->isComplexType() && FromType->isArithmeticType())) {
896    // Complex-real conversions (C99 6.3.1.7)
897    SCS.Second = ICK_Complex_Real;
898    FromType = ToType.getUnqualifiedType();
899  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
900    // Floating point conversions (C++ 4.8).
901    SCS.Second = ICK_Floating_Conversion;
902    FromType = ToType.getUnqualifiedType();
903  } else if ((FromType->isFloatingType() &&
904              ToType->isIntegralType() && (!ToType->isBooleanType() &&
905                                           !ToType->isEnumeralType())) ||
906             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
907              ToType->isFloatingType())) {
908    // Floating-integral conversions (C++ 4.9).
909    SCS.Second = ICK_Floating_Integral;
910    FromType = ToType.getUnqualifiedType();
911  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
912                                 FromType, IncompatibleObjC)) {
913    // Pointer conversions (C++ 4.10).
914    SCS.Second = ICK_Pointer_Conversion;
915    SCS.IncompatibleObjC = IncompatibleObjC;
916  } else if (IsMemberPointerConversion(From, FromType, ToType,
917                                       InOverloadResolution, FromType)) {
918    // Pointer to member conversions (4.11).
919    SCS.Second = ICK_Pointer_Member;
920  } else if (ToType->isBooleanType() &&
921             (FromType->isArithmeticType() ||
922              FromType->isEnumeralType() ||
923              FromType->isAnyPointerType() ||
924              FromType->isBlockPointerType() ||
925              FromType->isMemberPointerType() ||
926              FromType->isNullPtrType())) {
927    // Boolean conversions (C++ 4.12).
928    SCS.Second = ICK_Boolean_Conversion;
929    FromType = Context.BoolTy;
930  } else if (!getLangOptions().CPlusPlus &&
931             Context.typesAreCompatible(ToType, FromType)) {
932    // Compatible conversions (Clang extension for C function overloading)
933    SCS.Second = ICK_Compatible_Conversion;
934  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
935    // Treat a conversion that strips "noreturn" as an identity conversion.
936    SCS.Second = ICK_NoReturn_Adjustment;
937  } else {
938    // No second conversion required.
939    SCS.Second = ICK_Identity;
940  }
941  SCS.setToType(1, FromType);
942
943  QualType CanonFrom;
944  QualType CanonTo;
945  // The third conversion can be a qualification conversion (C++ 4p1).
946  if (IsQualificationConversion(FromType, ToType)) {
947    SCS.Third = ICK_Qualification;
948    FromType = ToType;
949    CanonFrom = Context.getCanonicalType(FromType);
950    CanonTo = Context.getCanonicalType(ToType);
951  } else {
952    // No conversion required
953    SCS.Third = ICK_Identity;
954
955    // C++ [over.best.ics]p6:
956    //   [...] Any difference in top-level cv-qualification is
957    //   subsumed by the initialization itself and does not constitute
958    //   a conversion. [...]
959    CanonFrom = Context.getCanonicalType(FromType);
960    CanonTo = Context.getCanonicalType(ToType);
961    if (CanonFrom.getLocalUnqualifiedType()
962                                       == CanonTo.getLocalUnqualifiedType() &&
963        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
964      FromType = ToType;
965      CanonFrom = CanonTo;
966    }
967  }
968  SCS.setToType(2, FromType);
969
970  // If we have not converted the argument type to the parameter type,
971  // this is a bad conversion sequence.
972  if (CanonFrom != CanonTo)
973    return false;
974
975  return true;
976}
977
978/// IsIntegralPromotion - Determines whether the conversion from the
979/// expression From (whose potentially-adjusted type is FromType) to
980/// ToType is an integral promotion (C++ 4.5). If so, returns true and
981/// sets PromotedType to the promoted type.
982bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
983  const BuiltinType *To = ToType->getAs<BuiltinType>();
984  // All integers are built-in.
985  if (!To) {
986    return false;
987  }
988
989  // An rvalue of type char, signed char, unsigned char, short int, or
990  // unsigned short int can be converted to an rvalue of type int if
991  // int can represent all the values of the source type; otherwise,
992  // the source rvalue can be converted to an rvalue of type unsigned
993  // int (C++ 4.5p1).
994  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
995      !FromType->isEnumeralType()) {
996    if (// We can promote any signed, promotable integer type to an int
997        (FromType->isSignedIntegerType() ||
998         // We can promote any unsigned integer type whose size is
999         // less than int to an int.
1000         (!FromType->isSignedIntegerType() &&
1001          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1002      return To->getKind() == BuiltinType::Int;
1003    }
1004
1005    return To->getKind() == BuiltinType::UInt;
1006  }
1007
1008  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
1009  // can be converted to an rvalue of the first of the following types
1010  // that can represent all the values of its underlying type: int,
1011  // unsigned int, long, or unsigned long (C++ 4.5p2).
1012
1013  // We pre-calculate the promotion type for enum types.
1014  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
1015    if (ToType->isIntegerType())
1016      return Context.hasSameUnqualifiedType(ToType,
1017                                FromEnumType->getDecl()->getPromotionType());
1018
1019  if (FromType->isWideCharType() && ToType->isIntegerType()) {
1020    // Determine whether the type we're converting from is signed or
1021    // unsigned.
1022    bool FromIsSigned;
1023    uint64_t FromSize = Context.getTypeSize(FromType);
1024
1025    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
1026    FromIsSigned = true;
1027
1028    // The types we'll try to promote to, in the appropriate
1029    // order. Try each of these types.
1030    QualType PromoteTypes[6] = {
1031      Context.IntTy, Context.UnsignedIntTy,
1032      Context.LongTy, Context.UnsignedLongTy ,
1033      Context.LongLongTy, Context.UnsignedLongLongTy
1034    };
1035    for (int Idx = 0; Idx < 6; ++Idx) {
1036      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1037      if (FromSize < ToSize ||
1038          (FromSize == ToSize &&
1039           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1040        // We found the type that we can promote to. If this is the
1041        // type we wanted, we have a promotion. Otherwise, no
1042        // promotion.
1043        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1044      }
1045    }
1046  }
1047
1048  // An rvalue for an integral bit-field (9.6) can be converted to an
1049  // rvalue of type int if int can represent all the values of the
1050  // bit-field; otherwise, it can be converted to unsigned int if
1051  // unsigned int can represent all the values of the bit-field. If
1052  // the bit-field is larger yet, no integral promotion applies to
1053  // it. If the bit-field has an enumerated type, it is treated as any
1054  // other value of that type for promotion purposes (C++ 4.5p3).
1055  // FIXME: We should delay checking of bit-fields until we actually perform the
1056  // conversion.
1057  using llvm::APSInt;
1058  if (From)
1059    if (FieldDecl *MemberDecl = From->getBitField()) {
1060      APSInt BitWidth;
1061      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
1062          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1063        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1064        ToSize = Context.getTypeSize(ToType);
1065
1066        // Are we promoting to an int from a bitfield that fits in an int?
1067        if (BitWidth < ToSize ||
1068            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1069          return To->getKind() == BuiltinType::Int;
1070        }
1071
1072        // Are we promoting to an unsigned int from an unsigned bitfield
1073        // that fits into an unsigned int?
1074        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1075          return To->getKind() == BuiltinType::UInt;
1076        }
1077
1078        return false;
1079      }
1080    }
1081
1082  // An rvalue of type bool can be converted to an rvalue of type int,
1083  // with false becoming zero and true becoming one (C++ 4.5p4).
1084  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1085    return true;
1086  }
1087
1088  return false;
1089}
1090
1091/// IsFloatingPointPromotion - Determines whether the conversion from
1092/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1093/// returns true and sets PromotedType to the promoted type.
1094bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1095  /// An rvalue of type float can be converted to an rvalue of type
1096  /// double. (C++ 4.6p1).
1097  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1098    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1099      if (FromBuiltin->getKind() == BuiltinType::Float &&
1100          ToBuiltin->getKind() == BuiltinType::Double)
1101        return true;
1102
1103      // C99 6.3.1.5p1:
1104      //   When a float is promoted to double or long double, or a
1105      //   double is promoted to long double [...].
1106      if (!getLangOptions().CPlusPlus &&
1107          (FromBuiltin->getKind() == BuiltinType::Float ||
1108           FromBuiltin->getKind() == BuiltinType::Double) &&
1109          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1110        return true;
1111    }
1112
1113  return false;
1114}
1115
1116/// \brief Determine if a conversion is a complex promotion.
1117///
1118/// A complex promotion is defined as a complex -> complex conversion
1119/// where the conversion between the underlying real types is a
1120/// floating-point or integral promotion.
1121bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1122  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1123  if (!FromComplex)
1124    return false;
1125
1126  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1127  if (!ToComplex)
1128    return false;
1129
1130  return IsFloatingPointPromotion(FromComplex->getElementType(),
1131                                  ToComplex->getElementType()) ||
1132    IsIntegralPromotion(0, FromComplex->getElementType(),
1133                        ToComplex->getElementType());
1134}
1135
1136/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1137/// the pointer type FromPtr to a pointer to type ToPointee, with the
1138/// same type qualifiers as FromPtr has on its pointee type. ToType,
1139/// if non-empty, will be a pointer to ToType that may or may not have
1140/// the right set of qualifiers on its pointee.
1141static QualType
1142BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
1143                                   QualType ToPointee, QualType ToType,
1144                                   ASTContext &Context) {
1145  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
1146  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1147  Qualifiers Quals = CanonFromPointee.getQualifiers();
1148
1149  // Exact qualifier match -> return the pointer type we're converting to.
1150  if (CanonToPointee.getLocalQualifiers() == Quals) {
1151    // ToType is exactly what we need. Return it.
1152    if (!ToType.isNull())
1153      return ToType;
1154
1155    // Build a pointer to ToPointee. It has the right qualifiers
1156    // already.
1157    return Context.getPointerType(ToPointee);
1158  }
1159
1160  // Just build a canonical type that has the right qualifiers.
1161  return Context.getPointerType(
1162         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
1163                                  Quals));
1164}
1165
1166/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
1167/// the FromType, which is an objective-c pointer, to ToType, which may or may
1168/// not have the right set of qualifiers.
1169static QualType
1170BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
1171                                             QualType ToType,
1172                                             ASTContext &Context) {
1173  QualType CanonFromType = Context.getCanonicalType(FromType);
1174  QualType CanonToType = Context.getCanonicalType(ToType);
1175  Qualifiers Quals = CanonFromType.getQualifiers();
1176
1177  // Exact qualifier match -> return the pointer type we're converting to.
1178  if (CanonToType.getLocalQualifiers() == Quals)
1179    return ToType;
1180
1181  // Just build a canonical type that has the right qualifiers.
1182  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
1183}
1184
1185static bool isNullPointerConstantForConversion(Expr *Expr,
1186                                               bool InOverloadResolution,
1187                                               ASTContext &Context) {
1188  // Handle value-dependent integral null pointer constants correctly.
1189  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1190  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1191      Expr->getType()->isIntegralType())
1192    return !InOverloadResolution;
1193
1194  return Expr->isNullPointerConstant(Context,
1195                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1196                                        : Expr::NPC_ValueDependentIsNull);
1197}
1198
1199/// IsPointerConversion - Determines whether the conversion of the
1200/// expression From, which has the (possibly adjusted) type FromType,
1201/// can be converted to the type ToType via a pointer conversion (C++
1202/// 4.10). If so, returns true and places the converted type (that
1203/// might differ from ToType in its cv-qualifiers at some level) into
1204/// ConvertedType.
1205///
1206/// This routine also supports conversions to and from block pointers
1207/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1208/// pointers to interfaces. FIXME: Once we've determined the
1209/// appropriate overloading rules for Objective-C, we may want to
1210/// split the Objective-C checks into a different routine; however,
1211/// GCC seems to consider all of these conversions to be pointer
1212/// conversions, so for now they live here. IncompatibleObjC will be
1213/// set if the conversion is an allowed Objective-C conversion that
1214/// should result in a warning.
1215bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1216                               bool InOverloadResolution,
1217                               QualType& ConvertedType,
1218                               bool &IncompatibleObjC) {
1219  IncompatibleObjC = false;
1220  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1221    return true;
1222
1223  // Conversion from a null pointer constant to any Objective-C pointer type.
1224  if (ToType->isObjCObjectPointerType() &&
1225      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1226    ConvertedType = ToType;
1227    return true;
1228  }
1229
1230  // Blocks: Block pointers can be converted to void*.
1231  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1232      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1233    ConvertedType = ToType;
1234    return true;
1235  }
1236  // Blocks: A null pointer constant can be converted to a block
1237  // pointer type.
1238  if (ToType->isBlockPointerType() &&
1239      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1240    ConvertedType = ToType;
1241    return true;
1242  }
1243
1244  // If the left-hand-side is nullptr_t, the right side can be a null
1245  // pointer constant.
1246  if (ToType->isNullPtrType() &&
1247      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1248    ConvertedType = ToType;
1249    return true;
1250  }
1251
1252  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1253  if (!ToTypePtr)
1254    return false;
1255
1256  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1257  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1258    ConvertedType = ToType;
1259    return true;
1260  }
1261
1262  // Beyond this point, both types need to be pointers
1263  // , including objective-c pointers.
1264  QualType ToPointeeType = ToTypePtr->getPointeeType();
1265  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1266    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1267                                                       ToType, Context);
1268    return true;
1269
1270  }
1271  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1272  if (!FromTypePtr)
1273    return false;
1274
1275  QualType FromPointeeType = FromTypePtr->getPointeeType();
1276
1277  // An rvalue of type "pointer to cv T," where T is an object type,
1278  // can be converted to an rvalue of type "pointer to cv void" (C++
1279  // 4.10p2).
1280  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1281    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1282                                                       ToPointeeType,
1283                                                       ToType, Context);
1284    return true;
1285  }
1286
1287  // When we're overloading in C, we allow a special kind of pointer
1288  // conversion for compatible-but-not-identical pointee types.
1289  if (!getLangOptions().CPlusPlus &&
1290      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1291    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1292                                                       ToPointeeType,
1293                                                       ToType, Context);
1294    return true;
1295  }
1296
1297  // C++ [conv.ptr]p3:
1298  //
1299  //   An rvalue of type "pointer to cv D," where D is a class type,
1300  //   can be converted to an rvalue of type "pointer to cv B," where
1301  //   B is a base class (clause 10) of D. If B is an inaccessible
1302  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1303  //   necessitates this conversion is ill-formed. The result of the
1304  //   conversion is a pointer to the base class sub-object of the
1305  //   derived class object. The null pointer value is converted to
1306  //   the null pointer value of the destination type.
1307  //
1308  // Note that we do not check for ambiguity or inaccessibility
1309  // here. That is handled by CheckPointerConversion.
1310  if (getLangOptions().CPlusPlus &&
1311      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1312      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1313      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1314      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1315    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1316                                                       ToPointeeType,
1317                                                       ToType, Context);
1318    return true;
1319  }
1320
1321  return false;
1322}
1323
1324/// isObjCPointerConversion - Determines whether this is an
1325/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1326/// with the same arguments and return values.
1327bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1328                                   QualType& ConvertedType,
1329                                   bool &IncompatibleObjC) {
1330  if (!getLangOptions().ObjC1)
1331    return false;
1332
1333  // First, we handle all conversions on ObjC object pointer types.
1334  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1335  const ObjCObjectPointerType *FromObjCPtr =
1336    FromType->getAs<ObjCObjectPointerType>();
1337
1338  if (ToObjCPtr && FromObjCPtr) {
1339    // Objective C++: We're able to convert between "id" or "Class" and a
1340    // pointer to any interface (in both directions).
1341    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1342      ConvertedType = ToType;
1343      return true;
1344    }
1345    // Conversions with Objective-C's id<...>.
1346    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1347         ToObjCPtr->isObjCQualifiedIdType()) &&
1348        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1349                                                  /*compare=*/false)) {
1350      ConvertedType = ToType;
1351      return true;
1352    }
1353    // Objective C++: We're able to convert from a pointer to an
1354    // interface to a pointer to a different interface.
1355    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1356      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1357      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1358      if (getLangOptions().CPlusPlus && LHS && RHS &&
1359          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1360                                                FromObjCPtr->getPointeeType()))
1361        return false;
1362      ConvertedType = ToType;
1363      return true;
1364    }
1365
1366    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1367      // Okay: this is some kind of implicit downcast of Objective-C
1368      // interfaces, which is permitted. However, we're going to
1369      // complain about it.
1370      IncompatibleObjC = true;
1371      ConvertedType = FromType;
1372      return true;
1373    }
1374  }
1375  // Beyond this point, both types need to be C pointers or block pointers.
1376  QualType ToPointeeType;
1377  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1378    ToPointeeType = ToCPtr->getPointeeType();
1379  else if (const BlockPointerType *ToBlockPtr =
1380            ToType->getAs<BlockPointerType>()) {
1381    // Objective C++: We're able to convert from a pointer to any object
1382    // to a block pointer type.
1383    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1384      ConvertedType = ToType;
1385      return true;
1386    }
1387    ToPointeeType = ToBlockPtr->getPointeeType();
1388  }
1389  else if (FromType->getAs<BlockPointerType>() &&
1390           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1391    // Objective C++: We're able to convert from a block pointer type to a
1392    // pointer to any object.
1393    ConvertedType = ToType;
1394    return true;
1395  }
1396  else
1397    return false;
1398
1399  QualType FromPointeeType;
1400  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1401    FromPointeeType = FromCPtr->getPointeeType();
1402  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1403    FromPointeeType = FromBlockPtr->getPointeeType();
1404  else
1405    return false;
1406
1407  // If we have pointers to pointers, recursively check whether this
1408  // is an Objective-C conversion.
1409  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1410      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1411                              IncompatibleObjC)) {
1412    // We always complain about this conversion.
1413    IncompatibleObjC = true;
1414    ConvertedType = ToType;
1415    return true;
1416  }
1417  // Allow conversion of pointee being objective-c pointer to another one;
1418  // as in I* to id.
1419  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1420      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1421      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1422                              IncompatibleObjC)) {
1423    ConvertedType = ToType;
1424    return true;
1425  }
1426
1427  // If we have pointers to functions or blocks, check whether the only
1428  // differences in the argument and result types are in Objective-C
1429  // pointer conversions. If so, we permit the conversion (but
1430  // complain about it).
1431  const FunctionProtoType *FromFunctionType
1432    = FromPointeeType->getAs<FunctionProtoType>();
1433  const FunctionProtoType *ToFunctionType
1434    = ToPointeeType->getAs<FunctionProtoType>();
1435  if (FromFunctionType && ToFunctionType) {
1436    // If the function types are exactly the same, this isn't an
1437    // Objective-C pointer conversion.
1438    if (Context.getCanonicalType(FromPointeeType)
1439          == Context.getCanonicalType(ToPointeeType))
1440      return false;
1441
1442    // Perform the quick checks that will tell us whether these
1443    // function types are obviously different.
1444    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1445        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1446        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1447      return false;
1448
1449    bool HasObjCConversion = false;
1450    if (Context.getCanonicalType(FromFunctionType->getResultType())
1451          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1452      // Okay, the types match exactly. Nothing to do.
1453    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1454                                       ToFunctionType->getResultType(),
1455                                       ConvertedType, IncompatibleObjC)) {
1456      // Okay, we have an Objective-C pointer conversion.
1457      HasObjCConversion = true;
1458    } else {
1459      // Function types are too different. Abort.
1460      return false;
1461    }
1462
1463    // Check argument types.
1464    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1465         ArgIdx != NumArgs; ++ArgIdx) {
1466      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1467      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1468      if (Context.getCanonicalType(FromArgType)
1469            == Context.getCanonicalType(ToArgType)) {
1470        // Okay, the types match exactly. Nothing to do.
1471      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1472                                         ConvertedType, IncompatibleObjC)) {
1473        // Okay, we have an Objective-C pointer conversion.
1474        HasObjCConversion = true;
1475      } else {
1476        // Argument types are too different. Abort.
1477        return false;
1478      }
1479    }
1480
1481    if (HasObjCConversion) {
1482      // We had an Objective-C conversion. Allow this pointer
1483      // conversion, but complain about it.
1484      ConvertedType = ToType;
1485      IncompatibleObjC = true;
1486      return true;
1487    }
1488  }
1489
1490  return false;
1491}
1492
1493/// FunctionArgTypesAreEqual - This routine checks two function proto types
1494/// for equlity of their argument types. Caller has already checked that
1495/// they have same number of arguments. This routine assumes that Objective-C
1496/// pointer types which only differ in their protocol qualifiers are equal.
1497bool Sema::FunctionArgTypesAreEqual(FunctionProtoType*  OldType,
1498                            FunctionProtoType*  NewType){
1499  if (!getLangOptions().ObjC1)
1500    return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
1501                      NewType->arg_type_begin());
1502
1503  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
1504       N = NewType->arg_type_begin(),
1505       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
1506    QualType ToType = (*O);
1507    QualType FromType = (*N);
1508    if (ToType != FromType) {
1509      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
1510        if (const PointerType *PTFr = FromType->getAs<PointerType>())
1511          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
1512               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
1513              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
1514               PTFr->getPointeeType()->isObjCQualifiedClassType()))
1515            continue;
1516      }
1517      else if (ToType->isObjCObjectPointerType() &&
1518               FromType->isObjCObjectPointerType()) {
1519        QualType ToInterfaceTy = ToType->getPointeeType();
1520        QualType FromInterfaceTy = FromType->getPointeeType();
1521        if (const ObjCInterfaceType *OITTo =
1522            ToInterfaceTy->getAs<ObjCInterfaceType>())
1523          if (const ObjCInterfaceType *OITFr =
1524              FromInterfaceTy->getAs<ObjCInterfaceType>())
1525            if (OITTo->getDecl() == OITFr->getDecl())
1526              continue;
1527      }
1528      return false;
1529    }
1530  }
1531  return true;
1532}
1533
1534/// CheckPointerConversion - Check the pointer conversion from the
1535/// expression From to the type ToType. This routine checks for
1536/// ambiguous or inaccessible derived-to-base pointer
1537/// conversions for which IsPointerConversion has already returned
1538/// true. It returns true and produces a diagnostic if there was an
1539/// error, or returns false otherwise.
1540bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1541                                  CastExpr::CastKind &Kind,
1542                                  CXXBaseSpecifierArray& BasePath,
1543                                  bool IgnoreBaseAccess) {
1544  QualType FromType = From->getType();
1545
1546  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1547    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1548      QualType FromPointeeType = FromPtrType->getPointeeType(),
1549               ToPointeeType   = ToPtrType->getPointeeType();
1550
1551      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1552          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1553        // We must have a derived-to-base conversion. Check an
1554        // ambiguous or inaccessible conversion.
1555        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1556                                         From->getExprLoc(),
1557                                         From->getSourceRange(), &BasePath,
1558                                         IgnoreBaseAccess))
1559          return true;
1560
1561        // The conversion was successful.
1562        Kind = CastExpr::CK_DerivedToBase;
1563      }
1564    }
1565  if (const ObjCObjectPointerType *FromPtrType =
1566        FromType->getAs<ObjCObjectPointerType>())
1567    if (const ObjCObjectPointerType *ToPtrType =
1568          ToType->getAs<ObjCObjectPointerType>()) {
1569      // Objective-C++ conversions are always okay.
1570      // FIXME: We should have a different class of conversions for the
1571      // Objective-C++ implicit conversions.
1572      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1573        return false;
1574
1575  }
1576  return false;
1577}
1578
1579/// IsMemberPointerConversion - Determines whether the conversion of the
1580/// expression From, which has the (possibly adjusted) type FromType, can be
1581/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1582/// If so, returns true and places the converted type (that might differ from
1583/// ToType in its cv-qualifiers at some level) into ConvertedType.
1584bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1585                                     QualType ToType,
1586                                     bool InOverloadResolution,
1587                                     QualType &ConvertedType) {
1588  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1589  if (!ToTypePtr)
1590    return false;
1591
1592  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1593  if (From->isNullPointerConstant(Context,
1594                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1595                                        : Expr::NPC_ValueDependentIsNull)) {
1596    ConvertedType = ToType;
1597    return true;
1598  }
1599
1600  // Otherwise, both types have to be member pointers.
1601  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1602  if (!FromTypePtr)
1603    return false;
1604
1605  // A pointer to member of B can be converted to a pointer to member of D,
1606  // where D is derived from B (C++ 4.11p2).
1607  QualType FromClass(FromTypePtr->getClass(), 0);
1608  QualType ToClass(ToTypePtr->getClass(), 0);
1609  // FIXME: What happens when these are dependent? Is this function even called?
1610
1611  if (IsDerivedFrom(ToClass, FromClass)) {
1612    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1613                                                 ToClass.getTypePtr());
1614    return true;
1615  }
1616
1617  return false;
1618}
1619
1620/// CheckMemberPointerConversion - Check the member pointer conversion from the
1621/// expression From to the type ToType. This routine checks for ambiguous or
1622/// virtual or inaccessible base-to-derived member pointer conversions
1623/// for which IsMemberPointerConversion has already returned true. It returns
1624/// true and produces a diagnostic if there was an error, or returns false
1625/// otherwise.
1626bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1627                                        CastExpr::CastKind &Kind,
1628                                        CXXBaseSpecifierArray &BasePath,
1629                                        bool IgnoreBaseAccess) {
1630  QualType FromType = From->getType();
1631  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1632  if (!FromPtrType) {
1633    // This must be a null pointer to member pointer conversion
1634    assert(From->isNullPointerConstant(Context,
1635                                       Expr::NPC_ValueDependentIsNull) &&
1636           "Expr must be null pointer constant!");
1637    Kind = CastExpr::CK_NullToMemberPointer;
1638    return false;
1639  }
1640
1641  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1642  assert(ToPtrType && "No member pointer cast has a target type "
1643                      "that is not a member pointer.");
1644
1645  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1646  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1647
1648  // FIXME: What about dependent types?
1649  assert(FromClass->isRecordType() && "Pointer into non-class.");
1650  assert(ToClass->isRecordType() && "Pointer into non-class.");
1651
1652  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1653                     /*DetectVirtual=*/true);
1654  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1655  assert(DerivationOkay &&
1656         "Should not have been called if derivation isn't OK.");
1657  (void)DerivationOkay;
1658
1659  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1660                                  getUnqualifiedType())) {
1661    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1662    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1663      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1664    return true;
1665  }
1666
1667  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1668    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1669      << FromClass << ToClass << QualType(VBase, 0)
1670      << From->getSourceRange();
1671    return true;
1672  }
1673
1674  if (!IgnoreBaseAccess)
1675    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1676                         Paths.front(),
1677                         diag::err_downcast_from_inaccessible_base);
1678
1679  // Must be a base to derived member conversion.
1680  BuildBasePathArray(Paths, BasePath);
1681  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1682  return false;
1683}
1684
1685/// IsQualificationConversion - Determines whether the conversion from
1686/// an rvalue of type FromType to ToType is a qualification conversion
1687/// (C++ 4.4).
1688bool
1689Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1690  FromType = Context.getCanonicalType(FromType);
1691  ToType = Context.getCanonicalType(ToType);
1692
1693  // If FromType and ToType are the same type, this is not a
1694  // qualification conversion.
1695  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1696    return false;
1697
1698  // (C++ 4.4p4):
1699  //   A conversion can add cv-qualifiers at levels other than the first
1700  //   in multi-level pointers, subject to the following rules: [...]
1701  bool PreviousToQualsIncludeConst = true;
1702  bool UnwrappedAnyPointer = false;
1703  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1704    // Within each iteration of the loop, we check the qualifiers to
1705    // determine if this still looks like a qualification
1706    // conversion. Then, if all is well, we unwrap one more level of
1707    // pointers or pointers-to-members and do it all again
1708    // until there are no more pointers or pointers-to-members left to
1709    // unwrap.
1710    UnwrappedAnyPointer = true;
1711
1712    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1713    //      2,j, and similarly for volatile.
1714    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1715      return false;
1716
1717    //   -- if the cv 1,j and cv 2,j are different, then const is in
1718    //      every cv for 0 < k < j.
1719    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1720        && !PreviousToQualsIncludeConst)
1721      return false;
1722
1723    // Keep track of whether all prior cv-qualifiers in the "to" type
1724    // include const.
1725    PreviousToQualsIncludeConst
1726      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1727  }
1728
1729  // We are left with FromType and ToType being the pointee types
1730  // after unwrapping the original FromType and ToType the same number
1731  // of types. If we unwrapped any pointers, and if FromType and
1732  // ToType have the same unqualified type (since we checked
1733  // qualifiers above), then this is a qualification conversion.
1734  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1735}
1736
1737/// Determines whether there is a user-defined conversion sequence
1738/// (C++ [over.ics.user]) that converts expression From to the type
1739/// ToType. If such a conversion exists, User will contain the
1740/// user-defined conversion sequence that performs such a conversion
1741/// and this routine will return true. Otherwise, this routine returns
1742/// false and User is unspecified.
1743///
1744/// \param AllowExplicit  true if the conversion should consider C++0x
1745/// "explicit" conversion functions as well as non-explicit conversion
1746/// functions (C++0x [class.conv.fct]p2).
1747OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1748                                          UserDefinedConversionSequence& User,
1749                                           OverloadCandidateSet& CandidateSet,
1750                                                bool AllowExplicit) {
1751  // Whether we will only visit constructors.
1752  bool ConstructorsOnly = false;
1753
1754  // If the type we are conversion to is a class type, enumerate its
1755  // constructors.
1756  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1757    // C++ [over.match.ctor]p1:
1758    //   When objects of class type are direct-initialized (8.5), or
1759    //   copy-initialized from an expression of the same or a
1760    //   derived class type (8.5), overload resolution selects the
1761    //   constructor. [...] For copy-initialization, the candidate
1762    //   functions are all the converting constructors (12.3.1) of
1763    //   that class. The argument list is the expression-list within
1764    //   the parentheses of the initializer.
1765    if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1766        (From->getType()->getAs<RecordType>() &&
1767         IsDerivedFrom(From->getType(), ToType)))
1768      ConstructorsOnly = true;
1769
1770    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1771      // We're not going to find any constructors.
1772    } else if (CXXRecordDecl *ToRecordDecl
1773                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1774      DeclarationName ConstructorName
1775        = Context.DeclarationNames.getCXXConstructorName(
1776                       Context.getCanonicalType(ToType).getUnqualifiedType());
1777      DeclContext::lookup_iterator Con, ConEnd;
1778      for (llvm::tie(Con, ConEnd)
1779             = ToRecordDecl->lookup(ConstructorName);
1780           Con != ConEnd; ++Con) {
1781        NamedDecl *D = *Con;
1782        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
1783
1784        // Find the constructor (which may be a template).
1785        CXXConstructorDecl *Constructor = 0;
1786        FunctionTemplateDecl *ConstructorTmpl
1787          = dyn_cast<FunctionTemplateDecl>(D);
1788        if (ConstructorTmpl)
1789          Constructor
1790            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1791        else
1792          Constructor = cast<CXXConstructorDecl>(D);
1793
1794        if (!Constructor->isInvalidDecl() &&
1795            Constructor->isConvertingConstructor(AllowExplicit)) {
1796          if (ConstructorTmpl)
1797            AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
1798                                         /*ExplicitArgs*/ 0,
1799                                         &From, 1, CandidateSet,
1800                                 /*SuppressUserConversions=*/!ConstructorsOnly);
1801          else
1802            // Allow one user-defined conversion when user specifies a
1803            // From->ToType conversion via an static cast (c-style, etc).
1804            AddOverloadCandidate(Constructor, FoundDecl,
1805                                 &From, 1, CandidateSet,
1806                                 /*SuppressUserConversions=*/!ConstructorsOnly);
1807        }
1808      }
1809    }
1810  }
1811
1812  // Enumerate conversion functions, if we're allowed to.
1813  if (ConstructorsOnly) {
1814  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1815                          PDiag(0) << From->getSourceRange())) {
1816    // No conversion functions from incomplete types.
1817  } else if (const RecordType *FromRecordType
1818                                   = From->getType()->getAs<RecordType>()) {
1819    if (CXXRecordDecl *FromRecordDecl
1820         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1821      // Add all of the conversion functions as candidates.
1822      const UnresolvedSetImpl *Conversions
1823        = FromRecordDecl->getVisibleConversionFunctions();
1824      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1825             E = Conversions->end(); I != E; ++I) {
1826        DeclAccessPair FoundDecl = I.getPair();
1827        NamedDecl *D = FoundDecl.getDecl();
1828        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1829        if (isa<UsingShadowDecl>(D))
1830          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1831
1832        CXXConversionDecl *Conv;
1833        FunctionTemplateDecl *ConvTemplate;
1834        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
1835          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1836        else
1837          Conv = cast<CXXConversionDecl>(D);
1838
1839        if (AllowExplicit || !Conv->isExplicit()) {
1840          if (ConvTemplate)
1841            AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
1842                                           ActingContext, From, ToType,
1843                                           CandidateSet);
1844          else
1845            AddConversionCandidate(Conv, FoundDecl, ActingContext,
1846                                   From, ToType, CandidateSet);
1847        }
1848      }
1849    }
1850  }
1851
1852  OverloadCandidateSet::iterator Best;
1853  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1854    case OR_Success:
1855      // Record the standard conversion we used and the conversion function.
1856      if (CXXConstructorDecl *Constructor
1857            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1858        // C++ [over.ics.user]p1:
1859        //   If the user-defined conversion is specified by a
1860        //   constructor (12.3.1), the initial standard conversion
1861        //   sequence converts the source type to the type required by
1862        //   the argument of the constructor.
1863        //
1864        QualType ThisType = Constructor->getThisType(Context);
1865        if (Best->Conversions[0].isEllipsis())
1866          User.EllipsisConversion = true;
1867        else {
1868          User.Before = Best->Conversions[0].Standard;
1869          User.EllipsisConversion = false;
1870        }
1871        User.ConversionFunction = Constructor;
1872        User.After.setAsIdentityConversion();
1873        User.After.setFromType(
1874          ThisType->getAs<PointerType>()->getPointeeType());
1875        User.After.setAllToTypes(ToType);
1876        return OR_Success;
1877      } else if (CXXConversionDecl *Conversion
1878                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1879        // C++ [over.ics.user]p1:
1880        //
1881        //   [...] If the user-defined conversion is specified by a
1882        //   conversion function (12.3.2), the initial standard
1883        //   conversion sequence converts the source type to the
1884        //   implicit object parameter of the conversion function.
1885        User.Before = Best->Conversions[0].Standard;
1886        User.ConversionFunction = Conversion;
1887        User.EllipsisConversion = false;
1888
1889        // C++ [over.ics.user]p2:
1890        //   The second standard conversion sequence converts the
1891        //   result of the user-defined conversion to the target type
1892        //   for the sequence. Since an implicit conversion sequence
1893        //   is an initialization, the special rules for
1894        //   initialization by user-defined conversion apply when
1895        //   selecting the best user-defined conversion for a
1896        //   user-defined conversion sequence (see 13.3.3 and
1897        //   13.3.3.1).
1898        User.After = Best->FinalConversion;
1899        return OR_Success;
1900      } else {
1901        assert(false && "Not a constructor or conversion function?");
1902        return OR_No_Viable_Function;
1903      }
1904
1905    case OR_No_Viable_Function:
1906      return OR_No_Viable_Function;
1907    case OR_Deleted:
1908      // No conversion here! We're done.
1909      return OR_Deleted;
1910
1911    case OR_Ambiguous:
1912      return OR_Ambiguous;
1913    }
1914
1915  return OR_No_Viable_Function;
1916}
1917
1918bool
1919Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1920  ImplicitConversionSequence ICS;
1921  OverloadCandidateSet CandidateSet(From->getExprLoc());
1922  OverloadingResult OvResult =
1923    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1924                            CandidateSet, false);
1925  if (OvResult == OR_Ambiguous)
1926    Diag(From->getSourceRange().getBegin(),
1927         diag::err_typecheck_ambiguous_condition)
1928          << From->getType() << ToType << From->getSourceRange();
1929  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1930    Diag(From->getSourceRange().getBegin(),
1931         diag::err_typecheck_nonviable_condition)
1932    << From->getType() << ToType << From->getSourceRange();
1933  else
1934    return false;
1935  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1936  return true;
1937}
1938
1939/// CompareImplicitConversionSequences - Compare two implicit
1940/// conversion sequences to determine whether one is better than the
1941/// other or if they are indistinguishable (C++ 13.3.3.2).
1942ImplicitConversionSequence::CompareKind
1943Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1944                                         const ImplicitConversionSequence& ICS2)
1945{
1946  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1947  // conversion sequences (as defined in 13.3.3.1)
1948  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1949  //      conversion sequence than a user-defined conversion sequence or
1950  //      an ellipsis conversion sequence, and
1951  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1952  //      conversion sequence than an ellipsis conversion sequence
1953  //      (13.3.3.1.3).
1954  //
1955  // C++0x [over.best.ics]p10:
1956  //   For the purpose of ranking implicit conversion sequences as
1957  //   described in 13.3.3.2, the ambiguous conversion sequence is
1958  //   treated as a user-defined sequence that is indistinguishable
1959  //   from any other user-defined conversion sequence.
1960  if (ICS1.getKindRank() < ICS2.getKindRank())
1961    return ImplicitConversionSequence::Better;
1962  else if (ICS2.getKindRank() < ICS1.getKindRank())
1963    return ImplicitConversionSequence::Worse;
1964
1965  // The following checks require both conversion sequences to be of
1966  // the same kind.
1967  if (ICS1.getKind() != ICS2.getKind())
1968    return ImplicitConversionSequence::Indistinguishable;
1969
1970  // Two implicit conversion sequences of the same form are
1971  // indistinguishable conversion sequences unless one of the
1972  // following rules apply: (C++ 13.3.3.2p3):
1973  if (ICS1.isStandard())
1974    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1975  else if (ICS1.isUserDefined()) {
1976    // User-defined conversion sequence U1 is a better conversion
1977    // sequence than another user-defined conversion sequence U2 if
1978    // they contain the same user-defined conversion function or
1979    // constructor and if the second standard conversion sequence of
1980    // U1 is better than the second standard conversion sequence of
1981    // U2 (C++ 13.3.3.2p3).
1982    if (ICS1.UserDefined.ConversionFunction ==
1983          ICS2.UserDefined.ConversionFunction)
1984      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1985                                                ICS2.UserDefined.After);
1986  }
1987
1988  return ImplicitConversionSequence::Indistinguishable;
1989}
1990
1991// Per 13.3.3.2p3, compare the given standard conversion sequences to
1992// determine if one is a proper subset of the other.
1993static ImplicitConversionSequence::CompareKind
1994compareStandardConversionSubsets(ASTContext &Context,
1995                                 const StandardConversionSequence& SCS1,
1996                                 const StandardConversionSequence& SCS2) {
1997  ImplicitConversionSequence::CompareKind Result
1998    = ImplicitConversionSequence::Indistinguishable;
1999
2000  if (SCS1.Second != SCS2.Second) {
2001    if (SCS1.Second == ICK_Identity)
2002      Result = ImplicitConversionSequence::Better;
2003    else if (SCS2.Second == ICK_Identity)
2004      Result = ImplicitConversionSequence::Worse;
2005    else
2006      return ImplicitConversionSequence::Indistinguishable;
2007  } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
2008    return ImplicitConversionSequence::Indistinguishable;
2009
2010  if (SCS1.Third == SCS2.Third) {
2011    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
2012                             : ImplicitConversionSequence::Indistinguishable;
2013  }
2014
2015  if (SCS1.Third == ICK_Identity)
2016    return Result == ImplicitConversionSequence::Worse
2017             ? ImplicitConversionSequence::Indistinguishable
2018             : ImplicitConversionSequence::Better;
2019
2020  if (SCS2.Third == ICK_Identity)
2021    return Result == ImplicitConversionSequence::Better
2022             ? ImplicitConversionSequence::Indistinguishable
2023             : ImplicitConversionSequence::Worse;
2024
2025  return ImplicitConversionSequence::Indistinguishable;
2026}
2027
2028/// CompareStandardConversionSequences - Compare two standard
2029/// conversion sequences to determine whether one is better than the
2030/// other or if they are indistinguishable (C++ 13.3.3.2p3).
2031ImplicitConversionSequence::CompareKind
2032Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
2033                                         const StandardConversionSequence& SCS2)
2034{
2035  // Standard conversion sequence S1 is a better conversion sequence
2036  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
2037
2038  //  -- S1 is a proper subsequence of S2 (comparing the conversion
2039  //     sequences in the canonical form defined by 13.3.3.1.1,
2040  //     excluding any Lvalue Transformation; the identity conversion
2041  //     sequence is considered to be a subsequence of any
2042  //     non-identity conversion sequence) or, if not that,
2043  if (ImplicitConversionSequence::CompareKind CK
2044        = compareStandardConversionSubsets(Context, SCS1, SCS2))
2045    return CK;
2046
2047  //  -- the rank of S1 is better than the rank of S2 (by the rules
2048  //     defined below), or, if not that,
2049  ImplicitConversionRank Rank1 = SCS1.getRank();
2050  ImplicitConversionRank Rank2 = SCS2.getRank();
2051  if (Rank1 < Rank2)
2052    return ImplicitConversionSequence::Better;
2053  else if (Rank2 < Rank1)
2054    return ImplicitConversionSequence::Worse;
2055
2056  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
2057  // are indistinguishable unless one of the following rules
2058  // applies:
2059
2060  //   A conversion that is not a conversion of a pointer, or
2061  //   pointer to member, to bool is better than another conversion
2062  //   that is such a conversion.
2063  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
2064    return SCS2.isPointerConversionToBool()
2065             ? ImplicitConversionSequence::Better
2066             : ImplicitConversionSequence::Worse;
2067
2068  // C++ [over.ics.rank]p4b2:
2069  //
2070  //   If class B is derived directly or indirectly from class A,
2071  //   conversion of B* to A* is better than conversion of B* to
2072  //   void*, and conversion of A* to void* is better than conversion
2073  //   of B* to void*.
2074  bool SCS1ConvertsToVoid
2075    = SCS1.isPointerConversionToVoidPointer(Context);
2076  bool SCS2ConvertsToVoid
2077    = SCS2.isPointerConversionToVoidPointer(Context);
2078  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
2079    // Exactly one of the conversion sequences is a conversion to
2080    // a void pointer; it's the worse conversion.
2081    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
2082                              : ImplicitConversionSequence::Worse;
2083  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
2084    // Neither conversion sequence converts to a void pointer; compare
2085    // their derived-to-base conversions.
2086    if (ImplicitConversionSequence::CompareKind DerivedCK
2087          = CompareDerivedToBaseConversions(SCS1, SCS2))
2088      return DerivedCK;
2089  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
2090    // Both conversion sequences are conversions to void
2091    // pointers. Compare the source types to determine if there's an
2092    // inheritance relationship in their sources.
2093    QualType FromType1 = SCS1.getFromType();
2094    QualType FromType2 = SCS2.getFromType();
2095
2096    // Adjust the types we're converting from via the array-to-pointer
2097    // conversion, if we need to.
2098    if (SCS1.First == ICK_Array_To_Pointer)
2099      FromType1 = Context.getArrayDecayedType(FromType1);
2100    if (SCS2.First == ICK_Array_To_Pointer)
2101      FromType2 = Context.getArrayDecayedType(FromType2);
2102
2103    QualType FromPointee1
2104      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2105    QualType FromPointee2
2106      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2107
2108    if (IsDerivedFrom(FromPointee2, FromPointee1))
2109      return ImplicitConversionSequence::Better;
2110    else if (IsDerivedFrom(FromPointee1, FromPointee2))
2111      return ImplicitConversionSequence::Worse;
2112
2113    // Objective-C++: If one interface is more specific than the
2114    // other, it is the better one.
2115    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2116    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2117    if (FromIface1 && FromIface1) {
2118      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2119        return ImplicitConversionSequence::Better;
2120      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2121        return ImplicitConversionSequence::Worse;
2122    }
2123  }
2124
2125  // Compare based on qualification conversions (C++ 13.3.3.2p3,
2126  // bullet 3).
2127  if (ImplicitConversionSequence::CompareKind QualCK
2128        = CompareQualificationConversions(SCS1, SCS2))
2129    return QualCK;
2130
2131  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
2132    // C++0x [over.ics.rank]p3b4:
2133    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
2134    //      implicit object parameter of a non-static member function declared
2135    //      without a ref-qualifier, and S1 binds an rvalue reference to an
2136    //      rvalue and S2 binds an lvalue reference.
2137    // FIXME: We don't know if we're dealing with the implicit object parameter,
2138    // or if the member function in this case has a ref qualifier.
2139    // (Of course, we don't have ref qualifiers yet.)
2140    if (SCS1.RRefBinding != SCS2.RRefBinding)
2141      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
2142                              : ImplicitConversionSequence::Worse;
2143
2144    // C++ [over.ics.rank]p3b4:
2145    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
2146    //      which the references refer are the same type except for
2147    //      top-level cv-qualifiers, and the type to which the reference
2148    //      initialized by S2 refers is more cv-qualified than the type
2149    //      to which the reference initialized by S1 refers.
2150    QualType T1 = SCS1.getToType(2);
2151    QualType T2 = SCS2.getToType(2);
2152    T1 = Context.getCanonicalType(T1);
2153    T2 = Context.getCanonicalType(T2);
2154    Qualifiers T1Quals, T2Quals;
2155    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2156    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2157    if (UnqualT1 == UnqualT2) {
2158      // If the type is an array type, promote the element qualifiers to the type
2159      // for comparison.
2160      if (isa<ArrayType>(T1) && T1Quals)
2161        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2162      if (isa<ArrayType>(T2) && T2Quals)
2163        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2164      if (T2.isMoreQualifiedThan(T1))
2165        return ImplicitConversionSequence::Better;
2166      else if (T1.isMoreQualifiedThan(T2))
2167        return ImplicitConversionSequence::Worse;
2168    }
2169  }
2170
2171  return ImplicitConversionSequence::Indistinguishable;
2172}
2173
2174/// CompareQualificationConversions - Compares two standard conversion
2175/// sequences to determine whether they can be ranked based on their
2176/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
2177ImplicitConversionSequence::CompareKind
2178Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
2179                                      const StandardConversionSequence& SCS2) {
2180  // C++ 13.3.3.2p3:
2181  //  -- S1 and S2 differ only in their qualification conversion and
2182  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
2183  //     cv-qualification signature of type T1 is a proper subset of
2184  //     the cv-qualification signature of type T2, and S1 is not the
2185  //     deprecated string literal array-to-pointer conversion (4.2).
2186  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
2187      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
2188    return ImplicitConversionSequence::Indistinguishable;
2189
2190  // FIXME: the example in the standard doesn't use a qualification
2191  // conversion (!)
2192  QualType T1 = SCS1.getToType(2);
2193  QualType T2 = SCS2.getToType(2);
2194  T1 = Context.getCanonicalType(T1);
2195  T2 = Context.getCanonicalType(T2);
2196  Qualifiers T1Quals, T2Quals;
2197  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2198  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2199
2200  // If the types are the same, we won't learn anything by unwrapped
2201  // them.
2202  if (UnqualT1 == UnqualT2)
2203    return ImplicitConversionSequence::Indistinguishable;
2204
2205  // If the type is an array type, promote the element qualifiers to the type
2206  // for comparison.
2207  if (isa<ArrayType>(T1) && T1Quals)
2208    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2209  if (isa<ArrayType>(T2) && T2Quals)
2210    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2211
2212  ImplicitConversionSequence::CompareKind Result
2213    = ImplicitConversionSequence::Indistinguishable;
2214  while (UnwrapSimilarPointerTypes(T1, T2)) {
2215    // Within each iteration of the loop, we check the qualifiers to
2216    // determine if this still looks like a qualification
2217    // conversion. Then, if all is well, we unwrap one more level of
2218    // pointers or pointers-to-members and do it all again
2219    // until there are no more pointers or pointers-to-members left
2220    // to unwrap. This essentially mimics what
2221    // IsQualificationConversion does, but here we're checking for a
2222    // strict subset of qualifiers.
2223    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2224      // The qualifiers are the same, so this doesn't tell us anything
2225      // about how the sequences rank.
2226      ;
2227    else if (T2.isMoreQualifiedThan(T1)) {
2228      // T1 has fewer qualifiers, so it could be the better sequence.
2229      if (Result == ImplicitConversionSequence::Worse)
2230        // Neither has qualifiers that are a subset of the other's
2231        // qualifiers.
2232        return ImplicitConversionSequence::Indistinguishable;
2233
2234      Result = ImplicitConversionSequence::Better;
2235    } else if (T1.isMoreQualifiedThan(T2)) {
2236      // T2 has fewer qualifiers, so it could be the better sequence.
2237      if (Result == ImplicitConversionSequence::Better)
2238        // Neither has qualifiers that are a subset of the other's
2239        // qualifiers.
2240        return ImplicitConversionSequence::Indistinguishable;
2241
2242      Result = ImplicitConversionSequence::Worse;
2243    } else {
2244      // Qualifiers are disjoint.
2245      return ImplicitConversionSequence::Indistinguishable;
2246    }
2247
2248    // If the types after this point are equivalent, we're done.
2249    if (Context.hasSameUnqualifiedType(T1, T2))
2250      break;
2251  }
2252
2253  // Check that the winning standard conversion sequence isn't using
2254  // the deprecated string literal array to pointer conversion.
2255  switch (Result) {
2256  case ImplicitConversionSequence::Better:
2257    if (SCS1.DeprecatedStringLiteralToCharPtr)
2258      Result = ImplicitConversionSequence::Indistinguishable;
2259    break;
2260
2261  case ImplicitConversionSequence::Indistinguishable:
2262    break;
2263
2264  case ImplicitConversionSequence::Worse:
2265    if (SCS2.DeprecatedStringLiteralToCharPtr)
2266      Result = ImplicitConversionSequence::Indistinguishable;
2267    break;
2268  }
2269
2270  return Result;
2271}
2272
2273/// CompareDerivedToBaseConversions - Compares two standard conversion
2274/// sequences to determine whether they can be ranked based on their
2275/// various kinds of derived-to-base conversions (C++
2276/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2277/// conversions between Objective-C interface types.
2278ImplicitConversionSequence::CompareKind
2279Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2280                                      const StandardConversionSequence& SCS2) {
2281  QualType FromType1 = SCS1.getFromType();
2282  QualType ToType1 = SCS1.getToType(1);
2283  QualType FromType2 = SCS2.getFromType();
2284  QualType ToType2 = SCS2.getToType(1);
2285
2286  // Adjust the types we're converting from via the array-to-pointer
2287  // conversion, if we need to.
2288  if (SCS1.First == ICK_Array_To_Pointer)
2289    FromType1 = Context.getArrayDecayedType(FromType1);
2290  if (SCS2.First == ICK_Array_To_Pointer)
2291    FromType2 = Context.getArrayDecayedType(FromType2);
2292
2293  // Canonicalize all of the types.
2294  FromType1 = Context.getCanonicalType(FromType1);
2295  ToType1 = Context.getCanonicalType(ToType1);
2296  FromType2 = Context.getCanonicalType(FromType2);
2297  ToType2 = Context.getCanonicalType(ToType2);
2298
2299  // C++ [over.ics.rank]p4b3:
2300  //
2301  //   If class B is derived directly or indirectly from class A and
2302  //   class C is derived directly or indirectly from B,
2303  //
2304  // For Objective-C, we let A, B, and C also be Objective-C
2305  // interfaces.
2306
2307  // Compare based on pointer conversions.
2308  if (SCS1.Second == ICK_Pointer_Conversion &&
2309      SCS2.Second == ICK_Pointer_Conversion &&
2310      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2311      FromType1->isPointerType() && FromType2->isPointerType() &&
2312      ToType1->isPointerType() && ToType2->isPointerType()) {
2313    QualType FromPointee1
2314      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2315    QualType ToPointee1
2316      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2317    QualType FromPointee2
2318      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2319    QualType ToPointee2
2320      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2321
2322    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2323    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2324    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2325    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2326
2327    //   -- conversion of C* to B* is better than conversion of C* to A*,
2328    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2329      if (IsDerivedFrom(ToPointee1, ToPointee2))
2330        return ImplicitConversionSequence::Better;
2331      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2332        return ImplicitConversionSequence::Worse;
2333
2334      if (ToIface1 && ToIface2) {
2335        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2336          return ImplicitConversionSequence::Better;
2337        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2338          return ImplicitConversionSequence::Worse;
2339      }
2340    }
2341
2342    //   -- conversion of B* to A* is better than conversion of C* to A*,
2343    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2344      if (IsDerivedFrom(FromPointee2, FromPointee1))
2345        return ImplicitConversionSequence::Better;
2346      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2347        return ImplicitConversionSequence::Worse;
2348
2349      if (FromIface1 && FromIface2) {
2350        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2351          return ImplicitConversionSequence::Better;
2352        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2353          return ImplicitConversionSequence::Worse;
2354      }
2355    }
2356  }
2357
2358  // Ranking of member-pointer types.
2359  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2360      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2361      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2362    const MemberPointerType * FromMemPointer1 =
2363                                        FromType1->getAs<MemberPointerType>();
2364    const MemberPointerType * ToMemPointer1 =
2365                                          ToType1->getAs<MemberPointerType>();
2366    const MemberPointerType * FromMemPointer2 =
2367                                          FromType2->getAs<MemberPointerType>();
2368    const MemberPointerType * ToMemPointer2 =
2369                                          ToType2->getAs<MemberPointerType>();
2370    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2371    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2372    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2373    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2374    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2375    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2376    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2377    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2378    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2379    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2380      if (IsDerivedFrom(ToPointee1, ToPointee2))
2381        return ImplicitConversionSequence::Worse;
2382      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2383        return ImplicitConversionSequence::Better;
2384    }
2385    // conversion of B::* to C::* is better than conversion of A::* to C::*
2386    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2387      if (IsDerivedFrom(FromPointee1, FromPointee2))
2388        return ImplicitConversionSequence::Better;
2389      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2390        return ImplicitConversionSequence::Worse;
2391    }
2392  }
2393
2394  if (SCS1.Second == ICK_Derived_To_Base) {
2395    //   -- conversion of C to B is better than conversion of C to A,
2396    //   -- binding of an expression of type C to a reference of type
2397    //      B& is better than binding an expression of type C to a
2398    //      reference of type A&,
2399    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2400        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2401      if (IsDerivedFrom(ToType1, ToType2))
2402        return ImplicitConversionSequence::Better;
2403      else if (IsDerivedFrom(ToType2, ToType1))
2404        return ImplicitConversionSequence::Worse;
2405    }
2406
2407    //   -- conversion of B to A is better than conversion of C to A.
2408    //   -- binding of an expression of type B to a reference of type
2409    //      A& is better than binding an expression of type C to a
2410    //      reference of type A&,
2411    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2412        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2413      if (IsDerivedFrom(FromType2, FromType1))
2414        return ImplicitConversionSequence::Better;
2415      else if (IsDerivedFrom(FromType1, FromType2))
2416        return ImplicitConversionSequence::Worse;
2417    }
2418  }
2419
2420  return ImplicitConversionSequence::Indistinguishable;
2421}
2422
2423/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2424/// determine whether they are reference-related,
2425/// reference-compatible, reference-compatible with added
2426/// qualification, or incompatible, for use in C++ initialization by
2427/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2428/// type, and the first type (T1) is the pointee type of the reference
2429/// type being initialized.
2430Sema::ReferenceCompareResult
2431Sema::CompareReferenceRelationship(SourceLocation Loc,
2432                                   QualType OrigT1, QualType OrigT2,
2433                                   bool& DerivedToBase) {
2434  assert(!OrigT1->isReferenceType() &&
2435    "T1 must be the pointee type of the reference type");
2436  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
2437
2438  QualType T1 = Context.getCanonicalType(OrigT1);
2439  QualType T2 = Context.getCanonicalType(OrigT2);
2440  Qualifiers T1Quals, T2Quals;
2441  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2442  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2443
2444  // C++ [dcl.init.ref]p4:
2445  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2446  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2447  //   T1 is a base class of T2.
2448  if (UnqualT1 == UnqualT2)
2449    DerivedToBase = false;
2450  else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
2451           IsDerivedFrom(UnqualT2, UnqualT1))
2452    DerivedToBase = true;
2453  else
2454    return Ref_Incompatible;
2455
2456  // At this point, we know that T1 and T2 are reference-related (at
2457  // least).
2458
2459  // If the type is an array type, promote the element qualifiers to the type
2460  // for comparison.
2461  if (isa<ArrayType>(T1) && T1Quals)
2462    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2463  if (isa<ArrayType>(T2) && T2Quals)
2464    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2465
2466  // C++ [dcl.init.ref]p4:
2467  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2468  //   reference-related to T2 and cv1 is the same cv-qualification
2469  //   as, or greater cv-qualification than, cv2. For purposes of
2470  //   overload resolution, cases for which cv1 is greater
2471  //   cv-qualification than cv2 are identified as
2472  //   reference-compatible with added qualification (see 13.3.3.2).
2473  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
2474    return Ref_Compatible;
2475  else if (T1.isMoreQualifiedThan(T2))
2476    return Ref_Compatible_With_Added_Qualification;
2477  else
2478    return Ref_Related;
2479}
2480
2481/// \brief Compute an implicit conversion sequence for reference
2482/// initialization.
2483static ImplicitConversionSequence
2484TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
2485                 SourceLocation DeclLoc,
2486                 bool SuppressUserConversions,
2487                 bool AllowExplicit) {
2488  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2489
2490  // Most paths end in a failed conversion.
2491  ImplicitConversionSequence ICS;
2492  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
2493
2494  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2495  QualType T2 = Init->getType();
2496
2497  // If the initializer is the address of an overloaded function, try
2498  // to resolve the overloaded function. If all goes well, T2 is the
2499  // type of the resulting function.
2500  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2501    DeclAccessPair Found;
2502    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
2503                                                                false, Found))
2504      T2 = Fn->getType();
2505  }
2506
2507  // Compute some basic properties of the types and the initializer.
2508  bool isRValRef = DeclType->isRValueReferenceType();
2509  bool DerivedToBase = false;
2510  Expr::isLvalueResult InitLvalue = Init->isLvalue(S.Context);
2511  Sema::ReferenceCompareResult RefRelationship
2512    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
2513
2514
2515  // C++ [over.ics.ref]p3:
2516  //   Except for an implicit object parameter, for which see 13.3.1,
2517  //   a standard conversion sequence cannot be formed if it requires
2518  //   binding an lvalue reference to non-const to an rvalue or
2519  //   binding an rvalue reference to an lvalue.
2520  //
2521  // FIXME: DPG doesn't trust this code. It seems far too early to
2522  // abort because of a binding of an rvalue reference to an lvalue.
2523  if (isRValRef && InitLvalue == Expr::LV_Valid)
2524    return ICS;
2525
2526  // C++0x [dcl.init.ref]p16:
2527  //   A reference to type "cv1 T1" is initialized by an expression
2528  //   of type "cv2 T2" as follows:
2529
2530  //     -- If the initializer expression
2531  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2532  //          reference-compatible with "cv2 T2," or
2533  //
2534  // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
2535  if (InitLvalue == Expr::LV_Valid &&
2536      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2537    // C++ [over.ics.ref]p1:
2538    //   When a parameter of reference type binds directly (8.5.3)
2539    //   to an argument expression, the implicit conversion sequence
2540    //   is the identity conversion, unless the argument expression
2541    //   has a type that is a derived class of the parameter type,
2542    //   in which case the implicit conversion sequence is a
2543    //   derived-to-base Conversion (13.3.3.1).
2544    ICS.setStandard();
2545    ICS.Standard.First = ICK_Identity;
2546    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2547    ICS.Standard.Third = ICK_Identity;
2548    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2549    ICS.Standard.setToType(0, T2);
2550    ICS.Standard.setToType(1, T1);
2551    ICS.Standard.setToType(2, T1);
2552    ICS.Standard.ReferenceBinding = true;
2553    ICS.Standard.DirectBinding = true;
2554    ICS.Standard.RRefBinding = false;
2555    ICS.Standard.CopyConstructor = 0;
2556
2557    // Nothing more to do: the inaccessibility/ambiguity check for
2558    // derived-to-base conversions is suppressed when we're
2559    // computing the implicit conversion sequence (C++
2560    // [over.best.ics]p2).
2561    return ICS;
2562  }
2563
2564  //       -- has a class type (i.e., T2 is a class type), where T1 is
2565  //          not reference-related to T2, and can be implicitly
2566  //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
2567  //          is reference-compatible with "cv3 T3" 92) (this
2568  //          conversion is selected by enumerating the applicable
2569  //          conversion functions (13.3.1.6) and choosing the best
2570  //          one through overload resolution (13.3)),
2571  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
2572      !S.RequireCompleteType(DeclLoc, T2, 0) &&
2573      RefRelationship == Sema::Ref_Incompatible) {
2574    CXXRecordDecl *T2RecordDecl
2575      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2576
2577    OverloadCandidateSet CandidateSet(DeclLoc);
2578    const UnresolvedSetImpl *Conversions
2579      = T2RecordDecl->getVisibleConversionFunctions();
2580    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2581           E = Conversions->end(); I != E; ++I) {
2582      NamedDecl *D = *I;
2583      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2584      if (isa<UsingShadowDecl>(D))
2585        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2586
2587      FunctionTemplateDecl *ConvTemplate
2588        = dyn_cast<FunctionTemplateDecl>(D);
2589      CXXConversionDecl *Conv;
2590      if (ConvTemplate)
2591        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2592      else
2593        Conv = cast<CXXConversionDecl>(D);
2594
2595      // If the conversion function doesn't return a reference type,
2596      // it can't be considered for this conversion.
2597      if (Conv->getConversionType()->isLValueReferenceType() &&
2598          (AllowExplicit || !Conv->isExplicit())) {
2599        if (ConvTemplate)
2600          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
2601                                         Init, DeclType, CandidateSet);
2602        else
2603          S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
2604                                 DeclType, CandidateSet);
2605      }
2606    }
2607
2608    OverloadCandidateSet::iterator Best;
2609    switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2610    case OR_Success:
2611      // C++ [over.ics.ref]p1:
2612      //
2613      //   [...] If the parameter binds directly to the result of
2614      //   applying a conversion function to the argument
2615      //   expression, the implicit conversion sequence is a
2616      //   user-defined conversion sequence (13.3.3.1.2), with the
2617      //   second standard conversion sequence either an identity
2618      //   conversion or, if the conversion function returns an
2619      //   entity of a type that is a derived class of the parameter
2620      //   type, a derived-to-base Conversion.
2621      if (!Best->FinalConversion.DirectBinding)
2622        break;
2623
2624      ICS.setUserDefined();
2625      ICS.UserDefined.Before = Best->Conversions[0].Standard;
2626      ICS.UserDefined.After = Best->FinalConversion;
2627      ICS.UserDefined.ConversionFunction = Best->Function;
2628      ICS.UserDefined.EllipsisConversion = false;
2629      assert(ICS.UserDefined.After.ReferenceBinding &&
2630             ICS.UserDefined.After.DirectBinding &&
2631             "Expected a direct reference binding!");
2632      return ICS;
2633
2634    case OR_Ambiguous:
2635      ICS.setAmbiguous();
2636      for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2637           Cand != CandidateSet.end(); ++Cand)
2638        if (Cand->Viable)
2639          ICS.Ambiguous.addConversion(Cand->Function);
2640      return ICS;
2641
2642    case OR_No_Viable_Function:
2643    case OR_Deleted:
2644      // There was no suitable conversion, or we found a deleted
2645      // conversion; continue with other checks.
2646      break;
2647    }
2648  }
2649
2650  //     -- Otherwise, the reference shall be to a non-volatile const
2651  //        type (i.e., cv1 shall be const), or the reference shall be an
2652  //        rvalue reference and the initializer expression shall be an rvalue.
2653  //
2654  // We actually handle one oddity of C++ [over.ics.ref] at this
2655  // point, which is that, due to p2 (which short-circuits reference
2656  // binding by only attempting a simple conversion for non-direct
2657  // bindings) and p3's strange wording, we allow a const volatile
2658  // reference to bind to an rvalue. Hence the check for the presence
2659  // of "const" rather than checking for "const" being the only
2660  // qualifier.
2661  if (!isRValRef && !T1.isConstQualified())
2662    return ICS;
2663
2664  //       -- if T2 is a class type and
2665  //          -- the initializer expression is an rvalue and "cv1 T1"
2666  //             is reference-compatible with "cv2 T2," or
2667  //
2668  //          -- T1 is not reference-related to T2 and the initializer
2669  //             expression can be implicitly converted to an rvalue
2670  //             of type "cv3 T3" (this conversion is selected by
2671  //             enumerating the applicable conversion functions
2672  //             (13.3.1.6) and choosing the best one through overload
2673  //             resolution (13.3)),
2674  //
2675  //          then the reference is bound to the initializer
2676  //          expression rvalue in the first case and to the object
2677  //          that is the result of the conversion in the second case
2678  //          (or, in either case, to the appropriate base class
2679  //          subobject of the object).
2680  //
2681  // We're only checking the first case here, which is a direct
2682  // binding in C++0x but not in C++03.
2683  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2684      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2685    ICS.setStandard();
2686    ICS.Standard.First = ICK_Identity;
2687    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2688    ICS.Standard.Third = ICK_Identity;
2689    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2690    ICS.Standard.setToType(0, T2);
2691    ICS.Standard.setToType(1, T1);
2692    ICS.Standard.setToType(2, T1);
2693    ICS.Standard.ReferenceBinding = true;
2694    ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x;
2695    ICS.Standard.RRefBinding = isRValRef;
2696    ICS.Standard.CopyConstructor = 0;
2697    return ICS;
2698  }
2699
2700  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2701  //          initialized from the initializer expression using the
2702  //          rules for a non-reference copy initialization (8.5). The
2703  //          reference is then bound to the temporary. If T1 is
2704  //          reference-related to T2, cv1 must be the same
2705  //          cv-qualification as, or greater cv-qualification than,
2706  //          cv2; otherwise, the program is ill-formed.
2707  if (RefRelationship == Sema::Ref_Related) {
2708    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2709    // we would be reference-compatible or reference-compatible with
2710    // added qualification. But that wasn't the case, so the reference
2711    // initialization fails.
2712    return ICS;
2713  }
2714
2715  // If at least one of the types is a class type, the types are not
2716  // related, and we aren't allowed any user conversions, the
2717  // reference binding fails. This case is important for breaking
2718  // recursion, since TryImplicitConversion below will attempt to
2719  // create a temporary through the use of a copy constructor.
2720  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
2721      (T1->isRecordType() || T2->isRecordType()))
2722    return ICS;
2723
2724  // C++ [over.ics.ref]p2:
2725  //   When a parameter of reference type is not bound directly to
2726  //   an argument expression, the conversion sequence is the one
2727  //   required to convert the argument expression to the
2728  //   underlying type of the reference according to
2729  //   13.3.3.1. Conceptually, this conversion sequence corresponds
2730  //   to copy-initializing a temporary of the underlying type with
2731  //   the argument expression. Any difference in top-level
2732  //   cv-qualification is subsumed by the initialization itself
2733  //   and does not constitute a conversion.
2734  ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions,
2735                                /*AllowExplicit=*/false,
2736                                /*InOverloadResolution=*/false);
2737
2738  // Of course, that's still a reference binding.
2739  if (ICS.isStandard()) {
2740    ICS.Standard.ReferenceBinding = true;
2741    ICS.Standard.RRefBinding = isRValRef;
2742  } else if (ICS.isUserDefined()) {
2743    ICS.UserDefined.After.ReferenceBinding = true;
2744    ICS.UserDefined.After.RRefBinding = isRValRef;
2745  }
2746  return ICS;
2747}
2748
2749/// TryCopyInitialization - Try to copy-initialize a value of type
2750/// ToType from the expression From. Return the implicit conversion
2751/// sequence required to pass this argument, which may be a bad
2752/// conversion sequence (meaning that the argument cannot be passed to
2753/// a parameter of this type). If @p SuppressUserConversions, then we
2754/// do not permit any user-defined conversion sequences.
2755static ImplicitConversionSequence
2756TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
2757                      bool SuppressUserConversions,
2758                      bool InOverloadResolution) {
2759  if (ToType->isReferenceType())
2760    return TryReferenceInit(S, From, ToType,
2761                            /*FIXME:*/From->getLocStart(),
2762                            SuppressUserConversions,
2763                            /*AllowExplicit=*/false);
2764
2765  return S.TryImplicitConversion(From, ToType,
2766                                 SuppressUserConversions,
2767                                 /*AllowExplicit=*/false,
2768                                 InOverloadResolution);
2769}
2770
2771/// TryObjectArgumentInitialization - Try to initialize the object
2772/// parameter of the given member function (@c Method) from the
2773/// expression @p From.
2774ImplicitConversionSequence
2775Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2776                                      CXXMethodDecl *Method,
2777                                      CXXRecordDecl *ActingContext) {
2778  QualType ClassType = Context.getTypeDeclType(ActingContext);
2779  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2780  //                 const volatile object.
2781  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2782    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2783  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2784
2785  // Set up the conversion sequence as a "bad" conversion, to allow us
2786  // to exit early.
2787  ImplicitConversionSequence ICS;
2788
2789  // We need to have an object of class type.
2790  QualType FromType = OrigFromType;
2791  if (const PointerType *PT = FromType->getAs<PointerType>())
2792    FromType = PT->getPointeeType();
2793
2794  assert(FromType->isRecordType());
2795
2796  // The implicit object parameter is has the type "reference to cv X",
2797  // where X is the class of which the function is a member
2798  // (C++ [over.match.funcs]p4). However, when finding an implicit
2799  // conversion sequence for the argument, we are not allowed to
2800  // create temporaries or perform user-defined conversions
2801  // (C++ [over.match.funcs]p5). We perform a simplified version of
2802  // reference binding here, that allows class rvalues to bind to
2803  // non-constant references.
2804
2805  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2806  // with the implicit object parameter (C++ [over.match.funcs]p5).
2807  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2808  if (ImplicitParamType.getCVRQualifiers()
2809                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2810      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2811    ICS.setBad(BadConversionSequence::bad_qualifiers,
2812               OrigFromType, ImplicitParamType);
2813    return ICS;
2814  }
2815
2816  // Check that we have either the same type or a derived type. It
2817  // affects the conversion rank.
2818  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2819  ImplicitConversionKind SecondKind;
2820  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
2821    SecondKind = ICK_Identity;
2822  } else if (IsDerivedFrom(FromType, ClassType))
2823    SecondKind = ICK_Derived_To_Base;
2824  else {
2825    ICS.setBad(BadConversionSequence::unrelated_class,
2826               FromType, ImplicitParamType);
2827    return ICS;
2828  }
2829
2830  // Success. Mark this as a reference binding.
2831  ICS.setStandard();
2832  ICS.Standard.setAsIdentityConversion();
2833  ICS.Standard.Second = SecondKind;
2834  ICS.Standard.setFromType(FromType);
2835  ICS.Standard.setAllToTypes(ImplicitParamType);
2836  ICS.Standard.ReferenceBinding = true;
2837  ICS.Standard.DirectBinding = true;
2838  ICS.Standard.RRefBinding = false;
2839  return ICS;
2840}
2841
2842/// PerformObjectArgumentInitialization - Perform initialization of
2843/// the implicit object parameter for the given Method with the given
2844/// expression.
2845bool
2846Sema::PerformObjectArgumentInitialization(Expr *&From,
2847                                          NestedNameSpecifier *Qualifier,
2848                                          NamedDecl *FoundDecl,
2849                                          CXXMethodDecl *Method) {
2850  QualType FromRecordType, DestType;
2851  QualType ImplicitParamRecordType  =
2852    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2853
2854  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2855    FromRecordType = PT->getPointeeType();
2856    DestType = Method->getThisType(Context);
2857  } else {
2858    FromRecordType = From->getType();
2859    DestType = ImplicitParamRecordType;
2860  }
2861
2862  // Note that we always use the true parent context when performing
2863  // the actual argument initialization.
2864  ImplicitConversionSequence ICS
2865    = TryObjectArgumentInitialization(From->getType(), Method,
2866                                      Method->getParent());
2867  if (ICS.isBad())
2868    return Diag(From->getSourceRange().getBegin(),
2869                diag::err_implicit_object_parameter_init)
2870       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2871
2872  if (ICS.Standard.Second == ICK_Derived_To_Base)
2873    return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
2874
2875  if (!Context.hasSameType(From->getType(), DestType))
2876    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
2877                      /*isLvalue=*/!From->getType()->isPointerType());
2878  return false;
2879}
2880
2881/// TryContextuallyConvertToBool - Attempt to contextually convert the
2882/// expression From to bool (C++0x [conv]p3).
2883ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2884  return TryImplicitConversion(From, Context.BoolTy,
2885                               // FIXME: Are these flags correct?
2886                               /*SuppressUserConversions=*/false,
2887                               /*AllowExplicit=*/true,
2888                               /*InOverloadResolution=*/false);
2889}
2890
2891/// PerformContextuallyConvertToBool - Perform a contextual conversion
2892/// of the expression From to bool (C++0x [conv]p3).
2893bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2894  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2895  if (!ICS.isBad())
2896    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2897
2898  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2899    return  Diag(From->getSourceRange().getBegin(),
2900                 diag::err_typecheck_bool_condition)
2901                  << From->getType() << From->getSourceRange();
2902  return true;
2903}
2904
2905/// AddOverloadCandidate - Adds the given function to the set of
2906/// candidate functions, using the given function call arguments.  If
2907/// @p SuppressUserConversions, then don't allow user-defined
2908/// conversions via constructors or conversion operators.
2909///
2910/// \para PartialOverloading true if we are performing "partial" overloading
2911/// based on an incomplete set of function arguments. This feature is used by
2912/// code completion.
2913void
2914Sema::AddOverloadCandidate(FunctionDecl *Function,
2915                           DeclAccessPair FoundDecl,
2916                           Expr **Args, unsigned NumArgs,
2917                           OverloadCandidateSet& CandidateSet,
2918                           bool SuppressUserConversions,
2919                           bool PartialOverloading) {
2920  const FunctionProtoType* Proto
2921    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2922  assert(Proto && "Functions without a prototype cannot be overloaded");
2923  assert(!Function->getDescribedFunctionTemplate() &&
2924         "Use AddTemplateOverloadCandidate for function templates");
2925
2926  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2927    if (!isa<CXXConstructorDecl>(Method)) {
2928      // If we get here, it's because we're calling a member function
2929      // that is named without a member access expression (e.g.,
2930      // "this->f") that was either written explicitly or created
2931      // implicitly. This can happen with a qualified call to a member
2932      // function, e.g., X::f(). We use an empty type for the implied
2933      // object argument (C++ [over.call.func]p3), and the acting context
2934      // is irrelevant.
2935      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
2936                         QualType(), Args, NumArgs, CandidateSet,
2937                         SuppressUserConversions);
2938      return;
2939    }
2940    // We treat a constructor like a non-member function, since its object
2941    // argument doesn't participate in overload resolution.
2942  }
2943
2944  if (!CandidateSet.isNewCandidate(Function))
2945    return;
2946
2947  // Overload resolution is always an unevaluated context.
2948  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2949
2950  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2951    // C++ [class.copy]p3:
2952    //   A member function template is never instantiated to perform the copy
2953    //   of a class object to an object of its class type.
2954    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2955    if (NumArgs == 1 &&
2956        Constructor->isCopyConstructorLikeSpecialization() &&
2957        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
2958         IsDerivedFrom(Args[0]->getType(), ClassType)))
2959      return;
2960  }
2961
2962  // Add this candidate
2963  CandidateSet.push_back(OverloadCandidate());
2964  OverloadCandidate& Candidate = CandidateSet.back();
2965  Candidate.FoundDecl = FoundDecl;
2966  Candidate.Function = Function;
2967  Candidate.Viable = true;
2968  Candidate.IsSurrogate = false;
2969  Candidate.IgnoreObjectArgument = false;
2970
2971  unsigned NumArgsInProto = Proto->getNumArgs();
2972
2973  // (C++ 13.3.2p2): A candidate function having fewer than m
2974  // parameters is viable only if it has an ellipsis in its parameter
2975  // list (8.3.5).
2976  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2977      !Proto->isVariadic()) {
2978    Candidate.Viable = false;
2979    Candidate.FailureKind = ovl_fail_too_many_arguments;
2980    return;
2981  }
2982
2983  // (C++ 13.3.2p2): A candidate function having more than m parameters
2984  // is viable only if the (m+1)st parameter has a default argument
2985  // (8.3.6). For the purposes of overload resolution, the
2986  // parameter list is truncated on the right, so that there are
2987  // exactly m parameters.
2988  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2989  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2990    // Not enough arguments.
2991    Candidate.Viable = false;
2992    Candidate.FailureKind = ovl_fail_too_few_arguments;
2993    return;
2994  }
2995
2996  // Determine the implicit conversion sequences for each of the
2997  // arguments.
2998  Candidate.Conversions.resize(NumArgs);
2999  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3000    if (ArgIdx < NumArgsInProto) {
3001      // (C++ 13.3.2p3): for F to be a viable function, there shall
3002      // exist for each argument an implicit conversion sequence
3003      // (13.3.3.1) that converts that argument to the corresponding
3004      // parameter of F.
3005      QualType ParamType = Proto->getArgType(ArgIdx);
3006      Candidate.Conversions[ArgIdx]
3007        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3008                                SuppressUserConversions,
3009                                /*InOverloadResolution=*/true);
3010      if (Candidate.Conversions[ArgIdx].isBad()) {
3011        Candidate.Viable = false;
3012        Candidate.FailureKind = ovl_fail_bad_conversion;
3013        break;
3014      }
3015    } else {
3016      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3017      // argument for which there is no corresponding parameter is
3018      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3019      Candidate.Conversions[ArgIdx].setEllipsis();
3020    }
3021  }
3022}
3023
3024/// \brief Add all of the function declarations in the given function set to
3025/// the overload canddiate set.
3026void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
3027                                 Expr **Args, unsigned NumArgs,
3028                                 OverloadCandidateSet& CandidateSet,
3029                                 bool SuppressUserConversions) {
3030  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
3031    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
3032    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3033      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
3034        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
3035                           cast<CXXMethodDecl>(FD)->getParent(),
3036                           Args[0]->getType(), Args + 1, NumArgs - 1,
3037                           CandidateSet, SuppressUserConversions);
3038      else
3039        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
3040                             SuppressUserConversions);
3041    } else {
3042      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
3043      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
3044          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
3045        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
3046                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
3047                                   /*FIXME: explicit args */ 0,
3048                                   Args[0]->getType(), Args + 1, NumArgs - 1,
3049                                   CandidateSet,
3050                                   SuppressUserConversions);
3051      else
3052        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
3053                                     /*FIXME: explicit args */ 0,
3054                                     Args, NumArgs, CandidateSet,
3055                                     SuppressUserConversions);
3056    }
3057  }
3058}
3059
3060/// AddMethodCandidate - Adds a named decl (which is some kind of
3061/// method) as a method candidate to the given overload set.
3062void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
3063                              QualType ObjectType,
3064                              Expr **Args, unsigned NumArgs,
3065                              OverloadCandidateSet& CandidateSet,
3066                              bool SuppressUserConversions) {
3067  NamedDecl *Decl = FoundDecl.getDecl();
3068  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
3069
3070  if (isa<UsingShadowDecl>(Decl))
3071    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
3072
3073  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
3074    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
3075           "Expected a member function template");
3076    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
3077                               /*ExplicitArgs*/ 0,
3078                               ObjectType, Args, NumArgs,
3079                               CandidateSet,
3080                               SuppressUserConversions);
3081  } else {
3082    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
3083                       ObjectType, Args, NumArgs,
3084                       CandidateSet, SuppressUserConversions);
3085  }
3086}
3087
3088/// AddMethodCandidate - Adds the given C++ member function to the set
3089/// of candidate functions, using the given function call arguments
3090/// and the object argument (@c Object). For example, in a call
3091/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
3092/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
3093/// allow user-defined conversions via constructors or conversion
3094/// operators.
3095void
3096Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
3097                         CXXRecordDecl *ActingContext, QualType ObjectType,
3098                         Expr **Args, unsigned NumArgs,
3099                         OverloadCandidateSet& CandidateSet,
3100                         bool SuppressUserConversions) {
3101  const FunctionProtoType* Proto
3102    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
3103  assert(Proto && "Methods without a prototype cannot be overloaded");
3104  assert(!isa<CXXConstructorDecl>(Method) &&
3105         "Use AddOverloadCandidate for constructors");
3106
3107  if (!CandidateSet.isNewCandidate(Method))
3108    return;
3109
3110  // Overload resolution is always an unevaluated context.
3111  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3112
3113  // Add this candidate
3114  CandidateSet.push_back(OverloadCandidate());
3115  OverloadCandidate& Candidate = CandidateSet.back();
3116  Candidate.FoundDecl = FoundDecl;
3117  Candidate.Function = Method;
3118  Candidate.IsSurrogate = false;
3119  Candidate.IgnoreObjectArgument = false;
3120
3121  unsigned NumArgsInProto = Proto->getNumArgs();
3122
3123  // (C++ 13.3.2p2): A candidate function having fewer than m
3124  // parameters is viable only if it has an ellipsis in its parameter
3125  // list (8.3.5).
3126  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3127    Candidate.Viable = false;
3128    Candidate.FailureKind = ovl_fail_too_many_arguments;
3129    return;
3130  }
3131
3132  // (C++ 13.3.2p2): A candidate function having more than m parameters
3133  // is viable only if the (m+1)st parameter has a default argument
3134  // (8.3.6). For the purposes of overload resolution, the
3135  // parameter list is truncated on the right, so that there are
3136  // exactly m parameters.
3137  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
3138  if (NumArgs < MinRequiredArgs) {
3139    // Not enough arguments.
3140    Candidate.Viable = false;
3141    Candidate.FailureKind = ovl_fail_too_few_arguments;
3142    return;
3143  }
3144
3145  Candidate.Viable = true;
3146  Candidate.Conversions.resize(NumArgs + 1);
3147
3148  if (Method->isStatic() || ObjectType.isNull())
3149    // The implicit object argument is ignored.
3150    Candidate.IgnoreObjectArgument = true;
3151  else {
3152    // Determine the implicit conversion sequence for the object
3153    // parameter.
3154    Candidate.Conversions[0]
3155      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
3156    if (Candidate.Conversions[0].isBad()) {
3157      Candidate.Viable = false;
3158      Candidate.FailureKind = ovl_fail_bad_conversion;
3159      return;
3160    }
3161  }
3162
3163  // Determine the implicit conversion sequences for each of the
3164  // arguments.
3165  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3166    if (ArgIdx < NumArgsInProto) {
3167      // (C++ 13.3.2p3): for F to be a viable function, there shall
3168      // exist for each argument an implicit conversion sequence
3169      // (13.3.3.1) that converts that argument to the corresponding
3170      // parameter of F.
3171      QualType ParamType = Proto->getArgType(ArgIdx);
3172      Candidate.Conversions[ArgIdx + 1]
3173        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3174                                SuppressUserConversions,
3175                                /*InOverloadResolution=*/true);
3176      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3177        Candidate.Viable = false;
3178        Candidate.FailureKind = ovl_fail_bad_conversion;
3179        break;
3180      }
3181    } else {
3182      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3183      // argument for which there is no corresponding parameter is
3184      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3185      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3186    }
3187  }
3188}
3189
3190/// \brief Add a C++ member function template as a candidate to the candidate
3191/// set, using template argument deduction to produce an appropriate member
3192/// function template specialization.
3193void
3194Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
3195                                 DeclAccessPair FoundDecl,
3196                                 CXXRecordDecl *ActingContext,
3197                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3198                                 QualType ObjectType,
3199                                 Expr **Args, unsigned NumArgs,
3200                                 OverloadCandidateSet& CandidateSet,
3201                                 bool SuppressUserConversions) {
3202  if (!CandidateSet.isNewCandidate(MethodTmpl))
3203    return;
3204
3205  // C++ [over.match.funcs]p7:
3206  //   In each case where a candidate is a function template, candidate
3207  //   function template specializations are generated using template argument
3208  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3209  //   candidate functions in the usual way.113) A given name can refer to one
3210  //   or more function templates and also to a set of overloaded non-template
3211  //   functions. In such a case, the candidate functions generated from each
3212  //   function template are combined with the set of non-template candidate
3213  //   functions.
3214  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3215  FunctionDecl *Specialization = 0;
3216  if (TemplateDeductionResult Result
3217      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
3218                                Args, NumArgs, Specialization, Info)) {
3219        // FIXME: Record what happened with template argument deduction, so
3220        // that we can give the user a beautiful diagnostic.
3221        (void)Result;
3222        return;
3223      }
3224
3225  // Add the function template specialization produced by template argument
3226  // deduction as a candidate.
3227  assert(Specialization && "Missing member function template specialization?");
3228  assert(isa<CXXMethodDecl>(Specialization) &&
3229         "Specialization is not a member function?");
3230  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
3231                     ActingContext, ObjectType, Args, NumArgs,
3232                     CandidateSet, SuppressUserConversions);
3233}
3234
3235/// \brief Add a C++ function template specialization as a candidate
3236/// in the candidate set, using template argument deduction to produce
3237/// an appropriate function template specialization.
3238void
3239Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
3240                                   DeclAccessPair FoundDecl,
3241                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3242                                   Expr **Args, unsigned NumArgs,
3243                                   OverloadCandidateSet& CandidateSet,
3244                                   bool SuppressUserConversions) {
3245  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3246    return;
3247
3248  // C++ [over.match.funcs]p7:
3249  //   In each case where a candidate is a function template, candidate
3250  //   function template specializations are generated using template argument
3251  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3252  //   candidate functions in the usual way.113) A given name can refer to one
3253  //   or more function templates and also to a set of overloaded non-template
3254  //   functions. In such a case, the candidate functions generated from each
3255  //   function template are combined with the set of non-template candidate
3256  //   functions.
3257  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3258  FunctionDecl *Specialization = 0;
3259  if (TemplateDeductionResult Result
3260        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3261                                  Args, NumArgs, Specialization, Info)) {
3262    CandidateSet.push_back(OverloadCandidate());
3263    OverloadCandidate &Candidate = CandidateSet.back();
3264    Candidate.FoundDecl = FoundDecl;
3265    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3266    Candidate.Viable = false;
3267    Candidate.FailureKind = ovl_fail_bad_deduction;
3268    Candidate.IsSurrogate = false;
3269    Candidate.IgnoreObjectArgument = false;
3270    Candidate.DeductionFailure = MakeDeductionFailureInfo(Result, Info);
3271    return;
3272  }
3273
3274  // Add the function template specialization produced by template argument
3275  // deduction as a candidate.
3276  assert(Specialization && "Missing function template specialization?");
3277  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
3278                       SuppressUserConversions);
3279}
3280
3281/// AddConversionCandidate - Add a C++ conversion function as a
3282/// candidate in the candidate set (C++ [over.match.conv],
3283/// C++ [over.match.copy]). From is the expression we're converting from,
3284/// and ToType is the type that we're eventually trying to convert to
3285/// (which may or may not be the same type as the type that the
3286/// conversion function produces).
3287void
3288Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
3289                             DeclAccessPair FoundDecl,
3290                             CXXRecordDecl *ActingContext,
3291                             Expr *From, QualType ToType,
3292                             OverloadCandidateSet& CandidateSet) {
3293  assert(!Conversion->getDescribedFunctionTemplate() &&
3294         "Conversion function templates use AddTemplateConversionCandidate");
3295  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
3296  if (!CandidateSet.isNewCandidate(Conversion))
3297    return;
3298
3299  // Overload resolution is always an unevaluated context.
3300  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3301
3302  // Add this candidate
3303  CandidateSet.push_back(OverloadCandidate());
3304  OverloadCandidate& Candidate = CandidateSet.back();
3305  Candidate.FoundDecl = FoundDecl;
3306  Candidate.Function = Conversion;
3307  Candidate.IsSurrogate = false;
3308  Candidate.IgnoreObjectArgument = false;
3309  Candidate.FinalConversion.setAsIdentityConversion();
3310  Candidate.FinalConversion.setFromType(ConvType);
3311  Candidate.FinalConversion.setAllToTypes(ToType);
3312
3313  // Determine the implicit conversion sequence for the implicit
3314  // object parameter.
3315  Candidate.Viable = true;
3316  Candidate.Conversions.resize(1);
3317  Candidate.Conversions[0]
3318    = TryObjectArgumentInitialization(From->getType(), Conversion,
3319                                      ActingContext);
3320  // Conversion functions to a different type in the base class is visible in
3321  // the derived class.  So, a derived to base conversion should not participate
3322  // in overload resolution.
3323  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
3324    Candidate.Conversions[0].Standard.Second = ICK_Identity;
3325  if (Candidate.Conversions[0].isBad()) {
3326    Candidate.Viable = false;
3327    Candidate.FailureKind = ovl_fail_bad_conversion;
3328    return;
3329  }
3330
3331  // We won't go through a user-define type conversion function to convert a
3332  // derived to base as such conversions are given Conversion Rank. They only
3333  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
3334  QualType FromCanon
3335    = Context.getCanonicalType(From->getType().getUnqualifiedType());
3336  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
3337  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
3338    Candidate.Viable = false;
3339    Candidate.FailureKind = ovl_fail_trivial_conversion;
3340    return;
3341  }
3342
3343  // To determine what the conversion from the result of calling the
3344  // conversion function to the type we're eventually trying to
3345  // convert to (ToType), we need to synthesize a call to the
3346  // conversion function and attempt copy initialization from it. This
3347  // makes sure that we get the right semantics with respect to
3348  // lvalues/rvalues and the type. Fortunately, we can allocate this
3349  // call on the stack and we don't need its arguments to be
3350  // well-formed.
3351  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
3352                            From->getLocStart());
3353  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
3354                                CastExpr::CK_FunctionToPointerDecay,
3355                                &ConversionRef, CXXBaseSpecifierArray(), false);
3356
3357  // Note that it is safe to allocate CallExpr on the stack here because
3358  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
3359  // allocator).
3360  CallExpr Call(Context, &ConversionFn, 0, 0,
3361                Conversion->getConversionType().getNonReferenceType(),
3362                From->getLocStart());
3363  ImplicitConversionSequence ICS =
3364    TryCopyInitialization(*this, &Call, ToType,
3365                          /*SuppressUserConversions=*/true,
3366                          /*InOverloadResolution=*/false);
3367
3368  switch (ICS.getKind()) {
3369  case ImplicitConversionSequence::StandardConversion:
3370    Candidate.FinalConversion = ICS.Standard;
3371
3372    // C++ [over.ics.user]p3:
3373    //   If the user-defined conversion is specified by a specialization of a
3374    //   conversion function template, the second standard conversion sequence
3375    //   shall have exact match rank.
3376    if (Conversion->getPrimaryTemplate() &&
3377        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
3378      Candidate.Viable = false;
3379      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
3380    }
3381
3382    break;
3383
3384  case ImplicitConversionSequence::BadConversion:
3385    Candidate.Viable = false;
3386    Candidate.FailureKind = ovl_fail_bad_final_conversion;
3387    break;
3388
3389  default:
3390    assert(false &&
3391           "Can only end up with a standard conversion sequence or failure");
3392  }
3393}
3394
3395/// \brief Adds a conversion function template specialization
3396/// candidate to the overload set, using template argument deduction
3397/// to deduce the template arguments of the conversion function
3398/// template from the type that we are converting to (C++
3399/// [temp.deduct.conv]).
3400void
3401Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
3402                                     DeclAccessPair FoundDecl,
3403                                     CXXRecordDecl *ActingDC,
3404                                     Expr *From, QualType ToType,
3405                                     OverloadCandidateSet &CandidateSet) {
3406  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
3407         "Only conversion function templates permitted here");
3408
3409  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3410    return;
3411
3412  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3413  CXXConversionDecl *Specialization = 0;
3414  if (TemplateDeductionResult Result
3415        = DeduceTemplateArguments(FunctionTemplate, ToType,
3416                                  Specialization, Info)) {
3417    // FIXME: Record what happened with template argument deduction, so
3418    // that we can give the user a beautiful diagnostic.
3419    (void)Result;
3420    return;
3421  }
3422
3423  // Add the conversion function template specialization produced by
3424  // template argument deduction as a candidate.
3425  assert(Specialization && "Missing function template specialization?");
3426  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
3427                         CandidateSet);
3428}
3429
3430/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
3431/// converts the given @c Object to a function pointer via the
3432/// conversion function @c Conversion, and then attempts to call it
3433/// with the given arguments (C++ [over.call.object]p2-4). Proto is
3434/// the type of function that we'll eventually be calling.
3435void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
3436                                 DeclAccessPair FoundDecl,
3437                                 CXXRecordDecl *ActingContext,
3438                                 const FunctionProtoType *Proto,
3439                                 QualType ObjectType,
3440                                 Expr **Args, unsigned NumArgs,
3441                                 OverloadCandidateSet& CandidateSet) {
3442  if (!CandidateSet.isNewCandidate(Conversion))
3443    return;
3444
3445  // Overload resolution is always an unevaluated context.
3446  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3447
3448  CandidateSet.push_back(OverloadCandidate());
3449  OverloadCandidate& Candidate = CandidateSet.back();
3450  Candidate.FoundDecl = FoundDecl;
3451  Candidate.Function = 0;
3452  Candidate.Surrogate = Conversion;
3453  Candidate.Viable = true;
3454  Candidate.IsSurrogate = true;
3455  Candidate.IgnoreObjectArgument = false;
3456  Candidate.Conversions.resize(NumArgs + 1);
3457
3458  // Determine the implicit conversion sequence for the implicit
3459  // object parameter.
3460  ImplicitConversionSequence ObjectInit
3461    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
3462  if (ObjectInit.isBad()) {
3463    Candidate.Viable = false;
3464    Candidate.FailureKind = ovl_fail_bad_conversion;
3465    Candidate.Conversions[0] = ObjectInit;
3466    return;
3467  }
3468
3469  // The first conversion is actually a user-defined conversion whose
3470  // first conversion is ObjectInit's standard conversion (which is
3471  // effectively a reference binding). Record it as such.
3472  Candidate.Conversions[0].setUserDefined();
3473  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
3474  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
3475  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
3476  Candidate.Conversions[0].UserDefined.After
3477    = Candidate.Conversions[0].UserDefined.Before;
3478  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
3479
3480  // Find the
3481  unsigned NumArgsInProto = Proto->getNumArgs();
3482
3483  // (C++ 13.3.2p2): A candidate function having fewer than m
3484  // parameters is viable only if it has an ellipsis in its parameter
3485  // list (8.3.5).
3486  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3487    Candidate.Viable = false;
3488    Candidate.FailureKind = ovl_fail_too_many_arguments;
3489    return;
3490  }
3491
3492  // Function types don't have any default arguments, so just check if
3493  // we have enough arguments.
3494  if (NumArgs < NumArgsInProto) {
3495    // Not enough arguments.
3496    Candidate.Viable = false;
3497    Candidate.FailureKind = ovl_fail_too_few_arguments;
3498    return;
3499  }
3500
3501  // Determine the implicit conversion sequences for each of the
3502  // arguments.
3503  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3504    if (ArgIdx < NumArgsInProto) {
3505      // (C++ 13.3.2p3): for F to be a viable function, there shall
3506      // exist for each argument an implicit conversion sequence
3507      // (13.3.3.1) that converts that argument to the corresponding
3508      // parameter of F.
3509      QualType ParamType = Proto->getArgType(ArgIdx);
3510      Candidate.Conversions[ArgIdx + 1]
3511        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3512                                /*SuppressUserConversions=*/false,
3513                                /*InOverloadResolution=*/false);
3514      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3515        Candidate.Viable = false;
3516        Candidate.FailureKind = ovl_fail_bad_conversion;
3517        break;
3518      }
3519    } else {
3520      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3521      // argument for which there is no corresponding parameter is
3522      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3523      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3524    }
3525  }
3526}
3527
3528/// \brief Add overload candidates for overloaded operators that are
3529/// member functions.
3530///
3531/// Add the overloaded operator candidates that are member functions
3532/// for the operator Op that was used in an operator expression such
3533/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3534/// CandidateSet will store the added overload candidates. (C++
3535/// [over.match.oper]).
3536void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3537                                       SourceLocation OpLoc,
3538                                       Expr **Args, unsigned NumArgs,
3539                                       OverloadCandidateSet& CandidateSet,
3540                                       SourceRange OpRange) {
3541  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3542
3543  // C++ [over.match.oper]p3:
3544  //   For a unary operator @ with an operand of a type whose
3545  //   cv-unqualified version is T1, and for a binary operator @ with
3546  //   a left operand of a type whose cv-unqualified version is T1 and
3547  //   a right operand of a type whose cv-unqualified version is T2,
3548  //   three sets of candidate functions, designated member
3549  //   candidates, non-member candidates and built-in candidates, are
3550  //   constructed as follows:
3551  QualType T1 = Args[0]->getType();
3552  QualType T2;
3553  if (NumArgs > 1)
3554    T2 = Args[1]->getType();
3555
3556  //     -- If T1 is a class type, the set of member candidates is the
3557  //        result of the qualified lookup of T1::operator@
3558  //        (13.3.1.1.1); otherwise, the set of member candidates is
3559  //        empty.
3560  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3561    // Complete the type if it can be completed. Otherwise, we're done.
3562    if (RequireCompleteType(OpLoc, T1, PDiag()))
3563      return;
3564
3565    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3566    LookupQualifiedName(Operators, T1Rec->getDecl());
3567    Operators.suppressDiagnostics();
3568
3569    for (LookupResult::iterator Oper = Operators.begin(),
3570                             OperEnd = Operators.end();
3571         Oper != OperEnd;
3572         ++Oper)
3573      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
3574                         Args + 1, NumArgs - 1, CandidateSet,
3575                         /* SuppressUserConversions = */ false);
3576  }
3577}
3578
3579/// AddBuiltinCandidate - Add a candidate for a built-in
3580/// operator. ResultTy and ParamTys are the result and parameter types
3581/// of the built-in candidate, respectively. Args and NumArgs are the
3582/// arguments being passed to the candidate. IsAssignmentOperator
3583/// should be true when this built-in candidate is an assignment
3584/// operator. NumContextualBoolArguments is the number of arguments
3585/// (at the beginning of the argument list) that will be contextually
3586/// converted to bool.
3587void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3588                               Expr **Args, unsigned NumArgs,
3589                               OverloadCandidateSet& CandidateSet,
3590                               bool IsAssignmentOperator,
3591                               unsigned NumContextualBoolArguments) {
3592  // Overload resolution is always an unevaluated context.
3593  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3594
3595  // Add this candidate
3596  CandidateSet.push_back(OverloadCandidate());
3597  OverloadCandidate& Candidate = CandidateSet.back();
3598  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
3599  Candidate.Function = 0;
3600  Candidate.IsSurrogate = false;
3601  Candidate.IgnoreObjectArgument = false;
3602  Candidate.BuiltinTypes.ResultTy = ResultTy;
3603  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3604    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3605
3606  // Determine the implicit conversion sequences for each of the
3607  // arguments.
3608  Candidate.Viable = true;
3609  Candidate.Conversions.resize(NumArgs);
3610  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3611    // C++ [over.match.oper]p4:
3612    //   For the built-in assignment operators, conversions of the
3613    //   left operand are restricted as follows:
3614    //     -- no temporaries are introduced to hold the left operand, and
3615    //     -- no user-defined conversions are applied to the left
3616    //        operand to achieve a type match with the left-most
3617    //        parameter of a built-in candidate.
3618    //
3619    // We block these conversions by turning off user-defined
3620    // conversions, since that is the only way that initialization of
3621    // a reference to a non-class type can occur from something that
3622    // is not of the same type.
3623    if (ArgIdx < NumContextualBoolArguments) {
3624      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3625             "Contextual conversion to bool requires bool type");
3626      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3627    } else {
3628      Candidate.Conversions[ArgIdx]
3629        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
3630                                ArgIdx == 0 && IsAssignmentOperator,
3631                                /*InOverloadResolution=*/false);
3632    }
3633    if (Candidate.Conversions[ArgIdx].isBad()) {
3634      Candidate.Viable = false;
3635      Candidate.FailureKind = ovl_fail_bad_conversion;
3636      break;
3637    }
3638  }
3639}
3640
3641/// BuiltinCandidateTypeSet - A set of types that will be used for the
3642/// candidate operator functions for built-in operators (C++
3643/// [over.built]). The types are separated into pointer types and
3644/// enumeration types.
3645class BuiltinCandidateTypeSet  {
3646  /// TypeSet - A set of types.
3647  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3648
3649  /// PointerTypes - The set of pointer types that will be used in the
3650  /// built-in candidates.
3651  TypeSet PointerTypes;
3652
3653  /// MemberPointerTypes - The set of member pointer types that will be
3654  /// used in the built-in candidates.
3655  TypeSet MemberPointerTypes;
3656
3657  /// EnumerationTypes - The set of enumeration types that will be
3658  /// used in the built-in candidates.
3659  TypeSet EnumerationTypes;
3660
3661  /// Sema - The semantic analysis instance where we are building the
3662  /// candidate type set.
3663  Sema &SemaRef;
3664
3665  /// Context - The AST context in which we will build the type sets.
3666  ASTContext &Context;
3667
3668  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3669                                               const Qualifiers &VisibleQuals);
3670  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3671
3672public:
3673  /// iterator - Iterates through the types that are part of the set.
3674  typedef TypeSet::iterator iterator;
3675
3676  BuiltinCandidateTypeSet(Sema &SemaRef)
3677    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3678
3679  void AddTypesConvertedFrom(QualType Ty,
3680                             SourceLocation Loc,
3681                             bool AllowUserConversions,
3682                             bool AllowExplicitConversions,
3683                             const Qualifiers &VisibleTypeConversionsQuals);
3684
3685  /// pointer_begin - First pointer type found;
3686  iterator pointer_begin() { return PointerTypes.begin(); }
3687
3688  /// pointer_end - Past the last pointer type found;
3689  iterator pointer_end() { return PointerTypes.end(); }
3690
3691  /// member_pointer_begin - First member pointer type found;
3692  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3693
3694  /// member_pointer_end - Past the last member pointer type found;
3695  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3696
3697  /// enumeration_begin - First enumeration type found;
3698  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3699
3700  /// enumeration_end - Past the last enumeration type found;
3701  iterator enumeration_end() { return EnumerationTypes.end(); }
3702};
3703
3704/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3705/// the set of pointer types along with any more-qualified variants of
3706/// that type. For example, if @p Ty is "int const *", this routine
3707/// will add "int const *", "int const volatile *", "int const
3708/// restrict *", and "int const volatile restrict *" to the set of
3709/// pointer types. Returns true if the add of @p Ty itself succeeded,
3710/// false otherwise.
3711///
3712/// FIXME: what to do about extended qualifiers?
3713bool
3714BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3715                                             const Qualifiers &VisibleQuals) {
3716
3717  // Insert this type.
3718  if (!PointerTypes.insert(Ty))
3719    return false;
3720
3721  const PointerType *PointerTy = Ty->getAs<PointerType>();
3722  assert(PointerTy && "type was not a pointer type!");
3723
3724  QualType PointeeTy = PointerTy->getPointeeType();
3725  // Don't add qualified variants of arrays. For one, they're not allowed
3726  // (the qualifier would sink to the element type), and for another, the
3727  // only overload situation where it matters is subscript or pointer +- int,
3728  // and those shouldn't have qualifier variants anyway.
3729  if (PointeeTy->isArrayType())
3730    return true;
3731  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3732  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3733    BaseCVR = Array->getElementType().getCVRQualifiers();
3734  bool hasVolatile = VisibleQuals.hasVolatile();
3735  bool hasRestrict = VisibleQuals.hasRestrict();
3736
3737  // Iterate through all strict supersets of BaseCVR.
3738  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3739    if ((CVR | BaseCVR) != CVR) continue;
3740    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3741    // in the types.
3742    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3743    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3744    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3745    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3746  }
3747
3748  return true;
3749}
3750
3751/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3752/// to the set of pointer types along with any more-qualified variants of
3753/// that type. For example, if @p Ty is "int const *", this routine
3754/// will add "int const *", "int const volatile *", "int const
3755/// restrict *", and "int const volatile restrict *" to the set of
3756/// pointer types. Returns true if the add of @p Ty itself succeeded,
3757/// false otherwise.
3758///
3759/// FIXME: what to do about extended qualifiers?
3760bool
3761BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3762    QualType Ty) {
3763  // Insert this type.
3764  if (!MemberPointerTypes.insert(Ty))
3765    return false;
3766
3767  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3768  assert(PointerTy && "type was not a member pointer type!");
3769
3770  QualType PointeeTy = PointerTy->getPointeeType();
3771  // Don't add qualified variants of arrays. For one, they're not allowed
3772  // (the qualifier would sink to the element type), and for another, the
3773  // only overload situation where it matters is subscript or pointer +- int,
3774  // and those shouldn't have qualifier variants anyway.
3775  if (PointeeTy->isArrayType())
3776    return true;
3777  const Type *ClassTy = PointerTy->getClass();
3778
3779  // Iterate through all strict supersets of the pointee type's CVR
3780  // qualifiers.
3781  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3782  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3783    if ((CVR | BaseCVR) != CVR) continue;
3784
3785    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3786    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3787  }
3788
3789  return true;
3790}
3791
3792/// AddTypesConvertedFrom - Add each of the types to which the type @p
3793/// Ty can be implicit converted to the given set of @p Types. We're
3794/// primarily interested in pointer types and enumeration types. We also
3795/// take member pointer types, for the conditional operator.
3796/// AllowUserConversions is true if we should look at the conversion
3797/// functions of a class type, and AllowExplicitConversions if we
3798/// should also include the explicit conversion functions of a class
3799/// type.
3800void
3801BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3802                                               SourceLocation Loc,
3803                                               bool AllowUserConversions,
3804                                               bool AllowExplicitConversions,
3805                                               const Qualifiers &VisibleQuals) {
3806  // Only deal with canonical types.
3807  Ty = Context.getCanonicalType(Ty);
3808
3809  // Look through reference types; they aren't part of the type of an
3810  // expression for the purposes of conversions.
3811  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3812    Ty = RefTy->getPointeeType();
3813
3814  // We don't care about qualifiers on the type.
3815  Ty = Ty.getLocalUnqualifiedType();
3816
3817  // If we're dealing with an array type, decay to the pointer.
3818  if (Ty->isArrayType())
3819    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3820
3821  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3822    QualType PointeeTy = PointerTy->getPointeeType();
3823
3824    // Insert our type, and its more-qualified variants, into the set
3825    // of types.
3826    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3827      return;
3828  } else if (Ty->isMemberPointerType()) {
3829    // Member pointers are far easier, since the pointee can't be converted.
3830    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3831      return;
3832  } else if (Ty->isEnumeralType()) {
3833    EnumerationTypes.insert(Ty);
3834  } else if (AllowUserConversions) {
3835    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3836      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3837        // No conversion functions in incomplete types.
3838        return;
3839      }
3840
3841      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3842      const UnresolvedSetImpl *Conversions
3843        = ClassDecl->getVisibleConversionFunctions();
3844      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3845             E = Conversions->end(); I != E; ++I) {
3846        NamedDecl *D = I.getDecl();
3847        if (isa<UsingShadowDecl>(D))
3848          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3849
3850        // Skip conversion function templates; they don't tell us anything
3851        // about which builtin types we can convert to.
3852        if (isa<FunctionTemplateDecl>(D))
3853          continue;
3854
3855        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
3856        if (AllowExplicitConversions || !Conv->isExplicit()) {
3857          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3858                                VisibleQuals);
3859        }
3860      }
3861    }
3862  }
3863}
3864
3865/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3866/// the volatile- and non-volatile-qualified assignment operators for the
3867/// given type to the candidate set.
3868static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3869                                                   QualType T,
3870                                                   Expr **Args,
3871                                                   unsigned NumArgs,
3872                                    OverloadCandidateSet &CandidateSet) {
3873  QualType ParamTypes[2];
3874
3875  // T& operator=(T&, T)
3876  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3877  ParamTypes[1] = T;
3878  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3879                        /*IsAssignmentOperator=*/true);
3880
3881  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3882    // volatile T& operator=(volatile T&, T)
3883    ParamTypes[0]
3884      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3885    ParamTypes[1] = T;
3886    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3887                          /*IsAssignmentOperator=*/true);
3888  }
3889}
3890
3891/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3892/// if any, found in visible type conversion functions found in ArgExpr's type.
3893static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3894    Qualifiers VRQuals;
3895    const RecordType *TyRec;
3896    if (const MemberPointerType *RHSMPType =
3897        ArgExpr->getType()->getAs<MemberPointerType>())
3898      TyRec = RHSMPType->getClass()->getAs<RecordType>();
3899    else
3900      TyRec = ArgExpr->getType()->getAs<RecordType>();
3901    if (!TyRec) {
3902      // Just to be safe, assume the worst case.
3903      VRQuals.addVolatile();
3904      VRQuals.addRestrict();
3905      return VRQuals;
3906    }
3907
3908    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3909    if (!ClassDecl->hasDefinition())
3910      return VRQuals;
3911
3912    const UnresolvedSetImpl *Conversions =
3913      ClassDecl->getVisibleConversionFunctions();
3914
3915    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3916           E = Conversions->end(); I != E; ++I) {
3917      NamedDecl *D = I.getDecl();
3918      if (isa<UsingShadowDecl>(D))
3919        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3920      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
3921        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3922        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3923          CanTy = ResTypeRef->getPointeeType();
3924        // Need to go down the pointer/mempointer chain and add qualifiers
3925        // as see them.
3926        bool done = false;
3927        while (!done) {
3928          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3929            CanTy = ResTypePtr->getPointeeType();
3930          else if (const MemberPointerType *ResTypeMPtr =
3931                CanTy->getAs<MemberPointerType>())
3932            CanTy = ResTypeMPtr->getPointeeType();
3933          else
3934            done = true;
3935          if (CanTy.isVolatileQualified())
3936            VRQuals.addVolatile();
3937          if (CanTy.isRestrictQualified())
3938            VRQuals.addRestrict();
3939          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3940            return VRQuals;
3941        }
3942      }
3943    }
3944    return VRQuals;
3945}
3946
3947/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3948/// operator overloads to the candidate set (C++ [over.built]), based
3949/// on the operator @p Op and the arguments given. For example, if the
3950/// operator is a binary '+', this routine might add "int
3951/// operator+(int, int)" to cover integer addition.
3952void
3953Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3954                                   SourceLocation OpLoc,
3955                                   Expr **Args, unsigned NumArgs,
3956                                   OverloadCandidateSet& CandidateSet) {
3957  // The set of "promoted arithmetic types", which are the arithmetic
3958  // types are that preserved by promotion (C++ [over.built]p2). Note
3959  // that the first few of these types are the promoted integral
3960  // types; these types need to be first.
3961  // FIXME: What about complex?
3962  const unsigned FirstIntegralType = 0;
3963  const unsigned LastIntegralType = 13;
3964  const unsigned FirstPromotedIntegralType = 7,
3965                 LastPromotedIntegralType = 13;
3966  const unsigned FirstPromotedArithmeticType = 7,
3967                 LastPromotedArithmeticType = 16;
3968  const unsigned NumArithmeticTypes = 16;
3969  QualType ArithmeticTypes[NumArithmeticTypes] = {
3970    Context.BoolTy, Context.CharTy, Context.WCharTy,
3971// FIXME:   Context.Char16Ty, Context.Char32Ty,
3972    Context.SignedCharTy, Context.ShortTy,
3973    Context.UnsignedCharTy, Context.UnsignedShortTy,
3974    Context.IntTy, Context.LongTy, Context.LongLongTy,
3975    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3976    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3977  };
3978  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3979         "Invalid first promoted integral type");
3980  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3981           == Context.UnsignedLongLongTy &&
3982         "Invalid last promoted integral type");
3983  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3984         "Invalid first promoted arithmetic type");
3985  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3986            == Context.LongDoubleTy &&
3987         "Invalid last promoted arithmetic type");
3988
3989  // Find all of the types that the arguments can convert to, but only
3990  // if the operator we're looking at has built-in operator candidates
3991  // that make use of these types.
3992  Qualifiers VisibleTypeConversionsQuals;
3993  VisibleTypeConversionsQuals.addConst();
3994  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3995    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3996
3997  BuiltinCandidateTypeSet CandidateTypes(*this);
3998  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3999      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
4000      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
4001      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
4002      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
4003      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
4004    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4005      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
4006                                           OpLoc,
4007                                           true,
4008                                           (Op == OO_Exclaim ||
4009                                            Op == OO_AmpAmp ||
4010                                            Op == OO_PipePipe),
4011                                           VisibleTypeConversionsQuals);
4012  }
4013
4014  bool isComparison = false;
4015  switch (Op) {
4016  case OO_None:
4017  case NUM_OVERLOADED_OPERATORS:
4018    assert(false && "Expected an overloaded operator");
4019    break;
4020
4021  case OO_Star: // '*' is either unary or binary
4022    if (NumArgs == 1)
4023      goto UnaryStar;
4024    else
4025      goto BinaryStar;
4026    break;
4027
4028  case OO_Plus: // '+' is either unary or binary
4029    if (NumArgs == 1)
4030      goto UnaryPlus;
4031    else
4032      goto BinaryPlus;
4033    break;
4034
4035  case OO_Minus: // '-' is either unary or binary
4036    if (NumArgs == 1)
4037      goto UnaryMinus;
4038    else
4039      goto BinaryMinus;
4040    break;
4041
4042  case OO_Amp: // '&' is either unary or binary
4043    if (NumArgs == 1)
4044      goto UnaryAmp;
4045    else
4046      goto BinaryAmp;
4047
4048  case OO_PlusPlus:
4049  case OO_MinusMinus:
4050    // C++ [over.built]p3:
4051    //
4052    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
4053    //   is either volatile or empty, there exist candidate operator
4054    //   functions of the form
4055    //
4056    //       VQ T&      operator++(VQ T&);
4057    //       T          operator++(VQ T&, int);
4058    //
4059    // C++ [over.built]p4:
4060    //
4061    //   For every pair (T, VQ), where T is an arithmetic type other
4062    //   than bool, and VQ is either volatile or empty, there exist
4063    //   candidate operator functions of the form
4064    //
4065    //       VQ T&      operator--(VQ T&);
4066    //       T          operator--(VQ T&, int);
4067    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
4068         Arith < NumArithmeticTypes; ++Arith) {
4069      QualType ArithTy = ArithmeticTypes[Arith];
4070      QualType ParamTypes[2]
4071        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
4072
4073      // Non-volatile version.
4074      if (NumArgs == 1)
4075        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4076      else
4077        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
4078      // heuristic to reduce number of builtin candidates in the set.
4079      // Add volatile version only if there are conversions to a volatile type.
4080      if (VisibleTypeConversionsQuals.hasVolatile()) {
4081        // Volatile version
4082        ParamTypes[0]
4083          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
4084        if (NumArgs == 1)
4085          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4086        else
4087          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
4088      }
4089    }
4090
4091    // C++ [over.built]p5:
4092    //
4093    //   For every pair (T, VQ), where T is a cv-qualified or
4094    //   cv-unqualified object type, and VQ is either volatile or
4095    //   empty, there exist candidate operator functions of the form
4096    //
4097    //       T*VQ&      operator++(T*VQ&);
4098    //       T*VQ&      operator--(T*VQ&);
4099    //       T*         operator++(T*VQ&, int);
4100    //       T*         operator--(T*VQ&, int);
4101    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4102         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4103      // Skip pointer types that aren't pointers to object types.
4104      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
4105        continue;
4106
4107      QualType ParamTypes[2] = {
4108        Context.getLValueReferenceType(*Ptr), Context.IntTy
4109      };
4110
4111      // Without volatile
4112      if (NumArgs == 1)
4113        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4114      else
4115        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4116
4117      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4118          VisibleTypeConversionsQuals.hasVolatile()) {
4119        // With volatile
4120        ParamTypes[0]
4121          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4122        if (NumArgs == 1)
4123          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4124        else
4125          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4126      }
4127    }
4128    break;
4129
4130  UnaryStar:
4131    // C++ [over.built]p6:
4132    //   For every cv-qualified or cv-unqualified object type T, there
4133    //   exist candidate operator functions of the form
4134    //
4135    //       T&         operator*(T*);
4136    //
4137    // C++ [over.built]p7:
4138    //   For every function type T, there exist candidate operator
4139    //   functions of the form
4140    //       T&         operator*(T*);
4141    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4142         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4143      QualType ParamTy = *Ptr;
4144      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
4145      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
4146                          &ParamTy, Args, 1, CandidateSet);
4147    }
4148    break;
4149
4150  UnaryPlus:
4151    // C++ [over.built]p8:
4152    //   For every type T, there exist candidate operator functions of
4153    //   the form
4154    //
4155    //       T*         operator+(T*);
4156    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4157         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4158      QualType ParamTy = *Ptr;
4159      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
4160    }
4161
4162    // Fall through
4163
4164  UnaryMinus:
4165    // C++ [over.built]p9:
4166    //  For every promoted arithmetic type T, there exist candidate
4167    //  operator functions of the form
4168    //
4169    //       T         operator+(T);
4170    //       T         operator-(T);
4171    for (unsigned Arith = FirstPromotedArithmeticType;
4172         Arith < LastPromotedArithmeticType; ++Arith) {
4173      QualType ArithTy = ArithmeticTypes[Arith];
4174      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
4175    }
4176    break;
4177
4178  case OO_Tilde:
4179    // C++ [over.built]p10:
4180    //   For every promoted integral type T, there exist candidate
4181    //   operator functions of the form
4182    //
4183    //        T         operator~(T);
4184    for (unsigned Int = FirstPromotedIntegralType;
4185         Int < LastPromotedIntegralType; ++Int) {
4186      QualType IntTy = ArithmeticTypes[Int];
4187      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
4188    }
4189    break;
4190
4191  case OO_New:
4192  case OO_Delete:
4193  case OO_Array_New:
4194  case OO_Array_Delete:
4195  case OO_Call:
4196    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
4197    break;
4198
4199  case OO_Comma:
4200  UnaryAmp:
4201  case OO_Arrow:
4202    // C++ [over.match.oper]p3:
4203    //   -- For the operator ',', the unary operator '&', or the
4204    //      operator '->', the built-in candidates set is empty.
4205    break;
4206
4207  case OO_EqualEqual:
4208  case OO_ExclaimEqual:
4209    // C++ [over.match.oper]p16:
4210    //   For every pointer to member type T, there exist candidate operator
4211    //   functions of the form
4212    //
4213    //        bool operator==(T,T);
4214    //        bool operator!=(T,T);
4215    for (BuiltinCandidateTypeSet::iterator
4216           MemPtr = CandidateTypes.member_pointer_begin(),
4217           MemPtrEnd = CandidateTypes.member_pointer_end();
4218         MemPtr != MemPtrEnd;
4219         ++MemPtr) {
4220      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
4221      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4222    }
4223
4224    // Fall through
4225
4226  case OO_Less:
4227  case OO_Greater:
4228  case OO_LessEqual:
4229  case OO_GreaterEqual:
4230    // C++ [over.built]p15:
4231    //
4232    //   For every pointer or enumeration type T, there exist
4233    //   candidate operator functions of the form
4234    //
4235    //        bool       operator<(T, T);
4236    //        bool       operator>(T, T);
4237    //        bool       operator<=(T, T);
4238    //        bool       operator>=(T, T);
4239    //        bool       operator==(T, T);
4240    //        bool       operator!=(T, T);
4241    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4242         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4243      QualType ParamTypes[2] = { *Ptr, *Ptr };
4244      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4245    }
4246    for (BuiltinCandidateTypeSet::iterator Enum
4247           = CandidateTypes.enumeration_begin();
4248         Enum != CandidateTypes.enumeration_end(); ++Enum) {
4249      QualType ParamTypes[2] = { *Enum, *Enum };
4250      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4251    }
4252
4253    // Fall through.
4254    isComparison = true;
4255
4256  BinaryPlus:
4257  BinaryMinus:
4258    if (!isComparison) {
4259      // We didn't fall through, so we must have OO_Plus or OO_Minus.
4260
4261      // C++ [over.built]p13:
4262      //
4263      //   For every cv-qualified or cv-unqualified object type T
4264      //   there exist candidate operator functions of the form
4265      //
4266      //      T*         operator+(T*, ptrdiff_t);
4267      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
4268      //      T*         operator-(T*, ptrdiff_t);
4269      //      T*         operator+(ptrdiff_t, T*);
4270      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
4271      //
4272      // C++ [over.built]p14:
4273      //
4274      //   For every T, where T is a pointer to object type, there
4275      //   exist candidate operator functions of the form
4276      //
4277      //      ptrdiff_t  operator-(T, T);
4278      for (BuiltinCandidateTypeSet::iterator Ptr
4279             = CandidateTypes.pointer_begin();
4280           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4281        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4282
4283        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
4284        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4285
4286        if (Op == OO_Plus) {
4287          // T* operator+(ptrdiff_t, T*);
4288          ParamTypes[0] = ParamTypes[1];
4289          ParamTypes[1] = *Ptr;
4290          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4291        } else {
4292          // ptrdiff_t operator-(T, T);
4293          ParamTypes[1] = *Ptr;
4294          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
4295                              Args, 2, CandidateSet);
4296        }
4297      }
4298    }
4299    // Fall through
4300
4301  case OO_Slash:
4302  BinaryStar:
4303  Conditional:
4304    // C++ [over.built]p12:
4305    //
4306    //   For every pair of promoted arithmetic types L and R, there
4307    //   exist candidate operator functions of the form
4308    //
4309    //        LR         operator*(L, R);
4310    //        LR         operator/(L, R);
4311    //        LR         operator+(L, R);
4312    //        LR         operator-(L, R);
4313    //        bool       operator<(L, R);
4314    //        bool       operator>(L, R);
4315    //        bool       operator<=(L, R);
4316    //        bool       operator>=(L, R);
4317    //        bool       operator==(L, R);
4318    //        bool       operator!=(L, R);
4319    //
4320    //   where LR is the result of the usual arithmetic conversions
4321    //   between types L and R.
4322    //
4323    // C++ [over.built]p24:
4324    //
4325    //   For every pair of promoted arithmetic types L and R, there exist
4326    //   candidate operator functions of the form
4327    //
4328    //        LR       operator?(bool, L, R);
4329    //
4330    //   where LR is the result of the usual arithmetic conversions
4331    //   between types L and R.
4332    // Our candidates ignore the first parameter.
4333    for (unsigned Left = FirstPromotedArithmeticType;
4334         Left < LastPromotedArithmeticType; ++Left) {
4335      for (unsigned Right = FirstPromotedArithmeticType;
4336           Right < LastPromotedArithmeticType; ++Right) {
4337        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4338        QualType Result
4339          = isComparison
4340          ? Context.BoolTy
4341          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4342        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4343      }
4344    }
4345    break;
4346
4347  case OO_Percent:
4348  BinaryAmp:
4349  case OO_Caret:
4350  case OO_Pipe:
4351  case OO_LessLess:
4352  case OO_GreaterGreater:
4353    // C++ [over.built]p17:
4354    //
4355    //   For every pair of promoted integral types L and R, there
4356    //   exist candidate operator functions of the form
4357    //
4358    //      LR         operator%(L, R);
4359    //      LR         operator&(L, R);
4360    //      LR         operator^(L, R);
4361    //      LR         operator|(L, R);
4362    //      L          operator<<(L, R);
4363    //      L          operator>>(L, R);
4364    //
4365    //   where LR is the result of the usual arithmetic conversions
4366    //   between types L and R.
4367    for (unsigned Left = FirstPromotedIntegralType;
4368         Left < LastPromotedIntegralType; ++Left) {
4369      for (unsigned Right = FirstPromotedIntegralType;
4370           Right < LastPromotedIntegralType; ++Right) {
4371        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4372        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
4373            ? LandR[0]
4374            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4375        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4376      }
4377    }
4378    break;
4379
4380  case OO_Equal:
4381    // C++ [over.built]p20:
4382    //
4383    //   For every pair (T, VQ), where T is an enumeration or
4384    //   pointer to member type and VQ is either volatile or
4385    //   empty, there exist candidate operator functions of the form
4386    //
4387    //        VQ T&      operator=(VQ T&, T);
4388    for (BuiltinCandidateTypeSet::iterator
4389           Enum = CandidateTypes.enumeration_begin(),
4390           EnumEnd = CandidateTypes.enumeration_end();
4391         Enum != EnumEnd; ++Enum)
4392      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
4393                                             CandidateSet);
4394    for (BuiltinCandidateTypeSet::iterator
4395           MemPtr = CandidateTypes.member_pointer_begin(),
4396         MemPtrEnd = CandidateTypes.member_pointer_end();
4397         MemPtr != MemPtrEnd; ++MemPtr)
4398      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
4399                                             CandidateSet);
4400      // Fall through.
4401
4402  case OO_PlusEqual:
4403  case OO_MinusEqual:
4404    // C++ [over.built]p19:
4405    //
4406    //   For every pair (T, VQ), where T is any type and VQ is either
4407    //   volatile or empty, there exist candidate operator functions
4408    //   of the form
4409    //
4410    //        T*VQ&      operator=(T*VQ&, T*);
4411    //
4412    // C++ [over.built]p21:
4413    //
4414    //   For every pair (T, VQ), where T is a cv-qualified or
4415    //   cv-unqualified object type and VQ is either volatile or
4416    //   empty, there exist candidate operator functions of the form
4417    //
4418    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
4419    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
4420    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4421         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4422      QualType ParamTypes[2];
4423      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
4424
4425      // non-volatile version
4426      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
4427      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4428                          /*IsAssigmentOperator=*/Op == OO_Equal);
4429
4430      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4431          VisibleTypeConversionsQuals.hasVolatile()) {
4432        // volatile version
4433        ParamTypes[0]
4434          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4435        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4436                            /*IsAssigmentOperator=*/Op == OO_Equal);
4437      }
4438    }
4439    // Fall through.
4440
4441  case OO_StarEqual:
4442  case OO_SlashEqual:
4443    // C++ [over.built]p18:
4444    //
4445    //   For every triple (L, VQ, R), where L is an arithmetic type,
4446    //   VQ is either volatile or empty, and R is a promoted
4447    //   arithmetic type, there exist candidate operator functions of
4448    //   the form
4449    //
4450    //        VQ L&      operator=(VQ L&, R);
4451    //        VQ L&      operator*=(VQ L&, R);
4452    //        VQ L&      operator/=(VQ L&, R);
4453    //        VQ L&      operator+=(VQ L&, R);
4454    //        VQ L&      operator-=(VQ L&, R);
4455    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
4456      for (unsigned Right = FirstPromotedArithmeticType;
4457           Right < LastPromotedArithmeticType; ++Right) {
4458        QualType ParamTypes[2];
4459        ParamTypes[1] = ArithmeticTypes[Right];
4460
4461        // Add this built-in operator as a candidate (VQ is empty).
4462        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4463        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4464                            /*IsAssigmentOperator=*/Op == OO_Equal);
4465
4466        // Add this built-in operator as a candidate (VQ is 'volatile').
4467        if (VisibleTypeConversionsQuals.hasVolatile()) {
4468          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
4469          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4470          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4471                              /*IsAssigmentOperator=*/Op == OO_Equal);
4472        }
4473      }
4474    }
4475    break;
4476
4477  case OO_PercentEqual:
4478  case OO_LessLessEqual:
4479  case OO_GreaterGreaterEqual:
4480  case OO_AmpEqual:
4481  case OO_CaretEqual:
4482  case OO_PipeEqual:
4483    // C++ [over.built]p22:
4484    //
4485    //   For every triple (L, VQ, R), where L is an integral type, VQ
4486    //   is either volatile or empty, and R is a promoted integral
4487    //   type, there exist candidate operator functions of the form
4488    //
4489    //        VQ L&       operator%=(VQ L&, R);
4490    //        VQ L&       operator<<=(VQ L&, R);
4491    //        VQ L&       operator>>=(VQ L&, R);
4492    //        VQ L&       operator&=(VQ L&, R);
4493    //        VQ L&       operator^=(VQ L&, R);
4494    //        VQ L&       operator|=(VQ L&, R);
4495    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
4496      for (unsigned Right = FirstPromotedIntegralType;
4497           Right < LastPromotedIntegralType; ++Right) {
4498        QualType ParamTypes[2];
4499        ParamTypes[1] = ArithmeticTypes[Right];
4500
4501        // Add this built-in operator as a candidate (VQ is empty).
4502        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4503        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4504        if (VisibleTypeConversionsQuals.hasVolatile()) {
4505          // Add this built-in operator as a candidate (VQ is 'volatile').
4506          ParamTypes[0] = ArithmeticTypes[Left];
4507          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
4508          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4509          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4510        }
4511      }
4512    }
4513    break;
4514
4515  case OO_Exclaim: {
4516    // C++ [over.operator]p23:
4517    //
4518    //   There also exist candidate operator functions of the form
4519    //
4520    //        bool        operator!(bool);
4521    //        bool        operator&&(bool, bool);     [BELOW]
4522    //        bool        operator||(bool, bool);     [BELOW]
4523    QualType ParamTy = Context.BoolTy;
4524    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
4525                        /*IsAssignmentOperator=*/false,
4526                        /*NumContextualBoolArguments=*/1);
4527    break;
4528  }
4529
4530  case OO_AmpAmp:
4531  case OO_PipePipe: {
4532    // C++ [over.operator]p23:
4533    //
4534    //   There also exist candidate operator functions of the form
4535    //
4536    //        bool        operator!(bool);            [ABOVE]
4537    //        bool        operator&&(bool, bool);
4538    //        bool        operator||(bool, bool);
4539    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4540    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4541                        /*IsAssignmentOperator=*/false,
4542                        /*NumContextualBoolArguments=*/2);
4543    break;
4544  }
4545
4546  case OO_Subscript:
4547    // C++ [over.built]p13:
4548    //
4549    //   For every cv-qualified or cv-unqualified object type T there
4550    //   exist candidate operator functions of the form
4551    //
4552    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4553    //        T&         operator[](T*, ptrdiff_t);
4554    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4555    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4556    //        T&         operator[](ptrdiff_t, T*);
4557    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4558         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4559      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4560      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4561      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4562
4563      // T& operator[](T*, ptrdiff_t)
4564      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4565
4566      // T& operator[](ptrdiff_t, T*);
4567      ParamTypes[0] = ParamTypes[1];
4568      ParamTypes[1] = *Ptr;
4569      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4570    }
4571    break;
4572
4573  case OO_ArrowStar:
4574    // C++ [over.built]p11:
4575    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4576    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4577    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4578    //    there exist candidate operator functions of the form
4579    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4580    //    where CV12 is the union of CV1 and CV2.
4581    {
4582      for (BuiltinCandidateTypeSet::iterator Ptr =
4583             CandidateTypes.pointer_begin();
4584           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4585        QualType C1Ty = (*Ptr);
4586        QualType C1;
4587        QualifierCollector Q1;
4588        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4589          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4590          if (!isa<RecordType>(C1))
4591            continue;
4592          // heuristic to reduce number of builtin candidates in the set.
4593          // Add volatile/restrict version only if there are conversions to a
4594          // volatile/restrict type.
4595          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4596            continue;
4597          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4598            continue;
4599        }
4600        for (BuiltinCandidateTypeSet::iterator
4601             MemPtr = CandidateTypes.member_pointer_begin(),
4602             MemPtrEnd = CandidateTypes.member_pointer_end();
4603             MemPtr != MemPtrEnd; ++MemPtr) {
4604          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4605          QualType C2 = QualType(mptr->getClass(), 0);
4606          C2 = C2.getUnqualifiedType();
4607          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4608            break;
4609          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4610          // build CV12 T&
4611          QualType T = mptr->getPointeeType();
4612          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4613              T.isVolatileQualified())
4614            continue;
4615          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4616              T.isRestrictQualified())
4617            continue;
4618          T = Q1.apply(T);
4619          QualType ResultTy = Context.getLValueReferenceType(T);
4620          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4621        }
4622      }
4623    }
4624    break;
4625
4626  case OO_Conditional:
4627    // Note that we don't consider the first argument, since it has been
4628    // contextually converted to bool long ago. The candidates below are
4629    // therefore added as binary.
4630    //
4631    // C++ [over.built]p24:
4632    //   For every type T, where T is a pointer or pointer-to-member type,
4633    //   there exist candidate operator functions of the form
4634    //
4635    //        T        operator?(bool, T, T);
4636    //
4637    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4638         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4639      QualType ParamTypes[2] = { *Ptr, *Ptr };
4640      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4641    }
4642    for (BuiltinCandidateTypeSet::iterator Ptr =
4643           CandidateTypes.member_pointer_begin(),
4644         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4645      QualType ParamTypes[2] = { *Ptr, *Ptr };
4646      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4647    }
4648    goto Conditional;
4649  }
4650}
4651
4652/// \brief Add function candidates found via argument-dependent lookup
4653/// to the set of overloading candidates.
4654///
4655/// This routine performs argument-dependent name lookup based on the
4656/// given function name (which may also be an operator name) and adds
4657/// all of the overload candidates found by ADL to the overload
4658/// candidate set (C++ [basic.lookup.argdep]).
4659void
4660Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4661                                           bool Operator,
4662                                           Expr **Args, unsigned NumArgs,
4663                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4664                                           OverloadCandidateSet& CandidateSet,
4665                                           bool PartialOverloading) {
4666  ADLResult Fns;
4667
4668  // FIXME: This approach for uniquing ADL results (and removing
4669  // redundant candidates from the set) relies on pointer-equality,
4670  // which means we need to key off the canonical decl.  However,
4671  // always going back to the canonical decl might not get us the
4672  // right set of default arguments.  What default arguments are
4673  // we supposed to consider on ADL candidates, anyway?
4674
4675  // FIXME: Pass in the explicit template arguments?
4676  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4677
4678  // Erase all of the candidates we already knew about.
4679  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4680                                   CandEnd = CandidateSet.end();
4681       Cand != CandEnd; ++Cand)
4682    if (Cand->Function) {
4683      Fns.erase(Cand->Function);
4684      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4685        Fns.erase(FunTmpl);
4686    }
4687
4688  // For each of the ADL candidates we found, add it to the overload
4689  // set.
4690  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4691    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
4692    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4693      if (ExplicitTemplateArgs)
4694        continue;
4695
4696      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
4697                           false, PartialOverloading);
4698    } else
4699      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4700                                   FoundDecl, ExplicitTemplateArgs,
4701                                   Args, NumArgs, CandidateSet);
4702  }
4703}
4704
4705/// isBetterOverloadCandidate - Determines whether the first overload
4706/// candidate is a better candidate than the second (C++ 13.3.3p1).
4707bool
4708Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4709                                const OverloadCandidate& Cand2,
4710                                SourceLocation Loc) {
4711  // Define viable functions to be better candidates than non-viable
4712  // functions.
4713  if (!Cand2.Viable)
4714    return Cand1.Viable;
4715  else if (!Cand1.Viable)
4716    return false;
4717
4718  // C++ [over.match.best]p1:
4719  //
4720  //   -- if F is a static member function, ICS1(F) is defined such
4721  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4722  //      any function G, and, symmetrically, ICS1(G) is neither
4723  //      better nor worse than ICS1(F).
4724  unsigned StartArg = 0;
4725  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4726    StartArg = 1;
4727
4728  // C++ [over.match.best]p1:
4729  //   A viable function F1 is defined to be a better function than another
4730  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4731  //   conversion sequence than ICSi(F2), and then...
4732  unsigned NumArgs = Cand1.Conversions.size();
4733  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4734  bool HasBetterConversion = false;
4735  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4736    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4737                                               Cand2.Conversions[ArgIdx])) {
4738    case ImplicitConversionSequence::Better:
4739      // Cand1 has a better conversion sequence.
4740      HasBetterConversion = true;
4741      break;
4742
4743    case ImplicitConversionSequence::Worse:
4744      // Cand1 can't be better than Cand2.
4745      return false;
4746
4747    case ImplicitConversionSequence::Indistinguishable:
4748      // Do nothing.
4749      break;
4750    }
4751  }
4752
4753  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4754  //       ICSj(F2), or, if not that,
4755  if (HasBetterConversion)
4756    return true;
4757
4758  //     - F1 is a non-template function and F2 is a function template
4759  //       specialization, or, if not that,
4760  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4761      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4762    return true;
4763
4764  //   -- F1 and F2 are function template specializations, and the function
4765  //      template for F1 is more specialized than the template for F2
4766  //      according to the partial ordering rules described in 14.5.5.2, or,
4767  //      if not that,
4768  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4769      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4770    if (FunctionTemplateDecl *BetterTemplate
4771          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4772                                       Cand2.Function->getPrimaryTemplate(),
4773                                       Loc,
4774                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4775                                                             : TPOC_Call))
4776      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4777
4778  //   -- the context is an initialization by user-defined conversion
4779  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4780  //      from the return type of F1 to the destination type (i.e.,
4781  //      the type of the entity being initialized) is a better
4782  //      conversion sequence than the standard conversion sequence
4783  //      from the return type of F2 to the destination type.
4784  if (Cand1.Function && Cand2.Function &&
4785      isa<CXXConversionDecl>(Cand1.Function) &&
4786      isa<CXXConversionDecl>(Cand2.Function)) {
4787    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4788                                               Cand2.FinalConversion)) {
4789    case ImplicitConversionSequence::Better:
4790      // Cand1 has a better conversion sequence.
4791      return true;
4792
4793    case ImplicitConversionSequence::Worse:
4794      // Cand1 can't be better than Cand2.
4795      return false;
4796
4797    case ImplicitConversionSequence::Indistinguishable:
4798      // Do nothing
4799      break;
4800    }
4801  }
4802
4803  return false;
4804}
4805
4806/// \brief Computes the best viable function (C++ 13.3.3)
4807/// within an overload candidate set.
4808///
4809/// \param CandidateSet the set of candidate functions.
4810///
4811/// \param Loc the location of the function name (or operator symbol) for
4812/// which overload resolution occurs.
4813///
4814/// \param Best f overload resolution was successful or found a deleted
4815/// function, Best points to the candidate function found.
4816///
4817/// \returns The result of overload resolution.
4818OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4819                                           SourceLocation Loc,
4820                                        OverloadCandidateSet::iterator& Best) {
4821  // Find the best viable function.
4822  Best = CandidateSet.end();
4823  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4824       Cand != CandidateSet.end(); ++Cand) {
4825    if (Cand->Viable) {
4826      if (Best == CandidateSet.end() ||
4827          isBetterOverloadCandidate(*Cand, *Best, Loc))
4828        Best = Cand;
4829    }
4830  }
4831
4832  // If we didn't find any viable functions, abort.
4833  if (Best == CandidateSet.end())
4834    return OR_No_Viable_Function;
4835
4836  // Make sure that this function is better than every other viable
4837  // function. If not, we have an ambiguity.
4838  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4839       Cand != CandidateSet.end(); ++Cand) {
4840    if (Cand->Viable &&
4841        Cand != Best &&
4842        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
4843      Best = CandidateSet.end();
4844      return OR_Ambiguous;
4845    }
4846  }
4847
4848  // Best is the best viable function.
4849  if (Best->Function &&
4850      (Best->Function->isDeleted() ||
4851       Best->Function->getAttr<UnavailableAttr>()))
4852    return OR_Deleted;
4853
4854  // C++ [basic.def.odr]p2:
4855  //   An overloaded function is used if it is selected by overload resolution
4856  //   when referred to from a potentially-evaluated expression. [Note: this
4857  //   covers calls to named functions (5.2.2), operator overloading
4858  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4859  //   placement new (5.3.4), as well as non-default initialization (8.5).
4860  if (Best->Function)
4861    MarkDeclarationReferenced(Loc, Best->Function);
4862  return OR_Success;
4863}
4864
4865namespace {
4866
4867enum OverloadCandidateKind {
4868  oc_function,
4869  oc_method,
4870  oc_constructor,
4871  oc_function_template,
4872  oc_method_template,
4873  oc_constructor_template,
4874  oc_implicit_default_constructor,
4875  oc_implicit_copy_constructor,
4876  oc_implicit_copy_assignment
4877};
4878
4879OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4880                                                FunctionDecl *Fn,
4881                                                std::string &Description) {
4882  bool isTemplate = false;
4883
4884  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4885    isTemplate = true;
4886    Description = S.getTemplateArgumentBindingsText(
4887      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4888  }
4889
4890  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4891    if (!Ctor->isImplicit())
4892      return isTemplate ? oc_constructor_template : oc_constructor;
4893
4894    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4895                                     : oc_implicit_default_constructor;
4896  }
4897
4898  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4899    // This actually gets spelled 'candidate function' for now, but
4900    // it doesn't hurt to split it out.
4901    if (!Meth->isImplicit())
4902      return isTemplate ? oc_method_template : oc_method;
4903
4904    assert(Meth->isCopyAssignment()
4905           && "implicit method is not copy assignment operator?");
4906    return oc_implicit_copy_assignment;
4907  }
4908
4909  return isTemplate ? oc_function_template : oc_function;
4910}
4911
4912} // end anonymous namespace
4913
4914// Notes the location of an overload candidate.
4915void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4916  std::string FnDesc;
4917  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4918  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4919    << (unsigned) K << FnDesc;
4920}
4921
4922/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4923/// "lead" diagnostic; it will be given two arguments, the source and
4924/// target types of the conversion.
4925void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4926                                       SourceLocation CaretLoc,
4927                                       const PartialDiagnostic &PDiag) {
4928  Diag(CaretLoc, PDiag)
4929    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4930  for (AmbiguousConversionSequence::const_iterator
4931         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4932    NoteOverloadCandidate(*I);
4933  }
4934}
4935
4936namespace {
4937
4938void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4939  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4940  assert(Conv.isBad());
4941  assert(Cand->Function && "for now, candidate must be a function");
4942  FunctionDecl *Fn = Cand->Function;
4943
4944  // There's a conversion slot for the object argument if this is a
4945  // non-constructor method.  Note that 'I' corresponds the
4946  // conversion-slot index.
4947  bool isObjectArgument = false;
4948  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4949    if (I == 0)
4950      isObjectArgument = true;
4951    else
4952      I--;
4953  }
4954
4955  std::string FnDesc;
4956  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4957
4958  Expr *FromExpr = Conv.Bad.FromExpr;
4959  QualType FromTy = Conv.Bad.getFromType();
4960  QualType ToTy = Conv.Bad.getToType();
4961
4962  if (FromTy == S.Context.OverloadTy) {
4963    assert(FromExpr && "overload set argument came from implicit argument?");
4964    Expr *E = FromExpr->IgnoreParens();
4965    if (isa<UnaryOperator>(E))
4966      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
4967    DeclarationName Name = cast<OverloadExpr>(E)->getName();
4968
4969    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
4970      << (unsigned) FnKind << FnDesc
4971      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4972      << ToTy << Name << I+1;
4973    return;
4974  }
4975
4976  // Do some hand-waving analysis to see if the non-viability is due
4977  // to a qualifier mismatch.
4978  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4979  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4980  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4981    CToTy = RT->getPointeeType();
4982  else {
4983    // TODO: detect and diagnose the full richness of const mismatches.
4984    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4985      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4986        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4987  }
4988
4989  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4990      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4991    // It is dumb that we have to do this here.
4992    while (isa<ArrayType>(CFromTy))
4993      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4994    while (isa<ArrayType>(CToTy))
4995      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4996
4997    Qualifiers FromQs = CFromTy.getQualifiers();
4998    Qualifiers ToQs = CToTy.getQualifiers();
4999
5000    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
5001      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
5002        << (unsigned) FnKind << FnDesc
5003        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5004        << FromTy
5005        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
5006        << (unsigned) isObjectArgument << I+1;
5007      return;
5008    }
5009
5010    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5011    assert(CVR && "unexpected qualifiers mismatch");
5012
5013    if (isObjectArgument) {
5014      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
5015        << (unsigned) FnKind << FnDesc
5016        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5017        << FromTy << (CVR - 1);
5018    } else {
5019      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
5020        << (unsigned) FnKind << FnDesc
5021        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5022        << FromTy << (CVR - 1) << I+1;
5023    }
5024    return;
5025  }
5026
5027  // Diagnose references or pointers to incomplete types differently,
5028  // since it's far from impossible that the incompleteness triggered
5029  // the failure.
5030  QualType TempFromTy = FromTy.getNonReferenceType();
5031  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
5032    TempFromTy = PTy->getPointeeType();
5033  if (TempFromTy->isIncompleteType()) {
5034    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
5035      << (unsigned) FnKind << FnDesc
5036      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5037      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
5038    return;
5039  }
5040
5041  // TODO: specialize more based on the kind of mismatch
5042  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
5043    << (unsigned) FnKind << FnDesc
5044    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5045    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
5046}
5047
5048void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
5049                           unsigned NumFormalArgs) {
5050  // TODO: treat calls to a missing default constructor as a special case
5051
5052  FunctionDecl *Fn = Cand->Function;
5053  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
5054
5055  unsigned MinParams = Fn->getMinRequiredArguments();
5056
5057  // at least / at most / exactly
5058  // FIXME: variadic templates "at most" should account for parameter packs
5059  unsigned mode, modeCount;
5060  if (NumFormalArgs < MinParams) {
5061    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
5062           (Cand->FailureKind == ovl_fail_bad_deduction &&
5063            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
5064    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
5065      mode = 0; // "at least"
5066    else
5067      mode = 2; // "exactly"
5068    modeCount = MinParams;
5069  } else {
5070    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
5071           (Cand->FailureKind == ovl_fail_bad_deduction &&
5072            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
5073    if (MinParams != FnTy->getNumArgs())
5074      mode = 1; // "at most"
5075    else
5076      mode = 2; // "exactly"
5077    modeCount = FnTy->getNumArgs();
5078  }
5079
5080  std::string Description;
5081  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
5082
5083  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
5084    << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
5085    << modeCount << NumFormalArgs;
5086}
5087
5088/// Diagnose a failed template-argument deduction.
5089void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
5090                          Expr **Args, unsigned NumArgs) {
5091  FunctionDecl *Fn = Cand->Function; // pattern
5092
5093  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
5094  switch (Cand->DeductionFailure.Result) {
5095  case Sema::TDK_Success:
5096    llvm_unreachable("TDK_success while diagnosing bad deduction");
5097
5098  case Sema::TDK_Incomplete: {
5099    NamedDecl *ParamD;
5100    (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
5101    (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
5102    (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
5103    assert(ParamD && "no parameter found for incomplete deduction result");
5104    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
5105      << ParamD->getDeclName();
5106    return;
5107  }
5108
5109  case Sema::TDK_Inconsistent:
5110  case Sema::TDK_InconsistentQuals: {
5111    NamedDecl *ParamD;
5112    int which = 0;
5113    if ((ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()))
5114      which = 0;
5115    else if ((ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()))
5116      which = 1;
5117    else {
5118      ParamD = Param.get<TemplateTemplateParmDecl*>();
5119      which = 2;
5120    }
5121
5122    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
5123      << which << ParamD->getDeclName()
5124      << *Cand->DeductionFailure.getFirstArg()
5125      << *Cand->DeductionFailure.getSecondArg();
5126    return;
5127  }
5128
5129  case Sema::TDK_TooManyArguments:
5130  case Sema::TDK_TooFewArguments:
5131    DiagnoseArityMismatch(S, Cand, NumArgs);
5132    return;
5133
5134  // TODO: diagnose these individually, then kill off
5135  // note_ovl_candidate_bad_deduction, which is uselessly vague.
5136  case Sema::TDK_InstantiationDepth:
5137  case Sema::TDK_SubstitutionFailure:
5138  case Sema::TDK_NonDeducedMismatch:
5139  case Sema::TDK_InvalidExplicitArguments:
5140  case Sema::TDK_FailedOverloadResolution:
5141    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
5142    return;
5143  }
5144}
5145
5146/// Generates a 'note' diagnostic for an overload candidate.  We've
5147/// already generated a primary error at the call site.
5148///
5149/// It really does need to be a single diagnostic with its caret
5150/// pointed at the candidate declaration.  Yes, this creates some
5151/// major challenges of technical writing.  Yes, this makes pointing
5152/// out problems with specific arguments quite awkward.  It's still
5153/// better than generating twenty screens of text for every failed
5154/// overload.
5155///
5156/// It would be great to be able to express per-candidate problems
5157/// more richly for those diagnostic clients that cared, but we'd
5158/// still have to be just as careful with the default diagnostics.
5159void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
5160                           Expr **Args, unsigned NumArgs) {
5161  FunctionDecl *Fn = Cand->Function;
5162
5163  // Note deleted candidates, but only if they're viable.
5164  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
5165    std::string FnDesc;
5166    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
5167
5168    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
5169      << FnKind << FnDesc << Fn->isDeleted();
5170    return;
5171  }
5172
5173  // We don't really have anything else to say about viable candidates.
5174  if (Cand->Viable) {
5175    S.NoteOverloadCandidate(Fn);
5176    return;
5177  }
5178
5179  switch (Cand->FailureKind) {
5180  case ovl_fail_too_many_arguments:
5181  case ovl_fail_too_few_arguments:
5182    return DiagnoseArityMismatch(S, Cand, NumArgs);
5183
5184  case ovl_fail_bad_deduction:
5185    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
5186
5187  case ovl_fail_trivial_conversion:
5188  case ovl_fail_bad_final_conversion:
5189  case ovl_fail_final_conversion_not_exact:
5190    return S.NoteOverloadCandidate(Fn);
5191
5192  case ovl_fail_bad_conversion: {
5193    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
5194    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
5195      if (Cand->Conversions[I].isBad())
5196        return DiagnoseBadConversion(S, Cand, I);
5197
5198    // FIXME: this currently happens when we're called from SemaInit
5199    // when user-conversion overload fails.  Figure out how to handle
5200    // those conditions and diagnose them well.
5201    return S.NoteOverloadCandidate(Fn);
5202  }
5203  }
5204}
5205
5206void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
5207  // Desugar the type of the surrogate down to a function type,
5208  // retaining as many typedefs as possible while still showing
5209  // the function type (and, therefore, its parameter types).
5210  QualType FnType = Cand->Surrogate->getConversionType();
5211  bool isLValueReference = false;
5212  bool isRValueReference = false;
5213  bool isPointer = false;
5214  if (const LValueReferenceType *FnTypeRef =
5215        FnType->getAs<LValueReferenceType>()) {
5216    FnType = FnTypeRef->getPointeeType();
5217    isLValueReference = true;
5218  } else if (const RValueReferenceType *FnTypeRef =
5219               FnType->getAs<RValueReferenceType>()) {
5220    FnType = FnTypeRef->getPointeeType();
5221    isRValueReference = true;
5222  }
5223  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
5224    FnType = FnTypePtr->getPointeeType();
5225    isPointer = true;
5226  }
5227  // Desugar down to a function type.
5228  FnType = QualType(FnType->getAs<FunctionType>(), 0);
5229  // Reconstruct the pointer/reference as appropriate.
5230  if (isPointer) FnType = S.Context.getPointerType(FnType);
5231  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
5232  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
5233
5234  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
5235    << FnType;
5236}
5237
5238void NoteBuiltinOperatorCandidate(Sema &S,
5239                                  const char *Opc,
5240                                  SourceLocation OpLoc,
5241                                  OverloadCandidate *Cand) {
5242  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
5243  std::string TypeStr("operator");
5244  TypeStr += Opc;
5245  TypeStr += "(";
5246  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
5247  if (Cand->Conversions.size() == 1) {
5248    TypeStr += ")";
5249    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
5250  } else {
5251    TypeStr += ", ";
5252    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
5253    TypeStr += ")";
5254    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
5255  }
5256}
5257
5258void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
5259                                  OverloadCandidate *Cand) {
5260  unsigned NoOperands = Cand->Conversions.size();
5261  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
5262    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
5263    if (ICS.isBad()) break; // all meaningless after first invalid
5264    if (!ICS.isAmbiguous()) continue;
5265
5266    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
5267                              S.PDiag(diag::note_ambiguous_type_conversion));
5268  }
5269}
5270
5271SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
5272  if (Cand->Function)
5273    return Cand->Function->getLocation();
5274  if (Cand->IsSurrogate)
5275    return Cand->Surrogate->getLocation();
5276  return SourceLocation();
5277}
5278
5279struct CompareOverloadCandidatesForDisplay {
5280  Sema &S;
5281  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
5282
5283  bool operator()(const OverloadCandidate *L,
5284                  const OverloadCandidate *R) {
5285    // Fast-path this check.
5286    if (L == R) return false;
5287
5288    // Order first by viability.
5289    if (L->Viable) {
5290      if (!R->Viable) return true;
5291
5292      // TODO: introduce a tri-valued comparison for overload
5293      // candidates.  Would be more worthwhile if we had a sort
5294      // that could exploit it.
5295      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
5296      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
5297    } else if (R->Viable)
5298      return false;
5299
5300    assert(L->Viable == R->Viable);
5301
5302    // Criteria by which we can sort non-viable candidates:
5303    if (!L->Viable) {
5304      // 1. Arity mismatches come after other candidates.
5305      if (L->FailureKind == ovl_fail_too_many_arguments ||
5306          L->FailureKind == ovl_fail_too_few_arguments)
5307        return false;
5308      if (R->FailureKind == ovl_fail_too_many_arguments ||
5309          R->FailureKind == ovl_fail_too_few_arguments)
5310        return true;
5311
5312      // 2. Bad conversions come first and are ordered by the number
5313      // of bad conversions and quality of good conversions.
5314      if (L->FailureKind == ovl_fail_bad_conversion) {
5315        if (R->FailureKind != ovl_fail_bad_conversion)
5316          return true;
5317
5318        // If there's any ordering between the defined conversions...
5319        // FIXME: this might not be transitive.
5320        assert(L->Conversions.size() == R->Conversions.size());
5321
5322        int leftBetter = 0;
5323        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
5324        for (unsigned E = L->Conversions.size(); I != E; ++I) {
5325          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
5326                                                       R->Conversions[I])) {
5327          case ImplicitConversionSequence::Better:
5328            leftBetter++;
5329            break;
5330
5331          case ImplicitConversionSequence::Worse:
5332            leftBetter--;
5333            break;
5334
5335          case ImplicitConversionSequence::Indistinguishable:
5336            break;
5337          }
5338        }
5339        if (leftBetter > 0) return true;
5340        if (leftBetter < 0) return false;
5341
5342      } else if (R->FailureKind == ovl_fail_bad_conversion)
5343        return false;
5344
5345      // TODO: others?
5346    }
5347
5348    // Sort everything else by location.
5349    SourceLocation LLoc = GetLocationForCandidate(L);
5350    SourceLocation RLoc = GetLocationForCandidate(R);
5351
5352    // Put candidates without locations (e.g. builtins) at the end.
5353    if (LLoc.isInvalid()) return false;
5354    if (RLoc.isInvalid()) return true;
5355
5356    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
5357  }
5358};
5359
5360/// CompleteNonViableCandidate - Normally, overload resolution only
5361/// computes up to the first
5362void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
5363                                Expr **Args, unsigned NumArgs) {
5364  assert(!Cand->Viable);
5365
5366  // Don't do anything on failures other than bad conversion.
5367  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
5368
5369  // Skip forward to the first bad conversion.
5370  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
5371  unsigned ConvCount = Cand->Conversions.size();
5372  while (true) {
5373    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
5374    ConvIdx++;
5375    if (Cand->Conversions[ConvIdx - 1].isBad())
5376      break;
5377  }
5378
5379  if (ConvIdx == ConvCount)
5380    return;
5381
5382  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
5383         "remaining conversion is initialized?");
5384
5385  // FIXME: this should probably be preserved from the overload
5386  // operation somehow.
5387  bool SuppressUserConversions = false;
5388
5389  const FunctionProtoType* Proto;
5390  unsigned ArgIdx = ConvIdx;
5391
5392  if (Cand->IsSurrogate) {
5393    QualType ConvType
5394      = Cand->Surrogate->getConversionType().getNonReferenceType();
5395    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5396      ConvType = ConvPtrType->getPointeeType();
5397    Proto = ConvType->getAs<FunctionProtoType>();
5398    ArgIdx--;
5399  } else if (Cand->Function) {
5400    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
5401    if (isa<CXXMethodDecl>(Cand->Function) &&
5402        !isa<CXXConstructorDecl>(Cand->Function))
5403      ArgIdx--;
5404  } else {
5405    // Builtin binary operator with a bad first conversion.
5406    assert(ConvCount <= 3);
5407    for (; ConvIdx != ConvCount; ++ConvIdx)
5408      Cand->Conversions[ConvIdx]
5409        = TryCopyInitialization(S, Args[ConvIdx],
5410                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
5411                                SuppressUserConversions,
5412                                /*InOverloadResolution*/ true);
5413    return;
5414  }
5415
5416  // Fill in the rest of the conversions.
5417  unsigned NumArgsInProto = Proto->getNumArgs();
5418  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
5419    if (ArgIdx < NumArgsInProto)
5420      Cand->Conversions[ConvIdx]
5421        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
5422                                SuppressUserConversions,
5423                                /*InOverloadResolution=*/true);
5424    else
5425      Cand->Conversions[ConvIdx].setEllipsis();
5426  }
5427}
5428
5429} // end anonymous namespace
5430
5431/// PrintOverloadCandidates - When overload resolution fails, prints
5432/// diagnostic messages containing the candidates in the candidate
5433/// set.
5434void
5435Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
5436                              OverloadCandidateDisplayKind OCD,
5437                              Expr **Args, unsigned NumArgs,
5438                              const char *Opc,
5439                              SourceLocation OpLoc) {
5440  // Sort the candidates by viability and position.  Sorting directly would
5441  // be prohibitive, so we make a set of pointers and sort those.
5442  llvm::SmallVector<OverloadCandidate*, 32> Cands;
5443  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
5444  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
5445                                  LastCand = CandidateSet.end();
5446       Cand != LastCand; ++Cand) {
5447    if (Cand->Viable)
5448      Cands.push_back(Cand);
5449    else if (OCD == OCD_AllCandidates) {
5450      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
5451      Cands.push_back(Cand);
5452    }
5453  }
5454
5455  std::sort(Cands.begin(), Cands.end(),
5456            CompareOverloadCandidatesForDisplay(*this));
5457
5458  bool ReportedAmbiguousConversions = false;
5459
5460  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
5461  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
5462    OverloadCandidate *Cand = *I;
5463
5464    if (Cand->Function)
5465      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
5466    else if (Cand->IsSurrogate)
5467      NoteSurrogateCandidate(*this, Cand);
5468
5469    // This a builtin candidate.  We do not, in general, want to list
5470    // every possible builtin candidate.
5471    else if (Cand->Viable) {
5472      // Generally we only see ambiguities including viable builtin
5473      // operators if overload resolution got screwed up by an
5474      // ambiguous user-defined conversion.
5475      //
5476      // FIXME: It's quite possible for different conversions to see
5477      // different ambiguities, though.
5478      if (!ReportedAmbiguousConversions) {
5479        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
5480        ReportedAmbiguousConversions = true;
5481      }
5482
5483      // If this is a viable builtin, print it.
5484      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
5485    }
5486  }
5487}
5488
5489static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
5490  if (isa<UnresolvedLookupExpr>(E))
5491    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
5492
5493  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
5494}
5495
5496/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
5497/// an overloaded function (C++ [over.over]), where @p From is an
5498/// expression with overloaded function type and @p ToType is the type
5499/// we're trying to resolve to. For example:
5500///
5501/// @code
5502/// int f(double);
5503/// int f(int);
5504///
5505/// int (*pfd)(double) = f; // selects f(double)
5506/// @endcode
5507///
5508/// This routine returns the resulting FunctionDecl if it could be
5509/// resolved, and NULL otherwise. When @p Complain is true, this
5510/// routine will emit diagnostics if there is an error.
5511FunctionDecl *
5512Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
5513                                         bool Complain,
5514                                         DeclAccessPair &FoundResult) {
5515  QualType FunctionType = ToType;
5516  bool IsMember = false;
5517  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
5518    FunctionType = ToTypePtr->getPointeeType();
5519  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
5520    FunctionType = ToTypeRef->getPointeeType();
5521  else if (const MemberPointerType *MemTypePtr =
5522                    ToType->getAs<MemberPointerType>()) {
5523    FunctionType = MemTypePtr->getPointeeType();
5524    IsMember = true;
5525  }
5526
5527  // C++ [over.over]p1:
5528  //   [...] [Note: any redundant set of parentheses surrounding the
5529  //   overloaded function name is ignored (5.1). ]
5530  // C++ [over.over]p1:
5531  //   [...] The overloaded function name can be preceded by the &
5532  //   operator.
5533  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5534  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
5535  if (OvlExpr->hasExplicitTemplateArgs()) {
5536    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
5537    ExplicitTemplateArgs = &ETABuffer;
5538  }
5539
5540  // We expect a pointer or reference to function, or a function pointer.
5541  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
5542  if (!FunctionType->isFunctionType()) {
5543    if (Complain)
5544      Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
5545        << OvlExpr->getName() << ToType;
5546
5547    return 0;
5548  }
5549
5550  assert(From->getType() == Context.OverloadTy);
5551
5552  // Look through all of the overloaded functions, searching for one
5553  // whose type matches exactly.
5554  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
5555  llvm::SmallVector<FunctionDecl *, 4> NonMatches;
5556
5557  bool FoundNonTemplateFunction = false;
5558  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5559         E = OvlExpr->decls_end(); I != E; ++I) {
5560    // Look through any using declarations to find the underlying function.
5561    NamedDecl *Fn = (*I)->getUnderlyingDecl();
5562
5563    // C++ [over.over]p3:
5564    //   Non-member functions and static member functions match
5565    //   targets of type "pointer-to-function" or "reference-to-function."
5566    //   Nonstatic member functions match targets of
5567    //   type "pointer-to-member-function."
5568    // Note that according to DR 247, the containing class does not matter.
5569
5570    if (FunctionTemplateDecl *FunctionTemplate
5571          = dyn_cast<FunctionTemplateDecl>(Fn)) {
5572      if (CXXMethodDecl *Method
5573            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5574        // Skip non-static function templates when converting to pointer, and
5575        // static when converting to member pointer.
5576        if (Method->isStatic() == IsMember)
5577          continue;
5578      } else if (IsMember)
5579        continue;
5580
5581      // C++ [over.over]p2:
5582      //   If the name is a function template, template argument deduction is
5583      //   done (14.8.2.2), and if the argument deduction succeeds, the
5584      //   resulting template argument list is used to generate a single
5585      //   function template specialization, which is added to the set of
5586      //   overloaded functions considered.
5587      // FIXME: We don't really want to build the specialization here, do we?
5588      FunctionDecl *Specialization = 0;
5589      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5590      if (TemplateDeductionResult Result
5591            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5592                                      FunctionType, Specialization, Info)) {
5593        // FIXME: make a note of the failed deduction for diagnostics.
5594        (void)Result;
5595      } else {
5596        // FIXME: If the match isn't exact, shouldn't we just drop this as
5597        // a candidate? Find a testcase before changing the code.
5598        assert(FunctionType
5599                 == Context.getCanonicalType(Specialization->getType()));
5600        Matches.push_back(std::make_pair(I.getPair(),
5601                    cast<FunctionDecl>(Specialization->getCanonicalDecl())));
5602      }
5603
5604      continue;
5605    }
5606
5607    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5608      // Skip non-static functions when converting to pointer, and static
5609      // when converting to member pointer.
5610      if (Method->isStatic() == IsMember)
5611        continue;
5612
5613      // If we have explicit template arguments, skip non-templates.
5614      if (OvlExpr->hasExplicitTemplateArgs())
5615        continue;
5616    } else if (IsMember)
5617      continue;
5618
5619    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5620      QualType ResultTy;
5621      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5622          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5623                               ResultTy)) {
5624        Matches.push_back(std::make_pair(I.getPair(),
5625                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
5626        FoundNonTemplateFunction = true;
5627      }
5628    }
5629  }
5630
5631  // If there were 0 or 1 matches, we're done.
5632  if (Matches.empty()) {
5633    if (Complain) {
5634      Diag(From->getLocStart(), diag::err_addr_ovl_no_viable)
5635        << OvlExpr->getName() << FunctionType;
5636      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5637                                 E = OvlExpr->decls_end();
5638           I != E; ++I)
5639        if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
5640          NoteOverloadCandidate(F);
5641    }
5642
5643    return 0;
5644  } else if (Matches.size() == 1) {
5645    FunctionDecl *Result = Matches[0].second;
5646    FoundResult = Matches[0].first;
5647    MarkDeclarationReferenced(From->getLocStart(), Result);
5648    if (Complain)
5649      CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
5650    return Result;
5651  }
5652
5653  // C++ [over.over]p4:
5654  //   If more than one function is selected, [...]
5655  if (!FoundNonTemplateFunction) {
5656    //   [...] and any given function template specialization F1 is
5657    //   eliminated if the set contains a second function template
5658    //   specialization whose function template is more specialized
5659    //   than the function template of F1 according to the partial
5660    //   ordering rules of 14.5.5.2.
5661
5662    // The algorithm specified above is quadratic. We instead use a
5663    // two-pass algorithm (similar to the one used to identify the
5664    // best viable function in an overload set) that identifies the
5665    // best function template (if it exists).
5666
5667    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
5668    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5669      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
5670
5671    UnresolvedSetIterator Result =
5672        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
5673                           TPOC_Other, From->getLocStart(),
5674                           PDiag(),
5675                           PDiag(diag::err_addr_ovl_ambiguous)
5676                               << Matches[0].second->getDeclName(),
5677                           PDiag(diag::note_ovl_candidate)
5678                               << (unsigned) oc_function_template);
5679    assert(Result != MatchesCopy.end() && "no most-specialized template");
5680    MarkDeclarationReferenced(From->getLocStart(), *Result);
5681    FoundResult = Matches[Result - MatchesCopy.begin()].first;
5682    if (Complain) {
5683      CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
5684      DiagnoseUseOfDecl(FoundResult, OvlExpr->getNameLoc());
5685    }
5686    return cast<FunctionDecl>(*Result);
5687  }
5688
5689  //   [...] any function template specializations in the set are
5690  //   eliminated if the set also contains a non-template function, [...]
5691  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5692    if (Matches[I].second->getPrimaryTemplate() == 0)
5693      ++I;
5694    else {
5695      Matches[I] = Matches[--N];
5696      Matches.set_size(N);
5697    }
5698  }
5699
5700  // [...] After such eliminations, if any, there shall remain exactly one
5701  // selected function.
5702  if (Matches.size() == 1) {
5703    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
5704    FoundResult = Matches[0].first;
5705    if (Complain) {
5706      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
5707      DiagnoseUseOfDecl(Matches[0].first, OvlExpr->getNameLoc());
5708    }
5709    return cast<FunctionDecl>(Matches[0].second);
5710  }
5711
5712  // FIXME: We should probably return the same thing that BestViableFunction
5713  // returns (even if we issue the diagnostics here).
5714  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5715    << Matches[0].second->getDeclName();
5716  for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5717    NoteOverloadCandidate(Matches[I].second);
5718  return 0;
5719}
5720
5721/// \brief Given an expression that refers to an overloaded function, try to
5722/// resolve that overloaded function expression down to a single function.
5723///
5724/// This routine can only resolve template-ids that refer to a single function
5725/// template, where that template-id refers to a single template whose template
5726/// arguments are either provided by the template-id or have defaults,
5727/// as described in C++0x [temp.arg.explicit]p3.
5728FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5729  // C++ [over.over]p1:
5730  //   [...] [Note: any redundant set of parentheses surrounding the
5731  //   overloaded function name is ignored (5.1). ]
5732  // C++ [over.over]p1:
5733  //   [...] The overloaded function name can be preceded by the &
5734  //   operator.
5735
5736  if (From->getType() != Context.OverloadTy)
5737    return 0;
5738
5739  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5740
5741  // If we didn't actually find any template-ids, we're done.
5742  if (!OvlExpr->hasExplicitTemplateArgs())
5743    return 0;
5744
5745  TemplateArgumentListInfo ExplicitTemplateArgs;
5746  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
5747
5748  // Look through all of the overloaded functions, searching for one
5749  // whose type matches exactly.
5750  FunctionDecl *Matched = 0;
5751  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5752         E = OvlExpr->decls_end(); I != E; ++I) {
5753    // C++0x [temp.arg.explicit]p3:
5754    //   [...] In contexts where deduction is done and fails, or in contexts
5755    //   where deduction is not done, if a template argument list is
5756    //   specified and it, along with any default template arguments,
5757    //   identifies a single function template specialization, then the
5758    //   template-id is an lvalue for the function template specialization.
5759    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5760
5761    // C++ [over.over]p2:
5762    //   If the name is a function template, template argument deduction is
5763    //   done (14.8.2.2), and if the argument deduction succeeds, the
5764    //   resulting template argument list is used to generate a single
5765    //   function template specialization, which is added to the set of
5766    //   overloaded functions considered.
5767    FunctionDecl *Specialization = 0;
5768    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5769    if (TemplateDeductionResult Result
5770          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5771                                    Specialization, Info)) {
5772      // FIXME: make a note of the failed deduction for diagnostics.
5773      (void)Result;
5774      continue;
5775    }
5776
5777    // Multiple matches; we can't resolve to a single declaration.
5778    if (Matched)
5779      return 0;
5780
5781    Matched = Specialization;
5782  }
5783
5784  return Matched;
5785}
5786
5787/// \brief Add a single candidate to the overload set.
5788static void AddOverloadedCallCandidate(Sema &S,
5789                                       DeclAccessPair FoundDecl,
5790                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5791                                       Expr **Args, unsigned NumArgs,
5792                                       OverloadCandidateSet &CandidateSet,
5793                                       bool PartialOverloading) {
5794  NamedDecl *Callee = FoundDecl.getDecl();
5795  if (isa<UsingShadowDecl>(Callee))
5796    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5797
5798  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5799    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5800    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
5801                           false, PartialOverloading);
5802    return;
5803  }
5804
5805  if (FunctionTemplateDecl *FuncTemplate
5806      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5807    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
5808                                   ExplicitTemplateArgs,
5809                                   Args, NumArgs, CandidateSet);
5810    return;
5811  }
5812
5813  assert(false && "unhandled case in overloaded call candidate");
5814
5815  // do nothing?
5816}
5817
5818/// \brief Add the overload candidates named by callee and/or found by argument
5819/// dependent lookup to the given overload set.
5820void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5821                                       Expr **Args, unsigned NumArgs,
5822                                       OverloadCandidateSet &CandidateSet,
5823                                       bool PartialOverloading) {
5824
5825#ifndef NDEBUG
5826  // Verify that ArgumentDependentLookup is consistent with the rules
5827  // in C++0x [basic.lookup.argdep]p3:
5828  //
5829  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5830  //   and let Y be the lookup set produced by argument dependent
5831  //   lookup (defined as follows). If X contains
5832  //
5833  //     -- a declaration of a class member, or
5834  //
5835  //     -- a block-scope function declaration that is not a
5836  //        using-declaration, or
5837  //
5838  //     -- a declaration that is neither a function or a function
5839  //        template
5840  //
5841  //   then Y is empty.
5842
5843  if (ULE->requiresADL()) {
5844    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5845           E = ULE->decls_end(); I != E; ++I) {
5846      assert(!(*I)->getDeclContext()->isRecord());
5847      assert(isa<UsingShadowDecl>(*I) ||
5848             !(*I)->getDeclContext()->isFunctionOrMethod());
5849      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5850    }
5851  }
5852#endif
5853
5854  // It would be nice to avoid this copy.
5855  TemplateArgumentListInfo TABuffer;
5856  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5857  if (ULE->hasExplicitTemplateArgs()) {
5858    ULE->copyTemplateArgumentsInto(TABuffer);
5859    ExplicitTemplateArgs = &TABuffer;
5860  }
5861
5862  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5863         E = ULE->decls_end(); I != E; ++I)
5864    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
5865                               Args, NumArgs, CandidateSet,
5866                               PartialOverloading);
5867
5868  if (ULE->requiresADL())
5869    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
5870                                         Args, NumArgs,
5871                                         ExplicitTemplateArgs,
5872                                         CandidateSet,
5873                                         PartialOverloading);
5874}
5875
5876static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5877                                      Expr **Args, unsigned NumArgs) {
5878  Fn->Destroy(SemaRef.Context);
5879  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5880    Args[Arg]->Destroy(SemaRef.Context);
5881  return SemaRef.ExprError();
5882}
5883
5884/// Attempts to recover from a call where no functions were found.
5885///
5886/// Returns true if new candidates were found.
5887static Sema::OwningExprResult
5888BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
5889                      UnresolvedLookupExpr *ULE,
5890                      SourceLocation LParenLoc,
5891                      Expr **Args, unsigned NumArgs,
5892                      SourceLocation *CommaLocs,
5893                      SourceLocation RParenLoc) {
5894
5895  CXXScopeSpec SS;
5896  if (ULE->getQualifier()) {
5897    SS.setScopeRep(ULE->getQualifier());
5898    SS.setRange(ULE->getQualifierRange());
5899  }
5900
5901  TemplateArgumentListInfo TABuffer;
5902  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5903  if (ULE->hasExplicitTemplateArgs()) {
5904    ULE->copyTemplateArgumentsInto(TABuffer);
5905    ExplicitTemplateArgs = &TABuffer;
5906  }
5907
5908  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5909                 Sema::LookupOrdinaryName);
5910  if (SemaRef.DiagnoseEmptyLookup(S, SS, R))
5911    return Destroy(SemaRef, Fn, Args, NumArgs);
5912
5913  assert(!R.empty() && "lookup results empty despite recovery");
5914
5915  // Build an implicit member call if appropriate.  Just drop the
5916  // casts and such from the call, we don't really care.
5917  Sema::OwningExprResult NewFn = SemaRef.ExprError();
5918  if ((*R.begin())->isCXXClassMember())
5919    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5920  else if (ExplicitTemplateArgs)
5921    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5922  else
5923    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5924
5925  if (NewFn.isInvalid())
5926    return Destroy(SemaRef, Fn, Args, NumArgs);
5927
5928  Fn->Destroy(SemaRef.Context);
5929
5930  // This shouldn't cause an infinite loop because we're giving it
5931  // an expression with non-empty lookup results, which should never
5932  // end up here.
5933  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5934                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5935                               CommaLocs, RParenLoc);
5936}
5937
5938/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5939/// (which eventually refers to the declaration Func) and the call
5940/// arguments Args/NumArgs, attempt to resolve the function call down
5941/// to a specific function. If overload resolution succeeds, returns
5942/// the function declaration produced by overload
5943/// resolution. Otherwise, emits diagnostics, deletes all of the
5944/// arguments and Fn, and returns NULL.
5945Sema::OwningExprResult
5946Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
5947                              SourceLocation LParenLoc,
5948                              Expr **Args, unsigned NumArgs,
5949                              SourceLocation *CommaLocs,
5950                              SourceLocation RParenLoc) {
5951#ifndef NDEBUG
5952  if (ULE->requiresADL()) {
5953    // To do ADL, we must have found an unqualified name.
5954    assert(!ULE->getQualifier() && "qualified name with ADL");
5955
5956    // We don't perform ADL for implicit declarations of builtins.
5957    // Verify that this was correctly set up.
5958    FunctionDecl *F;
5959    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5960        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5961        F->getBuiltinID() && F->isImplicit())
5962      assert(0 && "performing ADL for builtin");
5963
5964    // We don't perform ADL in C.
5965    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5966  }
5967#endif
5968
5969  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
5970
5971  // Add the functions denoted by the callee to the set of candidate
5972  // functions, including those from argument-dependent lookup.
5973  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5974
5975  // If we found nothing, try to recover.
5976  // AddRecoveryCallCandidates diagnoses the error itself, so we just
5977  // bailout out if it fails.
5978  if (CandidateSet.empty())
5979    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
5980                                 CommaLocs, RParenLoc);
5981
5982  OverloadCandidateSet::iterator Best;
5983  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5984  case OR_Success: {
5985    FunctionDecl *FDecl = Best->Function;
5986    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
5987    DiagnoseUseOfDecl(Best->FoundDecl, ULE->getNameLoc());
5988    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
5989    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5990  }
5991
5992  case OR_No_Viable_Function:
5993    Diag(Fn->getSourceRange().getBegin(),
5994         diag::err_ovl_no_viable_function_in_call)
5995      << ULE->getName() << Fn->getSourceRange();
5996    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5997    break;
5998
5999  case OR_Ambiguous:
6000    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
6001      << ULE->getName() << Fn->getSourceRange();
6002    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6003    break;
6004
6005  case OR_Deleted:
6006    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
6007      << Best->Function->isDeleted()
6008      << ULE->getName()
6009      << Fn->getSourceRange();
6010    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6011    break;
6012  }
6013
6014  // Overload resolution failed. Destroy all of the subexpressions and
6015  // return NULL.
6016  Fn->Destroy(Context);
6017  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
6018    Args[Arg]->Destroy(Context);
6019  return ExprError();
6020}
6021
6022static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
6023  return Functions.size() > 1 ||
6024    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
6025}
6026
6027/// \brief Create a unary operation that may resolve to an overloaded
6028/// operator.
6029///
6030/// \param OpLoc The location of the operator itself (e.g., '*').
6031///
6032/// \param OpcIn The UnaryOperator::Opcode that describes this
6033/// operator.
6034///
6035/// \param Functions The set of non-member functions that will be
6036/// considered by overload resolution. The caller needs to build this
6037/// set based on the context using, e.g.,
6038/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
6039/// set should not contain any member functions; those will be added
6040/// by CreateOverloadedUnaryOp().
6041///
6042/// \param input The input argument.
6043Sema::OwningExprResult
6044Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
6045                              const UnresolvedSetImpl &Fns,
6046                              ExprArg input) {
6047  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
6048  Expr *Input = (Expr *)input.get();
6049
6050  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
6051  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
6052  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6053
6054  Expr *Args[2] = { Input, 0 };
6055  unsigned NumArgs = 1;
6056
6057  // For post-increment and post-decrement, add the implicit '0' as
6058  // the second argument, so that we know this is a post-increment or
6059  // post-decrement.
6060  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
6061    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
6062    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
6063                                           SourceLocation());
6064    NumArgs = 2;
6065  }
6066
6067  if (Input->isTypeDependent()) {
6068    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6069    UnresolvedLookupExpr *Fn
6070      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6071                                     0, SourceRange(), OpName, OpLoc,
6072                                     /*ADL*/ true, IsOverloaded(Fns));
6073    Fn->addDecls(Fns.begin(), Fns.end());
6074
6075    input.release();
6076    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6077                                                   &Args[0], NumArgs,
6078                                                   Context.DependentTy,
6079                                                   OpLoc));
6080  }
6081
6082  // Build an empty overload set.
6083  OverloadCandidateSet CandidateSet(OpLoc);
6084
6085  // Add the candidates from the given function set.
6086  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
6087
6088  // Add operator candidates that are member functions.
6089  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
6090
6091  // Add candidates from ADL.
6092  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6093                                       Args, NumArgs,
6094                                       /*ExplicitTemplateArgs*/ 0,
6095                                       CandidateSet);
6096
6097  // Add builtin operator candidates.
6098  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
6099
6100  // Perform overload resolution.
6101  OverloadCandidateSet::iterator Best;
6102  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6103  case OR_Success: {
6104    // We found a built-in operator or an overloaded operator.
6105    FunctionDecl *FnDecl = Best->Function;
6106
6107    if (FnDecl) {
6108      // We matched an overloaded operator. Build a call to that
6109      // operator.
6110
6111      // Convert the arguments.
6112      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6113        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
6114
6115        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
6116                                                Best->FoundDecl, Method))
6117          return ExprError();
6118      } else {
6119        // Convert the arguments.
6120        OwningExprResult InputInit
6121          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6122                                                      FnDecl->getParamDecl(0)),
6123                                      SourceLocation(),
6124                                      move(input));
6125        if (InputInit.isInvalid())
6126          return ExprError();
6127
6128        input = move(InputInit);
6129        Input = (Expr *)input.get();
6130      }
6131
6132      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
6133
6134      // Determine the result type
6135      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
6136
6137      // Build the actual expression node.
6138      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6139                                               SourceLocation());
6140      UsualUnaryConversions(FnExpr);
6141
6142      input.release();
6143      Args[0] = Input;
6144      ExprOwningPtr<CallExpr> TheCall(this,
6145        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6146                                          Args, NumArgs, ResultTy, OpLoc));
6147
6148      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6149                              FnDecl))
6150        return ExprError();
6151
6152      return MaybeBindToTemporary(TheCall.release());
6153    } else {
6154      // We matched a built-in operator. Convert the arguments, then
6155      // break out so that we will build the appropriate built-in
6156      // operator node.
6157        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
6158                                      Best->Conversions[0], AA_Passing))
6159          return ExprError();
6160
6161        break;
6162      }
6163    }
6164
6165    case OR_No_Viable_Function:
6166      // No viable function; fall through to handling this as a
6167      // built-in operator, which will produce an error message for us.
6168      break;
6169
6170    case OR_Ambiguous:
6171      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6172          << UnaryOperator::getOpcodeStr(Opc)
6173          << Input->getSourceRange();
6174      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
6175                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
6176      return ExprError();
6177
6178    case OR_Deleted:
6179      Diag(OpLoc, diag::err_ovl_deleted_oper)
6180        << Best->Function->isDeleted()
6181        << UnaryOperator::getOpcodeStr(Opc)
6182        << Input->getSourceRange();
6183      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6184      return ExprError();
6185    }
6186
6187  // Either we found no viable overloaded operator or we matched a
6188  // built-in operator. In either case, fall through to trying to
6189  // build a built-in operation.
6190  input.release();
6191  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
6192}
6193
6194/// \brief Create a binary operation that may resolve to an overloaded
6195/// operator.
6196///
6197/// \param OpLoc The location of the operator itself (e.g., '+').
6198///
6199/// \param OpcIn The BinaryOperator::Opcode that describes this
6200/// operator.
6201///
6202/// \param Functions The set of non-member functions that will be
6203/// considered by overload resolution. The caller needs to build this
6204/// set based on the context using, e.g.,
6205/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
6206/// set should not contain any member functions; those will be added
6207/// by CreateOverloadedBinOp().
6208///
6209/// \param LHS Left-hand argument.
6210/// \param RHS Right-hand argument.
6211Sema::OwningExprResult
6212Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
6213                            unsigned OpcIn,
6214                            const UnresolvedSetImpl &Fns,
6215                            Expr *LHS, Expr *RHS) {
6216  Expr *Args[2] = { LHS, RHS };
6217  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
6218
6219  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
6220  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
6221  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6222
6223  // If either side is type-dependent, create an appropriate dependent
6224  // expression.
6225  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6226    if (Fns.empty()) {
6227      // If there are no functions to store, just build a dependent
6228      // BinaryOperator or CompoundAssignment.
6229      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
6230        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
6231                                                  Context.DependentTy, OpLoc));
6232
6233      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
6234                                                        Context.DependentTy,
6235                                                        Context.DependentTy,
6236                                                        Context.DependentTy,
6237                                                        OpLoc));
6238    }
6239
6240    // FIXME: save results of ADL from here?
6241    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6242    UnresolvedLookupExpr *Fn
6243      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6244                                     0, SourceRange(), OpName, OpLoc,
6245                                     /*ADL*/ true, IsOverloaded(Fns));
6246
6247    Fn->addDecls(Fns.begin(), Fns.end());
6248    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6249                                                   Args, 2,
6250                                                   Context.DependentTy,
6251                                                   OpLoc));
6252  }
6253
6254  // If this is the .* operator, which is not overloadable, just
6255  // create a built-in binary operator.
6256  if (Opc == BinaryOperator::PtrMemD)
6257    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6258
6259  // If this is the assignment operator, we only perform overload resolution
6260  // if the left-hand side is a class or enumeration type. This is actually
6261  // a hack. The standard requires that we do overload resolution between the
6262  // various built-in candidates, but as DR507 points out, this can lead to
6263  // problems. So we do it this way, which pretty much follows what GCC does.
6264  // Note that we go the traditional code path for compound assignment forms.
6265  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
6266    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6267
6268  // Build an empty overload set.
6269  OverloadCandidateSet CandidateSet(OpLoc);
6270
6271  // Add the candidates from the given function set.
6272  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
6273
6274  // Add operator candidates that are member functions.
6275  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6276
6277  // Add candidates from ADL.
6278  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6279                                       Args, 2,
6280                                       /*ExplicitTemplateArgs*/ 0,
6281                                       CandidateSet);
6282
6283  // Add builtin operator candidates.
6284  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6285
6286  // Perform overload resolution.
6287  OverloadCandidateSet::iterator Best;
6288  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6289    case OR_Success: {
6290      // We found a built-in operator or an overloaded operator.
6291      FunctionDecl *FnDecl = Best->Function;
6292
6293      if (FnDecl) {
6294        // We matched an overloaded operator. Build a call to that
6295        // operator.
6296
6297        // Convert the arguments.
6298        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6299          // Best->Access is only meaningful for class members.
6300          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
6301
6302          OwningExprResult Arg1
6303            = PerformCopyInitialization(
6304                                        InitializedEntity::InitializeParameter(
6305                                                        FnDecl->getParamDecl(0)),
6306                                        SourceLocation(),
6307                                        Owned(Args[1]));
6308          if (Arg1.isInvalid())
6309            return ExprError();
6310
6311          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6312                                                  Best->FoundDecl, Method))
6313            return ExprError();
6314
6315          Args[1] = RHS = Arg1.takeAs<Expr>();
6316        } else {
6317          // Convert the arguments.
6318          OwningExprResult Arg0
6319            = PerformCopyInitialization(
6320                                        InitializedEntity::InitializeParameter(
6321                                                        FnDecl->getParamDecl(0)),
6322                                        SourceLocation(),
6323                                        Owned(Args[0]));
6324          if (Arg0.isInvalid())
6325            return ExprError();
6326
6327          OwningExprResult Arg1
6328            = PerformCopyInitialization(
6329                                        InitializedEntity::InitializeParameter(
6330                                                        FnDecl->getParamDecl(1)),
6331                                        SourceLocation(),
6332                                        Owned(Args[1]));
6333          if (Arg1.isInvalid())
6334            return ExprError();
6335          Args[0] = LHS = Arg0.takeAs<Expr>();
6336          Args[1] = RHS = Arg1.takeAs<Expr>();
6337        }
6338
6339        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
6340
6341        // Determine the result type
6342        QualType ResultTy
6343          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6344        ResultTy = ResultTy.getNonReferenceType();
6345
6346        // Build the actual expression node.
6347        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6348                                                 OpLoc);
6349        UsualUnaryConversions(FnExpr);
6350
6351        ExprOwningPtr<CXXOperatorCallExpr>
6352          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6353                                                          Args, 2, ResultTy,
6354                                                          OpLoc));
6355
6356        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6357                                FnDecl))
6358          return ExprError();
6359
6360        return MaybeBindToTemporary(TheCall.release());
6361      } else {
6362        // We matched a built-in operator. Convert the arguments, then
6363        // break out so that we will build the appropriate built-in
6364        // operator node.
6365        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6366                                      Best->Conversions[0], AA_Passing) ||
6367            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6368                                      Best->Conversions[1], AA_Passing))
6369          return ExprError();
6370
6371        break;
6372      }
6373    }
6374
6375    case OR_No_Viable_Function: {
6376      // C++ [over.match.oper]p9:
6377      //   If the operator is the operator , [...] and there are no
6378      //   viable functions, then the operator is assumed to be the
6379      //   built-in operator and interpreted according to clause 5.
6380      if (Opc == BinaryOperator::Comma)
6381        break;
6382
6383      // For class as left operand for assignment or compound assigment operator
6384      // do not fall through to handling in built-in, but report that no overloaded
6385      // assignment operator found
6386      OwningExprResult Result = ExprError();
6387      if (Args[0]->getType()->isRecordType() &&
6388          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
6389        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
6390             << BinaryOperator::getOpcodeStr(Opc)
6391             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6392      } else {
6393        // No viable function; try to create a built-in operation, which will
6394        // produce an error. Then, show the non-viable candidates.
6395        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6396      }
6397      assert(Result.isInvalid() &&
6398             "C++ binary operator overloading is missing candidates!");
6399      if (Result.isInvalid())
6400        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6401                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
6402      return move(Result);
6403    }
6404
6405    case OR_Ambiguous:
6406      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6407          << BinaryOperator::getOpcodeStr(Opc)
6408          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6409      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6410                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
6411      return ExprError();
6412
6413    case OR_Deleted:
6414      Diag(OpLoc, diag::err_ovl_deleted_oper)
6415        << Best->Function->isDeleted()
6416        << BinaryOperator::getOpcodeStr(Opc)
6417        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6418      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
6419      return ExprError();
6420  }
6421
6422  // We matched a built-in operator; build it.
6423  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6424}
6425
6426Action::OwningExprResult
6427Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
6428                                         SourceLocation RLoc,
6429                                         ExprArg Base, ExprArg Idx) {
6430  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
6431                    static_cast<Expr*>(Idx.get()) };
6432  DeclarationName OpName =
6433      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
6434
6435  // If either side is type-dependent, create an appropriate dependent
6436  // expression.
6437  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6438
6439    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6440    UnresolvedLookupExpr *Fn
6441      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6442                                     0, SourceRange(), OpName, LLoc,
6443                                     /*ADL*/ true, /*Overloaded*/ false);
6444    // Can't add any actual overloads yet
6445
6446    Base.release();
6447    Idx.release();
6448    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
6449                                                   Args, 2,
6450                                                   Context.DependentTy,
6451                                                   RLoc));
6452  }
6453
6454  // Build an empty overload set.
6455  OverloadCandidateSet CandidateSet(LLoc);
6456
6457  // Subscript can only be overloaded as a member function.
6458
6459  // Add operator candidates that are member functions.
6460  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6461
6462  // Add builtin operator candidates.
6463  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6464
6465  // Perform overload resolution.
6466  OverloadCandidateSet::iterator Best;
6467  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
6468    case OR_Success: {
6469      // We found a built-in operator or an overloaded operator.
6470      FunctionDecl *FnDecl = Best->Function;
6471
6472      if (FnDecl) {
6473        // We matched an overloaded operator. Build a call to that
6474        // operator.
6475
6476        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
6477        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
6478
6479        // Convert the arguments.
6480        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
6481        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6482                                                Best->FoundDecl, Method))
6483          return ExprError();
6484
6485        // Convert the arguments.
6486        OwningExprResult InputInit
6487          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6488                                                      FnDecl->getParamDecl(0)),
6489                                      SourceLocation(),
6490                                      Owned(Args[1]));
6491        if (InputInit.isInvalid())
6492          return ExprError();
6493
6494        Args[1] = InputInit.takeAs<Expr>();
6495
6496        // Determine the result type
6497        QualType ResultTy
6498          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6499        ResultTy = ResultTy.getNonReferenceType();
6500
6501        // Build the actual expression node.
6502        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6503                                                 LLoc);
6504        UsualUnaryConversions(FnExpr);
6505
6506        Base.release();
6507        Idx.release();
6508        ExprOwningPtr<CXXOperatorCallExpr>
6509          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
6510                                                          FnExpr, Args, 2,
6511                                                          ResultTy, RLoc));
6512
6513        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
6514                                FnDecl))
6515          return ExprError();
6516
6517        return MaybeBindToTemporary(TheCall.release());
6518      } else {
6519        // We matched a built-in operator. Convert the arguments, then
6520        // break out so that we will build the appropriate built-in
6521        // operator node.
6522        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6523                                      Best->Conversions[0], AA_Passing) ||
6524            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6525                                      Best->Conversions[1], AA_Passing))
6526          return ExprError();
6527
6528        break;
6529      }
6530    }
6531
6532    case OR_No_Viable_Function: {
6533      if (CandidateSet.empty())
6534        Diag(LLoc, diag::err_ovl_no_oper)
6535          << Args[0]->getType() << /*subscript*/ 0
6536          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6537      else
6538        Diag(LLoc, diag::err_ovl_no_viable_subscript)
6539          << Args[0]->getType()
6540          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6541      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6542                              "[]", LLoc);
6543      return ExprError();
6544    }
6545
6546    case OR_Ambiguous:
6547      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
6548          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6549      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6550                              "[]", LLoc);
6551      return ExprError();
6552
6553    case OR_Deleted:
6554      Diag(LLoc, diag::err_ovl_deleted_oper)
6555        << Best->Function->isDeleted() << "[]"
6556        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6557      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6558                              "[]", LLoc);
6559      return ExprError();
6560    }
6561
6562  // We matched a built-in operator; build it.
6563  Base.release();
6564  Idx.release();
6565  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
6566                                         Owned(Args[1]), RLoc);
6567}
6568
6569/// BuildCallToMemberFunction - Build a call to a member
6570/// function. MemExpr is the expression that refers to the member
6571/// function (and includes the object parameter), Args/NumArgs are the
6572/// arguments to the function call (not including the object
6573/// parameter). The caller needs to validate that the member
6574/// expression refers to a member function or an overloaded member
6575/// function.
6576Sema::OwningExprResult
6577Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
6578                                SourceLocation LParenLoc, Expr **Args,
6579                                unsigned NumArgs, SourceLocation *CommaLocs,
6580                                SourceLocation RParenLoc) {
6581  // Dig out the member expression. This holds both the object
6582  // argument and the member function we're referring to.
6583  Expr *NakedMemExpr = MemExprE->IgnoreParens();
6584
6585  MemberExpr *MemExpr;
6586  CXXMethodDecl *Method = 0;
6587  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
6588  NestedNameSpecifier *Qualifier = 0;
6589  if (isa<MemberExpr>(NakedMemExpr)) {
6590    MemExpr = cast<MemberExpr>(NakedMemExpr);
6591    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
6592    FoundDecl = MemExpr->getFoundDecl();
6593    Qualifier = MemExpr->getQualifier();
6594  } else {
6595    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
6596    Qualifier = UnresExpr->getQualifier();
6597
6598    QualType ObjectType = UnresExpr->getBaseType();
6599
6600    // Add overload candidates
6601    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6602
6603    // FIXME: avoid copy.
6604    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6605    if (UnresExpr->hasExplicitTemplateArgs()) {
6606      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6607      TemplateArgs = &TemplateArgsBuffer;
6608    }
6609
6610    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6611           E = UnresExpr->decls_end(); I != E; ++I) {
6612
6613      NamedDecl *Func = *I;
6614      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6615      if (isa<UsingShadowDecl>(Func))
6616        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6617
6618      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6619        // If explicit template arguments were provided, we can't call a
6620        // non-template member function.
6621        if (TemplateArgs)
6622          continue;
6623
6624        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
6625                           Args, NumArgs,
6626                           CandidateSet, /*SuppressUserConversions=*/false);
6627      } else {
6628        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6629                                   I.getPair(), ActingDC, TemplateArgs,
6630                                   ObjectType, Args, NumArgs,
6631                                   CandidateSet,
6632                                   /*SuppressUsedConversions=*/false);
6633      }
6634    }
6635
6636    DeclarationName DeclName = UnresExpr->getMemberName();
6637
6638    OverloadCandidateSet::iterator Best;
6639    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6640    case OR_Success:
6641      Method = cast<CXXMethodDecl>(Best->Function);
6642      FoundDecl = Best->FoundDecl;
6643      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
6644      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
6645      break;
6646
6647    case OR_No_Viable_Function:
6648      Diag(UnresExpr->getMemberLoc(),
6649           diag::err_ovl_no_viable_member_function_in_call)
6650        << DeclName << MemExprE->getSourceRange();
6651      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6652      // FIXME: Leaking incoming expressions!
6653      return ExprError();
6654
6655    case OR_Ambiguous:
6656      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6657        << DeclName << MemExprE->getSourceRange();
6658      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6659      // FIXME: Leaking incoming expressions!
6660      return ExprError();
6661
6662    case OR_Deleted:
6663      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6664        << Best->Function->isDeleted()
6665        << DeclName << MemExprE->getSourceRange();
6666      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6667      // FIXME: Leaking incoming expressions!
6668      return ExprError();
6669    }
6670
6671    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
6672
6673    // If overload resolution picked a static member, build a
6674    // non-member call based on that function.
6675    if (Method->isStatic()) {
6676      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6677                                   Args, NumArgs, RParenLoc);
6678    }
6679
6680    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6681  }
6682
6683  assert(Method && "Member call to something that isn't a method?");
6684  ExprOwningPtr<CXXMemberCallExpr>
6685    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6686                                                  NumArgs,
6687                                  Method->getResultType().getNonReferenceType(),
6688                                  RParenLoc));
6689
6690  // Check for a valid return type.
6691  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6692                          TheCall.get(), Method))
6693    return ExprError();
6694
6695  // Convert the object argument (for a non-static member function call).
6696  // We only need to do this if there was actually an overload; otherwise
6697  // it was done at lookup.
6698  Expr *ObjectArg = MemExpr->getBase();
6699  if (!Method->isStatic() &&
6700      PerformObjectArgumentInitialization(ObjectArg, Qualifier,
6701                                          FoundDecl, Method))
6702    return ExprError();
6703  MemExpr->setBase(ObjectArg);
6704
6705  // Convert the rest of the arguments
6706  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6707  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6708                              RParenLoc))
6709    return ExprError();
6710
6711  if (CheckFunctionCall(Method, TheCall.get()))
6712    return ExprError();
6713
6714  return MaybeBindToTemporary(TheCall.release());
6715}
6716
6717/// BuildCallToObjectOfClassType - Build a call to an object of class
6718/// type (C++ [over.call.object]), which can end up invoking an
6719/// overloaded function call operator (@c operator()) or performing a
6720/// user-defined conversion on the object argument.
6721Sema::ExprResult
6722Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6723                                   SourceLocation LParenLoc,
6724                                   Expr **Args, unsigned NumArgs,
6725                                   SourceLocation *CommaLocs,
6726                                   SourceLocation RParenLoc) {
6727  assert(Object->getType()->isRecordType() && "Requires object type argument");
6728  const RecordType *Record = Object->getType()->getAs<RecordType>();
6729
6730  // C++ [over.call.object]p1:
6731  //  If the primary-expression E in the function call syntax
6732  //  evaluates to a class object of type "cv T", then the set of
6733  //  candidate functions includes at least the function call
6734  //  operators of T. The function call operators of T are obtained by
6735  //  ordinary lookup of the name operator() in the context of
6736  //  (E).operator().
6737  OverloadCandidateSet CandidateSet(LParenLoc);
6738  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6739
6740  if (RequireCompleteType(LParenLoc, Object->getType(),
6741                          PDiag(diag::err_incomplete_object_call)
6742                          << Object->getSourceRange()))
6743    return true;
6744
6745  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6746  LookupQualifiedName(R, Record->getDecl());
6747  R.suppressDiagnostics();
6748
6749  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6750       Oper != OperEnd; ++Oper) {
6751    AddMethodCandidate(Oper.getPair(), Object->getType(),
6752                       Args, NumArgs, CandidateSet,
6753                       /*SuppressUserConversions=*/ false);
6754  }
6755
6756  // C++ [over.call.object]p2:
6757  //   In addition, for each conversion function declared in T of the
6758  //   form
6759  //
6760  //        operator conversion-type-id () cv-qualifier;
6761  //
6762  //   where cv-qualifier is the same cv-qualification as, or a
6763  //   greater cv-qualification than, cv, and where conversion-type-id
6764  //   denotes the type "pointer to function of (P1,...,Pn) returning
6765  //   R", or the type "reference to pointer to function of
6766  //   (P1,...,Pn) returning R", or the type "reference to function
6767  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6768  //   is also considered as a candidate function. Similarly,
6769  //   surrogate call functions are added to the set of candidate
6770  //   functions for each conversion function declared in an
6771  //   accessible base class provided the function is not hidden
6772  //   within T by another intervening declaration.
6773  const UnresolvedSetImpl *Conversions
6774    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6775  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6776         E = Conversions->end(); I != E; ++I) {
6777    NamedDecl *D = *I;
6778    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6779    if (isa<UsingShadowDecl>(D))
6780      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6781
6782    // Skip over templated conversion functions; they aren't
6783    // surrogates.
6784    if (isa<FunctionTemplateDecl>(D))
6785      continue;
6786
6787    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6788
6789    // Strip the reference type (if any) and then the pointer type (if
6790    // any) to get down to what might be a function type.
6791    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6792    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6793      ConvType = ConvPtrType->getPointeeType();
6794
6795    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6796      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
6797                            Object->getType(), Args, NumArgs,
6798                            CandidateSet);
6799  }
6800
6801  // Perform overload resolution.
6802  OverloadCandidateSet::iterator Best;
6803  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6804  case OR_Success:
6805    // Overload resolution succeeded; we'll build the appropriate call
6806    // below.
6807    break;
6808
6809  case OR_No_Viable_Function:
6810    if (CandidateSet.empty())
6811      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6812        << Object->getType() << /*call*/ 1
6813        << Object->getSourceRange();
6814    else
6815      Diag(Object->getSourceRange().getBegin(),
6816           diag::err_ovl_no_viable_object_call)
6817        << Object->getType() << Object->getSourceRange();
6818    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6819    break;
6820
6821  case OR_Ambiguous:
6822    Diag(Object->getSourceRange().getBegin(),
6823         diag::err_ovl_ambiguous_object_call)
6824      << Object->getType() << Object->getSourceRange();
6825    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6826    break;
6827
6828  case OR_Deleted:
6829    Diag(Object->getSourceRange().getBegin(),
6830         diag::err_ovl_deleted_object_call)
6831      << Best->Function->isDeleted()
6832      << Object->getType() << Object->getSourceRange();
6833    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6834    break;
6835  }
6836
6837  if (Best == CandidateSet.end()) {
6838    // We had an error; delete all of the subexpressions and return
6839    // the error.
6840    Object->Destroy(Context);
6841    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6842      Args[ArgIdx]->Destroy(Context);
6843    return true;
6844  }
6845
6846  if (Best->Function == 0) {
6847    // Since there is no function declaration, this is one of the
6848    // surrogate candidates. Dig out the conversion function.
6849    CXXConversionDecl *Conv
6850      = cast<CXXConversionDecl>(
6851                         Best->Conversions[0].UserDefined.ConversionFunction);
6852
6853    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6854    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
6855
6856    // We selected one of the surrogate functions that converts the
6857    // object parameter to a function pointer. Perform the conversion
6858    // on the object argument, then let ActOnCallExpr finish the job.
6859
6860    // Create an implicit member expr to refer to the conversion operator.
6861    // and then call it.
6862    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl,
6863                                                   Conv);
6864
6865    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6866                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6867                         CommaLocs, RParenLoc).result();
6868  }
6869
6870  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6871  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
6872
6873  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6874  // that calls this method, using Object for the implicit object
6875  // parameter and passing along the remaining arguments.
6876  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6877  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6878
6879  unsigned NumArgsInProto = Proto->getNumArgs();
6880  unsigned NumArgsToCheck = NumArgs;
6881
6882  // Build the full argument list for the method call (the
6883  // implicit object parameter is placed at the beginning of the
6884  // list).
6885  Expr **MethodArgs;
6886  if (NumArgs < NumArgsInProto) {
6887    NumArgsToCheck = NumArgsInProto;
6888    MethodArgs = new Expr*[NumArgsInProto + 1];
6889  } else {
6890    MethodArgs = new Expr*[NumArgs + 1];
6891  }
6892  MethodArgs[0] = Object;
6893  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6894    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6895
6896  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6897                                          SourceLocation());
6898  UsualUnaryConversions(NewFn);
6899
6900  // Once we've built TheCall, all of the expressions are properly
6901  // owned.
6902  QualType ResultTy = Method->getResultType().getNonReferenceType();
6903  ExprOwningPtr<CXXOperatorCallExpr>
6904    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6905                                                    MethodArgs, NumArgs + 1,
6906                                                    ResultTy, RParenLoc));
6907  delete [] MethodArgs;
6908
6909  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6910                          Method))
6911    return true;
6912
6913  // We may have default arguments. If so, we need to allocate more
6914  // slots in the call for them.
6915  if (NumArgs < NumArgsInProto)
6916    TheCall->setNumArgs(Context, NumArgsInProto + 1);
6917  else if (NumArgs > NumArgsInProto)
6918    NumArgsToCheck = NumArgsInProto;
6919
6920  bool IsError = false;
6921
6922  // Initialize the implicit object parameter.
6923  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
6924                                                 Best->FoundDecl, Method);
6925  TheCall->setArg(0, Object);
6926
6927
6928  // Check the argument types.
6929  for (unsigned i = 0; i != NumArgsToCheck; i++) {
6930    Expr *Arg;
6931    if (i < NumArgs) {
6932      Arg = Args[i];
6933
6934      // Pass the argument.
6935
6936      OwningExprResult InputInit
6937        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6938                                                    Method->getParamDecl(i)),
6939                                    SourceLocation(), Owned(Arg));
6940
6941      IsError |= InputInit.isInvalid();
6942      Arg = InputInit.takeAs<Expr>();
6943    } else {
6944      OwningExprResult DefArg
6945        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6946      if (DefArg.isInvalid()) {
6947        IsError = true;
6948        break;
6949      }
6950
6951      Arg = DefArg.takeAs<Expr>();
6952    }
6953
6954    TheCall->setArg(i + 1, Arg);
6955  }
6956
6957  // If this is a variadic call, handle args passed through "...".
6958  if (Proto->isVariadic()) {
6959    // Promote the arguments (C99 6.5.2.2p7).
6960    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6961      Expr *Arg = Args[i];
6962      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6963      TheCall->setArg(i + 1, Arg);
6964    }
6965  }
6966
6967  if (IsError) return true;
6968
6969  if (CheckFunctionCall(Method, TheCall.get()))
6970    return true;
6971
6972  return MaybeBindToTemporary(TheCall.release()).result();
6973}
6974
6975/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6976///  (if one exists), where @c Base is an expression of class type and
6977/// @c Member is the name of the member we're trying to find.
6978Sema::OwningExprResult
6979Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6980  Expr *Base = static_cast<Expr *>(BaseIn.get());
6981  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6982
6983  SourceLocation Loc = Base->getExprLoc();
6984
6985  // C++ [over.ref]p1:
6986  //
6987  //   [...] An expression x->m is interpreted as (x.operator->())->m
6988  //   for a class object x of type T if T::operator->() exists and if
6989  //   the operator is selected as the best match function by the
6990  //   overload resolution mechanism (13.3).
6991  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6992  OverloadCandidateSet CandidateSet(Loc);
6993  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6994
6995  if (RequireCompleteType(Loc, Base->getType(),
6996                          PDiag(diag::err_typecheck_incomplete_tag)
6997                            << Base->getSourceRange()))
6998    return ExprError();
6999
7000  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
7001  LookupQualifiedName(R, BaseRecord->getDecl());
7002  R.suppressDiagnostics();
7003
7004  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
7005       Oper != OperEnd; ++Oper) {
7006    AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
7007                       /*SuppressUserConversions=*/false);
7008  }
7009
7010  // Perform overload resolution.
7011  OverloadCandidateSet::iterator Best;
7012  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
7013  case OR_Success:
7014    // Overload resolution succeeded; we'll build the call below.
7015    break;
7016
7017  case OR_No_Viable_Function:
7018    if (CandidateSet.empty())
7019      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7020        << Base->getType() << Base->getSourceRange();
7021    else
7022      Diag(OpLoc, diag::err_ovl_no_viable_oper)
7023        << "operator->" << Base->getSourceRange();
7024    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
7025    return ExprError();
7026
7027  case OR_Ambiguous:
7028    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
7029      << "->" << Base->getSourceRange();
7030    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
7031    return ExprError();
7032
7033  case OR_Deleted:
7034    Diag(OpLoc,  diag::err_ovl_deleted_oper)
7035      << Best->Function->isDeleted()
7036      << "->" << Base->getSourceRange();
7037    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
7038    return ExprError();
7039  }
7040
7041  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
7042  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
7043
7044  // Convert the object parameter.
7045  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
7046  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
7047                                          Best->FoundDecl, Method))
7048    return ExprError();
7049
7050  // No concerns about early exits now.
7051  BaseIn.release();
7052
7053  // Build the operator call.
7054  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
7055                                           SourceLocation());
7056  UsualUnaryConversions(FnExpr);
7057
7058  QualType ResultTy = Method->getResultType().getNonReferenceType();
7059  ExprOwningPtr<CXXOperatorCallExpr>
7060    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
7061                                                    &Base, 1, ResultTy, OpLoc));
7062
7063  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
7064                          Method))
7065          return ExprError();
7066  return move(TheCall);
7067}
7068
7069/// FixOverloadedFunctionReference - E is an expression that refers to
7070/// a C++ overloaded function (possibly with some parentheses and
7071/// perhaps a '&' around it). We have resolved the overloaded function
7072/// to the function declaration Fn, so patch up the expression E to
7073/// refer (possibly indirectly) to Fn. Returns the new expr.
7074Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
7075                                           FunctionDecl *Fn) {
7076  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7077    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
7078                                                   Found, Fn);
7079    if (SubExpr == PE->getSubExpr())
7080      return PE->Retain();
7081
7082    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
7083  }
7084
7085  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
7086    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
7087                                                   Found, Fn);
7088    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
7089                               SubExpr->getType()) &&
7090           "Implicit cast type cannot be determined from overload");
7091    if (SubExpr == ICE->getSubExpr())
7092      return ICE->Retain();
7093
7094    return new (Context) ImplicitCastExpr(ICE->getType(),
7095                                          ICE->getCastKind(),
7096                                          SubExpr, CXXBaseSpecifierArray(),
7097                                          ICE->isLvalueCast());
7098  }
7099
7100  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
7101    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
7102           "Can only take the address of an overloaded function");
7103    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7104      if (Method->isStatic()) {
7105        // Do nothing: static member functions aren't any different
7106        // from non-member functions.
7107      } else {
7108        // Fix the sub expression, which really has to be an
7109        // UnresolvedLookupExpr holding an overloaded member function
7110        // or template.
7111        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
7112                                                       Found, Fn);
7113        if (SubExpr == UnOp->getSubExpr())
7114          return UnOp->Retain();
7115
7116        assert(isa<DeclRefExpr>(SubExpr)
7117               && "fixed to something other than a decl ref");
7118        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
7119               && "fixed to a member ref with no nested name qualifier");
7120
7121        // We have taken the address of a pointer to member
7122        // function. Perform the computation here so that we get the
7123        // appropriate pointer to member type.
7124        QualType ClassType
7125          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
7126        QualType MemPtrType
7127          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
7128
7129        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
7130                                           MemPtrType, UnOp->getOperatorLoc());
7131      }
7132    }
7133    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
7134                                                   Found, Fn);
7135    if (SubExpr == UnOp->getSubExpr())
7136      return UnOp->Retain();
7137
7138    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
7139                                     Context.getPointerType(SubExpr->getType()),
7140                                       UnOp->getOperatorLoc());
7141  }
7142
7143  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
7144    // FIXME: avoid copy.
7145    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
7146    if (ULE->hasExplicitTemplateArgs()) {
7147      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
7148      TemplateArgs = &TemplateArgsBuffer;
7149    }
7150
7151    return DeclRefExpr::Create(Context,
7152                               ULE->getQualifier(),
7153                               ULE->getQualifierRange(),
7154                               Fn,
7155                               ULE->getNameLoc(),
7156                               Fn->getType(),
7157                               TemplateArgs);
7158  }
7159
7160  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
7161    // FIXME: avoid copy.
7162    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
7163    if (MemExpr->hasExplicitTemplateArgs()) {
7164      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
7165      TemplateArgs = &TemplateArgsBuffer;
7166    }
7167
7168    Expr *Base;
7169
7170    // If we're filling in
7171    if (MemExpr->isImplicitAccess()) {
7172      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
7173        return DeclRefExpr::Create(Context,
7174                                   MemExpr->getQualifier(),
7175                                   MemExpr->getQualifierRange(),
7176                                   Fn,
7177                                   MemExpr->getMemberLoc(),
7178                                   Fn->getType(),
7179                                   TemplateArgs);
7180      } else {
7181        SourceLocation Loc = MemExpr->getMemberLoc();
7182        if (MemExpr->getQualifier())
7183          Loc = MemExpr->getQualifierRange().getBegin();
7184        Base = new (Context) CXXThisExpr(Loc,
7185                                         MemExpr->getBaseType(),
7186                                         /*isImplicit=*/true);
7187      }
7188    } else
7189      Base = MemExpr->getBase()->Retain();
7190
7191    return MemberExpr::Create(Context, Base,
7192                              MemExpr->isArrow(),
7193                              MemExpr->getQualifier(),
7194                              MemExpr->getQualifierRange(),
7195                              Fn,
7196                              Found,
7197                              MemExpr->getMemberLoc(),
7198                              TemplateArgs,
7199                              Fn->getType());
7200  }
7201
7202  assert(false && "Invalid reference to overloaded function");
7203  return E->Retain();
7204}
7205
7206Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
7207                                                          DeclAccessPair Found,
7208                                                            FunctionDecl *Fn) {
7209  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
7210}
7211
7212} // end namespace clang
7213